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Abstract
Obtaining good accuracy and reliability of estimated breeding values is essential to

increase the efficiency of a plant breeding program. Genetic variation was assessed

for categorical (Virc) and binary (Virb) mosaic (caused by Panicum mosaic virus),

dry matter (DMY) and predicted ethanol (Etoh) yields, and lignin content (Klason

or KL, and acid-detergent or ADL) in a Summer–Kanlow switchgrass (Panicum
virgatum L.) population. Breeding values were predicted with the restricted maxi-

mum likelihood–best linear unbiased prediction (REML-BLUP) approaches using a

multivariate phenotypic (PBLUP) and animal (ABLUP) models, integrating a three-

generation pedigree (1,622 half-sibs) in ABLUP and not in PBLUP. Models were

compared in their precision (accuracy and reliability) in assessing genetic parameters

and estimating breeding values. The models were similar in most aspects, allocating

the highest heritability (ℎ2i ) values to DMY (.38 ± .035 vs. .41 ± .035), Etoh (.46 ±
.031 vs. .42 ± .033), and Virc (.43 ± .046 vs. .37 ± .047) and the lowest (.17 ± .032

to .30 ± .044) to KL, ADL, and Virb. Genetic correlations were always larger than

residual and phenotypic correlations. Intermediate or strong additive genetic control

suggest that selecting for high-biomass genotypes will slightly increase lignin content

and simultaneously impart mosaic tolerance. Mitigating an increase in lignin content

will require including Etoh in a selection index based on its much stronger nega-

tive correlation (rG = −.63) with lignin. In this population, accuracy values ranged

from .06 to .94 (PBLUP) and from .26 to .92 (ABLUP) and corresponding reliability

ranged from .004 to .89 and from .07 to .87. However, ABLUP improved average

reliability of DMY and Etoh by 11% and of other traits by 4–5% over the PBLUP

model. The ABLUP was a better model over PBLUP, which is a valid analysis in the

absence of a pedigree.

Abbreviations: ABLUP, animal model best linear unbiased prediction; ADL, acid detergent lignin; BLUP, best linear unbiased prediction; DMY, dry matter
yield; EBV, estimated breeding value; Etoh, predicted ethanol yield; KL, Klason lignin; PBLUP, phenotypic best linear unbiased prediction; REML, restricted
maximum likelihood; Virb, binary (0,1) mosaic rating; Virc, categorical (1–5) mosaic rating
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1 INTRODUCTION

Extensive research on switchgrass (Panicum virgatum L.)
continues to provide fundamental knowledge on breeding
and management that particularly enhance its sustainabil-
ity as a dual-purpose crop: bioenergy and forage (Anderson
et al., 2016; Bouton, 2007; Edmé, Mitchell, & Sarath, 2017;
Mitchell, Vogel, & Sarath, 2008; Sarath et al., 2008). Possibil-
ities for improvement of digestibility, biomass, lignin content,
and pest tolerance, among the different objective traits consid-
ered, exist across populations of switchgrass, be they lowland
or upland ecotypes (Casler, 2012; Edmé et al., 2017; Jahufer &
Casler, 2015). However, ecological differences in production
exist among the two ecotypes, with two gradients in adapta-
tion detected across the North American continent, from the
south (lowland origin) to the north (upland origin) driven by
temperatures, and from the east to the west driven mostly by
availability of water (Casler, Stendal, Kapich, & Vogel, 2007;
Casler, Vogel, Taliferro, & Wynia, 2004). These adaptative
patterns, as carved by environmental forces, also bring genetic
differences in growth and susceptibility or resistance to dis-
eases and pests, whereby the lowland ecotypes, adapted to
warmer climates and having been exposed to intense selec-
tion pressures from pathogens, tend to produce more biomass
and to express greater tolerance to diseases and insects than
the upland ecotypes (Gustafson, Boe, & Jin, 2003; Koch et al.,
2019; Palmer et al., 2019; van Wallendael et al., 2020; Vogel,
Schmer, & Mitchell, 2005). The upland ecotypes, with a more
northern origin, have superior overwintering capability to the
lowland.

Although diseases have been recognized to pose serious
threat to switchgrass production, breeding for disease resis-
tance has not been consistently integrated into switchgrass
selection programs. Understanding the genetic basis of resis-
tance to the most destructive diseases is key to manage or
reduce the incidence levels in these populations without com-
promising yield and quality. For instance, rust disease, caused
by a complex of fungal species including Puccinia emacu-
lata Schwein, occurs throughout switchgrass growing areas
in the United States and can affect yield and quality traits
in switchgrass bred for forage and bioenergy (Sykes et al.,
2016). Gustafson et al. (2003) indicated that both additive and
nonadditive genetic variation could be exploited for improv-
ing rust resistance by selecting among and within families in
switchgrass breeding populations. Leaf spot disease, caused
by Bipolaris spp., affects switchgrass in the eastern and south-
ern regions of the United States (Fajolu, 2012; Songsom-
boon et al., 2019). For all other diseases of switchgrass,
however, the potential for improvement of resistance has not
been explored. In Nebraska, viral mosaic (caused by Panicum
mosaic virus in a complex with its satellite) is conspicuous
in switchgrass field tests and drastically reduces growth of
certain switchgrass populations (Chowda-Reddy et al., 2019;

Core Ideas
∙ Across-generation BLUP analysis provides greater

accuracy than one-generation analysis.
∙ An across-generation animal model is a better

model than a phenotypic analysis.
∙ Decreasing lignin content by breeding in switch-

grass will help increase ethanol yield.
∙ Genotypes with higher lignin content tend to have

greater disease tolerance and resistance.

Muhle, 2019; Stewart et al., 2015); no classical genetics infor-
mation exists yet to appraise the mode of inheritance of resis-
tance against this disease. However, findings from genetic and
genomic studies on disease resistance and growth traits are
consistent with additive gene action being the predominant
mode of inheritance.

The switchgrass population being evaluated in this study
was derived by crossing two tetraploid cultivars, namely
‘Kanlow’ (lowland, higher yield, and more resistant) and
‘Summer’ (upland, lower yield, and more susceptible) and is
now in the fourth cycle of selection for high biomass yield and
low lignin concentration (Edmé et al., 2017; Vogel, Mitchell,
Casler, & Sarath, 2014). The retrospective construction of a
pedigree for this population made the application of the ani-
mal model (Henderson, 1975, 1984) possible to the previ-
ous three-generation dataset. The animal model or individ-
ual plant model (as respectively coined by animal or plant
breeders) integrates the pedigree in the joint estimation of
genetic parameters for targeted traits, taking advantage of the
multigenerational recombination history to more accurately
estimate breeding values for parents and selection candidates
(Piepho, Möhring, Melchinger, & Büchse, 2008). The benefits
of using the best linear unbiased prediction (BLUP) animal
model have been emphasized in animal breeding (Henderson,
1984; Gianola & Rosa, 2015) and are now being exploited
in plant breeding, particularly in the context of genomics
(Atkin, Dieters, & Stringer, 2009; Durel, Laurens, Fouillet,
& Lespinasse, 1998; Oakey, Verbyla, Pitchford, Cullis, &
Kuchel, 2006; Piepho et al., 2008).

Better breeding management decisions that maximize
short- and long-term genetic gains can be made by account-
ing for the recombinational history (i.e., selection) of the
population via the pedigree (i.e., the relationship matrix) in
the analysis. The BLUP technique that underlies this anal-
ysis provides unbiased and more precise estimates of the
parameters, thereby yielding more accurate and reliable pre-
diction of the breeding values, which represent the genetic
merits of parents and progeny at improving the popula-
tion (White & Hodge, 1989). Piepho et al. (2008) indicated
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that the BLUP analysis is also valid without involving the
relationship matrix. Accordingly, this study used the BLUP
analysis to model the three-generation dataset without the
relationship matrix and compared it with the animal model.
As commonly done, the comparison was resolved based on
the accuracy and reliability associated with the prediction of
breeding values. Accuracy is linearly related to the extent
genetic gains are possible in a breeding program (i.e., higher
accuracy implies higher selection response), and reliability
indicates the level of confidence (or uncertainty) that can
be placed on the predictions. These two criteria have been
used extensively in animal breeding and less in plant breeding
(Gianola & Rosa, 2015).

This study also explores the need for inclusion of disease
resistance traits in the breeding program to avoid the unin-
tended side effects of exclusive selection being applied on
high biomass yield and low lignin content (Edmé et al., 2017).
Reduction in lignin content, which by itself provides strength
to plants and protection from environmental stresses, may
undermine, over time, the ability of the working genetic pop-
ulations to fight diseases and insect vectors (Sykes et al.,
2016). These goals require a joint assessment of the genetic
parameters to reveal the level of genetic (co)variation between
disease, production, and quality traits and the status of their
genetic correlations. Selection in this breeding program was
previously based exclusively on phenotypic selection and a
shift towards estimating genetic parameters via a multivari-
ate (i.e., joint analysis of all traits) BLUP approach has been
instigated in recent years (Edmé et al., 2017). The suitability
of additionally integrating the pedigree into the multivariate
model is being appraised by comparing the two approaches
in their reliability to estimate genetic parameters and in their
accuracy to predict breeding values of selection candidates.

To summarize, the specific objectives of this study were
(a) to jointly estimate the genetic parameters for yield, qual-
ity, and disease (mosaic) based on a multivariate phenotypic
(PBLUP) and animal (ABLUP) models, (b) to predict the
breeding values associated with mosaic and production traits
for parents and progeny, (c) to approximate the genetic rela-
tionships that exist among yield and disease traits in an upland
× lowland switchgrass population under improvement for
bioenergy, and (d) to compare the ABLUP with the PBLUP
approaches based on accuracy and reliability of predicting the
breeding values (EBV) that are to be used ultimately for pre-
diction of genetic gains.

2 MATERIALS AND METHODS

2.1 Description of breeding generations
and data collection

The breeding population of interest started with crossing 11
plants each of Kanlow and Summer in pairs to create full-

sib families, with Kanlow as the pollen parent (Vogel et al.,
2014). The full-sib progeny (Cycle 1) were planted in 2004
and mass selected in 2005 for high biomass yield and low
lignin content, resulting in 35 plants designated as progeni-
tors of the second generation. Open-pollinated seed were col-
lected in 2006 from the 35 parents and planted in 2007 in
five-replicate single family-row plots, with 10 plants each, in a
randomized complete block design. A between-family selec-
tion identified six out of the 35 half-sib families in 2008, from
which 111 individual plants were selected in 2009 according
to a selection index applied in both years on high biomass (dry
matter) yield (DMY) and reduced Klason lignin (KL) con-
tent. A crossing block was established in 2010 with two ram-
ets (randomly distributed) of each of the 111 parents, from
which open-pollinated seed were harvested to constitute 111
half-sib families of the third generation. In 2011, these fami-
lies were planted in a randomized complete block design with
three replicates of single-family row plots with five plants
each. This progeny test was harvested on a family–plot basis
in 2012 and 2013, and families were selected for high DMY
and low KL using an index that weighed both traits equally
(Edmé et al., 2017; Vogel et al., 2014). Selected families were
harvested in 2015 and 2016 on an individual plant basis for
the same traits to select parents of the fourth generation based
on an index composed with breeding values.

Plants were subjectively scored for symptom severity of
natural viral mosaic infection in the field in 2013, 2014, and
2015 on a five-point scale (Virc) that assigned 1 to very resis-
tant (no symptoms) and 5 to very susceptible (>50% foliar
infection with stunting) plants. The mosaic ratings were also
converted into an all-or-none (binary, or Virb) trait by giving a
0-value to ratings of 1 and 2 and a value of 1 to ratings >2. All
field experiments were carried out at one location, designated
as the Agronomy Farm of the University of Nebraska-Lincoln,
Eastern Nebraska Research and Extension Center (ENREC),
near Mead, NE (41.09˚ N, 96.26˚ W), and managed according
to established protocols (Vogel et al., 2014). Samplings and
machine harvests of biomass were always performed after the
first killing frost, with subsamples taken, dried in a forced-air
oven, and ground before laboratory analyses to predict cell-
wall components (KL, acid detergent lignin [ADL], and pre-
dicted ethanol yield [Etoh]) traits by near-infrared reflectance
spectroscopy (Vogel et al., 2011).

2.2 Pedigree

Starting with Generation 0, the complete pedigree includes
1,622 individuals (phenotyped) and spans three genera-
tions. Parental populations were included as references in all
progeny tests and as representatives of every generation when
applicable. The first generation consisted of full-sib families
developed from biparental crosses and subsequent generations
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were recombined as half-sib families by open-pollination. As
of now, the breeding population is managed with discrete gen-
erations by moving selection candidates (in the progeny tests)
forward from each one to the next. Mosaic ratings were not
available for the first two generations, but plots of the parental
populations from the original and second generations were
available and therefore scored.

2.3 Statistical and genetic analyses

A multivariate (six-trait) analysis was carried out with
biomass yield (DMY), KL content, ADL, Etoh, and mosaic
ratings (analyzed as Virc on a five-point categorical and as
Virb on a two-point binary scale). Yield, quality data (all gen-
erations), and mosaic ratings (parents and third generation
in 2012–2015) were included in the joint analysis since the
years of measurements overlap in the third generation. The
two forms of lignin content (ADL and KL) were included
together here for evaluation purposes, since either is used in
breeding for forage and bioenergy. In matrix form, the follow-
ing linear mixed (PBLUP and ABLUP) model was applied:

𝐲 = 𝐗𝛃 + 𝐙𝛂 + 𝐞

where y represents the vector of observations of yield, qual-
ity, and disease data, β is the vector of fixed effects (overall
mean, years, and replications), α is the vector of random addi-
tive genetic effects, and e is the vector of random residuals.
X and Z are incidence matrices that relate fixed and random
effects to the vector of observations in y. The additive genetic
and residual effects were assumed to be independent, and the
expectations for fixed and random [α ∼ MVN(0, A⊗G); e
∼ MVN(0, I⊗R)] effects were solved with the mixed model
equations (Henderson, 1975):

[
𝐗𝐗′ → 𝐗′𝐙

𝐙′𝐗 → 𝐙′𝐙 + 𝐀−1λ

] [
𝑏̂

𝑢̂

]
=
[
𝐗′𝐑−𝟏𝐲
𝐙′𝐑−𝟏𝐲

]

in which A−1 represents the inverse of the pedigree-derived
relationship matrix in the ABLUP model and is replaced by I
in the PBLUP model, I being the identity matrix of the 1,622
individuals in the pedigree, G and R are the respective addi-
tive genetic and residual variance–covariance matrices, ⊗ is
the Kronecker product, 𝑏̂and 𝑢̂ are the respective estimates
and predictors of the fixed and random effects, and the off-
diagonals correspond to the genetic or residual covariances
among the six traits. The shrinkage factor λ is equal to the
ratio σ2e∕σ

2
a (i.e., error variance to the additive genetic vari-

ance), and ′ indicates the transpose form of the matrix.
Linear mixed models were used also for the two mosaic

ratings, which were considered as Gaussian variables in this
analysis. The frequency distributions of these traits in the pop-

ulation were satisfactorily normal to justify this approach. A
threshold (categorical or binary) model needs to be tested and
could be more appropriate for these types of traits, which tend
to violate the assumption of normal distribution for ANOVA
(Gianola, 1982). However, inconsistent or similar results were
obtained in several studies that compared linear and threshold
models (Heringstad, Rekaya, Gianola, Klemetsdal, & Wel-
gel, 2003; Ødegård, Kettunen, & Sommer, 2010; Ødegård,
Olesen, Gjerde, & Klemetsdal, 2007), as the accuracy of the
latter is rather dependent on the frequency of the disease in
the breeding population. Nonetheless, the threshold model
is being contemplated in this breeding program and will be
examined in a subsequent publication.

(Co)variance components were estimated from the mixed
models using ASReml version 4.1 (Gilmour, Gogel, Cullis,
Welham, & Thompson, 2015), which implements, in a
restricted maximum likelihood (REML) procedure, the aver-
age information algorithm and sparse matrix methods to han-
dle a large and complex data structure. The components
were used to estimate heritability values for and correlations
between DMY, KL, ADL, Etoh, Virc, and Virb. Narrow-sense
(ℎ2i ) or individual (i) heritability estimates were derived as

ℎ2i = σ2α
/(

σ2α + σ2e
)

The genotype × year interaction effects were added to the
denominator whenever present for a trait. Genetic correlations
(rG) between the traits were calculated as

𝑟G = σα12
/(

σ2α1σ
2
α2
)0.5

where σα12 is the genetic covariance between two traits, and
the denominator is the product of their respective genetic
variances. Phenotypic (rP) correlation and environmental (rE)
were also obtained as

𝑟P = σp12
/(

σ2p1σ
2
p2

)0.5

𝑟E = σe12
/(

σ2e1σ
2
e2
)0.5

with the different elements being the respective phenotypic
or environmental (co)variances associated with two traits.
Standard errors of all parameter estimates were approximated
using the Delta method (Holland, Nyquist, & Cervantes-
Martinez, 2003) via the Taylor series approximation as imple-
mented in ASReml (Gilmour et al., 2015). In the ABLUP
model, convergence was obtained with the “corgh” genetic
correlation structure along with a “US” covariance structure
in the residuals (Isik, Holland, & Maltecca, 2017). For the
PBLUP model, the best model and parameters (i.e., none out
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of bound) were obtained with a combination of a “diagonal”
genetic and “US” residual (co)variance structures (Gilmour
et al., 2015).

Breeding values (EBV) were computed for parents and
progeny as BLUP predictions by REML. The accuracy of pre-
diction (𝑟gĝ), expressed as a correlation between predicted (α̃)
and true (α) breeding values, was obtained from the formula:

𝑟gi,̂gi =
√

1 −
(
PEVαi

/
σ2α

)

with PEV being the prediction error variance obtained as the
squared values of the standard errors of individual (i) predic-
tions (i.e., EBV), and σ2α being the additive genetic variance
for the targeted traits; the reliability of the predictions (𝑟2gĝ)

was obtained ultimately.

3 RESULTS

3.1 Genetic parameters

The genetic parameters estimated under the two genetic mod-
els (PBLUP and ABLUP) were relatively similar, if not for a
few cases (Table 1). The differences primarily arose whenever
the ABLUP model recovered a significant genotype × year
interaction, as observed for KL and Virb (the binary mosaic
rating). In estimating the variances for KL, the ABLUP model
distributed 19 and 41% of the phenotypic variance to the addi-
tive genetic and residual variances, respectively. The PBLUP
model assigned 22 and 78% to the respective additive genetic
and residual variances, resulting in these three variances being
higher than those under the ABLUP model. For Virb, the addi-
tive genetic variance was 2% higher (29% vs. 27%) and the
residual variance 22% lower (51% vs. 73%) with the ABLUP
model than with the PBLUP model. Even though there was no
interaction present for estimating ADL, the additive genetic
variance was 5% higher (29% vs. 24%) and the residual vari-
ance was 5% lower (71% vs. 76%) under the ABLUP model
compared with the PBLUP model. The multivariate PBLUP
model did not detect any significant genotype–year interaction
for any trait, and this interaction was then omitted.

The narrow-sense heritability values ranged from .22 (KL)
to .46 (Etoh) as estimated by the PBLUP model and from .19
(KL) to .46 (Etoh) when estimated by the ABLUP model. As
a consequence of the profiles of the estimated variances, the
narrow-sense heritability values were higher for three (DMY,
ADL, and Virb) of the six traits and lower for two (KL and
Virc) based on the ABLUP model. A similar ℎ2i value was
recorded for Etoh under both genetic models. Looking at the
standard errors, the heritability values for ADL and Virb were
measured with greater precision by the ABLUP model and for

Etoh and Virc by the PBLUP model, but with a much narrower
difference according to the latter model.

3.2 Phenotypic, genetic, and environmental
correlations

Using either the PBLUP or the ABLUP model, the genetic
correlations among the traits were all higher than the phe-
notypic correlations and were assigned the same signs (posi-
tive or negative, Tables 2 and 3). The phenotypic and residual
correlations were in general small or not significantly differ-
ent from zero, except for the correlations of Etoh with either
ADL or KL, of KL with ADL, and of Virc with Virb. The
same four genetic correlations were not significant (i.e., rG <

2SE) under either genetic model, and that involves the rela-
tionships between the two measurements of mosaic with Etoh
and with KL. Only considering the significant genetic cor-
relations revealed that three (involving ADL–DMY, Etoh–
KL, and Virc–Virb) were higher under the ABLUP than
under the PBLUP model, which itself produced six rG values
higher than those predicted by the ABLUP model. The stan-
dard errors were of comparative magnitude or precision, with
smaller or higher (absolute) values for the same number of
cases attributed to either of the two models. The environmen-
tal correlations were also small, except for the correlations of
Etoh with either ADL or KL, of KL with ADL, and of Virc
with Virb, which ranged from .39 to .54 under the PBLUP and
from .30 to .37 under the ABLUP model (Table 4).

3.3 Accuracy and reliability

The accuracy (𝑟gĝ) of estimated breeding values (EBV) for
each individual genotype included as a selection candidate
(parents and progeny) was obtained from the two models.
These 𝑟gĝ values represent the correlation estimates between
predicted and true (but unknown) values of the EBV. As
such, they can be and have been compared for the efficiency
of each model at reliably selecting the candidates. In this
Summer × Kanlow population, the 𝑟gĝ values ranged from
.06 to .94 when assessed with the PBLUP model and from
.26 to .92 using the ABLUP model (Table 5). These corre-
sponded to reliability values (𝑟2gĝ) ranging from .004 to .89

(PBLUP) and from .07 to .87 (ABLUP). The ranges of these
values were wider with the PBLUP model and narrower with
the ABLUP model, showing that the latter model largely
improved the lower tails of the prediction distributions. How-
ever, looking at each trait individually, the ABLUP model,
which exploited the pedigree information to predict breeding
values, improved the average accuracy and reliability of DMY
and Etoh by 11% and those of the remaining traits by 4–5%
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over the PBLUP model. Accuracy and reliability parameters
are important to the breeder in making sound advancement
decisions on parental selection for the next generation, on pre-
dicting gains from selection, and/or on deployment of culti-
vars from a breeding program (White & Hodge, 1989).

4 DISCUSSION

A recurrent selection protocol is followed by the USDA-ARS
forage breeding program in Lincoln, NE, to advance selec-
tion candidates from one generation to the next in a discrete
fashion using half-sib family structures. Since the inception of
the program, selection was purely phenotypic and univariate,
but backed by a selection index strategy (Vogel & Pedersen,
1993). In recent years, selection is geared towards a multivari-
ate approach involving all generations and traits in one mixed
linear model analysis for BLUP prediction of breeding val-
ues (Edmé et al., 2017). The rationales for this approach are
justified on grounds that (a) these EBVs represent the best
and unbiased estimates for selection of parents in the crossing
blocks for cultivar release based on their own performance
and on that of their progeny, and this will be used to shorten
the time from crossing to cultivar deployment; (b) these EBVs
are the best estimates to select individual progeny (not repli-
cated) in the progeny tests, as their prediction also benefited
from data coming from their parents (previous generation)
and relatives; (c) making gains from selection and recom-
mending durable cultivars require sound and reliable esti-
mates of genetic parameters; (d) building a more efficient
breeding strategy requires exploiting the architectures of all
objective traits (old and new) in the breeding objective to
optimize the selection index; and (e) an optimization of the
“multiple-population-and-species” strategy, in effect in this
breeding program, needs to be revisited in line with the lack
of resources. The following discussion will refer to the results
from the ABLUP model, as it is the adopted model based on
the accuracy and reliability of the estimates.

Improving a population by recurrent selection is tackled by
ensuring the population is of an appropriate size to increase
selection intensity and harbors sufficient genetic diversity and
variation, by using efficient mating and field designs that
separate the type and amount of genetic variation from non-
genetic effects, and by securing the steady supply of precise
estimates of genetic parameters (heritability, [co]variances,
correlations) from appropriate statistical and genetic models.
Edmé et al. (2017) examined the use of a multivariate genetic
analysis of the population in the last generation and indicated
that the trait architecture was well aligned with the breeding
objective of increasing biomass yield and reducing lignin con-
tent with enough genetic variation to support genetic gains
in this Summer × Kanlow switchgrass population. In that
study, individual heritability estimates were .33 ± .22 for

DMY, .22 ± .17 for KL, and .36 ± .22 for Etoh. The present
study integrated data from the two previous generations in the
PBLUP model and additionally the across-generations pedi-
gree in the ABLUP model. Individual heritability values were
larger using either the PBLUP or ABLUP model and mea-
sured with much greater precision (SE ≤ 0.05) than those for
the three traits included in Edmé et al. (2017). The addition of
three other traits in the models did not compromise the pre-
cision with which the parameters were estimated. This indi-
cates that a multivariate BLUP across-generations analysis,
with or without the pedigree, is an improvement over the one-
generation multivariate BLUP analysis.

A different picture also emerged with regards to the genetic
correlations estimated with the one-generation analysis in
Edmé et al. (2017) and with this three-generation study. The
correlations of DMY with KL and Etoh are now much lower
and of different signs than those obtained with the former
analysis. The one-generation analysis indicated that geno-
types with high biomass yield would have lower lignin content
(rG = −.33) and higher ability to produce ethanol (rG = .60).
The three-generation analysis contends that high biomass
yield is positively associated with high KL (rG = .24) and neg-
atively associated with Etoh (rG =−.15), even though the cor-
relations were small (Table 2). Integrating the early founders
in the ABLUP or PBLUP analysis might have pushed the
correlations towards a more positive (but low) level between
DMY and KL. Moreover, the Summer × Kanlow population
has a very recent breeding history (Vogel et al., 2014), and
sufficient recombination and linkage disequilibrium have not
been generated yet to shape its trajectory to a “stable” level.
Case in point, it is composed of genotypes with different com-
binations of the three traits, giving the possibility to discrim-
inate those with high biomass yield, high Etoh, and low KL
from those with high biomass yield, high Etoh, and high KL.
However, both studies support the evidence that increasing
Etoh (ethanol production) will come from selecting genotypes
with low lignin content (KL or ADL), as underscored by rG
values being between −.60 and −.66 (Table 2). In a quanti-
tative trait loci mapping project, Milano, Lowry, and Juenger
(2016) indicated that, in the context of switchgrass, the genetic
architecture of traits is complex with limited pleiotropy or
tight linkage to explain trait divergence. This can only be
explained by the relatively short breeding history of these pop-
ulations coupled with the underlying polyploid background.

A good understanding of the genetic architecture of traits
is essential for managing breeding populations and develop-
ing selection indices (Falconer & MacKay, 1996; Lynch &
Walsh, 1998). Unfavorable correlations, particularly between
growth and quality traits, are common in plant breeding and
present constraints to jointly improve these two types. The
joint or independent action of the genetic and environmen-
tal sources of variation will determine the expressivity of
traits and thereby shape their covariation (Cheverud, 1984).
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This work also studied the interrelationships between the
heritability of the traits with their correlations (phenotypic,
genetic, and environmental) to better understand the underly-
ing genetic control. Of great interest to this breeding program
is the four-factors relationship: biomass yield, lignin content,
ethanol yield, and disease resistance. Comparing the two mea-
sures of lignin content or of disease scoring was to indicate
which of the two would be better suited to the selection pro-
cess. All six traits are under either intermediate (ℎ2i = .17–.27)
or strong (ℎ2i = .30–.46) genetic control, which was consistent
with the PBLUP and ABLUP models. The DMY, Etoh, Virc,
and Virb were evidenced by each model as having the high-
est heritability values, though the PBLUP model was supe-
rior for the latter two traits. Genetically, DMY was moder-
ately and negatively correlated with these three traits, but the
phenotypic and environmental correlations, although nega-
tive also, were small and nonsignificant. This indicates that
the environment tended to influence these traits (growth pat-
tern and direction) to the same extent as the genetics, even
though the genes are different but linked. The small nega-
tive association between DMY and Etoh may have resulted
from the positive, but small, correlation of DMY with KL or
ADL, which are strongly and negatively correlated with Etoh.
Selecting for DMY would not strongly undermine the iden-
tification of genotypes with high potential for ethanol pro-
duction. Moreover, the DMY–KL relationship has a genetic
basis (rG = .24), showing opposing signs for rG and rE, and
thus indicating that a differential allocation of carbohydrates
to biomass and to lignin might be the basis for their covaria-
tion. The same is true for the relationships between Etoh and
the two mosaic traits, even though there is no causal or bio-
logical genetic basis (rG = .04–.11) per se, their covariation
can be explained indirectly via their conflicting reliance on
lignin content: high KL for physical resistance and low KL
for ethanol production.

The two lignin measurements (ADL and KL) represent the
same trait as were the two mosaic ratings (Virc and Virb).
Either lignin form, with a moderate heritability, can be used
as a selection and/or objective trait in a breeding program to
identify genotypes for the lignocellulosic (fermentation) plat-
form for which reduction of lignin is critical (Edmé et al.,
2017). However, the Klason form has a stronger genetic cor-
relation (−.63) with Etoh than ADL (−.54), indicating that
reduction of KL, particularly, can be more effective at yield-
ing genotypes with high potential for producing ethanol. The
ADL/KL–Etoh relationship was particularly unique in the
sense that all three components of the correlations were large
and with similar signs, pointing to a stronger genetic basis
operating along a somewhat less strong environmental influ-
ence.

Deconstructing the disease phenotype into its subpheno-
typic components (1–5 rating) will provide a better control

(ℎ2i = .37–.43) on incidence than using the binary rating
(ℎ2i = .27–.30). A binary scoring of mosaic, though having
a lower ℎ2i , would allow faster phenotyping compared with
the more laborious, but more heritable, categorical scoring
and be particularly useful in the context of a breeding pro-
gram, such as this one, dealing with relatively large popula-
tions. The genetics and the environment acted in the same pat-
tern and direction on these four traits (ADL, KL, Virc, and
Virb), but leaving the phenotypic and environmental correla-
tions small and nonsignificant. Wilson et al. (2006) indicated
that accounting for the temporal coupling of genetics and envi-
ronment gives a more informed knowledge of how the two
shape the variance (heritability) and covariation of traits in
a wild sheep population. A salient result of this research is
that genotypes with high lignin content tended to have lower
disease incidence (rG = −.25), suggesting that integrating the
disease phenotyping data into the selection index will be more
informative than not.

The goal of any breeding program is to make gains from the
breeding and selection protocols put in place to identify elite
genotypes with the specific combinations of genes or traits of
interest. Estimation of breeding values of the selection candi-
dates is central to this process, as EBVs determine the indi-
vidual genetic merits or the potential of parents and progeny
at transmitting and increasing the frequency of key genes
throughout generations (Falconer & McKay, 1996). One way
to make progress, as a change of trait mean (or index value) of
the population, is to increase the accuracy of prediction, accu-
racy being directly proportional to increasing genetic gains
(Lynch & Walsh, 1998): the breeder’s equation Δ𝐺 = 𝑖𝑟gĝσa,
with i being the intensity of selection. The accuracy of pre-
diction measures how close or far the EBV are to their true
values as a correlation (𝑟gĝ), since estimates are usually cal-
culated with some imprecision (the standard errors attached
to the values). In this study, the ranges of 𝑟gĝ values were nar-
rower with the ABLUP model (.26–.92) than with the PBLUP
model (.06–.94). Both models benefited from the inclusion of
more data to adjust the accuracy of prediction. However, the
ABLUP model was more refined with the integration of the
pedigree, or more precisely the additive relationship matrix, to
improve the accuracy and reliability further over the PBLUP
model for most members of the population (Table 4).

Furthermore, looking at each trait separately, the ABLUP
model improved the average accuracy and reliability of DMY
(ℎ2i = .41) and Etoh (ℎ2i = .42) by 11% and those of the
remaining traits (ℎ2i = .17–.37) by 4–5% over the PBLUP
model. However, a greater shrinkage of the breeding values
towards the mean occurred with the ABLUP than with the
PBLUP model, as typical for animal modeling of genetic data
(Figure 1). Some uncertainty or bias (true half-sibs or not)
might have also come from using an incomplete pedigree in
a half-sib progeny test with the male side of the pedigree
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being improved for bioenergy (high biomass and ethanol yields and reduced lignin content). DMY, dry matter yield; EBV, estimated breeding value;
Etoh, predicted ethanol yield; Virc, categorical (1–5) mosaic rating; KL, Klason lignin

being unknown (Piepho et al., 2008). Genotyping of the can-
didates is underway and will be used to ascertain the male
parentage of the progeny. With high accuracy values (𝑟gĝ ≥ .8)
attached to an individual, the EBVs do not have much room
for improvement and will not change considerably with the
inclusion of more data (White & Hodge, 1989). The situation
is different with lower values (𝑟gĝ ≤ .4) of accuracy. Across
traits, average accuracy values ranged from .48 to .54 for the
PBLUP model and from .53 to .62 for the ABLUP model.

Considering that the maximum theoretical accuracy to be
expected from a half-sib family structure is .50, a progeny
test, like this one, is the only way to extend it further beyond
this point (Falconer & McKay, 1996; Lynch & Walsh, 1998).
Edmé et al. (2017) contemplated increasing the population
size of the progeny tests to improve the precision of the genetic
parameter estimates and breeding values. This study seems to
indicate that a multivariate BLUP analysis, with or without a
pedigree, is a good alternative to increasing family size and
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will be efficient at minimizing the risks (accuracy and relia-
bility) of selection and, thus, at improving selection response.

Several studies have investigated the amount of informa-
tion (data and/or pedigree depth) necessary to obtain greater
accuracy of breeding values in animal or plant breeding (Atkin
et al., 2009; Durel et al., 1998; Furlani et al., 2005; Mehrabani-
Yeganeh, Gibson, & Schaeffer, 1999; Purba, Flori, Baudouin,
& Hamon, 2001). The more detailed study by Atkin et al.
(2009) indicated that including 5–7 yr of data backed by
three to five generations of pedigree are necessary to obtain
accurate and reliable estimates of breeding values for the
Australian sugarcane (Saccharum spp. hybrids) breeding pro-
gram. More gains in accuracy were provided by having more
years of data than by a deeper pedigree. The data seemed to
have accounted for the noise or the environmental compo-
nent and the pedigree for the flow of genes from parents to
progeny and for their expression in immediate sib relatives
within and across generations. In this switchgrass breeding
program, research is already underway to genotype parents
and progeny and to increase the quantity, quality, and type
of data collected (without overtaxing available resources) that
will further refine the BLUP analysis of these progeny tests.
No such extensive study or values are available in the switch-
grass or perennial grass literature for comparisons.

5 CONCLUSION

To make progress in a breeding program, selecting on EBVs
is more appropriate than selecting on raw phenotypic infor-
mation. A motivating finding of this study is that integrat-
ing the pedigree with the across-generations dataset in the
evaluation of parents and progeny will bring greater preci-
sion (accuracy) in the estimation of breeding values and ulti-
mately increase reliability in the prediction of genetic gains.
In the absence of a pedigree, a multivariate BLUP analysis
of the complete dataset is also a better model than a one-
generation evaluation. The objective with this breeding pop-
ulation is to develop switchgrass cultivars for the lignocel-
lulosic (fermentation) platform, whereby increasing biomass
and ethanol yields and decreasing lignin content and disease
incidence are important. All six traits were found to have ade-
quate genetic variation (under intermediate or strong genetic
control), such that selecting for high-biomass genotypes will
slightly increase lignin content and simultaneously impart
mosaic tolerance. One way to mitigate the increase in lignin
content with the increase in biomass will be to include Etoh
in a selection index, based on its much stronger negative cor-
relation (rG = −.63) with lignin content. Either of the two
forms of lignin or of the two scorings of mosaic can be used to
make progress in a breeding program. Evaluating the relative
importance of these six traits in a selection index and in their

response to selection will be a worthwhile endeavor for this
breeding program.
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