
1 TITLE: The Drosophila Dbf4 ortholog Chiffon forms a complex with Gcn5 that is necessary for 

histone acetylation and viability 2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

AUTHORS: Torres-Zelada, Eliana F.1, Stephenson, Robert E.1, Alpsoy, Aktan2, Anderson, 

Benjamin D.1, Swanson, Selene K.3, Laurence Florens, Laurence3, Dykhuizen, Emily C.2, 

Washburn, Michael P.3,4, and Weake, Vikki M.1,5,6 

1Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA. 

2Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West 

Lafayette, Indiana 47907, USA.3Stowers Institute for Medical Research, 1000 E. 50th St., 

Kansas City, Missouri 64110, USA. 

4Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 

Rainbow Boulevard, Kansas City, Kansas 66160, USA. 

5Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 

47907, USA. 

6To whom correspondence should be addressed: Vikki M. Weake, Department of Biochemistry, 

Purdue University, 175 S. University Street, West Lafayette, Indiana 47907, USA, Tel: (765) 

496-1730; Fax (765) 494-7897; Email: vweake@purdue.edu 

RUNNING TITLE: Drosophila Chiffon-Gcn5 complex 

1 

mailto:vweake@purdue.edu


18 ABSTRACT: 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

Metazoans contain two homologs of the Gcn5-binding protein Ada2, Ada2a and Ada2b, which 

nucleate formation of the ATAC and SAGA complexes respectively. In Drosophila 

melanogaster, there are two splice isoforms of Ada2b: Ada2b-PA and Ada2b-PB. Here we show 

only the Ada2b-PB isoform is in SAGA; in contrast, Ada2b-PA associates with Gcn5, Ada3, 

Sgf29 and Chiffon forming the Chiffon Histone Acetyltransferase (CHAT) complex. Chiffon is the 

Drosophila ortholog of Dbf4, which binds and activates the cell cycle kinase Cdc7 to initiate 

DNA replication. In flies, Chiffon and Cdc7 are required in ovary follicle cells for gene 

amplification, a specialized form of DNA re-replication. Although chiffon was previously reported 

to be dispensable for viability, here we find that Chiffon is required for both histone acetylation 

and viability in flies. Surprisingly, we show that chiffon is a dicistronic gene that encodes distinct 

Cdc7- and CHAT-binding polypeptides. Although the Cdc7-binding domain of Chiffon is not 

required for viability in flies, Chiffon’s CHAT-binding domain is essential for viability but is not 

required for gene amplification, arguing against a role in DNA replication. 

SUMMARY STATEMENT: 

The Drosophila ortholog of Dbf4, Chiffon, binds Gcn5 to form a novel histone acetyltransferase 

complex that is essential for viability in flies, but is not required for DNA replication. 

INTRODUCTION: 

Chromatin modifications impact both transcription and cell cycle events such as DNA replication 

(Li et al., 2007; Ma et al., 2015). In particular, histone acetylation contributes to transcription, 

and correlates with the timing of the initial step in DNA replication, origin firing. The histone 

acetyltransferase Gcn5 stimulates transcription by generating a permissive chromatin 

environment that facilitates chromatin remodeling by complexes such as SWI/SNF (Hassan et 

al., 2002; Weake and Workman, 2010). Gcn5 also stimulates origin firing when tethered to a 

late-firing origin in yeast (Vogelauer et al., 2002) and enhances the rate of DNA synthesis from 

a chromatin template in vitro (Kurat et al., 2017). In Saccharomyces cerevisiae, Gcn5’s function 

in transcription is mediated predominantly through the Spt-Ada-Gcn5 acetyltransferase (SAGA) 

complex (Grant et al., 1997). During evolution, there has been an expansion in the diversity of 

Gcn5-containing complexes (Spedale et al., 2012). In metazoans, including Drosophila, there 

are two homologs of the Gcn5-binding protein Ada2, Ada2a and Ada2b, which nucleate 

formation of the Ada2a-containing (ATAC) or SAGA transcription coactivator complexes 

respectively (Kusch et al., 2003; Wang et al., 2008). All Gcn5 complexes share Sgf29 and Ada3 
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subunits, which together with their respective Ada2 homolog, enable nucleosomal histone 

acetyltransferase activity (Balasubramanian et al., 2002; Grant et al., 1997; Spedale et al., 

2012). The SAGA and ATAC complexes activate transcription during development and in 

response to signaling pathways or external stimuli (Spedale et al., 2012). In addition, ATAC has 

roles in cell cycle progression via acetylation of cyclin A, which promotes progression through 

mitosis (Orpinell et al., 2010).  

In Drosophila, Ada2b has two splice isoforms that differ in their C-terminal regions but share a 

common N-terminal region (Pankotai et al., 2013; Qi et al., 2004). The short Ada2b-PA isoform 

binds Gcn5, and is necessary for histone H3 acetylation in vivo (Pankotai et al., 2013; Qi et al., 

2004). Both Ada2b isoforms are required to fully complement ada2b mutations, although 

expression of the short Ada2b-PA isoform alone can support development and partially restore 

histone H3 acetylation (Pankotai et al., 2013). Although it has been assumed that the short 

Ada2b-PA isoform functions as part of the SAGA complex, our previous studies showed that the 

long Ada2b-PB splice isoform is associated with Drosophila SAGA (Weake et al., 2009). In this 

study, we describe a novel Gcn5-containing complex nucleated by the short Ada2b-PA isoform 

that contains the cell cycle regulatory protein, Chiffon: the Chiffon Histone Acetyltransferase, 

CHAT complex. Chiffon is the Drosophila ortholog of Dbf4 (Landis and Tower, 1999), and it 

binds and activates the cell cycle kinase Cdc7 (Stephenson et al., 2015). In yeast, Dbf4 and 

Cdc7 form the Dbf4-Dependent Kinase (DDK) complex that phosphorylates the Mcm helicase to 

initiate DNA replication (Lei et al., 1997; Weinreich and Stillman, 1999). While Dbf4 is essential 

for DNA replication in most organisms, previous studies found that chiffon null mutants were 

viable (Landis and Tower, 1999). Here, we show that indeed the Cdc7-binding activity of Chiffon 

is dispensable in flies. However, the C-terminal insect-specific domain of Chiffon that nucleates 

formation of the CHAT complex is required in flies for both histone H3 acetylation and viability, 

but not for DNA replication. Our data demonstrate that the DNA replication and histone 

acetylation activities of Chiffon can be genetically separated, and raises the question of why 

these two activities are encoded by the same gene. One possibility, although not tested in this 

study, is that the DDK and CHAT complexes are part of the same gene to coordinate their 

expression and/or levels during either the cell cycle or development. This could provide a 

mechanism to coordinate histone acetylation with DNA replication, potentially during particular 

developmental stages in flies. 

RESULTS: 

Identification of a novel Chiffon-Gcn5 complex in Drosophila 
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Drosophila Ada2b has two splice isoforms that differ in their C-terminal regions but share a 

common N-terminal region containing the zinc finger-like ZZ, SANT, and two of the three 

previously described ADA box domains (Pankotai et al., 2013; Qi et al., 2004) (Fig. 1A). Similar 

to published observations (Pankotai et al., 2013), we observed that expression of Ada2b-PA 

alone partially rescued adult viability in ada2b null mutants, although both Ada2b isoforms were 

required to fully complement lethality of the null ada2b1/ada2b842 allele combination (Table 1). 

Expression of single-copy transgenes for both Ada2b-PA and Ada2b-PB restored viability to the 

expected one third of ada2b1/ada2b842 progeny (30.9 ± 4.2%, χ2 = 0.23) compared to 20.7 ± 

5.2% with expression of Ada2b-PA alone. In contrast, expression of Ada2b-PB alone did not 

restore viability to ada2b1/ada2b842 progeny. These data suggested that the Ada2b isoforms 

have non-redundant functions in flies, and that Ada2b-PA alone can partially support 

development. Thus, we sought to determine whether these Ada2b isoforms were both required 

in SAGA, or alternatively, if like Ada2a, each Ada2b isoform nucleated formation of a distinct 

Gcn5-containing complex. To distinguish between these alternatives, we purified the Ada2b-PA 

and Ada2b-PB isoforms from cultured S2 cells using tandem FLAG-HA affinity chromatography 

and examined the co-purifying proteins using Multidimensional Protein Identification Technology 

(MudPIT). Using this approach, the Ada2b isoforms could be distinguished by peptide spectra 

that mapped to their unique C-terminal regions. Ada2b-PB co-purified all other 19 SAGA 

subunits (Stegeman et al., 2016) but did not co-purify any peptide spectra specific to the short 

Ada2b-PA isoform (Fig. 1B). Similarly, SAGA-specific purifications using bait proteins such as 

Spt3 and Spt20 contained peptide spectra specific to Ada2b-PB, but not Ada2b-PA. Instead, 

Ada2b-PA co-purified Gcn5, Ada3 and Sgf29, but not Ada2b-PB or other SAGA subunits. 

Ada2b-PA also did not co-purify ATAC-specific subunits such as Atac1, Atac2 or D12 (Table 

S1). Epitope-tagging of Ada2b-PA did not disrupt its interaction with SAGA because similar 

results were observed with Ada2b isoforms tagged at either their shared N- or unique C-termini. 

These data suggest that Ada2b-PA associates with Gcn5, Sgf29 and Ada3 in a complex that is 

distinct from either ATAC or SAGA. 

To identify other proteins in this Ada2b-PA complex, we examined the MudPIT data to find 

proteins that co-purified specifically with Ada2b-PA, but not with SAGA-specific subunits. A 

single protein, Chiffon (CG5813; FBgn0000307), co-purified with Ada2b-PA or Sgf29, but not 

with other SAGA subunits or with the negative controls (Fig. 1B, Table S1). Moreover, reciprocal 

purifications of C-terminally tagged Chiffon co-purified Gcn5, Ada3, Sgf29 and Ada2b-PA, but 

not Ada2b-PB. Chiffon is the Drosophila homolog of Dbf4, which binds and activates the cell 

cycle kinase Cdc7 to phosphorylate the Mcm helicase, initiating DNA replication (Landis and 
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Tower, 1999; Stephenson et al., 2015). The Chiffon-purified or Ada2b-PA purified complexes 

exhibited similar levels and specificity of in vitro histone acetyltransferase activity to Drosophila 

SAGA purified via Ada2b-PB, with predominant activity on histone H3 in core histones (Fig. 1C) 

and ability to acetylate histone H3 tail peptides (Fig. 1D). Thus, we conclude that Chiffon is a 

bona fide subunit of a novel histone acetyltransferase complex containing Ada2b-PA, Gcn5, 

Sgf29 and Ada3 that we named the Chiffon Histone Acetyltransferase (CHAT) complex. 

Most CHAT complexes do not contain Cdc7 

Since Chiffon is the regulatory subunit of the cell cycle kinase Cdc7 (Stephenson et al., 2015), 

we next asked if Cdc7 was present in the CHAT complex. Only 7 peptide spectra were identified 

for Cdc7 using C-terminally tagged Chiffon as bait, which co-purified 89 – 158 peptide spectra 

for each of the other subunits of the CHAT complex: Ada2b-PA, Gcn5, Sgf29 and Ada3 (Fig. 

1B). Thus, we next asked if Chiffon did in fact bind Cdc7 in vivo. We previously showed that the 

N-terminal domain of Chiffon (1 – 400aa) is sufficient to bind and stimulate Cdc7 kinase activity 

in vitro (Stephenson et al., 2015). Indeed, Cdc7 and Chiffon interact in vivo because N-

terminally tagged Chiffon co-purified 93 peptide spectra for Cdc7, and Cdc7 reciprocally co-

purified 176 peptide spectra for Chiffon. In contrast, N-terminally tagged Chiffon or Cdc7 co-

purified fewer than 13 peptide spectra for other components of the CHAT complex such as 

Gcn5. There are two possibilities for the mutually exclusive binding of Cdc7 and CHAT subunits 

with Chiffon; first, Cdc7 blocks binding of CHAT subunits to Chiffon; or second, chiffon encodes 

two separate polypeptides that interact with Cdc7 or CHAT independently. Our data support the 

latter possibility because most peptide spectra for C-terminally tagged Chiffon map to its C-

terminal region, whereas most peptide spectra for N-terminally tagged Chiffon map to its N-

terminal region (Fig. 1E). These data suggest that very little full-length Chiffon exists in 

asynchronous cultured cells. However, a small fraction of Chiffon might interact with both Cdc7 

and CHAT because we identified a few peptide spectra corresponding to Cdc7 in CHAT 

purifications (Ada2b-PA and Chiffon-C). Similarly, we also observed a few peptide spectra for 

CHAT subunits in Cdc7 or Chiffon-N purifications. Thus, we conclude that although a small 

fraction of Chiffon protein might interact with Cdc7 and CHAT simultaneously, most Chiffon 

interacts separately with either Cdc7 or CHAT, likely as two independent Chiffon polypeptides. 

The insect-specific C-terminal domain of Chiffon directly binds Gcn5 

To test if the N- and C-terminal domains of Chiffon could interact independently with Cdc7 and 

CHAT subunits, as suggested by the mass spectrometry data, we used a yeast two-hybrid 

approach to screen for interactions between different domains of Chiffon and each CHAT 
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subunit (Fig. S1). Using this approach, we identified a strong reciprocal interaction between the 

N-terminal Chiffon domain (1 – 400aa) and Cdc7 (Fig. 2A). This is consistent with both our 

MudPIT data and with the previous observation that the N-terminal 400aa of Chiffon is sufficient 

to bind Cdc7 in vitro (Stephenson et al., 2015). We also observed a weak unidirectional 

interaction between Gcn5 and the C-terminal Chiffon domain (1243 - 1695aa) (Fig. 2A). We 

were able to co-immunoprecipitate the recombinant C-terminal region (1400 - 1695aa) of 

Chiffon and Gcn5 under low salt (150 mM NaCl) conditions in vitro (Fig. 2B), further suggesting 

that Chiffon and Gcn5 interact directly, albeit weakly. 

The C-terminal domain of Chiffon in Drosophila and other insects is much longer than other 

Dbf4 homologs and is not present in yeast or vertebrate Dbf4 (Landis and Tower, 1999; Tower, 

2004) (Fig. 2C). Moreover, the C-terminal region of Chiffon that binds Gcn5 shares several 

highly conserved regions with other insects (Fig. S2). Since this insect-specific C-terminal 

domain interacted with Gcn5, we predicted that yeast or mammalian Dbf4 would be unlikely to 

interact with Gcn5. Indeed, we did not observe any peptides for Ada2, Gcn5, Sgf29 or Ada3 in 

TAP-purified Dbf4 from yeast cells (Fig. 3A). Moreover, human DBF4A and DBF4B co-

immunoprecipitated CDC7, but not GCN5 or its paralog, PCAF, from HEK293T cells (Fig. 3B). 

Thus, the insect-specific C-terminal domain of Chiffon interacts directly with Gcn5, while the 

conserved N-terminal domain of Chiffon binds Cdc7. 

Since Gcn5 is a component of all three of the SAGA, ATAC, and CHAT complexes in flies, and 

since Gcn5 binds the C-terminal domain of Chiffon, we wondered why Chiffon did not associate 

with either the SAGA or ATAC complexes (Fig. 1B, Table S1). To examine this question, we 

examined the interaction of each Ada2b isoform with all SAGA subunits except Nipped-A (Tra1) 

using yeast two-hybrid analysis (Fig. S3). Using this approach, we found that Ada2b-PB, but not 

Ada2b-PA, auto-activated when fused to the Gal4 DNA binding domain. This suggests that 

Ada2b-PB, but not Ada2b-PA, might interact with yeast transcriptional coactivators like SAGA to 

activate expression of the reporter genes in this assay. We also observed that Ada2b-PA 

interacted with the CHAT subunits Gcn5 and Ada3, and surprisingly also with the SAGA-specific 

subunit Spt7 (Fig. S3A). Further, Ada2b-PB fused to the Gal4 activating domain interacted with 

two additional SAGA-specific subunits that did not interact with Ada2b-PA: Spt3 and TAF12 

(Fig. S3B). These data suggest a model in which the unique C-terminal region of the Ada2b-PB 

isoform binds SAGA through Spt3 and TAF12, enhancing binding of Spt7 to the Ada2b-PB N-

terminal, which precludes Gcn5 binding to Chiffon (Fig. S3C). The Ada2b-PA isoform lacks the 

C-terminal region necessary for binding Spt3 and TAF12, preventing stable binding of Spt7 to 
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the N-terminal of Ada2b-PA, and instead enabling Gcn5 to bind Chiffon. This model is partially 

based on the observation that Ada2b-PA did not interact with Spt7 in our mass spectrometry 

data, even though it is capable of binding Spt7 by yeast two-hybrid. We further suggest that the 

Ada2b-PB C-terminal domain might also be capable of interacting with yeast SAGA, potentially 

via yeast Spt3 and TAF12. Although Ada2b-PA and Ada2b-PB interacted in one direction by 

yeast two-hybrid (Fig. S3B), our MudPIT data indicate that the Ada2b isoforms are not present 

in the same complex in vivo (Fig. 1B, Table S1). We conclude that the unique C-terminal 

regions of the Ada2b isoforms control protein-protein interactions that determine formation of 

the SAGA or CHAT complexes, and that the extended C-terminal domain in Ada2b-PB is 

necessary for SAGA formation (Fig. 3C). 

Chiffon is necessary for histone H3 acetylation in vivo 

Since the CHAT complex exhibits in vitro histone acetyltransferase activity against histone H3, 

we next asked if Chiffon was necessary for proper histone H3 acetylation in vivo. To do this, we 

used Drosophila ovary follicle cells in which specific regions of the genome undergo repeated 

bidirectional replication initiation to increase DNA copy number (Spradling and Mahowald, 

1980). Chiffon is necessary for gene amplification in these cells (Landis and Tower, 1999; 

Stephenson et al., 2015; Zhang and Tower, 2004). We generated somatic mosaics for the 

chiffonETBE3 null allele in ovaries using the FLP/FRT system and examined levels of different 

histone H3 acetyl marks by immunostaining. Notably, chiffonETBE3 mutant cells showed 

decreased levels of histone H3 acetylated at lysine 14 (H3K14ac) relative to the adjacent GFP-

positive cells (Fig. 4A). We also observed decreased levels of H3K9ac and H3K18ac, but not 

H3K23ac, in chiffonETBE3 mutant cells (Fig. 4B). H3K18ac levels were only modestly reduced in 

chiffonETBE3 clones, consistent with data showing that p300/CBP (nejire) is the major histone 

acetyltransferase for H3K18 in Drosophila and in mammalian cells (Jin et al., 2011; Tie et al., 

2009). H3K14ac levels within chiffonETBE3, but not control FRT40A, clones were reduced to 

~50% of the surrounding tissue (Fig. 4A, C). The nuclei in some chiffonETBE3 clones appeared 

slightly more condensed using DAPI staining, suggesting that the reduced histone acetylation 

could be due to decreased DNA content in these cells. However, we and others have previously 

shown that chiffon is not essential for endoreplication, which determines the ploidy of follicle 

cells (Landis and Tower, 1999; Stephenson et al., 2015; Zhang and Tower, 2004). Moreover, 

some H3 acetyl marks such as H3K23ac were not reduced in chiffonETBE3 clones (Fig. 4B). 

Together, these data demonstrate that Chiffon is required for full levels of histone H3 acetylation 

at lysines 9, 14 and 18 in vivo, suggesting that the CHAT complex contributes to bulk levels of 

7 



216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

histone H3 acetylation in flies. Interestingly, ada2b1 clones showed only slightly lower levels of 

H3K14ac (not significant) when compared to chiffonETBE3 clones, despite the fact that the ada2b1 

allele removes both Ada2b isoforms (Fig. 4A, C). This suggests that the CHAT complex, rather 

than SAGA, might contribute to the majority of histone H3 acetylation in ovary follicle cells. To 

test if CHAT was also required in other cell types for histone H3 acetylation, we compared 

H3K14ac levels in chiffonETBE3 and ada2b1 clones from imaginal discs. Similar to ovary follicle 

cells, most chiffonETBE3 and ada2b1 clones from imaginal discs showed decreased levels of 

H3K14ac (Fig. S4). Although some large chiffonETBE3 clones appeared to have little or no 

H3K14ac staining, other chiffonETBE3 clones showed only moderate decreases in H3K14ac more 

similar to those observed in ovary follicle cells. Notably, some chiffonETBE3 clones also appeared 

to contain fewer nuclei, suggesting that Chiffon might also contribute to cell number, potentially 

through DNA replication, in this cell type. While some ada2b1 clones showed only slight 

decreases in H3K14ac, other clones showed similar levels of H3K14ac to those observed in 

ada2b1 ovary follicle clones. Previous studies showed that mutations in the SAGA-specific 

subunit, wda, strongly reduced H3K9ac levels in Drosophila embryos (Guelman et al., 2006), 

suggesting that SAGA is necessary for full levels of histone H3 acetylation in embryos. It 

remains unclear whether SAGA and CHAT have overlapping or specialized functions with 

regard to histone H3 acetylation in Drosophila. However, our observation that the CHAT-specific 

Ada2b-PA isoform is sufficient to partially restore viability to ada2b null flies suggests that CHAT 

might compensate for some of SAGA’s essential functions during development. Overall, these 

data indicate that chiffon is required for histone H3 acetylation in vivo, and that the CHAT 

complex contributes to histone H3 acetylation in several tissues in flies. 

CHAT-mediated histone acetylation is not required for gene amplification 

Histone acetylation correlates with and contributes to localized replication at the amplified 

follicle-cell origins (Aggarwal and Calvi, 2004; Liu et al., 2012; McConnell et al., 2012). 

Moreover, mutations in chiffon eliminate gene amplification in follicle cells (Landis and Tower, 

1999; Stephenson et al., 2015; Zhang and Tower, 2004). Therefore, we asked if CHAT-

mediated histone acetylation was also necessary for gene amplification. As observed 

previously, chiffonETBE3 clones lack the characteristic BrdU-foci indicative of chorion gene re-

replication that are present in the wild-type cells adjacent to the clone or in the FRT40A control 

clone (Fig. 4A, D). To test if CHAT-mediated histone acetylation was required for gene 

amplification, we examined ada2b1 somatic ovary mosaics, which exhibit decreased levels of 

histone H3 acetylation similar to that observed in chiffonETBE3 mutant cells (Fig. 4A, C). In 
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contrast to chiffonETBE3 clones that lack detectable gene amplification, we observed multiple 

ada2b1 clones undergoing gene amplification (Fig. 4A, D). We note that there were more 

pyknotic nuclei in ada2b1 clones, suggesting that loss of both Ada2b isoforms increased cell 

death in follicle cells, potentially due to pleiotropic effects resulting from loss of both the SAGA 

and CHAT complexes. Supporting this, loss of ada2b in the germline cells of female flies results 

in arrested oogenesis and increased apoptosis, suggesting that proper histone acetylation is 

necessary for other aspects of egg development (Li et al., 2017). Despite this, these data 

suggest that Ada2b-PA, which is necessary for histone acetyltransferase activity of the CHAT 

complex, is not required for gene amplification. 

Since our MudPIT data and binding studies suggested that the N- and C-terminal domains of 

Chiffon interacted independently with Cdc7 and the CHAT complex respectively, we wondered if 

expression of these domains would restore either gene amplification or histone acetylation in 

chiffon mutants. To test this, we generated flies expressing either full-length Chiffon (1 - 1695aa, 

Chiffon-FL), or its N-terminal (1 – 375aa, Chiffon-N) or C-terminal (401 - 1695aa, Chiffon-C) 

domains. Each Chiffon construct was expressed under control of chiffon genomic regulatory 

elements from transgenes inserted in the third chromosome attP2 site (Fig. 5, methods). Both 

H3K14ac levels and gene amplification were restored in chiffonETBE3 mutant clones by 

expression of a single copy of full-length Chiffon (Fig. 4A, C, and D). In contrast, the N-terminal 

Chiffon transgene rescued gene amplification, but not histone acetylation in chiffonETBE3 clones. 

Further, the C-terminal Chiffon transgene partially rescued histone acetylation, but did not 

restore gene amplification in chiffonETBE3 clones. To our surprise, a full-length Chiffon transgene 

that contained a stop codon at position 376 (Chiffon-FL*), separating the N-terminal Cdc7-

binding domain from the C-terminal Gcn5-binding domain, fully restored both gene amplification 

and histone acetylation in chiffonETBE3 clones. Since histone acetyltransferases function 

redundantly to stimulate follicle cell gene amplification (McConnell et al., 2012), we cannot 

exclude the possibility that CHAT functions redundantly with other histone acetyltransferases to 

stimulate origin activity. Indeed, although bulk H3K14ac was reduced in chiffonETBE3 clones 

expressing the N-terminal Chiffon transgene, we observed residual H3K14ac foci that co-

localized with the BrdU foci in half of the images (five of the ten images) analyzed for acetylation 

in this genotype. We also observed H3K14ac foci that co-localized with the BrdU foci in some of 

the ada2b clones (three of the nine images), but these were much fainter than those present in 

chiffonETBE3 clones expressing the N-terminal Chiffon transgene. This suggests that other 

histone acetyltransferases target the amplified follicle-cell origins in the absence of CHAT, likely 

including SAGA. Thus, we conclude that the histone acetyltransferase activity of the CHAT 
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complex alone is not essential for the specialized gene amplification form of DNA replication 

that occurs in follicle cells. 

CHAT-mediated histone acetylation is essential for viability in flies 

To our surprise, a premature stop codon in one of the chiffon transgenes (Chiffon-FL*), that 

should have truncated the protein prior to the Gcn5-binding region, fully rescued histone 

acetylation in chiffon mutant cells. These data implied that there could be an internal translation 

start site within the single, large exon in the chiffon gene (Fig. 5). Indeed, we identified a 

potential consensus initiation codon sequence 393 aa from the end of the chiffon coding region, 

that would be expected to generate a ~43 kDa polypeptide. While chiffon has been reported to 

be dispensable for viability in flies, these conclusions were based largely on an allele containing 

a nonsense mutation at position 174, chiffonWF24 (Landis and Tower, 1999). This mutation 

disrupts the Cdc7-binding domain and results in viable flies with phenotypes indicative of 

partially disrupted DNA replication such as rough eyes and female infertility. Although these 

data suggested that the Cdc7-binding activity of Chiffon was not essential for viability in flies, we 

wondered if this was also the case for the CHAT complex. Because Ada2b-PA was sufficient to 

partially restore viability to ada2b mutants (Table 1), we hypothesized that the CHAT complex is 

essential for development in flies. 

To test this, we used CRISPR-Cas9 technology to generate a new null chiffon allele in which the 

entire chiffon coding region was replaced with a visible eye marker, 3xP3-DsRed (Fig. 5, 

chiffonDsRed). We then crossed these chiffonDsRed flies with the chiffonETBE3 null allele generated 

by Landis et al. (Landis and Tower, 1999), or the Df(2L)RA5 deficiency that spans the chiffon 

gene and removes several adjacent genes. Lethality in the chiffonETBE3 flies was previously 

attributed to a secondary mutation in the nearby cactus gene, which is also missing in the 

Df(2L)RA5 deficiency. However, we found that combinations of any of these three chiffon alleles 

resulted in complete adult lethality (Table 2). We then expressed single-copy chiffon rescue 

transgenes expressing full-length Chiffon (Chiffon-FL) with or without the chiffonWF24 mutation 

(174Q>X). If the chiffon rescue transgene fully restored Chiffon function, we would expect to 

observe one third of adult progeny lacking the balancer chromosome. Moreover, we would 

expect that female adult progeny with restored Chiffon function would be fertile due to 

restoration of Chiffon activity in ovary follicle cells. Indeed, expression of the wild-type full-length 

Chiffon transgene fully restored both viability and female fertility in all three allele combinations 

(Table 2). Moreover, similar to Landis et al., the Chiffon-FLWF24 transgene fully restored viability, 

but not female fertility, in the chiffonDsRed/chiffonETBE3 progeny; similar results were observed with 
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the other chiffon allele combinations. Thus, the chiffonWF24 mutation, which disrupts the Cdc7-

binding domain of Chiffon, eliminates Chiffon function with respect to female fertility, but does 

not disrupt Chiffon’s role in adult viability. Next, we asked if expression of the Chiffon-C domain, 

which partially rescued histone acetylation in chiffon clones but did not restore gene 

amplification, could restore adult viability. Indeed, consistent with the observations for the 

Chiffon-FLWF24 transgene, expression of the Chiffon-C domain restored viability, although not to 

the same extent as Chiffon-FL, but the resulting females were infertile. In contrast, expression of 

the Chiffon-N transgene did not restore viability, even though this transgene did rescue gene 

amplification in chiffon clones (Fig. 4A, D). Further supporting the possibility that chiffon 

contains an internal translation start site, a full-length Chiffon transgene that contained a stop 

codon at position 376 (Chiffon-FL*), separating the N-terminal Cdc7-binding domain from the C-

terminal insect-specific region, fully complemented both viability and fertility in chiffon mutants. 

Thus, we asked if the Cdc7- and Gcn5-binding domains of Chiffon could function in trans. To 

test this, we expressed single copies of the Chiffon-N and Chiffon-C in combination, and found 

that this fully restored both viability and female fertility to chiffon mutants (Table 2). These data 

demonstrate that Chiffon, like Ada2b-PA, is essential for viability in flies. Moreover, the essential 

function of Chiffon relates to its histone acetyltransferase activity rather than Cdc7 activation. 

Our genetic observations support the possibility that chiffon is a dicistronic gene that encodes 

two distinct polypeptides; although this type of gene structure is relatively rare in Drosophila, 

there are several examples of dicistronic genes in flies including stoned and Adh (Andrews et 

al., 1996; Brogna and Ashburner, 1997; Komonyi et al., 2009). The coding sequence for the 

1695 aa Chiffon protein encoded by the RD or RB transcripts lies within a single exon (Fig. 5) 

and northern analysis previously identified a single 6.5kb chiffon transcript (Landis and Tower, 

1999), suggesting that alternative splicing is unlikely to account for our observations. To test if a 

C-terminal product was generated from either of the Chiffon transgenes that contained 

premature stop codons, we immunoprecipitated the Chiffon-FL* and Chiffon-FLWF24 proteins via 

their C-terminal FLAG epitope tags, and performed western blotting with FLAG antibodies. We 

observed a ~ 48 kDa product that was recognized by FLAG antibodies in both the 

immunoprecipitations from Chiffon-FL* and Chiffon-FLWF24 lysates, but not from untagged 

embryo lysates (Fig. 6A). Further, both Chiffon-FL* and Chiffon-FLWF24 co-immunoprecipitated 

Gcn5, suggesting that the C-terminal product expressed by these transgenes interacted with the 

CHAT complex. Thus, the Chiffon C-terminal domain nucleates CHAT formation, can be 

expressed from an alternative translation start site in the chiffon gene, and is essential for 

viability in Drosophila (Fig. 6B). 
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DISCUSSION 

Here we show that the Drosophila Dbf4 homolog chiffon is a dicistronic gene that encodes two 

distinct polypeptides from alternative translation start sites. Chiffon’s two activities can be 

separated genetically; its N-terminal domain binds Cdc7 and its C-terminal domain binds the 

histone acetyltransferase Gcn5 (Fig. 6B). The interaction between Chiffon and Gcn5 forms the 

CHAT complex that is required for histone H3 acetylation and viability in flies. Thus, in addition 

to the Gcn5-containing SAGA and ATAC complexes, flies contain a third Gcn5-containing 

complex: CHAT. The CHAT complex is not present in yeast or human cells, and is likely to be 

specific to insects because it is nucleated by Chiffon’s insect-specific C-terminal domain. Our 

mass spectrometry data suggest that most Chiffon interacts in a mutually exclusive manner with 

Cdc7 and CHAT, and transgenes that separate the N- and C-terminal domains of chiffon fully 

restore both functions. Thus, our data demonstrate that the DDK and CHAT complexes function 

independently in DNA replication and histone acetylation respectively. 

What might be the function of this CHAT complex in flies? Gcn5 and another histone 

acetyltransferase, Esa1, stimulate DNA replication in yeast in vitro (Kurat et al., 2017). In 

addition, several histone acetyltransferases work together to stimulate follicle cell amplification 

in Drosophila (McConnell et al., 2012). However, our work argues against a role for the CHAT 

complex in DNA replication; although we cannot exclude the possibility that the CHAT complex 

functions redundantly with other histone acetyltransferases to stimulate DNA replication, CHAT 

is not essential for gene amplification in follicle cells. Since SAGA is required for proper gene 

expression in flies, and because the CHAT-specific Ada2b-PA isoform can restore viability to 

ada2b mutants, we propose that CHAT, like the SAGA and ATAC complexes, regulates gene 

expression in flies. In other organisms, Dbf4 levels fluctuate throughout the cell cycle to control 

activity of Cdc7 (Cheng et al., 1999; Oshiro et al., 1999): Dbf4 protein levels correlates with 

Cdc7 activity and increase at the G1-S transition, peak in S phase, and then become low during 

G1 phase when Dbf4 is degraded by the anaphase-promoting complex (Cheng et al., 1999; 

Oshiro et al., 1999). One possibility in flies is that Chiffon levels are also cell cycle regulated, 

and if so, CHAT complex expression could be controlled by Chiffon levels, potentially peaking in 

S phase. Thus, the DDK and CHAT functions of chiffon could have evolved as part of the same 

gene structure to coordinate DNA replication with expression of CHAT-target genes during the 

cell cycle in insects. 

Although Dbf4 did not interact with Gcn5 in yeast or in human cells, some observations support 

a potential role for Dbf4 in gene expression in these organisms. For example, the C-terminal 
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domain of human Dbf4 (ASK) binds the chromatin-associated protein Lens epithelium-derived 

growth factor (LEDGF), which is associated with the MLL histone H3 methyltransferase complex 

(Hughes et al., 2010; Yokoyama and Cleary, 2008). Further, the C-terminus of yeast Dbf4 binds 

forkhead transcription factors (Fang et al., 2017). In addition, DDK phosphorylates Thr45 of 

histone H3 in budding yeast (Baker et al., 2010), demonstrating a direct role for DDK complexes 

in chromatin modification. Thus, while the CHAT complex might be specific to insects, Dbf4 

orthologs could have a more general role in gene expression in addition to their essential DNA 

replication activity. 

One unusual feature of Chiffon in flies is that its Cdc7-binding activity is dispensable for viability. 

Loss of either Dbf4 or Cdc7 disrupts DNA replication and mitosis in organisms from yeast to 

mammals, leading to growth defects and/or cell death (Labib, 2010). In flies, Cdc7 is also an 

essential gene (Stephenson et al., 2015), and recent work showed that Cdc7 is required for 

early embryonic nuclear cycles, consistent with its essential role in DNA replication (Seller and 

O'Farrell, 2018). However, our data show that Chiffon’s Cdc7-binding activity is not essential for 

DNA replication or viability in flies, although it is required for follicle cell gene amplification in the 

ovary. These conclusions are consistent with the previous findings of Landis et al., and are in 

stark contrast to the absolute requirement of Cdc7 and Dbf4 for DNA replication and cell viability 

in organisms from yeast to vertebrates (Labib, 2010; Landis and Tower, 1999). Despite this, 

chiffon is essential for development in flies but this is due to a requirement for the CHAT 

complex, likely due to its role in histone acetylation. Thus, our studies here raise the question of 

how Drosophila Cdc7 can function in the absence of its Dbf4 regulatory partner, since flies do 

not have any other detectable sequence homolog for Dbf4. While budding yeast possess only 

one homolog for Dbf4 and Cdc7, several organisms possess paralogs of DDK subunits with 

specialized functions in meiosis and development. In particular, the vertebrate Dbf4B paralog 

has specialized roles in early embryogenesis (Collart et al., 2017; Montagnoli et al., 2002; Silva 

et al., 2006; Yoshizawa-Sugata et al., 2005). If Chiffon, like Dbf4B, has a more specialized 

developmental role in DNA re-replication in ovary follicle cells, then our data suggest that there 

might be an alternative mechanism to regulate Cdc7 activity in flies. 

MATERIALS AND METHODS: 

Affinity purification, MudPIT analysis and histone acetyltransferase assays 

Tandem FLAG-HA affinity purification and MudPIT analysis was conducted from stable 

Drosophila S2 cell lines as described previously (Stegeman et al., 2016). TAP purifications from 

S. cerevisiae was performed as described previously (Lee et al., 2004). To estimate relative 
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protein levels, distributed Normalized Abundance Factors (dNSAFs) were calculated for each 

non-redundant protein or protein group (Zhang et al., 2010). Briefly, shared spectral counts 

(sSpC) were distributed based on spectral counts unique to each protein (uSpC). Histone 

acetyltransferase assays were performed as previously described (Stegeman et al., 2016) using 

Flag-purified complexes and HeLa core histones or human histone H3 peptide (K5 - K23) as 

substrate.  

Fly stocks and genetics 

Genotypes for flies used in this study are described in Table S2. The chiffonETBE3 (Landis and 

Tower, 1999) and ada2b1 (Qi et al., 2004) null alleles were used for somatic mosaic analysis. 

The null ada2b1 and ada2b842 (Pankotai et al., 2013) alleles that disrupt both Ada2b isoforms 

were used to assess adult survival. Ada2b rescue transgenes contain genomic ada2b enhancer 

sequences that begin -1878 bp from the transcription start site and extend +1782 bp to the end 

of the second exon. The alternative exon 3 and 4 sequences for each Ada2b isoform are fused 

directly to the 3′ end of exon 2. Constructs were generated in the pCa4B vector with the addition 

of the Adh 3′ UTR and polyadenylation signal sequences from the pRmaHa3 vector. Transgenic 

flies were generated using the phiC31 site-specific integration system in the attP40 site on 

chromosome 2L. Chiffon rescue transgenes contain genomic chiffon enhancer sequences that 

span -3480 bp relative to the translation start site of the chiffon-RD transcript, and include the 

chiffon 3 ′UTR sequences that extend 1056 bp past the stop codon of the chiffon-RD transcript. 

Chiffon domain constructs encode the indicated number of amino acids relative to 1695aa full-

length Chiffon based on the chiffon-RD transcript. Chiffon constructs were N and C-terminally 

epitope-tagged with 2xHA and FLAG respectively. Transgenic flies were generated in the attP2 

site on chromosome 3L. The chiffonDsRed allele was generated using CRISPR-Cas9 technology 

(Gratz et al., 2014). The following guide RNAs were used to target the chiffon 5088 bp exon for 

replacement: 5' GGAGGGAAACTTTATAGGAGTGG 3' and 5' 

GATGATGATTAGATGACACAGGG 3'. Flanking regions immediately upstream and 

downstream of the chiffon coding region (chiffon-RD) were cloned into the flyCRISPR vector 

pHD-DsRed-attP and used as a template for homologous recombination. Flies expressing 

DsRed were selected, and the insertion position of the 3xP3-DsRed-attP cassette was 

confirmed by PCR and sequencing. The chiffonETBE3 allele was also confirmed by PCR and 

sequencing. The genomic positions of the regions deleted in each chiffon allele are: chiffonDsRed 

chr2L, 16344356 – 16349852; and chiffonETBE3 chr2L, 16344400 – 16351631. 

Immunohistochemistry 
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Somatic clones were induced in egg chambers, and ovaries were dissected from adult females 

at 3 days post-eclosion, labeled with 5-bromo-2-deoxyuridine (BrdU), fixed, immunostained with 

anti-BrdU (BD Pharmingen, mouse) and either anti-H3K14ac (#07-353, Millipore, rabbit, 1:100), 

anti-H3K9ac (#Ab10812, Abcam, rabbit, 1:500), anti-H3K18ac (#Ab1191, Abcam, rabbit, 1:400) 

or anti-H3K23ac (#Ab47813, Abcam, rabbit, 1:700) antibodies, followed by Alexa568 and Alexa633 

secondary antibodies (LifeTechnologies), and imaged as described previously (Stephenson et 

al., 2015). H3K14ac levels were quantified for 10 – 30 nuclei in each clone relative to a similar 

number of nuclei from the surrounding wild-type region of the tissue (GFP-positive). Acetylation 

levels were determined as average sum intensity values for nuclear-localized fluorescence 

using NIS-Elements Analysis software. Acetylation levels were quantified for four individual 

frames from a z-stack image of each egg chamber. These four frames were selected based on 

those images that contained the brightest H3K14ac signal in the wild-type region (GFP-positive) 

of the egg chamber. Somatic clones were induced in imaginal discs by heat shock for 30 min at 

37°C 72h after egg laying. Imaginal discs were dissected from wandering third instar larvae and 

immunostained with anti-H3K14ac. 

Phylogenetic Analysis 

The following protein sequences were aligned using Clustal Omega (Sievers et al., 2011) and 

used to generate a neighbor-joining phylogenetic tree, which was plotted using phytools in R: 

Bos taurus XP_024836692.1 and XP_015324178.1, Canis lupus familiaris XP_532451.2 and 

XP_022278602.1, Homo sapiens NP_006707.1 and NP_663696.1, Gallus gallus 

XP_004939326.1 and XP_004948536.1, Xenopus laevis ABB16337.1 and BAC76421.1, Mus 

musculus NP_001177646.1, Ceratitis capitata XP_004521831.1, Lucilia cuprina 

XP_023301579.1, Drosophila melanogaster AAD48779.1, Camponotus floridanus EFN62957.1, 

Pogonomyrmex barbatus XP_011633258.1, Linepithema humile XP_012229084.1, Apis 

mellifera XP_016770645.1, Apis florea XP_003693265.1, Tribolium castaneum 

XP_008197891.1, Schizosaccharomyces pombe CAA19117.1 and CAB39799.1, Aspergillus 

nidulans AAD01519.1, Saccharomyces cerevisiae NP_010337.3, Eremothecium gossypii 

NP_986462.1, Kluyveromyces lactis XP_455609.1. 

Yeast two-hybrid assay 

Yeast two-hybrid analysis was performed with the Matchmaker Gold Yeast two-hybrid system 

as per the manufacturers’ instructions (Clontech). Three independent transformed colonies were 

replica plated on the different selective media for each interaction tested. 
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Co-immunoprecipitation and western blotting analysis 

Recombinant proteins (500 ng) were incubated with glutathione-sepharose (#16100, Thermo 

Scientific) in the following buffer: 50 mM Tris pH 8.0, 150 mM NaCl, 0.1% NP-40. Embryo 

lysates (4 mg protein) were immunoprecipitated using FLAG-agarose in the following buffer: 50 

mM Tris pH 8.0, 300 mM NaCl, 0.5% NP-40, 10% glycerol. C-terminally FLAG-tagged DBF4A, 

DBF4B or pENTER empty vector control (#CG801040, #CH874659, #P100001, Vigene 

Biosciences, Rockville MD) were transiently transfected into human embryonic kidney (HEK) 

293T cells, and nuclear lysates (1 mg protein) immunoprecipitated using Flag M2 antibodies 

and Protein-G Dynabeads in the following buffer: 50 mM Tris pH 8.0, 150 mM NaCl and 0.2% 

IPEGAL with PMSF, aprotinin, leupeptin and pepstatin. The following antibodies were used for 

western blotting analysis: GST (#PC53, Millipore, rabbit, 1:1000), His-HRP (#MA1-21315, 

Invitrogen, mouse, 1:1000), FLAG-HRP (#A8592, Sigma, mouse, 1:5000), Drosophila Gcn5 

(rabbit, 1:3000) (Kusch et al., 2003), Flag M2 (Sigma; 1:1000), human CDC7 (#Ab108382, 

Abcam, 1:1000), human PCAF (#Ab12188, Abcam, 1:500), human GCN5 (#Ab153903, Abcam, 

1:1000). HEK293T cells were obtained from the American Type Culture Collection (ATCC) and 

were tested for mycoplasma contamination using the MycoAlert Mycoplasma Detection Kit 

(Lonza). 
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662 FIGURE LEGENDS: 

Figure 1. Identification of a novel Chiffon-Gcn5 complex in Drosophila. (A) The ada2b 

gene encodes two splice isoforms, Ada2b-PA and Ada2b-PB, resulting from alternative use of 3′  

splice acceptor sites in exon 3 (splice site, SS) that generate a frame-shift following amino acid 

330 (*, stop codon). Ada2b isoforms differ only in their highlighted C-terminal regions (red/blue). 

(B) Heat map showing the relative spectral abundance of SAGA subunits, Chiffon, and Cdc7 

expressed as distributive normalized spectral abundance factor (dNSAF) in tandem FLAG-HA 

purifications from S2 cells using the indicated bait proteins (N/C epitope tag shown in brackets). 

Control 1, untagged; Control 2, CG6459 (non-specific bait). Bait proteins new to this study are 

highlighted in red. The dNSAF scale represents abundance of subunits on a scale from yellow 

(high) to blue (low) with subunits that were not identified shown in white. dNSAF values used to 

generate the heat map are provided in Table S1. The number of spectra specific to each protein 

isoform (distributed spectra, dS) are shown in each box. Data for each bait protein represent 

sum of two technical MudPIT experiments. (C) The histone acetyltransferase activity of FLAG-

purified CHAT (via Ada2b-PA or Chiffon) or SAGA (Ada2b-PB) complexes containing equivalent 

amounts of Gcn5 as determined by western blot with anti-Gcn5 antibody (left panel) were 

assayed using core histones as substrate. Incorporation of 3H-acetyl CoA was assayed by 

fluorography (right upper panel) and the migration of histone H3 was determined by Coomassie 

staining (right lower panel). The negative control lane consists of histones and 3H-acetyl CoA 

with no complex added. (D) Histone acetyltransferase activity of the indicated complexes was 

quantified by scintillation counting of 3H-acetyl CoA incorporated into core histones or H3 tail 

peptides as in panel C. Mean ± s.d. is shown for 3 independent histone acetyltransferase 

assays relative to no complex control. (E) Heat map showing the percentage of total spectra 

mapping to each region of full-length Chiffon (1695aa) purifications using the indicated bait 

proteins as in panel B. The conserved Dbf4 N and C motifs in Chiffon are indicated by the grey 

shaded boxes. 

Figure 2. The insect-specific C-terminal domain of Chiffon directly binds Gcn5. (A) Yeast 

two-hybrid assay was performed to test the pair-wise interaction of each CHAT subunit with 

Chiffon. The Gal4 activating domain (AD) was fused to Cdc7, Gcn5, Ada3, Sgf29 or Ada2b-PA, 

and the Gal4 DNA binding domain (DBD) was fused to either the N-terminal (1 – 400aa) or C-

terminal (1243 – 1695aa) domains of Chiffon. Empty plasmids expressing only the AD or DBD 

were used to test for auto-activation of each protein. Three independent transformed yeast 

colonies were patched on media lacking leucine and tryptophan to test for presence of the AD 
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and DBD plasmids, and on media lacking leucine, tryptophan, adenine and histidine to test for 

interaction. (B) Glutathione-sepharose pull-down of recombinant GST-Gcn5 and the C-terminal 

domain of Chiffon (1400 – 1695aa) tagged with His followed by western blotting with antibodies 

against GST and His. Representative data from 3 experiments are shown. (C) Phylogenetic tree 

constructed using Neighbor-Joining method showing Dbf4 homologs from fungi, insects and 

vertebrates based on Clustal-Omega multiple sequence alignment of full-length proteins. 

Shading represents protein length (amino acid, aa). 

Figure 3. Dbf4 does not bind Gcn5 in yeast or humans. (A) Table showing proteins identified 

in Chiffon and Dbf4 purifications from Drosophila melanogaster (tandem FLAG-HA) or 

Saccharomyces cerevisiae (TAP-tagged). Sequence coverage (percentage) and number of 

spectra are shown for each protein. (B) FLAG-tagged human DBF4A or DBF4B were 

immunoprecipitated from HEK293T cell extracts using FLAG antibodies, and analyzed by 

western blotting using the indicated antibodies. Control, empty vector. Representative data from 

3 experiments are shown. (C) Schematic showing subunit composition of the SAGA, CHAT and 

DDK complexes. Interactions between subunits are based on the yeast two-hybrid analysis from 

Fig. S1 and Fig. S3, which suggest that Ada2b-PB binds Spt3 and TAF12 via its unique C-

terminal domain to nucleate SAGA formation. In contrast, CHAT formation is nucleated by the 

binding of Chiffon’s C-terminal to Gcn5, which precludes association of other SAGA subunits. 

Chiffon interacts with Cdc7 via its N-terminal domain to form the DDK complex, and the DDK 

and CHAT complexes appear to be largely separate in vivo. 

Figure 4. Chiffon is necessary for histone H3 acetylation in vivo. (A) Mosaic egg chambers 

were generated using the FLP/FRT system for chiffonETBE3 and ada2b1 , their respective controls, 

FRT40A and FRT82B, and for chiffonETBE3 clones expressing single copies of the indicated 

Chiffon rescue transgenes. Maximum intensity projection images showing BrdU incorporation, 

α-H3K14ac and DAPI staining from amplification-stage egg chamber follicle cells containing 

representative clones, marked by the absence of GFP and outlined in white. Scale bars, 20 μm. 

(B) Mosaic egg chambers for chiffonETBE3 were examined for H3K9ac (n = 5), H3K18ac (n = 6) 

or H3K23ac (n = 7) as in panel A. Representative images are shown for each histone 

modification. (C) Boxplots showing relative H3K14ac levels in mutant clones versus GFP-

positive control regions. 10 - 30 nuclei were quantified per region for 9 - 10 independent animals 

(red dots indicate clone analyzed from individual animal; X, mean). p-values for the indicated 

comparisons were determined by ANOVA + Tukey-HSD; ns, not significant. (D) The percentage 

of clones undergoing gene amplification (BrdU-positive foci) in amplification-stage egg 
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728 chambers from the indicated genotypes was determined. Several genotypes showed clones that 

were composed entirely or partially of pyknotic nuclei, which did not undergo gene amplification. 

The number of independent animals and clones examined for each genotype is shown above 

the plot (animal/clones). 

Figure 5. Map of chiffon gene structure. Schematic of chiffon locus showing nearby genes 

including cactus. The gene structure for chiffon is shown in the inset shaded box as coding 

sequences (black boxes), untranslated regions (grey boxes), and introns (lines). There are three 

annotated splice isoforms for chiffon: RA encodes a 1711aa protein, RB and RD encode 

1695aa proteins from a single ~5kb exon. An overlapping gene, CG42231, shares a promoter 

with chiffon but differs in its reading frame and encodes a separate polypeptide. The genomic 

regions deleted/mutated in each of the indicated chiffon alleles (chiffonDsRed, chiffonETBE3 , and 

chiffonWF24) are shown by the dotted arrows. The chiffon rescue transgenes are shown by the 

black boxes at the base of the panel. Rescue constructs contain the indicated chiffon 5' and 3' 

regulatory regions (black boxes) and the chiffon coding sequences. The conserved Dbf4 N-

terminal domain and C-terminal insect-specific Gcn5-binding domain are indicated by the 

shaded boxes overlaying the rescue constructs, and the position of each nonsense mutation in 

the rescue constructs is indicated by an asterisk. 

Figure 6. An internal translation start site in chiffon expresses a C-terminal product that 

binds Gcn5. (A) C-terminally FLAG-tagged Chiffon-FL* or Chiffon-FLWF24 transgenes, that 

contain premature stop codons at amino acids 376 or 174 respectively, were 

immunoprecipitated from embryo lysates using FLAG antibodies. Co-immunoprecipitated 

proteins were analyzed by SDS-PAGE and western blotting with antibodies against FLAG 

(Chiffon) and Gcn5. *, non-specific bands present in w1118 control. Representative data from 3 

experiments are shown. (B) Schematic illustrating the two polypeptides encoded by chiffon. The 

first start codon encodes full-length Chiffon (1695aa) with the conserved Dbf4 Cdc7-binding 

domain in its N-terminal region. The N-terminal Chiffon product binds Cdc7, nucleates DDK 

formation, and is necessary for gene amplification. An alternative internal ribosome entry site 

generates a C-terminal product containing the insect-specific Gcn5-binding domain that 

nucleates CHAT formation, and is essential for histone acetylation, and development. Our data 

suggest that two mechanisms might control production of the alternative Chiffon products that 

nucleate DDK versus CHAT complex formation: (1) translational switching between cap-

dependent and IRES-dependent start sites; and/or (2) proteolytic cleavage of full-length Chiffon. 
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760 SUPPLEMENTAL FIGURE LEGENDS: 

Figure S1. The N-terminal domain of Chiffon interacts with Cdc7, and the C-terminal 

domain of Chiffon interacts with Gcn5. (A) Schematic showing the Chiffon domains tested by 

yeast two-hybrid analysis. The conserved Dbf4 N, M, and C motifs are indicated by shaded grey 

boxes. (B) Yeast two-hybrid assay was performed to test the interaction of the CHAT subunits 

Gcn5, Ada2b-PA, Sgf29, Ada3, and Cdc7 with different Chiffon domains. The Gal4 activating 

domain (AD) or the Gal4 DNA binding domain (DBD) were fused to the indicated proteins. 

Empty plasmids expressing only the AD or DBD were used to test for auto-activation of each 

protein (*, auto-activation). Cells were patched on media lacking leucine and tryptophan to test 

for presence of the AD and DBD plasmids, and on media lacking leucine, tryptophan, adenine 

and histidine to test for interaction. Three independent transformed yeast colonies were patched 

for each interaction tested. 

Figure S2. The C-terminal, Gcn5-binding domain of Chiffon shares regions of 

conservation within insect species. Insect Dbf4 homologs were aligned using Clustal Omega. 

The aligned region contains 1211 – 1695aa of Drosophila Chiffon, which includes the region 

that interacts with Gcn5 by yeast two-hybrid assay (1243 – 1695aa) and by co-

immunoprecipitation using recombinant proteins (1400 – 1695aa). Regions of potential 

conservation within insects are underlined in red. Dbf4 homologs from the following insect 

species were used to generate this alignment: Diptera: Drosophila melanogaster, Lucilia cuprina 

(Australian sheep blowfly) and Ceratitis capitata (Mediterranean fruit fly). Coleoptera: Tribolium 

castaneum (Red flour beetle). Hymenoptera: Apis mellifera (Western honey bee), Apis florea 

(Dwarf honey bee), Linepithema humile (Argentine ant), Pogonomyrmex barbatus (Red 

harvester ant), Camponotus floridanus (Florida carpenter ant). 

Figure S3. Ada2b isoforms interact with overlapping and distinct SAGA subunits. (A, B) 

Yeast two-hybrid assay was performed to test the interaction of Ada2b-PA or Ada2b-PB with the 

indicated SAGA subunits, Chiffon domains, and Cdc7. The Gal4 activating domain (AD) or the 

Gal4 DNA binding domain (DBD) were fused to the indicated proteins. Empty plasmids 

expressing only the AD or DBD were used to test for auto-activation of each protein (*, auto-

activation). We did not test Ada2b-PB/DBD in combination with other SAGA subunits by yeast 

two-hybrid because Ada2b-PB auto-activated when fused to the DBD; in contrast, Ada2b-PA did 

not auto-activate. Cells were patched on media lacking leucine and tryptophan to test for 

presence of the AD and DBD plasmids, and on media lacking leucine, tryptophan, adenine and 

histidine to test for interaction. Three independent transformed yeast colonies were patched for 
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793 each interaction tested. ND, not determined. (C) Model for differential binding of Ada2b isoforms 

with SAGA or CHAT. Both Ada2b isoforms bind Gcn5 and Ada3 and can interact with Spt7 by 

yeast two-hybrid; however, only Ada2b-PB associates with Spt7 in vivo. By yeast two-hybrid 

analysis, Ada2b-PB, but not Ada2b-PA, interacts with Spt3 and TAF12. We propose that Ada2b-

PB binds Spt3 and TAF12 via its unique C-terminal domain (highlighted in blue), stabilizing 

association of Spt7 with its common N-terminal domain. Binding of Spt3, TAF12 and Spt7 to 

Ada2b-PB promotes formation of SAGA and prevents Gcn5 from binding Chiffon, potentially via 

steric clashes. In contrast, Ada2b-PA does not interact with Spt3 or TAF12 because it contains 

an alternative C-terminal domain that lacks the necessary binding regions (highlighted in red). 

Although Ada2b-PA is capable of binding Spt7 via its N-terminal region, this association is 

destabilized in the absence of Spt3 or TAF12. Instead, in the absence of Spt7 binding, Gcn5 

interacts with the C-terminal of Chiffon and promotes CHAT complex formation. It is possible 

that Chiffon binding to Gcn5 might also prevent Ada2b-PA from binding Spt7. Notably, Ada2b-

PB, but not Ada2b-PA, auto-activates expression of the reporter genes when fused to the DBD, 

suggesting that the unique C-terminal domain of Ada2b-PB may also interact with yeast SAGA 

subunits. Although by yeast two-hybrid Ada2b-PA and Ada2b-PB showed an interaction in one 

direction (panel B, AD-Ada2b-PB + DBD-Ada2b-PA), we never observed peptide spectra for 

Ada2b-PA isoforms in Ada2b-PB purifications (Table S1), suggesting that this interaction does 

not occur in vivo. 

Figure S4. Chiffon is necessary for histone H3 acetylation in imaginal discs. Mosaic 

imaginal discs were generated using the FLP/FRT system for chiffonETBE3 (n = 10) and ada2b1 

(n = 3). Representative maximum intensity projection images for each allele showing α-

H3K14ac and DAPI staining from imaginal discs containing multiple clones, marked by the 

absence of GFP and outlined in white. Scale bars, 20 μm. 
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Allele 

combination 

Transgene 

(hemizygous) 

Balancer 

siblings 

Rescue 

flies 

Total 

flies 

χ2 Mean ± s.d. 

(n ≥ 4 crosses) 

Rescued 

female 

fertility 

ada2b1 

ada2b842 

No transgene 987 0 987 2.47E-109 0 ± 0% ND 

Ada2b-PA 726 202 928 7.77E-14 20.7 ± 5.2% Fertile 

Ada2b-PB 670 0 670 7.83E-75 0 ± 0% ND 

Ada2b-PA+Ada2b-PB 498 226 724 0.23 30.9 ± 4.2% Fertile 

818 Table 1. Flies carrying the indicated ada2b null alleles were crossed and the surviving adult 

819 progeny were scored for presence of the balancer chromosome (TM3). Adult progeny carried 

one copy of each indicated transgene. We would expect one third of adult progeny to lack the 

balancer chromosome if ada2b-/- flies expressing any of the hemizygous transgenes were 

viable. The mean percentage of rescued flies that lack the balancer chromosome +/- s.d. is 

presented for ≥ 4 independent crosses each with ≥ 100 scored flies; p-value, Chi-squared test. 

Chi-squared values that were not significantly different from the expected ratio of viable flies are 

highlighted in bold. Fertility was examined for rescued females; ND, not determined. 
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827 

Allele 

combination 

Transgene 

(hemizygous) 

Balancer 

siblings 

Rescue 

flies 

Total 

flies 

χ2 Mean ± s.d. 

(n ≥ 4 

crosses) 

Rescued 

female 

fertility 

chifDsRed

     chifETBE3 

No transgene 1060 0 1060 2.82E-117 0 ± 0% ND 

Chiffon-FL 618 300 918 0.67 33.0 ± 3.5% Fertile 

Chiffon-N 871 0 871 1.03E-96 0 ± 0% ND 

Chiffon-C 1027 279 1306 4.45E-20 21.6 ± 5.1% Infertile 

Chiffon-FLWF24 1010 462 1472 0.11 31.5 ± 1.6% Infertile 

Chiffon-FL* 1093 563 1656 0.57 34.0 ± 1.4% Fertile 

Chiffon-N + 

Chiffon-C 

556 251 807 0.18 31.4 ± 2.4% Fertile 

chifDsRed 

Df(2L)RA5 

No transgene 1095 0 1095 4.40E-121 0 ± 0% ND 

Chiffon-FL 1026 546 1572 0.24 34.7 ± 1.4% Fertile 

Chiffon-N 1103 0 1103 5.94E-122 0 ± 0% ND 

Chiffon-C 1420 443 1863 2.17E-18 23.7 ± 4.4% Infertile 

Chiffon-FLWF24 575 262 837 0.21 31.9 ± 3.6% Infertile 

Chiffon-FL* 852 402 1254 0.34 31.7 ± 3.5% Fertile 

chifETBE3 

Df(2L)RA5 

No transgene 1319 0 1319 1.92E-145 0 ± 0% ND 

Chiffon-FL 455 262 717 0.07 36.7 ± 3.9% Fertile 

Chiffon-N 820 0 820 3.67E-91 0 ± 0% ND 

Chiffon-C 1310 260 1570 3.90E-45 16.2 ± 5.4% Infertile 

Chiffon-FLWF24 544 236 780 0.07 30.2 ± 2.6% Infertile 

Chiffon-FL* 1172 357 1529 1.21E-16 23.5 ± 2.3% Fertile 

828 Table 2. Flies carrying the indicated chiffon null alleles were crossed and the surviving adult 

829 progeny were scored for presence of the balancer chromosome (CyO). Adult progeny carried 

one copy of each indicated transgene. We would expect one third of adult progeny to lack the 

balancer chromosome if chiffon-/- flies expressing any of the hemizygous transgenes were 

viable. The mean percentage of rescued flies that lack the balancer chromosome +/- s.d. is 

presented for ≥ 4 independent crosses each with ≥ 100 scored flies; p-value, Chi-squared test. 

Chi-squared values that were not significantly different from the expected ratio of viable flies are 

highlighted in bold. Fertility was examined for rescued females; ND, not determined. 
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