
?. ,-rs f : Tj: T T" v.' ^ ^ ? h j H LI RTif* ' - t 'T jAfc
I': 4 , : i ftiV&l .-w . i ' - v U i ^ i . i . . & A J U l V J I

[T ' M - r : v f c i - j n p ^ p q v j j t p - M >
I «.„v ».'; v. * v. * »»>. «. »».«wio Mi. w

; >:}«? filjff-. tifi' t{»

r U l I J U H j t k H & I I t t r J ^ i v & I f U n M C M

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

PERPUSTAKAAN KUiTTHO

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

KOLEJ UNIVERSITI TEKNOLOGI TUN HUSSEIN ONN

PENGESAHAN STATUS TESIS

A GRAPHICAL METHOD FOR AUTOMATIC CODE GENERATION

FROM EXTENDED S-SYSTEM PETRI NET MODELS

SESI PENGAJIAN : 2005/2006

Saya NG K O K M U N mengaku membenarkan Tesis Sarjana ini disimpan di Perpustakaan dengan
syarat-syarat kegunaan seperti berikut:

2.
3.

4.

Tesis adalah hakmilik Kolej Universiti Teknologi Tun Hussein Onn.
Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi
pengajian tinggi.
** Sila tandakan (V)

SULIT

T E R H A D

TIDAK T E R H A D

(Mengandungi maklumat yang berdarjah keselamatan
atau kepentingan Malaysia seperti yang termaktub di
dalam A K T A RAHSIA RASMI 1972)

(Mengandungi maklumat T E R H A D yang telah
ditentukan oleh organisasi/badan di mana penyelidikan
dijalankan

D sahkan oleh

(T A N D A T A N G A N PENULIS)

Alamat Tetap:

N O 6, L O R O N G PJS 7/15 B,

B A N D A R S U N W A Y , 46150

PETALING JAYA, S E L A N G O R

Tarikh: - ^ f / ^ / b G

(T A N D A T A N G A N PENYELIA)

PM. DR. Z A I N A L A L A M BIN I-IARON

N a m a Penyelia

Tarikh:

1 t u n 1CI 1

0*1* fa 6

C A T A T A N :
** Jika tesis ini SULIT atau T E R H A D , sila lampirkan surat daripada pihak

berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh
tesis ini perlu di kelaskan sebagai SULIT atau T E R H A D .

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

A GRAPHICAL METHOD FOR AUTOMATIC CODE GENERATION

FROM EXTENDED S-SYSTEM PETRI NET MODELS

NG KOK MUN

A thesis submitted in fulfillment of the requirements for the award of the Degree of

Master of Electrical Engineering

Department of Electrical and Electronics

Faculty of Electrical Engineering

Kolej Universiti Teknologi Tun Hussein Onn

JULY, 2006

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

11

hereby declare that the work in this thesis in my own except for quotations and

summaries which have been duly acknowledged"

Siynature
i f j t y A

Name of Candidate : NG KOK MUN

Date

Supervised by

Supervisor

: PM DR. ZAINAL ALAM BIN HARON PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

I l l

"I/We declare that I/We have read through this thesis and in my/our view, this thesis is

sufficient in fulfilling the scope and quality for the purpose of awarding the

Master of Electrical Engineering"

Examiner I : PROF. DR. MOHAMED KHALIL BIN MOHD. HANI

Unversiti Teknologi Malaysia

Examiner II : PROF. MADYA DR. ROSZIATI BINTE IBRAHIM

Kolej Universiti Teknologi Tun Hussein Onn

Chairman : DR. CHRISTY A/L PATHROSE GOMEZ

Kolej Universiti Teknologi Tun Hussein Onn PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iv

Dedicated to my parents and siblings

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

V

ACKNOWLEDGEMENT

I would like to convey my appreciation to my supervisor, Associate Professor

Dr. Zainal Alam bin Haron for introducing Petri Net and also providing the necessary

guidance in this work. The constructive criticism, feedbacks and advice provided

encouraged me to put more effort in this write up.

I am also touched by the encouragement and prayers given by my church friends

during this process of doing this research. Not to forget, the financial support and help

given when I am in financial need during the initial stage of my course. Special thanks

to my siblings Yee Fong, Yee Fun and Kok Kee for being my scholarship's guarantors.

Finally, all praises and glory be to my Lord Jesus Christ for His love and

provision of finance, wisdom and strength to complete this work. To God be the glory!
PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

VI

ABSTRACT

This work has introduced a fast and reliable method for graphical modeling of

discrete systems control problems using extended S-system Petri Net. By adding new

functionalities to the extended S-System Petri Net, dynamic quantities such as

microcontroller signals transitions, system timing, interrupts, subroutines and arithmetic

operations could now be modeled by software. A graphical-based diagram editor has

been developed in this work to handle the model entry, editing and visualization. The

diagram editor contains all the basic facilities required for entering, editing, visualization

and syntax analysis of the S-System Petri Net model. A compiler has also been built to

compile the graphical model and generate the assembly code automatically. Together,

the diagram editor and model compiler forms an integrated design and development tool

called S-PNGEN. Seamless data binding between the diagram editor and the model

compiler is achieved by using a common directed-graph framework to internally

represent the model diagrams. Diagram syntax checking was implemented using

attributed graph grammar. Also introduced in this work is an efficient method for

implementing the control solutions on a microcontroller. This involves the development

of a procedure for automatically mapping S-System Petri Net models constructed in the

diagram editor to control flow graphs. The procedure uses a notion called graph nesting

to help the design tool read and understand S-System model diagrams and transform

them into control flow graphs. Conversion of an S-System Petri Net model into a control

flow graph is an innovative approach introduced in this work for automatic code

generation as it guarantees the production of the correct code layout and information for

use by the compiler. By applying a syntax-directed translation on the control flow graph

constructed, the built-in compiler then automatically generates the assembly code for the

target microcontroller.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

V l l

ABSTRAK

Penyelidikan ini memperkenalkan kaedah yang effisien untuk membentuk model

bagi sistem kawalan diskrit secara grafikal dengan menggunakan extended S-System

Petri Net. Dengan menambahkan fungsi-fungsi baru ke atas suatu S-System Petri Net,

kuantiti dinamik suatu pengawal mikro seperti isyarat, masa, subrutin, interrupts dan

operasi aritmetik dapat dimodelkan oleh software. Satu diagram editor telah dibina

untuk membolehkan pelukisan dan pengubahsuaian model. Diagram editor ini

mempunyai kemudahan asas yang membolehkan pembentukan dan pengubahsuaian

model serta melaksanakan analisis sintaks ke atas model S-System Petri Net yang dibina.

Satu pengkompil telah dibangunkan untuk mengkompil model grafikal yang dibina dan

juga untuk menjana kod assembly secara otomatik. Kedua-dua diagram editor dan

pengkompil diintegrasikan sebagai suatu alat rekabentuk model dipanggil S-PNGEN.

Kedua-dua diagram editor dan pengkompil berkongsi data dengan menggunakan rangka

struktur data graf yang sama bagi mewakili model yang dilukis. Sintaks model

diimplementasikan melaiui attributed graph grammar. Hasil kerja ini juga

memperkenalkan suatu prosedur yang memetakan model S-System Petri Net yang dibina

dalam diagram editor kepada control flow graphs. Prosedur ini menggunakan suatu

konsep graph nesting yang membolehkan alat rekabentuk kami membaca dan

memahami model S-System Petri Net dan mengubahnya kepada control flow graphs.

Pertukaran model kepada control flow graphs merupakan satu inovasi di dalam kerja ini

untuk menjana kod secara otomatik kerana ia dapat memberikan bentangan kod yang

betul dan maklumat untuk kegunaan pengkompil. Dengan mengaplikasikan syntax-

directed translation ke atas control flow graphs yang dibina, pengkompil dapat

menjanakan kod assembly untuk suatu pengawal mikro secara otomatik.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

viii

TABLE OF CONTENTS

CHAPTER ITEMS PAGE

TITLE i

STUDENT'S DECLARATION ii

ESAMINERS' DECLARATION iii

DEDICATION iv

ACKNO WLEDEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xviii

LIST OF APPENDIXES xix

I INTRODUCTION 1

1.1 Background 1

1.2 Problem statement 4

1.3 Research objectives 6

1.4 Research scope 6

1.5 Thesis outline 7

II LITERATURE REVIEW 8

2.1 Introduction 8

2.2 A brief overview of the S-System PN 8

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

CHAPTER ITEMS PAGE

2.2.1 Adding extended functionalities to the 9

S-System PN

2.2.1.1 Practical implications of the S- 9

System PN components

2.2.1.2 Describing hierarchy and subroutines 11

using macro places

2.2.1.3 Describing logic states and arithmetic 11

operations

2.2.1.4 Handling interrupts in microcontroller 13

2.2.1.5 Describing timing in microcontrollers 15

with timed transitions

2.2.1.6 Token in the S-System PN 16

2.2.2 Application of the extended S-System PN 17

2.3 Control flow graph and the S-System PN 20

2.4 A brief review of specification tools 27

2.4.1 Directed graphs 28

2.5 A brief review of diagram parsers 32

2.6 A brief review on text parsing and code 33

Generation methods

2.7 Summary 34

III MODELING THE PROTOTYPE TOOL 36

3.1 Introduction 36

3.2 An overview of prototype tool 37

Development

3.3 Conceptual framework adopted for 42

prototype tool

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

CHAPTER ITEMS PAGE

3.3.1 Diagram editor 43

3.3.2 Compiler 43

3.3.2.1 Parser 44

3.3.2.2 Code generator 45

3.4 Diagram editor design 46

3.4.1 The graphical editor 47

3.4.2 The model editor 49

3.4.2.1 Variables declaration 50

3.4.2.2 Updating place or transition properties 52

or attributes

3.4.2.3 I/O pins direction 55

3.4.2.4 EEPROM settings 55

3.4.3 Data structures 56

3.4.3.1 Directed graph construction via 57

diagram drawing

3.4.3.2 Symbol table (Hash-table) 59

3.4.3.3 Other data structures 60

3.4.4 Other functions in the diagram editor 61

3.5 Parser design 62

3.5.1 Text and diagrams syntax parsing 63

3.5.1.1 Parsing text language with context-free 63

grammars

3.5.1.2 Using context-free grammars to parse 66

text into parse trees

3.5.2 Parsing diagrams 71

3.5.2.1 Parsing diagrams with attributed graph 74

Grammar

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

XI

CHAPTER ITEMS PAGE

3.5.2.2 Detecting subnets for macro places 79

3.5.3 Creating abstract representations from 82

graph transformation

3.6 Summary 87

IV IMPLEMENTATION OF THE PROTOTYPE 89

4.1 Introduction 89

4.2 The target machine architecture 91

4.3 Code selection 91

4.3.1 Code selection for I/O port and 93

EEPROM initialization

4.3.2 Code selection for expressions and 95

assignments

4.3.3 Overall code generation 101

4.3.3.1 Code generation for port variables 104

4.3.3.2 Subroutines code generation 105

4.3.3.3 Code generation for control and 109

branching instructions for the main

program

4.4 Registers and memory allocation 110

4.5 Discussion 114

4.6 Summary 115

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

CHAPTER ITEMS PAGE

V APPLICATIONS OF THE PROTOTYPE 117

5.1 Introduction 117

5.2 Results 118

5.3 The assembler / simulation tool 119

5.4 Assembly code verification and 121

validation

5.4.1 Assembling the assembly code 121

5.4.2 Simulation on assembly code 123

5.4.2.1 Simulating the mixing cycle 125

5.4.2.2 Simulating the wash cycle 128

5.5 Further simulations 129

5.6 Summary 130

VI CONCLUSION AND

RECOMMENDATIONS 131

6.1 Introduction 131

6.2 Benefits 131

6.3 Drawbacks 132

6.4 Recommendations 135

6.4.1 Code optimizations 135

6.4.2 Retargetable compiler 137

6.4.3 Upgrading the prototype tool 138

6.5 Conclusion 139

REFERENCES

APPENDIXES

141

147

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Places in the main net 19

2.2 Transitions in the main net 19

2.3 Places in the subnet 20

2.4 Transitions in the subnet 20

2.5 Representations by PN for a block node 23

2.6 Representations by PN for a switch node 24

2.7 Methods in the ASDigraph class 30

2.8 Accessor methods 30

2.9 Iteration methods 31

3.1 Input sentences 68

3.2 Evaluation conditions 76

3.3 Semantic rules violation 78

3.4 Attributes in RegionNode objects that describe 86

the main net

3.5 Attributes of RegionNode associated to a subnet 87

4.1 Nodes of parse tree of figure 4-7 and the 96

associated code templates

4.2 Nodes of parse tree of figure 4-11 and their 100

associated code templates

5.1 Inputs and outputs of the mixing operation 123

6.1 Optimizations methods (adapted from (Muchnick, 137

1997))

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2-1 Macro place 11

2-2 S-System PN model for a switch press 12

mechanism

2-3 Handling PORT B bit 0 interrupt 14

2-4 Timed transition 16

2-5 A mixing operation 17

2-6 S-System PN model for the mixing operation 18

2-7 Control flow graph of a microcontroller program 22

2-8 Basic blocks terminology 23

2-9 Derivation of the S-System model into control 25

flow graph

2-10 Control flow graph with the respective algebraic 25

assignments and expressions

2-11 Assembly code generated 26

2-12 Adjacency-set representation of a directed graph 29

3-1 Design flow of the prototyping tool 38

3-2 An overview of the diagram editor 39

3-3 The Parser module 40

3-4 MPLAB IDE 41

3-5 Absolute assembly-level code translation 42

3-6 Assembly code arrangement within basic blocks 45

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

FIGURE NO. TITLE PAGE

3-7 S-PNGEN's diagram editor 47

3-8 Graphical editor menus and sub-menu functions 48

3-9 Model editor's menus and functions 49

3-10 Project Variables dialog 50

3-11 Dialog to update variable's attributes 51

3-12 Transition Attributes dialog 52

3-13 Place Attributes dialog 53

3-14 Place Settings dialog 54

3-15 Port Setting dialog 55

3-16 EEPROM Settings dialog 56

3-17 EEPROM contents 56

3-18 A Petri Net model drawn on the drawing area 58

3-19 Associated adjacency set of the model in figure 58

3-18

3-20 Symbol table (hash-table) 59

3-21 Array structure to represent I/O pin direction 60

3-22 Backus-Naur Form production rules 64

3-23 PN model with assignments and expressions 67

3-24 Parse tree for the assignment: PORTA = 69

b"01001100'

3-25 Parse tree for expression b*c < x-y 69

3-26 Parse tree for assignment y = m*x+c 70

3-27 Parse tree for expression x+y-c > b+ 70

3-28 A sample text parsing report displayed by 71

S-PNGEN

3-29 Attributed graph grammars 73

3-30 A PN model in the S-PNGEN 77

3-31 Diagram parsing report 77

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xvi

FIGURE NO. TITLE PAGE

3-31 Macro place p201 and its related subnet 79

3-33 A Subnet associated with 2 identical macro places 80

3-34 A PN model 81

3-35 Parsing report of the PN model in figure 3-34 81

3-36 Graph transformation rules 83

3-37 Graph transformation on a PN model of a mixing 85

operation

4-1 Code Generator module 89

4-2 Organization of instructions in a standard 92

template

4-3 Array structure and pin directions 93

4-4 A code template for I/O pins direction 94

initialization

4-5 Hash-table structure that organizes an EEPROM 94

4-6 A code template for EEPROM initialization 95

4-7 Visiting nodes of a parse tree 96

4-8 Structure of a simulated stack 97

4-9 Parse tree for expression b*c < x-y 98

4-10 Evaluation on the left hand side of the expression 99

4-11 Evaluation of the right hand side of the 99

expression

4-12 PN model of mixing operation and its abstract 102

representation

4-13 Places and transitions with their associated 103

assignments and expressions

4-14 Port variables declaration 105

4-15(a) Assembly code for mixing operation 106

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

FIGURE NO. TITLE PAGE

4- 15(b) Assembly code for mixing operation 107

4-15(c) Assembly code for mixing operation 108

4-16 Mid-range PIC memory map 111

4-17 Organization of a symbol table 112

4-18 Registers allocation 113

4-19 Registers allocation for mixing operation 114

5-1 Assembler / simulator tool 118

5-2 Code buffer 118

5-3 MPLAB DDE 120

5-4 Assembly code in text editor of the MPLAB 122

5-5 Build Results window 122

5-6 Asynchronous stimulus dialog and watch window 124

in the MPLAB IDE

5-7 Input stimulus buttons 124

5-8 Bits status of PORTA and PORTB 125

5-9 Valve 1 and valve 2 activated 126

5-10 Liquid level reaches sensor2 and motor starts 126

spinning

5-11 Motor stops spinning and valve 3 activated 127

5-12 Controller back to the initial logic state 127

5-13 Valve 4 activated 128

5-14 Water level reaches sensor2 and motor starts 128

spinning

5-15 Motor stops spinning and valve 3 activated 129

6-1 Assembly code for assignment 133

counter = counter + 1

6-2 Assembly code for assignment 133

counter = counter + 1

6-3 Assembly code for expression count >2 134

6-4 Code optimizer module 136

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

LIST OF ABBREVIATIONS

ABBREVIATIONS MEANING

B(PN)2 Basic Petri Net Programming Notations

CAD Computer-aided Design

DLL Doubly Linked-List

EEPROM Electrically Erasable Programmable Read Only Memory

IDE Integrated Development Environment

lhs Left-Hand Side

OOP Object-Oriented Approach

PLC Programmable Logic Controllers

PLD Programmable Logic Devices

PN Petri Net

rhs Right-Hand Side

RISC Reduced Instruction Set Computer

SDK Standard Development Kit

SFC Sequential Function Chart

SDPN Signal Interpreted Petri Net

SLL Singly Linked-List

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

xix

LIST OF APPENDIXES

APPENDIX NO. TITLE PAGE

A The PIC Microcontroller Architecture 147-152

B The PIC Microcontroller's Instruction Set 153-154

C Simulation Results 155-199

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

1

CHAPTER I

INTRODUCTION

LI Background

Since its introduction by Carl Petri in 1962, Petri net (PN) has found a

number of important applications in the areas of modeling sequential behavior and

process concurrency. In the manufacturing environment, the net-theoretic approach

of PN has made it especially valuable in the modeling and design of discrete control

and manufacturing systems (Desrochers and Al-Jaar, 1995) (Zhou and Venkatesh,

1999). In the area of control system modelling, the ordinary PN of Carl Petri has

been subject to numerous simplifications on the one hand, and extensions on the

other hand, tailored according to the level of sophistication expected of the formal

model. In general, the simplifications have been intended to result in a simple

formal model for the complex systems studied, while the extensions have been used

to add functionalities to the net which would widen the scope of applications, such as

for developing a full model of the hardware and software characteristics of logic and

digital controllers. Also, the extended PNs have been used as formal models for

developing^ more systematic and structured controller programs (Frey and Litz,

2000).

Grafcet which is a subset of PN is a notable example of an extended PN.

Drawing its inspiration from PN, Grafcet has been used as the basis for the

international standard Sequential Function Chart (SFC), a graphical language for

specifying programmable logic controllers (PLC) (David, 1995). Another example

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

2

of extended PN is Signal Interpreted PN (SIPN), which allows explicit description of

input/output in a well defined way; its application in specifying PLC is found in

(Frey and Minas, 2000) and (Minas and Frey, 2002).

Encouraging results have been obtained in the areas of specifying digital

controllers and automatic code generation by extending the features of PN.

(Machado, Fernandes and Proenca, 1997) for example, has used shobi-PN (a PN

extension approach based on SIPN) to specify logic control in programmable logic

device^PLD). Their work resulted in automated VHDL code for PLDs. Petri Net for

Digital Systems (PNDS) proposed by (Oliveira and Marranghello, 2000) contains

most of the features needed for a methodical modeling of digital systems.

An Extended Quasi-Static Scheduling (EQSS) method for formally

synthesizing and automatically generating code for embedded software using the

Complex-Choice Petri Nets (CCPN) models has been proposed in (Su and Hsiung,

2002). Their work resulted in generation of POSIX based multi-threaded embedded

software program in the C programming language. The C code generated is

applicable for hardware platform such as Application Specific Integrated Circuits

(ASICs), Application Specific Instruction Set Processors (ASIPs) and PLDs. Another

approach using PN extension called Timed Free Choice Petri Nets (TFCPN) to

model embedded real time software (ERTS) is found in (Hsiung, Lee and Su, 2002).

The objective of the work is to synthesize complex ERTS to meet up limited

embedded memory requirements and to satisfy hard real-time constraints.

In the area of control system design, current design requirements and

practices have reached a high degree of complexify that prevents their efficient

realization without sophisticated computer-aided specification and implementation

tools (Fernandes, Adamski and Proenca, 1997) (Frey and Minas, 2000) (Minas and

Viehstaedt, 1995). Specification here is concerned with the description of the PN

model and its attributes, which can be specified either textually through textual

editors or graphically through CAD tools. The word implementation in the software

context refers to the generation of a piece of code written in some computer

programming language. This code should be ready to use when a low-level language

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

is employed, or directly convertible to a machine understandable one when a high-

level programming language is used.

It has been realized from early on, a user-friendly means of controller

specifications-writing is a graphical-based CAD tools which provide all the basic

functions required by a user to draw the PN model and define its attributes. To this

end, a number of customized diagram editors have been developed which allow the

user to draw and edit the PN models on the computer screen. A notable example is

DlAGEN, the diagram editor in (Frey and Minas, 2000) and (Minas and Frey, 2002).

DlAGEN allows the user to specif}' PLC from SIPN specifications by providing the

necessary drawing tools and facilities, such the free-hand editing facility, which thus

allows the user to freely create, delete and modify diagram components (places,
s

transitions and tokens for the SIPN). Other examples of PN diagram editorjsuch as

SOPHIA is found in (Fernandes, Adamski and Proenca, 1997) and EnVisAge

(Extended Coloured Petri-Net Based Visual Application Generator Tool) in

(Kurdthongmee, 2003). SOPHIA is used to specify shobi-PN while EnVisAge is used

to construct Color Petri Net (CPN) to specify a microcontroller.

In all the tools reported in the literature, conversion of the PN model into

object code for the target system is carried by a customized compiler. In the work

reported by (Frey and Minas, 2000) and (Minas and Frey, 2002), for example, a

customized compiler was used to generate the PLC's Instruction List (IL) code

directly from the SIPN model. In SOPHIA (Fernandes, Adamski and Proenca, 1997),

VHDL code for PLD was automatically generated by the compiler from the shobi-

PN model. In (Melzer, 1997), a code generator is specifically developed to translate

the B(PN)2 notations into C language for a UNIX multiprocessor platform.

The extensions added have all been inspired by the applications intended for

the PN. Extended PNs such as SIPN and Grafcet, have been derived from the need to

design and specifiy PLC programs and also hybrid systems (Guillemaud and

Gueguen, 1999). Both Grafcet and SIPN are naturally suited for modeling and

simulating the PLC hardware and control characteristics. In particular, the

functionalities available in Grafcet have a very important industrial application in

the area of PLC programs specifications and design while the peculiar structure of

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

4

SIPN allows it to be directly translated to the instruction list (IL) code of a PLC

(Frey, 2000). Another type of extended PN, namely the CPN, has been used to

develop a code generator from the given specifications of a security access system

(Mortenson, 1999). Similar work adopting CPN such as Color Timed Petri Nets

(CTPN) (Gau and Hsiung, 2002) and Extended Color Petri Nets (ECPN)

(Kurdthongmee, 2003) had contributed to synthesis of software code for embedded

system.

Research works mentioned above have shown a wide applicability of PN and

its extensions in specifying controllers. Most of the work carried out aim to provide

solutions in programming controllers such as PLCs, ASICs, ASIPs, PLDs and even

general microprocessor platform such as UNIX. There is without doubt that the

methodologies developed resulted in specification and implementation tools to

generate a piece of code for such controllers. However, the application of PNs in

specifying microcontrollers is not widely studied. Motivated by the fact that PN is a

useful modeling tool, this work proposes the usage of PN to specify a type of

microcontroller.

1.2 Problem statement

In the area of microcontroller modeling and program design, however,

extended PNs such as Grafcet and SIPN are simply inapplicable. Microcontrollers,

because of their very different architecture from PLCs, are predicated on a platform

that strictly executes programs in a sequential manner. Because of this characteristic,

Grafcet and SIPN are simply incompatible for microcontroller modeling and

program specifications; the main limitation being their tendency to over-describe (or

under-describe) the characteristics of a microcontroller's program. For instance,

SIPN, which allows explicit description of input/output signals, though having the

ability to fully describe a microcontroller's output/input behavior, is incapable of

describing characteristics such as subroutines, interrupts, time delays and arithmetic

operations.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

5

Approaches such as CCPN in (Hsiung and Su, 2002), TFCPN in (Hsiung,

Lee and Su, 2002) and CTPN (Hsiung and Gau, 2002) have proposed methods to

generate embedded software with multiple threads, which can be processed for

dispatch by a real-time operating system. These PN extensions are also used to solve

memory size constraint and concurrent task requirements in embedded systems (e.g.

PLDs, ASICs and ASIPs). The methods developed suited devices with "hardwired"

architecture and microprocessors that operate with an operating system. This again

hinders direct applications of these extensions to specify microcontroller as the

microcontroller possesses a single-threaded architecture. Multi-threading activities

are not supported in microcontrollers due to the absence of an operating system.

In (Kurdthongmee, 2003), CPN has been used to specify MCS-51 family of

microcontrollers. The work had achieved a few envisaged end-points such as the

ability to perform model execution analysis and generation of C code for the MCS-

51 microcontrollers. Some drawbacks of the work are found in its inability to

describe hierarchy functions which makes the model more difficult to read and

interpret. Besides, the method introduced does not indicate how interrupts are

handled. The author himself stated that the user needs to go through a steep learning

curve in using CPN to specify MCS-51. This will somehow affect the user-

friendliness of the prototype developed.

In the light of the deficiencies highlighted above, a different type of PN is

needed which can satisfactorily address the following requirements:

It must be able to describe control flow characteristics of a microcontroller

program.

It must be capable in handling routines such as subroutines, timing routines and

interrupt handling routines.

It must be capable of specifying input/output signals of a microcontroller, and

It must be capable of describing arithmetic operations.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

6

1.3 Research objectives

Based on requirements highlighted in section 1.2, this work has sought to

develop a PN model which would satisfactorily address the above-listed modeling

requirements. Literature survey carried out at the start of the work by the author has

^per-ehante introduced him to the work of (Jorg and Ezparza, 1995) on S-System PN.

By imposing the requirement of having only one input and one output arc at every

transition, the authors have enabled the PN to model asynchronous control systems.

The objective of the research is to further enhance the S-System PN of (Jorg

and Ezparza, 1995) by using some of the extensions introduced by others elsewhere

in the literature. We report in this work the details of the enhancements added to the

S-System model of (Jorg and Ezparza, 1995) and benefits brought about by the

extension in modeling the hardware and software characteristics of the chosen

microcontroller.

Another objective of this work is the development of a prototype tool that

comprises of a CAD tool (diagram editor) that allows specification of extended S-

System PN models and a compiler that implements the specified model to

automatically generate the assembly code for the target microcontroller.

1.4 Research scope

The target microcontroller used in this work is PIC 16F84 which is an 8-bit,

RISC type, Harvard architecture mid-range microcontroller from the PIC micro

family. Sample application of the extended S-System PN model to selected control

problems and the method of their specifications and solutions are shown as a guide

to its application procedures. These include^ modeling of input/output signals,

arithmetic operations, interrupts, serial peripheral interface communication and

delays in the PIC 16F84.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

7

Towards this end a basic prototype tool comprising of a diagram editor and a

compiler has been developed. The design of the diagram editor is on graphs and

graph grammars (Minas 1998) (Minas 1999) (Minas 2002) and it allows on-screen

model entry and editing. Also provided in this tool are facilities for text parsing with

context-free string grammars; diagram parsing with attributed graph grammars and

syntax-directed assembly code generation. Also explained in this work is the

simulation method used to verify and validate the assembly code generated by the

compiler.

1.5 Thesis outline

This thesis comprises of six chapters. Chapter 2 provides reviews of related

works to substantiate the details of the functionalities added to the S-System PN for

describing a microcontroller program. Besides, it also reviews works related to the

development of the prototype tool.

Chapter 3 is dedicated to explain the modeling and design of the prototype

tool which comprises of a diagram editor and a compiler in detail. This chapter

explains the function of the graphical editor and model editor that helps to construct

the PN model of the controller graphically and to define the properties or attributes

of the model. Also explained is the design and working principle of the compiler's

parsing and code generation operations.

Chapter 4 describes the implementation of the prototype tool. Here, methods

on code generation are presented in detail. Chapter 5 serves as a testing platform for

the prototype tool. It provides details of the simulation work conducted on samples

of assembly code generated by the code generator. Finally, chapter 6 provides the

conclusion and discussions on the limitations identified with the model and modeling

approaches adopted in this work. Also discussed here are recommendations for

future work.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

8

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter reviews some related work in PN extensions to substantiate

additional functionalities to be added to the ordinary S-System PN and discuss the

application of these functionalities in microcontroller hardware and software

modeling applications. The chapter is divided into a few sections. In section 2.2, we

give a brief overview of the S-System PN; this is followed by discussions on various

extension properties and their practical applications. A method to correlate control

flow graph with S-System PN is found in section 2.3. Some literature reviews on

specification and implementation concepts of a prototype tool such as graphs as

internal representation of diagrams (Section 2.4), diagram parsing (Section 2.5),

textual parsing and code generation technique (Section 2.6) are also presented.

Section 2.7 summarizes this review by emphasizing on the concepts fonnulated or

adopted to develop the prototype tool in this work.

2.2 A brief overview of the S-System PN

S-System PN which is discussed in detail in (Jorg and Esparza, 1995) is a

bipartite directed graph represented by 3-tuple, PN = (P, T, A, W, Mo) where:

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

9

® P = {pi, p2, p3, pn} is a finite set of places

• T = {tl, t2, t3, , tn} is a finite set of transitions

e A c (P x T) U (T x P) i s a finite set of arcs

• W: A —> 1 is the weight function attached to each arc

• M0: P —> {0,1,2, } is the initial marking

A defining characteristic of S-System PN is its restriction of allowing only

one input arc and one output arc for each transition. Places in an S-System PN, on

the other hand, can have more than one input and output arcs. While this property at

first sight, seem very trivial, it is nevertheless of fundamental consequence since by

its inclusion, it allows the S-System PN to express in a formal manner the causality

and the sequential attributes of an asynchronous control system. Together with its

characteristic structure which allows encapsulation of algebraic assignments and

expressions, the sequential nature of S-System PN can be utilized to mirror the

sequential execution of a microcontroller program.

2.2.1 Adding extended functionalities to the S-System PN

The first issue to be tackled is identifying the functionalities to be added to

allow the ordinary S-System PN to be used for modelling microcontroller signal and

timings, and also handle arithmetic operations, interrupts and subroutines. The sub-

sections following hereon describe the respective functionalities added and their

practical implications.

2.2.1.1 Practical implications of the S-System PN components

Places of a PN can be associated to certain characteristics of a system or

controller. A place in Grafcet, for example, corresponds to a component of the state

(David, 1995). In manufacturing systems, places are used to model resources in the

system (Desrochers and Al-Jaar, 1995). (Oliveira and Marranghello, 2000) have

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

10

defined three kinds of places to describe storage components, local states of system

components, or functional components (behaviours) of the system being modelled.

Their work has demonstrated that places, when used appropriately, can correctly

model certain characteristics of a controller.

In this work, we have used places in the S-System PN to describe the state of

a system. This approach is similar to Grafcet, where each place (step) represents a

particular state of the system. The places also function as avenues for interrupts,

read/write operation and serial peripheral interface protocol for the microcontroller.

In the S-system PN, these functions are described in terms of algebraic assignments

and expressions.

A transition in S-System PN, on the other hand, is associated with a

condition. This condition is also constructed as an algebraic assignment or

expression. A condition tests the state of input components and also represents

arithmetic operations, timing and serial peripheral interface protocol in the

microcontroller. In this sense, the S-System PN provides a higher description than

either SIPN or Grafcet, wherein their use of Boolean equations only allows them to

describe the logic state of the system (David, 1995). The transition enabling

condition can therefore be used to pass program control from its input place to an

output place when the condition is fulfilled.

It is also possible to have an S-System PN with transitions without any firing

conditions. The rules for firing of a transition in the S-System PN are as follows:

• A transition is enabled if all its pre-places are marked and all its post-

places unmarked

. A transition fires immediately if it is enabled and its firing condition is

fulfilled or executed

A transition without any firing condition fires immediately if it is

enabled.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

11

2.2.1.2 Describing hierarchy and subroutines using macro places

A subroutine is a useful portion of code in a microcontroller program and it

can have several individual lines of program code that describe a function that is

repeatedly used in the program. In the S-System PN, a subroutine in a

microcontroller program is represented by a macro place. A macro place is a useful

component for fully specifying a controller with a hierarchical structure. A macro

place is known as "macro step" in Grafcet (Michel, 1990), "macro places" in

(Amroun and Bolton, 1990), "super places" in (Frey and Minas, 2000) and

"supermodes" in (Mirkowski and Yakovlev, 1998). The symbol of a macro place is

shown in figure 2-1.

For each macro place at any given moment there exists for it one hierarchical

instance. Figure 2-2(b) shows one instance of the macro place p3 in figure 2-2(a).

They are collected into a subnet that further defines a macro place. The subnet in

figure 2-2(b) has one input place p3 and one output place p9 and general S-System

PN structure in between. The transition following the macro place may not be fired

until the output place is active.

2.2.1.3 Describing logic states and arithmetic operations

The use of Boolean equations in some of the PN models only allows

description of the signals of a controller. In this work, algebraic assignments and

expressions are allowed in places and transitions; this extension draws inspiration

from (Wallen, 1995) that extended Grafcet with general statements and expressions

to describe complex control algorithms. Extension of Grafcet with algebraic

assignments and expressions is also found in (Guillemaud and Gueguen, 1999)

Figure 2-1 Macro place

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

12

which were used to describe hybrid systems. Besides, their work also incorporated

differential equations and Laplace transfer functions in places and transitions.

General algebraic assignments and expressions are used here to describe all

functions in the places and conditions in the transitions. The functions in a place

include logic states of the controller, read/write operation, interrupts and serial

peripheral interface protocol. The condition of a transition may take the form of tasks

like testing the logic state of an input or solving arithmetic operations within the

microcontroller.

The PN model in figure 2-2 illustrates the usage of assignments and

expressions..Figure 2-2 shows an extended S-System PN to specify a switch pressed.

When the switch,/?/) is pressed, it will illuminate led]. The second press resets ledl

and illuminates led2. The count variable in the model is used to store the number of

presses. Each switch press will increase count by 1. The third press on pb will reset

both ledl, led2 and count.

Ied2 = 0 ledl = 0 ledl = 0

count = count +

t7
count = 0

(a) (b)

Figure 2-2 S-System PN model for a switch press mechanism

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

13

Expressionpb==l in transition tl is a condition that describes the pressing of

switch ph. If the logic state of pb is equal to ' 1transition tl fires. Transition t2 is

associated with an assignment count=count+1. This assignment increases the count

variable by 1 each time switch pb is pressed. Transition t2 fires when its condition is

fulfilled. This resulted in the activation of macro place p3. Macro place p3 is further

defined by the subnet in figure 2-2(b).

The subnet in figure 2-2(b) has three transitions t4, t5 and t6 that are

associated with expressions that evaluate the variable count. If count==l is true,

led1 illuminates. When count==2 is true, led2 illuminates. If count>2 is true, ledl,

led2 and the count variable will be reset.

It is shown in figure 2-2 that algebraic assignments and expressions can be

used to describe logic state of input and output variables as well as solving arithmetic

operations. Besides these, assignments are also used to deal with serial peripheral

interface protocol and read/write to EEPROM.

2.2.1.4 Handling interrupts in microcontroller

Interrupts can be defined as the suspension of some activity by an event, and

the resumption of the same activity later on from the state in which it was suspended.

Interrupts in a microcontroller may come from hardware interrupts. For our target

mid-range PIC microcontroller, hardware interrupts come from 4 sources:

An external interrupt from PORT B bit 0.

• A change in state of PORT B bits 4 to 7

• TMRO overflow from FFh to OOh

• Write completion to an EEPROM location

Hardware interrupts may disturb the normal flow of a microcontroller

program to perform some other functions. The interrupt causes the program to jump

to another section of code to handle the interrupt.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

14

In handling interrupts in embedded systems, (Mirkowski and Yakovlev,

1998) associate a kind of a working permit to a portion of the net. The work permit

can for instance be represented by a variable that guards ever}' action in a given

portion of the net. The normal working condition of the net would be when guarding

variable is set to true. When there is an interrupt request the variable is set to false

blocking usual net processing and allowing the interrupting process to take over.

Once the interrupting process finishes, the guard variable is reset to true, and

processing of the net resumes from where it was prior to interruption.

A similar approach is adopted in this work whereby a work permit is assigned

to a portion of the S-System PN by a variable that guards a specific type of interrupt.

Figure 2-3 shows a work permit at place p2 that handles a PORT B bit 0 external

interrupt.

P2

R B O

t2

p4

R B O

t5

p3

I N T E R R U P T E N A B L E D

I N T E R R U P T D I S A B L E D

1 16
count = count + 1

p5

(a) (b)

Figure 2-3 Handling PORT B bit 0 interrupt

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

15

The work permit in place p2 will guard every action of a portion of the net

from p2, t2, p3, t3 and p4. Usual processing of the net will be blocked when a PORT

B bit 0 interrupt occurs, allowing an interrupt routine to take over.

Another extension added to the S-System PN is requiring a kind of subnet to

represent an interrupt routine. Figure 2-3(b) shows a subnet that represents an

interrupt routine handling the PORT B bit 0 interrupt. The subnet shows that the

count variable will be increased by 1 at every instance of a PORT B bit 0 interrupt.

This subnet will be executed in the event of an interrupt occurring in the portion of

the net from p2 to p4.

Work permit used in this work also applies to other types of interrupts such

as TMRO overflow, write completion to EEPROM and PORT B bit 4 to 7 state

changes. When it is required for each interrupt enabled, a subnet needs to be

constructed to handle that interrupt.

2.2.1.5 Describing timing in microcontrollers with timed transitions

In the case of PN, there are different mechanisms dealing with time according

to the extension employed. Some extensions assign time mechanisms to transitions

while others assign them to places. However, no PN extensions have used both

approaches simultaneously. In most research, time is preferred to be associated with

transitions. This can be found in (Tanabe, 1997) (Proth and Xie, 1996). In this work,

time is assigned to be associated with transitions.

Let us assume that the time associated with a transition is 7, and that the

firing o f t (transition) starts at time T0. Then, firing t of an S-System PN consists of:

o removing a token from pre-place o f t at time T0

o adding a token to a post-pace of t at time T0 + 7

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

16

Between instants T0 and Tn + 7, the token is supposed to remain in the transition.

This represents that the processes taking place in the system modeled would have

some length in time, which will be represented as durations of firing transitions of a

PN. The timed transition explained above is used to model timing in the

microcontroller. Timed transition such as this is analogous to timers in PLC (Zhou

and Venkatesh, 1999). In the context of the microcontroller, it represents timing and

delay routines that need to be generated to produce the required timing.

Figure 2-4 illustrates the use of a timed transition t2 in a simple operation.

The PN model specifies that a switch press at pb will illuminate LED1 at p2. LED1

will illuminate for 5 seconds when transition t2 fires. After 5 seconds, the token

flows into p3 to reset LED].

Timed transition

Figure 2-4 Timed transition

2.2.1.6 Token in an S-System PN

In this research, it is restricted that only one token can be used at any place in

the net. The placement of a token shows the initial marking; it also represents the

initial state of a microcontroller program. For example, the token in place plof figure

2-4.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

17

2.2.2 Application of the extended S-System PN

A mixing operation which is controlled by a microcontroller is shown in

figure 2-5. The start button when pressed starts the mixing cycle. This resulted in

activation of valve 2 and valve 1 to allow liquid to flow into the tank. When the

liquid level reaches sensor 2, valve 1 and 2 are closed to prevent liquid from flowing

in. Consequently, the motor starts spinning to stir the mixture for 60 seconds. After

60 seconds, the motor stops and valve 3 is opened to allow the mixture to flow out of

the tank. When all the mixture has flown out of the tank, valve 3 is closed and the

system is back to its initial state.

The wash cycle starts when the wash button is pressed. Valve 4 will be

activated to allow water to flow into the tank. As water level reaches sensor 2, valve

4 is closed; the motor then starts spinning for another 60 seconds. After 60 seconds,

valve 3 is opened to dispose water. Valve 3 is then closed and the system returns to

its initial state.

Valve 4

Valve 2 X 2 . Valve 1
Z X Start

E Sensor 2
Tank

Wasli

Motor

Figure 2-5 A mixing operation

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

18

The mixing operation is modeled by the extended S-System PN model shown

in figure 2-6. The model consists of a main net and a subnet. The subnet is a

collection of places and transitions for macro place p4 which is analogous to a

subroutine in the microcontroller program. A subnet is modeled here to demonstrate

to the reader how a macro place can be used to model a subroutine.

p4

17
stnsorl==l
P&

tS
5tniar2==l
p7
vxh'-; 1=0,
vj1V<2=0;
V J r. r<;4=UJ

m>:tor=l

19
tirntr W50.0S6C
p8

Figure 2-6 S-System PN model for the mixing operation

Each place and transition are associated with algebraic assignments or

expressions instead of Boolean equations. The variables such as wash, start, motor,

valve], valvel, valve3, valve4, sensor 1 and sensor2 are related to the microcontroller

input and output logic states. For instance, wash is a variable that represents the push

button that starts the wash cycle. When logic ' 1' is detected at wash (e.g. the push

button is pressed), transition tl fires and the token flows from pi to p2. At p2, valve4

is a variable that represents activation or deactivation of valve4. valve4 = 1 means

valve4 is activated.

Table 2.1 and 2.2 list all the places and transitions in the main net with their

respective assignments or expressions and tasks. The number '1' and '0' in these

assignments or expressions represent the logic states of the devices; ' 1' represents an

ON state while '0' represents an OFF state.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

19

Transitions t3, t4 and t5 in Table 2.2 are transitions that do not have any

firing conditions (algebraic assignments or expressions) associated with them. These

transitions are non-operational and can fire immediately when they are enabled, e.g.

a token at its pre-place.

Table 2.1: Places in the main net

Place Algebraic
assignment /
expression

Task

P4 Valve3 = 0 Valve3 OFF
P2 Valve4 = 1 Valve4 ON
p3 Valve 1 = 1

valve2 = 1
Valve 1 ON
Valve2 ON

p4 Call a subroutine
p5 motor = 0

valve3 = 1
Motor OFF
Valve3 ON

Table 2.2: Transitions in the main net

Transition Algebraic
assignment /
expression

Task

T1 wash == 1 To test whether Push button Wash is ON
T2 start == 1 To test whether Push button Start is ON
T3 Non-operational
T4 Non-operational
T5 Non-operational
T6 sensorl — 1 To test whether sensor! is activated

Table 2.3 and 2.4 list all the places and transitions in the subnet with their

respective algebraic assignments or expressions and tasks. A few places such as

input place p4 and place p6 have no assignment or expression associated with them.

These places are non-operational. Transition t9 in table 2.4 is an example of a timed

transition. It creates a 60-second delay in the microcontroller.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

20

Table 2.3: Places in the subnet

Place Algebraic
assignment /
expression

Task

P4 Non-operational
P6 Non-operational
P7 valve 1 = 0

valve2 = 0
valve 4 = 0
motor = 1

Valve 1 OFF
Valve2 OFF
Valve 4 OFF
Motor ON

P8 Return to main routine

Table 2.4: Transitions in the subnet

Transition Algebraic
assignment/
expression

Task

t7 sensorl == 1 To test whether sensorl is activated
t8 sensor2 == 1 To test whether sensor2 is activated
t9 Timer #60 sec. Execute a 60 seconds delay

This mixing operation model has illustrated a simple specification of a

control system with the extended S-System PN proposed in section 2.2.1. Later parts

of this work will demonstrate a few more examples of extended S-System PN

models.

2.3 Control flow graphs and the S-System PN

As PN can be compared to ladder logic diagram of a PLC in (Zhou and

Venkatesh, 1999)(Lee, Han and Lee, 2004); it is simply inapplicable in the context

of a microcontroller as the implementation of a PN for the microcontroller must

results in assembly code. The ladder logic diagrams however are generated

specifically for the PLC. As the main aim of PN modeling for controllers is a

generation of a piece of code; the PN is proven to be useful to produce low-level

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

21

coding such as IL in (Frey and Minas, 2000)(Minas and Frey,2002) and high level

coding such as C code in (Melzer, 1997).

However, the SIPN model in (Frey and Minas, 2000)(Minas and Frey, 2002)

to produce IL code for PLC cannot be adopted directly. Firstly, due to its limitation

to over-describe or under-describe the PIC microcontroller as mentioned in chapter

1. Secondly, the proposed framework in their work is suitable for programs that are

concurrent. Here, the IL can handle concurrency as it is supported by an operating

system in the PLC. However, the program code in a microcontroller is straight-line

and sequential where the program counter will only execute each line of program

code sequentially. Hence, there arise a need to find a correlation between the PN

structure and the PIC microcontroller coding.

A review on the work of (Aho, Sethi and Ullman, 1988) has shown that low-

level language code can be segregated or structured with control flow graphs. A

control flow graph is a representation of a program where contiguous regions of code

without branches, known as basic blocks, are represented as nodes in a graph while

edges between nodes indicate the possible flow of the program. The basic blocks in

the control flow graph contain consecutive statements. The basic blocks have flow of

control that enters at the beginning and leaves at the end.

As an illustration, a microcontroller program is shown as a control flow graph

in figure 2-7. The microcontroller program can be divided into basic blocks. Figure

2-7 shows how a microcontroller program is segregated into three basic blocks

named B1, B2 and B3 where each has its own consecutive statements. The basic

blocks are connected by edges that indicate the flow of the program.

The edges in figure 2-7 indicate possibility of conditional and unconditional

branching at the end of the basic blocks. For example, block B1 has a conditional

jump at the end of the block. The statements btfsc cut and btfsc drill are evaluated. If

btfsc cut is true, the flow of control branches to block B2. If btfsc drill is true, the

flow of control branches to block B3. This is a kind of conditional jump. There are

also unconditional jumps in flow graphs. Block B2 and block B3 have unconditional

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

22

jumping. There is no evaluation of certain conditions; these block directly branch

back to B1 at the end of the block.

— t L <-
B1
bcf motor
bcf cutter
bcf driller

—btfsc cut
goto B2
btfsc drill
goto B3

B2
bsf motor
Loopl
btfsc limitl
bsf cutter
goto Loop l
goto B1

B3
bsf motor
Loop2
btfsc Iimit2
bsf driller
goto Loop2
goto B1

Figure 2-7 Control flow graph of a microcontroller program

Control flow graphs are useful structure for understanding code generation

algorithms. They are good vehicles for a compiler to collect information about an

intermediate code (Alio, Sethi and Ullman, 1988). They are used as representation of

a trace for dynamic compilation in (Duesterwald, 2003). A trace is a dynamic

sequence of consecutively executing basic blocks of a program. Thus traces are

likely to offer opportunities to improved code layout and optimization. It is indicated

here that control flow graphs can give the compiler a code layout of the program and

a basis for further analysis.

We observe that we can categorize the basic blocks of a control flow graph

into two types. In this work, we have termed the first type block and the second type

as switch. Figure 2-8(a) shows a block that has only one output edge. A switch shown

in figure 2-8(b) is a basic block with more than one output edges. For instance, block

B1 in the control flow graph of figure 2-7 is a switch while B2 and B3 are both

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

23

blocks. A block can only branch to another basic block while a switch can branch to

different basic blocks.

/ 1 \ \

(a) (b)

Figure 2-8 Basic blocks terminology

We further suggest in this work to find correlation between the PN net

structures with control flow graphs. We found that the S-System PN provide a net

structure that can be compared to the control flow graph of a program. Table 2.5

shows an S-System PN structure compared to a switch while table 2.6 shows an S-

System PN structure compared to a block.

Table 2.5: Representations by PN for a switch node

S-System PN Control Flow Graph nodes

E,
7 t>' A-

' n

switch

c 5 t l E t2 tn_i In c 5 t l E t2 tn_i In
" I E

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

24

Table 2.6: Representations by PN for a block node

Table 2.5 and 2.6 show two types of S-System PN net structures that can be

derived into nodes of a control flow graph. The derivation is an approach of

containing graphs within graphs which can provide a more systematic graph layout

for easier implementation of the S-System PN.

(Aho, Sethi and Ullman, 1988) presented basic blocks of a control flow graph

that hold intermediate programs such as a three-address statement. Thus control flow

graph has collections of infonnation about the intermediate program, which is useful

to the compiler. In this work, the transformation of a PN into a control flow graph

adopts this approach. Here algebraic assignments and expressions are represented as

intermediate code within basic blocks of the flow graph. What we need is to

construct some kind of "transformer" to transform the PN net structure into control

flow graph.

Figure 2-9 illustrates the transformation of a PN into a control flow graph,

where we have used the mixing operation example in figure 2-6 to demonstrate

transformation of a PN net structure into a control flow graph. The figure shows the

corresponding control flow graph of the S-System PN model with its respective

block and switch structure.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

141

REFERENCES

Aho, A.V., Sethi, R. and Ullman, J.D. (1986). "Compilers: Principles,

Techniques and Tools." Addison-Wesley.

Ammeraal, L. (1998). "Computer Graphics For Java Programmers." England.

John Wiley & Sons Ltd.

Amroun, A. and Bolton, M. (1990). "Synthesis Of Controllers From Petri Net

Descriptions And Application Of ELLA." In Claesen, L.J.M. (Ed.). "Formal

VLSI Specification And Synthesis." VLSI Design Methods I. North

-Holland.Elsevier Science Publishers, pp 291-308.

Bates, M. (2000) "The PIC 16F84 Microcontroller." Arnold.

David, R. (1995) "Grafcet: A Powerful Tool for Specification of Logic

Controllers." IEEE Transactions on Control System Technology Vol. 3. No. 3.

Desroches, A. A. and Al-Jaar, R.Y. (1995). "Application of Petri Nets in

Manufacturing Systems." IEEE Press marketing.

Drewes, F., Hoffmann, B. and Plump, D. (2000). "Hierarchical graph

transformation, "in Foundation of Software Science and Computation

Structures (FOSSACS 2000),

Duesterwald, E. (2003). "Dynamic Compilation." In Srikant, Y.N. and Shankar,

P.(Eds). " The Compiler Design Handbook: Optimizations and Machine

Code Generation," USA. CRC Press LLC. pp. 739-762.

Fernandes, J.M, Adamski, M. and Proenca, A.J. (1997)."VHDL Generation

From Hierarchical Petri Net Specifications of Parallel Controllers." IEEE

Proceedings-E Computers and Digital Techniques, pp 127-137.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

142

Frey, G. (2000). "Automatic Implementation of Petri Net based Control Algorithms

on PLC." Proceedings of the American Control Conference ACC2000, Chicago.

Frey, G. and Litz, L. (2000). "Formal methods in PLC programming."

Proceedings of the IEEE Conference on Systems Man and Cybernatics SMC

2000, Nashville.

Frey, G. and Minas, M. (2000) "Editing,Visualizing, and Implementing Signal

Interpreted Petri Nets." Proceedings of the AWPN 2000. pp 57-62.

Ganapathi, M., Fischer, C.N. and Henessy, J.L. (1982) "Retargetable compiler

code generation", Computing Sun>eys 14. pp 573-592.

Gau, C.H. and Hsiung, P.A. (2002) "Time-memoiy scheduling and code generation

of real-time embedded softw are," In Proc. of the 8th International Conference on

Real-Time Computing Systems and Applications (RTCSA'2002).

Graham, S.L. and Glanville, R.S. (1978). "A new method for compiler code

generation." Fifth Symposium on Principles of Programming Languages.

231-240.

Guillemaud, L. and Gueguen, H. (1999). "Extending Grafcet for the specification

of control hybrid systems." IEEE SMC'99, Tokyo.

Hoffmann, B. and Minas, M. (2000) "A generic model for diagram syntax and

semantics." Proceedings of the Satellite Workshops of the 27th International

Colloqium on Automata, Languages and Programming. No.8. pp 443-450.

Hsiung, P.A., Lee, T.Y. and Su, F.S. (2002). "Formal Synthesis and Code Generation

of Real-Time Embedded Software using Time-Extended Quasi-Static

scheduling," apsec, p. 395, Ninth Asia-Pacific Software Engineering Conference

(APSEC'02).

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

143

Jorg, D. and Esparza, J. (1995). "Free Choice Petri nets." Cambridge University

Press.

Lee, G.B., Han, Z. and Lee, J.S. (2004)."Automatic generation of ladder diagram

with control Petri Net." Journal of Intelligent Manufacturing, Vol. 15, No. 2,

pp.245-252.

Machado, R.J., Fernandes, J.M. and Proenca, A.J. (1997) "Specification of

Industrial Digital Controllers with Object-Oriented Petri Nets", IEEE

International Symposium on Industrial Electronics (ISIE '97). pp 78-83.

Katzen, S. (2003). "The Quintessential PIC Microcontroller." 2nd Edition.

London. Springer-Verlag Ltd.

Kurdthongmee, W. (2003). "ertCPN: The adaptations of the coloured Petri-Net

theory for real-time embedded system modeling and automatic code generation."

Songklanakarin Journal of Science & Technology, 2003, 25(3): pp 381-394

Mak, R. (1996). "Writing Compilers and Interpreters: An Applied Approach

Using C++." 2nd Edition. John Wiley & Sons.

Melzer, S. (1997) "Design and Implementation of a C-Code Generator for

B(PN)2." Institut fur Informatik, Univesitat Hildesheim.

Michel, G. (1990). "Programmable Logic Controllers: Architecture and

Applications." England. John Wiley & Sons Ltd.

Minas, M. (1998). "Hypergraphs as a Uniform Diagram Representation Model",

In Proc. 6th International Workshop on Theory and Application of Graph

Transformations (TAGT '98), Germany.

Minas, M. (1999). "Creating Semantics Representation of Diagrams." Int.

Workshop on Applications of Graph Transformation with Industrial

Relevance (AGTIVE '99) At Monastery Rolduc, NL.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

144

Minas, M. (2002). "Specifying Graph-like Diagrams with DIAGEN." Electronic

Notes in Theoretical Computer Science 72. No. 2.

Minas, M. and Frey, G. (2002). "Visual PLC-Programming using Signal

Interpreted Petri Nets." Proceedings of the American Conference 2002

(ACC2002), Anchorage, Alaska, pp. 5019-5024.

Minas, M. and Viehstaedt, G. (1995). "A Generator for Diagram Editor

Providing Direct Manipulation and Execution of Diagrams." IEEE Proc.of

VL'95.

Mortenson, K.H. (1999). "Automatic Code Generation from Coloured Petri Nets

for an Access Control System." Second Workshop on Practical Use of

Coloured Petri Nets and Design, pages 41-58.

Mirkowski, J. and Yakovlev, A. (1998). "A Petri Net Model for Embedded

Systems. " Proceedings of the Workshop on Design and Diagnosis of

Electronic Circuits and Systems Szrzyck. Poland.

Muchnick, S.S. (1997) "Advanced Compiler Design and Implementation."

USA. Academic Press.

Oliveira, W.L.A. and Marranghello, N. (2000). "A High-level Petri Net for

Digital Systems." Proceedings of the XV SBMicro - International

Conference on Microelectronics and Packaging, pp.220-225.

Predko, M. (2002). "Programming and Customizing the PIC Microcontroller."

McGraw-Hill.

Proth, J.M. and Xie, X. (1996). "Petri Nets: A tool for design and management of

manufacturing systems." England. John Wiley & Sons Limited. ()

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

145

Qin, W. and Malik, S. (2003). "Architecture Description Languages for

Retargetable Compilation." In Srikant, Y.N. and Shankar, P.(Eds). " The

Compiler Design Handbook: Optimizations and Machine Code Generation."

USA. CRC Press LLC. pp. 535-564.

Rekers, J. and Schurr, A. (1995). "A Graph Grammar Approach to Graphical

Parsing." Proc. VL'95 - 11th Int. IEEE Symop. On Visual Languages,

Darmstadt, Germany. 195-202. IEEE CS Press, Los Alamitos, USA.

Rekers, J. and Schurr, A. (1996). "A Graph Based Framework for the

Implementation of Visual Environments." IEEE Symp. on Visual Languages.

Su, F.S. and Hsiung P.A. (2002), "Extended quasi-static scheduling for formal

synthesis and code generation of embedded software." Proc. of the 10th

IEEE/ACM International Symposium on Hardware/Software Codesign

(CODES'2002).

Tanabe, J.M. (1997). "Timed Petri Nets and Temporal Linear Logic." In Azema,

P. and Balbo, G. (Eds). " Application and Theory of Petri Nets-97 " New

York. Springer-Verlag, pp. 156-174.

Wallen, A. (1995). "Using Grafcet To Structure Control Algoritms." Proceedings
(]

of The Third European Control Conference, Rome, Italy.

Watt, D.A. and Brown, D.F. (2000). "Programming Language Processors in Java:

Compilers and Interpreters." England. Pearsons Education Ltd.

Watt, D.A. and Brown, D.F. (2001). "Java Collections : An Introduction to

Abstract Data Types, Data Structures and Algorithms." England. John Wiley

& Sons Ltd.

Zhang, K.B., Orgun, M.A. And Zhang, K. (2002). " Visual Language Semantics

Specification in the VisPro System." Pan Sydney Area Workshop on Visual

Information Processing (VIP 2002).

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

146

Zhou, M. and Venkatesh, K. (1999). "Modeling, Simulation and Control of

Flexible Manufacturing System." Singapore. World Scientific.

(1998) "MPLAB IDE, Simulator, Editor Users' Guide." Microchip Technology.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

	TABLE OF CONTENTS
	TITLE
	STUDENT'S DECLARATION
	ESAMINERS' DECLARATION
	DEDICATION
	ACKNO WLEDEMENT
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDIXES
	I INTRODUCTION
	II LITERATURE REVIEW
	III MODELING THE PROTOTYPE TOOL
	IV IMPLEMENTATION OF THE PROTOTYPE
	V APPLICATIONS OF THE PROTOTYPE
	VI CONCLUSION AND RECOMMENDATIONS
	REFERENCES
	APPENDICES

