
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Publications, Department of Statistics Statistics, Department of 

9-28-2021 

Incorporating Molecular Markers and Causal Structure among Incorporating Molecular Markers and Causal Structure among 

Traits Using a Smith-Hazel Index and Structural Equation Models Traits Using a Smith-Hazel Index and Structural Equation Models 

Juan Valente Hidalgo-Contreras 

Josafhat Salinas-Ruiz 

Kent M. Eskridge 

Stephen P. Baenziger 

Follow this and additional works at: https://digitalcommons.unl.edu/statisticsfacpub 

 Part of the Other Statistics and Probability Commons 

This Article is brought to you for free and open access by the Statistics, Department of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, 
Department of Statistics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/statisticsfacpub
https://digitalcommons.unl.edu/statistics
https://digitalcommons.unl.edu/statisticsfacpub?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages


agronomy

Article

Incorporating Molecular Markers and Causal Structure
among Traits Using a Smith-Hazel Index and Structural
Equation Models

Juan Valente Hidalgo-Contreras 1,* , Josafhat Salinas-Ruiz 1, Kent M. Eskridge 2 and Stephen P. Baenziger 3

����������
�������

Citation: Hidalgo-Contreras, J.V.;

Salinas-Ruiz, J.; Eskridge, K.M.;

Baenziger, S.P. Incorporating

Molecular Markers and Causal

Structure among Traits Using a

Smith-Hazel Index and Structural

Equation Models. Agronomy 2021, 11,

1953. https://doi.org/10.3390/

agronomy11101953

Academic Editor: Harbans Bariana

Received: 5 June 2021

Accepted: 17 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Campus Córdoba, College of Postgraduates in Agricultural Sciences, Km 348 Carretera Córdoba-Veracruz,
Amatlán de los Reyes, Veracruz 94946, Mexico; salinas@colpos.mx

2 Department of Statistics, University of Nebraska-Lincoln 340 Hardin Hall, Lincoln, NE 68410, USA;
keskridge1@unl.edu

3 Department of Agronomy and Horticulture, University of Nebraska-Lincoln 362D Plant Sciences Hall,
Lincoln, NE 68410, USA; pbaenziger1@unl.edu

* Correspondence: jvhidalgo@colpos.mx; Tel.: +52-2711784176

Abstract: The goal in breeding programs is to choose candidates that produce offspring with the
best phenotypes. In conventional selection, the best candidate is selected with high genotypic
values (unobserved), in the assumption that this is related to the observed phenotypic values for
several traits. Multi-trait selection indices are used to identify superior genotypes when a number
of traits are to be considered simultaneously. Often, the causal relationship among the traits is well
known. Structural equation models (SEM) have been used to describe the causal relationships among
variables in many biological systems. We present a method for multi-trait genomic selection that
incorporates causal relationships among traits by coupling SEM with a Smith–Hazel index that
incorporates markers. The method was applied to field data from a Nebraska winter wheat breeding
program. We found that the correlation and the relative efficiency increased for the proposed Smith–
Hazel indices when the total causal information among traits was accounted for by the vector of
weights (b), which includes the causal path coefficients in the causal matrix (Λ). On the other hand,
when selection was based on a primary trait, for example yield, the proposed SI increased the mean
yield of the best 28 (Top 10%) genotypes to 7%.

Keywords: selection index (SI); structural equation modeling (SEM); yield components; multi-trait;
causal relationship

1. Introduction

Novel food production technologies are needed to tackle the increased demand for
food in a world in which population is expected to reach 9 billion people by 2050. The
production gains achieved through conventional breeding methods are gradually declin-
ing. Producing more food requires the development and implementation of new genetic
technologies. The goal of breeding programs is to choose candidates that produce offspring
with the best phenotypes. In conventional selection the best candidate is selected with
high genotypic values (unobserved) under the assumption that these genotypic values
are related to the observed phenotypic values. Selection index (SI) is a tool that helps to
select individuals by considering more than two quantitative traits simultaneously. The SI
is a linear combination of different traits, in which each trait is weighted according to its
importance [1]. Selection indices were first proposed by Smith [2] and Hazel [3] as a linear
combination of the phenotypic traits of interest, in which the corresponding weight for each
trait is obtained by maximizing the correlation between the phenotypic and the genotypic
merits with respect to the weights. This index is called a Smith–Hazel index or an optimum
index [4]. To estimate the vector of coefficients for the optimum index, one must know
the economic trait for each trait and the phenotypic and genotypic variance-covariance
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matrices among the traits. Unfortunately, there is no strict rule for setting the economic
weights.

There are two general types of applications of SI. The first is single trait improvement,
in which there is one trait of interest and other related traits are used to increase the
efficiency of selection. The second type is to improve more than one trait simultaneously,
which is also called multiple-trait improvement, where the main concern is to assign
economic weights for each trait. In addition to the Smith–Hazel multiple trait index, other
indices have been proposed, such as the base index, where economic weights are used
as index coefficients: the restricted index and the non-weighted multiplicative index [4].
A common application of these indices has been applied to yield and yield components,
among other quantitative traits.

The use of molecular markers (MM) in genetic studies has gained enormous attention
in recent years, since markers may be used to explain a proportion of the total genetic
variance. In this context, incorporating MM into selection indices to improve the esti-
mation of breeding values has been proposed by several authors, either by adding a
single-marker [5,6] or by adding k molecular markers [7]. A SI was developed to incor-
porate k molecular markers as an indirect trait, by regressing the breeding value over the
molecular marker values (marker scores). In that SI, the essential steps are: (i) predict the
genetic value, known as a marker score, by regressing phenotypes on marker information;
and (ii) combining the marker score with phenotypic information and the SI to make the
final predictions of the genetic merit [7].

In all the selection indices described above, it is possible to use several traits simulta-
neously, since they are based on the Smith–Hazel index theory. However, none of them use
the causal relationships that exist between the traits. In agriculture, most of the traits of
interest are direct or indirect functions of other traits. For example, in plant breeding, grain
yield is a function of several intermediate traits. A unidirectional relationship between yield
and yield components in small grains was established [8] (Figure 1). The path diagram
describes the sequential development of yield components in small grains. For example,
the spikes per square meter (SPSM) influence the number of kernels per spike (KPS), which
in turn affects the kernel weight (KW), which is also affected by SPSM.
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Figure 1. Path diagram showing a sequential relationship between yield (YLD) and yield compo-
nents in small grains. SPSM = spikes per square meter, KPS = kernel per spike, and KW = kernel 
weight. Arrows represent the direction of the influence of variables. The β's represent the path 

Figure 1. Path diagram showing a sequential relationship between yield (YLD) and yield components
in small grains. SPSM = spikes per square meter, KPS = kernel per spike, and KW = kernel weight.
Arrows represent the direction of the influence of variables. The β’s represent the path coefficients.
The e’s represent the error term associated with each trait. Own elaboration based on [8].
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Causal relationships among traits have been well established in biology for many
years [9]. Specifically, the causal structure among yield components is well known. How-
ever, selection is still conducted ignoring this causal structure. Therefore, the purpose
of this research was to make use of the Smith–Hazel index and to incorporate structural
equation modeling (SEM) theory to improve the predictability of the model for selection
response.

Multivariate statistical models (MSM) can handle several variables simultaneously.
However, when it is known that there is a causal association among these traits, a MSM does
not take advantage of this causal information. In this context, structural equation modeling
(SEM) can consider the causal relationships among traits, to improve the predictability of
the model.

Structural equation modeling (SEM) is a powerful statistical tool that is useful for
understanding complex relationships among variables by considering the causal structure
among the traits of interest. SEM models that account for biological causal relationships
among traits can be useful in multi-trait selection strategies [10]. SEM is a modern version
of path analysis, which was originally proposed by Wright [9] and has been widely applied
in the social sciences, but not widely used in the plant sciences. Despite its lack of use in the
plant sciences, SEM has potential applications in this field, such as for the analysis of yield
components, genetics, and multi-environment studies. SEM was applied to characterize
the genetic architecture in multivariate systems modeling the causal relationship among
phenotypes [11]. Some applications of SEM in crop sciences have been to explore the
causal relationship in grain yield components [12,13], as well as in other areas of plant
sciences [14,15]. SEM was used to model genotype using environmental interaction [13,16].
In plant science, a few papers have been published using SEM in the analysis of yield and
yield components [12–14,17,18].

SEM was used to adapt quantitative genetic models to model causal relationships
between phenotypes, and also to show the statistical consequences when the association
between two traits was analyzed in terms of standard multi-trait models (MTM), which
ignored the causal association among traits [11]. The authors suggested that accounting
for the causal information that is presented in many biological systems would be a more
realistic way of addressing them [11].

SEM integrates path analysis, a system of simultaneous equations and factor analy-
sis [19]. SEM allows differentiating the effects among variables, into direct and indirect
effects. Direct effects are those where one variable directly influences another variable,
without intermediate variables. Indirect effects are those where the influence of one vari-
able on another is mediated by one or more variables. In SEM, variables are classified as
either exogenous or endogenous; where exogenous variables are independent variables
determined outside of the system, and endogenous variables are determined within the
system and act as dependent variables.

Causal relationships among traits are present in many biological phenomena [20];
however, neither marker assisted selection (MAS) nor genomic selection procedures ac-
count for such causation. In the present research, following Smith–Hazel index theory [2,3],
a selection index was developed that takes into account the causal structure among yield
component traits by using coupling selection index (SI) theory and structural equation
modeling (SEM). We found that when causal information is used in the index, its selection
efficiency for finding better genotypes improves.

2. Materials and Methods
2.1. Path Coefficients

All parameters estimated were assumed to be normal, either due to the normality of
the data or large sample sizes. A t test was used to test the null hypothesis that a path
coefficient is equal to zero in the population. A path coefficient may be different from zero
if its absolute value exceeds 1.96, 2.58, and 3.30 (two-tailed test) at the level of significance
p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively [21]. Using a standardized path coefficient
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helps make comparisons among them. In the present research, analysis was conducted
using PROC CALIS in SAS 9.2 with the ML method.

2.2. Causal Coefficients as Economic Weights

When using SI for multiple traits simultaneously, it is common to assign an economic
weight to each trait involved in the SI [22]. The vector of economic weights can be set or can
be estimated. In this research we used the causal path directly and total effects estimated
from the data (see Section 2.6).

2.3. Experimental Data

The data consisted of a population of two check varieties and 280 winter wheat lines
evaluated at five locations in the state of Nebraska (Lincoln, Mead, McCook, Clay Center
and Alliance) during the winter of 2013. The wheat lines were in the F6 generation of the
winter wheat UNL program, which were selected based on the experience of the wheat
breeder from around 1400 lines in the F5. The experimental design in each location was an
augmented incomplete block design, with two replicated check cultivars (Goodstreak and
Camelot). There were ten incomplete blocks, each of which consisted of 28 experimental
lines and two check varieties. Goodstreak and Camelot are varieties that are well-adapted
to different regions of Nebraska. To evaluate grain yield and yield components, we took
random samples of 10 spikes per plot, including the new lines and the two checks, making
a total of 300 samples per location. The agronomy data used in this research included
grain yield (YLD), spikes per square meter (SPSM), kernels per spike (KPS), and kernel
weight (KW). Grain yield was measured by using a combine harvester at each plot in each
location. Spikes per square meter was estimated based on grain yield, kernel per spike,
and kernel weight. Kernels per spike was estimated by the average of counting the number
of kernels when threshing 10 spikes. Kernel weight was measured after weighing the total
number of seeds of 10 spikes and dividing by the total number of seeds. When conducting
a SEM, a sufficient sample size should be 100–200 samples or 5–10 times the number of
parameters in the model [23]. The winter wheat data set consisted of a sample size of 1500,
which exceeds the minimum recommended. The DNA marker dataset included 231 DArt
markers declared significant in a previous analysis [24].

2.4. Data Analysis

To estimate the genotypic, phenotypic, and environmental variance–covariance matri-
ces (Σ̂g, Σ̂y, Σ̂e) involved in the SI without molecular markers and the coefficient matrix
(Λ), we performed a two-stage analysis. The first stage consisted of the estimation of the
variance–covariance matrices using the method of moment estimators based on the sums
of squares and cross-products (SSCP) matrices from the multivariate analysis of variance
(MANOVA) with the linear model (1). The second stage was performed using MANOVA
to fit a linear model, to remove the main effects of environment and blocks for each trait,
and modeling the residuals to estimate the coefficient matrix (Λ) [13,16].

2.5. Estimation and Covariance Matrices

The linear model to estimate the variance–covariance matrices that are needed for the
SI is the model for two-way crossed classification:

Yijk = µ + Ei + B(E)ki + Gj + (GE)ij + εijk (1)

where Yijk is the vector for the p traits of the jth genotype in the ith environment for the kth

block; µ is the overall mean vector, Ei is the vector of main effects of the ith environment;
B(E)ki is the vector of effects of the kth block nested in the ith environment; Gj is the vector
of main effects of the jth genotype; GEij is the vector of interaction effects between the
jth genotype in the ith environment, and εijk is the vector of the experimental residual for
the jth genotype in the ith environment into the kth block. Since we assumed the basic
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genetic model that did not contain a GE interaction, we used ε∗ijk = (GE)ij + εijk in place
of the last two terms. It was suggested that since the variation of the interaction is more
environmental, it is reasonable to pool the variance of εijk (Σεijk ) with the GE interaction
variance (Σgxe) [25].

The genotype (Σg) and environmental (Σe) covariance matrices were estimated using
the method of moments, based on a multivariate analysis of variance (MANOVA) for
balanced data in SAS 9.2 with the procedure PROC GLM [26].

The linear model for estimating the variance–covariance matrices that include molec-
ular markers as a random variable is:

Yijk = µ + Ei + B(E)ki + Mj + Rj + εijk (2)

where Mj is the vector of main effects of the jth molecular marker, and Rj is the jth vector
of genetic residuals (r), which is part of the genetic variation (g) not explained by the jth

molecular marker (m), that is Σg = Σ∗m ∗ Σr. Each marker had values of −1, 0, and 1. The
other parameters are the same as described in Equation (1), and we assumed the genetic
residual and the model error were independent and normally distributed. We still assumed
the basic genetic model, which did not contain an ME interaction. We pooled the variance
of ε∗ijk = Rj + εijk, (Σε∗ijk

) with the environmental variance (Σe) [25] to make the phenotypic
variance–covariance matrix for computing the vector of weights (b).

2.6. Estimation of Coefficient Matrix (Λ)

The second stage focuses on the estimation of the coefficient matrix (Λ). In this stage,
grain yield and yield components were analyzed using SEM with observable variables
by modeling the Y’s residuals (YLDR, SPSMR, KPSR, and KWR). These residuals were
obtained by subtracting the main effects of environment and blocks within the environment
from the observed values [3].

rijk = Yijk − (µ + Ei + B(E)ki) (3)

The estimation of the coefficient matrix (Λ), which accounts for the causal relationship
between grain yield and yield components, was conducting using PROC CALIS in SAS 9.2
software with the maximum likelihood estimation method and following the recommended
steps [21]. The chi-squared

(
χ2) test is the most widely used for testing the significance

of the difference between sample covariances (Σ) and the predicted covariance (Σ(θ))
matrices. Along with the chi-square test, there are other model-fit criteria, such as GFI,
AGF, I and NFI, that are described in the model evaluation section. Non-significant chi-
square and values greater than 0.90 for GFI, AGFI, and NFI were used to evaluate the
final model.

To conduct the SEM it is necessary to have prior knowledge of the causal relation-
ships among the traits. For this research the unidirectional causal relationship between
grain yield and yield components in small grains was used [8] (see Figure 1). The same
estimated coefficient (Λ) matrix was used for both causal models, i.e., with and without
molecular markers.

2.7. SEM Model Methodology

This research was based on the causal unidirectional relationship between grain yield
and yield components in small grains [8]. Figure 1 shows the sequential development of
yield components, where the later components are influenced by the earlier ones. Using
structural equation modeling (SEM) it is possible to estimate the causal relationships
present among grain yield and its components for small grains.

In general, the structural equation model with the observed variables can be written as:

Y = BY + ΓX + ζ (4)



Agronomy 2021, 11, 1953 6 of 14

where Y is a px1 vector of endogenous variables (p = 4): yield (YLD), spikes per square
meter (SPSM), kernels per spike (KPS), and kernel weight (KW); B is the pxp coefficient
matrix expressing the causal relationship among endogenous variables, which is commonly
a triangular matrix with zeros on its diagonal; X is the qx1 vector of exogenous variables;
Γ is the pxq coefficient matrix expressing the causal relationship among endogenous and
exogenous variables; ζ is the px1 disturbance vector, assumed to have E(ζ) = 0 and
a covariance matrix E(ζζ) = Ψ and also assumed to be uncorrelated with exogenous
variables. It is also assumed that Λ = (I− B) is nonsingular.

For a case in which we only have endogenous variables, based on Figure 1, B can be

B =


0

β12
β13
β14

0
0

β23
β24

0
0
0

β34

0
0
0
0

 (5)

note that Equation (4) can be written in reduced form, as
(I− B)Y = ΓX + ζ, let Λ = (I− B), ΛY = ΓX + ζ, Y = Λ−1ΓX + Λ−1ζ, since

Λ−1 = (I− B)−1 exists and by letting Π = Λ−1Γ and ν = Λ−1ζ. Finally, the reduced form
of the model is

Y = ΠX + ν (6)

Estimating parameters in SEM is unlike multiple regression and ANOVA, since the
estimated parameters are obtained by minimizing the difference between the sample covari-
ances (Σ) and the predicted covariance (Σ(θ)), where θ is the vector that contains the model
parameters (B, Γ andψ). If the model is correct, the population covariance matrix is equal to
the model predicted covariances, Σ = Σ(θ) [19]. In this case the model implied population
covariance matrix is based on Y and X, and has the order (p + q) × (p + q), where

Σ(θ) =

(
Σyy
Σxy

Σyx
Σxx

)
(7)

Each submatrix of the model’s implied covariance matrix (Σ(θ)) can be obtained as
Σyy = E(YY′) = (I− B)−1

(
ΓΣxxΓ

′
+ ψ

)
(I− B)−1′ , Σxx = E(XX′) = Σxx, and

Σyx = E(YX′) = (I− B)−1ΓΣxx. Finally,

Σ(θ) =

(
(I− B)−1

(
ΓΣxxΓ

′
+ ψ

)
(I− B)−1′

ΣxxΓ
′
(I− B)−1′

(I− B)−1ΓΣxx
Σxx

)
(8)

The parameter vector θ is estimated by minimizing the distance between the model’s
implied covariance matrix Σ(θ) and the observed covariance matrix Σ̂ using a criterion
of “closeness”.

2.8. SEM Model Evaluation

There are several statistics used to evaluate the model fit, which consists of measur-
ing the validity of the hypothesis that Σ = Σ(θ). The fundamental hypothesis for the
SEM is that the matrix of covariance of the observed variables is a function of a set of
parameters [19]. If the model is correct, and if the parameters are known, the population
covariance matrix will be exactly reproduced. Where Σ is the population covariance, and
Σ(θ) is the covariance matrix as a function of the model parameters (θ). Some of these
statistics are: chi-square statistics

(
χ2), goodness of fit index (GFI), adjusted goodness of fit

index (AGFI), and root mean square error of the approximation (RMSEA). The root mean
square error of approximation (RMSEA) is one of the most informative fit indices, due to
its sensibility to the number of estimated parameters in the model; the range of the RMSEA
is between 0.05 to 0.10, where a value less or equal to 0.05 shows a good fit and values
above 0.10 indicate a poor fit [27].



Agronomy 2021, 11, 1953 7 of 14

2.9. Model Comparison

One selection index is preferred to another if it improves selections in some sense. To
compare if coupling SEM with the Smith–Hazel index improved the selection efficiency,
we used two criteria:

Relative efficiency (RE) of the selection index. This is expressed as the ratio of the
correlation between the selection index and the breeding value (ρHI) for two different
selection indices [22].

Mean square error of prediction. This is a criterion used as a way to evaluate and
compare SI’s [28]. When the correlation is large between H and I, this means that the
index (I) will better predict the breeding value (H); that the mean squared error of the
breeding prediction will be small and the effectiveness of the prediction of the SI will be
greater. The term σ2

H
(
1− ρ2

HI
)

was called the mean square error of prediction, and the ratio
σ2

H(1−ρ2
HI)

σ2
H

= 1− ρ2
HI was considered the effectiveness of I in predicting H [29]. Therefore,

the SI will be more effective for predicting H when ρ2
HI is large.

2.10. Model Validation

To validate the proposed selection indices with causal structure a simulation study
was conducted. The process consisted of simulating grain yield (YLD) and yield com-
ponents (SPSM, KPS, and KW) with a recursive structure of a population of 282 winter
wheat genotypes as fixed effects, with 5 environments, 2 replications, and residual as
random effects. It is important to point out that the true population consisted of 282 wheat
genotypes tested in 5 environments. The means of the 282 true genotypes for each trait for
all 5 environments were standardized and used as true fixed effects for genotypes in the
simulation model. The causal relationships among traits were taken into account in the
simulation program by including the estimated coefficients as the true path coefficients
from the true population (see Figure 1). All responses were simulated as multivariate
normal random variables using the rnorm function in R. A total of 500 data sets were
simulated. The validity of the simulation was assessed using the correlation between the
real yield data and the simulated yield data.

3. Results
3.1. Models Developed
Coupling Causal Structure and MM into the Smith–Hazel Index

Coupling SEM to the Smith–Hazel index was developed in two scenarios. The first
scenario, named model 1, is the Smith–Hazel index with causality among traits (Figure 2).
The second scenario has both the molecular markers and the causality (Figure 3).
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The validity of the simulation was assessed using the correlation between the real yield 
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E 𝚲𝒚 

Figure 2. Path diagram of the Smith–Hazel index, in which the rectangle for y refers to a vector of
an observable variable (the phenotypic values). The matrix Λ accounts for the causal relationships
among traits. The vector of phenotypic values is influenced by the vector of genotypic value (g) and
the vector of environment (E). There are also two important parts in the path, the selection index (I),
and the merit or breeding value (H).
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Figure 3. Path diagram showing the vector of phenotypic values (y) because of the effects of the
latent endogenous variable of the vector of genotype (g) and the vector of environment (e). On the
other hand, the vector of the latent endogenous variable (g) could be explained by the vector of
molecular markers (m) and the vector of the genetic residual (r), which is a part of the variation not
explained by markers. The rectangles refer to observable variables, while the circle refers to a latent
variable (not observed).

Coupling 1: Smith–Hazel with causality among traits
The model in Figure 2 can be represented by using structural equation modeling with

observed variables [10,11,30].
Λy = g + E (9)

where y is a (p × 1) vector of phenotypic values, g is the additive genotypic value, E is
the vector of environmental effect, and Λ is a (p × p) matrix of structural coefficients,
accounting for the causal relationship between the p traits.

Model 9 can be written in a reduced form as:

y = Λ−1g + Λ−1E (10)

Defining the basic genetic model as y = g∗ + E∗ where g∗ = Λ−1g and E∗ = Λ−1E,
and where g∗ and E∗ are the genetic and the environmental effects after accounting for
causal structures.

From Figure 2, the index is I = b
′
y, and the merit is H = θ

′
g∗. Following the Smith–

Hazel theory for maximizing b, i.e., we need to maximize the correlation between H and I
(ρHI). By assuming an independence between g and E, we can compute ρHI =

Cov(H,I)√
Var(H)Var(I)

whose corresponding variances and covariance are:

Var(I) = Var
(

b
′
y
)
= b

′
Var(y)b = b

′
Var

(
Λ−1g + Λ−1E

)
b= b

′[
Λ−1ΣgΛ−1′ + Λ−1ΣEΛ−1′

]
b

Var(H) = Var
(
θ
′
g∗
)
= θ

′
Var

(
Λ−1g

)
θ = θ

′
Λ−1ΣgΛ−1′θ

Cov(H, I) = Cov
(
θ
′
g∗, b

′
y
)
= θ

′
Cov(g∗, y)b = θ

′
Cov

(
Λ−1g, Λ−1 g + Λ−1E

)
b = θ

′
Λ−1ΣgΛ−1′b

then, substituting the corresponding variances and covariances in ρHI we end up with the
following equation

ρHI =
Cov(H,I)√

Var(H)Var(I)
=

θ
′
Λ−1ΣgΛ−1′b√

θ
′
Λ−1ΣgΛ−1′θ

√
b
′ [

Λ−1ΣgΛ−1′+Λ−1ΣEΛ−1′
]
b

since θ is a vector of constants, we only need to maximize the following equation

θ
′
Λ−1ΣgΛ−1′b√

b
′[

Λ−1ΣgΛ−1′ + Λ−1ΣEΛ−1′
]
b
=

θ
′
Σ∗gb√

b
′
Σ∗yb
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taking derivatives of this expression with respect to b and set to zero, we end up with the
optimal weights being expressed as

Σ∗yb = Σ∗gθ

then
b = Σ∗−1

y Σ∗gθ =
[
Λ−1ΣgΛ−1′ + Λ−1ΣEΛ−1′

]−1[
Λ−1ΣgΛ−1′

]
θ

b = Λ′
[
Σg + ΣE

]−1ΛΛ−1ΣgΛ−1′θ since (AB)−1 = B−1 A−1

b = Λ′
[
Σg + ΣE

]−1ΣgΛ−1′θ = Λ′Σ−1
y ΣgΛ−1′θ (11)

Finally, the Smith–Hazel index that accounts for the causal relationship between traits is

Ic = b
′
y =

(
Λ′Σ−1

y ΣgΛ−1′θ
)′

y = θ
′
Λ−1ΣgΣ−1

y Λ y (12)

where the subscript c stands for causality. Therefore, Equation (16) is the expression that
couples SEM and the Smith–Hazel index.

Coupling 2: Smith–Hazel index with molecular markers and causality among traits
From the path diagram shown in Figure 3 we can see that the genotypic value (g) can

be expressed as g = Γm + r, where m represents the vector of molecular markers and r the
vector of the portion of the genetic value that it is not explained by molecular markers, and
Γ is a (p × m) matrix where p is the number of traits and m is the number of markers.

The model in Figure 3, can be represented using a SEM with observed variables. The
structural model can be represented as

Λy = Γm + r + E (13)

where y is a 4 × 1 vector of endogenous variables: YLD, SPSM, KPS, and KW; Λ = (I− B)
is the 4 × 4 nonsingular matrix that includes the coefficient matrix (B) expressing the
causal relationship among endogenous variables; m is the (m × 1) vector of molecular
markers; Γ is the (p × m) coefficient matrix, where p is the number of traits; r is the (4 × 1)
residual vector assumed to have E(r) = 0 and uncorrelated with m.

The reduced form of the model can be written as

y = Λ−1Γm + Λ−1r + Λ−1E (14)

now define y = g∗ + E∗, where g∗ = Λ−1Γm + Λ−1r and E∗ = Λ−1E with the index
I = b

′
y, and the breeding value H = θ

′
g∗.

Following the Smith–Hazel theory for maximizing the vector of weights (b), we need
to maximize the correlation between H and I. Assuming independence among m, r, and E.

Var(I) = Var
(

b
′
y
)
= b

′
Var(y)b = b

′
Var

(
Λ−1Γm + Λ−1r + Λ−1E

)
b

= b
′[

Λ−1ΓΣmΓ′Λ−1′
+ Λ−1ΣrΛ−1′ + Λ−1ΣEΛ−1′

]
b

Var(H) = Var
(
θ
′
g∗
)
= θ

′
Var

(
Λ−1Γm + Λ−1r

)
θ

= θ
′
[
Λ−1ΓΣmΓ′Λ−1′

+ Λ−1ΣrΛ−1′
]
θ

Cov(H, I) = Cov
(
θ
′
g∗, b

′
y
)
= θ

′
Cov(g∗, y)b

= θ
′
Cov

(
Λ−1Γm + Λ−1r, Λ−1Γm + Λ−1r + Λ−1E

)
b

= θ
′
Λ−1[ΓΣmΓ′ + Σr

]
Λ−1′b
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ρHI =
Cov(H,I)√

Var(H)Var(I)

=
θ
′
Λ−1[ΓΣmΓ′+Σr]Λ−1′b√

θ
′ [

Λ−1ΓΣmΓ′Λ−1′
+Λ−1ΣrΛ−1′

]
θ

√
b
′ [

Λ−1ΓΣmΓ′Λ−1′
+Λ−1ΣrΛ−1′+Λ−1ΣEΛ−1′

]
b

since θ is a constant, we only need to maximize

θ
′
[
Λ−1ΓΣmΓ′Λ−1′

+ Λ−1ΣrΛ−1′
]
b√

b
′[

Λ−1ΓΣmΓ′Λ−1′
+ Λ−1ΣrΛ−1′ + Λ−1ΣEΛ−1′

]
b
=

θ
′
Σ∗∗∗m b√

b
′
Σ∗∗∗y b

taking derivatives this expression with respects to b and set equal to zero, we end up with
the optimal weights expressed as

Σ∗∗∗y b = Σ∗∗∗m θ

Then
b = Σ∗∗∗−1

y Σ∗∗∗m θ

b =
[
Λ−1ΓΣmΓ′Λ−1′

+ Λ−1ΣrΛ−1′ + Λ−1ΣEΛ−1′
]−1[

Λ−1ΓΣmΓ′Λ−1′
+ Λ−1ΣrΛ−1′

]′
θ

b = Λ′
[
ΓΣmΓ′ + Σr + ΣE

]−1ΛΛ−1[ΓΣmΓ′ + Σr
]
Λ−1′θ

b = Λ′
[
ΓΣmΓ′ + Σr + ΣE

]−1[ΓΣmΓ′ + Σr
]
Λ−1′θ (15)

Finally, the Smith–Hazel index with molecular markers and causality among the traits is

I = b
′
y =

(
Λ′
[
ΓΣmΓ′ + Σr + ΣE

]−1[ΓΣmΓ′ + Σr
]
Λ−1′θ

)′
y

I = θ
′
Λ−1[ΓΣmΓ′ + Σr

][
ΓΣmΓ′ + Σr + ΣE

]−1′Λ y (16)

I = θ
′
Λ−1[Σ∗m + Σr][Σ∗m + Σr + ΣE]

−1′Λ y (17)

Table 1 shows the models developed considering only causality and both causality
and molecular markers.

Table 1. Different expressions of the selection index considering molecular markers and causality
among traits.

Model Selection Index (I)

Classical Smith-Hazel I = b
′
y = θ

′
ΣgΣ−1

y y

Smith-Hazel with causality I = b
′
y = θ

′
Λ−1Σg

[
Σg + ΣE

]−1′Λ y

Smith-Hazel with markers and causality I = b
′
y = θ

′
Λ−1[Σ∗m + Σr][Σ∗m + Σr + ΣE]

−1′Λ y

Figure 4 and Table 2 display the path coefficients from the final model, which fit well
since the model is exactly identified; i.e., the total number of parameters estimated (t = 10,
6 path coefficients and 4 errors) is equal to the number of data points

(
p(p+1)

2 = 10
)

. The
six coefficients were all significant, p ≤ 0.05. Since standardized data were used in the
analysis, direct comparisons among grain yield and yield components coefficients were
possible, and it was easy to understand how they impacted the yield. For example, the
direct positive effect of SPSM on yield (0.81) was greater than the indirect effect on KW
(−0.347), which means that the net effect of increasing SPSM would be to increase YLD.
Note that, the indirect effects are calculated by multiplying the path coefficients of each
path of the associated variable to the dependent variable. For instance, the indirect effect of
KPS on YLD follows the path KPS→KW→YLD is (−0.25) (0.17) = −0.043. The total effect
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is just the sum of direct and indirect effects. In the case of SPSM, which has three indirect
paths, the indirect effect is the summation of the indirect effects. Spikes per square meter
showed the biggest effect (0.81) on grain yield, followed by kernel per spike (0.52) and
kernel weight (0.17). That is, the effect of increasing SPSM would increase YLD more than
if we increased the effect of KW on YLD.
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Figure 4. Standardized estimates of path coefficients of a structural equation model of grain yield
(YLD) and yield components (spikes per square meter (SPSM), kernels per spike (KPS), and kernel
weight (KW)). Arrows represent the direction of the variables’ influence, and the numbers on the
arrow lines represent the estimated standardized coefficients. Significant level: ***p ≤ 0.001.

Table 2. Direct, indirect, and total effects of yield components on grain yield.

Variables Direct Effect (θD) Indirect Effect (θI) Total Effect (θT)

Spikes per square meter 0.81 −0.347 0.463
Kernel per spike 0.52 −0.043 0.477

Kernel weight 0.17 0 0.170

An important tool for model comparison is the relative efficiency (RE), which increased
when causality was considered over the same SI without causality. For example, the RE for
comparing S-H with and without causality was RE = SI in the column

SI in the row = S−H causality
S−H classic = 120,

this means that S–H causality is 20% more efficient than S–H classic for predicting the
breeding value (BV). Moreover,RE = SI in the column

SI in the row = S−H classic
S−H causality = 84, which means that

S–H classic is less efficient than S–H causality for predicting the breeding value (BV).
Table 3 shows the best ten percent genotypes under different selection indices. One

was based on yield, while the other rankings were based on the different selection indices.
Note that the S–H index with causality was one of the closest to the yield selection, this is
possible when total causal information is used as the economic weights for the index.
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Table 3. The best 28 genotypes (Top 10%) based on different indices where the vector of economic
weights (θ) was based on total causal effects.

Yield S-H S-H c S-H mc

Standardized Mean 1.62 0.115 0.866 0.592

True Mean (g/m2) ** 480.6 432.8 456.7 448.0
** The mean of the best 28 genotypes. Abbreviations: S-H = Smith-Hazel, c = causality, and mc = markers and
causality.

The validity of the simulation was assessed through the correlation between the real
yield data and the simulated yield data. The correlation over the 500 simulated data
sets was 0.94, indicating the simulation accurately captured the structure of the real data.
To validate the proposed selection index, we performed four kinds of analyses for the
simulated data, comparing with the selection index without causal structure:

(1) We computed the relative efficiency (RE) for model comparison between the indices;
the results showed that the S–H causality increased by 12% over S–H classic.

(2) We examined how many of the true best 28 (Top 10% based on yield) genotypes
based on true indices were identified under the simulation; the result showed a 39%
coincidence with respect to the genotypes selected based on yield, while with S–H classic
this was 18%.

In general, the results showed that when a causal relationship among traits is ac-
counted for, the SI and the RE increased, and the standardized mean yield of the best 10%
genotypes increased with respect to the SI without causality.

4. Discussion

We found that the direct effects followed the same pattern reported by other re-
searchers [8,13,16]; in which SPSM had the biggest effect on yield, followed by KPS and
KW (Table 2). On the other hand, the indirect effects were all negative among yield com-
ponents (see Figure 1 and Table 2). The correlations between the SI (I) and the breeding
value (H) increased when we considered the causal relationship between grain yield and
yield components in the case of the Smith–Hazel indices. For example, the correlation
for the S–H causality index (0.47) was larger than the S–H classic index (0.39). When the
correlation between the SI (I) and the breeding value (H) is large, then the SI will be more
effective for predicting H [29].

Since yield and yield components have a causal mechanism underlying the biological
processes, it may be reasonable to use these causal coefficients as economic weights [31,32].
The result of using causal path effects as economic weights improves the ability of the Sis,
increasing the mean of the selected genotypes with respect to using the same economic
weight for each trait. This result confirms that taking the causal biological relationship
among certain traits into account can help select promising genotypes.

The idea of using causal information among traits with SI has been suggested by other
authors [11,30–32]. Direct causal effects as economic weights were used for improving
grain shape and grain yield in rice [31,32]. The authors concluded that using direct path
coefficients as economic weights for secondary traits and the economic weight of one
for the primary trait was an effective criterion of selection for improving primary traits.
Similarly, we used as a vector of economic weights the total causal effects, which not only
accounts for direct path coefficients but also for indirect effects. Using total causal effects
as a vector of economic weights, we showed that the S–H with causality index increased
the mean yield of the best 28 genotypes, and the number of matches between this index
and yield per se, more than the other SIs.

Ignoring the causal association among traits leads to a loss of valuable informa-
tion [8,12,13,15,16,18]. When causal structure among yield and yield components is cap-
tured in the index, the correlation improved between the index and the BV and the RE. In
addition, it is important to point out that when comparing two indices without and with
the causal structure among traits, the index that accounts for causal relationship increased
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the mean for yield of the selected genotypes. Accounting for causality in the index could
be used to help breeders with the selection of promising genotypes, because this method of
selection considers the recursive relationship among traits.

5. Conclusions

The specific purpose of this research was to improve the ability of the selection index
for identifying promising genotypes by accounting for the causal structure among yield
and yield components in winter wheat. The results from the true data showed that the
most important findings were: First, the causal Smith–Hazel indices improved the relative
efficiency with respect to those that did not incorporate causal information. Second, the
selection indices may help when selecting for a primary trait. Third, using total causal
effects as a vector of economic weights we showed that the S–H with causality index
increased the mean yield of the best 28 genotypes, and the number of matches between
this index and yield per se more, than the other SIs.

The proposed multi-trait selection indices can account for the causal structure among
traits when there is a prior knowledge of the causal relationships. These indices provide cer-
tain advantages over the classic Smith–Hazel index by improving the correlation between
the index and the breeding value, the relative efficiency, and the mean-yield of the selected
genotypes when selection is based on a primary trait. In addition, the contributions of yield
components to grain yield when the selection index accounts for the causal mechanism can
be seen through the increase in the mean yield.

The results indicated that among the evaluated indices, the S–H causality index is
recommended for improving yield when no marker information is available. In addition,
selecting for a primary trait using total causal effects as economic weights for yield con-
tributors and one for the trait of interest should serve as an effective selection criterion for
improving grain yield.
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