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ABSTRACT 

This work has introduced a fast and reliable method for graphical modeling of 

discrete systems control problems using extended S-system Petri Net. By adding new 

functionalities to the extended S-System Petri Net, dynamic quantities such as 

microcontroller signals transitions, system timing, interrupts, subroutines and arithmetic 

operations could now be modeled by software. A graphical-based diagram editor has 

been developed in this work to handle the model entry, editing and visualization. The 

diagram editor contains all the basic facilities required for entering, editing, visualization 

and syntax analysis of the S-System Petri Net model. A compiler has also been built to 

compile the graphical model and generate the assembly code automatically. Together, 

the diagram editor and model compiler forms an integrated design and development tool 

called S-PNGEN. Seamless data binding between the diagram editor and the model 

compiler is achieved by using a common directed-graph framework to internally 

represent the model diagrams. Diagram syntax checking was implemented using 

attributed graph grammar. Also introduced in this work is an efficient method for 

implementing the control solutions on a microcontroller. This involves the development 

of a procedure for automatically mapping S-System Petri Net models constructed in the 

diagram editor to control flow graphs. The procedure uses a notion called graph nesting 

to help the design tool read and understand S-System model diagrams and transform 

them into control flow graphs. Conversion of an S-System Petri Net model into a control 

flow graph is an innovative approach introduced in this work for automatic code 

generation as it guarantees the production of the correct code layout and information for 

use by the compiler. By applying a syntax-directed translation on the control flow graph 

constructed, the built-in compiler then automatically generates the assembly code for the 

target microcontroller. 
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ABSTRAK 

Penyelidikan ini memperkenalkan kaedah yang effisien untuk membentuk model 

bagi sistem kawalan diskrit secara grafikal dengan menggunakan extended S-System 

Petri Net. Dengan menambahkan fungsi-fungsi baru ke atas suatu S-System Petri Net, 

kuantiti dinamik suatu pengawal mikro seperti isyarat, masa, subrutin, interrupts dan 

operasi aritmetik dapat dimodelkan oleh software. Satu diagram editor telah dibina 

untuk membolehkan pelukisan dan pengubahsuaian model. Diagram editor ini 

mempunyai kemudahan asas yang membolehkan pembentukan dan pengubahsuaian 

model serta melaksanakan analisis sintaks ke atas model S-System Petri Net yang dibina. 

Satu pengkompil telah dibangunkan untuk mengkompil model grafikal yang dibina dan 

juga untuk menjana kod assembly secara otomatik. Kedua-dua diagram editor dan 

pengkompil diintegrasikan sebagai suatu alat rekabentuk model dipanggil S-PNGEN. 

Kedua-dua diagram editor dan pengkompil berkongsi data dengan menggunakan rangka 

struktur data graf yang sama bagi mewakili model yang dilukis. Sintaks model 

diimplementasikan melaiui attributed graph grammar. Hasil kerja ini juga 

memperkenalkan suatu prosedur yang memetakan model S-System Petri Net yang dibina 

dalam diagram editor kepada control flow graphs. Prosedur ini menggunakan suatu 

konsep graph nesting yang membolehkan alat rekabentuk kami membaca dan 

memahami model S-System Petri Net dan mengubahnya kepada control flow graphs. 

Pertukaran model kepada control flow graphs merupakan satu inovasi di dalam kerja ini 

untuk menjana kod secara otomatik kerana ia dapat memberikan bentangan kod yang 

betul dan maklumat untuk kegunaan pengkompil. Dengan mengaplikasikan syntax-

directed translation ke atas control flow graphs yang dibina, pengkompil dapat 

menjanakan kod assembly untuk suatu pengawal mikro secara otomatik. 
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CHAPTER I 

INTRODUCTION 

LI Background 

Since its introduction by Carl Petri in 1962, Petri net (PN) has found a 

number of important applications in the areas of modeling sequential behavior and 

process concurrency. In the manufacturing environment, the net-theoretic approach 

of PN has made it especially valuable in the modeling and design of discrete control 

and manufacturing systems (Desrochers and Al-Jaar, 1995) (Zhou and Venkatesh, 

1999). In the area of control system modelling, the ordinary PN of Carl Petri has 

been subject to numerous simplifications on the one hand, and extensions on the 

other hand, tailored according to the level of sophistication expected of the formal 

model. In general, the simplifications have been intended to result in a simple 

formal model for the complex systems studied, while the extensions have been used 

to add functionalities to the net which would widen the scope of applications, such as 

for developing a full model of the hardware and software characteristics of logic and 

digital controllers. Also, the extended PNs have been used as formal models for 

developing^ more systematic and structured controller programs (Frey and Litz, 

2000). 

Grafcet which is a subset of PN is a notable example of an extended PN. 

Drawing its inspiration from PN, Grafcet has been used as the basis for the 

international standard Sequential Function Chart (SFC), a graphical language for 

specifying programmable logic controllers (PLC) (David, 1995). Another example 
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of extended PN is Signal Interpreted PN (SIPN), which allows explicit description of 

input/output in a well defined way; its application in specifying PLC is found in 

(Frey and Minas, 2000) and (Minas and Frey, 2002). 

Encouraging results have been obtained in the areas of specifying digital 

controllers and automatic code generation by extending the features of PN. 

(Machado, Fernandes and Proenca, 1997) for example, has used shobi-PN (a PN 

extension approach based on SIPN) to specify logic control in programmable logic 

device^PLD). Their work resulted in automated VHDL code for PLDs. Petri Net for 

Digital Systems (PNDS) proposed by (Oliveira and Marranghello, 2000) contains 

most of the features needed for a methodical modeling of digital systems. 

An Extended Quasi-Static Scheduling (EQSS) method for formally 

synthesizing and automatically generating code for embedded software using the 

Complex-Choice Petri Nets (CCPN) models has been proposed in (Su and Hsiung, 

2002). Their work resulted in generation of POSIX based multi-threaded embedded 

software program in the C programming language. The C code generated is 

applicable for hardware platform such as Application Specific Integrated Circuits 

(ASICs), Application Specific Instruction Set Processors (ASIPs) and PLDs. Another 

approach using PN extension called Timed Free Choice Petri Nets (TFCPN) to 

model embedded real time software (ERTS) is found in (Hsiung, Lee and Su, 2002). 

The objective of the work is to synthesize complex ERTS to meet up limited 

embedded memory requirements and to satisfy hard real-time constraints. 

In the area of control system design, current design requirements and 

practices have reached a high degree of complexify that prevents their efficient 

realization without sophisticated computer-aided specification and implementation 

tools (Fernandes, Adamski and Proenca, 1997) (Frey and Minas, 2000) (Minas and 

Viehstaedt, 1995). Specification here is concerned with the description of the PN 

model and its attributes, which can be specified either textually through textual 

editors or graphically through CAD tools. The word implementation in the software 

context refers to the generation of a piece of code written in some computer 

programming language. This code should be ready to use when a low-level language 
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is employed, or directly convertible to a machine understandable one when a high-

level programming language is used. 

It has been realized from early on, a user-friendly means of controller 

specifications-writing is a graphical-based CAD tools which provide all the basic 

functions required by a user to draw the PN model and define its attributes. To this 

end, a number of customized diagram editors have been developed which allow the 

user to draw and edit the PN models on the computer screen. A notable example is 

DlAGEN, the diagram editor in (Frey and Minas, 2000) and (Minas and Frey, 2002). 

DlAGEN allows the user to specif}' PLC from SIPN specifications by providing the 

necessary drawing tools and facilities, such the free-hand editing facility, which thus 

allows the user to freely create, delete and modify diagram components (places, 
s 

transitions and tokens for the SIPN). Other examples of PN diagram editorjsuch as 

SOPHIA is found in (Fernandes, Adamski and Proenca, 1997) and EnVisAge 

(Extended Coloured Petri-Net Based Visual Application Generator Tool) in 

(Kurdthongmee, 2003). SOPHIA is used to specify shobi-PN while EnVisAge is used 

to construct Color Petri Net (CPN) to specify a microcontroller. 

In all the tools reported in the literature, conversion of the PN model into 

object code for the target system is carried by a customized compiler. In the work 

reported by (Frey and Minas, 2000) and (Minas and Frey, 2002), for example, a 

customized compiler was used to generate the PLC's Instruction List (IL) code 

directly from the SIPN model. In SOPHIA (Fernandes, Adamski and Proenca, 1997), 

VHDL code for PLD was automatically generated by the compiler from the shobi-

PN model. In (Melzer, 1997), a code generator is specifically developed to translate 

the B(PN)2 notations into C language for a UNIX multiprocessor platform. 

The extensions added have all been inspired by the applications intended for 

the PN. Extended PNs such as SIPN and Grafcet, have been derived from the need to 

design and specifiy PLC programs and also hybrid systems (Guillemaud and 

Gueguen, 1999). Both Grafcet and SIPN are naturally suited for modeling and 

simulating the PLC hardware and control characteristics. In particular, the 

functionalities available in Grafcet have a very important industrial application in 

the area of PLC programs specifications and design while the peculiar structure of 
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SIPN allows it to be directly translated to the instruction list (IL) code of a PLC 

(Frey, 2000). Another type of extended PN, namely the CPN, has been used to 

develop a code generator from the given specifications of a security access system 

(Mortenson, 1999). Similar work adopting CPN such as Color Timed Petri Nets 

(CTPN) (Gau and Hsiung, 2002) and Extended Color Petri Nets (ECPN) 

(Kurdthongmee, 2003) had contributed to synthesis of software code for embedded 

system. 

Research works mentioned above have shown a wide applicability of PN and 

its extensions in specifying controllers. Most of the work carried out aim to provide 

solutions in programming controllers such as PLCs, ASICs, ASIPs, PLDs and even 

general microprocessor platform such as UNIX. There is without doubt that the 

methodologies developed resulted in specification and implementation tools to 

generate a piece of code for such controllers. However, the application of PNs in 

specifying microcontrollers is not widely studied. Motivated by the fact that PN is a 

useful modeling tool, this work proposes the usage of PN to specify a type of 

microcontroller. 

1.2 Problem statement 

In the area of microcontroller modeling and program design, however, 

extended PNs such as Grafcet and SIPN are simply inapplicable. Microcontrollers, 

because of their very different architecture from PLCs, are predicated on a platform 

that strictly executes programs in a sequential manner. Because of this characteristic, 

Grafcet and SIPN are simply incompatible for microcontroller modeling and 

program specifications; the main limitation being their tendency to over-describe (or 

under-describe) the characteristics of a microcontroller's program. For instance, 

SIPN, which allows explicit description of input/output signals, though having the 

ability to fully describe a microcontroller's output/input behavior, is incapable of 

describing characteristics such as subroutines, interrupts, time delays and arithmetic 

operations. 
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Approaches such as CCPN in (Hsiung and Su, 2002), TFCPN in (Hsiung, 

Lee and Su, 2002) and CTPN (Hsiung and Gau, 2002) have proposed methods to 

generate embedded software with multiple threads, which can be processed for 

dispatch by a real-time operating system. These PN extensions are also used to solve 

memory size constraint and concurrent task requirements in embedded systems (e.g. 

PLDs, ASICs and ASIPs). The methods developed suited devices with "hardwired" 

architecture and microprocessors that operate with an operating system. This again 

hinders direct applications of these extensions to specify microcontroller as the 

microcontroller possesses a single-threaded architecture. Multi-threading activities 

are not supported in microcontrollers due to the absence of an operating system. 

In (Kurdthongmee, 2003), CPN has been used to specify MCS-51 family of 

microcontrollers. The work had achieved a few envisaged end-points such as the 

ability to perform model execution analysis and generation of C code for the MCS-

51 microcontrollers. Some drawbacks of the work are found in its inability to 

describe hierarchy functions which makes the model more difficult to read and 

interpret. Besides, the method introduced does not indicate how interrupts are 

handled. The author himself stated that the user needs to go through a steep learning 

curve in using CPN to specify MCS-51. This will somehow affect the user-

friendliness of the prototype developed. 

In the light of the deficiencies highlighted above, a different type of PN is 

needed which can satisfactorily address the following requirements: 

It must be able to describe control flow characteristics of a microcontroller 

program. 

It must be capable in handling routines such as subroutines, timing routines and 

interrupt handling routines. 

It must be capable of specifying input/output signals of a microcontroller, and 

It must be capable of describing arithmetic operations. 
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1.3 Research objectives 

Based on requirements highlighted in section 1.2, this work has sought to 

develop a PN model which would satisfactorily address the above-listed modeling 

requirements. Literature survey carried out at the start of the work by the author has 

^per-ehante introduced him to the work of (Jorg and Ezparza, 1995) on S-System PN. 

By imposing the requirement of having only one input and one output arc at every 

transition, the authors have enabled the PN to model asynchronous control systems. 

The objective of the research is to further enhance the S-System PN of (Jorg 

and Ezparza, 1995) by using some of the extensions introduced by others elsewhere 

in the literature. We report in this work the details of the enhancements added to the 

S-System model of (Jorg and Ezparza, 1995) and benefits brought about by the 

extension in modeling the hardware and software characteristics of the chosen 

microcontroller. 

Another objective of this work is the development of a prototype tool that 

comprises of a CAD tool (diagram editor) that allows specification of extended S-

System PN models and a compiler that implements the specified model to 

automatically generate the assembly code for the target microcontroller. 

1.4 Research scope 

The target microcontroller used in this work is PIC 16F84 which is an 8-bit, 

RISC type, Harvard architecture mid-range microcontroller from the PIC micro 

family. Sample application of the extended S-System PN model to selected control 

problems and the method of their specifications and solutions are shown as a guide 

to its application procedures. These include^ modeling of input/output signals, 

arithmetic operations, interrupts, serial peripheral interface communication and 

delays in the PIC 16F84. 
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Towards this end a basic prototype tool comprising of a diagram editor and a 

compiler has been developed. The design of the diagram editor is on graphs and 

graph grammars (Minas 1998) (Minas 1999) (Minas 2002) and it allows on-screen 

model entry and editing. Also provided in this tool are facilities for text parsing with 

context-free string grammars; diagram parsing with attributed graph grammars and 

syntax-directed assembly code generation. Also explained in this work is the 

simulation method used to verify and validate the assembly code generated by the 

compiler. 

1.5 Thesis outline 

This thesis comprises of six chapters. Chapter 2 provides reviews of related 

works to substantiate the details of the functionalities added to the S-System PN for 

describing a microcontroller program. Besides, it also reviews works related to the 

development of the prototype tool. 

Chapter 3 is dedicated to explain the modeling and design of the prototype 

tool which comprises of a diagram editor and a compiler in detail. This chapter 

explains the function of the graphical editor and model editor that helps to construct 

the PN model of the controller graphically and to define the properties or attributes 

of the model. Also explained is the design and working principle of the compiler's 

parsing and code generation operations. 

Chapter 4 describes the implementation of the prototype tool. Here, methods 

on code generation are presented in detail. Chapter 5 serves as a testing platform for 

the prototype tool. It provides details of the simulation work conducted on samples 

of assembly code generated by the code generator. Finally, chapter 6 provides the 

conclusion and discussions on the limitations identified with the model and modeling 

approaches adopted in this work. Also discussed here are recommendations for 

future work. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews some related work in PN extensions to substantiate 

additional functionalities to be added to the ordinary S-System PN and discuss the 

application of these functionalities in microcontroller hardware and software 

modeling applications. The chapter is divided into a few sections. In section 2.2, we 

give a brief overview of the S-System PN; this is followed by discussions on various 

extension properties and their practical applications. A method to correlate control 

flow graph with S-System PN is found in section 2.3. Some literature reviews on 

specification and implementation concepts of a prototype tool such as graphs as 

internal representation of diagrams (Section 2.4), diagram parsing (Section 2.5), 

textual parsing and code generation technique (Section 2.6) are also presented. 

Section 2.7 summarizes this review by emphasizing on the concepts fonnulated or 

adopted to develop the prototype tool in this work. 

2.2 A brief overview of the S-System PN 

S-System PN which is discussed in detail in (Jorg and Esparza, 1995) is a 

bipartite directed graph represented by 3-tuple, PN = (P, T, A, W, Mo) where: 
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® P = {pi, p2, p3, pn} is a finite set of places 

• T = {tl, t2, t3, , tn} is a finite set of transitions 

e A c ( P x T ) U ( T x P ) i s a finite set of arcs 

• W: A —> 1 is the weight function attached to each arc 

• M0: P —> {0,1,2, } is the initial marking 

A defining characteristic of S-System PN is its restriction of allowing only 

one input arc and one output arc for each transition. Places in an S-System PN, on 

the other hand, can have more than one input and output arcs. While this property at 

first sight, seem very trivial, it is nevertheless of fundamental consequence since by 

its inclusion, it allows the S-System PN to express in a formal manner the causality 

and the sequential attributes of an asynchronous control system. Together with its 

characteristic structure which allows encapsulation of algebraic assignments and 

expressions, the sequential nature of S-System PN can be utilized to mirror the 

sequential execution of a microcontroller program. 

2.2.1 Adding extended functionalities to the S-System PN 

The first issue to be tackled is identifying the functionalities to be added to 

allow the ordinary S-System PN to be used for modelling microcontroller signal and 

timings, and also handle arithmetic operations, interrupts and subroutines. The sub-

sections following hereon describe the respective functionalities added and their 

practical implications. 

2.2.1.1 Practical implications of the S-System PN components 

Places of a PN can be associated to certain characteristics of a system or 

controller. A place in Grafcet, for example, corresponds to a component of the state 

(David, 1995). In manufacturing systems, places are used to model resources in the 

system (Desrochers and Al-Jaar, 1995). (Oliveira and Marranghello, 2000) have 
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defined three kinds of places to describe storage components, local states of system 

components, or functional components (behaviours) of the system being modelled. 

Their work has demonstrated that places, when used appropriately, can correctly 

model certain characteristics of a controller. 

In this work, we have used places in the S-System PN to describe the state of 

a system. This approach is similar to Grafcet, where each place (step) represents a 

particular state of the system. The places also function as avenues for interrupts, 

read/write operation and serial peripheral interface protocol for the microcontroller. 

In the S-system PN, these functions are described in terms of algebraic assignments 

and expressions. 

A transition in S-System PN, on the other hand, is associated with a 

condition. This condition is also constructed as an algebraic assignment or 

expression. A condition tests the state of input components and also represents 

arithmetic operations, timing and serial peripheral interface protocol in the 

microcontroller. In this sense, the S-System PN provides a higher description than 

either SIPN or Grafcet, wherein their use of Boolean equations only allows them to 

describe the logic state of the system (David, 1995). The transition enabling 

condition can therefore be used to pass program control from its input place to an 

output place when the condition is fulfilled. 

It is also possible to have an S-System PN with transitions without any firing 

conditions. The rules for firing of a transition in the S-System PN are as follows: 

• A transition is enabled if all its pre-places are marked and all its post-

places unmarked 

. A transition fires immediately if it is enabled and its firing condition is 

fulfilled or executed 

A transition without any firing condition fires immediately if it is 

enabled. 
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2.2.1.2 Describing hierarchy and subroutines using macro places 

A subroutine is a useful portion of code in a microcontroller program and it 

can have several individual lines of program code that describe a function that is 

repeatedly used in the program. In the S-System PN, a subroutine in a 

microcontroller program is represented by a macro place. A macro place is a useful 

component for fully specifying a controller with a hierarchical structure. A macro 

place is known as "macro step" in Grafcet (Michel, 1990), "macro places" in 

(Amroun and Bolton, 1990), "super places" in (Frey and Minas, 2000) and 

"supermodes" in (Mirkowski and Yakovlev, 1998). The symbol of a macro place is 

shown in figure 2-1. 

For each macro place at any given moment there exists for it one hierarchical 

instance. Figure 2-2(b) shows one instance of the macro place p3 in figure 2-2(a). 

They are collected into a subnet that further defines a macro place. The subnet in 

figure 2-2(b) has one input place p3 and one output place p9 and general S-System 

PN structure in between. The transition following the macro place may not be fired 

until the output place is active. 

2.2.1.3 Describing logic states and arithmetic operations 

The use of Boolean equations in some of the PN models only allows 

description of the signals of a controller. In this work, algebraic assignments and 

expressions are allowed in places and transitions; this extension draws inspiration 

from (Wallen, 1995) that extended Grafcet with general statements and expressions 

to describe complex control algorithms. Extension of Grafcet with algebraic 

assignments and expressions is also found in (Guillemaud and Gueguen, 1999) 

Figure 2-1 Macro place 
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which were used to describe hybrid systems. Besides, their work also incorporated 

differential equations and Laplace transfer functions in places and transitions. 

General algebraic assignments and expressions are used here to describe all 

functions in the places and conditions in the transitions. The functions in a place 

include logic states of the controller, read/write operation, interrupts and serial 

peripheral interface protocol. The condition of a transition may take the form of tasks 

like testing the logic state of an input or solving arithmetic operations within the 

microcontroller. 

The PN model in figure 2-2 illustrates the usage of assignments and 

expressions..Figure 2-2 shows an extended S-System PN to specify a switch pressed. 

When the switch,/?/) is pressed, it will illuminate led]. The second press resets ledl 

and illuminates led2. The count variable in the model is used to store the number of 

presses. Each switch press will increase count by 1. The third press on pb will reset 

both ledl, led2 and count. 

Ied2 = 0 ledl = 0 ledl = 0 

count = count + 

t7 
count = 0 

(a) (b) 

Figure 2-2 S-System PN model for a switch press mechanism 
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Expressionpb==l in transition tl is a condition that describes the pressing of 

switch ph. If the logic state of pb is equal to ' 1transition tl fires. Transition t2 is 

associated with an assignment count=count+1. This assignment increases the count 

variable by 1 each time switch pb is pressed. Transition t2 fires when its condition is 

fulfilled. This resulted in the activation of macro place p3. Macro place p3 is further 

defined by the subnet in figure 2-2(b). 

The subnet in figure 2-2(b) has three transitions t4, t5 and t6 that are 

associated with expressions that evaluate the variable count. If count==l is true, 

led1 illuminates. When count==2 is true, led2 illuminates. If count>2 is true, ledl, 

led2 and the count variable will be reset. 

It is shown in figure 2-2 that algebraic assignments and expressions can be 

used to describe logic state of input and output variables as well as solving arithmetic 

operations. Besides these, assignments are also used to deal with serial peripheral 

interface protocol and read/write to EEPROM. 

2.2.1.4 Handling interrupts in microcontroller 

Interrupts can be defined as the suspension of some activity by an event, and 

the resumption of the same activity later on from the state in which it was suspended. 

Interrupts in a microcontroller may come from hardware interrupts. For our target 

mid-range PIC microcontroller, hardware interrupts come from 4 sources: 

An external interrupt from PORT B bit 0. 

• A change in state of PORT B bits 4 to 7 

• TMRO overflow from FFh to OOh 

• Write completion to an EEPROM location 

Hardware interrupts may disturb the normal flow of a microcontroller 

program to perform some other functions. The interrupt causes the program to jump 

to another section of code to handle the interrupt. 
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In handling interrupts in embedded systems, (Mirkowski and Yakovlev, 

1998) associate a kind of a working permit to a portion of the net. The work permit 

can for instance be represented by a variable that guards ever}' action in a given 

portion of the net. The normal working condition of the net would be when guarding 

variable is set to true. When there is an interrupt request the variable is set to false 

blocking usual net processing and allowing the interrupting process to take over. 

Once the interrupting process finishes, the guard variable is reset to true, and 

processing of the net resumes from where it was prior to interruption. 

A similar approach is adopted in this work whereby a work permit is assigned 

to a portion of the S-System PN by a variable that guards a specific type of interrupt. 

Figure 2-3 shows a work permit at place p2 that handles a PORT B bit 0 external 

interrupt. 

P2 

R B O 

t2 

p4 

R B O 

t5 

p3 

I N T E R R U P T E N A B L E D 

I N T E R R U P T D I S A B L E D 

1 16 
count = count + 1 

p5 

(a) (b) 

Figure 2-3 Handling PORT B bit 0 interrupt 
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The work permit in place p2 will guard every action of a portion of the net 

from p2, t2, p3, t3 and p4. Usual processing of the net will be blocked when a PORT 

B bit 0 interrupt occurs, allowing an interrupt routine to take over. 

Another extension added to the S-System PN is requiring a kind of subnet to 

represent an interrupt routine. Figure 2-3(b) shows a subnet that represents an 

interrupt routine handling the PORT B bit 0 interrupt. The subnet shows that the 

count variable will be increased by 1 at every instance of a PORT B bit 0 interrupt. 

This subnet will be executed in the event of an interrupt occurring in the portion of 

the net from p2 to p4. 

Work permit used in this work also applies to other types of interrupts such 

as TMRO overflow, write completion to EEPROM and PORT B bit 4 to 7 state 

changes. When it is required for each interrupt enabled, a subnet needs to be 

constructed to handle that interrupt. 

2.2.1.5 Describing timing in microcontrollers with timed transitions 

In the case of PN, there are different mechanisms dealing with time according 

to the extension employed. Some extensions assign time mechanisms to transitions 

while others assign them to places. However, no PN extensions have used both 

approaches simultaneously. In most research, time is preferred to be associated with 

transitions. This can be found in (Tanabe, 1997) (Proth and Xie, 1996). In this work, 

time is assigned to be associated with transitions. 

Let us assume that the time associated with a transition is 7, and that the 

firing o f t (transition) starts at time T0. Then, firing t of an S-System PN consists of: 

o removing a token from pre-place o f t at time T0 

o adding a token to a post-pace of t at time T0 + 7 
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Between instants T0 and Tn + 7, the token is supposed to remain in the transition. 

This represents that the processes taking place in the system modeled would have 

some length in time, which will be represented as durations of firing transitions of a 

PN. The timed transition explained above is used to model timing in the 

microcontroller. Timed transition such as this is analogous to timers in PLC (Zhou 

and Venkatesh, 1999). In the context of the microcontroller, it represents timing and 

delay routines that need to be generated to produce the required timing. 

Figure 2-4 illustrates the use of a timed transition t2 in a simple operation. 

The PN model specifies that a switch press at pb will illuminate LED1 at p2. LED1 

will illuminate for 5 seconds when transition t2 fires. After 5 seconds, the token 

flows into p3 to reset LED]. 

Timed transition 

Figure 2-4 Timed transition 

2.2.1.6 Token in an S-System PN 

In this research, it is restricted that only one token can be used at any place in 

the net. The placement of a token shows the initial marking; it also represents the 

initial state of a microcontroller program. For example, the token in place plof figure 

2-4. 
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2.2.2 Application of the extended S-System PN 

A mixing operation which is controlled by a microcontroller is shown in 

figure 2-5. The start button when pressed starts the mixing cycle. This resulted in 

activation of valve 2 and valve 1 to allow liquid to flow into the tank. When the 

liquid level reaches sensor 2, valve 1 and 2 are closed to prevent liquid from flowing 

in. Consequently, the motor starts spinning to stir the mixture for 60 seconds. After 

60 seconds, the motor stops and valve 3 is opened to allow the mixture to flow out of 

the tank. When all the mixture has flown out of the tank, valve 3 is closed and the 

system is back to its initial state. 

The wash cycle starts when the wash button is pressed. Valve 4 will be 

activated to allow water to flow into the tank. As water level reaches sensor 2, valve 

4 is closed; the motor then starts spinning for another 60 seconds. After 60 seconds, 

valve 3 is opened to dispose water. Valve 3 is then closed and the system returns to 

its initial state. 

Valve 4 

Valve 2 X 2 . Valve 1 
Z X Start 

E Sensor 2 
Tank 

Wasli 

Motor 

Figure 2-5 A mixing operation 
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The mixing operation is modeled by the extended S-System PN model shown 

in figure 2-6. The model consists of a main net and a subnet. The subnet is a 

collection of places and transitions for macro place p4 which is analogous to a 

subroutine in the microcontroller program. A subnet is modeled here to demonstrate 

to the reader how a macro place can be used to model a subroutine. 

p4 

17 
stnsorl==l 
P& 

tS 
5tniar2==l 
p7 
vxh'-; 1=0, 
vj1V<2=0; 
V J r. r<;4=UJ 

m>:tor=l 

19 
tirntr W50.0S6C 
p8 

Figure 2-6 S-System PN model for the mixing operation 

Each place and transition are associated with algebraic assignments or 

expressions instead of Boolean equations. The variables such as wash, start, motor, 

valve], valvel, valve3, valve4, sensor 1 and sensor2 are related to the microcontroller 

input and output logic states. For instance, wash is a variable that represents the push 

button that starts the wash cycle. When logic ' 1' is detected at wash (e.g. the push 

button is pressed), transition tl fires and the token flows from pi to p2. At p2, valve4 

is a variable that represents activation or deactivation of valve4. valve4 = 1 means 

valve4 is activated. 

Table 2.1 and 2.2 list all the places and transitions in the main net with their 

respective assignments or expressions and tasks. The number '1' and '0' in these 

assignments or expressions represent the logic states of the devices; ' 1' represents an 

ON state while '0' represents an OFF state. 
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Transitions t3, t4 and t5 in Table 2.2 are transitions that do not have any 

firing conditions (algebraic assignments or expressions) associated with them. These 

transitions are non-operational and can fire immediately when they are enabled, e.g. 

a token at its pre-place. 

Table 2.1: Places in the main net 

Place Algebraic 
assignment / 
expression 

Task 

P4 Valve3 = 0 Valve3 OFF 
P2 Valve4 = 1 Valve4 ON 
p3 Valve 1 = 1 

valve2 = 1 
Valve 1 ON 
Valve2 ON 

p4 Call a subroutine 
p5 motor = 0 

valve3 = 1 
Motor OFF 
Valve3 ON 

Table 2.2: Transitions in the main net 

Transition Algebraic 
assignment / 
expression 

Task 

T1 wash == 1 To test whether Push button Wash is ON 
T2 start == 1 To test whether Push button Start is ON 
T3 Non-operational 
T4 Non-operational 
T5 Non-operational 
T6 sensorl — 1 To test whether sensor! is activated 

Table 2.3 and 2.4 list all the places and transitions in the subnet with their 

respective algebraic assignments or expressions and tasks. A few places such as 

input place p4 and place p6 have no assignment or expression associated with them. 

These places are non-operational. Transition t9 in table 2.4 is an example of a timed 

transition. It creates a 60-second delay in the microcontroller. 
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Table 2.3: Places in the subnet 

Place Algebraic 
assignment / 
expression 

Task 

P4 Non-operational 
P6 Non-operational 
P7 valve 1 = 0 

valve2 = 0 
valve 4 = 0 
motor = 1 

Valve 1 OFF 
Valve2 OFF 
Valve 4 OFF 
Motor ON 

P8 Return to main routine 

Table 2.4: Transitions in the subnet 

Transition Algebraic 
assignment/ 
expression 

Task 

t7 sensorl == 1 To test whether sensorl is activated 
t8 sensor2 == 1 To test whether sensor2 is activated 
t9 Timer #60 sec. Execute a 60 seconds delay 

This mixing operation model has illustrated a simple specification of a 

control system with the extended S-System PN proposed in section 2.2.1. Later parts 

of this work will demonstrate a few more examples of extended S-System PN 

models. 

2.3 Control flow graphs and the S-System PN 

As PN can be compared to ladder logic diagram of a PLC in (Zhou and 

Venkatesh, 1999)(Lee, Han and Lee, 2004); it is simply inapplicable in the context 

of a microcontroller as the implementation of a PN for the microcontroller must 

results in assembly code. The ladder logic diagrams however are generated 

specifically for the PLC. As the main aim of PN modeling for controllers is a 

generation of a piece of code; the PN is proven to be useful to produce low-level 
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coding such as IL in (Frey and Minas, 2000)(Minas and Frey,2002) and high level 

coding such as C code in (Melzer, 1997). 

However, the SIPN model in (Frey and Minas, 2000)(Minas and Frey, 2002) 

to produce IL code for PLC cannot be adopted directly. Firstly, due to its limitation 

to over-describe or under-describe the PIC microcontroller as mentioned in chapter 

1. Secondly, the proposed framework in their work is suitable for programs that are 

concurrent. Here, the IL can handle concurrency as it is supported by an operating 

system in the PLC. However, the program code in a microcontroller is straight-line 

and sequential where the program counter will only execute each line of program 

code sequentially. Hence, there arise a need to find a correlation between the PN 

structure and the PIC microcontroller coding. 

A review on the work of (Aho, Sethi and Ullman, 1988) has shown that low-

level language code can be segregated or structured with control flow graphs. A 

control flow graph is a representation of a program where contiguous regions of code 

without branches, known as basic blocks, are represented as nodes in a graph while 

edges between nodes indicate the possible flow of the program. The basic blocks in 

the control flow graph contain consecutive statements. The basic blocks have flow of 

control that enters at the beginning and leaves at the end. 

As an illustration, a microcontroller program is shown as a control flow graph 

in figure 2-7. The microcontroller program can be divided into basic blocks. Figure 

2-7 shows how a microcontroller program is segregated into three basic blocks 

named B1, B2 and B3 where each has its own consecutive statements. The basic 

blocks are connected by edges that indicate the flow of the program. 

The edges in figure 2-7 indicate possibility of conditional and unconditional 

branching at the end of the basic blocks. For example, block B1 has a conditional 

jump at the end of the block. The statements btfsc cut and btfsc drill are evaluated. If 

btfsc cut is true, the flow of control branches to block B2. If btfsc drill is true, the 

flow of control branches to block B3. This is a kind of conditional jump. There are 

also unconditional jumps in flow graphs. Block B2 and block B3 have unconditional 
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jumping. There is no evaluation of certain conditions; these block directly branch 

back to B1 at the end of the block. 

— t L <-
B1 
bcf motor 
bcf cutter 
bcf driller 

—btfsc cut 
goto B2 
btfsc drill 
goto B3 

B2 
bsf motor 
Loopl 
btfsc limitl 
bsf cutter 
goto Loop l 
goto B1 

B3 
bsf motor 
Loop2 
btfsc Iimit2 
bsf driller 
goto Loop2 
goto B1 

Figure 2-7 Control flow graph of a microcontroller program 

Control flow graphs are useful structure for understanding code generation 

algorithms. They are good vehicles for a compiler to collect information about an 

intermediate code (Alio, Sethi and Ullman, 1988). They are used as representation of 

a trace for dynamic compilation in (Duesterwald, 2003). A trace is a dynamic 

sequence of consecutively executing basic blocks of a program. Thus traces are 

likely to offer opportunities to improved code layout and optimization. It is indicated 

here that control flow graphs can give the compiler a code layout of the program and 

a basis for further analysis. 

We observe that we can categorize the basic blocks of a control flow graph 

into two types. In this work, we have termed the first type block and the second type 

as switch. Figure 2-8(a) shows a block that has only one output edge. A switch shown 

in figure 2-8(b) is a basic block with more than one output edges. For instance, block 

B1 in the control flow graph of figure 2-7 is a switch while B2 and B3 are both 
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blocks. A block can only branch to another basic block while a switch can branch to 

different basic blocks. 

/ 1 \ \ 

(a) (b) 

Figure 2-8 Basic blocks terminology 

We further suggest in this work to find correlation between the PN net 

structures with control flow graphs. We found that the S-System PN provide a net 

structure that can be compared to the control flow graph of a program. Table 2.5 

shows an S-System PN structure compared to a switch while table 2.6 shows an S-

System PN structure compared to a block. 

Table 2.5: Representations by PN for a switch node 

S-System PN Control Flow Graph nodes 

E, 
7 t>' A-

' n 

switch 

c 5 t l E t2 tn_i In c 5 t l E t2 tn_i In 
" I E 
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Table 2.6: Representations by PN for a block node 

Table 2.5 and 2.6 show two types of S-System PN net structures that can be 

derived into nodes of a control flow graph. The derivation is an approach of 

containing graphs within graphs which can provide a more systematic graph layout 

for easier implementation of the S-System PN. 

(Aho, Sethi and Ullman, 1988) presented basic blocks of a control flow graph 

that hold intermediate programs such as a three-address statement. Thus control flow 

graph has collections of infonnation about the intermediate program, which is useful 

to the compiler. In this work, the transformation of a PN into a control flow graph 

adopts this approach. Here algebraic assignments and expressions are represented as 

intermediate code within basic blocks of the flow graph. What we need is to 

construct some kind of "transformer" to transform the PN net structure into control 

flow graph. 

Figure 2-9 illustrates the transformation of a PN into a control flow graph, 

where we have used the mixing operation example in figure 2-6 to demonstrate 

transformation of a PN net structure into a control flow graph. The figure shows the 

corresponding control flow graph of the S-System PN model with its respective 

block and switch structure. 
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