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Understanding the Comparative Fit Index:
It's all about the base!!

Saskia van Laar, Centre for Educational Measurement at the University of Oslo (CEMO)
Johan Braeken, Centre for Educational Measurement at the University of Oslo (CEMO)

Despite the sensitivity of fit indices to various model and data characteristics in structural equation
modeling, these fit indices are used in a rigid binary fashion as a mere rule of thumb threshold value
in a search for model adequacy. Here, we address the behavior and interpretation of the popular
Comparative Fit Index (CFI) by stressing that its metric for model assessment is the amount of
misspecification in a baseline model and by further decomposition into its fundamental components:
sample size, number of variables and the degree of multivariate dependence in the data. Simulation
results show how these components influence the performance of CFI and its rule of thumb in
practice. We discuss the usefulness of additional qualifications when applying the CFI rule of thumb
and potential adjustments to its threshold value as a function of data characteristics. In conclusion,
we at a minimum recommend a dual reporting strategy to provide the necessary context and base for
meaningful interpretation and even more optimal, a move to using CFI as a real incremental fit index
intended to evaluate the relative effect size of cumulative theoretically motivated model restrictions
in terms of % reduction in misspecification as measured by the baseline model.

| d . exact fit. As part of the general trend to report multiple
ntroduction fit indices (e.g., Jackson et al., 2009; Ropovik, 2015),
McDonald and Ho (2002) point out that “it is sometimes
suggested that we should report a large number of these
indices, apparently because we do not know how to use
any of them” (p. 72). This statement highlights a
common concern about current model evaluation
practices that are characterized as thoughtless routine
applications of binary (good/bad) rules of thumb for fit
indices.

The evaluation of model fit remains a crucial yet
controversial topic in the application of structural
equation models. In line with concerns that a focus on
mere statistical significance testing would lead to
disregarding or changing relevant and theoretical sound
models without proper justification for it (Bentler &
Bonett, 1980), a whole range of alternative goodness-of-
fit indices is currently available for model evaluation
beyond the traditional chisquare significance test of
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Different cut-off criteria or rules of thumb have
been proposed over time (e.g., Bentler & Bonett, 1980;
Hu & Bentler, 1999; Schermelleh-Engel et al., 2003). In
particular, Hu and Bentler’s (1999) suggested criteria
gained huge popularity. Yet, Hu and Bentler (1999)
themselves stressed that “it is difficult to designate a
specific cutoff value for each fit index because it does
not equally well with various conditions” (p. 27). Their
underlying simulation study was based on only a few
conditions with either a simple or a complex structure
with fixed values for a three-factor confirmatory factor
analysis model with 15 manifest variables. Their note of
caution resonates well with more recent findings in the
literature where simulation studies have illustrated the
sensitivity of fit indices and their rules of thumb to
various data and model features such as sample size,
model size and type, strength of relations within the
measurement model, and violations of distributional
assumptions (for a review, see e.g., Niemand & Mai,
2018). Nevertheless, people have been universally
applying the rules of thumb regardless of their own
specific context, study design, data, or model. The main
point of concern is exactly this thoughtless default way
of applying rules of thumb (Marsh et al.,, 2004). One
reason given for abiding by such a thoughtless rule-
based approach is that “researchers need them because
it is unclear how one can reach qualitative judgements in
their absence” (Lai & Green, 2016, p. 221).

Opverall, one major point of concern with respect to
the application of SEM in practice is the lack of
deliberate decision making in all parts of the process
(McDonald & Ho, 2002). In order to make more
informed decisions with respect to the use of fit indices
it is important to know how these fit indices work. Yet
what ‘good’ fit means and how fit indices map onto this
meaning is not well understood (Lai & Green, 2016).
Hence, if we would desire not mere mindless rule-
following but more deliberate practice when assessing
model fit, we need to better clarify what type of fit each
of the different indices stand for and to provide a better
insight in their inner workings to understand why fit
indices behave like they do.

Here, we will try to make one step into that
direction by focusing on the Comparative Fit Index
(CFI) (Bentler, 1990), the most-used statistic among the
class of comparative goodness-of-fit indices (for reviews
covering time periods in the interval 1995-2013, see e.g.,
Jackson et al., 2009; McDonald & Ho, 2002; Ropovik,
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2015). A decomposition in the main components that
play a role in the CFI’s baseline comparison allows to
clarify CFI’s meaning and behavior, explain some of the
mixed results in the SEM simulation literature regarding
its sensitivity to model and data characteristics, and
highlight the (limited) generalizability of common rules
of thumb for CFI and factor analysis. We hope that this
exposition can help guide the decision-making process
in practice and lead to smarter, more deliberate
inferences when interpreting the CFI for model fit
evaluation.

A Decomposition of the Comparative
Fit Index

In contrast to absolute fit or parsimony fit indices
(e.g., Brown, 2015), the class of comparative fit indices
promotes comparison in fit between a model of interest
and a more restricted baseline model. This fit assessment
strategy has its foundation with Bentler and Bonett
(1980) and involves a continuum of models from the
worst fitting null model to the perfect fitting or saturated
model. The role of the comparative fit indices is to assess
where the model of interest is located within this
continuum.

Within this class, Bentler’s (1990) Comparative Fit
Index (CFI) is an “index to summarize the relative
reduction in noncentrality parameter of two nested
models” (p. 238). The noncentrality parameter A,, of a
model m can be seen as an indicator of model
misspecification as it quantifies the amount of deviation
between the estimated x? value and the expected X2
value (i.e., dfy,, the model’s degtee of freedom) for the
sample under the assumption that the model is correct:
Am = X3, — df,,,. The value of CFI is then based on the
ratio of misspecification of both models:

_ Am szn_dfm
CFlgnpy = 1 -5 =1~ (M)

where the subscript indicates whether the statistics are
of the model of interest m or the baseline model b. The
one-minus-noncentrality-ratio is there to turn it from a
relative misspecification measure into a relative
goodness-of-fit measure. Note that the CFI is usually
truncated to the [0, 1] interval, although technically
values higher than one can arise if the model of interest
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fits better in a noncentrality sense than the saturated
model (e.g., perfect fit with less than full parameters) and
values below zero can arise if the model of interest fits
worse than the baseline model.

Null baseline. A so-called null model in which all
observed variables are uncorrelated has taken off as the
default baseline model for popular applications of CFI.
Following the idea of Bentler and Bonett (1980), the
CFl(m 0y can be referred to as an ‘index of information
gained’ by the model of interest over the more restrictive
null model. Hence, conceptually it is similar to an R-
square, a relative reduction in ‘unexplained’ variance,
whereas a CFl(y, ) could then be seen as a relative
reduction in ‘unexplained’ variance-covariance. From
here on we will drop the subscripts referring to the
models being compared, if we talk about the CFI with
the null model as default baseline.

Rules of thumb. For determining whether a model
shows adequate fit according to the CFI, different rules
of thumb have been proposed. Early on up to the late
90’s, values of at least .90 for comparative fit indices
were assumed to indicate decent model fit (for a review,
see McDonald & Ho, 2002). This rule of thumb has been
mostly motivated based on experience by expert users:
At CFI origins, “In our experience, models with overall
fit indices of less than .90 can usually be improved
substantially” (Bentler & Bonett, 1980, p. 600) or more
recently, “In my experience, models with .90+ values for
the CFI. .. can be quite acceptable models” (Little, 2013,
p. 116). The currently most common CFI standard is
based on the influential simulation study by Hu and
Bentler (1999): “the results suggest that, for the ML
method, a cutoff value close to .95 for ... CFI ... are
needed before we can conclude that there is a relatively
good fit between the hypothesized model and the
observed data” (p. 1). As indicated earlier in the
introduction, even about the core rule of thumb, stating
CFI = .95 for good model fit, there have been many
cautionary notes and simulation studies have illustrated
that its applicability varies depending on data and model
characteristics.

If we would desire more deliberate practice when
assessing model fit using CFI values, then knowing the
inner workings of this measure is an essential
requirement. So how does this CFI really work?
Additionally, can knowledge of its inner workings indeed
shed some light on the performance of the CFI rules of
thumb under various data characteristics?

Published by ScholarWorks@UMass Amherst, 2021
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CFI as a relative measure with a variable metric

space

Equation 1 clarifies that the CFI is a relative
measure with its denominator set by the noncentrality of
the baseline model. Now suppose there is a line that
represents the CFI metric. The metric space endpoints
are set by the null and saturated model. The length of
the line is determined by the noncentrality of the null
model, as the noncentrality for the saturated model is
zero. Given the formulation of CFI, this metric space
serves as standard for comparison. Conceptually, the
length of the line, the CFI metric space, has an influence
on the behavior of CFI. Having more space, will allow
for a finer grained differentiation. Having less space,
makes the CFI to become less useful. The rationale is
that in general it is harder to differentiate between
models as they are becoming more similar. When placing
a model of interest in the metric space, it will always be
closer related to both the null and the saturated model
as the line becomes shorter. As a consequence, a
comparison in terms of CFI values is no longer based on
the same standard when the denominator, the baseline
noncentrality, is different among the cases being
compared.

As an example to drive this idea home, consider the
following two cases for which the size of the CFI metric
space is different. The baseline noncentrality in the first
case is Ag = 25. Within this space two models with
slightly different noncentrality values can be placed.
Overall their values only differ by 2 units, with 4; = 1
and A, = 3 being the noncentrality value of the first and
second model, respectively. Translating this to CFI
values, this results in values of CFl( gy = .96 and CFI; o
=.88. Now consider the second case in which there is a
shorter metric space with baseline noncentrality g = 5.
Here as well, we have two models that only differ by 2
noncentrality units, now with 44 = .2 and 1, = 2.2.
However, translating this to CFI interval, values of
CFl1,0y = .96 and CFl(z ) = .56 are obtained. This
example demonstrates the impact of widely differing
metric spaces as defined by the baseline noncentrality.
The difference in CFI-fit between the two models is
huge between the two cases whereas the difference in
terms of absolute misspecification as expressed by the
noncentrality index is exactly the same. Sampling
variability can also be expected to have a huge impact in
the second case, a small difference in noncentrality value
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can lead to widely differing CFI values when baseline
noncentrality is small. Thus, the main conclusion is that
we cannot interpret a CFl-value of a model or
differences in CFI between models without considering
the fit of the CFI baseline model for the same sample
data. This is similar advice as with any ratio or risk
measure, you cannot ignore the numerator and
denominator when interpreting a percent; Or more
colloquially speaking, whereas a small percent of
everything is a lot, a large percent of nothing, is still
nothing.

Null model baseline noncentrality as key factor

For the default CFI with a null model as baseline,
the null model noncentrality 4q is the key to CFI
behavior and interpretation as it sets the metric space
that serves as standard for comparison. With I being the
ML discrepancy fit function (e.g., Bollen, 1989) between

the observed and null-model-implied covariance

matrices S and Z, the null model noncentrality can be
rewritten and simplified as follows to identify its key
components:

Ao = max(y3 — dfy, 0)
= max(F(S,Zp)(n — 1) — dfy, 0) )
= max(—log|R|(n - 1) —p(p — 1)/2, 0)

where R is the observed correlation matrix, n the sample
size, and p the number of manifest variables (for the
derivation, see Appendix A).

Equation 2 clarifies that the CFI metric space is a
function of correlation (i.e., generalized variance as
expressed by the determinant of the data correlation
matrix), sample size, and number of variables. Notice
that all three core components of the null model baseline
noncentrality are completely data dependent. In an ideal
situation with a lot of correlation in your data, large
sample sizes and not too many variables, CFI would
allow you to make a fine-grained differentiation between
models in terms of relative noncentrality. These ideal
conditions are quite in line with common sense
guidelines for the application of SEM. There are some
more general intuitions that can be derived a priori from
this decomposition that can be linked to findings in the
SEM model fit literature.

https://scholarworks.umass.edu/pare/vol26/iss1/26
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Sample size n. Originally, comparative fit indices
were conceptualized as ‘indices of information gained’
and should be independent of sample size (Bentler &
Bonett, 1980). However, previous studies (e.g., Heene et
al., 2011; Hu & Bentler, 1999; Matrsh et al., 2004; Shi et
al., 2019) as well as the decomposition show that CFI is
clearly dependent on sample size. In this case, with
higher sample sizes resulting in higher baseline
noncentrality values and better expected performance.

Number of variables p. In the literature (e.g., Shi et al.,
2019) a general trend has been reported that more
variables complicate the use of CFI and its default rule
of thumb. At first sight the decomposition supports this
notion as more variables leads to lower baseline
noncentrality making model differentiation more
difficult. However there is a confounding factor that is
easily forgotten, the determinant |R| is also a function of
the number of variables p, and with more variables more
non-zero correlations can in principle occur in the
correlation matrix R. Hence, the number of variables
only has a clear negative effect on CFLif p(p — 1) /2 the
degrees of freedom of the null model outweighs the
contribution by —log|R|(n — 1).

In the extreme theoretical situation in which only
additional uncorrelated variables are added this will be
always the case, as this has no impact on the latter factor.
Yet the more correlation the added variables contribute
the faster the negative effect of the number of variables
disappears (i.e., the logdeterminant factor increases
nonlinearly). Hence, it should thus not be surprising that
Shi et al. (2019) found that, for correctly specified
models, the effect of p on performance of CFI’s rule of
thumb was dependent on the size of the factor loadings
they used. Hence, CFI also follows the general principle
that having more signal in the data facilitates matters,
whereas adding more noise further confounds matters.

Data correlation R. As already indicated in the
previous paragraph, the more the data is unlike the null
model, the higher the baseline noncentrality and the
easier CFI can differentiate between models. The study
by Heene et al. (2011) also showed that performance of
CFDI’s rule of thumb is dependent on used factor
loadings. It should also not be surprising that
performance issues became more severe as the sample
size decreased (Heene et al, 2011), as there is a
synergistic interaction between n and —log|R| as
reflected by the prominent role of their product in the
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decomposition. Given the formulation, a decrease in
both components will provide the smallest metric space,
providing worse conditions for model differentiation.

Now that we have identified the core components
that play an integral part in the baseline comparison for
CFI we will first zoom in further on CFI in relation to
different data characteristics, by assessing the impact of
sampling variability on the proposed metric space
principle and the extent to which this relates to the
general applicability of the common rule of thumb for
CFI. Secondly, we will follow up on an additional
qualification on when the general CFI rule of thumb can
be used. We end the paper with a more general
discussion on implications of these results and with
recommendations for the use of CFI and its common
rule of thumb in practice.

Sampling variability & CFl

At population level, CFI is determined by the
population model noncentrality Ag)and the population
null baseline noncentrality /182). When the estimated
model is the true population model, /15,21) shows perfect

fit (/1%) = 0) and consequently the population CFI will
always equal one. This means there is only systematic

variation in A&, caused b iation in th

o s y variation in the components
that make up the CFI metric space. Even though this
does not have a direct influence on the CFI value at
population level, it will set the basis for sample
performance of CFI: a larger null baseline noncentrality

b . . .
/18) provides a more solid basis for model
differentiation. In practice, the two noncentralities at

sample level Ag,sl) and /185) will be prone to sampling
variability and potentially also sample bias. Depending
on the extent that both noncentralities are somewhat
differently affected, this could lead to differences in
results compared to our expectations.

Monte Carlo Simulation Design

We considered a simple one-factor data-generating
population model with equal factor loadings implying
equal correlations between all items. The focus was on
the use of correctly specified models, as it seems that the
goal of most people is not to falsify their model, but to
find an adequate model as starting point for further

Published by ScholarWorks@UMass Amherst, 2021
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analysis (e.g., Ropovik, 2015). Given this focus on
adequate model fit, it would be good to know whether
CFD’s rule of thumb can meet its purpose in the ideal
case of a correctly specified model.

Experimental Factors. The conditions studied are
related to the three components of the baseline
noncentrality provided by the decomposition of CFI:
sample size m, number of variables p, and data
correlation R.

First, sample size is varied (n € {100, 200, 500,
1000}). More information is present with increasing
sample size, such that there is less uncertainty in making
inferences about model fit. Minimum sample size
requirements around 150-200 have been proposed for
SEM (e.g., Barrett, 2007; Boomsma, 1985; Kenny, 2015;
Muthén & Muthén, 2002), yet in practice about 1 in 5
studies uses sample sizes below 200 (MacCallum &
Austin, 2000) and around 8-18% uses sample sizes
below 100 (Jackson et al., 2009).

Second, the number of variables is varied (p € {4,
8, 12, 24}), as previous research has shown that the
number of variables does have an influence on model
evaluation (e.g., Moshagen, 2012; Shi et al., 2019; Shi et
al.,, 2018).

Third, the degree of data correlation as expressed
by |R| is varied through the chosen data-generating
population model. The use of the one factor
homogeneous factor loading model as population model
allows to make this determinant a direct function of one
correlation number 7, where |[R| = [1 + (p — Dr][1 —
1% (e.g., Graybill, 1983) with r € {.1, .2, .3, .5, .7, .9}.
According to Brown (2015), in practice standardized
factor loadings of at least .3 or .4 are considered the
norm for a meaningful interpretation, which
corresponds in our simulation setup to values of 7 = .09
and r = .16, respectively. Hair et al. (2000) are stricter
and require factor loadings to be above .5 or even .7 in
the context of validation studies, which corresponds to
values of ¥ = .25 and r = 49.

Experimental  Design. These three experimental
factors are combined into a full factorial simulation
design leading to n(4) X p(4) X r(6) = 96 experimental
conditions. Within each condition, 1000 sample
covariance matrices S were drawn from a Wishart
distribution, S ~ W(X, df), where X is the model’s
population covariance matrix and df the model’s degrees
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of freedom. The model was then refitted to each of the
generated samples. The simulation and analyses were
conducted in R (R Core Team, 2020) through custom
scripts in combination with the lavaan package for R
(Rosseel, 2012).

Outcome measures. For each sample, the sample non-
centrality of the baseline model and of the fitted model
— being the numerator and denominator of the CFI,
respectively —are computed. The CFI of the fitted model
is assessed and used to decide whether or not the fitted
model is judged to be of good fit according to the .95
rule of thumb (i.e., CFI < .95 leads to rejection of the
model).

Monte Carlo Simulation Results

Full results of the 96 experimental conditions of the
Monte Carlo simulation study are reported in table-

Page 6

format in Appendix B. In what follows, we will report
on general trends for the respective outcome measures
and zoom into specific conditions when relevant.

Null - baseline  noncentrality /185). Given that
noncentrality parameters are shifted-versions of the
chisquare statistic (ie., A9 = x4 — dfy), the same
sampling distributions would apply under asymptotical
theory given regularity conditions (e.g., Steiger et al.,
1985), implying a central or noncentral chisquare
distribution depending on whether or not the model is
correctly specified. Yet note that for the null baseline
model it has been found that a noncentral chisquare
distribution does not properly describe its sampling
distribution beyond its central tendency (Curran et al.,
2002). However, the sample null baseline noncentrality
does follow nicely the population trends (see Table 1)
that are function of the earlier identified three

Table 1. Eta square (n?) effect size patterns for the main components of the CFI metric space across different

outcome measures in the main simulation study.

n?
term AZ A8 A8 cF1 < .95
P 124 134 276 010 .025
. 268 .265 .000 .129 .364
n 446 i 33 (s 0
pxT 135 .134 000 .011 .028
pxn 081 .080 .075 .022 .068
rxn 163 .160 .000 .081 .227

pxrxmn .082 .081 .000 .029 .076

total 1 .999 .384 .358 1

Note. /182) = population value of the null baseline noncentrality; /1(()5) = sample value of the null baseline
noncentrality; /1,(,,5;): sample noncentrality for the estimated true model; CFI = sample CFI value for the

estimated true model (i.e., CFI = /15,51) / /1(5); <.95 = model rejection rate or percentage of replications where

the sample CFI value for the estimated true model is below .95. 72's are based on the type-I11 sum of squares
in a full factorial ANOVA.

https://scholarworks.umass.edu/pare/vol26/iss1/26
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components of the metric space. Where an increase in
either of the components has a positive effect on the
baseline noncentrality. Notice that the sampling
variation unaccounted for by the design factors is almost

non-existing (i.e., 1 = Nippq = -001).

Comparing the theoretically expected /182) with the
sample average /Tgs) (see Table B1) indicates that a small

upward sampling bias for /1_85) is present. This bias tends
to become more severe with additional variables p. The
relative effect of this upwards bias is worse for the lower
sample size conditions, but has less of an impact with
increased correlation 1 as the corresponding increase in

the absolute value of /1_85) dwarfs the bias. One
consequence of the upward bias is that all small-sample-
with-limited-correlation conditions that had a similarly
restricted non-optimal baseline at population level, now
at sample level are ordered as a function of the number
of variables p.

Model noncentrality /1,(,,5;). Under asymptotical theory
given regularity conditions (e.g., Steiger et al., 1985), the
X2, fit statistic when the true model is estimated, is
expected to follow a central chisquare sampling
distribution with mean 4f Hence, the sample

noncentrality of the model ):5151) should tend to its
expected value 0.

However, some upward sampling bias in /T,(,i) is
present for almost all simulation conditions, although in
absolute terms this is smaller than for /T(()S). The true
model’s noncentrality (and hence its sampling bias) is
most affected by the number of variables p (see Table
1), and in contrast to its prominent role in the null model
unaffected by the amount of correlation r. The most
severe bias is observed in the low-sample-size-many-
variables conditions (p = 24, n = 100). Overall,
increasing sample size seemed to reduce the biasing
effect of the additional variables. The finding of large
sampling bias as a function of increasing number of
manifest variables and moderated by sample size
corresponds to earlier findings in the literature (e.g.,
Moshagen, 2012). Notice that the sampling variation
unaccounted for by the design factors (i.e., 1 — Néppq =
.671) is also much higher for the model noncentrality
than for the null baseline noncentrality (i.e., 1 — NZ)pq =
.001).

Published by ScholarWorks@UMass Amherst, 2021
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Comparative Fit Index (CFI). The asymptotically-derived
sampling distribution of the CFI has not yet been
established in the literature although logically it would
conform to the sampling distribution of a ratio of two
dependent shifted (non)central chisquare distributions,
with the caveat that even a shifted noncentral chisquare
is not fully applicable for the null baseline model. What
we identified so far in the simulation study is that

. S .
sampling affects the numerator lgn)and denominator

A% of the CFI in a slightly different fashion. The
resulting effect patterns on CFI in our simulation design
(see Table 1) reflect this duality and lead to a mix of both
A-patterns, with the most central role for correlation r
followed by sample size n, whereas the effect of the
number of variables p has become negligible.

As we looked at CFI values for estimated true
models, all observed CFI values should be indicative of
the kind of sample values that can be expected to express
good model fit. The 5% CFI quantile shows that the
expected range of realistic CFI values actually varies
greatly and covers a broad range across conditions (see
Table B1). This difference becomes most prominent in
those conditions where low sample size co-occurs with
low correlation. In the most extreme situation (i.e., n =
100, p = 24, r = .1), 5% of the replications even have
CFI values below or equal to .57. As reference to get the
picture of the whole range, 16% of replications in this
condition still have CFI values above or equal to .95. At
the same time, for some conditions (e.g., but not
exclusively, the conditions where correlation 7 = .9) the
range of realistic CFI values is much more limited as the
5% quantile was already as high as .99 or even 1.

Rule of thumb CFI = .95. The common rule of thumb
for CFI states that CFI should be at least .95 to speak of
acceptable goodness of fit, and otherwise if CFI < .95
one would reject the model. Given that the true model
is fitted each time, the ideal outcome is of course a
rejection rate of 0%. The results in Table B1 however,
show that this is not accurate for all conditions. The
median rejection rate is 0% but the average is 8% with a
maximum of 84%. Of our 96 conditions, 43 had a non-
zero rejection rate and 27 a rejection rate larger than 5%.

These results follow automatically from the
observed ranges of CFI values for a true model not being
consistent with the range implied by the rule of thumb
[.95, 1]. The much wider or at times more narrower
range of observed CFI for the estimated true model
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would imply that the rule of thumb should/could in fact
be made more lenient or strict depending on the
situation. A point to which we will return in the
discussion.

Metric space principle CFI |/185). In line with our
starting ‘metric space’ principle that the baseline
determines differentiation power of CFI, the effect size
patterns (see Table 1) for the model rejection rates given
the rule of thumb follow the trends for the (sample and
population) null baseline noncentrality yet with a
diminished role of the number of variables p. Hence,
increasing the metric space by increasing CFI’s
denominator through increasing either of the three
design components has a positive effect on the size of

/1(()5), the size and range of CFI values, and the resulting
model rejection rates according to the common rule of
thumb (see also Table B1 for a detailed overview of
results).

The observed diminished role of p is due to the set
of conditions where low sample sizes are combined with
low correlation in the data (e, n =100 & r = 50rn =
200 & r = .2) where a larger number of variables p leads
to higher (see the excerpted conditions in Table 2)
instead of the generally expected lower rejection rates.
Sampling variability and bias in those conditions destroy
the regularity of the metric space principle. Focusing on
one of the low-sample-size-low-correlation conditions,
Figure 1 shows an example of how sampling variation in

/1,(,;? relates to sampling vatiation in Ags) as a function of
the number of variables p. The horizontal and vertical
line in the figure respectively show the average value of

/15,51) and /185) within a specific condition. Given the
definition of CFI (see Equation 1), the diagonal line is

.. . . .. S
the critical line representing the combination of /15,1)

values and /1(()5) values that result in CFI = .95. When
replications are positioned in the area above this line, the
corresponding CFI value will always be below .95,
leading to rejection of the model. In other words, the

S) . o .
values of Agn) in these situations are becoming too large

d to their AJ i d
compared to their A;° counterpart to acquire goo
model fit according to CFL. While replications
positioned on or below the diagonal line correspond to
good model fit according to the .95 rule of thumb for
CFL
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s s . .
For both ’11(71) and /18 ), their mean values increase
with additional variables p as seen in their respective

. o . (S
marginal distributions. However, the trend in Aﬁn) seems
. .o (S . .
to be dominant over the trend in /1(() ), as with additional
. s . .
variables p, Agn) results in more extreme values relative

to the /1(()5) counterparts as seen in the heavier right tail
in the distribution of the former. As a consequence,
more replications are wrongly classified as showing
inadequate model fit. In these specific conditions,
problems in CFI performance are due to the strong

. - o s
sampling variation and bias in the numerator Aﬁn) that
counteracts the positive effect of increased average size

of the metric space reflected by the denominator /1(()5).

In the majority of the cases, this bias-interference is
not applicable and the general metric-space principle
works out despite sampling variation and bias in CFI’s
numerator and denominator. Figure 2 serves as an
illustration of this principle. Whereas the distribution of

s . . . .
’11(71) remains relatively constant across increasing
. o S .
correlation, the distribution of /1(()) takes big steps

upwards, dwarfing any sampling bias in /1,(,,5;). The
increase in correlation leads to a big increase in null
baseline noncentrality which goes together with a
decrease in the rejection rates of the CFI for the
correctly specified model. The same results hold with
increasing sample size N, whereas for increasing number
of variables p it is less demarcated due to the opposing

bias in Ag).

Don’t interpret CFl depending on
RMSEA of null model?

As indicated before, additional specifications on the use
of the general rule of thumb for CFI have been around.
For example, one lesser known qualification advocated
for on a popular web resources on SEM fit indices
recommends that “CFI should not be computed if the
RMSEA of the null model is less than .158 or otherwise
one will obtain too small a value of the CFI” (Kenny,
2015). However, formal support for  this
recommendation was not given. Hence, we used the
results from the main simulation study to follow up on
the usefulness of this specific qualification in practice.
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We expected that if this rule of thumb works, cases
where RMSEA, < .158 co-occur with a CFI value below
the commonly adopted .95 threshold more often than
not for models that fit.

As an initial rough effectiveness indicator of this
rule of thumb we cross-classified all replications for each
condition from the main simulation study based on
whether the sample RMSEA, and CFI values were
below or above their respective thresholds (see Table 3).
On average the incidence of RMSEA, < .158 amounted
to 31% of the cases. Given RMSEA, < .158, the
probability for also obtaining a CFI value below .95 was
on average 17.5% with a range across conditions
between 0 and 84.2%. The reason for this wide range
can be clearly illustrated by translating the RMSEA, <
158 into a corresponding required value for the null
baseline noncentrality 13>8 = RMSEAZX (n — 1) x df,.
This threshold null baseline noncentrality 13> value
indeed only depends on two design factors — the number
of variables p (N? = .482), sample size n (n? = .225) —,
and their interaction n X p (n? = .293), but not on the
third factor data correlation r (i.e., % = .000 for r, p X
r, T Xn,&p X1 Xn). As one example, Table 4 clearly
illustrates the ignorance of this RMSEA, < .158
threshold for the conditions where sample size n = 200
and dfy = 28 (i.e., number of variables p = 8). Note that
these results generalize across the other conditions. The
RMSEA, < .158 specification wrongly assumes a null
baseline noncentrality Ag>% that remains constant
regardless of the correlation 1 in the data, whereas CFI
and its denominator the null baseline noncentrality A
are highly sensitive to exactly this correlation.

In the end, the overall negative predictive value of
the .158 rule of thumb appears to be not too reliable (i.e.,
Pr(CFI < .95|RMSEA, < .158)). Hence, it varies highly
whether we can indeed expect too low CFI values given
a correctly specified model when RMSEA, < .158. On
the other hand, the correct decision of acceptable fit (i.e.,
CFI = .95) is taken in on average 95.8% (range across
conditions = 52.9-100%) of the cases that RMSEA, =
.158. Hence, the overall positive predictive value (i.e.,
Pr(CF1 = 95|RMSEA, = .158)) of the .158 rule of
thumb is more promising. The reason for this difference
is that for specific settings the null baseline noncentrality
corresponding to the RMSEA, = .158 threshold is
unreachable. This is illustrated in the latter columns of
Table 4, where for this particular case of n = 200 and p
= 8, RMSEA, values below .158 can only occur in

https://scholarworks.umass.edu/pare/vol26/iss1/26
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conditions with correlations r below .3 (ie., Ags) <
23°8). Note that the specific breakdown point does vary
depending on sample size n and number of variables p.
In the end, this leads exactly to flagging down some of
the conditions in which the CFI baseline for comparison
is rather too small for effective model differentiation.

Table 3. Cross-classification of all replications in the
main simulation study based on their RMSEA, and
CFTI value relative to the corresponding thresholds.

RMSEAy

CFI < .158 > .158

> .95 24.91% |0-100%] 67.17% [0-100%)]

< .95 6.29% [0-84.2%] 1.64% [0-21.1%)]

Note. RMSEA, = RMSEA values for the null baseline
model; CFI = CFI values for the estimated true
model. For the proposed rule of thumb to work,
RMSEA, values below .158 ought to co-occur with
CFI values below .95. Each cell in the cross-
classification contains the overall average percentage
and range of average percentages of replications
across conditions in the main simulation study that is
consistent with its thresholds-requirements.

In sum, despite its relatively good average positive
predictive value, the proposed .158 rule of thumb does
not fully meet its purpose. In its current form it is too
general and ignores the role of one of the key
components of CFI (cf. data correlation). In light of the
wide range of values and variation in performance, it
does not seem advisable to utilize a fixed general
RMSEA threshold as the conclusive answer for
assessing whether or not to apply the CFI for fit
assessment.

Discussion

If we would desire not mere mindless binary rule-
following but more deliberate practice when assessing
model fit, we need to better clarify what type of fit each
of the different indices stand for and to provide a better
insight in their inner workings to understand why fit

12
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Table 4. Attainability of the threshold: Sensitivity of the null baseline noncentrality and CFI to data
correlation 7 in relation to the constant RMSEA, rule of thumb and corresponding threshold in terms of the

null baseline noncentrality A2,

(S)

threshold Ao CFI
T )\EE)
RMSEA, )% M MIN MAX M MIN MAX

1 158 139.099 13 43 0 106 95 D9 1.00
2 .158 139.099 109 139 53 265 98 78 1.00
3 158 139.099 245 275 152 453 .99 92 1.00
5 .158 139.099 642 667 397 970 1.00 .96 1.00
T .158 139.099 1303 1324 1019 1655 1.00 .98 1.00
9 158 139.099 2798 2832 2409 3326 1.00 .99 1.00

Note. The results stem from the main simulation study and show an example for the conditions where the
sample size n = 200 and the number of variables p = 8. RMSEA, = RMSEA threshold of the null baseline

model; /1'0158 = .158 threshold for RMSEA, translated in terms of null baseline noncentrality; /182) =

population value of the null baseline noncentrality; /1(()5) = sample value of the null baseline noncentrality; CFI

= CFI value for the estimated true model.

indices behave like they do. In this study, we started with
such endeavour for the Comparative Fit Index.

CF1 is a relative model fit measure expressed as a ratio
of the noncentrality of the model of interest to that of a
baseline comparison model. In essence this implies that
the CFI is in fact a standardized statistic where the
standard of comparison is typically provided by the
noncentrality of the null model that is by default chosen
as comparison model. This does mean that one CFI is
not the other because the baseline standard, the
noncentrality of the null model, is determined by data
dimensions (l.e., n X p) and amount of multivariate
dependence in the data (i.e., |R[). This is important as
the implications of absolute value judgement of good fit
according to CFI might not correspond to the relative
improvement CFI stands for. With a small CFI metric
space, low relative improvement does not necessarily
imply that a model is not good in terms of absolute fit,
while a high relative fit given a large metric space can still
be associated with a large amount of absolute
misspecification. The broader the baseline, the less strict
the CFI = .95 rule of thumb becomes as more absolute
misspecification is allowed for a model that is considered

Published by ScholarWorks@UMass Amherst, 2021

to adequately fit. This natural feature of a
standardized/relative measure such as CFI, brings
Moshagen and Auerswald (2018) to caution strongly
against CFI’s use for evaluating absolute fit of a single
model.

However, such decontextualized assessment of fit
of a single model is unfortunately quite commonplace in
practice with the default application of the binary rule of
thumb: CFI = .95 means “good fit” whatever that might
mean. If we formalize the latter as correctly identifying
the true model as a good fitting model, with a binary
decision rule that works at least 95% of the time, our
simulation results show that the rule of thumb needs to
be adjusted based on data characteristics or only be
applied under certain qualifications.

Qualifications for use of CELs rule of thumb. Our results
illustrate the theoretically derived principle that a wider
basis for model differentiation is provided by increasing
the three core components of the null baseline
noncentrality — sample size n, number of variables p,
and multivariate dependence as reflected by |R|, the
determinant of the data correlation matrix. This results

13
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in high rates of qualifying the correctly specified model
as having good fit in high signal to noise conditions, that
is high correlation with added high sample size
regardless of the number of variables. In contrast, in low
signal to noise conditions, that is low sample size and
low correlation, the CFI = .95 rule was too strict and an
increase of the number of variables made matters even
wortse. In the latter conditions, the null baseline model is
already quite close in absolute fit to the correctly
specified model, hence it is less likely to observe a huge
relative change of 95% of that small distance even for a
correctly specified model. Consequently, a word of
caution for the current binary use of the CFI = .95 rule
of thumb in such conditions is in order. Sample sizes
below 200 are unfortunately not uncommon (Jackson et
al., 2009; MacCallum & Austin, 2000) and the prevailing
pragmatic idea that standardized factor loadings of .3 (r
= .09) and .4 (r = .16) are sufficient for meaningful
interpretation (Brown, 2015) seems too optimistic.

The CFI = .95 rule of thumb would approximately
work in this 95% correct sense as a function of sample
size and correlation: for n = 1000, a correlation of at
least v = .1, for n = 500, a correlation of at least v = .2
is required, for n = 200 a correlation of at least 7 = .3,
and for n = 100 a correlation of at least 7 = .5. Based on
our simulation results, a conjecture could be put forward

that a baseline noncentrality of /185) > 1400 provides a
sufficient broad metric space for fine-grained model
differentiation using the CFI (e.g., conditions in line with
this requirement had very narrow CFI range for the true
model and far above the .95 rule of thumb). This is a
conservative guideline as things do not necessarily look
bad in all smaller baseline conditions. Although the
general CFI metric-space principle holds, the specific
values suggested here are of course based on the limited
set of levels of factors considered in the small simulation
study, and would be somewhat adjusted with availability
of results for more factor levels (e.g., extra sample size
conditions) or even other design factors such as the data-
generating model. Yet, the general identified patterns
related to the CFI baseline are mostly data driven and
core points and non-value specific recommendations
can in that sense be trusted to generalize quite well.

We already mentioned that these type of additional
qualifications, on when the CFI rule of thumb can be
used, are not something new. Specifically, we looked into
the recommendation not to use CFI if the RMSEA of
the null model is less than .158 (Kenny, 2015). Even

https://scholarworks.umass.edu/pare/vol26/iss1/26
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though this qualification does attempt to provide a more
nuanced reporting of CFI, the simulation results showed
that in light of its wide variation in performance across
conditions, it is not advisable to use this specific
qualification without careful deliberation. Yet, the
underlying idea does contain merit as it essentially
intends to filter out cases where there is a lack of
covariance and high levels of noise in the data. Perhaps,
we should not even consider SEM in such cases in the
tirst place (e.g., Barrett, 2007) or at the minimum realize
that it’s not reasonable to expect a large relative fit
difference from a null baseline model that itself is already
very closely fitting to the data in an absolute parsimony
fit sense.

Adjusting CELs rule of thumb. Alternatively, instead of
including additional qualifications on when to use CFI’s
rule of thumb, we could also adjust the rule of thumb
depending on data characteristics. The general pattern of
results shows that the CFI threshold should even
become stricter in the more optimal situations (high
correlation 7, high sample size n: CFI 5% quantiles as
high as .99), while it needs to be reduced considerably in
the less optimal situations (low correlation 1, low sample
size n). The latter could even result in setting a threshold
value as low as CFI = .57 for a specific condition (n =
100, p = 24, r = .1). When realistic CFI values for a true
model cover such a broad range, CFI loses its
informativeness for absolute model fit assessment.

Effect  size. Another more drastic, but likely
preferable  alternative  to  including  additional
qualifications on when to use CFI’s rule of thumb or
adjusting its threshold value as a function of data
characteristics, would be to actually interpret CFI’s
value. In this respect, it is useful to see CFI as an
extension of the linear regression model’s R-square
effect size measure to the broader SEM field. Both
measures have indeed a similar setup:

,,,.2 — 1 _ SSerror

YIX SStotal
CFlp gy = 1 — 2m
mo) =1-37
0

misspecification target model vs. saturated model

effect size =1 —
misspecification null model vs. saturated model

This further clarifies that in essence, CF1 is, like the R-

square, a standardized effect size measure and hence all

reservations with respect to interpretations of

standardized effect size measures (e.g., Baguley, 2009)
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transfer to the interpretation of CFI. Such a realization
has two major implications.

Firstly, CFI can be a useful benchmark metric for
interpreting the relative magnitude of the effects within
the same application dataset. Having a set of competing
models, CFI can be used to quantify the effect size of
the paths in which the models differ. In other words, we
are using CFI as intended as an incremental comparative
fit index among a set of models for the same dataset and
interpreting its value in terms of relative magnitude.

Secondly, comparing CFI’s across different datasets
is not straightforward as given their standardized nature,
a value of .95 is indeed similar in relative magnitude, but
not necessarily in absolute magnitude. The latter would
require that the denominator in CFI’s formula remains
constant across datasets. Where R-square is a relative
reduction in wvariance not accounted for, and the
denominator is a proxy for total variance in the outcome
variable, CFI is a relative reduction in model non-
centrality, and — when the baseline model is the null
model — the denominator can be seen as a proxy for the
amount of generalized variance in the manifest variables
of the model, the determinant of the observed
correlation matrix |R|. An interpretation of CFI in terms
of absolute magnitude would require an interpretation of
the amount of generalized variance, that is the value of
this determinant. The determinant of a correlation
matrix can be seen geometrically as the volume of the
swarm of standatrdized data points, with |R| = 1 in case
of all zero-correlations (corresponding to a ‘ball’ in a
multidimensional plane) and with |R| = 0 for a matrix
with perfect linear dependence (a ball flattened along at
least one dimension). Whereas people in practice often
already find it hard to interpret the absolute magnitude
of a variance, it is fair to say that even less people have a
good intuition about what a large or small generalized
variance or determinant is for their dataset. The current
lack of straightforward interpretability of CFI in terms
of absolute magnitude essentially disqualifies it in
practice for assessing the absolute fit of a single model
or for comparing model fit between different datasets.

Nevertheless, the central role of this determinant
should revive some interest in understanding classic
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measures of multivariate statistics (e.g., Anderson, 1958)
to further our understanding of more modern SEM
practices. In the meantime, we recommend
implementing a reporting standard where next to the
CFl also its denominator, the baseline model’s
noncentrality Ay is reported to provide some context for
interpretation. These quantities are generally available or
easy to request in common SEM software such as Mplus
or Rilavaan. If the default null model is chosen as
baseline, explicit reporting of its three key components
— sample size n, number of manifest variables p,
determinant of the observed correlation matrix |R| —
would help in gaining some intuition on common
reference values for these data characteristics” in your
field of application and eventually allow for a better
interpretation of relative and absolute magnitude of CFI
even across datasets.

Other Considerations. One limitation of the current
study is that we only considered the default null model
in which all observed variables are uncorrelated while
looking at the performance of CFI. However, it was
already discussed by Bentler and Bonett (1980, p. 604)
that “the incremental fit indices depend critically on the
availability of a suitable framed null model”. Widaman
and Thompson (2003) argue that there are numerous
situations in which the default null model would be an
improper choice. Different alternatives for specification
of a proper baseline model can be found in the literature
(e.g., Little, 2013; Widaman & Thompson, 2003). While
Widaman and Thompson (2003) already touched upon
it, going forward it is important to systematically evaluate
the potential influence of the chosen null model on
performance evaluation of the different comparative fit
indices under different circumstances, as well as the
substantive consequences of comparing a model of
interest to a more meaningful baseline model.

In this study, we focused on the typical maximum
likelihood estimator wused in structural equation
modelling, yet it would be of interest to expand the study
to other estimators in particular for the categorical data
case, both including limited-information estimators
based on the polychoric correlation matrix or bivariate
contingency tables as well as full-information estimators

*In a linear model, it is similatly good practice to report next to the R-square also the total vatiance of the outcome
variable (or alternatively the residual standard deviation) to contextualize the percentage.
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based on the item response patterns (cf. item response
theory tradition). A move to the categorical case might
also essentially call for a different baseline model; for
categorical data, correlations are strongly constrained by
their marginal distributions as mean and variance are
intertwined.

Another avenue for further research would be to
explore the impact of transitioning from classic
estimates for the two noncentrality parameters in the
CF1I to bias-corrected estimates as for instance suggested
by Raykov (2005). Raykov did add caution as for
instance a bias-correction bootstrap estimate of
noncentrality is feasible, but the properties of the
approach for this particular case have not been fully
studied. Yet deflating differential sampling bias in both
numerator and denominator of CFI could potentially
ensure that its sampling behavior is even more
systematic and in line with the driving components of
the baseline.

Conclusion

To conclude, the CFI does what it is supposed to
do, but we haven’t been using it in a smart fashion. The
CFI is a relative fit measure where the standard for
comparison is provided by the noncentrality of the (null)
baseline model. The common CFI = .95 rule of thumb
implies that regardless of context we are happy with a
reduction of 95% of the misspecification by the null
model. Current practices make us prone to hunting
down this magic CFI = .95 value as a pseudo absolute
fit measure disregarding the existence of the baseline.
CFI as an absolute but meaningless criterion that needs
to be fulfilled to achieve an adequate model that can
serve as starting point for further analysis. To help
remedy this, we recommend that at a minimum a dual
reporting standard is followed where both model of
interest and the (null) baseline model are evaluated to
provide proper context for interpretation of the CFI
value. By making the presence of the baseline (and its
core components) explicit in the reporting, the need to
take it into account when interpreting fit indices also
becomes explicit and non-ignorable. Even more optimal
would be if CFI is not simply used as a mere number in
a search for model adequacy but used as a real relative fit
index intended to evaluate the relevance of cumulative
theoretically motivated model restrictions in terms of %
reduction in misspecification as measured by the
baseline model (Bentler & Bonett, 1980).
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Appendix A: Noncentrality )\, of the null model

Am = X2, — dfy, (1)
= Fpn(n —1) — dfp, (2)
= (log |2,| — log[S| + tr(SE;,) — p)(n — 1) — df,, (3)

Equations 1-3 outline how the noncentrality parameter of any model would be esti-
mated as the difference between the model’s chisquare against the saturated model
and the model’s degrees of freedom. The model’s chisquare value is based on the
product of the sample size n and the minimum value F;,, of the used fit function. Un-
der maximum likelihood estimation, F}, is a function of the discrepancy between the
model-implied variance-covariance matrix 33,, and the observed variance-covariance
matrix S (e.g., Bollen, 1989), where p represents the number of observed variables
and tr(X) and |X| are respectively the trace and determinant of a matrix X.

Key in getting to the expression for the noncentrality Ay for the null model
(Equation 2 in the main text) is that the minimal fit value Fy for the null model
can be further simplified using the fact that the model-implied covariance matrix
under the null model comes down to a diagonal matrix diag(S) with the observed
variances on the diagonal (cf. Equation 5). This results in Sf}a ! leading to a
matrix with all ones on the diagonal such that the trace equals the number of
observed variables p and cancels out the subsequent —p term in the expression for

Fy (cf. Equation 6).

Fy = log |2o| — log|S| + tr(S25Y) — p (4)
= log |diag(8)| — log |S| + tr(Sdiag(S)™") — p (5)
= log |diag(S)| — log|S|+p—p (6)

Using the fact that the determinant of a matrix product can be split into products of
determinants, each of the remaining two log determinants can be written out given

that a variance-covariance matrix S is a multiplicative function of a corresponding

https://scholarworks.umass.edu/pare/vol26/iss1/26
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correlation matrix R and an inverse diagonal matrix with standard deviations on

the diagonal. Thus we have

log S| = log|/diag(S) R /diag(S)| (7)

= log|y/diag(S)| + log |R| + log |\/diag(S)| (8)
P p
= logH /' Sj; +log|R| + log H /' Sjj (9)
j=1

j=1
p
=log [ ] Sj; +log |R| (10)
j=1
and
log |diag(S)| = log |\/diag(S) I \/diag(S)| (11)
p
=log [ [ Sj; +0 (12)
j=1

where Equation 12 makes use of the fact that the correlation matrix of a diagonal
variance-covariance matrix is an identity matrix I which determinant is exactly
equal to 1.

The re-expressions of the log determinant terms in Equations 10 and 12 allow

to simplify the expression for Fp further by elimination

Fy = log |diag(S)| — log S| (13)
P p
zlogHSjj —logHSjj — log |R| (14)
j=1 j=1
= —log|R| (15)

such that the estimated noncentrality of the null model comes down to

Ao =Fo(n—1) —dfp = —log |R|(n — 1) — p(p — 1)/2

where p(p — 1)/2 is the degrees of freedom of the null model.
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Results of main study

Appendix B
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