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Abstract: The heterogeneity of the lamellar unit (LU) of ar-
terial media plays an important role in the biomechanics
of artery. Current two-component (fibrous component and
a homogenous matrix) constitutive model is inappropri-
ate for capturing the micro-structural variations in the LU,
such as contraction/relaxation of vascular smooth muscle
cells (VSMCs), fragmentation of the elastin layer, and depo-
sition/disruption of the collagen network. In this work, we
developed a representative volume element (RVE) model
with detailed micro-configurations, i.e., VSMCs at various
phenotypes, collagen fibers, and elastin laminate embed-
ded in the ground substance. The fiber architecture was
generated based on its volume fraction and orientations.
Our multi-scale model demonstrated the relation between
the arterial expansion and the micro-structural variation
of the lamellar unit. The obtained uniaxial response of
the LU was validated against the published experimen-
tal data. The load sharing capacity of fibrous component
and VSMCs of the LU were obtained. We found that the
VSMC could take 30% of the circumferential load when
contracted until the collagen fibers were recruited, while
this value was less than 2% for the relaxed VSMC. In addi-
tion, the contribution of collagen fibers at low stretch lev-
els was negligible but became predominant when straight-
ened in high stretches. Moreover, aging effects by collagen
deposition was modeled to estimate the arterial stiffening.
It was revealed that the aortic stiffness is mainly controlled
by collagen fibers, instead of VSMCs. Our findings could
shed some light about the contribution of VSMCs in arte-
rial stiffness which has been under debate in recent years.
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1 Introduction

Cardiovascular disease accounts for 17.3 million deaths
globally and one of every four deaths in the United States
each year [1]. Increased arterial stiffness, also referred to
as, arterial stiffening, is the biomarker for many diseases,
including heart failure, myocardial infarction, stroke, vas-
cular dementia, and chronic kidney disease [2]. Arterial
stiffening is also considered as one of the pathophysiologi-
cal mechanisms contributing to the development of hyper-
tension [3].

The stiffness of the arterial wall is strongly dependent
on the structure and integrity of its lamellar units (LU) (i.e.,
vascular smooth muscle cells [VSMCs] encompassed by
elastic lamellae and interposed with a collagen fiber net-
work) [4]. Collagen deposition and elastin breakdown in
the extra cellular matrix (ECM) has been widely acknowl-
edged as the predominant mechanism of arterial stiffen-
ing [5]. However, it was also reported that ECM adaptions
were not consistently observed in hypertensive arteries [6].
In some cases, clinical hypertension measurements de-
tected a reduction in vascular collagen content [7]. This
might be associated with the mechanical contribution of
the VSMCs [8], while controversy also exists regarding
this [9].

The VSMCs’ relaxation can potentially occur in con-
cert with an increase, a decrease, or no change in vascular
wall stiffness [10]. It has been hypothesized that VSMCs’
relaxation softened arterial stiffness by reducing tension
generated by the VSMCs themselves. On the other hand,
VSMCs’ relaxation could increase the arterial stiffness by
engaging stiff collagen fibers. Moreover, it was observed
that the total arterial stiffness was directly related to the
VSMCs’ stiffness [11]. It was demonstrated that the adap-
tation of a hypertensive artery was caused by the phe-
notype changes in VSMCs, from contractile to synthetic,
which led to more collagen fibers. In the synthetic phe-

Lulu Wang: College of Health Science and environmental Engineer-
ing, ShenZhen Technology University, China

Yuguo Lei: Department of Chemical and Biomolecular Engineering,
University of Nebraska-Lincoln, United States of America

3 Open Access. © 2019 H. Mozafari et al., published by De Gruyter. ‘ (cc) This work is licensed under the Creative Commons Attribution

4.0 License


https://doi.org/10.1515/ntrev-2019-0048

540 —— H.Mozafarietal.

notype, the stiffness of VSMCs was lower than that of the
contractile phenotype, while the total arterial stiffness was
higher [3]. This inverse relation between the VSMCs’ stiff-
ness and the arterial wall was based on the VSMC pheno-
types. Although the arterial stiffening has been well doc-
umented in human and animal models, the contribution
of the VSMCs to mechanics of the LU unit has not been
quantified yet. This was attributed to the complexity of the
LU micro-structure, nonlinear properties of the fibrous net-
work, and interaction between the VSMCs and ECM [12].

Several structurally motivated constitutive models for
the arterial wall have been recently developed [13-17].
Nakamachi et al. created a multi-scale model in which a
two-layer aorta was considered with the LU modeled by a
representative volume element (RVE) consisting of a VSMC
embedded in a homogenous ECM [18]. They illustrated the
stresses and strains of the VSMC under tension; however,
the heterogeneity of the fibrous part of the LU, the wavi-
ness of collagen fibers, and the constituent’s volume frac-
tions, were neglected.

In this work, a multi-scale model has been developed
to characterize the load sharing capacity of the VSMC in
the LU and the corresponding aortic wall deformation. An
RVE model was constructed by considering the architec-
ture of collagen fibers based on their volume fraction and
distribution, and the nonlinear response in tension. The
obtained mechanical response of the RVE was imported
to a macro-scale model of the three-layer aortic wall (i.e.,
intima, media, and adventitia) to capture its deformation
under the physiological blood pressure. The contribution
of VSMCs to load sharing of the artery was then charac-
terized at various stretch levels and cellular contraction
states. Moreover, the effects of aging through deposition of
collagen fibers and fragmentation of elastin fibers could be
studied. The developed model allowed us to incorporate
the micro-structural variation of the LU induced by aging
and the resulting changes in aortic mechanical behavior.

2 Materials and methods

2.1 Micro-mechanical modeling

A 3D RVE was constructed to capture the biomechanical
response of a single lamellar unit. The average lamella
thickness of 1.5 um and an interlamellar (IL) spacing of
10 pm were adopted [19]. We exploited the LU symmetry
in the circumferential and radial directions and consid-
ered a VSMC embedded in the ECM. The volume fraction
of elastin fibers within the lamella has been estimated
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as 85% [20]. The orientation histogram revealed that pla-
nar dispersion of the elastin and collagen fibers is in the
longitudinal-circumferential plane (Figure 1). This allows
us to treat lamella as a homogenous solid section attached
to the interlamellar space (Figure 2). The volume fractions
and geometric dimensions of each component of LU are
listed in Table 1. The contracted VSMC is approximately
eight times stiffer than its relaxed state. The VSMC could be
defined as either relaxed or contracted condition by adopt-
ing the relevant elastic modulus.
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Figure 1: Distribution of collagen and elastin in LU; Angle of 0o
means circumferential direction and 900 is along the length of
artery [20]
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Figure 2: The developed RVE model of lamellar unit (LU)

For collagen fibers, a bilinear constitutive response
was adopted to capture the effect of the fiber waviness [23]:

o= {0 s A< /\Collagen (1)
ECoIlagen (A - ACollagen)

where A is the current stretch ratio of fibers, Acoqgen iS
the recruitment stretch criteria, and E¢,jjqgen is the elastic

s Az ACollagen
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Table 1: The volume fraction and geometry of RVE constituents

Multi-scale modeling of the lamellar unit of arterial media = 541

Component Volume fraction (%) [11] Geometry (Units are in um)
VSMC 47 Major radius = 20 [19]
Minor radius = 4.5
Elastin laminate 13 Thickness = 1.5 [21]
Collagen fiber 12 Diameter =3 [22]
Length=9
Ground substance 28 Length x Width x Height = 10 x 10 x 40
Table 2: Mechanical properties of RVE
Role Parameter Fitted value
VSMC Evsmc 0.0881 MPa (Contracted) [24]
0.0148 MPa (Relaxed) [24]
E ; .6 MPa [2
Elastin laminate Elastin 0.6 MPa [25]
AElastin 1
E 0 MPa [2
Collagen fiber Collagen 8 af26]
ACollagen 1.4 [27]
Ground substance Egs 0.0001 MPa

modulus of the fiber. Collagen fibers with A < A¢ojiqgen do
not sustain any loading. The bundle of collagen fibers had

a diameter of 3 um [22]. Table 2 summarizes the mechani-

cal properties adopted in our RVE configuration.
The RVE was subjected to a circumferential stretch

of A 1.5. The obtained stress-strain response of LU

was then imported into the macro-mechanical model de-

scribed below.

2.2 Macro-mechanical modeling

A model of the aortic cross section with its three-layer struc-
ture (i.e., intima, media, and adventitia) was developed as
shown in Figure 3. Current computational models of the
multi-layer artery were summarized in Table 3. These layer-
specific artery models were used for estimating the resid-
ual strain, unloaded configuration, and stress state in the
arterial wall. Considering the axial symmetry of the aorta,
only ¥4 of the cross section was modeled. The inner diam-

eter of the aorta was 25 mm with a thickness of 1.5 mm.

Following the mesh sensitivity analyses, the model was
discretized with 1608 CPS4R elements. The cyclic internal

pressure profile mimicking the physiological blood load
was applied.

The hyperelastic behaviors of the intima and adventi-
tia layers were adopted from the published experimental
data [38], which were fitted using the reduced polynomial
constitutive equation:

3 : .
U=> Cylli-3)(I,-3)

i,j=1

©)

where, I; and I, are the first and second invariants of
the Cauchy-Green tensor. The fitted material coefficients
Cj; are listed in Table 4. While for the media layer, we ex-
tracted the mechanical response from the aforementioned
RVE model, validated against the uniaxial test data of the
media layer (Figure 4). Our micro-scale simulation cap-
tured the hyperelastic behavior of the media layer. The
media stiffness varies on the level of blood pressure. At
higher blood pressure, it stiffened sharply due to the en-
gagement of collagen fibers in load bearing. The differ-
ence between the simulation and experiment could be at-
tributed to the forced separation of the media layer from
adventitia/intima layers [37].
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Table 3: A summary of computational models of arterial walls, and the applied material properties

Conducted research Geometry and deformation type Number of layers Material properties
Von Maltzahn et al. [28] Cylinder (axisym.) 2 Isotropic, anisotropic
Chuong et al. [29] Cylinder (axisym.) 1 Isotropic
Delfino et al. [30] Bilateral, bifurcated 1 Isotropic
Holzapfel et al. [31] Cylinder (axisym.) 2 Orthotropic
Taber and Humphery [32] Cylinder (axisym.) 2 Orthotropic
Ohayon et al. [33] 2D FE model 2 Isotropic
Holzapfel and Ogden [34] Cylinder (axisym.) 3 Isotropic
Sommer and Holzapfel [35] Cylinder (axisym.) 2 Isotropic or
Orthotropic
Kural et al. [36] 3D (FSI) 1 Transversely isotropic
Monir et al. [37] Ring-like FE model 3 Isotropic
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Figure 3: Finite element model of the human aorta, dimensions (unit: mm) and loading condition
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Table 4: Material coefficients of both adventitia and intima layers

Layer Coefficient
C10 =-1.1373
Co1 =1.206
Adventitia Cy0=6.5364
C11 = —17819
Co2 =12.870
C10 = —07699
C()l =0.8235
Intima Cy0=2.623
C11 =-7.5097
Coz =5.8136
1
Experiment
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Figure 4: Stress-strain response of the media layer

3 Results and discussions

The developed micro-scale model of the lamellar unit of
the human aortic media has incorporated the detailed
structural features of the ECM directly. It could recapitu-
late the circumferential constitutive response of the media
layer. The load shared by VSMCs was calculated by inte-
grating all nodal forces along the loading direction. Fig-
ure 5 illustrates the load sharing capacity of the ECM and
VSMC in the LU subjected to the uniaxial tension. It is clear
that the VSMCs at lower stretch levels exhibited a larger
contribution in load sharing. However, at larger stretch lev-
els, collagen fibers came into play and took more loads,
which muted the contribution of the VSMCs.

In the case of the contracted VSMCs, load sharing
of 30% was detected at normal tension levels, while this
value decreased to 1.5% in hypertensive conditions (tensile
strain of 40% and higher). In contrast, the relaxed VSMCs
did not play a significant role in LU stiffness and could not
take more than 6% of the tensile load. These values could

Multi-scale modeling of the lamellar unit of arterial media =——— 543

be altered with respect to the LU micro-structure and the
volume fraction of its constituents. It has been reported
that VSMCs’ static stiffness varies according to their posi-
tion in the arterial tree. Based on the confocal images of
the VSMC shape and actin stress-fiber orientation, VSMCs
from arteries with fewer elastic fibers (such as femoral and
renal arteries) are considered to be stiffer compared with
the thoracic aorta VSMCs [11].

To quantify the effect of fiber fragmentation due to
aging effects, a range of fiber loss from 10% to 50% was
considered. The corresponding equivalent stiffness of the
LU was computed for each case. Figure 6 depicts the loss
of stiffness (i.e., the relative difference between current
stiffness and the initial one) versus the fragmentation of
elastin or collagen fibers. It is clear that at low pressure lev-
els (i.e., tensile strain is less than 40%), the elastin loss de-
creased the stiffness considerably. Specifically, 50% frag-
mentation of the elastin layer caused 75% loss of stiffness.
However, collagen fiber loss showed its dominant influ-
ence in high pressure levels (i.e., tensile strain is more than
40%), when collagen fibers were straightened. Our results
have demonstrated that the contribution of fibers to the to-
tal stiffness of the LU. Moreover, it has been reported that
during the process of arterial aging, and after the loss of
the fibrous part of the LU, VSMCs produce more collagen
fibers as a remedy to the lack of elastin fibers. However,
our results suggest that deposition of wavy collagen fibers
cannot contribute to arterial stiffness at normal tension
conditions. Our results are consistent with the paradigm
shift of age-related arterial stiffness. The age-related ar-
terial stiffening has shifted from elastin/collagen content
to cell-ECM interactions and VSMC tone as the principal
determinants of arterial wall stiffness [39]. On the other
side, it has been reported that the environmental changes
caused by aging was associated with the switch from a con-
tractile phenotype to a synthetic phenotype of VSMCs. The
latter phenotype is characterized by reduced expression of
contractile proteins meaning lower stiffness. Therefore, in
this condition, the lack of arterial stiffness is addressed by
the thickening of the arterial wall and geometric remodel-
ing.

Differentiated phenotypes (contractile) of VSMCs can
be evaluated by morphology studies from which VSMCs
are spindle-shaped. In this study, we derived the variation
of the VSMCs’ section-area for different levels of tension,
as shown in Figure 7. Dinardo et al. [11] measured the ma-
jor axis/minor axis ratio of VSMCs located in different ar-
terial beds. This parameter was counted as an indicator of
the cell elongation and then interpreted as the contraction
level of VSMCs. They observed that VSMCs from femoral
and coronary arteries were more elongated than that of
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Figure 5: The contribution of VSMC and ECM in load sharing in a healthy carotid aorta LU
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Figure 6: The influence of Collagen disruption and elastin fragmentation on the LU stiffness

other vessels and concluded that the VSMCs from former
arteries have higher contraction (static rigidity). On the
other hand, they observed that femoral and coronary ar-
teries have the lowest content of elastin and ECM/VSMC
ratio. According to our results, the higher volume fraction
of VSMC means it had a larger contribution in load sharing
and more elongation. These physical variations occurred
even if the contractility of VSMCs remained at a fixed value.
As we observed, the ratio of the major axis/minor axis and
therefore the VSMCs’ area was directly related to the ten-
sile strain caused by hemodynamic loads. Moreover, it has
been observed that the contraction of 2D cultured VSMCs
and the ratio of the major axis/minor axis is inversely re-
lated. Therefore, the elongation of VSMCs cannot be an ap-
propriate parameter to detect the contraction level. How-
ever, comparing this parameter can provide useful infor-
mation about the phenotype of the cell and the load shar-
ing of VSMCs.
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Figure 7: The calculated area of VSMC with respect to the stretch
level
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The aging effects on the aortic expansion were evalu-
ated at various tension levels. Figure 8 shows the recorded
expansion of the aorta for various collagen/elastin ratios
and each VSMC’s status. For higher values of the colla-
gen/elastin ratio the expansion of the aorta decreased
drastically. This variation happens by collagen deposition
caused by aging. The largest decrease in aortic expansion
for high tension levels was 20%, while in normal tension
levels the relation of collagen deposition and arterial ex-
pansion was insignificant. Hereby, we did not change the
volume fraction of elastin. As a result, at a normal tension
level the expansion fluctuation is minimal.

Moreover, at a normal tension level the expansion
of the aorta was distinguishable for each VSMC status.
However, for high pressure levels, the response of con-
tracted and relaxed VSMCs converged. This result showed
that in hypertension and where collagen deposition oc-
curs, variation of VSMCs’ stiffness cannot change the aor-
tic stiffness and expansion. On the other hand, it could be
seen that if material remodeling happens, but the aorta
still works under a normal pressure level, VSMCs’ contrac-
tion/relaxation can considerably affect the arterial dila-
tion. It has been reported that the mechanical phenotype
correlates with the composition of ECM and can be modu-
lated by the stretching imposed on VSMCs by blood flow
circumferential stress [11]. In this study, we found out that
the mechanical variation of VSMCs could be meaningful
only in a normal tension level, when aging occurred and
more collagen fibers were produced in the ECM.

4 Conclusion

In this work, we have developed a multiscale model to
characterize the arterial expansion with respect to the
micro-structural variation of the lamellar unit. The micro-
scale RVE model was based on the configurations of lamel-
lar unit in the aortic media. The developed model helped
us to distinguish the load sharing capacity of fibrous com-
ponents and VSMCs. Our results showed that the VSMC
can take up to 30% of the applied load when contracted. It
is known that the relaxed VSMC is around 10 times softer
than the contracted one, which affects its contribution in
load sharing of the LU. On the other side, the contribution
of collagen fibers at low stretch levels was negligible but
became predominant when straightened at greater stretch
level. The obtained uniaxial response of the LU was vali-
dated against the published experimental data. Finally, ag-
ing effects by collagen deposition was modeled and aortic
dilation was estimated. It was revealed that stiffening of
the VSMC when the aorta is exposed to high pressure does
not affect the aortic stiffness but is mainly controlled by
collagen fibers. Our findings can shed some light about the
contribution of VSMCs in arterial stiffness which has been
under debate in recent years.
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