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CHAPTER

21
Forage Systems for the Temperate
Subhumid and Semiarid Areas

John R. Hendrickson, Research Rangeland Management Specialist,
USDA-Agricultural Research Service, Mandan, ND, USA

Corey Moffet, Research Rangeland Management Specialist,
USDA-Agricultural Research Service, Woodward, OK, USA

Introduction

Within North America, a majority of the temperate
subhumid and semiarid zones are in the Great Plains. The
defining factor separating the two zones is precipitation
effectiveness (PE), which considers both precipitation
and evaporation. Thornthwaite (1931) used this index
to identify six different PE zones in North America.
Historically, the separation between the subhumid and
semiarid zones runs roughly along the 100th meridian
(Thornthwaite 1941). However, more recent characteri-
zations have moved both the semiarid and dry subhumid
zones to the west (Figure 21.1). Using more recent
data, the dry and moist subhumid zones lie roughly
astride the 100th meridian with the moist subhumid
zone to the east (Figure 21.1). The temperate subhumid
zone comprises several million hectares (Table 21.1)
and includes nearly-half of Texas, most of Oklahoma,
Kansas, Nebraska, and the Dakotas and the western half
of Minnesota (Figure 21.1). The temperate semiarid
zone lies to the west and includes the eastern parts of
Montana, Wyoming, Colorado, New Mexico, and west
Texas (Figure 21.1). However, for this chapter, we will
generally use the historical designations for subhumid
and semiarid, which considers the 100th meridian as the
delineator.

Forages: The Science of Grassland Agriculture, Volume II, Seventh Edition.
Edited by Kenneth J. Moore, Michael Collins, C. Jerry Nelson and Daren D. Redfearn.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.

The Great Plains is a large expanse of land reaching
from Mexico, across the interior of the United States and
up into Canada (Trimble 1980). It stretches from the
eastern slopes of the Rocky Mountains to the edge of
the tallgrass prairie (Trimble 1980; Padbury et al. 2002).
Elevation ranges from 1250 m along the Rockies to 300 m
on their eastern border (Padbury et al. 2002). The Great
Plains is generally characterized by gently rolling plains
occasionally interrupted by wide river valleys, hills, or
badlands (Padbury et al. 2002). The glaciated areas of
the Northern Great Plains less variation in topography
than the non-glaciated areas further south (Padbury et al.
2002). Although dominated by gently rolling landscapes,
there are distinct geologic features contained within the
region. These include the Black Hills of South Dakota,
the Sandhills of Nebraska, the Flint Hills of Kansas, and
the Edwards Plateau in Texas.

Within the Great Plains states, land use can vary widely.
For example, Minnesota, has only 7.2% of its total land
in farms being used as pasture or rangeland (Table 21.1).
In contrast, over 90% of the total farmland in Wyoming
and New Mexico is in pasture and rangeland. It is impor-
tant to note that the western Great Plains states (Montana,
Wyoming, Colorado, and New Mexico) are drier and the
Great Plains geographic region does not cover the states
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State Boundaries

100th Meridian

0–15: Arid

16–31: Semiarid

32–47: Dry Subhumid

48–63: Moist Subhumid

64–127: Humid

128–up: Superhumid

P/E Index (1988 to 2017 Normal)

FIG. 21.1. Map of the central part of the United States including the Great Plains showing climatic

classifications developed using the P/E index (Thornthwaite 1931) from climatic data from 1988 to 2017.

Source: Figure developed by C. Moffet.
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Table 21.1 Land use for states in the temperate subhumid and temperate semiarid regions (ha)

State

Pasture/grazingland
that could be
used for crops

Grassland/
rangeland

Pastured
woodland

Total
pastureland

Pastureland as a
percent of total
farmland

Colorado 427 615 19 223 470 826 838 20 477 923 64.2
Kansas 442 258 15 525 646 308 408 16 276 312 35.4
Minnesota 167 026 1 271 242 439 332 1 877 600 7.2
Montana 910 532 39 298 812 1 962 724 42 172 068 70.6
Nebraska 322 093 22 297 424 212 929 22 832 446 50.4
New Mexico 229 591 37 973 029 2 163 280 40 365 900 93.4
North Dakota 321 936 10 247 184 125 002 10 694 122 27.2
Oklahoma 1 001 543 19 451 870 1 731 414 22 184 827 64.5
South Dakota 518 702 22 545 069 180 751 23 244 522 53.7
Texas 2 845 326 90 287 767 5 759 183 98 892 276 76.0
Wyoming 282 997 27 203 663 360 419 27 847 079 91.7
Total 7 469 619 305 325 176 14 070 280 326 865 075 61.7
US total 12 802 847 415 309 280 27 999 006 456 111 133 49.9
% US total 48 61 32 55 58.0

Source: USDA-NASS (2014).

entirely. Doing so, would increase the percentage of total
farmland that is devoted to pasture and rangeland. The
percentage of land in pasture and rangeland can be influ-
enced by the distinct geologic features mentioned earlier,
but is primarily determined by climate.

Climate

Climate is the primary factor influencing forage systems
in the temperate subhumid and semiarid zones. Climate
determines the length of the growing season, biomass
productivity and type of crops suitable for incorporating
into forage systems. There are two climatic trends in the
Great Plains that influence the management of forage
systems. First, the length of the growing season decreases
from south to north. For example, in southern areas of the
temperate subhumid and semiarid zones, the frost-free
period can range from 210 to 240 days (Orton 1974),
but in the most northern areas, the frost-free period is
usually only 90–120 days (Bavendick 1974). Because of
the short growing season and the need to feed hay for
significant parts of the year, hay quantity and nutritive
value become especially important considerations in
the Northern Great Plains (Lorenz 1976). Second, in
the Plains states, precipitation often decreases from east
to west, resulting in productivity per unit area often
following the same trend. Increased precipitation in the
eastern part of the Great Plains often results in a higher
percentage of farmland being used for cropland, whereas
in the Western Great Plains a greater percentage of the
farmland is used for pastures (USDA 2014). In areas with
mixed livestock and grain production, crop aftermath
(corn or wheat stubble) can be used to meet forage needs,
especially in the fall and winter.

Within both zones, the most significant attribute asso-
ciated with climate is variability. Precipitation and tem-
perature can show large variations not only spatially but
also annually and even diurnally. Coping with this varia-
tion is a serious challenge for producers in the temperate
semiarid region (Padbury et al. 2002).

Soils

Most soils in the temperate subhumid and semiarid zones
are Mollisols, which are typical of soils that have devel-
oped under predominantly grassland vegetation (Soil Sur-
vey Staff 1999). Mollisols are thick, dark-colored soils with
high-base saturation (>50%) that have organic-rich sur-
face horizons and well-developed structure; they are not
massive or hard when dry (Foth 1984). The high-natural
fertility of Mollisols makes them desirable for crop pro-
duction, though continuous cultivation has caused serious
structural and erosion problems in some areas (Brady and
Weil 1999). Mollisols are found from central Texas north
into the Dakotas and Canada (Brady and Weil 1999).
Other soil orders in the region include the less developed
Entisols and Inceptisols, the more developed Alfisols, with
their clay accumulation in the subsoil, the clayey shrink-
ing and swelling Vertisols, and the dry Aridisols along the
western edge of the region.

Livestock

Beef Cattle

Beef cattle far outnumber all other kinds of livestock com-
bined in both the temperate subhumid and temperate
semiarid regions (Table 21.2). In 2012, beef cattle made
up over 75% of the ruminant livestock in the Great Plains,
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Table 21.2 Beef cattle, dairy cattle, and sheep inventory of selected states for 1992 and 2012 (head)

Beef Dairy Sheep

State 1992 2012 1992 2012 1992 2012

Colorado 900 347 683 291 81 825 130 736 730 272 401 376
Kansas 1 434 017 1 270 538 85 132 131 688 206 566 62 541
Minnesota 381 869 357 826 609 034 463 312 221 777 126 506
Montana 1 506 445 1 439 653 22 409 13 947 634 361 236 646
Nebraska 1 857 347 1 730 112 83 295 54 628 151 777 71 771
New Mexico 631 738 461 595 110 422 318 878 460 700 89 745
North Dakota 837 716 881 662 74 885 17 876 217 240 64 607
Oklahoma 1 728 273 1 677 903 90 312 45 885 103 732 53 738
South Dakota 1 604 838 1 610 559 117 454 91 831 661 872 257 676
Texas 5 186 359 4 329 341 394 587 434 928 2 223 774 623 000
Wyoming 748 789 664 254 7 596 6 194 921 133 354 785
Total 16 817 738 15 106 734 1 676 951 1 709 903 6 533 204 2 342 391
US total 32 545 976 28 956 553 9 491 818 9 252 272 10 770 391 5 364 844
% US total 52 52 18 18 61 44

Source: USDA-NASS (2014).

which was greater than the 67% of ruminant livestock
in 1994. The number of beef cattle has declined by
about 11% over the last 20 years but data from 2018
(USDA-NASS 2019) shows national and regional beef
numbers increasing to close to 1994 levels. The low beef
cattle numbers in the 2012 Census of Agriculture were
probably a result of the severe drought, which started
in the Southern Great Plains in 2011 and spread north
in 2012. Cow–calf production is common throughout
both the temperate subhumid and temperate semi-
arid regions and cattle are grazed on both private and
publicly held lands. Yearling or stocker cattle opera-
tions, however, are more prevalent in the temperate
subhumid region.

Dairy Cattle

Dairy cattle numbers increased in Colorado, Kansas,
New Mexico, and Texas but decreased in the remainder
of the Great Plains during the 20-year period from 1992
to 2012 (Table 19.2). While the number of dairies is
increasing in some nontraditional milk-producing areas,
such as the western states, due to reduced land and labor
costs, the overall number of dairy farms in the United
States is decreasing, while the overall size of the farms has
grown (Blayney 2002). The decline in dairy cow numbers
was especially dramatic in North Dakota which saw a
reduction of over 75% during the 20-year period between
1992 and 2012.

Sheep and Goats

The loss of the wool and mohair subsidy as part of the
Farm Bill of 1996 resulted in a reduction in sheep and
goat production. Sheep numbers have continued to

decrease (Table 21.2) which has been the trend since
1942 when sheep numbers reached a peak of 56.2 million
head. Up until 1977, USDA did not provide actual
numbers for goats, but merely grouped goats with the
sheep. The USDA annual reports indicate the num-
ber of angora goats clipped for mohair has decreased
from almost 2 million head in 1992 to slightly less
than 155 000 in 2012. Over 47% of the angora goats
produced in 2012 were raised in Texas (USDA-NASS
2014). Meat goats have increased dramatically during
the same period from 591 543 in 1992 peaking at
2 601 669 in 2007 and declining to 2 053 228 in 2012.
Meat goats may be found in many states contained
within the temperate subhumid and temperate semiarid
regions. Texas, California, and Missouri reported the
largest goat inventory in 2012 (USDA-NASS, Quick
Stats 2019).

Horses

Horses are prevalent throughout the temperate subhumid
and temperate semiarid regions, both for pleasure and
work. There were over 3 million horses and ponies in the
US in 2012 (USDA-NASS 2014). Between 45% and
60% of horses were owned for recreation (Raub 2018)
suggesting that people own horses for pleasure. This
impacts their thoughts about forage and grazing manage-
ment. Horse numbers have been increasing for several
years and this trend is likely to continue.

Important Forage Species

Additional information on the perennial cool-grasses
including the wheatgrasses, wildryes, and other miscella-
neous cool-season species can be found in Chapter 17.
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Introduced Cool-Season Forages

Introduced cool-season forages have always been a critical
part of temperate subhumid forage systems in the US. The
introduced cool-season forages can be split into annual
and perennial species. In the states of the central Great
Plains (Texas, Oklahoma, Kansas, Nebraska, and the
Dakotas) about 1.8 million acres of annual small grains
were harvested for hay in 2012 (USDA-NASS 2014).
Besides the small grains harvested for hay, grazing of
winter wheat during winter and early spring is a common
practice from Kansas to north Texas.

Other cool-season annual forages include annual
ryegrass overseeded into warm-season perennial grass sods
in the eastern part of the temperate subhumid region
or for winter forage in Texas and Oklahoma. Triticale
is an option for grazing and remains vegetative longer
than wheat. In the northern portion of the temperate
subhumid region, primarily North Dakota and Montana,
spring barley is used as hay, silage, or occasionally grazed.

Interest in the forage potential of annual cover crops
is increasing. The primary focus driving increased use of
cover crops is the perceived conservation benefits (Myers
and Watts 2015); however, they can also be an important
source of livestock forage (Sanderson et al. 2018). Inclu-
sion of legumes in cover-crop mixtures can enhance the
forage quality (Hansen et al. 2015; Sanderson et al. 2018).
An annual cool-season forage mixture that included a
legume had consistently greater nutritional value than did
a crested wheatgrass pasture in a study conducted near
Sidney, Nebraska (Titlow et al. 2014).

By the early part of the twentieth century, many native
grasslands in the Great Plains had either been converted to
farmland or were not properly grazed. As a result, by the
late 1930s, there were millions of acres of severely eroded
or degraded pastures and croplands throughout the Great
Plains (Vogel and Hendrickson 2019) but especially in the
drier western portion of the region. Before the devastat-
ing drought of the 1930s, the only seeds widely available
for pasture planting in the Great Plains were timothy and
orchardgrass, both of which had poor drought tolerance
(Vogel and Hendrickson 2019). Improving the degraded
conditions found on croplands and grasslands required
utilization of new or improved forage germplasm which
was subsequently incorporated into grazing systems.

Both smooth bromegrass and crested wheatgrass
were noted for their ability to survive during the 1930s
drought (Vogel et al. 1996; Vogel and Hendrickson 2019).
‘Lincoln’ dairy smooth bromegrass was introduced in
1942 (Vogel and Hendrickson 2019) and has been a
major cool-season forage in the Dakotas, Nebraska,
Kansas, and northern Oklahoma. Crested wheatgrass,
one of the earliest cool-season species to produce for-
age following winter, is credited for reducing hay use
in its area of adaptation. Crested wheatgrass seed was
distributed to producers in Wyoming, Montana and the

Dakotas in the 1920s but ‘Fairway’, released in 1927
by the University of Saskatchewan, was one of the first
cultivar releases (Vogel and Hendrickson 2019). Since
the release of ‘Lincoln’ and ‘Fairway’ there have been 11
new cultivars of smooth bromegrass and 7 cultivars of
crested wheatgrass released with the most recent smooth
bromegrass release in 2014 and the most recent crested
wheatgrass in 2003 (Vogel and Hendrickson 2019).

Other important introduced cool-season perennial
forage grasses include intermediate wheatgrass, pubescent
wheatgrass, tall wheatgrass, meadow bromegrass, orchard-
grass, and creeping foxtail. The wheatgrasses demonstrate
good cold tolerance, drought tolerance, and good dry
matter production and nutritive value. However, they
are relatively short-lived and susceptible to overgrazing
(Hendrickson et al. 2005). Although primarily used in
the Northern Great Plains, intermediate and pubescent
wheatgrass have also been used in the Southern Great
Plains to stabilize marginal land formerly in wheat pro-
duction (Redmon et al. 1995) or to fill gaps between
grazing of winter wheat and warm-season pastures (Mali-
nowski et al. 2003). Tall wheatgrass is probably the most
productive of all the wheatgrasses, and though coarse
at maturity, can produce forage of good nutritive value
when managed well (Asay and Jensen 1996). Both tall
wheatgrass and intermediate wheatgrass monocultures
outperformed switchgrass monocultures on non-irrigated
plots in North Dakota (Monono et al. 2013). There have
been 12 cultivar releases of intermediate wheatgrass and
three releases of tall wheatgrass since 1945 (Vogel and
Hendrickson 2019).

Meadow bromegrass is known for early forage produc-
tion and rapid regrowth (Jensen et al. 2015). Meadow
bromegrass produces 49% more biomass after defoliation
than smooth bromegrass (Biligetu and Coulman 2010).
While meadow bromegrass is currently best adapted to
cooler and more moist areas (Alderson and Sharp 1994),
cultivars better adapted to semiarid areas are being devel-
oped (Jensen et al. 2015).

Orchardgrass is used to a limited degree in the tem-
perate subhumid region, but does not have the drought
tolerance of tall or intermediate wheatgrass. ‘Paiute’
orchardgrass, which was released by the US Forest Service
in 1981, may be the most drought tolerant of the orchard-
grass cultivars but even this one generally requires at least
410 mm of annual precipitation (Bush et al. 2012).

Russian wildrye is a drought-tolerant, grazing-tolerant
(Hendrickson and Berdahl 2003) cool-season grass seeded
on approximately 400 000 ha in the Great Plains of the
United States and Canada (Smoliak and Johnston 1980).
Once established, russian wildrye provides excellent
forage, especially for fall grazing (Lorenz 1977; Smoliak
and Johnston 1980). There have been seven culti-
vars of russian wildrye released since 1960 (Vogel and
Hendrickson 2019).
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Both creeping and meadow foxtail are well-adapted in
much of the temperate subhumid region. Creeping fox-
tail has become naturalized across the Great Plains and
meadow foxtail across the northern half of the continental
United States (Boe and Delaney 1996). Both are adapted
to strongly acid and poorly drained soils and are used for
pasture, hay, or silage. ‘Garrison’ creeping foxtail is a com-
mon cultivar in the Northern Great Plains.

Legumes can play an important role in forage sys-
tems in both the temperate subhumid and semiarid
regions. Alfalfa is among the most important forage
crops grown in the United States and about 46% of the
United States alfalfa acres are planted in the temperate
sub-humid and semi-arid regions. However, most alfalfa
hectarage is planted within the northern part of the
region (Figure 21.2). Alfalfa is generally used for hay or
silage, though there are some grazing-tolerant cultivars
available. In the Northern Great Plains, cultivars with a
high degree of Medicago sativa subsp. falcata usually persist

better under grazing (Bittman and McCartney 1994).
In the colder climates of the Northern Great Plains, the
ability to withstand the extreme low temperatures may
be as important to persistence as the ability to withstand
grazing (Hendrickson and Berdahl 2003). Incorporating
alfalfa into grasslands increased total yield of the forage
system by up to 185% (Hendrickson et al. 2008a, 2008b),
but alfalfa mixtures with cool-season grasses appeared to
be more sensitive to early-season water stress than did
warm-season grass monocultures (Hendrickson et al.
2013). Alfalfa production in many parts of the Southern
Great Plains is severely limited due to the presence of
Phymatotrichopsis omnivora in the soil, an ascomycete
fungus. The fungus is responsible for Phymatotrichopsis
root rot disease (also referred to as cotton root rot or
Texas root rot) in alfalfa (Mattupalli et al. 2018).

Other legumes of some importance include birdsfoot
trefoil, sweetclover, red clover, and white clover. These
legumes, except for sweetclover, do not have the drought

FIG. 21.2. Map of acres (acre = 0.40 hectares) of alfalfa harvested in each state using data from

the 2017 Census of Agriculture (USDA-NASS 2019). The numbers in each state are the number of acres

harvested. Darker colored states have the most harvested acres of alfalfa and the lighter colored states

have the least. Source: Map developed by J.D. Carter.



�

� �

�

Chapter 21 Forage Systems for the Temperate Subhumid and Semiarid Areas 393

tolerance necessary for production except in the extreme
eastern portion of the temperate subhumid region. Sweet-
clover, which was introduced from Eurasia, has become
naturalized in the region and is both drought tolerant and
winter hardy.

With more focus on soil health, there has been
increased interest in incorporating perennial forages into
annual cropping systems. A five-year study in central
North Dakota indicated that compared to a continu-
ous wheat cropping system, including perennial forages
reduced soil acidity and bulk density and increased partic-
ulate organic matter and water-stable aggregates (Liebig
et al. 2018). Within the forage treatments, intermediate
wheatgrass, alone or combined with alfalfa, reduced soil
bulk density and increased particulate organic matter
content compared to an alfalfa monoculture (Liebig et al.
2018). The same study indicated having an alfalfa or an
alfalfa – intermediate wheatgrass mixture in place for four
years reduced the amount of N needed on a subsequent
wheat crop for at least four years (Franco et al. 2018). As
soil health receives greater interest, the need for forages to
address other aspects besides production and nutritional
value will become more important.

Introduced Warm-Season Forages

Introduced perennial warm-season forages are important
on lands dedicated for pasture or hay use. In general,
these species are more difficult to establish and have
lower nutritive value than annual forage crops, but with
proper management and favorable weather, will persist
as a dependable source of forage for many years. More
information on warm-season forage management can be
found in Chapter 17.

Bermudagrass is one of the more important introduced
warm-season forage crops in the Southern Great Plains
having been introduced to the US from Africa before the
US was a country. Bermudagrass is well adapted to a wide
range of soil types and soil pH values. Bermudagrass is an
aggressively spreading plant that produces long stolons
capable of rooting at nodes in contact with moist soil. The
species responds well to fertilizer. There are many cultivars
of bermudagrass, and selections of common bermudagrass
can be propagated from seed. Hybrid cultivars, however,
must be propagated vegetatively by transplanting small
pieces of rooted stolons and rhizomes, known as sprigs,
dug from an established field typically in the dormant
season or soon after breaking dormancy in spring. Many
bermudagrass cultivars have limited cold tolerance but
‘Goodwell’, ‘Midland’, ‘Midland 99’, ‘Ozark’, and ‘Tifton
44’, among the sprigged cultivars, and the seeded ‘Guy-
mon’ and ‘Wrangler’ are cold-tolerant cultivars. Often two
or more genetic lines or cultivars are included in blends
of seeded bermudagrass. Seeded cultivars in south central
Oklahoma, averaged over a three-year study, produced
between 3400 and 5600 kg ha−1 without N fertilizer, and

production increased between 9 and 15 kg ha−1 for every
kg ha−1 of N applied up to 225 kg ha−1. Crude protein
(CP) and total digestible nutrients (TDNs) also increased
with N applications in this range. The sprigged cultivars
were more productive in general and more responsive to
the applied N. Non-fertilized production for the sprigged
cultivars varied between 5100 and 8500 kg ha−1 with a
15–19 kg ha−1 increase in production for every kg N ha−1

applied, but the effects of N fertilizer on nutritive value
were similar to the seeded cultivars (Funderburg et al.
2011; Funderburg et al. 2012).

Old-world bluestems include a few warm-season
bunch grass species introduced from Eurasia in the 1920s
to 1960s. These grasses have good forage potential and
have been planted on former cropland soils and along
roadside rights-of-ways throughout Oklahoma and Texas.
The old-world bluestems are more drought tolerant than
bermudagrass and are more likely to be found in the
western portions of the region. Several million hectares
of old-world bluestem were planted beginning in the
mid-1980s on highly erodible lands which had been
previously used as cropland. In recent years, concern
over the tendency of these grasses to escape the fields
and roadsides where they were originally planted has
greatly diminished their popularity in new plantings.
Old-world bluestems include several selections from the
species Bothriochloa ischaemum such as ‘Plains’ (a blend of
30 different accessions), ‘WW-Spar’, ‘WW Ironmaster’,
‘King Ranch’, and ‘Ganada’, the selection from Bothri-
ochloa bladhii, ‘WW-B. Dahl’, and caucasian bluestem or
Bothriochloa caucasica. ‘WW-Ironmaster’ was selected for
high pH soils and is less susceptible to iron chlorosis.

Caucasian bluestem is not as drought tolerant as
the other old-world bluestems, but when soil water
is adequate, is among the most productive. WW-B.
Dahl remains leafy and vegetative later into the growing
season but, is less cold tolerant than other cultivars.
King Ranch bluestem is also productive in the southern
portion of the region, but it too lacks cold tolerance. In
a study comparing the response of Plains and B. Dahl
old-world bluestems, non-fertilized B. Dahl and Plains
old-world bluestems produced more forage than many
seeded bermudagrass cultivars and had similar forage
production to many of the sprigged bermudagrass culti-
vars (Funderburg et al. 2011; Funderburg et al. 2012).
However, Plains did not respond to added fertilizer N.
WW-B. Dahl responded to small amounts of additional
N, 3200 kg ha−1 for 76 kg ha−1 of applied N, but did not
respond to greater amounts of N. The CP and TDN of
both old-world bluestem cultivars increased in response
to N application up to 225 kg ha−1.

Weeping lovegrass was introduced into the US from
South Africa during the late 1920s. It is well-adapted to
a range of soils, but especially suited to sandy soils where
it is important for soil conservation. Weeping lovegrass
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is a bunchgrass readily used by cattle during the early
growing period but, after it matures in June, its palata-
bility drops precipitously. If previous year’s growth is not
removed prior to spring grazing, utilization is reduced.
Prescribed burning in spring is the preferred method to
remove previous year’s growth, increase nutritive value,
production, and utilization by cattle (Klett et al. 1971).
Fertilization will also increase nutritive value and pro-
duction of weeping lovegrass (McMurphy et al. 1975;
Rocateli 2017). Given these characteristics, it has been
recommended that it be burned prior to initiation of
spring growth, fertilized with 100 kg N ha−1, and stocked
heavily before palatability decreases (Rocateli 2017).

Johnsongrass was introduced into the US from Turkey
in the early 1800s as a perennial forage crop. It is ubiq-
uitous throughout much of the region, but has vigorous
rhizomes and seed production such that it is listed as
a noxious weed in several states. Other introduced
warm-season perennial forage species occur within the
region but are of limited local importance like kleingrass,
wilman lovegrass, and dallisgrass.

Introduced annual warm-season grasses are best used
on lands suited to cultivation and provide greater flexi-
bility than perennial forages. These forages can be very
productive and have high nutritive value. Sudangrass,
sorghum × sudangrass hybrids, and forage sorghums,
with adequate water and fertility, can produce large quan-
tities of high-quality forage for grazing, hay, or silage. The
yield potential under irrigation or in eastern Oklahoma
is as high as 33 Mg ha−1. However, 330 kg N ha−1 is
needed to reach this level of production (Rocateli 2017).
Pearlmillet is another common introduced warm-season
forage used in the region.

Other warm-season annual forages include crabgrass
and teff. Crabgrass is an aggressive annual that produces
high-quality forage following wheat or other winter crops.
This is not recommended in fields where crops that are not
glyphosate tolerant may be grown as there are few poste-
mergence herbicides available to control crabgrass (War-
ren et al. 2018). Crabgrass is used for grazing and hay
and nutritive value remains high even as the crop reaches
maturity (Ogden et al. 2005; Beck et al. 2007). Teff was
introduced from east Africa and is a major cereal crop in
Ethiopia. Teff seed is very small and the seed must not
be placed too deeply in the soil. It germinates and estab-
lishes rather quickly and can be harvested 45–55 days after
planting. The crop is most commonly used for hay but
can also be grazed. Teff tends to be shallow rooted, espe-
cially early in the growing season and may be pulled out
of the ground when grazed. The crop is drought tolerant
and the nutritive value of the forage is similar to many
other warm-season annual forages (Twidwell et al. 2002;
Anderson and Volesky 2012).

Prussic acid poisoning can be a concern for grazing
young or new growth of forage sorghums especially in

fall, after drought, or following crop injury. Nitrate accu-
mulation can also occur, especially under poor growing
conditions or, when excess N is applied.

Native Grasses

Additional information on many of the native warm-
season grasses including the bluestems, panicgrasses, and
other miscellaneous warm-season species can be found in
Chapter 17.

Native plant species used for livestock forage in the
temperate subhumid and semiarid region are typically
found growing within a community of adapted species
rather than in monoculture. The native species include
a tremendous variety from all the functional forms (e.g.
warm-season tall grasses, cool-season annual grasses,
warm-season short grasses, trees, and forbs). Importance
of each species for provisioning forage in a community
varies with climate and soils across the region. Within a
given community, most species are sub-dominants with
often only three to five key species responsible for provid-
ing 80–90% of the forage produced. The east-west mean
annual precipitation gradient and, to a lesser extent, the
north-south mean annual temperature gradient that occur
across the Great Plains, in large part, determine which
forage species occupy the native plant communities, their
proportions and total productivity. The communities
common to the temperate subhumid and semiarid region
have been grouped into several broad rangeland types
including tallgrass prairie, northern and southern mixed
prairies, and shortgrass steppe (Lauenroth et al. 1999).
Productivity of these native plant communities ranges
across the region from less than 1500 kg ha−1 along the
entire western edge to nearly 6000 kg ha−1 along the
southeastern edge of the region where water and heat
units are most plentiful. Along the north-eastern edge
of the region production is typically between 3000 and
4000 kg ha−1 (Sala et al. 1988).

In the native tallgrass prairie, key forage species are
warm-season tallgrasses such as big bluestem, switchgrass,
indiangrass, and eastern gamagrass. Sand bluestem is an
important tallgrass that is generally associated with sandy,
loamy sand and sandy loam soils and with sandy regions
such as the Nebraska Sand Hills. Of these species, eastern
gamagrass begins growth earliest and big-bluestem is the
latest. The tallgrasses are relatively tolerant of grazing, but
eastern gamagrass, in part because it is extremely palat-
able, strongly preferred, and has high nutritive value, will
decline and even disappear if continually grazed short. The
forage value of the other tallgrass species is good, meeting
the nutritional needs of most classes of livestock in spring
and summer before stem elongation begins, but declines
through the fall and by winter, forage quality is poor, lack-
ing enough protein to meet the needs of grazing livestock.

In the shortgrass steppe, precipitation is insufficient in
most years to support dense stands of tallgrasses and the
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dominant forages are warm-season short grasses including
buffalograss and blue grama. These forages tend to be very
tolerant of grazing and are palatable to all classes of live-
stock. The shortgrass steppe, while less productive than
tallgrass prairie, produces forage composed mostly of leaf
tissue with little stem tissue extending into the canopy.
Therefore, the nutritive value of these forages is among
the highest of the native forages, especially in the sum-
mer months. Blue grama and buffalograss will maintain
good nutritive value with sufficient CP for many classes
of livestock into the fall and winter months.

The northern and southern mixed-grass prairies are
ecotones between the tallgrass prairie and the shortgrass
steppe, and they contain species from both grassland types
that contribute significantly to the forage of the mixed-
grass prairie. The dominant forage species in the southern
mixed-grass prairie, however, are warm-season mid-grasses
such as little bluestem, sideoats grama, and curly
mesquite, in the northern mixed-grass prairie, cool-season
perennial grasses such as the wheatgrasses, needle-and-
thread, and green needlegrass are dominant. In the south-
ern mixed-grass prairie, cool-season perennial grasses such
as texas wintergrass, canada wildrye, and texas bluegrass
are scattered across the prairie, and may provide impor-
tant high-quality forage as a supplement to the senesced
warm-season forages during the late winter months before
the warm-season grasses begin spring growth.

Forbs contribute the greatest floristic diversity to plant
communities of the Great Plains and this functional group
contributes greatly to forage quality as these species are
often low in fiber and quite digestible. Another functional
class of species that provide important forage for livestock,
especially small ruminants, are shrubs and trees. Increases
in the burn frequency since European settlement of these
semiarid and subhumid temperate regions have resulted
in increased abundance of many woody species; however,
many are undesirable, such as the many Juniperus spp.
becoming more prevalent across the southern plains.

Introduced, Invasive Species

One of the primary concerns with introducing non-native
or even native forages into non-traditional areas on range
and pasture lands is their invasion potential. Smooth
bromegrass, for example, is reported to be a common
invader of disturbed sites throughout the Great Plains
(Howard 1996) though this may be less of a concern in
well-managed pastures and rangelands (Vogel and Hen-
drickson 2019). Grant et al. (2009) evaluated US Fish
and Wildlife Refuges in North and South Dakota and
found most of the vegetation (45–49%) was comprised
of smooth bromegrass, which the authors attributed to
lack of disturbance. Also, in the northern portion of the
region, crested wheatgrass has spread and is invading
native rangelands (Henderson and Naeth 2005).

One of the major invasion threats in the northern
part of the subhumid region is kentucky bluegrass. In
the Northern Great Plains, kentucky bluegrass is present
on more than 50% of the private acres sampled by the
USDA-NRCS (Toledo et al. 2014). Although the original
areas of concern with kentucky bluegrass invasion were in
the subhumid portions of the temperate region, currently
it is beginning to be a concern in the semiarid portion
as well.

In the southern portions of the temperate region,
old-world bluestems and sericea lespedeza are examples
of invasive forage species of concern (Fulbright et al.
2013), while in the western or more semiarid part of the
temperate region, annual bromegrasses, such as cheatgrass
or Japanese brome, can be of major concern. Invasions
of these annual bromegrasses often lead to an increase
in wildfires further damaging native vegetation in the
region (D’Antonio and Vitousek 1992). Though wildfires
can be damaging, prescribed fire at the right time is an
important control mechanism for woody invasive species
such as juniper and mesquite (Wright 1988).

There are multiple concerns with invasive species.
Invasive species can alter nitrogen (N) cycling and reduce
carbon storage (Wedin and Tilman 1996), lower plant
diversity (Henderson and Naeth 2005), and impact
wildlife habitat and soil microbial diversity (Fulbright
et al. 2013). Some invasive species, such as kentucky
bluegrass, can alter forage distribution by shortening the
grazing season rather than lengthening it. Because of these
concerns, assessing invasion potential needs to be a high
priority when designing forage systems for temperate
regions.

Forage Systems

Harvest strategies for both grazed and conserved forages
involve compromises and are dependent on climate,
forage species, kind and class of grazing livestock, and
the management skills of the producer. Forage of young
plants is higher in nutritive value than that of more
mature plants. This is because the cells of young plants
are biochemically active, capturing and storing energy,
synthesizing proteins and fats, and so on, while cells of
older plants are low in biochemical activity (Huston and
Pinchak 1991). Thus, for grazing and depending on the
nutrient requirements of the target animal, it is often
important to use some sort of grazing management
strategy to provide forage of acceptable nutritive value
for younger, growing animals or for lactating females.
Hay harvest schedules are heavily dependent on weather
conditions and, in many instances, hay is harvested at
too mature a stage to meet the needs of animals with
high-nutrient requirements. Prine and Burton (1956)
and Knox et al. (1958) demonstrated the adverse effect
on crude protein and the increasing levels of lignin in
bermudagrass harvested at various stages of maturity.
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Crude protein was reduced by nearly half and lignin con-
centration rose to 12% of the dry matter in bermudagrass
cut at two-week intervals vs eight-weeks intervals. All
forage species followed similar trends, although the effect
was not as pronounced for cool-season grasses or legumes.
Therefore, it is important that forages to be conserved as
hay be harvested to optimize both quantity and nutritive
value of the crop.

Many times, however, hay supplies are limited or
nonexistent, hay is of low nutritive value, or forage
may be in short supply due to drought and livestock
must be supplemented. Two types of protein supple-
ments are commonly used under these circumstances: (i)
non-protein N sources (urea, biuret) and (ii) high-protein
feeds such as alfalfa hay, cottonseed meal, or soybean
meal (Holechek et al. 1998). Cottonseed meal is prob-
ably the most widely used supplement in the temperate
subhumid and temperate semiarid regions. It typically
contains 40–45% crude protein, thus only requiring
approximately 0.5–0.9 kg head−1 d−1 for cows and
0.1–0.2 kg head−1 d−1 for ewes (Holechek et al. 1998).

Energy supplementation may also be required at
times during the year due to drought or heavy snow.
Barley and cracked corn are two of the more common
energy supplements used under range conditions in the
temperate subhumid and temperate semiarid regions.
These feeds usually depress forage intake and serve as a
substitute for range forage (Holechek et al. 1998). Alfalfa
hay can also be used as an energy source and is particularly
important when crude protein is also limiting. Holechek
et al. (1998) suggested that due to the low cost per cow,
mineral supplementation should be provided year-round
by ranchers, rather than just during fall and winter when
animals might be deficient in phosphorus.

Using corn residue is an important source of forage
especially in the central and northern Corn Belt (Schmer
et al. 2017). Redfearn et al. (2019) estimated the added
economic value to the crop sector of grazing crop residues
in Kansas, Nebraska and the Dakotas at $95 million.
Grazing crop residues usually removes less than 40% of
the total residue, which is important for soil conserva-
tion (Lorenz 1977), but grazing crop residues during
spring may adversely affect water infiltration and soil
bulk density (Rasby et al. 1998). A review by Rakkar
and Blanco-Canqui (2018) suggested that grazing crop
residues generally had a positive impact on soil nutrients
and while it may increase some soil compaction parame-
ters, residue grazing had little impact on crop yield. The
composition of the crop residue (i.e. grain, leaf, or stalk),
whether it was irrigated, and the days after harvest are all
factors determining the nutritive value or crop residues
(Rasby et al. 1998).

In addition to crop residues, many producers rely
on winter range for forage during the winter months
(Jordan et al. 2002). Grazed winter forages, however, may

not meet the protein requirement of cows (Lardy et al.
1999; Jordan et al. 2002). Lardy et al. (1999) concluded
that degradable intake protein was the first limiting
nutrient before energy and undegradable intake protein
for summer calving cows on autumn-winter range in
the Nebraska Sandhills. Larson et al. (2009) found that
cows grazing corn stalk residue produced calves with a
greater birth and weaning weight than did cows grazing
winter range. An inexpensive source of degradable intake
protein may be the only requirement to maintain cows
on low-quality winter forage (Jordan et al. 2002). Calf
weaning weight was increased with using a 28% protein
cube as a supplement (Larson et al. 2009). Switching
degraded ranges from summer to winter use is a proven
method of improving range condition in the Nebraska
Sandhills, but the impact of dormant-season grazing on
the vegetation has not been quantified.

Rangelands Only

Forage systems that almost exclusively utilize rangelands
occur across much of the Great Plains are becoming
increasingly important to the west, where other land
uses are less common. These systems are also used in the
southern Great Plains, where winters are less severe and
standing dead forage is not snow-covered for extended
periods of time. This system is also common in the Kansas
Flint Hills and the Osage region of Oklahoma where
soil conditions, rather than climate, limit other land use
options. In general, rangelands are extensively managed
with low inputs and use proper grazing management and
prescribed fire as the two most important management
practices. Other management practices such as fertiliza-
tion, reseeding, or harvesting hay are generally impractical
or uneconomical on rangelands. An exception to this is
the annual harvesting of native grass hay from productive,
yet fragile, wet meadows in the Nebraska Sandhills.

Rangelands provide grazing animals with a variety
of plant species from which to select their diet; from
low-nutritive value standing dead grass, moderate-
nutritive value matured current year’s growth, to the
high-nutritive value young grass leaves and forbs. Thus,
diet selection is dynamic resulting from changes in palata-
bility among species available. Animals grazing these
rangelands have different plant preferences and some ani-
mal species better match the vegetation in an environment
than another species. Diet selection in these systems gener-
ally results in better diet quality than the composite qual-
ity of the forage on offer. Because all possible bites are not
equal in value, increasing stocking rates can cause compe-
tition for high-quality bites reducing an animal’s ability to
select a quality diet and potentially reducing performance.

The objective of these systems is to harvest a diet
that meets the nutritional needs of the grazing animals.
These forage systems are composed of native vegetation,
susceptible to degradation, and difficult to restore. If



�

� �

�

Chapter 21 Forage Systems for the Temperate Subhumid and Semiarid Areas 397

grazing is to be sustained, the forage use must be balanced
with the need to maintain or improve the existing native
plant community. This is accomplished by managing the
vegetation to promote growth and persistence of desired
plant species and suppressing the invasion and spread
of undesirable plant species. Great Plains plant com-
munities developed with both grazing and fire, burning
every 2–20 years depending on the region (Guyette et al.
2012). These periodic fires kept woody species suppressed
or relegated to fire protected sites, such as along steep
escarpments, in canyons, and along rivers. Fire still plays
an important role in keeping many undesirable species
from spreading into rangelands although herbicides and
mechanical practices have also been used. Hay fed on
rangelands can be a vector for invasive weeds. The inva-
sion risk depends on species being fed; for example, an
introduced annual like sorghum-sudangrass is much less
likely to escape into rangelands than old-world bluestem.

The most important grazing management decision
in this system is managing the stocking rate and then
providing a rotation for different timing of use for
growing-season rest. The proper stocking rate is related
to the quantity of forage produced each year. Rangeland
productivity is related to site potential (defined by soil
characteristics), the ecologic state or phase (which plant
species occupy the site and in what proportion), previous
year’s weather (e.g., the bud bank), and current year’s
weather (e.g. the amount and timing of heat units and
available water). Initially stocking rates should be set in
relation to the proportion of different ecologic sites within
a grazing unit, the state or phase in which the sites are
found, objectives for livestock performance, patterns of
land use (e.g. incomplete accessibility due to slope or dis-
tance from water), expected effects on the vegetation, and
anticipated weather (e.g. expected annual precipitation).
Median annual precipitation may be a more appropriate
expectation for setting stocking rates than the mean in
some areas. Median annual precipitation describes the
amount of precipitation expected in half the years and
does not give undo credit to exceptionally wet years
that contribute little to the production in other years.
The difference between mean and median precipitation
is typically greater in dryer climates. Experience and
changing management objectives are used in subsequent
years to modify stocking rates. Stocking rates may also be
adjusted, depending on when the grazing will occur and
whether plants are susceptible to injury from grazing at
that time. For example, a greater proportion of the annual
production may be harvested if a good portion of the use
will occur in the dormant season than if the grazing will
all be done in the growing season.

In general, semiarid and subhumid temperate range-
lands can be sustainably grazed using 40–50% of the
key forage species produced each year (Holechek 1988).
The rule of thumb of “take half, leave half” is generally

adequate, but can be misapplied. When livestock graze,
they “take” forage by consumption (i.e. direct intake), but
also by trampling and fouling. Another source of “take”
that should be considered is use by wildlife or damage by
insects. The annual forage supply should be multiplied
by an appropriate harvest efficiency factor to determine
actual forage available for livestock consumption and
30% is a good initial value for this factor. At 30% harvest
efficiency, 50% total use is achieved when 60% of all the
forage used is consumed by livestock with the remaining
40% of use due to trampling, fouling, wildlife, and
damage from pests. Grazing efficiency is used to describe
the amount of forage that is consumed directly as a
proportion of all the forage use (60% in the preceding
example).

Grazing systems that utilize rangelands exclusively can
be grouped into two categories; (i) breeding animal sys-
tems where mature animals graze the rangelands continu-
ally with their offspring from birth until weaning and (ii)
growing animal systems where the growing animals graze
the rangeland during periods when the nutritive value of
the forage can support animal growth. In the breeding
animal system, nutritional requirements change during
the production cycle and are lowest after weaning and
greatest during the first several months postpartum which
can be aligned with changing nutritional value in the
forage to minimize the need for nutritional supplements.
On many rangelands, the winter months are protein
deficient and a protein supplement is typically offered
to meet the animal’s maintenance requirement. This
supplementation practice requires that the rangeland has
enough low-quality forage available that energy will not
become a limitation. In these systems, forage may become
unavailable due to inclement weather and a supply of
good-quality hay is typically used to supplement energy
during these times. During the growing season, nutritive
value is sufficient to support the greater nutritional
needs of maintenance and lactation and no supplemental
protein or energy is offered during this period. The most
common of these systems is the cow-calf system, but in
regions such as in the Edwards Plateau of Texas, where
shrubs and forbs have a greater role in the plant commu-
nities, systems with sheep and goats are more common.

The growing animal systems are not year-round sys-
tems, rather they target the rangeland use to periods when
the forage has the greatest quality. A fairly traditional
system of this type would be the season-long stocking
(SLS) system where light-weight stocker cattle graze the
rangelands between late April and the first of October. In
some regions, notably the Kansas Flint Hills and Osage
region of Oklahoma, the SLS system has been replaced
with other systems to better mitigate the declining for-
age quality as the season progresses. In regions where
high-nutritive value is maintained in the forage through-
out the growing season the SLS system is preferred. The
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first effort to replace the SLS system was an intensive
early stocking (IES) system, where the period of use is
shortened by half, and stock density is doubled, from the
traditional SLS system. In the IES system, animal perfor-
mance declines slightly but the small reduction in animal
performance is more than compensated with the increased
gains per hectare. Because the IES system kept the forage
short and of high quality, researchers considered a next
step in the evolution by adding a period a late-season
grazing (LSG), where stock density was cut in half and
the remaining cattle continued to graze until the first
of October. To keep from over-grazing these ranges, the
IES-LSG is followed in the next year by IES without LSG
(the IES-LSG/IES rotation). In the tallgrass prairie where
annual burning is acceptable, any of these stocker systems
can be further improved by incorporating an annual fire
before grazing begins. For tallgrasses, the best time to
burn is just before the warm-season grasses green-up.

Introduced Forages Only

Depending on the north–south location in the temperate
subhumid region, introduced-only forage systems may
be based on either warm-season or cool-season perennial
grass and often include both types. Introduced forages
have been used in livestock production systems because of
their grazing tolerance and response to fertilizer. Proper
management begins with the selection of adapted species
that are persistent and will produce acceptable dry matter
yields of the desired nutritive value to meet the needs of
the grazing livestock (Cherney and Allen 1995). Intro-
duced forages in the temperate subhumid region generally
respond well to fertilization if (i) pastures are irrigated or
receive >625 mm average annual precipitation, (ii) hay
meadows have equivalent soil moisture availability, or
(iii) pastures or hay meadows are naturally sub-irrigated
(Vallentine 1989).

In the temperate semiarid region, introduced for-
ages must either have excellent adaptation to heat and
drought (i.e. crested wheatgrass) or be irrigated. Vallen-
tine (1989) noted that introduced cool-season perennial
grasses responded better to (N) fertilization than did
native cool-season grasses. While bermudagrass and
old-world bluestem generally exhibit the best response to
(N) fertilization, Vallentine (1989) also stated that the
warm-season native tallgrasses and midgrasses such as
the lovegrasses, switchgrass, bluestems, indiangrass, and
sideoats grama responded more favorably to (N) than the
shortgrasses such as blue grama and buffalograss. As in the
more mesic areas of the United States, any supplemental
fertilizer should be used with caution.

Bermudagrass and the old-world bluestems serve as the
warm-season pasture base throughout Texas, Oklahoma,
and Kansas. These warm-season perennial grass-based
systems are generally stocked with cattle, sheep, or goats
year-round with excess forage harvested as hay for winter

feeding and supplemented with other purchased supple-
mental feedstuffs, as needed. Some producers, however,
overseed the warm-season grass pastures with cool-season
annuals to provide longer grazing seasons, improved
pasture nutritive value, and reduced costs associated
with winter feeding. Coffey and Moyer (1991) found
that stocker cattle grazing cereal rye no-till drilled into
bermudagrass sod, offered the potential for extending the
grazing season and providing for more total cattle produc-
tion than from bermudagrass alone. Volesky et al. (1996),
likewise, evaluated interseeding rose clover and hairy
vetch and noted that interseeding stands of old-world
bluestem could reduce N fertilizer input, extend the
grazing season, and enhance diet quality.

Further north in the temperate subhumid region,
cool-season perennial grasses dominate introduced forage
pasture systems. From Kansas north, smooth bromegrass
pastures are used extensively. In a three-year study at
Mandan, North Dakota, steer average daily gains from
‘Lincoln’ smooth bromegrass averaged 1.04 kg d−1, which
was greater than steers grazing native range (0.98 kg d−1)
or crested wheatgrass (0.97 kg d−1) (Karn and Ries
2002). Other cool-season perennial species, such as the
introduced wheatgrasses and orchardgrass, also provide
pastures for grazing livestock. In Oklahoma (Reuter and
Horn 1999), animal average daily gains were approx-
imately 1 kg d−1 for ‘Manska’ pubescent wheatgrass,
‘Paiute’ orchardgrass, and ‘Lincoln’ smooth bromegrass
for 56 days with beef gains of 116 kg ha−1.

Though winter wheat throughout the United States
is typically planted with grain harvest in mind, the crop
is used extensively as a dual-purpose (grain+ grazing)
crop in much of the temperate subhumid region. Shelton
(1888) was one of the first to report on the advantages
of the dual-purpose use of wheat. Later, in their review
of wheat grazing, Redmon et al. (1995) reported from
75% to 90% of the irrigated winter wheat in Texas was
managed for cattle grazing and that 65% of the winter
wheat planted in Kansas was used for fall and spring
grazing. In Oklahoma, it is commonly reported that 50%
or more of the winter wheat hectarage is grazed.

Complementary Livestock Systems

The word complementary means “serving to fill out
or complete” or “mutually supplying each other’s lack”
(Merriam-Webster 1990). In the case of complementary
forage systems, the term can have two similar but slightly
different meanings. In more arid areas, complementary
forage systems refer to the blending of both rangeland and
introduced forages to provide a system that more fully
meets the nutrient requirements of the grazing livestock,
and thus more fully meets the manager’s production goals.
However, in more subhumid systems, complementary
forage systems are systems that use forages with different
seasons of growth, such as cool- and warm-season grasses
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sequentially to improve seasonal productivity (Moore
et al. 2004).

In the Northern Great Plains, rangeland is the primary
source of forage (Lorenz 1977) but the morphologic
development of native grasses often requires using intro-
duced forages in the spring and fall to complement the
native range. In North Dakota, for example, weather
often permits grazing in late April or early May. Delaying
turnout by 30 days to late May or early June has been
shown to increase production on native rangeland by
35% (Lorenz 1976). However, forage gaps are created
in the early spring as well as the late summer or early
fall when native grasses have senesced. Complementary
forage systems combine different types of forages to fill
these production and nutritional gaps. Including intro-
duced grasses with native rangeland can “complement” or
extend the grazing season on rangelands (Lorenz 1977).
McIlvain (1976) noted the philosophy of complementing
low-producing, rough grasslands with high-producing
tame pastures opened the door to (i) fitting green forages
into dry periods, (ii) opportunity grazing or resting of
each forage resource for its proper development and use,
(iii) avoidance of grazing during periods when poisonous
plants were highly hazardous, (iv) use of flushing pas-
tures, (v) use of breeding pastures, (vi) use of day–night
rotation, (vii) use of dehydrated forages for concentrates,
and (viii) use of high-quality feed as green creeps for
calves or steers needing a rapid gain, and following them
with cows or younger steers to clean up graze.

Derner and Hart (2010) found yearling Hereford
heifers had two to four times the gain on crested wheat-
grass or russian wildrye compared to shortgrass native
range indicating these forages could fill forage gaps. The
optimal ratio of crested wheatgrass pasture to native
rangeland was determined to be 1 : 3.9 when estimated
yields, costs and prices were considered (Hart et al. 1988).
The use of complementary forages can double the carrying
capacity for stockers and beef cows (Launchbaugh et al.
1978). Sims (1993) reported that a complementary graz-
ing system using double-cropped winter wheat and annual
forages reduced land requirements by 40% in Oklahoma.
Therefore, a complementary forage system in either the
temperate subhumid or temperate semiarid regions would
offer multiple advantages to livestock producers.

Integrated Crop-Livestock Systems

Integrated crop-livestock systems have been proposed as
a method to achieve agricultural sustainability while still
maintaining productivity (Franzluebbers 2007; Martins
et al. 2016). Research suggests that incorporating live-
stock into cropping systems has minimal negative impact
and may actually increase subsequent crop production.
However, there is less information on livestock perfor-
mance in integrated systems or if there are differences
among livestock breeds in their performance in integrated

systems. Calves from cows grazing crop residues in winter
had heavier birth and weaning weights than calves from
cows grazing winter range only (Larson et al. 2009).
As with most grazing systems, heavier stocking rates
decreased individual cow body weight, but increased
stocking rate did not seem to affect subsequent crop
yield (Stalker et al. 2015). Even less is known about
the performance of individual breeds within integrated
crop-livestock systems. A study from Brazil found that 1/2
Angus by 1/2 Nellore steers performed better in integrated
crop/livestock systems than did 1/2 Charolais by 1/4 Angus
and 1/4 Nellore steers (Costa et al. 2017).

Incorporating forages into integrated crop-livestock
systems provides new opportunities and challenges.
Forages can be important aspects of these systems and
provide a yield boost to subsequent crop production. In
the semiarid temperate region, Franco et al. (2018) found
that unfertilized spring wheat yields, following two years
of alfalfa, were similar to fertilized continuous no-till
spring wheat yields and that yield effects from three years
of alfalfa in the crop rotation could last up to three years
following stand termination. The same study indicated
that a cool-season grass-alfalfa mixture could not only
provide the yield benefits but enhance selected soil quality
attributes more than alfalfa alone (Liebig et al. 2018).

Cover crops are often a critical part of integrated sys-
tems because producers are attracted to their soil health
attributes but need livestock to increase the economic fea-
sibility of using them. Since most cover crops are annuals,
cover crop species can be adjusted yearly to address spe-
cific soil quality and animal performance objectives. In a
semiarid portion of the Northern Great Plains, Sanderson
et al. (2018) found that spring-planted cover crop mix-
tures yielded more, on average, than monocultures but
produced less than the most productive monocultures.
However, the same study found that late-season planted
cover crops, produced little forage because of dry soil and
erratic weather conditions. However, in South Dakota,
legume cover crops planted in mid- to late-August fol-
lowing winter wheat harvest did show forage potential
with crude protein concentrations ranging from 113 to
270 g kg−1 on yields ranging from 933 to 4590 kg ha−1

(Hansen et al. 2015).

Challenges for Future Forage Systems

Land Use

Southern Plains

During settlement of the southern plains, the typical
family farm was far smaller than today and was generally
diversified with both crop and livestock production. Farm
mechanization and the resulting expansion in cultivated
area occurred around the time much of the Great Plains
entered a period of major drought. The drought resulted
in poor crop establishment, vast areas of unprotected soil,
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and ultimately to significant soil losses by wind which
earned parts of the region the moniker of “Dust Bowl”
and this period is often referred to as the Dust Bowl
Era. The period continues to shape land use in much
of the southern Great Plains. Many of the lands broken
out for cultivation were not well suited to the practice.
These lands were productive during the initial years of
cultivation because the soils still contained abundant
organic matter and precipitation was above normal for
the region. There was a belief, at this time, that “rain
follows the plow”.

Now, the land that remains in cultivation for crop
production is primarily irrigated land and conservation
tillage or no-till are the common tillage practices. Other
lands have either naturally reverted back to mostly native
species (commonly referred to in the region as “go-back
land”), have been planted to a perennial forage crop such
as bermudagrass or old-world bluestem, or the lands
have been enrolled in the Conservation Reserve Program
(CRP) and have been seeded to primarily perennial
grasses. The CRP lands are not grazed or hayed unless
allowed by emergency declaration. Over one quarter of
all CRP acres enrolled in the US at the end of 2018 were
in the southern plains states of Texas, Oklahoma, Kansas,
and New Mexico.

Taylor et al. (2015), reported land used for hay
and pasture was included in the agriculture class, but
rangelands and CRP were included together in the grass-
land/shrubland class. Nonetheless, it is instructive that in
recent years Great Plains land use changes predominately
involved exchanges between the two largest land use
classes, namely agriculture and grassland/shrubland. In
the entire Great Plains, agriculture was the dominant
land use at 46.4% and grassland/shrubland was a close
second at 42.7% to 42.1% between 1973 and 1986. By
1992, the two classes were tied at 44.2% and by 2000,
grassland/shrubland was the dominant land use at 44.4%
while agriculture had dropped to 43.8%.

Some regions within the southern Great Plains expe-
rienced little to no change in land use such as the
Edward Plateau in south-central Texas, the central Okla-
homa/Texas Plains, and the Flint Hills of Kansas. Soil
limitations in these areas hindered agricultural develop-
ment during settlement and these lands are well suited
to their current use. Other regions in the Southern Great
Plains experienced great changes. For example, in the
east central Texas plains about 3.8% of agricultural land
was converted to the grassland/shrubland class between
1973 and 2000 and 1.7% of forest land was converted to
agricultural land. The three greatest net changes between
1973 and 2000 in the east central Texas plains was the
3.7% increase in the grassland/shrubland class and the
2.7% and 1.8% losses in agricultural land and forestland,
respectively. The western high plains experienced large
net changes in almost exclusively the grassland/shrubland

and agriculture land uses. Grassland/shrubland had a
net increase of 5.7% and agriculture had a 5.8% net
decrease. Most of these changes occurred between 1986
and 1992 when the CRP was implemented. The central
Great Plains experienced agricultural land-use increases
between 1973 and 1986 (primarily through conversion
of grassland/shrubland), but this expansion was later
reversed between 1986 and 1992 so that net land-use
change over the 27-year study was relatively small with a
net decrease in agricultural land and grassland/shrubland
of 0.6% and 0.1%, respectively, and a 0.7% increase in
developed land over this period with growth of cities
like Oklahoma City, Wichita, KS, and Abilene, TX. The
Texas Blackland Prairies ecoregion, which is home to
parts of the Dallas-Fort Worth metroplex, Austin, and
San Antonio has experienced rather large net land-use
changes related to urban growth between 1973 and
2000. Agricultural lands and forests have had net losses
of 5.6% and 0.2%, respectively, while developed land
and grassland/shrubland have increased 3.8% and 0.9%
respectively.

Northern Plains

One of the biggest challenges to forage and rangelands
in the northern part of the subhumid and semiarid
temperate region is the changes in land use that have
occurred. Between 2006 and 2011, rates of conversion
from grassland to corn/soybean cropland in the subhumid
temperate region were 1–5.4% which is similar to defor-
estation rates in Brazil, Malaysia, and Indonesia (Wright
and Wimberly 2013). Though there is some controversy
about the Wright and Wimberly methodology (Laingen
2015) and interpretation of these changes (Kline et al.
2013), anecdotal accounts suggest that changes in land
use are occurring, especially in more subhumid areas
east of the Missouri river. Some estimates are about
203 000 ha of native prairie was converted to cropland
in the Dakotas and Montana between 2002 and 2007
(Fargione et al. 2009).

Land conversion to and from cropland occurs contin-
uously, but a major surge in land conversion was rela-
tively recent. A rapid increase in crop prices between 2006
and 2009 resulted in a 64% gain in typical farm prof-
itability (Swinton et al. 2011). The improved profitability
increased pressure to find more land to farm. Between
2008 and 2012, most (77%) of the new cropland came
from grassland (Lark et al. 2015), resulting in 2.3 million
hectares of grassland being converted to cropland. While
most land conversion has occurred in the Dakotas, the
presence of biorefineries has resulted in cropland expan-
sion in the temperate subhumid areas in Minnesota and
Wisconsin (Wright et al. 2017).

Besides the price increase, increased precipitation,
a longer growing season (DeKeyser et al. 2013),
technological improvements such as irrigation, and



�

� �

�

Chapter 21 Forage Systems for the Temperate Subhumid and Semiarid Areas 401

precision agriculture have provided the means to increase
cropland acreage (Stubbs 2015) or improve profits
(Scharf et al. 2011). Technology has also reduced the
management intensity needed in agricultural systems
(Hendrickson et al. 2008a, 2008b) making it easier to
operate larger acreages. Average farm size ranges from
209 acres in Wisconsin to 349 acres in Minnesota to
1268 acres in North Dakota (USDA-NASS 2014). The
combination of improved profits, favorable climate, and
technological advances provided an environment for
changes in land use.

Land Fragmentation and Managing Small Units
Sustainably

The 2012 census of agriculture shows significant increases
in the number of farms in the counties surrounding
major Texas urban centers including the Dallas-Fort
Worth metroplex, Austin, San Antonio, and Houston.
Around these large urban centers, agricultural land and
forest is being lost to increases in developed land and
grassland/shrubland. A significant number of people
employed in these cities have purchased small acreage
farms in nearby rural areas within commuting distance of
their place of work. Some farms may be farther out from
their work than is reasonable for a daily commute but can
be easily visited on weekends.

The land is typically not cultivated and is used for keep-
ing animals and forage production. This trend has resulted
in land fragmentation and often the main objective of
these small farms is not to make a profit but to provide
the owners with a rural lifestyle and a place to keep live-
stock. The uncoupling of profits from the management of
these small farms could promote grazing land improve-
ment, but often, the forage demand of the animals kept
will exceed the forage produced on these small farms and
the deficit is supplemented with purchased feed and hay.
Thus, many of these grazinglands are seldom rested, are
over grazed, and a repository for imported nutrients.

Climate Change

Drought

Drought is a normal feature of a given climate that
occurs when the precipitation received for a period
is significantly less than normal. When the climate is
stationary, these periods are necessarily offset by pluvial
periods—periods with significantly more precipitation
than normal. The Great Plains has had a very long history
of alternating between drought and pluvial periods on
an approximately decadal scale. Some of these periods
stand out for the magnitude or duration of the devi-
ation. Some historical examples of the decadal cycle
oscillations include the droughts of the 1930s, 1950s,
and 2010s with the more pluvial periods of the 1940s
and the 1970s and 1980s. Proxy climate records, such
as from tree-ring, lake sediment or dunal paleosol data,

indicate these decadal drought cycles have persisted in the
Great Plains for several hundred years and there is also
evidence of century-scale mega-droughts such as those
in the fourteenth, fifteenth, and sixteenth centuries. The
decadal cycles seem to be modestly related to pan-Pacific
sea surface temperature variation which explains about
one-third of the variation in low-frequency precipitation
(timescales longer than about six years) (Schubert et al.
2004).

Drought, especially widespread drought, has a sig-
nificant effect on forage-based agriculture. The 2011
drought in the southern Great Plains was the worst
single-year drought in the historical record for much
of the southern Great Plains and the destocking that
followed contributed to US beef cattle inventories reach-
ing their lowest numbers since the 1950s. Drought
not only impacts forage production and quality, but in
regions that depend on earthen ponds for water may also
impact accessibility to forage resources due to a lack of
drinking water.

Future concern about drought has components of the
natural variability in the historical and proxy records.
Many climatologists are now predicting that we may be
entering a period of climate change that may result in a
shift in the central tendencies for precipitation around
which decadal and longer-scale variation has persisted.
While there appears to be consensus that much of the
interior US is likely to see 1–2 ∘C warming over the next
40 years, predictions of changes in precipitation are more
uncertain and growing season uncertainties are probably
larger than dormant season uncertainty even with a 5%
decrease in precipitation predicted for the south central
US (Walthall et al. 2012).

Extreme Wetness

Rather than drought, some areas have experienced
extreme wetness. Weather data from the Northern Great
Plains Research Laboratory (USDA-ARS) located in
Mandan, North Dakota showed that for a 75-year period
(1916–1990), the average annual precipitation was
38.1 cm (High Plains Climate Center 2019). However,
between 1991 and 2000, average annual precipitation
increased 25% to 50.8 cm. The periods of 2001–2009 and
2011–2016 also had greater than average precipitation
(44.4 and 47.6 cm yr−1, respectively).

The increased precipitation did impact forages and
grasslands. Several studies have documented an increase
in kentucky bluegrass on rangelands between 1984 and
2004 (DeKeyser et al. 2015), a time that corresponds
with the increased precipitation. Forage species grow
now and are productive in areas previously considered
too dry. The increase in precipitation may also mean
that suggested stocking rates are too low for the current
conditions. Producers need to be aware of, and react to,
the increase in precipitation.
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Summary

The goal of forage systems is for grazing animals to receive
most, if not all, of their nutrition from forages that are
standing in the pasture. The high cost of feeding hay and
other supplements is the economic driver behind this goal.
Because of potentially severe environmental constraints in
the temperate subhumid and temperate semiarid regions
associated with drought and limited growing seasons, the
availability of emergency feedstuffs will also be required
for contingency livestock feeding programs. Hay feeding
and the use of supplements, however, should be consid-
ered tactical solutions to short-term problems such as
drought or ice and/or snow-cover days. Supplementation
should generally only be used for specific production
goals such as heifer development, backgrounding stocker
cattle, or when forage is in short supply.

The forage systems used in the sub-humid and
semi-arid temperate regions are diverse and dynamic.
Regional extremes of geography and annual weather
extremes require producers to be adaptable. Some com-
mon examples of such adaptations include cover crop
grazing, complementing rangeland with introduced
grasses and alternative grazing systems. Producers should
evaluate the potential for complementary use of warm-
and cool-season forages, both native and introduced,
to minimize production risks and improve potential
net return of their livestock production systems. Devel-
opment and utilization of a forage system should be a
priority goal for all livestock producers.
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