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ABSTRACT The original RVM classification model uses the logistic link function to build the likelihood
function making the model hard to be conducted since the posterior of the weight parameter has no
closed-form solution. This article proposes the probit link function approach instead of the logistic one for
the likelihood function in the RVM classification model, namely PRVM (RVMwith the probit link function).
We show that the posterior of the weight parameter in PRVM follows the Multivariate Normal distribution
and achieves a closed-form solution. A latent variable is needed in our algorithms to simplify the Bayesian
computation greatly, and its conditional posterior follows a truncated Normal distribution. Compared with
the original RVM classification model, our proposed one is a Fully Bayesian approach, and it has a more
efficient computation process. For the prior structure, we first consider theNormal-Gamma independent prior
to propose a Generic Bayesian PRVM algorithm. Furthermore, the Fully Bayesian PRVM algorithm with a
hierarchical hyperprior structure is proposed, which improves the classification performance, especially in
the imbalanced data problem.

INDEX TERMS Bayesian analysis, imbalanced data problem, probit link function, RVM classification.

I. INTRODUCTION
In statistics, Relevance Vector Machine (RVM), initially
proposed by [24], is an algorithm that uses the Bayesian
model to obtain the parsimonious solutions for regression
and probabilistic classification. RVM has obtained success-
ful applications in text image recognition (e.g., [20], [23]),
image classification (e.g., [6], [28]), time series analysis
(e.g., [14]), mechanical fault diagnosis (e.g., [7], [12]), and
electric demand forecasting (e.g., [21], [32]). As a general-
ized linear model, RVM has an identical functional form to
the Support Vector Machine (SVM) but obtains a comparable
performance with fewer kernel functions. Since the complex
formation of the likelihood function, the original RVM has to
use an ExpectationMaximization (EM)-like learningmethod,
and it is therefore not a fully Bayesian model. [29] proposed
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the Bayesian RVM classification model to address this issue,
but it is not computationally efficient. This article proposed
a concise RVM with the probit link function (PRVM) model
to complete the RVM classification framework. PRVM clas-
sification model employs the probit link function to build the
likelihood function and achieves the closed-form solution for
the weight parameter’s conditional posterior. Compared with
the original RVM and the Bayesian RVMmodels, the PRVM
model is efficient and straightforward.

The imbalanced data problem is the most challenging one
in the classification field. Imbalanced datasets are common
in real practice where the small number of samples is our
research interest in a binary classification problem. In the
medical field, cancer patients only account for a minority of
the total samples. But if the minority samples are ignored or
misclassified, the losses and negative impact are unaccept-
able. Most traditional classifiers are developed by maximiz-
ing the overall classification accuracy rate, and they cannot
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bestow the minority class in the imbalanced data a convincing
classification result. A worse situation is that the minority
class is ignored by the classifiers, and all the samples are
classified as the majority class. A hierarchical prior structure
proposed by [9] is considered in this article to modify the
PRVM classification model for the imbalanced data problem.
This prior reduces the dimensions of parameter space and
builds the inner connection between hyperparameters. The
present paper’s numeric studies show that this hierarchical
prior structure improves the classification results for the
imbalanced data problem.

A. SUPPORT VECTOR MACHINE WITH KERNEL
FUNCTIONS
In binary classification, we are given a set of input data
Strain = {(xtrain1 , ytrain1 ), (xtrain2 , ytrain2 ), . . . , (xtrainn , ytrainn )}
along with the corresponding class label, ytraini ∈ {−1, 1}.
From the training data, we wish to learn a model of the depen-
dency of the class label on the inputs to make accurate predic-
tions for the unseen values of x. A very successful approach
to the classification is the Support Vector Machine (SVM).
For the linearly separable data, SVM constructs an optimal
separating hyperplane as the classification borderline obtain-
ing the maximum distance between two classes for a binary
dataset. When we do not have a linearly separable training
dataset, the Kernel trick comes in handy. The idea is mapping
the non-linear separable dataset into a higher-dimensional
space where we find a hyperplane that can separate the sam-
ples. If we use a mapping function that projects the data into
a higher-dimensional space, SVM’s decision rule will depend
on the dot products of the mapping function for different
samples. The kernel function is employed here to reduces
the complexity of finding the mapping function and defines
the inner product in the transformed space. [27] and [18]
proposed that the output of SVM for an arbitrary data point
x0 can be expressed as a weighted summation of the form

f (x0;w) =
n∑
i=1

wik(x0, xtraini )+ w0, (1)

where k(·, ·) is the kernel function, w0 and wi are weight
parameters, i = 1, 2, . . . , n. Note that x0 can be a train-
ing data point or a test data point. The Radial Basis Func-
tion (RBF) Gaussian Kernel, namely

k(xi, xj) = exp
(
−

∥∥xi − xj
∥∥2

2γ 2

)
,

is used throughout this article. RBF Gaussian Kernel is the
most popular kernel function in Statistics andMachine Learn-
ing fields. The SVM output for the training data Strain can be
expressed as the matrix form

f (xtrain;w) = K trainw, (2)

where w = (w0,w1, . . . ,wn)T is the weight parameter and

K train
= (K train

1 ,K train
2 , . . . ,K train

n )T . (3)

Note that given the training data Strain, the kernel matrix
K train is fixed. The classification goal is to obtain
sign(f (xtrain; ŵ)) = ytrain, where ŵ is the proper estimate
of w, sign(z) = 1 if z ≥ 0, and sign(z) = −1 if z < 0.
SVM’s target function attempts to minimize the number of
misclassified samples while simultaneously maximizing the
two classes’ margin distance. Plenty of convincing classifica-
tion results in SVM have been reported, but it still has several
significant disadvantages (see [24]):
(1) The classification output in SVM is not probabilistic;
(2) The number of the kernel functions and the parameters

grows linearly with the size of the training data;
(3) The trade-off parameter in SVM, C , is necessary to be

estimated by cross-validation procedure, which requires the
large size of data and high computational quantities;
(4) The kernel functions in SVM must satisfy Mercer’s

condition.
[24], [25], and [26] introduced and developed the RVM

model as a probabilistic sparse Kernel version of SVM to
solve its above shortcomings. The next section reviews the
original RVM classification model.

B. IMBALANCED DATA PROBLEM
We define Strain+ = {(xtraini , ytraini ) ∈ Strain : yi = 1, i =
1, . . . , n} is the positive or minority training class and Strain− =

{(xtraini , ytraini ) ∈ Strain : ytraini = −1, i = 1, . . . , n} is the
negative or majority training class. The class type, {minor-
ity, majority} and {positive, negative} are used to describe
{Strain+ ,Strain− }.
Definition 1: Let |A| denote the number of the elements in

a setA. Define the number of samples in the positive class and
the negative class as N train

p = |Strain+ | and N
train
n = |Strain− |,

respectively. The imbalanced degree of data is defined as
b = N train

n /N train
p .

The condition of N train
n > N train

p is called the imbalanced
data problem. Note that b > 1 in imbalanced data. b repre-
sents the imbalanced index of the sample dataset. The larger
value b is, the more severely imbalanced situation of the
sample dataset has.

The present article is organized as follows: the detailed
introduction of the original RVM classification algorithm is
stated in Section 2. Section 3 proposes two PRVM classifica-
tion algorithms. The numeric studies are posted in Section 4,
including the simulated and real data studies. The compar-
isons between the Bayesian RVM and PRVM are illustrated
in Section 5. Section 6 concludes this article with some future
research discussions.

II. RVM CLASSIFICATION
Relevance Vector Machine (RVM) is a Bayesian treatment
for the output of the Support Vector Machine (SVM). The
present article only focuses on the RVM classification, which
applies the Bernoulli distribution and the logistic link func-
tion to SVM’s output in (1) and constructs the probabil-
ity density function p(y|x) for the classification problems.
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The logistic link function is the cumulative distribution func-
tion of the logistic distribution, which is a continuous proba-
bility distribution. The logistic distribution is defined as

glogis(t;µ, s) =
e−(t−µ)/s

s
(
1+ e−(t−µ)/s

)2 . (4)

The logistic distribution receives its name from its cumu-
lative distribution function, which is an instance of the family
of logistic functions. The cumulative distribution function
of the logistic distribution is also a scaled version of the
hyperbolic tangent, which is the CDF of the standard logistic
distribution:

Glogis(t;µ = 0, s = 1) =
1

1+ e−t
. (5)

The logistic sigmoid link function is used to map f (x;w)
into [0, 1]. The likelihood of the training dataset is

p(ytrain|w) =
n∏
i=1

Glogis
(
f (xtraini ;w)

) 1+ytraini
2

·
[
1− Glogis

(
f (xtraini ;w)

)] 1−ytraini
2

=

n∏
i=1

(
1

1+ exp(−K train
i w)

) 1+ytraini
2

·

(
exp(−K train

i w)

1+ exp(−K train
i w)

) 1−ytraini
2

, (6)

where K train
i and w are defined in (2) and (3). The original

RVM classification model proposed by [24], [25] introduced
a zero-mean Gaussian prior distribution over w, namely

p(w|α) =
n∏
s=0

N (ws|0, α−1s ) = N (w|0,A−1), (7)

where α = (α0, α1, . . . , αn)T , A = diag(α0, α1, . . . , αn),
αs is the hyperparameter associated with weight ws, and
s = 0, 1, 2, . . . , n. This prior helps to obtain the sparsity con-
straint. Compared with SVM, RVM classification has fewer
relevant vectors because of the sparsity prior. The Bayesian
model provides a posterior distribution for w as

p(w|ytrain,α) =
p(ytrain|w)p(w|α)∫
p(ytrain|w)p(w|α)dw

=
s(w)

p(ytrain|α)
, (8)

where s(w) = p(ytrain|w)p(w|α), which implies that

p(w|ytrain,α) ∝ s(w). (9)

The original RVM classification model obtains ŵ, which is
the estimation of w, by maximizing s(w). The classification
function for the training data Strain is

ytrain∗ = sign
(

1

1+ exp(−K trainŵ)
−

1
2

)
, (10)

where K train is defined in (3). A test data can be defined
as Stest = {(xtest1 , ytest1 ), (xtest2 , ytest2 ), . . . , (xtestm , ytestm )}, where
xtestj ∈ X ⊆ Rl , X is in the same vector space as the training
data. The response ytestj ∈ {−1, 1} indicates two classes,
j = 1, . . . ,m. In the imbalanced data problem, we define
Stest+ = {(x

test
j , ytestj ) ∈ Stest : ytestj = 1, j = 1, . . . ,m} and

Stest− = {(x
test
j , ytestj ) ∈ Stest : ytestj = −1, j = 1, . . . ,m}. The

classification function for a test data Stest is

ytest∗ = sign
(

1
1+ exp(−K test ŵ)

−
1
2

)
, (11)

where K test
= (K test

1 ,K test
2 , . . . ,K test

m )T , K test
j =

(1, k(xtestj , xtrain1 ), k(xtestj , xtrain2 ), · · · , k(xtestj , xtrainn )), j =

1, 2, . . . ,m.
The original RVM classification algorithm is stated as

follows:

Algorithm 1 The Original RVM Classification Algorithm
Input. The training data: (x1, y1), (x2, y2), . . . , (xn, yn),

xi ∈ X ⊆ Rl and yi ∈ {−1, 1}, i = 1, . . . , n.
0. Let t = 1 and initialize w and α to obtain the started

values w1 and α1, calculate

h = ∇w log g(w)

= 8>
(
y− [σ (φ1w), . . . , σ (φnw)]>

)
− Aw,

H = −∇∇w log g(w) = 8>B8+ A, (12)

where B is a (n+ 1)× (n+ 1) diagonal matrix with diagonal
elements bii = σ (φiw)

[
1− σ (φiw)

]
;

1. Fix α and update w with

wt+1
= wt

+ (H)−1h|w=wt; (13)

2. Fix w and update α with

αt+1s =
γ t
s

w2
s
, (14)

where γ ts = 1− αtsHss, s = 0, 1, 2, . . . , n;
3. Repeat steps 1 and 2 until suitable convergence and

obtain w0, the mode of w;
Output. The final estimation of w is wMP =

H−18TBy|w=w0 .

Note that wMP, the maximum posterior of w, is obtained
by Laplace’s Method in [24], which approximates a Nor-
mal distribution with the mean value w0 to the posterior
of w. [4], [15], [30] concluded that RVM is better than
SVM in the fields of classification and regression. They also
showed that the conduction speed of RVM is faster than
SVM. Nevertheless, [29] indicated several shortcomings of
the original RVM, mainly caused by the complex likelihood
function. [29] proposed a Bayesian RVMmodel, which ame-
liorated the original RVM classification model by directly
doing the Gibbs sampling process from the posterior based
on the log-concave property. Although the Bayesian RVM
model works, it is non-efficient and high-computational.
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FIGURE 1. Logistic and Probit Link Functions.

This article proposes the probit link function to form a new
likelihood function in the RVM classification model instead
of the logistic one in the original algorithm. Benefiting from
a latent variable, this new likelihood function can lead to a
more concise posterior, which follows a Multivariate Normal
distribution.

III. RVM CLASSIFICATION WITH PROBIT LINK FUNCTION
A. THE PROBIT LINK FUNCTIONS
A probit model is a type of regression where the dependent
variable has two values, and the independent variable is on
(−∞,+∞). The probit model aims to estimate the probabil-
ity that the observations with particular characteristics will
fall into a specific category, so it is famous for the binary
classification problem. The probit link function Gprobit (x) is
used to map f (x;w) into [0, 1]. Gprobit (x) is defined as

Gprobit (t) = 8(t) =
∫ t

−∞

1
√
2π

exp(−
1
2
z2)dz. (15)

Figure 1 shows the logistic and probit link functions. The
logistic one has slightly flatter tails. The probit curve
approaches the axes more quickly than the logistic curve.
In the binary classification problems, they are the same in the
application.

B. GENERIC BAYESIAN PRVM CLASSIFICATION MODEL
The Bernoulli probability of every data point is

pi = R
1+ytraini

2
i (1− Ri)

1−ytraini
2 , (16)

where Ri = Gprobit (K train
i w), K train

i and w are defined in (2)
and (3). The likelihood function of the training dataset is

P(ytrain|w) =
n∏
i=1

pi

=

n∏
i=1

R
1+ytraini

2
i (1− Ri)

1−ytraini
2

=

n∏
i=1

Gprobit (K train
i w)

1+ytraini
2 ·

(1− Gprobit (K train
i w))

1−ytraini
2 . (17)

Following [2], we bring in a latent variable µ for the probit
link function:

µ = (µ1, µ2, . . . , µn)T ,

µi
indep.
∼ N (Kiw, 1). (18)

We can show

Ri = Gprobit (Kiw)

=

∫ Kiw

−∞

1
√
2π

exp(−
1
2
z2)dz

=

∫
+∞

0

1
√
2π

exp(−
1
2
(µi − Kiw)2)dµi

= P(µi > 0). (19)

Note that 1−Ri = P(µi ≤ 0). Rewrite the likelihood function,
including the latent variable

P(ytrain|w, µ) =
n∏
i=1

(
1(µi>0)

) 1+ytraini
2

(
1(µi≤0)

) 1−ytraini
2

·φ(µi − Kiw). (20)

Follow the original RVM classification model to introduce
a zero-mean Gaussian prior distribution over w, namely

p(w|α) =
n∏
s=0

N (ws|0, α−1s ) = N (w|0,A−1),

where α = (α0, α1, . . . , αn)T , A = diag(α0, α1, . . . , αn),
αs is the hyperparameter associated with weight ws, and
s = 0, 1, 2, . . . , n. A Gamma hyperprior is called for each
αs. The Gamma hyperprior is

(αs|a, b) ∼ Gamma(αs|a, b).

The full posterior is

p(w, ytrain,α,µ)

= (2π )−
n+1
2 |A|

1
2 exp(−

1
2
wTAw)

·

n∏
i=1

(
1(µi>0)

) 1+ytraini
2

(
1(µi≤0)

) 1−ytraini
2 φ(µi − Kiw).

The conditional posterior of w is

p(w|ytrain,α,µ) ∝ exp(−
1
2
wTAw)

n∏
i=1

φ(µi − Kiw). (21)

Theorem 1: The conditional posterior of w follows a Mul-
tivariate Normal distribution

p(w|ytrain,α,µ) ∝ N(ŵ,V−1), (22)

where V = A+ KTK , ŵ = V−1KTµ.
Proof: See Appendix A1. �
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FIGURE 2. Sampling From a Truncated Normal Distribution.

The conditional posterior of αs is

p(αs|ws, a, b) ∝ α
1
2
s exp

(
−

1
2
αsw2

s
)
· αa−1s exp(−bαs)

= α
a+ 1

2−1
s exp

[
− (b+

1
2
w2
s )αs

]
∝ Gamma(a+

1
2
, b+

1
2
w2
s ). (23)

The conditional posterior of µi is

p(µi|w, ytrain,α)

∝
(
1(µi>0)

) 1+ytraini
2

(
1(µi≤0)

) 1−ytraini
2 φ(µi − Kiw)

=

{
gRi (ui)1(ui>0) if yi = 1
gRi (ui)1(ui≤0) if yi = −1,

(24)

where gRi = φ(µi − Kiw), i = 1, 2, . . . , n. This conditional
posterior is a truncated Normal distribution and the sampling
process may be inefficient. When Kiw is far away from 0, one
sampling process of (24) for yi = 1 or yi = −1 would have
a low acceptable rate. Figure 2 shows a situation where we
sample some negative values from a Normal distribution with
a mean value of Kiw = 2. Only the shaded area can satisfy
our requirement, and the acceptable sampling rate is low.

[16] proposed following Lemma 1with a 100% acceptable
rate sampling method for this conditional posterior.
Lemma 1: [16] Let u be a uniform random variable

on (0, 1), the variable Z follows a normal distribution
Z ∼ N (b, 1).
(1) D = b + 8−1(u8(−b)) and Z |Z ≤ 0 have the same

distribution.
(2) D = b+8−1(1− u8(b)) and Z |Z > 0 have the same

distribution.
Proof: See Appendix A2. �

For i = 1, 2, . . . , n, we can do the sampling of µi as
follows based on Lemma 1:
(1) Sample

u ∼ uniform(0, 1); (25)

(2) If yi = 1, calculate

µi = Kiw+8−1(1− u8(Kiw)); (26)

(3) If yi = −1, calculate

µi = Kiw+8−1(u8(−Kiw)). (27)

8(·) is the cumulative distribution function (CDF) of the
standard Normal distribution. The following pseudo-code is
implemented to perform this Generic PRVM classification
model.

Algorithm 2 The Generic PRVM Classification Algorithm
Input. The training data: (x1, y1), (x2, y2), . . . , (xn, yn),

xi ∈ X ⊆ Rl and yi ∈ {−1, 1}, i = 1, . . . , n.
0. Let t = 1 and initialize w, α, and µ to obtain the started

values wt , αt and µt . Choose (a, b), the number of burn-in B,
and the number of iterations T ;

1. Fix αt and µt , draw a new wt+1 according to (22);
2. Fix wt+1 and µt , draw a new αt+1 according to (23);
3. Fix αt+1 and wt+1, draw a new µt+1 according to

(25, 26, 27);
3. Repeat steps 1, 2 and 3 until suitable convergence is

obtained by T iterations;
Output. The final estimation of w is ŵ = (T − B)−1
T∑

t=B+1
wt .

Algorithm 2 is more succinct and efficient compared with
the original RVM (see [24]) and the Bayesian RVM (see [29]).
The conditional posteriors all have closed-form solutions, and
the sampling process is simple. For the imbalanced data prob-
lem, we follow the Hierarchical Bayesian RVM classification
model in [29] to apply the hierarchical prior structure in [9]
to PRVM.

C. FULLY HIERARCHICAL BAYESIAN PRVM
CLASSIFICATION MODEL
This subsection follows the hierarchical prior structure in [9]
but is applied to the PRVM classification model instead of the
regression problem. As one of the main contributions of [9],
the hierarchical prior adds another layer random-coefficient
structure for prior of α, which reduces the parameter dimen-
sions. [9] shows that the estimation of parameters in the
Generic RVM regression is not consistent, and the dimensions
reduction by the hierarchical prior can solve this issue. This
Fully Bayesian method could relate αs’s with the coefficient
parameter and enhance the inner connection of parameters.
Compared with [9], our model makes some improvements.
Only n dimensions of the parameters were considered in [9].
The error term of the parameters, w0 and α0, were ignored.
This present work considers all n + 1 dimensions in the
parameters. In the numeric study part, [9] specified all the
hyperparameters and only sampled w and α in the Gibbs
sampling process. The numeric studies in this project run
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the full Gibbs sampling iterations, including all the param-
eters. Compared with the Hierarchical Bayesian RVMmodel
in [29], our Fully Hierarchical PRVM classification model is
more concise in the sampling process and more efficient in
the numeric studies.

Recall the prior for ws is

p(ws|αs) = N (ws|0, α−1s ). (28)

Reparametrize α as η = (η0, η1, . . . , ηn), where
ηs = log(αs), and s = 0, 1, 2, . . . , n. [9] defined the
hyperprior for η is

η ∼ Nn+1(µ1n+1, τ 26n+1), (29)

where 6n+1 = (1− ρ)In+1 + ρ1n+11>n+1, In+1 is an identity
matrix, and 1n+1 is a vector with all values of 1. Note that
ρ should remain in the interval of (0, 1). The interpretation
of ρ is to maintain the trade-off between absolute freedom of
αs’s when ρ is close to 0 and the total tightness of αs’s when
ρ is close to 1. τ 2 should be relatively large because sparsity
is still an important goal in RVM classification. The value
of ρ indicates the relative contribution of the joint effects
between all the αs’s, the value of τ 2 controls the magnitude of
information in α. Based on their expected effect, we propose
the constant priors for ρ and µ, a conjugate prior for τ 2,
namely

p(ρ) = Uniform(0, 1),

p(µ) = Uniform(0, 1),

p(τ−2) = Gamma(c, d). (30)

Since we only add a new layer to the prior, the Fully con-
ditional posterior for w remains unchanged as (22). For the
joint posterior of α, we can reach it through its reparametrized
version η, η = log(α),

p(η| others) ∝ p(w|α(η))p
(
η|µ, ρ, τ 2

)
∝

( n+1∏
s=1

1
√
2π

eηs/2
)
exp

(
−

1
2

n+1∑
s=1

eηsw2
s

)

· exp
{
−

1
2τ 2(1− ρ)

n+1∑
s=1

(ηs − µ)2

+
ρ

2τ 2(1− ρ)(1+ nρ)

[ n+1∑
s=1

(ηs − µ)
]2}

.

(31)

It seems hard to draw samples for the posterior of η, but we
can show the posterior’s desired log-concave property.
Theorem 2: The conditional posterior of ηs, p(ηs|others)

is log-concave.
Proof: See Appendix A3. �

Based on the log-concavity, the Adaptive Rejection Sam-
pling (ARS)Method employed by the Bayesian RVMmodels
in [29] can be applied again. See Appendix B1 for more
details about the ARS sampling method.

The prior for ρ allows us to write

p(ρ| others) ∝ p(ρ)p(η|µ, ρ, τ 2)

∝
1

(1− ρ)
n
2 (1+ nρ)

1
2

exp
{
−

1
2τ 2(1− ρ)

·

n+1∑
s=1

(ηs − µ)2 +
ρ

2τ 2(1− ρ)(1+ nρ)
·

[ n+1∑
s=1

(ηi − µ)
]2}

. (32)

The method of Ratio of Uniforms is used to sample from this
conditional posterior. SeeAppendix B2 formore details about
the Ratio of Uniforms sampling method. The posterior of µ
is

p(µ| others ) ∝ p(µ)p(α|µ, ρ, τ 2)

∝ exp
{
−

1
2τ 2(1− ρ)

n+1∑
s=1

(ηs − µ)2

+
ρ

2τ 2(1− ρ)(1+ nρ)

[ n+1∑
s=1

(ηi − µ)
]2}

∝ exp
{
−

n+ 1
2τ 2(1+ nρ)

(
µ−

∑n+1
s=1 ηs

n+ 1

)2}
∝ N

(∑n+1
s=1 ηs

n+ 1
,
τ 2(1+ nρ)
n+ 1

)
. (33)

For τ 2, we have

p(τ−2| others )

∝ p(τ−2)p(η|µ, ρ, τ 2)

∝ (τ−2)c−1 exp(−dτ−2)(τ−2)
n+1
2

· exp
(
−

1
2τ 2

(η − µ1n+1)>6−1(η − µ1n+1)
)

∝ Gam
(
c+

n+ 1
2

, d +
1
2

{
1

1− ρ

n+1∑
s=1

(ηs − µ)2

−
ρ

(1− ρ)(1+ nρ)

[ n+1∑
s=1

(ηs − µ)
]2})

. (34)

The samples of µ and τ 2 are easy to obtain from their special
closed-forms. Based on the above derivations of full condi-
tional posteriors, we have an alternative Algorithm 3.

IV. NUMERIC STUDIES
A. SIMULATION DATA STUDIES
To make the comparisons easier, we use the same simulated
datasets as [29] in this subsection. Five two-dimensional sim-
ulated Gaussian datasets are chosen and they are distributed
as:

X ij =

(
Xij1
Xij2

)
iid
∼ Uniform2(ai, bi), (35)

77456 VOLUME 9, 2021



W. Wang et al.: Fully Bayesian Analysis of RVM Classification With Probit Link Function for Imbalanced Data Problem

Algorithm 3 The Fully Hierarchical Bayesian PRVM
Classification Algorithm

Input. The training data: (x1, y1), (x2, y2), . . . , (xn, yn),
xi ∈ X ⊆ Rl and yi ∈ {−1, 1}, i = 1, . . . , n.
0. Let t = 1 and initialize w, α, µ, m, ρ and τ 2 to obtain

the started values wt , αt , µt , mt , ρt , and τ 2t . Choose (a, b),
(c, d), the number of burn-in B, and the number of iterations
T ;

1. Fix other parameters and draw a new wt+1 according
to (22);

2. Fix other parameters and draw a new αt+1 according
to (31);

3. Fix other parameters and draw a new µt+1 according
to (31);

4. Fix other parameters and draw a new mt+1 according
to (33);

5. Fix other parameters and draw a new ρt+1 according
to (32);

6. Fix other parameters and draw a new τ 2t+1 according
to (34);

7. Repeat steps 1−5 until suitable convergence is obtained
by T iterations;

Output. The final estimation of w is ŵ =

(T − B)−1
T∑

t=B+1
wt .

FIGURE 3. Simulated Gaussian Data for Numeric Studies.

where i = −1, 1 and j = 1, . . . , ni.

a−1 =
(
1
5

)
, b−1 =

(
10
12

)
, a1 =

(
4
12

)
, b1 =

(
6
13

)
. (36)

All the variables in X−1,j and X1,j have the class labels −1
(Majority) and 1 (Minority), respectively. We set five kinds
of sizes, (np, nn) = (30, 30), (15, 30), (12, 30), (6, 30), and
(3, 30) to illustrate the performance of different algorithms in
different-sized data. b = 1, 2, 2.5, 5, 10 for these five cases
and a larger b indicates a more severely imbalanced dataset.
Following Figure 3 shows the training datasets.
Eight criteria listed in Table 1 are used to evaluate the

performance of algorithms in this article. The calculations
of r testg and r testp use the same-sized test data as the training

TABLE 1. The Criteria for Classification Evaluation in RVM Studies.

data, ntrain = ntest = n, ntrainp = ntestp = np. Smaller-sized
and larger-sized test data are used for the calculations of
(rstestg , rstestp ) and (r ltestg , r ltestp ), which means ns < n < nl,
nsp < np < nlp. The simulation data studies use all these eight
criteria. The real data studies in next subsection only apply
r traing , r trainp , r testg , and r testp because it is hard to create more
real test data. All the test datasets in this article keep the same
imbalance index b as the training data, namely

|Stest− |
|Stest+ |

=
|Strain− |

|Strain+ |
= b.

We run the Algorithm 2 and 3 with T = 5000,
B = 500, (a, b) = (1, 1/999), and (c, d) = (1, 1/999)
on the simulated datasets, and run the Algorithm 1 30000
iterations. Algorithm 2 and 3 recieve the significant conver-
gence after 500 itrerations but Algorithm 1 cannot obtain
the parameters’s convergence as we show before. The eval-
uation criteria come from Table 1. For all Algorithm 1, 2,
and 3, we repeat the experiments 100 times for every case
in Figure 3. Plus the simulation studies results in [29],
Tables 2–6 display the mean values and standard devia-
tion values (shown in the bracket) of 100 repeated results
for all the algorithms in the RVM classification frame-
work, including the original RVM classification model
( [24]), the Generic Bayesian RVM classification model
([29]), the Fully Hierarchical Bayesian RVM classification
model ([29]), the Generic PRVM classification model, and
the Fully Hierarchical PRVM classificationmodel. The larger
accuracy rate is indicated by boldface.

These simulation studies show that PRVM has a similar
performance as the original RVM and the Bayesian RVM
models for the moderately imbalanced datasets. For the seri-
ously imbalanced data as b = 5, 10. Two algorithms of
PRVM outperform the others. Especially for the case of
b = 10, the PRVM is significantly preferred.

B. REAL DATA STUDIES
We choose four real imbalanced datasets, ‘‘pima’’, ‘‘seg-
ment0’’, ‘‘vowel0’’, and ‘‘glass5’’ from the KEEL-dataset
repository (see [3]). Their imbalanced indexes are 1.87,
6.02, 9.98, and 22.78, respectively. ‘‘pima’’ dataset is orig-
inally from the Indian National Institute of Diabetes,
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TABLE 2. The Results of Simulated Data Study (b = 1).

TABLE 3. The Results of Simulated Data Study (b = 2).

TABLE 4. The Results of Simulated Data Study (b = 2.5).

TABLE 5. The Results of Simulated Data Study (b = 5).

Digestive and Kidney Diseases. It consists of several med-
ical predictor variables and one target variable. Predictor
variables include the number of pregnancies the patient has
had, their BMI, insulin level, age, and so on. It is modi-
fied by [3]) to rename the output as ‘‘positive’’ and ‘‘neg-
ative’’ to create an imbalanced dataset. The ‘‘segment0’’

TABLE 6. The Results of Simulated Data Study (b = 10).

TABLE 7. The Classification Results of Real Datasets.a

data comes from the Image Segmentation DataSet (see [8]),
whose instances were drawn randomly from a database of 7
outdoor images. The images were hand-segmented to create
a classification for every pixel, and each instance is a 3 × 3
regions. The ‘‘vowel0’’ dataset is an imbalanced version
of the Connectionist Bench (Vowel Recognition-Deterding
Data) DataSet (see [8]), which consists of a three-dimensional
array: speaker, vowel, and input. The speakers are indexed by
integers 0 − 89, the vowels are indexed by integers 0 − 10.
For each utterance, there are ten floating-point input values,
with array indices 0− 9. The ‘‘glass5’’ also originally comes
from the USA Forensic Science Service, including of 6 types
of glasses, which are defined in terms of their oxide content
(see [8]).

All the datasets are randomly divided into two parts: the
training data (80%) and the test data (20%). Four criteria
are chosen from Table 1, r taring , r testg , r tarinp , and r testp . The
classification results are listed in Table 7. In the weakly
imbalanced dataset, all five algorithms are similar. With the
increase of the imbalanced index b, the Hierarchical models
perform better.
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TABLE 8. Epalsed Programming Time a of Bayesian RVM and PRVM
Models.b

V. COMPARISON BETWEEN THE BAYESIAN
RVM AND PRVM
We can conclude from the numeric studies that the Bayesian
RVM and PRVM models are similar for classification accu-
racy results. The only theoretic difference between them is
the link functions for the likelihood. The Bayesian RVM uses
the logistic link function, but the PRVM employs the probit
one. It is still worth discussing more comparisons between
them.

A. ELAPSED PROGRAMMING TIME
The Bayesian RVMmodel needs the ARS method to conduct
the sampling process. Themodel has to conduct one sampling
iteration for every dimension of w. Also, we do not have a
strategy to determine the suitable support values for the ARS
sampling process, so the ARS method could be inefficient.
PRVM can sample the whole vector w directly from its
posterior since it follows a Multivariate Normal distribution.
Table 8 lists the elapsed programming time for these two
models.We conduct every experiment on the simulated Gaus-
sian datasets with 5000 iterations. Repeat every experiment
100 times and calculate the mean and standard deviation
values listed in Table 8. The PRVM is significantly more
efficient than the Bayesian RVM.

B. MODEL SELECTION
Many parameter estimation problems adopt the likelihood
function as the objective function. When enough training
data are available, the accuracy of models can be improved
continuously. However, as the cost of model complexity
increases, it also brings up a widespread problem in machine
learning, namely overfitting. Therefore, the problem ofmodel
selection seeks an optimal balance between the complexity
of the model and the model’s ability to describe the dataset.
Many information criteria have been proposed to avoid the
overfitting problem by adding a penalty for model com-
plexity. We introduce two commonly used model selection
methods: Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC).

AIC is a standard to measure the goodness of model fitting
(see [1]). It is based on entropy and provides a standard
to balance the complexity of the model estimation and the
goodness of model fitting. Generally, AIC is defined as:

AIC = 2 k − 2 ln(L̂), (37)

TABLE 9. Maximum Likelihood Value of Bayesian RVM and PRVM Models.

where k is the number of model parameters, and L̂ is the
maximum value of the likelihood function. It is common to
choose the model with minimum AIC.

BIC is similar toAIC, and it is also used formodel selection
(see [19]). The penalty term of BIC is larger than AIC since
BIC also considers the number of samples. When the sample
size is large, it can effectively prevent the model’s complexity
from being too high. The definition of BIC is:

BIC = k ln(n)− 2 ln(L̂), (38)

where k is the number of model parameters, n is the number
of samples, and L̂ is the maximum value of the likelihood
function. Given the same data, the two RVM models in
this project, Bayesian RVM and PRVM, have the same k
and n. So we only need to focus on L̂ to compare them
in the cases of AIC and BIC. Choose the Gaussian simu-
lated datasets defined in (35) and (36) and repeat the pro-
cess of seeking maximum-likelihood value 100 times for
every simulated dataset in the Bayesian RVM and PRVM.
Table 9 shows the mean and standard deviation results.
In the case of L̂, the Bayesian RVM and PRVM are sim-
ilar. However, the PRVM seems a little preferred than the
Bayesian RVM.

VI. CONCLUSION COMMENTS
Two RVM with the probit link function (PRVM) classifica-
tion algorithms are proposed in this article. The posterior of
the weight parameter in the original RVM has no closed-form
solution, so it is hard to conduct. The intricate likelihood func-
tion is the reason for this. The original RVM uses the logistic
link function to construct the likelihood function, which leads
to all the difficulties in the algorithm. Benefiting from the
probit link function, the posterior of the weight parameter
in PRVM follows a Multivariate Normal distribution. PRVM
is a more compact algorithm, and its programming speed is
significantly faster than the Bayesia RVM, which is the algo-
rithm proposed in [29]. The FullyHierarchical PRVM follows
the hyperprior structure in [9] to improve the classification
performance in the imbalanced data problem.

A study of the comparison between Bayesian RVM and
PRVM is conducted. The numeric studies show that these
two models have similar classification accuracy results. For
the severely imbalanced data, PRVM is significantly better
than the Bayesian RVM. Also, PRVM is more efficient than
the Bayesian RVM in the case of programming time. From
the perspective of model selection, PRVM is a little preferred
than the Bayesian RVM in AIC and BIC cases.
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APPENDIX A
A1. PROOF OF THEOREM 1

p(w|ytrain,α,µ)

∝ exp(−
1
2
wTAw)

n∏
i=1

φ(µi − Kiw)

= exp
[
−

1
2

(
wTAw+

n∑
i=1

(µi − Kiw)2
)]

∝ exp
[
−

1
2

(
wTAw+

n∑
i=1

(
(Kiw)2 − 2µiKiw

))]
= exp

[
−

1
2

(
wTAw+ wTKTKw− 2wTKTµ

)]
= exp

[
−

1
2
(w− ŵ)M(w− ŵ)T

]
∝ Nn+1(ŵ,M−1),

whereM = A+ KTK , ŵ = M−1KTµ.

A2. PROOF OF LEMMA 1
It is obvious that

D = b+8−1(u8(−b))

⇒ u(D) =
8(D− b)
8(−b)

⇒ P(D) =
∂u(D)
∂D

1(0≤u≤1) = φ(D− b)1(D≤0).

It is a similar process to prove another statement.

A3. PROOF OF THEOREM 2
The conditional posterior of any ηk in η is

p(ηk | others )

∝ exp
[
ηk

2
−

1
2
exp(ηk )w2

k −
(ηk − µ)2

2τ 2(1− ρ)

+
ρ(ηk − µ)2

2τ 2(1− ρ)(1+ nρ)
+

ρ(ηk − µ)
n∑

s=0,s6=k
(ηs − µ)

τ 2(1− ρ)(1+ nρ)

]
,

where k = 0, 1, 2, . . . , n. For a constant C , the log-posterior
of ηk is

lηk = log p(ηk | others )

= C +
ηk

2
−

1
2
exp(ηk )w2

k −
1+ (n− 1)ρ

2τ 2(1− ρ)(1+ nρ)

· (ηk − µ)2 +

ρ(ηk − µ)
n∑

s=0,s6=k
(ηs − µ)

τ 2(1− ρ)(1+ nρ)
.

The second divergence is

∂2

∂η2k
lηk = −

1
2
exp(ηk )w2

k −
1+ (n− 1)ρ

τ 2(1− ρ)(1+ nρ)
.

Because 1 + (n − 1)ρ > 0 for any ρ ∈ (−1, 1), ∂2

∂η2k
lηk < 0

always holds.

APPENDIX B
B1. ADAPTIVE REJECTION SAMPLING METHOD
Sampling plays an important role in statistics. Sampling from
the conventional distributions can be done directly by statis-
tics software like R, but it is hard to do the sampling from
the unconventional distributions. [5] proposed the Rejective
Sampling method to conduct the sampling of unconventional
distributions. It samples from a proposed conventional distri-
bution and sets a ratio to decide the acceptance or rejection
of this sampling value. But the Rejection Sampling method
needs an upper boundary to restrict the proposed conventional
distribution, and people do not have a specific approach to
determine this boundary. The original idea of the Adaptive
Rejection Sampling (ARS) method was proposed by [11].
It can determine the certain upper boundary of the uncon-
ventional distributions and has a high acceptance rate for
the sampling process. For distributions whose probability
density functions are log-concave, the Adaptive Rejection
Sampling (ARS) method is powerful and efficient.

REJECTION SAMPLING METHOD
The Rejection Sampling method is a typical Monte Carlo
Sampling method. When the aim distribution X ∼ pX (x)
is not suitable for direct sampling, the Rejection Sampling
method employs a proposal distribution Y ∼ gY (y), which
can produce the sampling values quickly. The basic idea is
to sample a random value y′ from the proposal distribution,
then accept y′ as the sample of aim distribution pX (x) with
the probability of pX (y′)/(M gY (y′)), where 1 < M <∞ is a
constant.

Algorithm 4 The Rejection Sampling Method
Input. The sample size N and the aim distribution pX (x).
0. Determine the proposal distribution gY (y) and constant

M , let i = 1;
while i ≤ N do:
1. Sample u ∼ U (0, 1), yi ∼ gY (y);
2. If u < pX (yi)/(M gY (yi)) then xi = yi; else repeat

Steps 1 and 2;
3. i = i+ 1;
Output. x = {x1, x2, . . . , xN } are the sample values.

Although the Rejection Sampling method works, it would
produce inaccurate results and the process is inefficient
sometimes. First, if the aim distribution pX (x) has peak
value in some internals, the Rejection Sampling method may
include samples that should not have been accepted. When
the dimension of the aim distribution increases, the ratio of
pX (yi)/gY (yi) convergence to 0withN increasing. This would
result in that a useful sample is rejected before it is produced.
The most challenging thing is to find the proper proposal
distribution gY (y) and the bounded constantM .

ADAPTIVE REJECTION SAMPLING METHOD
For a better sampling performance in practice, we need a
proposal distribution closer to the aim one. [11] proposed
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FIGURE 4. The Tangential Function wk (x) at sk in ARS Method.

the Adaptive Rejection Sampling method idea. It exercises a
series of envelope functions to do the sampling. If one sample
value is rejected and it will be included to construct a more
compact envelope function. First, we define the concavity and
convexity of functions.
Definition 2: If f (x) is continuous on [a, b] and the second

derivative exists.
(1) When f ′′(x) > 0 on (a, b), f (x) is convex on [a, b];
(2) When f ′′(x) < 0 on (a, b), f (x) is concave on [a, b].

A necessary assumption of the ARS method is that the aim
distribution is log-concave. If the aim distribution function
is pX (x) defined on D ⊆ R, based on Definition 2, let
VX (x) = −log(pX (x)) and V ′′X ((x) > 0 always holds on D.
ARS method needs serial support points s1 < s2 < . . . < sm
to construct the envelope function. The more support points
there are, the higher acceptable rate the sampling process
will have at the efficiency cost. In Figure 4, let wk (x) be the
tangential function of VX (x) at support point sk :

wk (x) = V ′X (sk )(x − sk )+ VX (sk ), (39)

where k = 1, 2, . . . ,m. We obtain m tangential functions
based on the support points.

Wn(x) = max{w1(x),w2(x), . . . ,wm(x)}. (40)

Because VX (x) is the convex function on D, and wk (x)
are the tangential functions at sk , where k = 1, 2, . . . ,m.
So Wn(x) ≤ VX (x). Figure 5 shows the Wn(x) based on two
support points. After transformation, we have an envelope
function

exp(−Wn(x)) ≥ exp(−VX (x)) = pX (x). (41)

Then a piecewise proposal function is obtained based on
exp(−Wn(x)):

πn(x) = cnexp(−Wn(x)), (42)

where cn = (
∫
D exp(−Wn(x))dx)−1 is the regularization

constant. The basic idea of the ARS method is to first
sample the random values u from U (0, 1), x ′ from πn(x).
If u < pX (x ′)

exp(−Wn(x ′))
, we accept x ′ as the sample value from

pX (x). Otherwise, we add x ′ into the support points set Sn
to obtain Sn+1 = Sn

⋃
x ′, which will construct a more

FIGURE 5. wn(x) Based on Two Support Points in ARS Method.

Algorithm 5 The Adaptive Rejection Sampling Method
Input. The sample size N , the aim distribution pX (x).
0. Let i = 1 and determine the support points set Si;
while i ≤ N do:
1. VX (x) = −log(pX (x)) and construct the tangential

functions of VX (x) based on the points in Si;
2. Sample u ∼ U (0, 1), x ′ ∼ πn(x) ∝ exp(−Wn(x));
3. If u <

pX (x ′)
exp(−Wn(x ′))

, xi = x ′ and Si+1 = Si; Else,
Si = Si

⋃
x ′ and return to Step 1.

Output. x = {x1, x2, . . . , xN } are the sample values.

compact Wn+1(x). Repeat this step until we have enough
acceptable samples.

Thereafter, several improved ARS methods were pro-
posed. [10] proposed the MABS method, which combines
theMetropolis-Hastings andARSmethods. But this approach
produces a Markov chain, which makes the samples are
related to each other. [22] proposed a new ARS method that
can also solve log-convex distribution sampling. It divides
the distribution function into several sections based on the
concavity and convexity, then sampling every section. [31]
summarized all the existing ARS methods and published the
AdapSamp package in R. In this project, we use AdapSamp ::
rARS function in R to conduct the Adaptive Rejection
Sampling method.

B2. ADAPTIVE REJECTION SAMPLING METHOD
This subsection introduces the ratio of uniforms method,
which is a random number generation approach. This method
was original proposed by [13]. Then [17] further improved
this method. Suppose that a bivariate random variable
(U1,U2) is uniformly distributed and satisfies the following
inequality:

0 ≤ U1 ≤
√
g (U2/U1),

where g(x) is any nonnegative function. So X = U2/U1 has a
density function f (x) = h(x)∫

h(x)dx . The joint density of U1 and
U2, denoted by f12 (u1, u2) is

f12 (u1, u2) =

{
k, if 0 ≤ u1 ≤

√
g (u2/u1)

0, otherwise ,
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where k is a constant number. Conduct the following
transformation from (u1, u2) to (x, y):

x =
u2
u1
, y = u1.

It is evident that u1 = y, u2 = xy. So the Jacobian for this
simple transformation is:

J =

∣∣∣∣∣∣∣
∂u1
∂x

∂u1
∂y

∂u2
∂x

∂u2
∂y

∣∣∣∣∣∣∣ =
∣∣∣∣ 0 1
y x

∣∣∣∣ = −y.
Rewritten fxy(x, y) as:

fxy(x, y) = |J |f12(y, x y) = ky,

where 0 ≤ y ≤
√
g(x). The marginal density of X , denoted

by fx(x), is obtained as follows:

fx(x) =
∫ √g(x)
0

fxy(x, y)dy

=

∫ √g(x)
0

kydy

= k
[
y2

2

]√g(x)
0

=
k
2
g(x)

= f (x),

where k is taken as k = 2∫
g(x)dx . Thus, it is shown that fx(·) is

equivalent to f (·).
In practice, we need to choose the rectangle which encloses

the area 0 ≤ U1 ≤
√
g (U2/U1) on the domain of (U1,U2).

The basic idea is to generate a uniform point in the rectangle,
and reject the point which does not satisfy 0 ≤ u1 ≤√
g (u2/u1). So in this method, we generate two independent

uniform random draws u1 and u2 from U (0, b) and U (c, d),
respectively. The rectangle is given by:

0 ≤ u1 ≤ b, c ≤ u2 ≤ d,

where b, c and d are given by:

b = sup
x

√
g(x), c = − sup

x
x
√
g(x), d = sup

x
x
√
g(x).

The sampling process is as follows (see [17]):
(1) Generate u1 and u2 independently from U (0, b) and

U (c, d);
(2) If u21 ≤ h (u2/u1), set x = u2/u1. Else, return to (1).
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