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Abstract. Members of the order Carnivora are a unique and important seed disperser who consume and
deposit undamaged seeds while providing regular long-distance seed dispersal opportunities. Some mem-
bers of Carnivora, such as coyotes (Canis latrans), are undergoing range expansions which may help the
plant species they consume colonize new locations or replace dispersal services provided by recently extir-
pated species. In this study, we evaluated aspects of the seed dispersal effectiveness of coyotes and gut pas-
sage time to determine the potential dispersal distances for three commonly consumed and commonly
occurring plant species (Amelanchier alnifolia, Celtis ehrenbergiana, and Juniperus osteosperma). We also inves-
tigated the potential effects of secondary dispersal of seeds away from scats by comparing seedling emer-
gence from whole scats to those where seeds were first removed from scats. We found that seeds generally
took between 4 and 24 h to pass through the digestive tract of coyotes, which could result in regular seed
dispersal up to 7 km. Gut passage through coyotes had no effect on seed viability or emergence for any of
the three plant species, including that gut passage for A. alnifolia and J. osteosperma does not replace cold
stratification for breaking physiological dormancy. By simulating secondary dispersal, we found that 22%
(�8.2%) more C. ehrenbergiana seedlings emerged when seeds were removed from scats and those seed-
lings emerged 7 d earlier (�5 d) compared to seeds that remained in the coyote scat. Coyotes are effective
seed dispersers, with the potential for regular long-distance dispersal services and for providing opportu-
nities for secondary seed dispersal, which could aid in climate migration or serve to replace extirpated dis-
persal mutualists.

Key words: Canis latrans; coyote; endozoochory; long-distance dispersal; migration.
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INTRODUCTION

Seed dispersal is necessary for sexually repro-
ducing plant species to maintain gene flow and
recruitment within a population and for migra-
tion and gene flow among populations (Levin
et al. 2003, Levine and Murrell 2003). Dispersal
aids in maintaining both plant community diver-
sity and within-species genetic diversity, thereby
improving community and species stability and

persistence (Clobert et al. 2012). Additionally,
dispersal improves the survival of individual
propagules by moving them away from
intraspecific competition or inhibition (Grubb
1977, Schupp and Fuentes 1995), specialized
pathogens, and from predators that are attracted
to an abundance of seeds and propagules imme-
diately surrounding a maternal plant (Janzen
1970, Connell 1971, Comita et al. 2014). Seed dis-
persal also allows for the colonization of

 v www.esajournals.org 1 August 2021 v Volume 12(8) v Article e03702

https://orcid.org/0000-0003-2005-6039
https://orcid.org/0000-0003-2005-6039
https://orcid.org/0000-0003-2005-6039
https://orcid.org/0000-0001-5822-0610
https://orcid.org/0000-0001-5822-0610
https://orcid.org/0000-0001-5822-0610
https://orcid.org/0000-0003-4522-0157
https://orcid.org/0000-0003-4522-0157
https://orcid.org/0000-0003-4522-0157
info:doi/10.1002/ecs2.3702
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.3702&domain=pdf&date_stamp=2021-08-05


unpredictable or newly available habitats (Howe
and Smallwood 1982). Effective seed dispersal
occurs when quality seed (i.e., undamaged and
viable) is deposited in quality locations (i.e., safe
sites suitable for germination and growth) in suf-
ficient quantities to ensure population establish-
ment (Schupp 1993, Schupp et al. 2010). Thus,
many species have adapted to utilize animals to
increase the quantity of seeds transported in
short- and long-distance dispersal through vari-
ous mutualisms and commensalisms (Levin
et al. 2003). Understanding the efficacy of these
dispersal strategies and their mutualist or com-
mensalist relationships is crucial to understand-
ing and modeling seed dispersal.

Endozoochory is a form of seed dispersal that
occurs via a mutualistic relationship with a verte-
brate whereby the seed is transported inside the
animal’s digestive tract post-consumption. In
many cases, seeds are covered with edible, fleshy
fruit that promotes consumption by animals,
which increases the quantity of seeds dispersed.
Seed treatment by endozoochoric dispersers
(e.g., mechanical damage during mastication;
damage during digestion) can vary between dif-
ferent disperser and plant species and is an
important aspect of the quality of seed dispersal
effectiveness (Schupp 1993, Schupp et al. 2010,
Perea et al. 2013). If seeds are unharmed, fruit
consumption allows seeds to germinate after gut
passage and feces deposition (Cypher and
Cypher 1999, Steyaert et al. 2019). In some endo-
zoochoric relationships, animal consumption of
seeds can improve seed germination by remov-
ing fruit pulp, scarifying seed coats, and break-
ing physiological seed dormancy including for
species that might otherwise require cold stratifi-
cation (Traveset et al. 2007, Soltani et al. 2018).

Despite their name, many members of the
order Carnivora [e.g., bears (Ursus sp.) and foxes
(Vulpes sp.)] are highly omnivorous and consume
large volumes of fruit, therefore providing sub-
stantial seed dispersal services (Rogers and
Applegate 1983, Rosalino and Santos-Reis 2009,
Lalleroni et al. 2017). The quantity and quality of
seeds dispersed by Carnivorans make them a par-
ticularly important seed disperser in some
regions. For example, Carnivorans in North
America are considered the main mammalian
seed disperser of all plant species (Willson 1993).
Furthermore, Carnivorans’ seed-laden scats are

valuable resources for scatter hoarding, sec-
ondary seed dispersers, such as granivorous
rodents (Enders and Vander Wall 2012, Shakeri
et al. 2018). Carnivorans are important seed dis-
persers not only because they consume and
deposit a substantial quantity of viable seeds, but
they also have relatively large home ranges that
can result in the long-distance dispersal of seeds
(Gonz�alez-Varo et al. 2013, Herrera et al. 2016,
Lalleroni et al. 2017). Long-distance seed disper-
sal is important for plant ecology and conserva-
tion because it facilitates gene flow among
populations and the colonization of new areas
(Falk and Holsinger 1991).
Coyotes (Canis latrans) are mesocarnivores that

occur throughout most of North America and
consume a wide variety of fruits (Kitchen et al.
1999, Roehm and Moran 2013). The generalist
diets of coyotes allow them to take advantage of
different prey items as they become available,
including several seasonal fruits (Morey et al.
2007, Petroelje et al. 2013). Seeds deposited in
natural ecosystems from coyote frugivory com-
monly result in neutral or increased germination
(Schupp et al. 1997, Roehm and Moran 2013).
However, the effects on some seeds can be nega-
tive (Cypher and Cypher 1999). Because results
are generally neutral or positive, coyotes are
hypothesized to be effective seed dispersers for
many plant species. However, no controlled
studies have investigated the effects of gut pas-
sage or gut passage time on seed viability and
germination. Such information would improve
our understanding of coyotes as effective seed
dispersers and our ability to model seed disper-
sal by coyotes.
Coyotes are an interesting seed disperser

because, unlike many frugivores, their range is
expanding. Since the 1950s, coyotes have
expanded their range by 40%, the largest expan-
sion of any North American Carnivoran in the
same period (Laliberte and Ripple 2003, Hody
and Kays 2018). In the early 1900s, coyotes pri-
marily inhabited the unforested western two-
thirds of North America. Today, coyotes are
found in taiga, deciduous, coastal temperate, and
tropical forests from Canada and southern
Alaska to Central America (Hody and Kays
2018). Because coyotes disperse viable seeds,
their range expansion could be aiding in broader
dispersal and colonization patterns of the plant
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species they consume. Additionally, in areas
where coyotes are recent arrivals, they could be
supplementing or replacing dispersal services
previously carried out by species whose numbers
have been reduced or have been extirpated
entirely (P�erez-M�endez et al. 2016), as has been
seen with other non-native Carnivoran species
(Celed�on-Neghme et al. 2013, Mu~noz-Gallego
et al. 2019). However, before we can understand
the significance of coyotes as seed dispersers, we
must first understand three key aspects of seed–
coyote interactions: gut passage time (which
influences how far a seed can be dispersed), its
effect on seed viability, the rate and timing of ger-
mination, and the potential quantity of viable
seeds dispersed.

This study had five main goals: (1) We mea-
sured gut passage time for three plant species
(Amelanchier alnifolia, Celtis ehrenbergiana, and
Juniperus osteosperma) from genera commonly
consumed by coyotes (Schupp et al. 1997,
Cypher and Cypher 1999, Dumond et al. 2001,
Schrecengost et al. 2008). (2) We examined how
gut passage through a coyote affects seed viabil-
ity and seedling emergence of A. alnifolia,
C. ehrenbergiana, and J. osteosperma. (3) We exam-
ined how diet composition may alter viability
and emergence of A. alnifolia, C. ehrenbergiana,
and J. osteosperma. (4) We also determined
whether gut passage could break physiological
seed dormancy for the two plant species in this
study with physiological seed dormancy (which
is often broken by cold stratification and some-
times scarification, A. alnifolia and J. osteosperma).
(5) Finally, we experimentally evaluated the
potential effect of secondary dispersal on quanti-
tative and qualitative components of seed disper-
sal effectiveness. The results of this study are
important for understanding the role coyotes
play in seed dispersal.

METHODS

Seed selection
We identified 16 genera of plants with seed-

bearing bodies consumed by coyotes (Schupp
et al. 1997, Cypher and Cypher 1999, Dumond
et al. 2001, Schrecengost et al. 2008). Three gen-
era were identified that had distributions span-
ning the conterminous United States, were
common within their respective geographic

ranges, and had a subordinate species that were
available from seed distributors or wild collec-
tion: Saskatoon serviceberry (A. alnifolia, 4–10
seeds per pome), desert hackberry (C. ehrenber-
giana, 1 seed per drupe), and Utah juniper (J. os-
teosperma, 1–2 seeds per dry cone). Celtis
ehrenbergiana and J. osteosperma both typically
require cold stratification to break physiological
seed dormancy (Baskin and Baskin 2014), allow-
ing us to test if coyote gut passage could replace
cold stratification in breaking dormancy. All
three genera are woody taxa with wide spatial
distributions (USDA & NRCS 2020), and at least
Juniperus is already experiencing range expan-
sion (Weisberg et al. 2007, Rowland et al. 2011),
making them interesting models for evaluating
Carnivoran consumption and dispersal potential.
Amelanchier alnifolia and C. ehrenbergiana were
both purchased as whole dried fruits from native
seed distributors (Native Seed Company and
Granite Seed, respectively). In contrast, J. os-
teosperma seed cones were collected from a wild
population in Green Canyon near Logan, Utah,
USA. Before feeding, the A. alnifolia and C. ehren-
bergiana fruits were rehydrated to ensure con-
sumption by coyotes and to emulate wild
presentation.

Captive coyote trials and gut passage time
Captive coyotes housed at the USDA-National

Wildlife Research Center’s Predator Research
Facility in Millville, Utah, USA, were fed 650 g of
a high-protein, high-fat commercial food (Fur
Breeders Agricultural Cooperative, Logan, Utah,
USA) daily and provided water ad libitum. Coy-
ote feeding trials took place between 20 June
2019 and 25 November 2019 and involved 20
coyotes. All coyotes were housed as male–female
pairs in either 1000 or 10,000 m2 outdoor enclo-
sures but are regularly fed in a fixed location of
equivalent size within each enclosure. Experi-
mental feedings for this study included three diet
ratio treatments: a control feeding (650 g of regu-
lar food), one-third seed-bearing body (217 g of
fruit/cone and 433 g regular food, ˜2170 A. alnifo-
lia fruits, 1670 C. ehrenbergiana fruits, and 800
J. osteosperma cones), and two-thirds seed-
bearing body (433 g fruit/cone and 217 g regular
food, ˜4330 A. alnifolia fruits, 3330 C. ehrenber-
giana fruits, and 1600 J. osteosperma cones) for
each of the three plant species. Two different
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proportions of seed-bearing bodies in feedings
were used to determine whether diet composi-
tion altered gut passage time (Cipollini and
Levey 1997) and the effect of gut passage on seed
viability and germination due to differences in
digestion with an increase in plant matter (Auger
et al. 2002). We fed all coyotes their regular diet
for a minimum of two days between experimen-
tal feedings. Each experimental feeding was
mixed with a non-toxic glitter to allow for the
identification of target scat after deposition
(Burns et al. 1995). Although coyotes were
housed as mated pairs, we fed them separately,
and their food was mixed with different colors of
glitter to enable the identification of scats to the
individual. Twelve coyotes were fed for each
treatment. Failure to participate occurred when a
coyote refused to consume the experimental
feeding or the coyotes ate from both feeding sta-
tions preventing individual ID of the resulting
scats. All successful participants were observed
until feeding concluded (feeding generally lasted
2–7 min) to establish gut passage start times.

After each experimental feeding, the enclosure
was checked after 4, 8, 24, and 48 h to establish
gut passage time. All scats were collected and
air-dried at room temperature to prevent mold
formation before seed viability testing and emer-
gence trials. All feeding trials were conducted
under approval from NWRC’s Institutional Ani-
mal Care and Use Committee (QA-3051).

Post-consumption seed viability testing
We blocked scats into groups by species of

seed, the proportion of seed-bearing bodies in
feeding, individual coyote, and time interval col-
lected for viability tests post-consumption
(Fig. 1). Scat was randomly selected from each
block for seed viability testing if multiple scats
were collected. The seeds were removed from
each scat using water and by progressively siev-
ing the scat with a starting mesh of 6.35 mm and
a finishing mesh of 2.12 mm. If a scat failed to
yield 100 seeds, it was discarded, and another
one was randomly selected. This method was
used for both C. ehrenbergiana and A. alnifolia.

Fig. 1. Experimental design. Scat samples from captive coyotes fed seed-bearing bodies of three different plant
species (Amelanchier alnifolia, Celtis ehrenbergiana, and Juniperus osteosperma) were blocked for post-consumption
viability and emergence testing first by seed species (A) to detect any variation in species tolerance for gut pas-
sage and then by the proportion of the fruits/cones in the feeding by mass (B) to evaluate whether diet composi-
tion altered the effect of gut passage on seeds. Next samples were blocked by the individual coyote (C) to control
for pseudoreplication and to detect any individual variation. Finally, samples were blocked by the post-
consumption time interval (D) that they were collected to determine whether longer gut passage times and thus
longer dispersal distances had an effect on seed viability or emergence.
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No single scat yielded more than 50 J. os-
teosperma seeds; therefore, multiple scats from
within the same block were randomly selected
and combined to yield 100 seeds. To establish
baseline seed viability, we tested three control
samples of 100 seeds from the purchased
C. ehrenbergiana and A. alnifolia seed lots and six
control samples of 100 seeds from the wild-
collected J. osteosperma due to its higher variabil-
ity in viability. We followed the guidelines in the
AOSA/SCST Tetrazolium Testing Handbook for
seed viability tests (AOSA 2010). After being cut
to expose the embryo, seeds were soaked for
18 h in a 1% tetrazolium solution at ˜30°C. Then,
the exposed embryo was inspected for the inten-
sity of staining as relevant for each species
(AOSA 2010).

Post-consumption seedling emergence testing
We randomly selected a scat from each block

for seed emergence trials in a common garden
experiment. Each selected scat was divided into
half; seeds were removed from one half as
described in the post-consumption seed viability
testing section and the other half remained intact
in the scat. Controls consisted of 100 seeds each
for C. ehrenbergiana and A. alnifolia. A half scat
from the J. osteosperma trials yielded approxi-
mately 25 seeds each and their seeds are quite
large; thus, the controls were limited to 25 seeds
so that the germination conditions were similar
(e.g., seed density, distance from soil surface and
vertical arrangement with other seeds) between
the control and removal experimental samples.
Removed seeds, intact scats with seeds, and con-
trols were planted in a research greenhouse at
Utah State University in Logan, Utah, USA.
Whole scats were placed on the surface of the
potting soil to replicate natural deposition, while
removed seeds and control seeds were covered
with potting soil to simulate scatter hoarding
(Beck and Vander Wall 2010) and optimal germi-
nation conditions, respectively (Bonner et al.
2008). The greenhouse was maintained at 21°C, a
temperature common in germination guidelines
for all three species (Bonner et al. 2008, Beck and
Vander Wall 2010). Supplemental lighting was
provided to maintain a 12-h photoperiod. Sam-
ples were kept moist and checked for new emer-
gence every 36–72 h. Emergence trials were run
for 70 d (Bonner et al. 2008). The A. alnifolia and

J. osteosperma seeds were not cold stratified to
break seed dormancy (Bonner et al. 2008, Baskin
and Baskin 2014) because we wanted to test
whether or not gut passage would break dor-
mancy for these species as has been observed in
other species (Traveset et al. 2007, Soltani et al.
2018).

Data analysis
We ran linear and mixed effect models to test

the effect of gut passage time and diet composi-
tion on seed viability, time to first emergence,
and total number emerged while controlling for
the variation in individual coyote gut passage
times. Gut passage time and diet composition
were both treated as continuous variables, with
the mid-point of each collection interval being
used for gut passage time (2, 6, 16, and 36 h,
respectively). We also ran mixed effect models to
evaluate the effect of varying fruit concentrations
in the diet (one-third seed-bearing body versus
two-thirds seed-bearing) on gut passage time.
Finally, a pairwise t-test was run to compare
days to first emergence and total emergence for
removed seed samples and whole scats.

RESULTS

Of the 20 individual coyotes used in this study,
between 10 and 12 individuals successfully par-
ticipated in five of the six treatment diet combi-
nations: 12 participated in the treatment of one-
third seed-bearing body for J. osteosperma, 11 par-
ticipated in both diet ratio treatments for A. alni-
folia, and the one-third seed-bearing body
treatment for C. ehrenbergiana, while only 10 par-
ticipated in the two-thirds seed-bearing treat-
ment for C. ehrenbergiana. The two-thirds ratio
treatment of J. osteosperma failed to yield suffi-
cient participation and samples because only five
coyotes consumed this combination.

Gut passage time
A total of 484 scats were collected, 6% between

0 and 4 h, 20% between 4 and 8 h, 61% between
8 and 24 h, and 13% between 24 and 48 h for all
treatments and the control (Table 1). Inclusion of
seed-bearing bodies in the diet, the seed species,
and feeding proportion did not affect average
gut passage time (14.82 h, n = 484, SE = 0.96;
Appendix S1: Table S1). We did not detect a
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difference in gut passage time for individual coy-
otes (Appendix S1: Table S1).

Post-consumption seed viability
A total of 40 A. alnifolia, 27 C. ehrenbergiana,

and 13 J. osteosperma samples consisting of 100
seeds each were tested for viability post-
consumption (Table 1). Consumption and gut
passage did not alter seed viability ratios com-
pared to the control samples. An increase in the
duration of gut passage (b = 0.0, P = 0.54) and
diet ratios (b = 0.04, P = 0.27) similarly showed
no significant change in seed viability ratios
(Fig. 2; Appendix S1: Table S1).

Post-consumption seedling emergence
In total, 31 A. alnifolia, 22 C. ehrenbergiana, and

9 J. osteosperma samples were used for germina-
tion trials alongside three controls (un-digested
seeds) of each species (Table 1). For all species,
seedling emergence rates did not differ between
the control and removed seed treatment. Seed-
ling emergence was exceptionally low for the
control and experimental treatments of J. os-
teosperma seeds (zero seeds emerged in control
and experimental treatments) and A. alnifolia

seeds (only one seed from an experimental treat-
ment emerged and none from the controls), pre-
venting further comparisons. The removed seed
treatment, simulating secondary dispersal for
C. ehrenbergiana, had a 22% � 8.2% (95% CI)
higher rate of emergence (P < 0.001, n = 412/
1765 of removed seeds; n = 136/2677 of seeds in
whole scats emerged), and first emergence was
7 d earlier (�5 d 95% CI, P = 0.009) compared to
emergence from an intact scat. Diet ratio treat-
ments and gut passage time did not affect the
emergence ratio or the number of days to first
emergence (P ≥ 0.1; Appendix S1: Table S1).

DISCUSSION

Coyote range expansion and dietary breadth
illustrate their potential for effective seed disper-
sal at both short and long distances. As coyotes
expand their range, especially southward (Hody
and Kays 2018), they are encountering an
increasing number of fleshy fruited plants that
have evolved for some level of endozoochory.
Our results support the hypothesis that coyotes
can act as effective seed dispersers for Ame-
lanchier, Celtis, and Juniperus species. We found

Table 1. The number of scats collected at each collection interval for each seed volume treatment and the control
diet feeding, the number of samples from each treatment block, and control used in both tetrazolium testing
(viability) and germination testing.

Time interval

One-third volume Two-thirds volume

Control
No. of
hours0–4 h 4–8 h 8–24 h 24–48 h Total 0–4 h 4–8 h 8–24 h 24–48 h Total

Scat collection 10 0-4
A. alnifolia 3 8 71 6 88 3 21 45 19 88 29 4-8
C. ehrenbergiana 2 9 37 6 54 5 19 24 7 55 60 8-24
J. osteosperma 6 13 52 13 84 — — — — — 16 24-48
Total 11 30 160 25 226 8 40 69 26 143 115

Viability testing
A. alnifolia — 5 10 3 18 — 8 11 3 22 3
C. ehrenbergiana — 1 9 1 11 — 7 7 2 16 3
J. osteosperma — 1 10 2 13 — — — — — 6
Total — 7 29 6 42 — 15 18 5 38 12

Germination testing
A. alnifolia — 2 11 — 13 — 5 10 — 15 3
C. ehrenbergiana — 1 9 — 10 — 4 5 — 9 3
J. osteosperma — 1 6 2 9 — — — — — 3
Total — 4 26 2 32 — 9 15 24 9

Notes: For tetrazolium testing, a sample was delineated by a single scat from its respective block for Amelanchier alnifolia and
Celtis ehrenbergiana seeds and as a combination of scats from within the same sampling block for Juniperus osteosperma to reach a
100 seed sample size. All germination testing samples were single scats with varying volumes of seeds contained therein. The
two-thirds ratio of J. osteosperma and the 0- to 4-h interval for all treatments failed to yield sufficient samples for viability and
germination testing, and the Juniperus control required additional replicates due to higher variability in viability.
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no indication that consumption by coyotes or gut
passage times affect seed viability of the three
plant species studied. However, gut passage did
not appear to improve seedling emergence for

any of the plant species, and gut passage was not
effective at breaking dormancy for A. alnifolia
and J. osteosperma seeds, which typically require
cold stratification. We also found that removing

Fig. 2. Seed viability ratios. Captive coyotes were fed standardized feeding treatments consisting of a mixture
of their regular diet of a high-protein, high-fat commercial food, and one-third and two-thirds seed-bearing bod-
ies by mass, of three plant genera that their wild counterparts commonly consume (Amelanchier alnifolia, Celtis
ehrenbergiana, and Juniperus osteosperma). Gut passage duration had no significant effect on seed viability for any
of the species, nor did feeding composition for A. alnifolia or C. ehrenbergiana seeds (the two-thirds J. osteosperma
treatment failed to yield sufficient samples for testing). All values are the mean of each treatment block with stan-
dard error bars around them.
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seeds from coyote scat improved seedling emer-
gence speed and rate for C. ehrenbergiana, sug-
gesting that secondary dispersal by scatter-
hoarders may increase the quality of seed disper-
sal services by coyotes.

Current coyote diet patterns suggest that coy-
otes will consume any available fruit and, in
turn, disperse their seeds (Kitchen et al. 1999,
Roehm and Moran 2013). The establishment of
novel mutualistic relationships is important for
seed dispersal for two reasons. First, long-
distance or atypical dispersal may be needed to
help plants disperse to new locations that have
recently become suitable because of climate
change or anthropogenic land-use change (Cor-
lett and Westcott 2013). Second, new dispersers
can compete with native disperses or replace
native dispersers that have been extirpated or are
ecologically extinct (Celed�on-Neghme et al.
2013, P�erez-M�endez et al. 2016, Mu~noz-Gallego
et al. 2019). If coyotes can play these roles, they
may help maintain existing fruit-bearing plant
populations by providing regular dispersal and
genetic exchange or improving plant dispersal
under changing climate conditions.

Amelanchier alnifolia, C. ehrenbergiana, and J. os-
teosperma seeds consumed by coyotes had aver-
age gut passage times between 4 and 24 h, with
the majority being deposited more than 8 h post-
consumption. Seeds that were deposited up to
48 h post-consumption had no reduction in via-
bility. Although the two species that require cold
stratification never emerged, C. ehrenbergiana
seeds had no reduction in total emergence for
any gut passage duration. Coyotes can regularly
travel 7 km or more in 24 h (Young et al. 2006)
and even average 0.94 km/h of net displacement
(Kitchen et al. 2000) within home ranges of
between 10 and 16 km2 (Chamberlain et al. 2000,
Gosselink et al. 2003, Gifford et al. 2017). All of
these factors combined suggest that coyotes can
provide more regular long-distance dispersal
opportunities than other sympatric seed dis-
persers that may offer more irregular but longer
distance dispersal (Escribano-Avila et al. 2014).

Our results support that coyotes are qualita-
tively effective seed dispersers, as our results
show no negative effects on seed viability or
emergence for all gut passage times and seed
quantities. We were unable to test the qualita-
tive effectiveness of deposition location in this

study, but other studies have shown canids
tend to deposit seeds in suitable locations for
germination and recruitment (Escribano-Avila
et al. 2014). As fairly prolific consumers of fruit
(Kitchen et al. 1999, Roehm and Moran 2013),
our findings also suggest coyotes are quantita-
tively effective seed dispersers. In this study,
every consumption resulted in the deposition
of viable seeds, even after extended gut pas-
sage times or high seed volume feedings. How-
ever, gut passage did not appear to improve
seedling emergence for any of the plant species
studied.
Two of the plant species used in this study,

A. alnfolia and J. osteosperma, typically require
cold stratification to break dormancy (Baskin
and Baskin 2014). Plants dependent on cold strat-
ification are particularly vulnerable in the face of
climate change due to the additional niche
requirement of sustained cold temperatures
before germination (Poschlod et al. 2011). Previ-
ous studies have suggested that gut passage can
aid in dormancy break for such species (Traveset
et al. 2007, Soltani et al. 2018), making them less
vulnerable to warming climates without needing
to migrate as far from their current range. Our
results found that coyote gut passage alone was
not sufficient to break dormancy for either plant
species. Thus, although coyotes may deposit
viable seeds at farther distances than some other
frugivores, our results suggest suitable habitats
at the deposition site would still need to have
prolonged cold periods to stimulate germination
for these plant species. Thus, coyotes’ long-
distance dispersal services could be valuable for
climate migration, but they do not appear to
assist with local climate adaptation for A. alnfolia
and J. osteosperma.
The quality of coyote seed dispersal improved

when seeds were removed from scats by
improving seedling emergence speed and rate.
Seeds removed from scats had a 22% higher
rate of emergence, suggesting that the scat’s
physical or chemical structure inhibited viable
seeds from emerging. Additionally, large num-
bers of seeds deposited as a single scat may
reduce seed dispersal quality due to inherent
competition between seedlings if they are not
spread out before emergence. Rodents regularly
forage from the concentrated seed resource
available in Carnivoran scats (Shakeri et al.
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2018). The seeds collected by granivorous
rodents are either immediately consumed, lar-
der hoarded, or scatter hoarded (Beck and Van-
der Wall 2010). Consumption inherently reduces
dispersal quality and quantity, and larder
hoarding deposits seeds too deep for effective
emergence, reducing dispersal quality (Beck and
Vander Wall 2010). However, scatter hoarding
deposits seeds in many different locations (in-
creasing the quantity and diversity of dispersal
locations) at depths that are more conducive to
germination and emergence (Beck and Vander
Wall 2010), essentially acting as gardeners plant-
ing seeds (increasing the quality of dispersal).
Scatter hoarding is also the most common fate
for seeds collected by granivorous rodents (Beck
and Vander Wall 2010, Barga and Vander Wall
2013). Thus, secondary seed dispersal may
improve the quality of coyote seed dispersal by
increasing the quantity of dispersal locations
from one to many and the quality of seed fate
(increased emergence) in those locations. How-
ever, further studies examining the interplay
between coyote seed consumption and sec-
ondary dispersers are needed.

Intraspecific variation of both the plant being
dispersed and the dispersal mutualist is impor-
tant to understand seed dispersal dynamics fully.
Variation in plant characteristics, including
fecundity, fruit, and crop size, can affect the qual-
itative and quantitative aspects of endozoochoric
dispersal due to the quality of the seed itself or
its attractiveness and availability for a high quan-
tity of consumption (Schupp et al. 2019, Snell
et al. 2019). Variation in disperser dominance,
sex, behavior, and body size affects their access
to seeds, travel distance during gut passage, and
volume of seeds consumed (Zwolak 2018). This
study utilized homogenized seed lots and con-
trolled both feeding volume and access to the
food in captive coyotes. Thus, using a highly con-
trolled experimental population of coyotes limits
any inferences we could make regarding
intraspecific variation in gut passage time (which
we did not detect) and its implications for poten-
tial dispersal distance. However, the controlled
nature of this study allowed us to examine the
effects of diet composition and gut passage time
on seed viability and germination, which would
have been very challenging to study using a wild
population of coyotes.
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