# INSTRUMENTED PHYSICAL MODEL STUDIES OF THE PEAT SOIL-ENGINEERING STRUCTURE INTERACTION

### SITI NOORAIIN BT MOHD RAZALI

A thesis submitted in fullfillment of the requirement for the award of The Master Degree of Civil Engineering

> Faculty of Civil and Environmental Engineering Universiti Tun Hussein Onn Malaysia

> > **SEPTEMBER 2013**

# "For my beloved family"

Mohd Razali Jaafar Zaharah Abdullah Zahariah Norhaini Kamsany Kamsalmi Kamsyahrull Afendy Amyrull Alyff, Nazarul Afwan, Ainn Nour & Danial Hakimy Faris Aiman, Alisa, Qistina, Fahrin Aqiel & Qaisara Kaf Ammar, Khasiff & Daniel Haikal Syafiqah

Kak Salina, Kak Bee Lin, Rasi, Sue, Cdomp, Syieda, Noor and all. euomp, Syieda

#### ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude and appreciation to Prof. Dato' Dr. Ismail bin Hj. Bakar, as my supervisor, for his tremendous support and time spent with me in all past years. Thanks for keeping supporting, guiding, tutoring and encourage me throughout my research.

I would like to extend my deep appreciation to Dr. Adnan bin Zainorabidin as my co-supervisor. Thanks for the advices and the encouragement. My sincere thanks also go to:

- Prof. D.C. Wijeyesekera for helping me and gave the ideas for my research. \_
- Mr. Felix Ling Ngee Leh for lent me his apparatus and teaches me to handle the instrumentations and data logger. I highly appreciate it.
- AMINA RECESS staff especially Ms. Salina Sani, Mr. Amir Zaki Salikin and Mr. Mudzaffar Syah Kamarudin.
- ORICC, UTHM for the GIPS.

Special thanks are extended to my best friend and research friends for the cooperation. Friends, you have been and always will be an inspiration to me.

Last but not least, I would like to thank my parents for the supports. Thanks for always being by my side. The patience and understanding shown by my family during the years is greatly appreciated.



#### ABSTRACT

The engineering structures are mostly constructed directly in contact with the ground and the response between the soil and the structure is termed as soil-engineering structure interaction. To understand the interaction, physical modelling is considered as a prime method of study. This physical model study has been conducted on peat soils obtained from the Malaysian Agricultural Research and Development Institute-Integrated Peat Research Station (MARDI-IPRS) in Pontian, Johor. Peat is considered as unsuitable soil for supporting foundations in its natural state due to the high moisture content (>100%), high compressibility (0.9-1.5) and low shear strength (5-20 kPa) values. Peat also contains high organic matter (>75%), large deformation, high compressibility and high magnitude and rates of creep. The objectives of this study are to identify the engineering characteristic of the peat, analyse the deformation behaviour in peat soil based on physical modelling, analyse using physical model the stress distribution beneath the structure in peat soil and to compare the peat behaviour with sand. The reason of comparing these two different types of soil was to obtain the significant difference in terms of the settlement, stress and failure pattern. This study also helps to acquire basic understanding of the behaviour of settlement and stress of peat soil when load is applied to it. The rectangular model and the square model were used in pre-model study (PMS) to identify suitable indicators and observed the deformation of the peat/sand after the loading process. Meanwhile, a plane strain model cm was used in plain strain study (PSS) with instrumentations (Displacement Transducers and Soil Pressure Gauge) to investigate and observed the settlement and stress on the peat/sand. Various static loads were applied at the surface and the interaction between peat soil and sand with the structure was recorded based on all the deformations and stresses at various positions and levels. The water level was maintained at a constant level that is at the surface of the soil to prevent any induce stress due to the seepage of water and to omit settlement due to the lowering of the water table. The observations showed that the settlement in peat was higher compared to the settlement in sand because of the properties of peat that highly compressible compared to sand. The deformation of sand corresponds to general bearing capacity failure and deformation in peat shows punching shear failure. However, the stress in the sand was higher than the stress in peat because of the presence of water that affects the value of stress in peat.



#### ABSTRAK

Struktur kejuruteraan kebanyakannya di bina secara langsung menyentuh permukaan tanah dan tindak balas di antara tanah dan struktur di panggil sebagai interaksi struktur kejuruteraan – tanah. Untuk memahami interaksi, model fizikal dianggap sebagai kaedah utama kajian. Model fizikal ini telah dijalankan ke atas tanah gambut yang di perolehi dari Malaysian Agricultural Research and Development Institute-Integrated Peat Research Station (MARDI-IPRS) di Pontian, Johor. Gambut di anggap sebagai tanah yang tidak sesuai untuk menyokong asas dalam keadaan smulajadi kerana nilai kandungan lembapan yang tinggi (>100%), kebolehmampatan yang tinggi (0.9–1.5) dan kekuatan ricih yang rendah (5–20 kPa). Gambut juga mengandungi kadungan organik yang tinggi (>75%), ubah bentuk yang besar, kebolehmampatan yang tinggi, magnitud dan kadar rayapan yang tinggi. Objektif kajian adalah untuk mengenalpasti ciri-ciri kejuruteraan tanah gambut, analisis, analisis kelakuan ubah bentuk di dalam tanah gambut berdasarkan model fizikal, analisis dengan menggunakan model fizikal untuk agihan tegasan di bawah struktur di kawasan tanah gambut dan untuk bandingkan kelakuan gambut dan pasir. Kedua-dua jenis tanah ini dibandingkan adalah untuk mendapatkan perbezaan ketara dari segi enapan, tekanan dan corak kegagalan. Kajian ini juga membantu untuk pemahaman asas tingkah laku enapan dan tekanan tanah gambut apabila beban dikenakan kepadanya. Model segi empat tepat dan model segi empat sama telah digunakan dalam kajian pra-model (PMS) untuk mengenal pasti penunjuk yang sesuai dan memerhatikan ubah bentuk gambut/pasir selepas proses pembebanan. Sementara itu, model terikan kosong telah digunakan dalam kajian terikan kosong (PSS) dengan instrumentasi (Displacement Transducers dan Soil Pressure Gauge) untuk menyiasat dan memerhatikan enapan dan tekanan pada gambut/sand. Sifat - sifat indeks dan sifat - sifat kekuatan tanah gambut juga telah ditentukan. Model PSS telah dibina untuk menguji gambut dan pasir. Pelbagai beban statik telah digunakan di permukaan dan interaksi antara tanah gambut dan pasir dengan structur di catatkan berdasarkan ubah bentuk dan tekanan pada pelbagai kedudukan dan tahap. Paras air dikekalkan pada tahap yang tetap iaitu berada pada permukaan tanah untuk mengelakkan sebarang tekanan aruhan disebabkan oleh resapan air dan untuk abaikan enapan yang disebabkan oleh penurunan aras air. Pemerhatian menunjukkan bahawa enapan tanah gambut lebih tinggi berbanding enapan pasir disebabkan oleh cirri-ciri tanah gambut yang tinggi kemampatan berbanding pasir. Ubah bentuk pasir adalah sepadan dengan kegagalan keupayaan am dan ubah bentuk pada gambut menunjukkan kegagalan ricih menebuk. Walaubagaimanapun, tekanan dalam pasir adalah lebih tinggi berbanding tekanan pada tanah gambut kerana kehadiran air mengurangkan nilai tekanan di dalam tanah gambut.



# CONTENTS

| TITLE                             | i    |
|-----------------------------------|------|
| DECLARATION                       | ii   |
| DEDICATION                        | iv   |
| ACKNOWLEDGEMENT                   | v    |
| ABSTRACT                          | vi   |
| CONTENTS                          | viii |
| LIST OF TABLES                    | xiii |
| LIST OF FIGURES                   | xiv  |
| LIST OF SYMBOLS AND ABBREVIATIONS | xix  |
| LIST OF EQUATIONS                 | xx   |
| LIST OF APPENDIX                  | xxi  |
|                                   |      |
| CHAPTER 1 INTRODUCTION            | ANA. |
| 1.1 Preamble                      |      |

| 1.1 | Preamble                             | <b>P</b> 1 |
|-----|--------------------------------------|------------|
| 1.2 | Description of Problems              | 3          |
| 1.3 | Objectives                           | 6          |
| 1.4 | Scope of Study                       | 6          |
| 1.5 | Importance and Contribution of Study | 9          |
| 1.6 | Organization of Thesis               | 9          |
| 1.7 | Tests Schedule                       | 11         |
|     |                                      |            |

| CHAF | PTER 2 LITERATURE REVIEW                  | 12 |
|------|-------------------------------------------|----|
| 2.1  | Introduction                              | 12 |
| 2.2  | Peat Soil                                 | 13 |
|      | 2.2.1 Definition of Peat                  | 13 |
|      | 2.2.2 Classification                      | 14 |
|      | 2.2.3 Peat Characteristics and Properties | 18 |
| 2.3  | Sand                                      | 20 |
|      | 2.3.1 Definition and Formation            | 20 |
|      | 2.3.2 Classification and characterization | 21 |
|      |                                           |    |

| 2.4    | Behaviour of Soil under Static Loading                                           | 22       |
|--------|----------------------------------------------------------------------------------|----------|
|        | 2.4.1 Settlements                                                                | 22       |
|        | 2.4.1.1 General                                                                  | 22       |
|        | 2.4.1.2 Sand                                                                     | 24       |
|        | 2.4.1.3 Peat                                                                     | 26       |
|        | 2.4.2 Stresses due to external load                                              | 29       |
|        | 2.4.3 Pore Water Pressure                                                        | 32       |
| 2.5    | Challenges on Peat                                                               | 32       |
| 2.6    | Modes of Failure                                                                 | 33       |
| 2.7    | Case Studies                                                                     | 36       |
|        | 2.7.1 The Bereng Bengkel Trial Embankment                                        | 37       |
|        | 2.7.2 Physical Modelling of Railway Embankments on Peat<br>Foundations           | 38       |
|        | 2.7.3 Instrumentation and Analysis of a Railway Embankment<br>Failure Experiment | 40       |
|        | 2.7.4 Construction on Soft Soil with "Akar Foundation"                           | 44       |
|        | 2.7.5 Surcharging as a Method of Road Embankment Construction<br>Organic Soils   | on<br>45 |
| 2.8    | Indicator                                                                        | 48       |
| СНА    | PTER 3 MARDI-IPRS PEAT                                                           | 50       |
| PE 3.1 | Introduction                                                                     | 50       |
| 3.2    | Site Sampling                                                                    | 50       |
| 3.3    | Sample Preparation                                                               | 54       |
| 3.4    | Method for Peat Identification                                                   | 56       |
|        | 3.4.1 Index Properties Tests                                                     | 57       |
|        | 3.4.1.1 Von Post Scale of Humification                                           | 57       |
|        | 3.4.1.2 Moisture Content                                                         | 58       |
|        | 3.4.1.3 Specific Gravity                                                         | 59       |
|        | 3.4.1.4 Organic Content                                                          | 60       |
|        | 3.4.1.5 pH                                                                       | 61       |
|        | 3.4.1.6 Atterberg Limits                                                         | 61       |

| 3.5  | Pontian Peat Soil Characteristics                                                  | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 3.5.1 Index Properties                                                             | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.6  | Chapter Summary                                                                    | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CHAI | PTER 4 PRE- MODEL STUDY (PMS)                                                      | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.1  | Introduction                                                                       | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.2  | Experimental Apparatus                                                             | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.2.1 Model Container                                                              | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.2.2 Model Design and Load                                                        | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.2.3 Model Construction and Testing Procedure                                     | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.2.3.1 Indicator                                                                  | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.2.3.1.1 Coal and Laterite                                                        | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.2.3.1.2 Polystyrene and Sand                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (a) Polystyrene                                                                    | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (b) Sand                                                                           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (c) Comparison of Polystyrene and Sand                                             | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.2.3.2 DT Plate Size                                                              | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.3  | Evaluation of Apparatus (results)                                                  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.3.1 Indicator                                                                    | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.3.1.1 Sand                                                                       | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.3.1.2 Peat                                                                       | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.3.1.3 Comparison of Failure in Sand and Peat                                     | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.3.1.4 Displacement Transducer's Plate Size                                       | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4.3.1.5 Pre Model Study Setup                                                      | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.4  | Chapter Summary                                                                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CHAI | PTER 5 PLANE STRAIN STUDY (PSS)                                                    | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.1  | Introduction                                                                       | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5.2  | Description of the 2D Small Scale Model                                            | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 5.2.1 Model Design                                                                 | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | 5.2.1.1 Instrumented Section                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 5.2.2 Data Logger Setting                                                          | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 3.5<br>3.6<br>CHAI<br>4.1<br>4.2<br>4.3<br>4.3<br>4.3<br>4.4<br>CHAI<br>5.1<br>5.2 | <ul> <li>9.5. Pontian Peat Soil Characteristics <ul> <li>3.5.1 Index Properties</li> </ul> </li> <li>3.6 Chapter Summary</li> </ul> <li>CHAPTER 4 PRE- MODEL STUDY (PMS) <ul> <li>4.1 Introduction</li> <li>4.2 Experimental Apparatus</li> <li>4.2.1 Model Container</li> <li>4.2.2 Model Design and Load</li> <li>4.2.3 Model Construction and Testing Procedure</li> <li>4.2.3.1 Indicator <ul> <li>4.2.3.1 Indicator</li> <li>4.2.3.1 Indicator</li> <li>4.2.3.2 DT Plate Size</li> </ul> </li> <li>4.3 Evaluation of Apparatus (results) <ul> <li>4.3.1.3 Sand</li> <li>4.3.1.3 Comparison of Polystyrene and Sand</li> <li>4.3.1.4 Displacement Transducer's Plate Size</li> <li>4.3.1.5 Pre Model Study Setup</li> </ul> </li> <li>4.1 Chapter SUMMARY</li> </ul> </li> <li>CHAPTER 5 PLANE STRAIN STUDY (PSS) <ul> <li>1.1 Introduction</li> <li>2.2 Description of the 2D Small Scale Model</li> <li>5.1.1 Instrumented Section</li> <li>5.2.2 Data Logger Setting</li> </ul></li> |

x

|     | 5.2.3 Instrumentations                   | 106 |
|-----|------------------------------------------|-----|
|     | 5.2.3.1 Types of Instrumentations        | 106 |
|     | 5.2.3.2 Procedure of Calibration         | 108 |
|     | (a) Displacement Transducer (DT)         | 108 |
|     | (b) Soil Pressure Gauge (SPG)            | 109 |
|     | (c) Pore Pressure Gauge (PPT)            | 110 |
|     | 5.2.3.3 Installation of Instrumentations | 110 |
|     | (a) Displacement Transducer (DT)         | 110 |
|     | (b) Soil Pressure Gauge (SPG)            | 111 |
|     | (c) Pore Pressure Transducer (PPT)       | 112 |
| 5.3 | Model Construction and Testing Procedure | 114 |
|     | 5.3.1 Introduction                       | 114 |
|     | 5.3.2 Plane Strain Study for Peat        | 117 |
|     | 5.3.3 Plane Strain Study for Sand        | 118 |
|     | 5.3.3.1 Dry Sand                         | 118 |
|     | 5.3.3.2 Wet Sand                         | 119 |
|     | 5.3.4 Loading                            | 120 |
|     | 5.3.5 Maintenance                        | 121 |
| 5.4 | Evaluation of Apparatus (Results)        | 122 |
|     | 5.4.1 Calibrations Data                  | 123 |
|     | 5.4.1.1 Displacement Transducers         | 123 |
|     | 5.4.1.2 Soil Pressure Gauges             | 123 |
|     | 5.4.1.3 Pore Pressure Transducers        | 124 |
|     | 5.4.2 Plane Strain Study for Peat        | 124 |
|     | 5.4.3 Plane Strain Study for Sand        | 125 |
|     | 5.4.3.1 Dry Sand                         | 125 |
|     | 5.4.3.2 Wet Sand                         | 126 |
| 5.5 | Summary                                  | 127 |

| CHAPTER 6 RESULTS AND ANALYSIS |                                                                         | 128    |
|--------------------------------|-------------------------------------------------------------------------|--------|
| 6.1                            | Introduction                                                            | 128    |
| 6.2                            | Settlements                                                             | 129    |
|                                | 6.2.1 Calculated Settlements                                            | 129    |
|                                | 6.2.2 Measured Settlements using Gridlines Marker                       | 131    |
|                                | 6.2.3 Measured Settlements using Instrumentations                       | 134    |
|                                | (a) DT 1                                                                | 134    |
|                                | (b) DT 2                                                                | 135    |
|                                | (c) DT 3                                                                | 136    |
|                                | (d) DT 4                                                                | 137    |
|                                | (e) DT 5                                                                | 138    |
|                                | (f) DT 6                                                                | 139    |
|                                | (g) Summary                                                             | 140    |
|                                | 6.2.4 Settlements: Calculated, Measured by instruments and by Gridlines | 143 AH |
| 6.3                            | Stresses                                                                | 145    |
|                                | 6.3.1 Calculated Stresses                                               | 145    |
|                                | 6.3.2 Measured Stresses                                                 | 151    |
|                                | 6.3.3 Stress: Calculated and Measured                                   | 159    |
| 6.4                            | Summary                                                                 | 161    |
|                                |                                                                         |        |
| СНАН                           | PTER 7 CONCLUSIONS AND RECOMMENDATIONS                                  | 162    |
| 7.1                            | Conclusions                                                             | 162    |
| 7.2                            | Critical Overview of Study                                              | 163    |
| 7.3                            | Assumptions and Limitations                                             | 165    |
| 7.4                            | Precaution during the Experiments                                       | 165    |
| 7.5                            | Significance of Study                                                   | 166    |
| 7.6                            | Recommendations for Further Study                                       | 167    |
|                                |                                                                         |        |

# REFERENCES

168

# LIST OF TABLES

| Table 1. 1: Characteristics of Peat Swamps in Malaysia                | 2   |
|-----------------------------------------------------------------------|-----|
| Table 1.2: Schedule of Tests Conducted                                | 11  |
| Table 2. 1: Different Descriptions of Peat                            | 14  |
| Table 2. 2: Classification of Peat                                    | 15  |
| Table 2. 3: The Von Post Scale of Humification                        | 17  |
| Table 2. 4: Index Properties of Peat                                  | 19  |
| Table 2. 5: Properties of Peat Soil in Malaysia                       | 20  |
| Table 2. 6: Soil Classification System                                | 21  |
| Table 2. 7: Challenges on Peat                                        | 33  |
| Table 2. 8: Physical Properties of Organic Soils at Antoniny Site     | 46  |
| Table 2.9: Types of indicator used by past researchers                | 48  |
| Table 3.1: Testing and Standard Methods                               | 56  |
| Table 3.2: Classification of Peat                                     | 63  |
| Table 3. 3: Properties of Peat Soil Compared to Past Researchers      | 65  |
| Table 4.1: Box Dimensions                                             | 68  |
| Table 4. 2: Sand Size Selection                                       | 87  |
| Table 4. 3: Conclusion for the indicator of peat                      | 90  |
| Table 6. 1: Summarize of Maximum Settlement                           | 140 |
| Table 6. 2: Settlement from Calculated, Measured and Gridlines Marker | 143 |
| Table 6. 3: Example of Stress Calculation                             | 147 |
| Table 6. 5: Measured Stresses                                         | 154 |



# LIST OF FIGURES

| Figure 1. 1: The distribution of Peat in Malaysia                                                                                 | 2        |
|-----------------------------------------------------------------------------------------------------------------------------------|----------|
| Figure 1.2: Settlement in the Housing Area, Sibu, Sarawak                                                                         | 4        |
| Figure 1.3: Settlement for (a) pipeline and (b) lamp post near Salim-Airport Road By-Pass, Sibu, Sarawak                          | 5        |
| Figure 1.4: Settlement on Peat Soil, Parit Nipah, Johor                                                                           | 6        |
| Figure 1. 5: Flow Chart                                                                                                           | 8        |
| Figure 2.1: Summary of Literature Review                                                                                          | 13       |
| Figure 2. 2: Compression Index versus Consolidation Pressure                                                                      | 15       |
| Figure 2. 3: Distribution of Pressure                                                                                             | 29       |
| Figure 2. 4: Vertical stress below the corner of a uniformly loaded flexible rectangular area                                     | 30       |
| Figure 2. 5: Increase of stress below a rectangular loaded flexible area                                                          | 31       |
| Figure 2.6: General Shear Failure                                                                                                 | 34       |
| Figure 2.7: Local Shear Foundation Failure                                                                                        | 35       |
| Figure 2.8: Punching Shear Failure                                                                                                | 35       |
| Figure 2. 9: The Results of Compression Tests of Peat                                                                             | 39       |
| Figure 2. 10: View of Models and Prototypes with Stages of Deforming                                                              | 40       |
| Figure 2.11: Car Numbering                                                                                                        | 41       |
| Figure 2.12: The Embankment Failure                                                                                               | 42       |
| Figure 2. 13: Selected Transverse Displacement Measured with Total Stations                                                       | 43       |
| Figure 2. 14: Selected Settlement Tube Measurements                                                                               | 43       |
| Figure 2. 15: Settlement Tube Readings under the Embankment                                                                       | 43       |
| Figure 2. 16: Load Test of the Foundation System: The arrow marker indicated th soil bed level (settlement) under different loads | le<br>45 |
| Figure 2.17: Vertical Settlements in the Organic Subsoils at Antoniny Site                                                        | 47       |
| Figure 2. 18: Horizontal Displacement at Antoniny Site                                                                            | 47       |



| Figure 3.1: Site Study                                       | 51 |
|--------------------------------------------------------------|----|
| Figure 3.2: Site for Sampling                                | 51 |
| Figure 3.3: Soil Profiling using Peat Auger                  | 52 |
| Figure 3.4: Soil Profile                                     | 53 |
| Figure 3.5: Peat Sampling Process                            | 53 |
| Figure 3.6: Peat with Large Woody Fragments                  | 54 |
| Figure 3.7: Sample Preparation                               | 55 |
| Figure 3. 8: Squeezed Peat                                   | 57 |
| Figure 3. 9: Moisture Content                                | 58 |
| Figure 3. 10: Specific Gravity Apparatus                     | 59 |
| Figure 3.11: Organic Content                                 | 60 |
| Figure 3.12: pH                                              | 61 |
| Figure 4.1: Model for Pre-Model Study                        | 70 |
| Figure 4.2: Indicator for Sand                               | 73 |
| Figure 4.3: Construction Steps for Small Model               | 74 |
| Figure 4.4: Set up for Square Box                            | 75 |
| Figure 4.5: Polystyrene as an Indicator                      | 76 |
| Figure 4.6: Construction Process                             | 77 |
| Figure 4.7: Testing for Size of Sand as an Indicator         | 78 |
| Figure 4.8: Test to Identify the Suitable Indicator          | 79 |
| Figure 4.9: The Different Indicators Test                    | 80 |
| Figure 4.10: Loading Process                                 | 81 |
| Figure 4.11: Suitable Plate Sizes                            | 81 |
| Figure 4.12: Indicator for Sand                              | 83 |
| Figure 4. 13: Settlement Pattern with the Increasing of Load | 84 |
| Figure 4. 14: Polystyrene as an Indicator                    | 85 |
| Figure 4.15: Sand as an Indicator                            | 86 |
| Figure 4.16: Test for Sand Sizes Selection                   | 88 |



| Figure 4.17: Result for the Most Visible                             | 89  |
|----------------------------------------------------------------------|-----|
| Figure 4.18: Sand Absorb the Water and Affect the Settlement of Peat | 91  |
| Figure 4. 19: Failure Pattern                                        | 92  |
| Figure 4.20: Tests to Determine the Plate Size                       | 93  |
| Figure 4.21: Setup for PMS                                           | 95  |
| Figure 5.1: Overview of Test (a) Peat and (b) Sand                   | 99  |
| Figure 5.2: Location of DT (Plan View)                               | 100 |
| Figure 5.3: Location of Soil Pressure Gauge (Plan View)              | 101 |
| Figure 5.4: Location of Pore Pressure Transducers (Front View)       | 102 |
| Figure 5.5: Setting for Environment                                  | 103 |
| Figure 5.6: File Name                                                | 103 |
| Figure 5.7: Steps to Set the Interval Time                           | 104 |
| Figure 5.8: MEAS Setting                                             | 105 |
| Figure 5.9: Instrumentations for Monitoring                          | 107 |
| Figure 5.10: Calibration for DT                                      | 109 |
| Figure 5.11: Different Load Applied to SPG                           | 109 |
| Figure 5.12: PPT at Different Depth                                  | 110 |
| Figure 5.13: Installation of DT                                      | 111 |
| Figure 5.14: Installation of SPG into Holder                         | 111 |
| Figure 5. 15: Installation of PPT into the Wall Box                  | 112 |
| Figure 5.16: Location of Instrumentations                            | 113 |
| Figure 5.17: Data Logger Connection                                  | 113 |
| Figure 5.18: Plastic Sheeting to Minimize Friction                   | 114 |
| Figure 5.19: Grid Paper as Settlement Marker                         | 115 |
| Figure 5.20: Detailed of Large Box                                   | 116 |
| Figure 5.21: The Construction of Physical Model Study on Peat Soil   | 117 |
| Figure 5.22: The Construction of Physical Model Study on Dry Sand    | 118 |
| Figure 5.23: The Construction of Physical Model Study on Wet Sand    | 119 |



| Figure 5.24: Location of Load and DT in (a) Peat and (b) Sand           | 120 |
|-------------------------------------------------------------------------|-----|
| Figure 5.25: Maintenance Process                                        | 122 |
| Figure 5. 26: Displacement Pattern in Peat                              | 124 |
| Figure 5. 27: Displacement Pattern in Dry Sand                          | 125 |
| Figure 5. 28: Displacement Pattern in Wet Sand                          | 126 |
| Figure 6. 1: Calculated Settlement on Sand and Peat                     | 130 |
| Figure 6. 2: Deformation Patterns                                       | 131 |
| Figure 6.3: Maximum Settlement (Gridlines)                              | 133 |
| Figure 6.4: Settlement for Dry Sand, Wet Sand and Peat at DT1           | 134 |
| Figure 6. 5: Settlement for Dry Sand, Wet Sand and Peat at DT2          | 135 |
| Figure 6. 6: Settlement for Dry Sand, Wet Sand and Peat at DT3          | 136 |
| Figure 6. 7: Settlement for Dry Sand, Wet Sand and Peat at DT4          | 137 |
| Figure 6. 8: Settlement for Dry Sand, Wet Sand and Peat at DT5          | 138 |
| Figure 6.9: Settlement for Dry Sand, Wet Sand and Peat at DT6           | 139 |
| Figure 6. 10: Maximum Settlement (Instrumentations)                     | 141 |
| Figure 6. 11: Settlement Increases with Load Increases for Dry Sand     | 142 |
| Figure 6. 12: Calculated versus Measured Settlement                     | 144 |
| Figure 6. 13: Area Divided into Four Rectangles                         | 146 |
| Figure 6. 14: Different Depth, Same Distance (76 cm c-c)                | 147 |
| Figure 6. 15: Different Depth, Same Distance (38 cm c-c)                | 148 |
| Figure 6. 16: Different Depth, Same Distance (0 cm c-c)                 | 148 |
| Figure 6. 17: Different Distance, Same depth (H=20 cm)                  | 149 |
| Figure 6. 18: Different Distance, Same depth (H=40 cm)                  | 149 |
| Figure 6. 19: Different Distance, Same depth (H=60 cm)                  | 150 |
| Figure 6. 20: Stress Isobars                                            | 150 |
| Figure 6. 21: Measured Stress at Different Depth, Same Distance (76 cm) | 152 |
| Figure 6. 22: Measured Stress at Different Depth, Same Distance (38 cm) | 152 |
| Figure 6. 23: Measured Stress at Different Depth, Same Distance (0 cm)  | 153 |



| Figure 6. 24: Measured Stress at Different Distances, Same Depth (H=20 cm) | 156 |
|----------------------------------------------------------------------------|-----|
| Figure 6. 25: Measured Stress at Different Distances, Same Depth (H=40 cm) | 156 |
| Figure 6. 26: Measured Stress at Different Distances, Same Depth (H=60 cm) | 157 |
| Figure 6. 27: Stress Isobars                                               | 158 |
| Figure 6. 28: Calculated and Measured Stress                               | 159 |

J TUN AMINAH

# LIST OF SYMBOLS AND ABBREVIATIONS

| Δσ              | Increase of stress                                     |  |  |  |  |  |
|-----------------|--------------------------------------------------------|--|--|--|--|--|
| $\sigma'_0$     | Effective overburden pressure                          |  |  |  |  |  |
| $\Delta\sigma'$ | Effective pressure                                     |  |  |  |  |  |
| $\mu_{s}$       | Poisson's ratio of soil                                |  |  |  |  |  |
| В               | Width of loading plate                                 |  |  |  |  |  |
| C'α<br>Cc       | Secondary compression index<br>Compression index       |  |  |  |  |  |
| DS              | Dry sand                                               |  |  |  |  |  |
| DT              | Displacement transducer                                |  |  |  |  |  |
| Е               | Young Modulus                                          |  |  |  |  |  |
| $E_{u}$         | Undrained modulus                                      |  |  |  |  |  |
| $E_{s}$         | Modulus of elasticity of the soil under the foundation |  |  |  |  |  |
| e <sub>0</sub>  | Initial void ratio                                     |  |  |  |  |  |
| Gs              | Specific Gravity                                       |  |  |  |  |  |
| Н               | Thickness of the soil                                  |  |  |  |  |  |
| Is              | Shape factor                                           |  |  |  |  |  |
| If              | Depth factor                                           |  |  |  |  |  |
| L               | Length of loading plate                                |  |  |  |  |  |
| LL Liquid Limit |                                                        |  |  |  |  |  |
| PL              | PL Plastic Limit                                       |  |  |  |  |  |
| PPT             | Pore pressure transducer                               |  |  |  |  |  |
| PT              | Peat                                                   |  |  |  |  |  |
| q               | Uniformly distributed load per unit area               |  |  |  |  |  |
| SPG             | Soil pressure gauge                                    |  |  |  |  |  |
| Sc              | Primary settlement                                     |  |  |  |  |  |
| Si              | Immediate settlement                                   |  |  |  |  |  |
| Ss              | Secondary compression                                  |  |  |  |  |  |
| St              | Total settlement                                       |  |  |  |  |  |
| t1, t2<br>WS    | Time<br>Wet sand                                       |  |  |  |  |  |

# LIST OF EQUATIONS

# **EQUATION** $S_t = S_i + S_c + S_s$

2.2 
$$S_{i} = \Delta \sigma \left( \alpha B' \right) \frac{1 - \mu_{s}^{2}}{E_{s}} I_{s} I_{f}$$
 25

2.3 
$$S_{c} = \frac{C_{c}H}{1+e_{0}} \log \frac{\sigma'_{0} + \Delta \sigma'}{\sigma'_{0}}$$
 27

2.4 
$$S_s = C'_{\alpha} H \log \frac{t_2}{t_1}$$
 28

$$dq = q \, dx \, dy \tag{30}$$

2.6 
$$\Delta \sigma_{z} = \frac{3p}{2\pi} \frac{z^{3}}{L^{5}} = \frac{3P}{2\pi} \frac{z^{3}}{(r^{2}+z^{2})^{5}/2}$$

2.7 
$$\sigma_{z} = \frac{3q \, dx \, dy \, z^{3}}{2\pi (x^{2} + y^{2} + z^{2})^{5/2}}$$

NO.

2.1

2.8 
$$\Delta \sigma_{z} = \int d\sigma_{z} = \int_{y=0}^{B} \int_{x=0}^{L} \frac{3qz^{3}(dx \, dy)}{2\pi (x^{2} + y^{2} + z^{2})^{5}/2} = qI_{3}$$
 31

2.9 
$$I_{3} = \frac{1}{4\pi} \left[ \frac{2mn\sqrt{m^{2}+n^{2}+1}}{m^{2}+n^{2}+m^{2}n^{2}+1} \left( \frac{m^{2}+n^{2}+2}{m^{2}+n^{2}+1} \right) + \tan^{-1} \left( \frac{2mn\sqrt{m^{2}+n^{2}+1}}{m^{2}+n^{2}-m^{2}n^{2}+1} \right) \right]$$
 31

2.10 
$$m = \frac{B}{z}, \quad n = \frac{L}{z}$$
 31

2.11 
$$\Delta \sigma_z = q [I_{3(1)} + I_{3(2)} + I_{3(3)} + I_{3(4)}]$$
 31

3.1 
$$W = \frac{W_2 - W_3}{W_3 - W_1} \times 100\%$$
 58

3.2 
$$G_s = \frac{\gamma_k(m_2 - m_1)}{(m_4 - m_3) - (m_3 - m_2)}$$
 59

3.3 
$$OC = \frac{m_2 - m_3}{m_2 - m_1} \times 100\%$$
 60

PAGE

25

30

31 NAT

# LIST OF APPENDIX

| APPENDIX | TITLE                                     | PAGE |  |
|----------|-------------------------------------------|------|--|
|          |                                           |      |  |
| A        | Calibration for Displacement Transducers  | 175  |  |
| В        | Calibration for Soil Pressure Gauges      | 176  |  |
| С        | Calibration for Pore Pressure Transducers | 178  |  |
| D        | Values of Z, B and L                      | 179  |  |
| E        | The calculated Stresses Value             | 180  |  |
|          |                                           |      |  |

#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Preamble

road/building (Forestry Civil Engineering, 2010). The peat soil is a soft soil with high compressibility and it is widely identified in Malaysia. The peat soil was identified as one of the major group in Malaysia. Huat (2004) clarified that the total area of tropical peat swamps forests or tropical peat land in the world amounts to about 30 million hectares and some 3.0 million hectares or 8% of the total area of Malaysia was covered by peat as shown in Figure 1.1. Generally, peat soils occur both in the highlands and lowlands. However, the highland organic soils are not extensive. The lowland peat occurs almost entirely in low-lying, poorly drained depressions or basins in the coastal areas. In Peninsular Malaysia, they are found in the coastal areas of the east and west coast, especially in the coastal area of West Johor, Kuantan and Pekan districts, the Rompin- Endau area, northwest Selangor and the Trans-Perak areas in the Perak Tengah and Hilir Perak districts (Huat, 2004). There are two types of peat deposit, the shallow deposit usually less than 3m thick while the thickness of deep peat deposit in Malaysia exceeds 5 m (Hashim and Islam, 2008a).

Peat is a very weak material in its normal (unloaded) state on which to construct a





Figure 1. 1: The distribution of Peat in Malaysia (Andriesse, 1974)

Peat in Malaysia can be categorized as a tropical peat with unique characteristics. Thus, this makes it significantly different from other peat. In its natural state, this soil is normally dark reddish brown to black in colour and consists of partly decomposed leaves, branches, twigs and tree trunks with a low mineral content (Zainorabidin and Wijeyesekera, 2007). Table 1.1 shows the characteristics of peat in Malaysia.



| Region     | Location                                                                               | Topography                                   | Total Area                                                                              | Characteristics                                                                                                                                                 |
|------------|----------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peninsular | West Johore,<br>Kuantan, Pekan,<br>Selangor, Perak.                                    | Peat land is flat.                           | Approximately 80,<br>000 km <sup>2</sup> with 89% of<br>its having deep peat<br>(> 1m). | Normally found in<br>the coastal areas of<br>the east and west<br>coasts.                                                                                       |
| Sarawak    | Kuching,<br>Samarahan, Sri<br>Aman, Sibu,<br>Sarikei, Bintulu,<br>Miri and<br>Lambang. | The basin peat<br>swamps are<br>dome-shaped. | 16500 km <sup>2</sup> with 89%<br>of its having deep<br>peat ( > 1m)                    | Peat occurs mainly<br>between the lower<br>stretches of the main<br>river courses (basin<br>peats) and in poorly<br>drained interior<br>valleys (valley peats). |
| Sabah      | Kota Belud,<br>Sugut, Labuk,<br>Kinabatangan.                                          | Peat land is flat.                           | 86 km <sup>2</sup> . There were<br>no estimates on the<br>depths.                       | Peat soils are found<br>on the coastal areas.                                                                                                                   |

Road construction over peat presents great challenges to road builder not only in the construction process but also in the management of the engineering properties of peat which have high water content (>200%), high compressibility (0.9 to 1.5), high organic content (>75%) low shear strength (5-20kPa) and low bearing capacity (<8kN/m<sup>2</sup>), large deformation and high magnitude and rates of creep (Zainorabidin and Wijeyesekera, 2007; Haan and Kurse, 2006). This unique characteristic of peat has led to the problems of the construction become challenging in Malaysia (Zainorabidin and Bakar, 2003; Hashim and Islam, 2008a).

The peat which was formerly considered unsuitable foundation for the construction had to be used because of the land use or demand. The challenges faced by engineers in road/building construction over peat include limited accessibility, drainage problem and stability problems. Hence, construction process on peat soil has become more complex. In order to construct a safe, stable and serviceable road, a road engineer has to overcome this engineering problem by using suitable solutions to construct roads on peat soil. It is also important for engineers to know the nature of the distribution of stress along a given cross section of the soil profile that is, what fraction of the normal stress at a given depth in a soil mass to analyse the problems such as compressibility of soils, bearing capacity of foundations, stability of embankment, and lateral pressure on earth-retaining structures (Das, 2011).



#### **1.2 Description of Problems**

Peat is considered as a worst soiling foundation compared to other types of soil with low strength, high permeability and high water content. Zainorabidin and Wijeyesekera (2007) discussed the geotechnical challenges that need to be faced by geotechnical engineers in Malaysia during the designing and managing the construction on peat soil. Among the challenges include the difficulty to get the samples of hemic and fibrous peat using conventional undisturbed samplers and the different method of sampling for the different depth of peat soil.

Staley (2007) stated that the impact of settlement can be significant, particularly where the differential settlement occurs due to a peat deposit having variable thickness, groundwater flow direction, slopes, differential loading or previous compressions. Because of settlement occurs gradually, it is important to give more attention on impacts of additional loading and water level against the settlement. In this study the effect of additional loading was observed and the water level was maintained.

Ferguson (as cited in Wartman 2006) stated that physical models have served important functions in engineering research, practice and education for hundreds of years. In additional, the full scale experiments are very expensive, difficult to run, and are hard to repeat (Meguid, 2008). Hence, because of this reason, this study focussed on physical models in the laboratory.

One of the case studies in Malaysia was in Sibu, Sarawak. The peat formations in some parts of Sibu are well over 10 meters in depth (Vincent, 2009). Figure 1.2 shows the settlement in a housing area in Sibu town, which cause a serious problem. This problem caused high risk to occupant in terms of safety. Duraisamy and Huat (2008) highlighted that ground subsidence on peat generally resulted in negative gradients to drainage. This scenario resulting of unhealthy water stagnation in many parts of the town and it is also prone to flooding (Kolay et al, 2011).



Figure 1.2: Settlement in the Housing Area, Sibu, Sarawak (Author, 2009)



Figure 1.3 shows the settlement near Salim-Airport Road By-pass, Sibu, Sarawak. The figure 1.3 (a) shows the gap between the pipeline with the ground surface and Figure 1.3 (b) show the settlement under a lamp post. According to Duraisamy and Huat (2008), the problem of this settlement is mainly caused by either uncontrolled land filling or ground water lowering due to over drainage or due to both of the activities.



Figure 1.3: Settlement for (a) pipeline and (b) lamp post near Salim-Airport Road By-Pass, Sibu, Sarawak (Author, 2009)



Figure 1.4 was taken during a site investigation in Parit Nipah, Johor, which is in the housing area. This house has been built on peat soil. The author observed that the settlement occurred and this can clearly see in the columns that support the house. It is dangerous to the occupants. The owner needs to place an object like a rock or wooden block between column and foundation because of some columns appear hanging as shown in Figure 1.4 (a).

The interaction between structure and foundation is important especially to distribute the loading of the structure uniformly into the foundation. Sekhar (2002) stated that the force quantities and the settlement at the finally adjusted condition can only be obtained through interactive analysis of the soil-structure analysis. Figure 1.4 (b) shows higher settlement value in the peat. Loading from a small wooden house have been distributed to the ground and resulted in the settlement. The settlement in this area was in the range of 150 mm. Peat is not suitable to support higher loads because of the high compressibility.

#### REFERENCES

- Andriesse, J.R. (1974). Tropical lowland peats in Southeast Asia, Kon. Inst. Voor de Tropen, Amsterdam, 63 pp.
- Arvidsson, J. And Keller, T. (2007). Soil Stress as Affected by Wheel Load and Tyre Inflation Pressure. Soil & Tilage Research 96, 284-291.ELSEVIER.
- Bathurst, R. J. And Jarret, P. M., (1988). Large-Scale Model Tests of Geocomposite Mattresses over Peat Subgrades. 28-36. Transportation Research Record.
- Brennon, S. (2007). Best Available Sciences Report for Peat Settlement –Prone Geological Hazard Areas. Draft Best Available Sciences Report.
- Cernica N. J. (1995). Geotechnical Engineering Soil Mechanics. John Wiley & Sons, Inc. Singapore.
- Chan, C.M., Wong, P. Y., Lee, C. C. (2010). Subsidence Control of Construction on Soft Soils with "Akar Foundation". Modern Applied Science. Vol. 4, No. 8: August 2010.
- Cheng Liu, J. B. (1998). Soil and Foundations. 4th Edition. Upper Saddle River, New Jersey: PRENTICE HALL.
- Coduto, D. P. (2001). Second edition foundation design pronciples and practices. Ney Jersey: Prentice Hall.
- Colleselli, F., G. Cortellazzo and S.Cola (2000). Laboratory Testing of Italian Peat Soils In Geotechnics of High Water Content Materials, ASTM STP 1374, Edil, T.B. and P.J. Fox (Eds.), American Society for Testing and Materials, West Conshohocken, PA.
- Craig, R.F. (1992). Soil Mechanics. 5th Edition. London: Chapman & Hall.
- Culshaw, F. B. (2001). Problem soils: a review from a British Perspective. In E. M. I. Jefferson, Problematic soils (p.1). London: Thomas Telford.
- Das, M.B. (2010). Principle of Geotechnical Engineering. 7<sup>th</sup> Edition. CENGAGE Learning.USA.
- Das, M.B. (2011). Principles of Foundation Engineering. Stamford, CT: Cengage Learning.

- David, M. W., (2004). Geotechnical Modelling. Page 300-304. Spon Press. Taylor & Francis Group. London and New York.
- Deboucha S, Hashim R, and Alwi A (2008). Engineering properties of stabilized tropical peat soils. Electron. J. Geotechn. Eng., 13E.
- Demir, A., Ornek, M., Laman, M., Yildiz, A., and Misir, G. (2009). Model Studies of Circular Founfations on Soft Soils. Geotechnics of Soft Soils- Focus on Ground Improvement- Karstunen & Leoni (eds). Taylor & Francis Group, London.
- Duraisamy, Y. and Huat , B. B.K. (2008). Method of Utilizing Cheap Land for Infrastructure Development, ICCBT.
- Duraisamy, Y., Huat, B.B.K. and Aziz, A. A. (2007). Engineering Properties and Compressibility Behavior of Tropical Peat Soil. American Journal of Applied Sciences, 4 (10): 768-773.
- Edil, T.B., and Dhowian, A.W., (1980). Consolidation Behaviour of Peats. Geotech. Testing J., 3(3): 105-114.
- Edil, T.B. (2003). Recent Advances in Geotechnical Characterization and Construction over Peats and Organic Soils. Proceeding 2<sup>nd</sup> International Conference on Advances in Soft Soil Engineering and Technology. Putrajaya, Kuala Lumpur, Universiti Putra Malaysia.
- Egawa, T., Nishimoto, S., and Tomisawa K. (2004). An Experimental Study on the Seismic Behaviour of Embankments on Peaty Soft Ground through Centrifuge Model Tests. August 1-6.13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada. Paper no. 36.
- Forestry Civil Engineering (2010). Floating Roads on Peat. Scottish Natural Heritage. A report to Wind Farm Developments. Scotland.
- Gofar, N., (2006). Determination of Coefficient of Rate of Horizontal Consolidation of Peat Soil.Laporan Projek Penyelidikan Fundamental Vot 75210.Fakulti of Civil Engineering, Universiti Teknologi Malaysia.
- Haan D.E.J., Kruse G. A. M., (2006). Characterisation and engineering properties of Dutch peats. Characterisation and Engineering Properties of Natural Soils. Proceedings of 2nd Int. Workshop, Singapore, Taylor & Francis, London, 2007, 3: 2101–2133.



- Hashim, R., and H., M. S. Islam,(2008a). A Model Study to Determine Engineering Properties of Peat Soil and Effect on Strength after Stabilisation. European Journal of Scientific Research, ISSN 1450-216X Vol.22 No.2 (2008), pp.205-215.
- Hashim, R. and Islam, S. (2008b). Properties of Stabilized Peat by Soil-Cement Column Method. EJGE , Vol. 13, Bund. J.
- Hanrahan, E. T. (1954). An Investigation of Some Physical Properties of Peat. Geotechnique, London, England, 4(2): 108-123.Cited in Gofar, N., (2006).
- Hanzawa H., Kishida T., Fukasawa T., and Asada H. (1994), A Case Study of the Application of Direct Shear and Cone Penetration Tests to Soil Investigation, Design and Quality Control for Peaty Soils. Soils and Foundations, 1994, Vol. 34, No. 4, pp. 13–22.
- Hendry, M.T., (2011). The Geomechanical Behaviour of Peat Foundations below Rail-Track Structure. Thesis Degree of Doctor of Philosophy in Civil Engineering, University of Saskatchewan, Saskatoon, Canada.
- Huat, B.B.K., Asadi,A., and Kazemian,S., (2009). Experimental Investigation on Geomechanical Properties of Tropical Organic Soils and Peat. American J. of Engineering and Applied Sciences, 184-188.
- Huat, B. B.K. (2004). Organic and Peat Soils Engineering . Universiti Putra Malaysia Press, Serdang, Malaysia, pp. 20-80.
- Huat, B.B.K., S. Kazemian, A. Prasad and M. Barghchi (2011). A State of Art Review of Peat: General Perspective. Int. J. Phys. Sci., 6: 1988 -1996.
- Ismail, M. A. (2010). Study on Properties of Peat Soil in Pontian, Johor. Degree Thesis. UTHM.
- Ismail, A. B. (1984). Characterization of Lowland Organic Soil in Peninsular Malaysia. Pro Workshop on Classification and Management of Peat in Malaysia. Ed. Pushprajah. Mal Soil Sc. So.
- Kalantari, B., and Huat B. B.K. (2009). Load- Bearing Capacity Improvement for Peat Soil. European Journal of Scientific Research. Vol. 32 No. 2 pp 252-259.
- Kazemian,S., Huat, B.B.K., Prasad,A., and Barghchi,M., (2011). A State Review of Peat: Geotechnical Engineering Perspective. International Journal of the Physical Sciences. Vol. 6 (8), pp. 1974-1981. ISSN 1992-1950@2011. Academic Journals.



Kirby, J. M. (1999). Soil Stress Measurement. Part II. J. Agric. Eng. Res. 73. 141 - 150

- Kolay, P.K., Sii, H. Y and Taib, S.N.L.(2011). Tropical Peat Soil Stabilization using Class F Pond Ash from Coal Fired Power Plant. International Journal of Civil and Environmental Engineering.3:2.
- Konstankiewicz, K., and Pytka, J., (1998). Investigations of Stress Deformation in Soil under Different Loading Processes using Mechatronics and Laser Techniques. In : Proceedings of the International Conference on Agricultural Engineering. Oslo, Norway. Pp 932-933.
- Kumasari, N., and Miglani, A. (2013). Plane Strain Deformation of a Poroelaastic Half-Space in Welded Contact with an Isotropic Elastic Half Space. International Journal of Sciences and Technology. Volume 2, No.1.
- Lea, N., D. and Browner, C. 0. (1963). Highway Design and Construction Over Peat Deposits in the Lower British Colombia. Highway Research Record, (7): 1-32. Cited in Gofar, N., (2006).
- Lehtonen, V., (2011). Instrumentation and Analysis of a Railway Embankment Failure Experiment. A general summary. Research reports of the Finnish Transport Agency.29/2011.
- Leong, E.C. and Chin, C.Y., (2000). Geotechnical characteristics of peaty soils in Southeast Asia. International Conference on Geotechnical and Geological Engineering, GeoEng 2000, Australia.
- Long, M., (2005). Review of Peat Strength, Peat Characterisation and Constitutive Modelling of Peat with Reference to Landslides. Studia Geotechnica et Mechanica, Vol. XXVII, No. 3-4.
- Masirin, I. (2007). Encapsulated Road Pavement On Difficult Ground Condition. PhD Thesis. UEL, London.
- Mangal, J.K., (1999). Partially–Drained Loading of Shallow Foundation on Sand. Phd Thesis.University of Oxford.
- Meguid, M.A., O. Saada, M.A. Nunes , J. Mattar, (2008). Physical modelling of tunnels in soft ground: A review. ELSEVIER , 185–198.
- Melling, L. (2009). Characteristic of Tropical Peatland and its Implication to Engineering Design. Proceedings of Engineering Seminar on Peat, 15-16 October . Sibu, Sarawak.



- Mesri, G, Ajlouni M (2007). Engineering properties of fibrous peats. J. Geotech. Geoenv. Eng., 133(7): 851-866.
- Mesri, G., Stark, T. D., Members, ASCE, Ajlouni,M.A., Student Member ASCE, and Chen, C.S., (1997). Secondary Compression of Peat with or without Surcharging. Journal of Geotechnical and Geoenvironmental Engineering. 411.
- Montanarella, L. R. (2006). The distribution of peatland in Europe. International Mire Conservation Group and International Peat Society, (p. 2).
- Munro, R., (2004). Dealing With Bearing Capacity Problems on Low Volume Roads Constructed on Peat. Northen Periphery.ROADEX II.p. 5- 29, 34 – 63.
- Munro, R., and MacCulloch, F., (2006). Managing Peat Related Problems on Low Volume Roads. ROADEX III Project.
- Noto, S. (1991). Peat engineering handbook. Civil Engineering Research Institute.
- Pytka, J. (2001). Load Effect upon Soil Stress and Deformation State in Structured and Disturbed Sandy Load for Two Tillage Treatments. Soil & Tillage Research 59, 13-25. ELSEVIER.
- Radforth, N.W., (1969), The Muskeg Engineering Handbook. National Research Council of Canada.
- Schuller, H., and Krameter, P. (2009). Construction of a Lighweight dam on Organic Soils – FE – Analyses and Practical Experiences. Geotechnics of Soft Soils- Focus on Ground Improvement – Karstunen & Leoni (eds). Taylor & Francis Group, London. ISBN 978-0-415-47591-4.
- Sekhar C., D. R. (2002). A critical Review on Idealization and Modeling for Interaction among Soil- Foundation Structure System. Elsevier , 1579 1594.
- Shahin, M. A., Jaksa, M. B., and Maier, H. R., (2000). Predicting the Settlement of Shallow Foundation on Cohesionless Soils using Back-Propagation Neural Networks. Research Report. Department of Civil & Environmental Engineering. University of Adelaide.
- Schmertmann, J. H. (1970). Static cone to compute static settlement over sand. J. Soil Mech. & Found. Div., ASCE, 96(SM3), 7302-1043.
- Staley, B. (2007). Best Available Science Report For Peat Settlement-prone Geological Hazard Areas . Exhibit B to the Ordinance.



- Tauuffic, R., D. Moeljani, D. Suhaimi (2002). The Bereng Bengkel Test Site. Embankments and creep problems. Final report.
- Terzaghi, C., (1925). Principles of Soil Mechanics: V-Physical Difference Between Sand and Clay. Vol. 95, No.23.Geotechnical Special Publication NO. 118Volume one. A History of Progress. Selected U.S. Papers in Geotechnical Engineering.ed. Marr,W.A.
- US Army Corps of Engineers (1995).Engineering and Design: Instrumentation of Embankment Dams and Leeves.Engineer Manual. EM1110-2-1908.
- Vincent, T.C.K., (2009). Sustainable Construction on Soft Soil in Sibu: A Practical Perspective. ESP. Sibu, Sarawak.
- Vinogradov, V.V., Yakovleva, T.G., Frolovsky, Y.K., and Zaitsev, A.A. (2006). Physical Modelling of Railway Embankments on Peat Foundations. Physical Modelling in Geotechnics- 6<sup>th</sup> ICPMG'06- Ng, Zhang & Wang (eds). Taylor & Francis Group, London.
- Whitlow, R. (2001). Basic Soil Mechanics. 4th Edition. England: Pearson Education Ltd.
- Wartman, J. (2006). Geotechnical Physical Modeling for Education: Learning Theory Approach. Journal of Professional Issues in Engineering Education and Practice @ ASCE.
- Witkowska, W., B., Bieganowski, A. and Rovdan, E., (2002). Water- Air Properties in Peat, Sand and Their Mixtures. 313-318. International Agrophysics.
- Wojciech, S., and Malinowska, E., (2006). Surcharging as a Method of Road Embankment Construction on Organic Soils. IAEG2006. Paper number 403. The Geological Society of London.
- Wong, L.S., Hashim, R., and Ali F. H. (2009). A Review on Hydraulic Conductivity and Compressibility of Peat. Journal of Applied Sciences 9 (18): 3207-3218. ISSN 1812-5654
- Zainorabidin, A., and Bakar I., (2003). Engineering Properties of in-situ and Modified Hemic Peat Soil in Western Johore. In Proceedings of 2nd International Conference on Advances in Soft Soil Engineering and Technology (pp. 252 - 261). Putra Jaya, Malaysia.



- Zainorabidin, A., and Wijeyesekera, D. C., (2007). Geotechnical Challenges with Malaysian Peat. Advances in Computing and Technology, The School of Computing and Technology 2<sup>nd</sup> Annual Conference. Proceedings of the AC&T, pp.252-261.University of East London. London.
- Zainorabidin, A. (2010). Static and Dynamic Characteristics of Peat with Macro and Micro Structure Perspective. Thesis PhD. University of East London.
- Zhang, L. M. (1999). Settlement patterns of soft soil foundations under embankments. Canadian Geotechnical Journal , 774 - 781.
- Zhou, Y. (2006). Soil Mechanics: Stress and Strain. Technical Report Documentation.

