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ABSTRACT 

The histone acetyltransferase Gcn5 is conserved throughout eukaryotes where it functions as part of 

large multi-subunit transcriptional coactivator complexes that stimulate gene expression. Here, we 

describe how studies in the model insect Drosophila melanogaster have provided insight into the 

essential roles played by Gcn5 in the development of multicellular organisms. We outline the 

composition and activity of the four different Gcn5 complexes in Drosophila: the Spt-Ada-Gcn5 

Acetyltransferase (SAGA), Ada2a-containing (ATAC), Ada2/Gcn5/Ada3 transcription activator (ADA), 

and Chiffon Histone Acetyltransferase (CHAT) complexes. Whereas the SAGA and ADA complexes 

are also present in the yeast Saccharomyces cerevisiae, ATAC has only been identified in other 

metazoa such as humans, and the CHAT complex appears to be unique to insects. Each of these Gcn5 

complexes is nucleated by unique Ada2 homologs or splice isoforms that share conserved N-terminal 

domains, and differ only in their C-terminal domains. We describe the common and specialized 

developmental functions of each Gcn5 complex based on phenotypic analysis of mutant flies. In 

addition, we outline how gene expression studies in mutant flies have shed light on the different 

biological roles of each complex. Together, these studies highlight the key role that Drosophila has 

played in understanding the expanded biological function of Gcn5 in multicellular eukaryotes. This 

article is part of a Special Issue entitled: Gcn5: the quintessential histone acetyltransferase. 
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1. Introduction 

Chromatin provides a barrier to processes that require access to the underlying DNA such as 

transcription and replication [1,2]. The nucleosome is the repeating unit of chromatin, and is composed 

of a heterotetramer of histones H3 and H4 flanked by two histone H2A/H2B heterodimers [1,2]. 

Histones can be post-translationally modified, predominantly on the N-terminal tails of the histone 

proteins [1,2]. These histone marks provide binding sites for other proteins that “read” these post-

translational modifications, and can also potentially alter the nucleosome structure [1,3]. One of the first 

and most well studied histone modifications is acetylation, whereby an acetyl group is added to lysine 

residues often on the N-terminal tails of histones H3 and H4 [1]. Histone acetylation is generally 

associated with increased DNA accessibility because it stimulates chromatin remodeling [4]. Thus, 

histone acetylation usually correlates with, and contributes to active transcription [1,5]. Gcn5 was the 

first nuclear histone acetyltransferase (HAT) identified, first in Tetrahymena thermophila as described in 

this Special Issue by [cite Brownell and Allis article within special issue], and subsequently in the yeast 

Saccharomyces cerevisiae as outlined by [cite Winston article within current issue]. Gcn5 has since 

been characterized in a wide range of eukaryotes [plants: cite article within special issue; mammals: 

cite articles within special issue], and here we focus on how studies in the model insect species 

Drosophila melanogaster have provided insight into the expanded biological roles for Gcn5 in 

multicellular eukaryotes. 

The fruit fly Drosophila has been used as a model organism extensively for genetic studies and 

developmental biology [6]. The Drosophila genome shares 60% homology with humans, and about 

75% of the genes responsible for human diseases have homologs in flies [7,8]. Moreover, Drosophila 

possess homologs of nearly all of the key factors involved in chromatin modification and transcription, 

making the fruit fly a powerful model organism for studying chromatin biology [9]. In contrast to 

mammals, which often possess multiple paralogs of histone modifying enzymes, Drosophila usually 

encodes only a single gene for different histone modifying enzymes, providing a simpler genetic system 

in which to dissect biological functions of various chromatin-based processes [10]. The Drosophila life 

cycle takes place within 10 days under standard laboratory conditions, beginning with the hatching of 

an egg into a larval stage, followed by several larval molts, formation of a pupa, metamorphosis 

(transformation from an immature, larval form to the adult fly), and finally eclosion (emergence from the 

pupal case) into an adult fly [6]. In this review, we provide a historical perspective on the identification of 

the Drosophila Gcn5 complexes. First, we describe the composition of the Gcn5 complexes in 

Drosophila in comparison to the orthologous complexes in S. cerevisiae and human cells. Next, we 

outline the essential subunits for fly development based on studies in mutant flies, and describe a 

3 



 
 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

75

80

85

90

95

67 

68 

69 

71 

72 

73 

74 

76 

77 

78 

79 

81 

82 

83 

84 

86 

87 

88 

89 

91 

92 

93 

94 

96 

97 

98 

  

    

 

    

     

    

   

   

    

       

     

       

   

     

      

     

   

  

    

   

    

   

    

     

      

    

     

    

    

  

subset of representative mutant phenotypes that highlight specialized functions for each Gcn5 complex 

in development. Finally, we describe the genome-wide localization patterns and biochemical roles for 

each Gcn5 complex in gene expression and other chromatin-based processes, where this has been 

defined. Last, we briefly discuss Gcn5 complexes in other insect species, and provide an overview of 

outstanding questions for future studies. 

2. Gcn5 and its associated protein partners are conserved in Drosophila 

Immediately after the discovery that the Tetrahymena p55 HAT corresponded to S. cerevisiae Gcn5, it 

became clear that Gcn5 was conserved throughout eukaryotes: “it seems likely that the yeast 55-kDa 

polypeptide is conserved across a wide range of eukaryotes” [11,12]. Indeed, only three years later, the 

Allis group identified Gcn5 in the model insect species, Drosophila [13]. In contrast to humans, who 

possess two Gcn5 paralogs (PCAF and Gcn5) [14,15], there is only one Gcn5 homolog in Drosophila: 

Gcn5 (FBgn0020388, CG4107). The gene encoding Gcn5 was historically named pcaf in flies [16], but 

it has since been renamed gcn5 on FlyBase and in much of the recent literature; we refer to this gene 

as gcn5 throughout this review. Gcn5 shares the domains that are common to all Gcn5 homologs 

including its HAT catalytic domain (469 - 634aa), Gcn5-N-Acetyltransferase (GNAT) domain (514 -

598aa), and bromodomain (717 - 795aa) [13], which binds acetylated lysine (Figure 1) [17]. However, 

Drosophila Gcn5 shares higher similarity with both of the human Gcn5 paralogs than with S. cerevisiae 

Gcn5 (yGcn5). Moreover, Gcn5 contains a conserved N-terminal domain that is only found in metazoan 

Gcn5 homologs like human Gcn5 and PCAF [13]. It has been suggested that this N-terminal PCAF 

domain in human PCAF has E3 ubiquitin ligase activity [18], but this activity has not been demonstrated 

for human or Drosophila Gcn5 . 

In all organisms, Gcn5 associates with other proteins that are critical for both its activity and targeting. 

Although both S. cerevisiae and Drosophila Gcn5 can acetylate free histone H3 in vitro, they are unable 

to acetylate nucleosomal substrates on their own [13,19]. This lack of nucleosomal acetyltransferase 

activity is in contrast to human PCAF, which has been shown to acetylate nucleosomal substrates in 

vitro [15], and shares substantial homology with Drosophila Gcn5 (Figure 1). In S. cerevisiae, Gcn5 

associates tightly with two other proteins, Ada2 and Ada3, forming an heterotrimeric complex in vitro 

[20,21]. A third Gcn5-interacting protein, Sgf29, was later identified in S. cerevisiae [22,23]. Together, 

Gcn5, Ada2, Ada3, and Sgf29 constitute the core Gcn5 HAT module that is sufficient for nucleosomal 

histone acetylation [19] [cite Song Tan article within special issue for discussion of core Gcn5 HAT 

module]. Drosophila, like S. cerevisiae, has single homologs of Ada3 (FBgn0030891, CG7098) and 

Sgf29 (FBgn0050390, CG30390), which were readily identified by sequence comparisons with the S. 
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cerevisiae proteins (Table 1) [24–26]. In contrast, there are two paralogs of Ada2 in Drosophila: Ada2a 

(FBgn0263738, CG43663) and Ada2b (FBgn0037555, CG9638) [25–27]. Both Ada2a and Ada2b share 

a similar domain structure to S. cerevisiae Ada2, possessing conserved ZZ and SANT domains (Figure 

2) [25–27]. Ada2a also contains a C-terminal SWIRM domain that is present in S. cerevisiae Ada2 and 

human Ada2a and Ada2b [28]. In addition, there are two splice isoforms of Ada2b resulting from 

alternative usage of splice acceptor sites in the third exon: Ada2b-PA encoding a 418-aa protein 

(FBppp0081303, also referred to as Ada2bS) and Ada2b-PB encoding a 555-aa protein 

(FBppp0099776, also referred to as Ada2bL) [27]. These Ada2b splice isoforms are expressed at 

equivalent levels during different developmental stages in flies, and share both the ZZ and SANT 

domains, differing only in their C-terminal regions (Figure 2) [27]. The longer Ada2b-PB isoform 

contains the SWIRM domain in its unique C-terminal region, while the Ada2b-PA isoform lacks this 

domain (Figure 2). In flies, like in S. cerevisiae, the nucleosomal HAT activity of Gcn5 requires 

interactions with either Ada2a or Ada2b, and Ada3 [13,19,25]. Both Ada2 paralogs, Ada2a and Ada2b, 

are conserved in other multicellular eukaryotes including Arabidopsis and humans [26], providing an 

early hint that Gcn5’s association with other proteins might expand its biological role in multicellular 

organisms. 

3. Drosophila Ada2 proteins nucleate formation of distinct Gcn5 complexes 

Gcn5 resides within three different multi-subunit complexes in S. cerevisiae: the large, highly similar 

Spt-Ada-Gcn5 Acetyltransferase (SAGA) and SAGA-like (SLIK/SALSA) complexes, and the small 

Ada2/Gcn5/Ada3 transcription activator (ADA) complex [19,29,30] [cite Winston review within special 

issue]. The presence of multiple versions of Ada2 in flies suggested that Gcn5 might reside within 

additional complexes in Drosophila, and raised the question as to which version of Ada2 was present in 

each complex. During the first decade of the twenty first century, a series of studies led by the Boros 

and Workman groups revealed the existence of two large multi-subunit Gcn5 complexes in flies. In 

Drosophila, the Ada2b paralog (specifically the Ada2b-PB isoform) is present in the SAGA complex, 

similar to that found in S. cerevisiae [25,26,31]. In contrast, Ada2a resides within a Gcn5 complex that 

is not present in S. cerevisiae, the Ada2a-containing (ATAC) complex [24]. ATAC was first identified in 

Drosophila, and it has since been characterized in mammalian cells and appears to be widely 

conserved in multicellular eukaryotes [32]. More recently, an ADA-like complex was also identified in 

Drosophila [33], together with an insect-specific Gcn5 complex that contains the shorter Ada2b-PA 

splice isoform [34]. With the exception of the small ADA complex, which contains only the core HAT 

subunits, the Drosophila Gcn5 complexes each possess additional protein subunits that contribute to 

their unique biological activities. 
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3.1 SAGA 

The first of the Drosophila Gcn5 complexes to be identified, SAGA, is a large 2 MDa complex that 

contains 20 different protein subunits [25,26]. SAGA has been well characterized in S. cerevisiae where 

its subunits were historically first organized into four major modules: the HAT module (Gcn5, Ada2, 

Ada3, Sgf29), a deubiquitination module (DUB; Ubp8, Sus1, Sgf11, and Sgf73), the TATA binding 

protein-Associated Factor (TAF) module (Taf5, Taf6, Taf9, Taf10, and Taf12), and the Suppressor of 

Ty’s (SPT) module (Ada1, Spt3, Spt7, Spt8, and Spt20), with Tra1 originally being classified as a Spt 

protein, although it was not identified in the original genetic screen [35] . More recent structural studies 

have resulted in a re-organization of the subunits in the TAF and SPT modules into a structural core 

(Taf5, Taf6, Taf9, Taf10, Taf12, Spt7, Ada1, and Spt20), a TATA binding protein (TBP) binding module 

(Spt3 and Spt8), and a transcription factor (TF) binding module consisting only of Tra1 [23,36] [see 

Tora article within special issue for discussion of structural organization of SAGA]. The composition of 

the HAT and DUB modules remains unchanged from the original modular organization. Ubp8 within the 

DUB module provides SAGA with a second histone modifying activity, catalyzing deubiquitination of 

monoubiquitinated histone H2B (H2Bub1) [37,38] [see Mohan article within special issue for discussion 

of DUB module]. Drosophila SAGA (dSAGA) contains orthologs of all S. cerevisiae SAGA subunits with 

the exception of Spt8. In fact, no ortholog of the Spt8 gene is present in the genome of any metazoan 

organism [39]. A variant of SAGA, termed SLIK/SALSA, has been purified in S. cerevisiae, and 

contains a C-terminal truncated version of Spt7 and lacks Spt8 [30]. Although dSAGA, like 

SLIK/SALSA, lacks Spt8, the in vivo existence of SLIK/SALSA remains controversial because Spt7 can 

be cleaved at its C-terminus by the Pep4 protease in vitro, resulting in removal of the Spt8-binding 

domain and subsequent loss of Spt8 [40]. Moreover, the C-terminal domain that is absent from the 

SLIK/SALSA Spt7 variant is conserved in metazoan Spt7 [41,42], while the N-terminal bromodomain 

appears to be unique to S. cerevisiae Spt7 [43]. Below, we outline the composition of each module of 

dSAGA, and describe the subunits that differ from their S. cerevisiae counterparts. 

Although some dSAGA subunits could be identified by sequence similarity with their S. cerevisiae 

SAGA counterparts, mass spectrometry of affinity-purified SAGA complexes revealed incorporation of 

novel subunits that were not predicted by sequence comparisons with the S. cerevisiae SAGA 

components. The HAT module in dSAGA contains Gcn5, Ada3, and Sgf29, which are shared between 

all of the Drosophila Gcn5 complexes (Figure 3) [24–26,33,34]. Although initially both splice isoforms of 

Ada2b were presumed to be part of the SAGA complex, mass spectrometry of affinity-purified SAGA 

complexes demonstrated that only the longer Ada2b-PB splice isoform is part of the dSAGA HAT 

module [31,34]. Orthologs of all four DUB module subunits are also present in flies. The histone 

6 



 
 

   

         

    

      

   

       

        

   

    

     

     

       

       

   

     

     

    

   

    

      

     

    

     

    

    

       

    

    

        

       

    

      

     

    

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

deubiquitinase Ubp8 in S. cerevisiae corresponds to Nonstop in flies (FBgn0013717, CG4166), which 

was originally named for the axon targeting defect observed in nonstop mutants during neuronal 

development [44]. Both Nonstop and Sgf11 (FBgn0036804, CG13379) are necessary for 

deubiquitination of H2Bub1 in flies [45]. The last two DUB module subunits in flies are Ataxin 7 

(FBgn0031420, CG9866, the ySgf73 ortholog) and E(y)2 (FBgn0000617, CG6474, the ySus1 ortholog) 

(Table 1) [46–48]. In flies, like S. cerevisiae, several of the structural core subunits are shared between 

the transcription coactivator complex Transcription Factor II D (TFIID) and SAGA, namely E(y)1 (Taf9, 

FBgn0000617, CG6474), Taf10b (FBgn0026324, CG3069), and Taf12 (FBgn0011290, CG17358) 

[31,39]. However, other structural core subunits are unique to dSAGA and are not present in Drosophila 

TFIID. For example, the TAF5-like Wda (will decrease acetylation, FBgn0039067, CG4448), and TAF6-

like Saf6 (SAGA factor-like TAF6, FBgn0031281, CG3883), are specialized TAF paralogs that are 

present in SAGA but not in TFIID [31,49]. Similar specialization of TAF proteins has occurred in other 

metazoan organisms with incorporation of Taf5-like and Taf6-like subunits in mammalian SAGA [39] 

[see Timmers article within special issue for more discussion on TAF subunits shared by SAGA and 

TFIID]. Other SAGA subunits in flies are much more conserved, although with considerable variation in 

some dSAGA subunits at the sequence level compared to their S. cerevisiae counterparts. For 

example, although Tra1 (Nipped-A, FBgn0053554, CG33554), Ada1 (FBgn0051866, CG31866), Spt3 

(FBgn0037981, CG3169), and Spt7 (FBgn0030874, CG6506) were readily identified by sequence 

comparison with S. cerevisiae [49], Spt20 (FBgn0036374, CG17689) was not identified in flies until 

mass spectrometry of purified SAGA revealed the presence of this subunit [31]. Tra1/Nipped-A is the 

largest SAGA subunit (411 kDa in flies) and is shared with another transcriptional coactivator complex, 

the Tat interactive complex 60 kDa (TIP60; also known as the Nucleosome Acetyltransferase of H4 

(NuA4) complex), which also possesses HAT activity [39,50]. In contrast to the SAGA HAT module, 

which preferentially acetylates histone H3, TIP60/NuA4 acetylates histone H4 and H2A.Z [51,52]. Last, 

SAGA contains two spliceosomal proteins, Sf3b3 (FBgn0035162, CG13900) and Sf3b5 (FBgn0040534, 

CG11985), that are not present in S. cerevisiae SAGA despite the existence of S. cerevisiae homologs 

corresponding to these proteins (Rse1 and Ysf3) [53]. Sf3b3 and Sf3b5 are shared with the Sf3b 

complex, a component of the U2 small nuclear ribonucleoprotein (snRNP), which recognizes the 

branch point sequence to facilitate spliceosome assembly [54,55]. Both of these spliceosomal proteins 

are also present in hSAGA (Table 1) [39,41,56]. Overall, Drosophila SAGA resembles the human 

SAGA complex more closely than either of the S. cerevisiae SAGA or SLIK/SALSA complexes, 

possessing similar specialized Taf-like proteins and containing the two additional spliceosomal proteins. 

The presence of these additional subunits in the metazoan SAGA complex suggests that SAGA may 

have gained more specialized roles in gene expression in animals compared to S. cerevisiae. 
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Several recent studies have investigated the structure of SAGA, and have provided insight into how 

each SAGA subunit integrates into the complex as a whole. These studies are described in more depth 

in another article in this Special Issue by Tora, but are briefly described here to provide context for 

understanding the organization of Drosophila SAGA [cite Tora article within special issue]. In S. 

cerevisiae, Cryogenic Electron Microscopy (cryoEM) data revealed a existence of a central module 

containing the structural core and the TBP binding module subunits that forms flexible connections to 

the HAT and DUB modules, while the large Tra1 subunit exists as a separate module that can bind the 

activation domain of transcription factors [57–60]. In S. cerevisiae, the HAT module is anchored to 

SAGA by Ada3 binding to Taf6, and HAT module subunits are lost from SAGA when it was purified 

from Ada3 or Ada2 mutant S. cerevisiae [23,58,61]. Similarly, Sgf73 (Ataxin 7) anchors the DUB 

module to the S. cerevisiae SAGA complex, and DUB subunits are lost from SAGA purified from Sgf73 

mutant S. cerevisiae [62,63]. The DUB module requires Sgf73 for activity in S. cerevisiae [64], but in 

flies and plants, an enzymatically active DUB module can exist in the absence of the Sgf73 ortholog 

Ataxin 7 [47,65]. Notably, there is no ortholog of Sgf73/Ataxin 7 in Arabidopsis, suggesting that the 

DUB module may function independent of SAGA as the major H2Bub1 deubiquitinase [65] [cite 

Barneche article within special issue]. In human cells, the protease Caspase 7 has been shown to 

cleave ATXN7, which could potentially release a free DUB module from SAGA [66]. This mechanism 

may also exist in Drosophila, although it has not yet been demonstrated. Thus, an open question 

remains as to whether the biological functions attributed to the DUB module subunit in flies (see section 

6) are due to its role in SAGA or represent its independent activity These questions are discussed 

further by Mohan et al. in this Special Issue [cite Mohan article within special issue]. 

3.2 ADA 

Recently, the Workman group have also identified an ADA-like complex in flies [33]. In S. cerevisiae, 

ADA contains the HAT module and two additional proteins, ADA HAT component 1 and 2 (Ahc1 and 

Ahc2) [23,29]. Early biochemical studies suggested that an ADA complex might also exist in flies 

because a small Ada2b-containing complex was detected by glycerol gradients of Ada2b-containing 

complexes [26]. Indeed, recently Soffers et al. showed that there is an ADA complex in flies, which like 

SAGA contains the Ada2b-PB splice isoform [33]. In contrast to S. cerevisiae ADA, the Drosophila ADA 

complex does not contain subunits corresponding to S. cerevisiae Ahc1/2, which do not have sequence 

homologs in flies or humans (Table 2) [33]. Thus, the ADA complex in flies does not possess any 

unique subunits that can be used to genetically distinguish it from SAGA. 

3.3 ATAC 
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In addition to SAGA and ADA, flies also have an additional 820 kDa multi-subunit Gcn5 complex that is 

nucleated by the Ada2 paralog Ada2a: ATAC. Size-exclusion chromatography of the Drosophila Gcn5 

complexes provided an early hint that Ada2a and Ada2b resided in distinct complexes [25,26]. Indeed, 

three years after the identification of the Ada2a paralog, the 13 subunit ATAC complex was first 

characterized in flies, providing the foundation for studies on this Gcn5 complex in other organisms 

[24]. ATAC shares the core HAT module subunits (Gcn5, Ada3, and Sgf29) with SAGA. In addition to 

the HAT module subunits, nine ATAC-specific subunits exist in flies. Six of these ATAC subunits are 

also present in the mammalian ATAC complex: Atac1 (FBgn0031876, CG9200, human ZZZ3 ortholog), 

Atac2 (FBgn0032691, CG10414, the human CRBP2 ortholog), D12 (FBgn0027490, CG13400, the 

human YEATS2 ortholog), Mocs2B (FBgn0039280, CG10238, equivalent to both the human hMoaE 

and hMBIP proteins), NC2β (FBgn0028926, CG4185, the human NC2B ortholog), and Wds 

(FBgn0040066, CG17437, the human WDR5 ortholog) (Table 3) [67,68]. The human ortholog of Chrac-

14 (FBgn0043002, CG13399) has been detected in some human ATAC purifications [69], but was 

absent from others [70]. In contrast, two of the Drosophila ATAC subunits, Atac3 (FBgn0052343, 

CG32343) and Hcf (FBgn0039904, CG1710), appear to be specific to the fly ATAC complex and have 

not been detected in human ATAC [24,69,71]. Like SAGA, Drosophila ATAC contains a second histone 

modifying activity. The Atac2 subunit of ATAC contains a HAT domain, and Drosophila Atac2 

possesses HAT activity toward histone H4 and H2A in vitro and in vivo [68]. However, the human 

counterpart for Atac2 (CRBP2) does not possess detectable HAT activity toward histone H4, 

suggesting that Gcn5 is the only active HAT within the human ATAC complex [70,71]. Thus, 

Drosophila ATAC contains two distinct acetyltransferase enzymes: Gcn5 and Atac2 [68]. Less is known 

about the modular organization and structure of the ATAC complex compared with SAGA. However, 

ATAC contains several histone-fold domain proteins, NC2β, D12 and Chrac-14, which may play a 

structural role in ATAC similar to that involving the structural core subunits in SAGA. While Chrac-14 

and NC2β fail to form heterodimers, human YEATS2 (the Drosophila D12 ortholog) and NC2β interact 

via their histone-fold domains [68,69]. In addition, both Drosophila Chrac-14 and NC2β have the ability 

to form homodimers [68]. Wds also contains seven WD repeats, and this motif is often involved in 

protein–protein interactions (Figure 3). In humans, YEATS2 (the Drosophila D12 ortholog) and Atac2 

play a role in the integrity of the ATAC complex [69,70], suggesting that these subunits, together with 

Wds, Chrac-14 and NC2β, may play a central role in structural organization within the ATAC complex. 

Like SAGA, several ATAC subunits are shared with other chromatin modifying complexes. For example 

Chrac-14, Hcf, and Wds are also subunits of the COMPASS-like methyltransferase complexes, which 

are responsible for the bulk of di- and tri-methylation at histone H3K4 in Drosophila [72]. 
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3.4 CHAT 

Last, Drosophila possess a unique Gcn5 complex that appears to be specific to insects: the Chiffon 

Histone Acetyltransferase (CHAT) complex. Whereas the Ada2b-PB splice isoform is present in SAGA, 

the shorter Ada2b-PA splice isoform is not part of the SAGA, ADA or ATAC complexes [31]. Instead, 

Ada2b-PA nucleates formation of a fourth Gcn5 complex in flies that contains the shared HAT module 

subunits (Gcn5, Ada3, and Sgf29) together with a fifth protein, Chiffon (FBgn0000307, CG5813) (Table 

4, Figure 3) [34]. Chiffon is the Drosophila homolog of Dbf4, which binds and activates the Cdc7 kinase, 

forming the Dbf4-dependent kinase (DDK) complex [73]. DDK phosphorylates the Mcm2-7 helicase, 

activating the initial step in DNA replication [74–76]. In contrast to SAGA and ATAC, the CHAT complex 

is unlikely to exist in S. cerevisiae or humans, because Dbf4 does not co-immunoprecipitate with Gcn5 

in either of these organisms [34]. Moreover, Chiffon interacts with directly with Gcn5 via its C-terminal 

domain, and this region of the protein is not conserved outside of insects [34]. 

4. Substrate specificity of the Gcn5 complexes 

In general, the Drosophila Gcn5 complexes preferentially acetylate histone H3 in vitro and in vivo 

exhibiting the highest activity on K9 and K14 of both recombinant histone H3 peptides and nucleosomal 

substrates [24,33,34,77]. Although SAGA, ADA, and CHAT show this characteristic HAT activity toward 

histone H3, the presence of the second HAT in Drosophila ATAC expands its activity toward both 

histones H3 and H4 [24,68]. In fact, Drosophila ATAC shows strong specificity for histone H4 in 

nucleosomal substrates in vitro [68]. Moreover, mutations in Atac2 result in reduced global levels of 

acetylated H4K16 in fly embryos, and ada2a mutations decrease levels of acetylated H4K5, H4K12, 

and H4K16 in polytene chromosomes [68,78,79]. Depletion of Atac2 or Gcn5 from Drosophila cells by 

RNAi revealed that Gcn5 selectively acetylates histone H3, whereas Atac2 has a narrow but not 

absolute substrate preference for lysines on both H3 and H4 [80]. Other HATs have been shown to 

work together to deposit particular combinations of acetyl marks on chromatin; for example, CBP, 

MGEA5, and NAA10 act together to acetylate H4 on both K5 and K8 [80]. Similarly, Atac2’s preference 

for different lysine residues on histones H3 and H4 was modulated by the pre-existing acetylation 

pattern on those histones [80].These data suggest that both Gcn5 and Atac2 contribute to the 

expanded HAT activity of the ATAC complex, which is likely influenced in vivo by the activity of other 

HATs. 

Gcn5 specificity may be altered by its interaction with each Ada2 paralog because rescue experiments 

with hybrid Ada2 proteins showed that combining the unique C-terminal domain of Ada2a and Ada2b 
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with the N-terminal domain of the other Ada2 paralog was sufficient to rescue the respective mutants 

and restore histone acetylation patterns [81]. Notably, the two Ada2b splice isoforms also only differ in 

their C-terminal domains (Figure 2). Thus, the divergent C-terminal domains of the different Ada2 

paralogs and splice isoforms in Drosophila likely contribute to both the formation of the different Gcn5 

complexes and to the differences in HAT specificity of each complex. 

In addition to histones, Gcn5 acetylates a number of non-histone targets in flies, which expand the 

biological functions of the Gcn5 complexes. For example, Drosophila Gcn5 acetylates the chromatin 

remodeling ATPase subunit Imitation SWI (Fbgn0011604, CG8625, Iswi) at K753 both in vivo and in 

vitro [82]. This region in Iswi (747 – 756aa) is similar to the N-terminal domain of histone H3, 

suggesting that Gcn5 may recognize Iswi in a similar fashion to histone H3 [82]. Iswi is part of two 

nucleosome remodeling complexes in Drosophila: Nucleosome remodeling factor (NURF), and the 

Chromatin accessibility (CHRAC) complex [83]. However, the acetylated form of Iswi is only found in 

NURF, and is not present in the CHRAC complex [82]. Notably, as discussed in more detail in section 

7, mutations in the NURF subunit iswi or the ATAC subunit ada2a show similar phenotypes, and there 

is a genetic interaction between Ada2a and Iswi in flies [84]. These data suggest that in Drosophila, 

ATAC might target Iswi as a substrate for acetylation by Gcn5, although this has not been tested. In 

addition to Iswi, Drosophila Gcn5 has been shown to acetylate Transcription factor EB (TFEB; 

FBgn0263112, CG43369), the ortholog of Mtif in flies [85]. Gcn5 acetylates K445 and K450 in Mtif, 

inhibiting autophagy and lysosomal biogenesis [85]. Drosophila Gcn5 also acetylates the Cyclin A 

associated protein Adenomatous polyposis coli 2, Apc2 (FBgn0026598, CG6193) [86]. Acetylation of 

Apc2 promotes ubiquitination and degradation of Cyclin A, resulting in its turnover, which regulates the 

maintenance (both self-renewal and differentiation) of Drosophila germline stem cells [86]. More details 

about acetylation of non-histone substrates by Gcn5 across a variety of organisms including Drosophila 

are described in this Special Issue by [cite Downey article within special issue]. 

5. Gcn5 is essential for development in flies 

Although Gcn5 is not essential in for proliferation in S. cerevisiae, loss of one of the human Gcn5 

paralogs, Gcn5 (KAT2A), results in embryonic lethality [87,88]. Thus, the Gcn5 complexes appear to 

have an essential role in development in multicellular eukaryotes. To characterize the function of Gcn5 

in Drosophila, Antoniewski and colleagues generated several different null gcn5 alleles (Table 5). Loss 

of gcn5 blocks two critical stages in Drosophila development: oogenesis (egg development) and 

metamorphosis. In flies lacking Gcn5, oogenesis is arrested at stage 5 and 6, and zygotic gcn5 mutants 

die during the late third instar larval stage (Figure 4) [16]. Moreover, adults with hypomorphic gcn5 
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alleles show malformation of appendages such as abnormal elongated metathoracic twisted legs, and 

also exhibit a reduction in wing size and defects in wing-vein patterning, together with defects in cuticle 

formation [16]. In addition, null gcn5 mutants fail to form a puparium, one of the initial steps in 

metamorphosis, potentially due to defects in expression of genes that respond to the insect hormone 

ecdysone [16]. Notably, gcn5 mutants also exhibit severely reduced imaginal discs, suggesting that 

Gcn5 is required for cell proliferation in flies. Consistent with a potential role in cell proliferation, gcn5 

mutant imaginal discs showed a higher number of cells in S-phase, significantly more cells undergoing 

mitosis, and higher levels of apoptosis [16]. Mutations in another shared HAT module subunit, ada3, 

result in similar phenotypes to those observed in gcn5 mutants, with reduced size of imaginal discs and 

defects in oogenesis [89]. The small imaginal discs in the ada3 mutant led to the original name diskette 

[89], although this gene has since been renamed Ada3 on FlyBase. ada3 mutants also exhibit 

abnormal structure of polytene chromosomes; in particular showing changes in the banding pattern of 

the male X chromosome [89]. 

The severe developmental defects in gcn5 mutants are likely to result from the combinatorial loss of all 

four Drosophila Gcn5 complexes. However, the identification and analysis of mutants that specifically 

disrupt each of the four Gcn5 complexes in flies suggests that at least three of these Gcn5 complexes 

are essential for development in flies. For example, mutations in ada2a or ada2b both result in 

developmental lethality and oogenesis arrest (Figure 4) [27,77]. Further, mutations that disrupt the 

SAGA-specific subunits nonstop, sgf11, wda, taf10b, and saf6, or the CHAT-specific chiffon and ada2b-

PA subunits, also result in larval lethality (Table 5, Figure 4) [31,34,45,49,90]. Thus, SAGA, ATAC, and 

CHAT are essential for fly development. Unfortunately, ADA function cannot be separated genetically 

from SAGA in flies because both complexes share the Ada2b-PB isoform, and ADA contains no unique 

subunits in flies [33]. It should be noted that it remains unclear as to why mutations that disrupt different 

subunits of Gcn5 complexes result in lethality at different developmental stages (Figure 4). Some 

mutants may exhibit more severe defects and earlier lethality due to their function in complexes outside 

the Gcn5 complexes, such as sf3b5, which is present in both SAGA and the U2 snRNP [55]. In 

addition, there may be a different amount of maternally supplied gene product that allows some Gcn5 

complex mutants to survive to a later developmental stage. Germline mutants in several SAGA-specific 

mutants either fail to complete oogenesis, or cannot progress through embryogenesis (Figure 4), 

supporting the idea that maternally supplied gene product is required for these zygotic mutants to 

progress to a later stage in development. However, the level or stability of maternally supplied gene 

product for different Gcn5 complex subunits has not been examined in flies. Overall, the 

characterization of mutants that specifically disrupt SAGA, ATAC, or CHAT provides some insight into 
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the different roles of these complexes, and we outline specific biological functions of each complex in 

the following sections beginning with SAGA. 

6. SAGA is critical for developmental processes defined by its modules 

SAGA promotes transcription through both its catalytic activities and via interactions with the 

transcription machinery [91]. In Drosophila, SAGA colocalizes extensively with RNA polymerase II (Pol 

II) and is present at the both the promoter-proximal pause site of lowly expressed or highly regulated 

genes, and on the gene body of actively transcribed genes [92,93]. Although SAGA colocalizes with Pol 

II at most actively transcribed genes, gene expression profiling studies of SAGA mutants originally 

suggested that different SAGA modules might be required for transcription of particular subsets of 

genes [94]. For example, only a subset of the genes bound by SAGA in embryonic muscle were 

downregulated in sgf11 mutants, and these genes showed enriched expression in muscle and functions 

related to muscle development, suggesting a potential role for the SAGA DUB module in expression of 

tissue-specific genes [92–94]. However, in human cells SAGA acetylates histone H3K9 and 

deubiquitinates H2Bub1 on all expressed genes [95], suggesting a much broader role in regulating 

transcription. This broader role in transcription is consistent with the extensive colocalization of SAGA 

with Pol II in flies and in human cells [93,95]. Since many of the early gene expression studies on 

Drosophila mutants used microarray analysis approaches that may not have been able to detect global 

changes in transcription (Table 6), it is possible that a much larger group of genes requires SAGA for 

proper expression in flies. In addition, studies in S. cerevisiae suggest that global changes in 

transcription can be buffered by changes in mRNA stability [96–98], and most gene expression studies 

in flies have examined steady-state mRNA levels. Thus, the genes identified in the expression profiling 

experiments in SAGA mutants may represent those subsets of genes that are most sensitive to loss of 

particular SAGA activities. 

Despite the caveat that the gene expression profiling of SAGA mutants in flies may underestimate the 

number of genes regulated by SAGA, these studies have provided important insight into key 

developmental processes that require SAGA. Importantly, mutants that disrupt different modules of 

SAGA show different effects on gene expression, and exhibit specific developmental phenotypes. For 

example, mutations in ada2b disrupt oogenesis, whereas oogenesis progresses normally in ataxin 7 or 

nonstop mutants [92]. Moreover, genes involved in DNA replication, eggshell formation, and 

chromosome organization were significantly downregulated in ada2b oocytes, but did not change in 

ataxin 7 or nonstop mutants (Table 6) [92]. While the early zygotic genes are expressed properly in 

embryos that lack the maternal contribution for ataxin 7 and nonstop, these embryos show later defects 
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in cellularization and nuclear anchoring [92], suggesting that maternally contributed SAGA is required 

for proper development during embryogenesis. Interpreting these phenotypes is complicated by the 

recent finding that ada2b encodes two splice isoforms, only one of which is in the SAGA complex 

[31,34]; thus, ada2b mutants disrupt all three of the SAGA, ADA and CHAT complexes, making it 

difficult to distinguish as to which complex is required for oogenesis in flies (Figure 4). 

The disruption in eye development caused by mutations in SAGA’s DUB module provides a second 

example of how different activities of SAGA control development in flies. Although mutations that 

disrupt the DUB module such as sgf11 and nonstop are lethal during the late larval/early pupal stage of 

development (Figure 4), these mutants show characteristic defects in eye development in the late larval 

stage just prior to their death [44,45,99]. During the third larval instar, photoreceptor neurons in the 

developing eye imaginal disc project their axons to specific regions of the developing brain [99]. The 

SAGA subunit nonstop was first identified in a screen for genes involved in this photoreceptor axon 

targeting process [99]. Mutations in nonstop result in a failure of photoreceptor axons to project to their 

correct target layer in the developing brain, the lamina, instead mistargeting into the deeper medulla 

region [44]. This axon targeting defect is caused by loss of nonstop or sgf11 within the glial cells that 

mark the target layer in the lamina [44]. Transcriptome profiling of these glial cells from nonstop and 

sgf11 larval brains identified genes involved in axon guidance (Table 6) [100]. Moreover, RNAi 

knockdown or loss of function mutants in one of these DUB-regulated genes in glia, multiplexin 

(FBgn0260660, CG42543, Mp), resulted in axon targeting defects that were similar to those observed 

in sgf11 mutants, arguing that at least some of these DUB-regulated genes in glia control axon 

targeting [100]. Since ada2b mutants also show axon mistargeting phenotypes, albeit substantially 

weaker than those observed in nonstop or sgf11, the DUB module likely controls expression of these 

genes as part of the SAGA complex [45,100]. However, in flies the DUB module can bind to chromatin 

independently of SAGA’s HAT or structural core subunits [92], and loss of ataxin 7 results in decreased 

H2Bub1 levels due to promiscuous binding of the DUB module [47]. Genes involved in locomotion, 

organ morphogenesis, and eye and neuronal development were highly regulated by the DUB module 

[92], suggesting that it remains possible that the DUB module could control some aspects of eye 

development independent of SAGA. 

Third, analysis of mutations that disrupt the structural core and spliceosomal modules of SAGA 

suggests that like in S. cerevisiae, Drosophila SAGA can act as a transcriptional coactivator 

independent of its HAT or DUB activities [91]. In S. cerevisiae, Tra1 recruits SAGA to promoters 

through interactions with transcription factors [101], allowing Spt3 and Spt8 to interact directly with 

component of the transcription machinery such as TBP [102]. In flies, mutations in the structural core 
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subunit Saf6 result in defective expression of SAGA-regulated genes without altering global levels of 

acetylated histone H3 or H2Bub1 [31]. Likewise, mutations in the sf3b5 spliceosomal SAGA subunit 

result in decreased expression of SAGA-regulated genes independent of changes in histone acetylation 

[53]. Analysis of the relative levels of spliced and unspliced transcripts for genes that are 

downregulated in sf3b5 mutants shows that the decreased mRNA levels in sf3b5 mutants are not 

necessarily due to changes in splicing efficiency [53]. However, unlike other SAGA mutants, sf3b5 is 

required for cell viability in flies, most likely due to its role as part of the U2 snRNP [53,55]. It is unclear 

how Sf3b5 regulates gene expression as part of SAGA, although it is possible that it may mediate 

transient interactions between the transcriptional and splicing machinery, which share a common 

spatial and temporal distribution during the coupled processes of transcription and splicing [93,103] 

[see article by Rodriguez-Navarro within special issue for more discussion of moonlighting proteins in 

SAGA]. Together, these studies suggest that SAGA plays a fundamental role in fly development 

because it regulates the expression of genes that are required for processes such as oogenesis, 

metamorphosis, and neuronal development. However, fundamental questions remain as to whether the 

distinct roles of SAGA in particular developmental processes result from independent activity of 

particular modules or subunits. In addition, it is unclear as to whether SAGA has overlapping or distinct 

roles with the ADA and CHAT complexes that are also disrupted in ada2b mutants. Drosophila SAGA 

may also regulate a broader set of genes than indicated by past gene expression studies that have 

profiled steady-state mRNA levels and have not been able to detect global changes in active 

transcription. In S. cerevisiae, data suggests that SAGA regulates expression of all genes [95,98], while 

in human cells, SAGA deubiquitinates H2Bub1 on the transcribed region of all expressed genes, 

suggesting a widespread role in transcription regulation [95]. 

7. ATAC is a double HAT complex required for development 

The ATAC complex is exclusive to multicellular eukaryotes, suggesting a potential function unique to 

development in multicellular organisms. Mutations that disrupt subunits of ATAC show developmental 

lethality during the larval or pupal stages (Table 5, Figure 4). For example, ada2a mutants die during 

the pupal stage, and Ada2a is also essential for oogenesis [77]. In addition, mutant flies that lack hcf, 

wds, atac3, and atac2 die during either the larval or pupal stage of development (Table 5) [68,104– 

106]. The developmental lethality of ATAC mutants may be due to defects in response to the insect 

hormone ecdysone, which triggers molting during the larval instars, and is also required for the larval– 

pupal transition at the onset of metamorphosis [107]. Both ecdysone levels and binding of its receptor 

to polytene chromosomes are reduced in ada2a and ada3 mutants [108]. Moreover, genes required for 

ecdysone biosynthesis are misregulated in third instar larvae lacking Ada2a and Ada3 (Table 6) [108]. 

15 



 
 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

460

465

470

475

480

485

490

458 

459 

461 

462 

463 

464 

466 

467 

468 

469 

471 

472 

473 

474 

476 

477 

478 

479 

481 

482 

483 

484 

486 

487 

488 

489 

  

   

      

       

       

       

       

  

      

   

     

 

       

   

    

    

    

     

    

    

    

        

   

 

  

    

       

   

       

     

         

    

Thus, ATAC may be essential for viability in flies in part because it controls levels of hormones that 

trigger formation of the adult fly. 

Histone acetyltransferases often act synergistically with nucleosome remodeling complexes to regulate 

chromatin structure and gene expression [109]. In flies, ATAC interacts genetically and biochemically 

with the chromatin remodeling complex, NURF [84]. Mutations in the NURF subunit iswi or the ATAC 

subunit ada2a show similar defects in eye development, with both mutants exhibiting small and rough 

eyes [84]. In addition, ATAC and NURF coregulate expression of a subset of genes including 

Ultrabithorax (Ubx), engrailed (en), and heat-shock protein 70 (hsp70) [84]. Moreover, ATAC and 

NURF are both necessary to maintain proper chromatin structure, particularly on the X chromosome in 

male flies [84]. In flies, expression of genes on the single male X chromosome is doubled to equal that 

from the two female X chromosomes in a process termed dosage compensation [110]. During this 

process, the Males absent on the first (Mof) HAT within the Male Specific Lethal (MSL) complex 

acetylates H4K16 on the male X chromosome [110]. Mutations in ATAC and NURF subunits such as 

ada2a, gcn5, and nurf301 show increased frequency of bloated X chromosomes in male flies [84], 

suggesting that ATAC and NURF maintain proper chromosomal structure of the dosage compensated 

male X chromosome. Although ATAC acetylates H4K16 [68], the bloated X chromosomes observed in 

ada2a and gcn5 mutant males show similar levels of acetylated H4K16 compared to their wild-type 

counterparts [84]. Moreover, X-linked genes are not preferentially misregulated in ada2a or gcn5 

mutants [84]. Thus, ATAC and NURF may work together to maintain the chromosomal structure of the 

dosage compensated male X chromosome, rather than playing a specific role in expression of X-linked 

genes [84]. Notably, H4K16 acetylation by Mof antagonizes activity of another related chromatin 

remodeler, Iswi, in flies [111], and negatively regulates interactions between Iswi and its nucleosomal 

substrate in vitro [112]. Thus, the MSL and ATAC complexes may function synergistically with the 

related NURF and ISWI chromatin remodelers to maintain the structure, acetylation, and expression 

levels of dosage compensated genes in Drosophila. It is possible that the cooperative activity between 

ATAC and NURF could involve the direct acetylation of one of the NURF subunits, Iswi, by Gcn5 (see 

Section 4) [82], although this remains to be tested. 

Drosophila ATAC contains three histone-fold domain proteins, D12, Chrac-14 and NC2β, leading to the 

question as to whether ATAC itself possessed nucleosome remodeling activity because histone-fold 

domains can bind DNA [113], and Chrac-14, as part of the CHRAC complex, facilitates nucleosome 

sliding [114]. In addition, the human ortholog of Chrac-14, Chrac-17, enhances nucleosome sliding by 

the Iswi complex [115]. Purified ATAC does not show remodeling activity by itself on nucleosomal 

substrates in vitro [68]. However, ATAC can stimulate nucleosome sliding by the chromatin remodelers 
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Iswi or SWItch/Sucrose Non-Fermentable (SWI-SNF) in vitro [68]. Similarly, recombinant Chrac-14 or 

NC2β also stimulated nucleosome remodeling by SWI/SNF [68], suggesting that the histone-fold 

domain proteins in ATAC contributes to its impact on chromatin remodeling. Notably, the inclusion of 

acetyl-CoA in these in vitro nucleosome sliding assays enhanced the effect of ATAC, suggesting that 

the HAT activity of ATAC also contributes to stimulation of chromatin remodeling by complexes such as 

Iswi or SWI-SNF [68]. 

In addition to its roles in chromosome structure and interaction with chromatin remodelers, ATAC has 

been implicated in cell proliferation. Mutations in gcn5 and ada3 are associated with reduced size of 

imaginal discs, which are a highly proliferative tissue, and gcn5 mutants also show an increased 

number of cells in S phase [16,89]. However, since Gcn5 and Ada3 are core components of all the 

Gcn5 complexes in flies, it was not clear whether all or only some of these Gcn5 complexes had roles 

in cell proliferation. Studies in mammalian cells suggest that ATAC is likely to be responsible for the 

defects in cell proliferation in gcn5 and ada3 mutants due to its role in progression through the G2/M 

phase of the cell cycle [70]. Knockdown of Atac2 in mouse cells and studies using an Atac2 knockout 

mouse model showed that loss of Atac2 results in an increase in the number of apoptotic cells and in 

an accumulation of cells in G2/M [70]. In addition, Ada2a and Ada3 RNAi knockdown in mouse NIH3T3 

cells leads to mitotic abnormalities such as centrosome multiplication and defective midbody formation, 

and ATAC subunits such as Ada2a and Yeats2 localize to the mitotic spindle [116]. Interestingly, SAGA 

does not appear to share this role in mitosis because deletion of Spt20 does not cause mitotic 

abnormalities, and Spt20 does not localize to chromatin during mitosis [116]. Although ATAC acetylates 

H4K16, loss of Ada2a and Ada3 results in the opposite acetylation phenotype in mitotic cells with 

knockdown cells showing an increase in acetylated H3K14 levels due to an decrease in the activity of 

the histone deacetylase Sirtuin 2 (SIRT2) [116]. While a role for Drosophila ATAC in mitosis has not yet 

been characterized, it is possible that ATAC shares this function in flies and may be responsible for the 

decreased cell proliferation observed in gcn5 and ada3 mutants. 

Last, ATAC has been implicated in controlling the expression of genes in stress-induced signaling 

pathways. Gcn5 complexes have a well characterized role in stress response signaling mediated by 

mitogen-activated protein kinases (MAPK) [32]. Osmotic stress can activate MAPK cascades, resulting 

in eventual activation of the c-Jun-NH2-terminal kinase (JNK) [117]. In Drosophila S2 cells, sorbitol 

treatment induces osmotic stress and results in JNK activation [67]. Importantly, ATAC directly interacts 

with MAPKs via its MBIP/Mocs2B subunits in both humans and flies [67,118]. Moreover, JNK activation 

in response to osmotic stress is inhibited by the expression of the ATAC subunit Mocs2B in Drosophila 

S2 cells, and ATAC is required for the transcription of JNK target genes such as chickadee in these 
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cells [67]. Thus, ATAC appears to directly interact with MAPK signaling proteins to mediate induction of 

stress response genes in flies, likely through its Mocs2B subunit. This role in stress response for the 

ATAC complex is reminiscent of S. cerevisiae SAGA’s function in the endoplasmic reticulum (ER) 

stress pathway [119]. In mammals, knockdown of the shared SAGA and ATAC subunit Sgf29 results in 

impaired transcription of ER stress genes, such as GRP78 [120]. The ER stress response transcription 

factor ATF6 recruits both SAGA and ATAC to ER stress response genes [121], suggesting that both 

SAGA and ATAC are involved in induction of stress response genes in metazoan organisms. Analysis 

of SAGA and ATAC localization on Drosophila polytene chromosomes suggest that these Gcn5 

complexes regulate distinct sets of stress response genes, depending on the type of stress involved 

[71]. For example, induction of phorbol ester-induced protein kinase C (PKC) pathway genes increased 

colocalization of ATAC and Pol II without affecting SAGA [71], arguing for a specific role of ATAC in 

induction of PKC genes in response to stress. 

8. CHAT is an insect-specific Gcn5 complex that contains a protein associated with DNA 
replication 

Whereas the other Gcn5 complexes identified in Drosophila are also present in S. cerevisiae or 

humans, the CHAT complex appears to be specific to insects and has an unknown biological function. 

In addition to the HAT module subunits (Gcn5, Ada3, and Sgf29), CHAT contains the short Ada2b-PA 

splice isoform and Chiffon, the Drosophila ortholog of Dbf4. Chiffon, like other Dbf4 orthologs, binds 

and activates the cell cycle kinase Cdc7 forming the Dbf4-dependent kinase complex (DDK) 

[76,122,123]. The DDK complex phosphorylates the Mcm2-7 helicase, activating it to unwind DNA at 

origins of replication, thus initiating DNA replication [75,76]. Although Dbf4 is highly conserved and is 

present in most eukaryotes except for plants, Chiffon contains a long C-terminal extension that is 

specific to insects (Figure 5) [34,73]. The conserved N-terminal domain of Chiffon (1- 400aa) binds and 

activates Cdc7, while the insect-specific C-terminal domain of Chiffon (401 - 1695aa) is necessary and 

sufficient to bind Gcn5 and nucleate CHAT formation [34]. Dbf4 is an essential gene in S. cerevisiae 

because of its role in DNA replication, but surprisingly, chiffon mutants were originally reported to be 

viable in Drosophila [122]. The chiffon gene was first identified in a screen for female sterile mutants, 

and chiffon females lay eggs with a thin and fragile chorion (eggshell) that resembles the fabric of the 

same name [123]. More recent analysis has shown that indeed, the Cdc7-binding domain of Chiffon is 

dispensable for fly viability, but surprisingly, the Gcn5-binding domain of chiffon is essential for 

development [34]. In fact, chiffon alleles that contain premature stop codons either within, or directly 

after, the N-terminal Cdc7-binding domain (separating both N- and C- polypeptides) are viable because 

they still produce a C-terminal product that binds Gcn5 and nucleates CHAT formation [34]. Both 
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domains are encoded by a single large exon in the chiffon gene with no evidence of alternative splicing, 

suggesting that alternative translation start sites and/or proteolytic cleavage may be required to 

produce these two independent Chiffon polypeptides. These data suggest that chiffon could be a 

dicistronic gene that can independently express two distinct polypeptides that contain either the Cdc7-

or Gcn5-binding domains, resulting in DDK or CHAT formation, respectively. It remains unclear as to 

whether the N- and C-terminal Chiffon polypeptides are expressed at the same time, and little is known 

about how this process is controlled in vivo. The unusual chiffon gene structure is somewhat 

reminiscent of the ada2a gene, which also encodes two polypeptides with distinct functions: Ada2a and 

one of the subunits of RNA polymerase II, Rpb4, in flies and in other insects due to alternative splicing 

[26]. 

The CHAT complex exhibits in vitro and in vivo HAT activity toward histone H3, similar to SAGA and 

ADA [34]. Analysis of histone acetylation levels in somatic mosaics for chiffon null alleles showed that 

loss of Chiffon decreases levels of histone H3 acetylated at K9, K14, and K18, but not K23 [34]. 

Although histone acetylation correlates with, and contributes to a specialized form of DNA re-replication 

in follicle cells termed gene amplification [124], CHAT-mediated histone acetylation is not required for 

this type of DNA replication [34]. In chiffon mutant cells that lack only its N-terminal Cdc7-binding 

domain, ovary follicle cells lack the characteristic bromodeoxyuridine (BrDU) foci indicative of chorion 

gene amplification [34]. However, these DDK-deficient mutant cells retain wild-type histone acetylation 

levels. In contrast, chiffon mutants that lack only its C-terminal domain that binds Gcn5 show decreased 

histone acetylation, but do not exhibit loss of the characteristic BrDU foci indicative of chorion gene 

amplification [34]. Similarly, ada2b mutant follicle cells show decreased histone acetylation but retain 

wild-type BrDU incorporation [34]. Together, these data suggest that despite the presence of the Dbf4 

ortholog Chiffon, the CHAT complex is not required for DNA replication in flies [34]. What then could be 

the role of the CHAT complex in insects? Currently, CHAT, like SAGA, seems to be essential for both 

histone H3 acetylation and for development in flies. chiffon mutants show decreased histone H3 

acetylation not only in ovary follicle cells, but also in other tissues such as imaginal discs [34]. 

Moreover, the decreased acetylation at histone H3K14 in chiffon mutant cells is similar to that observed 

in ada2b mutants, which lack both the CHAT and SAGA isoforms [34]. Since mutations in the SAGA-

specific subunit, wda, also reduce acetylation at histone H3K9 in embryos [49], both SAGA and CHAT 

likely contribute to H3 acetylation in flies. However, expression of the CHAT-specific Ada2b-PA isoform, 

but not the SAGA/ADA-specific Ada2b-PB isoform, is sufficient to almost fully restore viability to ada2b 

mutants [34,125]. These data suggest that either CHAT might compensate for some of SAGA’s 

essential functions during development, or that the Ada2b-PA splice isoform can incorporate into SAGA 
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if Ada2b-PB is absent [34]. It remains unclear whether CHAT is necessary for gene expression, and if 

so, whether CHAT regulates common or distinct gene targets compared to SAGA and the other Gcn5 

complexes in flies. 

9. Roles for Gcn5 complexes in other insects 
The Gcn5 complexes have been best studied in the model insect Drosophila melanogaster, and no 

Gcn5 complexes have been described in other insects yet. However, other insect species, like 

Drosophila, possess a single Gcn5 ortholog with shared domain structure including the metazoan-

specific N-terminal domain (Figure 5A). Both Ada2a and Ada2b are also widely conserved throughout 

insects suggesting that the ADA, SAGA, and ATAC complexes are likely present in all insect species 

(Figure 5B). Further, like in Drosophila, Ada2b in most insect species has two splice isoforms that share 

a common N-terminal domain, which includes the Zinc finger ZZ-type and SANT domain, and have the 

specific C-terminal regions corresponding to the Drosophila Ada2b-PA and Ada2b-PB splice isoforms 

(Figure 5B). The presence of both Ada2b splice isoforms in other insect species supports the idea that 

the CHAT complex is likely conserved across insect species. In addition, the Chiffon C-terminal 

extension that directly binds Gcn5 in vitro is conserved in a wide range of insect species from beetles to 

ants (Figure 5C) [34,73,122]. Currently, the biological function of the CHAT complex is unknown, but it 

is possible that this complex plays a specialized role in insects due to some unique aspect of their 

development or physiology. 

10. Conclusion and future directions 

During evolution there has been a divergence and diversification of the Gcn5 complexes. Drosophila 

has provided a powerful model in which to identify and characterize these novel Gcn5 complexes, and 

was the first multicellular organism shown to contain the ADA, ATAC and CHAT complexes [24,33,34]. 

The expanded repertoire of Gcn5 complexes in flies and in other metazoan organisms appears to result 

from divergence of the Ada2 subunit. While S. cerevisiae only has one Ada2 ortholog, flies have at 

least three versions of Ada2: Ada2a and the two splice isoforms of Ada2b. The finding that alternative 

splicing of ada2b can generate new diversity in HAT complexes [33,34] suggests that there may be 

other Gcn5 complexes in multicellular organisms that remain to be discovered. It is possible that other 

novel Gcn5 complexes, like CHAT, may be specific to particular groups of species where they play 

more specialized roles in developmental processes. In light of the fairly recent finding that Drosophila 

possess four Gcn5 complexes rather than just SAGA and ATAC, it may be necessary to re-interpret 

some of the conclusions from previous studies showing specific roles for SAGA, or particular modules 

of SAGA, in developmental processes. New genome-wide studies of Gcn5 complex localization 
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patterns and gene expression profiling will require careful selection of subunits, and should utilize 

spike-in control approaches that can identify potential global changes in gene expression [126]. 

Over the past 20 years following the identification of Gcn5 in Drosophila [13], much insight has been 

obtained into the structure and function of SAGA from studies in yeast, flies, humans and plants. We 

refer the reader to the article by Brian Strahl and Scott Briggs in this Special issue [cite Strahl and 

Briggs article within special issue] for an in-depth discussion of SAGA’s function in transcription, and an 

outline of key unanswered questions that remain about its function. The exciting new cryo-EM studies 

of S. cerevisiae SAGA illustrate how the different modular parts of the complex function as a whole 

[57,58,127] [reviewed within special issue by Tora], and we look forward to seeing these same 

approaches applied to the metazoan SAGA and ATAC complexes to elucidate the architectural 

organization of both complexes. Such studies will provide insight into the similarity and differences 

between SAGA and ATAC, and show for example, how the two HATs in ATAC might modify histones 

within the same nucleosome, and how the spliceosomal proteins in metazoan SAGA integrate into the 

complex. These studies, coupled with functional analysis in model systems such as flies, may help us 

to understand why the metazoan Gcn5 complexes have diverged in composition from yeast and plants. 

Plants, like yeast, lack the ATAC complex and do not have the Sf3b3 and Sf3b5 spliceosomal subunits 

of SAGA [see Article by Barneche et al. in this Special Issue]. What, then, is the unique role that the 

ATAC complex plays in metazoan? Why does metazoan SAGA contain the spliceosomal subunits, and 

what is their function in the complex?  

Insects offer a number of advantages over mammalian models to answer these key questions because 

of their short generation time, and wealth of genetic resources. In addition, since the Drosophila SAGA 

and ATAC complexes largely resemble their mammalian counterparts in terms of composition, flies 

provide a strong model for the metazoan-specific functions of the Gcn5 complex. Drosophila also 

provide an appropriate biological model to ask questions about Gcn5 complexes that are relevant to 

human disease. For instance, the neurodegenerative disease Spinocerebellar ataxia type 7 (SCA7) 

results from polyglutamine expansions in the gene encoding the DUB subunit Ataxin 7 [128,129]. Flies 

have been used as a model for SCA7 [130,131], and other polyglutamine related neurogenerative 

diseases such as SCA2 [132]. In humans, SCA7 disease manifests retinal and cerebellar degeneration, 

and macular dystrophy causing blindness [129]. In Drosophila, loss of Ataxin 7 causes neural and 

retinal degeneration, and impaired movement [47]. Interestingly, similar phenotypes are observed when 

exogenous polyglutamine-expanded human Ataxin 7 is expressed in Drosophila [47]. Thus, Drosophila 

provides a good model organism to study the mechanism of diseases such as SCA7 and could be used 

to screen compounds suitable for ameliorating symptoms of this neurodegenerative disease [130,133]. 
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Last, the finding that alternative splicing of ada2b can generate new diversity in HAT complexes [33,34] 

suggests that there may be other Gcn5 complexes in multicellular organisms that remain to be 

discovered. It is possible that other novel Gcn5 complexes, like CHAT, may be specific to particular 

groups of species where they play more specialized roles in developmental processes. Drosophila 

remains an outstanding model for studying function of the Gcn5 complexes, but recent advances in 

technology allow us to consider examining alternative species outside of traditional model organisms. 

Expanding the studies on Gcn5 complexes into non-traditional species, including potentially other 

insects may provide insight into the specialized function of this quintessential HAT in multicellular 

organisms. 
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671 TABLES 
FlyBase ID Annotation 

Symbol 
Gene name Gene 

symbol 
S. cerevisiae 
ortholog 

H. sapiens
ortholog 

DNA/Histone
domain/Enzymatic Activity 

H
AT

 m
od

ul
e 

FBgn0030891 CG7098 transcriptional Adaptor 3 
(diskette) 

Ada3 ADA3 TADA3 

FBgn0020388 CG4107 Gcn5 acetyltransferase 
(Pcaf) 

Gcn5 GCN5 GCN5/PCAF 
(KAT2A/KAT2B) 

PCAF, GNAT domain, 
Bromodomain, Acetyltransferase 
(EC 2.3.1.48) 

FBgn0050390 CG30390 SAGA-associated factor 
29 kDa 

Sgf29 SGF29 SGF29 Tudor-like domain 

FBgn0037555 CG9638 transcriptional Adaptor 
2b 

Ada2b 
(PB 
isoform) 

ADA2 TADA2B Zinc finger ZZ-type, SANT Myb 
domain 

D
U

B 
m

od
ul

e 

FBgn0013717 CG4166 nonstop Not UBP8 USP22 (UBP22) Zinc finger-UBP-type, Ubiquitin 
protease 

FBgn0036804 CG13379 SAGA associated factor 
11 kDa 

Sgf11 SGF11 ATXN7L3 

FBgn0031420 CG9866 Ataxin 7 Atxn7 SGF73 ATXN7/ATXN7L 
1/ATXN7L2 

SCA7 domain 

FBgn0000618 CG15191 enhancer of yellow 2 e(y)2 SUS1 ENY2 

C
or

e 
st

ru
ct

ur
al

 m
od

ul
e 

FBgn0039067 CG4448 will decrease acetylation Wda TAF5 TAF5L WD40 domain 
FBgn0030874 CG6506 Spt7 Spt7 SPT7 SUPT7L 

(STAF65G) 
Histone-fold domain 

FBgn0036374 CG17689 Spt20 Spt20 SPT20 SUPT20H 
FBgn0051865 CG31865 transcriptional Adaptor 1 Ada1 ADA1 TADA1 Histone-fold domain 

FBgn0031281 CG3883 SAGA factor-like TAF6 Saf6 TAF6 TAF6L Histone-fold domain 

FBgn0000617 CG6474 enhancer of yellow 1 e(y)1 TAF9 TAF9/TAF9b Histone-fold domain 

FBgn0026324 CG3069 TBP-associated factor 
10b 

Taf10b TAF10 TAF10 Histone-fold domain 

FBgn0011290 CG17358 TBP-associated factor 
12 

Taf12 TAF12 TAF12 Histone-fold domain 

TB
P 

bi
nd

in
g FBgn0037981 CG3169 Spt3 Spt3 SPT3 SUPT3H Histone-fold domain 

TF
-b

in
di

ng
 

m
od

ul
e 

FBgn0053554 CG33554 Nipped-A Nipped-A TRA1 TRRAP PIK-related pseudokinase 

Sp
lic

in
g 

m
od

ul
e

FBgn0035162 CG13900 Splicing factor 3b 
subunit 3 

Sf3b3 - SF3B3 Cleavage/polyadenylation 
specificity factor 

FBgn0040534 CG11985 Splicing factor 3b 
subunit 5 

Sf3b5 - SF3B5 

Table 1: Drosophila SAGA subunits. The 20 Drosophila SAGA subunits can be organized into HAT, 

DUB, Core Structural, TBP binding, TF-binding, and splicing modules. The FlyBase ID, Annotation 

symbol (CG ID number), full gene name, and abbreviated gene symbol are shown for each Drosophila 

subunit, together with the orthologs from S. cerevisiae and H. sapiens (if present). Paralogous subunits 

are separated with a “/” sign. Alternative gene names are listed in parentheses. The protein domain and 

enzymatic activity (E.C. number) are based on FlyBase definitions for each Drosophila subunit. Note 
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that Spt7 contains a bromodomain only in S. cerevisiae, but not in the metazoan orthologs. In addition, 

Spt8 is only present in the S. cerevisiae SAGA complex and is not listed here. 
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680 
FlyBase ID Annotation Symbol Gene name Gene symbol S. cerevisiae 

ortholog 
DNA/Histone domain/Enzymatic 
Activity 

FBgn0030891 CG7098 transcriptional 
Adaptor 3 
(diskette) 

Ada3 ADA3 

FBgn0020388 CG4107 Gcn5 
acetyltransferase 
(Pcaf) 

Gcn5 GCN5 PCAF, GNAT domain, 
Bromodomain, Acetyltransferase (EC 
2.3.1.48) 

FBgn0050390 CG30390 SAGA-associated 
factor 29 kDa 

Sgf29 SGF29 Tudor-like domain 

FBgn0037555 CG9638 transcriptional 
Adaptor 2b 

Ada2b (PB 
isoform) 

ADA2 Zinc finger ZZ-type, SANT domain 

Table 2: Drosophila ADA subunits. The FlyBase ID, Annotation symbol (CG ID number), full gene 

name, and abbreviated gene symbol are shown for each Drosophila ADA subunit, together with the 

ortholog from S. cerevisiae. Alternative gene names are listed in parentheses. The ADA complex has 

not been yet characterized in human cells. The protein domain and enzymatic activity (E.C. number) 

are based on FlyBase definitions for each Drosophila subunit. Note that the S. cerevisiae ADA complex 

contains two additional subunits AHC1 and AHC2 that are not present in the Drosophila ADA complex. 
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687 
FlyBase ID Annotation 

Symbol 
Gene name Gene 

symbol 
H. sapiens
ortholog 

DNA/Histone domain/Enzymatic Activity 

FBgn0030891 CG7098 transcriptional Adaptor 3 
(diskette) 

Ada3 TADA3 

FBgn0020388 CG4107 Gcn5 acetyltransferase 
(Pcaf) 

Gcn5 GCN5 PCAF, GNAT domain, Bromodomain, 
Acetyltransferase (EC 2.3.1.48) 

FBgn0050390 CG30390 SAGA-associated factor 
29 kDa 

Sgf29 SGF29 Tudor-like domain 

FBgn0263738 CG43663 transcriptional Adaptor 2a Ada2a TADA2A Zinc finger ZZ-type, SANT domain, SWIRM 
domain 

FBgn0039904 CG1710 Host cell factor Hcf -
FBgn0040066 CG17437 will die slowly Wds WDR5 WD40 domain 
FBgn0027490 CG13400 D12 D12 YEATS2 YEATS 
FBgn0043002 CG13399 Chromatin accessibility 

complex 14 kD-protein 
Chrac-14 - Histone-fold domain 

FBgn0052343 CG32343 Ada2a-containing 
complex component 3 

Atac3 -

FBgn0028926 CG4185 Negative Cofactor 2β NC2β NC2β Histone-fold domain 

FBgn0031876 CG9200 Ada2a-containing 
complex component 1 

Atac1 ZZZ3 SANT domain 

FBgn0032691 CG10414 Ada2a-containing 
complex component 2 

Atac2 CRBP2 GNAT domain/ Acetyltransferase (EC 
2.3.1.48) 

FBgn0039280 CG10238 Molybdenum cofactor 
synthesis 2B 

Mocs2B 
(dMoaE, 
Mocs2) 

MBIP Molybdopterin biosynthesis MoaE 

Table 3: Drosophila ATAC subunits. The FlyBase ID, Annotation symbol (CG ID number), full gene 

name, and abbreviated gene symbol are shown for each Drosophila ATAC subunit, together with the 

ortholog from H. sapiens. Alternative gene names are listed in parentheses. The ATAC complex is not 

present in S. cerevisiae. The protein domain and enzymatic activity (E.C. number) are based on 

FlyBase definitions for each Drosophila subunit. 
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693 

FlyBase ID Annotation 
Symbol 

Gene name Gene symbol DNA/Histone domain/Enzymatic Activity 

FBgn0030891 CG7098 transcriptional Adaptor 3 (diskette) Ada3 

FBgn0020388 CG4107 Gcn5 acetyltransferase (Pcaf) Gcn5 PCAF, GNAT domain, Bromodomain, 
Acetyltransferase (EC 2.3.1.48) 

FBgn0050390 CG30390 SAGA-associated factor 29 kDa Sgf29 Tudor-like domain 

FBgn0037555 CG9638 transcriptional Adaptor 2b Ada2b (PA isoform) Zinc finger ZZ-type, SANT domain 

FBgn0000307 CG5813 Chiffon Chif Zinc finger DBF-type 

Table 4: Drosophila CHAT subunits. The FlyBase ID, Annotation symbol (CG ID number), full gene 

name, and abbreviated gene symbol are shown for each Drosophila CHAT subunit. Alternative gene 

names are listed in parentheses. The CHAT complex is not present in S. cerevisiae or human cells. 

The protein domain and enzymatic activity (E.C. number) are based on FlyBase definitions for each 

Drosophila subunit. 
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700 

701 

702 

703 

     

     

   

   

Gene Mutant 
allele 

Nature of allele Viable/lethal? Phenotype Reference 
SA

G
A/

AD
A/

AT
A

C
/C

H
AT

 
Ada3 ada33 Nonsense: 371* Lethal - early pupa Decreased acetylation at H3K9, K14, K12; 

failure metamorphosis; reduced imaginal disc 
size. 

[89] 

Gcn5 gcn5E333st 

gcn5C137T 

gcn5Q186st 

Nonsense: E333* 
Missense: C137Y 
Nonsense: Q186* 

Lethal - late pupa 
Decreased acetylation at H3K9, H3K14; 
Defects cell proliferation; failure to form 
puparium; photoreceptor axon mistargeting 
during eye development; oogenesis arrested in 
stage 5 and 6. Reduced imaginal disc size. 

[16,45] 

SA
G

A/
AD

A/
C

H
AT

 

Ada2b (PA-
and PB 
isoforms) 

ada2b1 

ada2b2 

ada2b842 

Null: 1077bp 
deletion 
Null: 2.77kb deletion 
Null: 800bp deletion 

Lethal - early pupa Decreased acetylation at H3K9 in embryos and 
polytene chromosomes and H3K14 in ovary 
follicle cells and imaginal discs; defects in 
oogenesis; photoreceptor axon mistargeting 
during eye development. 

[27,34,45, 
77] 

SA
G

A 

Nonstop not2 Null: 538bp deletion Lethal - pupa Increased H2Bub1; photoreceptor axon 
mistargeting during eye development. 

[44,45] 

Sgf11 sgf11e01308 Null: 5.97kb del 
etion 

Lethal - late 
larva/early pupa 

Increased H2Bub1; photoreceptor axon 
mistargeting during eye development. 

[45,93] 

Ataxin 7 ataxin 7 
KG02020 

Null: Lethal - late larva Neural and retinal degeneration; reduced 
locomotion; cellularization defects. 

[47,92] 

e(y)2 e(y)21 Null: 167bp deletion Viable Short stocky body and separated wings; eyes 
with altered facets; low fertility. 

[46,110] 

Nipped-A nipped-
ANC186 

Missense: V885D Lethal - early pupa Defects in Notch signaling. [134] 

wda wda11 

wda4 

wda8 

Null: 1510bp 
deletion 
Null: 857bp deletion 
Null: 864bp deletion 

Lethal - second 
instar larva 

Decreased acetylation at H3K9. [49] 

Saf6 saf6303 Null: 303bp deletion Lethal - second 
instar larvae 

[31] 

e(y)1 e(y)117 

e(y)1190 
Null: 79bp deletion 
Null: 339bp deletion 

Lethal - larva Dysregulation of ovary follicle cell development. [135] 

Taf10b taf10d25 Null: 900bp deletion Lethal - pupae Decreased acetylation at H3K14; defects in 
DNA repair efficiency. 

[90,136] 

Sf3b5 sf3b5 
EY12579 

Transposable 
element insertion. 

Lethal - second 
instar larva 

Reduced cell viability in eyes. [53] 

AT
AC

 

Ada2a ada2a189 Null: 720bp deletion Lethal - pupa Oogenesis arrested; altered structure of the 
polytene chromosomes; banding pattern is 
distorted. 

[77] 

hcf hcfHR1 Null: 4348bp 
deletion 

Lethal - pupa Heterozygous females are 
Sterile; oogenesis arrested at stage 8; 
decreased pupae size. 

[105] 

wds wdsG0251 

wdsj25 
Not specified Lethal - larva Defects in wristles and wing veins; 

heterozygous male and female are unfertile. 
[104] 

Chrac-14 chrac-
14KG01051 

Not specified Viable Eclosion defective; flight defective; radiation 
sensitive. 

[137] 

Atac3 atac3 
GD4326 

RNAi Lethal - pupa [106] 

Atac2 atac2 e03046 Transposable 
element insertion. 

Lethal - second 
instar larva 

Decreased acetylation at H4K16. [68] 

C
H

AT
 Chiffon chifDsred 

chifETEB3 
Null:5.3kb deletion 
Null: 6kb deletion 

Lethal - third instar 
larva 

Decreased acetylation at H3K9, H3K14, and 
H3K18 in ovary follicle cells and imaginal discs; 
gene amplification disrupted; thin embryo 
chorion and rough eyes for chifWF24 . 

[34,76,122 
] 

chifWF24 Missense: T521C Viable 

Table 5. Phenotypes associated with mutant alleles that disrupt subunits of Gcn5 complexes in 
Drosophila. Mutant alleles or RNAi knockdown that disrupt subunits that are shared or specific to the 

SAGA, ADA, ATAC and CHAT complexes result in the described lethality and phenotypes, as outlined 

in the listed references. Only mutant alleles/RNAi knockdown that have been described in the literature 

are listed in this table. *, designated amino acid is altered to a stop codon. 
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704 

Complex Gene Approach # genes 
identified 

Differentially expressed genes-pathways/processes 705Reference 

706 

SA
G

A/
AT

AC
/

AD
A/

C
H

AT
 Gcn5 Microarray; third 

instar larvae 

~284 genes Morphogenesis. [84] 
707 

Ada3 Microarray; third 

instar larvae 

~5565 genes Cuticle formation and ecdysone response. [108] 708 

SA
G

A/
AD

A/
C

H
AT

 Ada2b 

(PA & PB 

isoforms) 

RNA-seq; ovaries >1000 genes DNA replication, eggshell formation, chromosome 

organization, and DNA repair. 

[92] 

Microarray; third 

instar larvae 

~344 genes Early ecdysone response genes: glue proteins. [45] 

Microarray; third 

instar larvae 

~580 genes Ecdysone-induced genes, cuticle formation, and 

defense mechanisms. 

[108,138] 

SA
G

A 

Nonstop RNA-seq; embryos 

(stage 5) 

>6000 genes Cellularization, embryonic development, and tissue 

morphogenesis. 

[92] 

Microarray; third 

instar larvae 

~987 genes Early ecdysone-response genes, puparial adhesion, 

eclosion, signal transduction, and central nervous 

system remodeling 

[45] 

RNA-seq; third 

instar larvae glia 

~1802 genes Axon guidance, protein folding, cell morphogenesis, 

axon guidance, synaptic transmission. 

[100] 

Sgf11 Microarray; 

embryonic muscle 

or neurons 

~443 genes 

(muscle); 

~390 genes 

(neuron) 

Protein folding, nervous system development, 

mesoderm development, muscle development, and 

anatomical structure development. 

[93] 

Microarray; third 

instar larvae 

~618 genes Early ecdysone response genes, puparial adhesion, 

eclosion, signal transduction, and central nervous 

system remodeling 

[45] 

RNA-seq; third 

instar larvae glia 

~1644 genes Axon guidance, protein folding, cell morphogenesis, 

axon guidance synaptic transmission. 

[100] 

Ataxin 7 RNA-seq; embryos 

(stage 5) 

>6000 genes Cellularization, embryonic development, and tissue 

morphogenesis. 

[92] 

AT
AC

 Ada2a Microarrays; third 

instar larvae 

~7306 genes Cuticle formation and ecdysone pathway response. [76] 

Table 6: Gene expression analysis for Gcn5 complexes in Drosophila. Gene expression studies 

have been performed on homozygous mutants that disrupt subunits of the Gcn5 complexes SAGA, 

ADA, ATAC and CHAT. The number of differentially expressed genes identified using microarray or 

RNA-seq analysis by each study is listed, together with the major gene ontology processes and/or 

signaling pathways identified in the associated reference. 
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FIGURE LEGENDS 

Figure 1. Schematic comparison of Drosophila Gcn5 orthologs. Gcn5 amino acid sequences were 

aligned using Clustal Omega, and a schematic comparison of Gcn5 orthologs in D. melanogaster, S. 

cerevisiae, and H. sapiens was constructed. Accession numbers are as follow: D. melanogaster Gcn5, 

NP_648586.2; S. cerevisiae Gcn5, NP_011768.1; H. sapiens Gcn5, XP_006721880.1; H. sapiens 

PCAF, NP_003875.3. The highly conserved GNAT and Bromodomain, and the metazoan conserved 

PCAF domains are boxed in gray, and aligned in each ortholog as indicated by dotted lines. The amino 

acid positions for each domain are indicated by the numbers on top of each box. The percentage 

identity within the conserved domains in each Gcn5 ortholog relative to the corresponding domains in 

DmGcn5 is indicated by the % within each boxed domain. 

Figure 2. Schematic comparison of Drosophila Ada2a and Ada2b orthologs. Ada2a and Ada2b 

amino acid sequences were aligned using Clustal Omega and a schematic comparison of D. 

melanogaster Ada2a and Ada2b (PA and PB isoforms) with S. cerevisiae Ada2 and H. sapiens Ada2a 

and Ada2b was constructed. Accession numbers are as follow: D. melanogaster Ada2a 

NP_001014636.1, Ada2b-PA NP_649773.1, Ada2b-PB NP_001027151.1; H. sapiens Ada2a 

NP_001159577.2, Ada2b NP_689506.2; S. cerevisiae Ada2 NP_010736.3. The conserved Zinc finger 

ZZ-type and SANT domains, and the SWIRM domains are boxed and aligned between the orthologs as 

indicated by dotted lines. The C-terminal specific domains for Ada2b-PA and Ada2b-PB are colored in 

green or orange, respectively. The amino acid positions for each domain are indicated by the numbers 

on top of each box. The percentage identity within the conserved domains in each Ada2a or Ada2b 

ortholog relative to the corresponding domains in DmAda2b or DmAda2a respectively is indicated by 

the % within each boxed domain. The % identity within the SWIRM domain is compared to DmAda2a. 

ScAda2 was aligned with DmAda2a. 

Figure 3. Schematic illustration of the subunit composition of SAGA, ATAC, ADA, and CHAT. 
The subunits in the four Gcn5 complexes are shown in the four sections, with shared subunits of the 

core Gcn5 HAT module indicated in the central box. The area of each subunit is proportional to its 

relative molecular mass. Subunits are colored by complex, or by modules for SAGA, and the yeast 

Ada2 orthologs that nucleate formation of each complex shown in orange. Domains present in 

individual subunits are shown in the key below the figure. 

Figure 4. The Drosophila Gcn5 complexes are essential for fly development. The life cycle of 

Drosophila comprises four successive stages, namely, egg, larva, pupa, and adult. Twenty-four hours 
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after a female fly lays her eggs, larvae hatch. Larvae then undergo molting stages known as instars 

(three instar stages), during which the head, mouth, cuticle, spiracles, and hooks are shed. After ninety-

six hours, the third instar larva encapsulates itself, forming a pupa. Metamorphosis takes place during 

the pupal stage, giving rise to all the structures in the adult fly. Oogenesis takes place within the ovary 

of female flies, and consists of 14 stages prior to deposition of the fertilized egg. The mutants shown 

disrupt subunits in the SAGA, ADA, ATAC or CHAT complexes, and result in lethality at the indicated 

developmental stage of the Drosophila life cycle. Mutations that have been shown to impact oogenesis 

are also indicated, but this has not been tested for all the mutant alleles shown. The ada2b mutant 

allele disrupts all three of the SAGA, ADA and CHAT complexes. The mutant alleles shown in this 

figure correspond to those listed in Table 5. 

Figure 5. Insect Gcn5, Ada2, and Chiffon share regions of conservation with Drosophila. Insect 

Gcn5, Ada2, and Chiffon homologs were aligned using Clustal Omega. The insect species described in 

this figure are: Diptera, D. melanogaster, Musca domestica (House fly), Lucilia cuprina (Australian 

sheep blowfly); Coleoptera, Tribolium castaneum (Red flour beetle); Lepidoptera, Danaus plexippus 

(Monarch butterfly); Hymenoptera, Apis Mellifera (Western honey bee) and Linepithema humile 

(Argentine ant). A representative illustration of each insect is shown next to each aligned protein. A) 
Accession numbers for Gcn5 homologs from the following insect species were used to generate this 

alignment: D. melanogaster NP_648586.2; M. domestica XP_005181707.1; T. castaneum 

XP_015835856.1; D. plexippus DPOGS216125. The GNAT, Bromodomain, and PCAF domains are 

boxed in gray. The percentage identity within the conserved domains in each Gcn5 ortholog relative to 

the corresponding domains in DmGcn5 is indicated by the % within each boxed domain. B) Accession 

numbers for Ada2 homologs from the following insect species were used to generate this alignment: D. 

melanogaster Ada2b-PB NP_001027151.1, Ada2b-PA NP_6497731, Ada2a NP_001014636.1; M. 

domestica Ada2b-PA XP_005186291.1, Ada2b-PB XP_005186290.1, Ada2a XP_019894005.1; T. 

castaneum Ada2b-PA A0A139WFG5, Ada2b-PB XP_008195462, Ada2a XP_015835543.1, D. 

plexippus Ada2b-PA XP_032521398.1, Ada2b-PB XP_032521398.1, Ada2a XP_032528769.1. The 

Zinc finger ZZ-type, SANT, and SWIRM domains are boxed. The C-terminal specific domains for 

Ada2b-PA and Ada2b-PB are colored in green or orange, respectively. The percentage identity within 

the conserved domains in each Ada2a or Ada2b ortholog relative to the corresponding domains in 

DmAda2b or DmAda2a, respectively, is indicated by the % within each boxed domain. The % identity 

within the SWIRM domain is compared to DmAda2a. C) Accession numbers for Dbf4/Chiffon homologs 

from the following species were used to generate this alignment: D. melanogaster AAD48779.1; M. 

domestica XP_019893793.1; L. cuprina A0A0L0CBC7; T. castaneum XM_008199666.2; D. plexippus 
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OWR45390.1; A. mellifera XP_016770645.1; L. humile XP_012229084; H. sapiens NP_006707. The 

highly conserved region that interacts with Cdc7 (N, M, C domains) and the insect-specific Gcn5-

binding domain are boxed. The percentage identity within the conserved domains in each Dbf4 ortholog 

relative to the corresponding domain in DmChiffon is indicated by the % within each boxed domain. 
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