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ABSTRACT 

ABSTRACT 

Recent advances in information technology have led to significant changes in today‟s 

world. The generating and collecting data have been increasing rapidly. Popular use 

of the World Wide Web (www) as a global information system led to a tremendous 

amount of information, and this can be in the form of text document. This explosive 

growth has generated an urgent need for new techniques and automated tools that can 

assist us in transforming the data into more useful information and knowledge. Data 

mining was born for these requirements. One of the essential processes contained in 

the data mining is classification, which can be used to classify such text documents 

and utilize it in many daily useful applications. There are many classification 

methods, such as Bayesian, K-Nearest Neighbor, Rocchio, SVM classifier, and Soft 

Set Theory used to classify text document. Although those methods are quite 

successful, but accuracy and efficiency are still outstanding for text classification 

problem. This study is to propose a new approach on classification problem based on 

hybrid fuzzy soft set theory and supervised fuzzy c-means. It is called Hybrid Fuzzy 

Classifier (HFC). The HFC used the fuzzy soft set as data representation and then 

using the supervised fuzzy c-mean as classifier. To evaluate the performance of 

HFC, two well-known datasets are used i.e., 20 Newsgroups and Reuters-21578, and 

compared it with the performance of classic fuzzy soft set classifiers and classic text 

classifiers. The results show that the HFC outperforms up to 50.42% better as 

compared to classic fuzzy soft set classifier and up to 0.50% better as compare 

classic text classifier. 
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ABSTRAK 

ABSTRAK 

Kemajuan terkini dalam teknologi maklumat telah membawa kepada perubahan 

penting dalam dunia hari ini. Menjana dan mengumpul data telah meningkat dengan 

pesat. Penggunaan popular Jaringan Sejagat (www) sebagai sistem maklumat global 

membawa kepada jumlah maklumat yang sangat banyak, dan ini mungkin adalah 

dalam bentuk dokumen teks. Ledakan pertumbuhan ini telah menjana keperluan 

segera bagi teknik-teknik baru dan alatan berautomatik yang boleh membantu kita 

dalam mentransformasi data kepada maklumat dan pengetahuan yang lebih berguna. 

Perlombongan data dilahirkan bagi keperluan ini. Salah satu proses penting yang 

terkandung di dalam perlombongan data adalah klasifikasi, yang boleh digunakan 

untuk mengklasifikasikan dokumen teks tersebut dan digunakan dalam pelbagai 

aplikasi kehidupan seharian. Terdapat pelbagai kaedah klasifikasi, seperti Bayesian, 

K-Nearest Neighbor, Rocchio, pengkelas SVM, dan Soft Set Theory yang digunakan 

untuk mengklasifikasikan dokumen teks. Walaupun kaedah tersebut boleh dikira 

sebagai sukses, tetapi ketepatan dan kecekapan masih belum jelas bagi permasalahan 

klasifikasi teks. Kajian ini adalah untuk mencadangkan satu pendekatan baru kepada 

permasalahan klasifikasi berdasarkan hibrid teori set lembut kabur dan c-min berselia 

kabur. Ia dipanggil Pengkelas Hibrid Kabur (HFC). HFC menggunakan set lembut 

kabur sebagai perwakilan data dan kemudiannya menggunakan c-mean berselia 

kabur sebagai pengkelas. Bagi menilai prestasi HFC, dua set data yang diketahui 

ramai digunakan iaitu, 20 Newsgroup dan Reuters-21578, dan dibandingkan dengan 

prestasi pengkelas klasik Fuzzy Soft Set dan pengkelas klasik teks. Dapatan 

menunjukkan bahawa HFC melebihi performa sehingga 50.42% lebih baik 

berbanding dengan pengkelas Fuzzy Soft Set klasik dan 0.50% lebih baik dibanding 

pengkelas teks klasik. 
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CHAPTER 1 Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Recent advances in information technology have led to significant changes in today‟s 

world. The processes of generating and collecting data have been increasing rapidly. 

Contributing factors that lead to this include the computerization of business, 

scientific, and government transactions; the widespread use of digital cameras, 

publication tools, and bar codes for most commercial products; and advances in data 

collection tools ranging from scanned text and image platforms to satellite remote 

sensing systems. In addition, popular use of the World Wide Web (www) as a global 

information system led to a tremendous amount of information. This explosive 

growth in stored or transient data has generated an urgent need for new techniques 

and automated tools that can assist us in transforming the data into more useful 

information and knowledge (Han & Kamber, 2011). 

Data mining was born for these requirements. Data mining refers to extracting 

or “mining” knowledge from large amounts of data. Many people treat data mining 

as a synonym for another popularly used term, Knowledge Discovery from Data, or 

KDD (Han & Kamber, 2011). Fayyad et al. (1996) has another view that is KDD 

refers to the overall process of discovering useful knowledge from data, and data 

mining refers to a particular step in this process. 
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In computer science, data mining also called knowledge discovery in 

databases (KDD) is the process of discovering interesting and useful patterns and 

relationships in large volumes of data (Britanica, 2013).  

In general, data mining tasks can be classified into two categories: descriptive 

and predictive (Han & Kamber, 2011). Descriptive mining tasks characterize the 

general properties of the data in the database. While predictive mining tasks perform 

inference on the current data in order to make predictions. In some cases, users may 

have no idea regarding what kinds of patterns in their data may be interesting, that 

could lead to searching for several other kinds of patterns in parallel. As such, it is 

important to have a system that can mine multiple kinds of patterns to accommodate 

different user expectations. Data mining functionalities consist of (a) concept or class 

description, (b) mining frequent patterns, associations, and correlations (c) 

classification and prediction (d) cluster analysis (e) outlier analysis and (f) evolution 

analysis. 

1.2 Classification and Prediction 

A bank officer needs analysis of her data in order to learn which loan 

applicants are “safe” and which are “risky” for the bank. A manager at computer 

shop needs data analysis to help guess whether a customer with given profile will 

buy a new machine. A researcher wants to analyze breast cancer data in order to 

predict which one of the three specific treatments a patient should receive. In all of 

these examples, the data analysis task is classification, where a model or classifier is 

constructed to predict categorical labels, such as “safe” or “risky” for the loan 

application data, “yes” or “no” label for the marketing data; or “treatment A”, 

“treatment B”, or “treatment C” for the medical data. These categories can be 

represented by discrete values, where the ordering among values has no meaning. 

For example, the value 1, 2, and 3 may be used to represent treatments A, B, and C, 

where there is no ordering implied among this group of treatment regimes. 

Suppose that the marketing manager would like to predict how much a given 

customer will spend during a sale at computer shop. This data analysis task is an 

example of numeric prediction, where the model constructed predicts a continuous 

values function, or ordered value, as opposed to a categorical label. This model is a 
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predictor. Regression analysis is a statistical methodology that is most often used for 

numeric prediction, hence the two terms are often used synonymously. For 

simplicity, when there is no ambiguity, we will use the shortened term of prediction 

to refer to numeric prediction. 

The classification is the task of assigning objects to one of several predefined 

categories, and is one of the essential processes contained in the data mining. There 

are two forms of data analysis that can be used to extract models, whether describing 

data classes or to predict future data trends (Fayyad et al., 1996). Databases are rich 

with hidden information that can be used for intelligent decision making. 

Classification and prediction are two forms of data analysis that can be used to 

extract models describing important data classes or to predict future data trends. Such 

analysis can  help provide us with a better understanding of the data at large. 

Whereas classification predicts categorical (discrete, unordered) labels, prediction 

models continuous valued functions. 

Basic technique for data classification consist of decision tree classifiers, 

Bayesian classifiers, Bayesian belief networks, rule-based classifiers, classification 

based on association rule mining, Back propagation classifier, support vector 

machine, k-nearest neighbors classifiers, case-based reasoning, genetic algorithms, 

rough sets, and fuzzy logic techniques. Methods for prediction, including linear 

regression, non-linear regression, and other regression based models. 

This research focused on classification problem, and selects four basic 

classification techniques to compare with proposed technique, implemented in text 

classification problem. These four basic text classification techniques are as follows: 

(i). Bayesian classifiers (Domingos & Pazzani, 1997; Duda et al., 2000; Langley 

et al., 1992; Ordonez & Pitchaimalai, 2010; Rish, 2001)  

(ii). K-Nearest Neighbor classifiers (Dasarathy, 1991; Duda et al., 2000; S. Jiang 

et al., 2012; Qiao et al., 2010) 

(iii). Rocchio classifier (specific for text classifier) (Miao & Kamel, 2011; 

Rocchio, 1971) 

(iv). Support vector machines (Boser et al., 1992; Cortes & Vapnik, 1995; 

Joachims, 1998; Pan et al., 2012; Scholkopf et al., 1999; Sullivan & Luke, 

2007; Tong & Koller, 2002; Vapnik, 1998; Yu et al., 2003)  
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Each technique typically suits a problem better than others (Fayyad et al., 

1996). Thus, there is no universal data-mining method, and choosing a particular 

algorithm for a particular application is something of an art. In practice, a large 

portion of the application effort can go into properly formulating the problem (asking 

the right question) rather than into optimizing the algorithmic details of a particular 

data-mining method (Langley & Simon, 1995). 

1.3 How does classification work? 

Data classification is a two-step process (learning step and classification step). 

The first step that is the learning step, where a classification algorithm builds the 

classifier by analyzing or “learning from” a training set made up of database tuples 

and their associated class labels.  

A tuples,  , is represented by  -dimensional attribute vector,   

{          }, depicting   measurements made on tuple from   database attributes, 

respectively,           . Each tuple,  , is assumed to belong to a predefined class 

as determined by another database attribute called the class label attribute. The class 

label attribute is discrete valued and unordered. It is categorical in that each value 

serves as a category or class. The individual tuples making up the training set are 

referred to as training tuples and are selected from database under analysis. In the 

context of classification, data tuples can be referred to as samples, examples, 

instances, data points, or objects. 

Because of the class label of each training tuple is provided, this step is also 

known as supervised learning. It contrasts with unsupervised learning (or 

clustering), in which the class label of each training tuple is not known, and the 

number or set of classes to be learned may not be known in advance.  

In the second step, the model is used for classification. A test set is used, 

made up of test tuples and their associated class labels. These tuples are randomly 

selected from the general data set. They are independent of the training tuples, 

meaning that they are not used to construct the classifier. In other word, tuples in the 

test set must be different from the tuples in the training set. 

Classification methods can be compared and evaluated according to the 

following criteria,  
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(i). Accuracy: The accuracy of a classifier refers to the ability of a given classifier 

to correctly predict the class label of new or previously unseen data. 

Similarly, the accuracy of a predictor refers to how well a given predictor can 

guess the value of the predicted attribute for new or previously unseen data. 

(ii). Speed: This refers to the computational costs involved in generating and 

using the given classifier or predictor.  

(iii). Robustness: This is the ability of the classifier or predictor to make correct 

predictions given noisy data or data with missing values.  

(iv). Scalability: This refers to the ability to construct the classifier or predictor 

efficiently given large amounts of data.  

(v). Interpretability: This refers to the level of understanding and insight that is 

provided by the classifier or predictor. Interpretability is subjective and 

therefore more difficult to assess 

1.4 Problem Statement 

In 1999, the concept of soft set theory as a mathematical tool for dealing with 

uncertainties has initiated by (D. Molodtsov, 1999), which has been further 

developed by (P. K. Maji et al., 2003). The soft set theory is different from 

traditional tools for dealing with uncertainties, and further it is free from the 

inadequacy of the parameterization tools of those theories (D. A. Molodtsov, 2004). 

The soft set theory has a rich potential for applications in several directions, few of 

which had been shown by Molodtsov in his pioneer work (D. Molodtsov, 1999). 

At present, work on the soft set theory is progressing rapidly both in 

theoretical models and applications. As for practical applications of soft set theory, 

great progress has been achieved. The soft set theory can be applied to solve the 

decision-making problem  (F. Feng et al., 2010, 2012; P. K. Maji et al., 2002; Roy & 

Maji, 2007), parameter reduction (Herawan et al., 2009; Ma et al., 2011), data 

clustering (Qin, Ma, Zain, et al., 2012), data analysis under incomplete information 

(Qin, Ma, Herawan, et al., 2012; Zou & Xiao, 2008), the combined forecasting (Xiao 

et al., 2009), and association rules mining (Herawan & Deris, 2010). 

An example of the application of soft set theory for classification is proposed 

by (Mushrif et al., 2006). They used the soft set theory to classify images texture 
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based on application soft set theory on decision-making problem. A soft set classifier 

based on similarity measure between the two generalized fuzzy soft sets has reported 

by (Majumdar & Samanta, 2010). In their work, they provided an example on how 

the similarity between the two generalized fuzzy soft sets used to detect whether an 

ill person is suffering from a certain disease.  

Although both methods are quite successful for classification, low accuracy 

and efficiency when applied to text classification is the problem. The writing of this 

thesis has a purpose to propose a new approach on classification problem based on 

hybrid fuzzy soft set theory and supervised fuzzy c-means. This new approach is 

expected to improve the accuracy and the efficiency of classification in text 

classification problem. 

1.5 Research Objectives 

The objectives of this research are: 

(i). To propose new classification technique based on hybrid fuzzy soft set theory 

and fuzzy c-means. 

(ii). To develop an algorithm based on the proposed technique as in (a). 

(iii). Applying the algorithm that develop in (b) on text classification problem. 

(iv). To compare the algorithm with the existing algorithm based on efficiency and 

accuracy performance metrics. 

1.6 Contributions 

The main contributions of  this study are in the area of data mining, the detail of 

these contributions is as follows: 

(i). Extend the area application of soft set theory. The study has introduced a new 

algorithm for classification based on fuzzy soft set theory. 

(ii). Introduce a new algorithm of classification for text classification problem. 

Applying the proposed algorithm to classify text document that has 

performance outperform as compare to the previous soft set classifiers and the 

classic text classifiers, based on efficiency and accuracy performance metrics. 
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(iii). Introduce a new hybrid algorithm of classification. The proposed algorithm is 

a hybrid fuzzy algorithm, which is consist of fuzzy soft set theory and 

supervised fuzzy c-means. 

1.7 Research Scope 

This study focus on developing the new approach to classify text document based on 

hybrid fuzzy soft set theory and Fuzzy C-means. Test case will be done using two 

well-known datasets that are the Reuter-21578 dataset for unevenly distributed 

dataset, and the 20 Newsgroups for evenly distributed dataset. Comparison will be 

done on the two groups of classifier. The first group will be used to compare the 

proposed algorithm with the other two soft set classifiers such as soft set classifier 

based on decision making-problem and soft set classifier based on similarity between 

two fuzzy soft sets. The second group will be used to compare the proposed 

algorithm with the four classic text classifiers, such as k-NN, Rocchio, Bayesian, and 

Support Vector Machine (SVM). 

1.8 Thesis Organization 

The thesis is organized into six different chapters. Chapter 1 provides the background 

and describes what motivated the researcher to introduce the new algorithm for text 

classification using soft set theory. Chapter 2 will explains the foundations of basic 

theory of soft set, fuzzy soft set, and text classification. Next, Chapter 3 will 

describes the new algorithm to classify text document based on fuzzy soft set theory 

and supervise fuzzy c-means. After that, Chapter 4 will reports the experimental 

results and discussion, which then tabulate and compare its findings to other research 

work. Finally, Chapter 5 will conclude and propose future work. 

1.9 Chapter Summary 

Recent advances in information technology have led to significant changes in today‟s 

world. This explosive growth in stored or transient data has generated an urgent need 
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for new techniques and automated tools that can assist us in transforming the data 

into more useful information and knowledge. The classification is the task of 

assigning objects to one of several predefined categories, and is one of the essential 

processes contained in the data mining. There are two forms of data analysis that can 

be used to extract models, whether describing data classes or to predict future data 

trends. Although classic methods are quite successful for classification, low accuracy 

and efficiency when applied to text classification is the problem. Objective of this 

research is to propose new classification technique based on hybrid fuzzy soft set 

theory and fuzzy c-means.  

Some important terms related to this study include the following: 

(i). Data mining is a process to extracting or “mining” knowledge from large 

amounts of data. 

(ii). Knowledge Discovery from Data (KDD) is the overall process of 

discovering useful knowledge from data, and data mining refers to a 

particular step in this process. 

(iii). Classification is task of assigning objects to one of several predefined 

categories, and is one of the essential processes contained in the data mining. 

There are two models of classification, (a) classification model when the 

model is used to predict categorical labels, (b) prediction model when the 

model is used to predict a numerical. 

(iv). Supervised learning is a learning process when the class label of each 

training tuple is provided, otherwise is unsupervised learning.  

(v). Soft set theory is as a theory proposed by Molodtsov to deal with uncertainty 

problem that work with binary features. 

(vi). Fuzzy soft set theory is a extended version of soft set theory to work with 

fuzzy number of features. 

(vii). Fuzzy c-means is a data mining technique to data clustering.   
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CHAPTER 2 Classification and Soft set Theory 

CHAPTER 2  

CLASSIFICATION AND SOFT SET THEORY  

This chapter describes some basic theories, which will be used as a basis for 

classification proposed in this research. This includes soft-set theory, classic 

classification based on soft set theory, fuzzy set theory, fuzzy soft set theory, and 

fuzzy C-means. 

2.1 Introduction 

Machine learning, knowledge discovery in databases (KDD) and data mining are 

three terms that often appear associated with data processing and classification. They 

have similarities and differences. The similarities between them relate to the two 

fundamental facts:  

(i). All of them develop methods and procedures to process data, and  

(ii). Any data processing algorithm or procedure may belong to any.  

The differences are in the different perspectives. The difference in perspectives does 

not affect the procedures but it affects the choice between them in the interpretation 

of concepts and results (Mirkin, 2011). 
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