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ABSTRACT Quantitative structure-activity relationship (QSAR) models based on machine learning algo-
rithms are powerful tools to expedite drug discovery processes and therapeutics development. Given the
cost in acquiring large-sized training datasets, it is useful to examine if QSAR analysis can reasonably
predict drug activity with only a small-sized dataset (size < 100) and benchmark these small-dataset
QSAR models in application-specific studies. To this end, here we present a systematic benchmarking
study on small-dataset QSAR models built for prediction of effective Wnt signaling inhibitors, which are
essential to therapeutics development in prevalent human diseases (e.g., cancer). Specifically, we examined
a total of 72 two-dimensional (2D) QSAR models based on 4 best-performing algorithms, 6 commonly
used molecular fingerprints, and 3 typical fingerprint lengths. We trained these models using a training
dataset (56 compounds), benchmarked their performance on 4 figures-of-merit (FOMs), and examined their
prediction accuracy using an external validation dataset (14 compounds). Our data show that the model
performance is maximized when: 1) molecular fingerprints are selected to provide sufficient, unique, and
not overly detailed representations of the chemical structures of drug compounds; 2) algorithms are selected
to reduce the number of false predictions due to class imbalance in the dataset; and 3) models are selected
to reach balanced performance on all 4 FOMs. These results may provide general guidelines in developing
high-performance small-dataset QSAR models for drug activity prediction.

INDEX TERMS Bioactivity prediction, drug discovery, machine learning, molecular fingerprint, quantita-
tive structure-activity relationship, Wnt signaling.

I. INTRODUCTION
Drug development often involves extensive investment and
time effort on experimental screening of drug candidates.
To reduce the resource demand in such drug screening pro-
cesses, predictive models based on advanced computational
methods have been developed to help screen possible drug
compounds with high cost-effectiveness [1]–[5]. To date,
computational methods based on three-dimensional quan-
titative structure-activity relationship (3D QSAR) analysis,
high-throughput imaging (HTI), and pharmacophore model-
ing [5], [6]–[10] have succeeded in predicting the effective-
ness of drug compounds towards prevalent human diseases
(e.g., cancer [10]). Nonetheless, these high-performance

The associate editor coordinating the review of this manuscript and
approving it for publication was Henry Hess.

methods often require user intervention steps on molecular/
ligand alignment [5], [8], [9] or high-resolution images that
are not available for all drug compounds [7]. To this end,
two-dimensional (2D) QSAR analysis has emerged as a
viable alternative method to build predictive models from
the widely available chemical structures of drug candidates,
which can perform well with no user intervention steps. This
analysis correlates the structural details of drug molecules
to their effectiveness in biological assays that correspond
to specific diseases and builds models that can predict the
bioactivity or physiochemical properties of unknown drug
compounds [1]–[3], [6].

In 2D QSAR studies, the features of each drug molecule
are often coded by a 2D molecular fingerprint, resulting
in a numerical vector to describe the presence or absence
of substructures in the molecule such as chemical bonds,
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functional groups, and connectivity pathways [3], [11]. The
vectors from drug molecules with known effectiveness to one
targeted biological assay (active vs. inactive) will be used to
build predictive QSAR models based on machine learning
algorithms such as support vector machines (SVM), deci-
sion trees, k-nearest neighbors (KNN), and artificial neural
network (ANN) [6], [12]. The resulting QSAR models have
succeeded in predicting effective drugs of psychological dis-
orders [13], protein-ligand binding affinities [14], and mTOR
kinase inhibitors [15].

Nonetheless, current 2D QSAR analysis often relies on
training machine learning algorithms with a large-sized drug
activity dataset (size> 1000) [6], [16], which requires signif-
icant time and effort on both benchwork and statistical analy-
sis. For this reason, developing new drugs can cost hundreds
of millions of U.S. dollars [17] and can take over a decade to
transition to a marketable state [18]. Given the cost in acquir-
ing these large-sized datasets, it will be useful to examine
if 2D QSAR analysis can result in reasonable prediction of
drug activity with only a small-sized dataset (size < 100),
and moreover benchmark these small-dataset QSAR mod-
els in application-specific studies. Such small-dataset QSAR
analysis will be especially beneficial at early stages of drug
development, when the activity data from potential drug can-
didates remain limited [19], [20].

Wnt signaling pathways are essential in cell biology and
the development of therapeutics for highly prevalent diseases
such as cancer, Schizophrenia, and kidney damage [21]–[25].
Some of these diseases (e.g., lung cancer) are associated with
altered function/levels of proteins in specific Wnt/β-catenin
pathways (one type of Wnt signaling pathway), which lead
to elevated gene expression that influences cell proliferation
and survival [21]. For this reason, inhibition ofWnt/β-catenin
signaling by small molecule modulators (e.g., Niclosamide)
is being considered and developed as a candidate cancer treat-
ment [21], [26]–[29]. For instance, screening assays based on
live cell imaging have been used to identify Wnt/β-catenin
inhibitors [30]. These inhibitors induce the internalization of
Frizzled receptor proteins (i.e. moving from cell membrane
to cell cytoplasm) in human U2OS cells; such internalized
receptors cannot be activated by extracellular Wnt proteins
(secreted from other cells), effectively inhibiting the strength
of Wnt signaling [21].

Given the clinical significance ofWnt signaling in a variety
of diseases and the progress made from screening assays,
here we examine if small-dataset QSAR models could facil-
itate and expedite the process of identifying small molecule
inhibitors. If successful, such predictive models and experi-
mental QSAR studies can serve as complementary techniques
in screening drug candidates for Wnt/β-catenin signaling
inhibition and ultimately add to therapeutics development.
To quantify the performance in our analysis, we benchmark
72 QSARmodels based on: 1) 4 machine learning algorithms
including quadratic support vector machine (QSVM), fine
tree, random undersampling (RUS) boosted tree, and bagged
tree; 2) 6 molecular fingerprints including fingerprint 2,

3, 4 (FP2, FP3, FP4), molecular access system fingerprint
(MACCS), and extended-connectivity fingerprint 4 and 6
(ECFP4 and ECFP6) with three fingerprint lengths for each;
and 3) a training dataset of 56 compounds and an external val-
idation dataset of 14 compounds, both of which were exper-
imentally tested in U2OS cells. We evaluate these models
using 5- and 10-fold cross-validation and compare 4 figures-
of-merit (FOMs) in QSAR analysis including accuracy, area
under curve (AUC), sensitivity, and specificity.

Our data show that the model performance is maximized
when: 1) molecular fingerprints are selected to provide suffi-
cient, unique, and not overly detailed representations of the
chemical structures of drug compounds; 2) algorithms are
selected to reduce the number of false predictions due to class
imbalance in the dataset; and 3) models are selected to reach
balanced performance on all 4 FOMs. These results may
provide general guidelines in developing high-performance
small-dataset 2D QSAR models for drug activity prediction.

II. METHODS
A. DATASETS
To the best of our knowledge, there has been a total of 70 drug
compounds available in literature with experimentally val-
idated effectiveness for internalizing Frizzled receptor pro-
teins, and thus inhibiting Wnt signaling in human U2OS
cells [21], [27]–[29]. Specifically, all these 70 compounds
have been classified as active [inactive] compounds if they
were able [unable] to induce the internalization of Frizzled
receptor proteins, according to the cell imaging data from
before and after applying the compound to the cell culture.
As a result, 29 compounds were experimentally tested to
be active and 41 were tested to be inactive, suggesting a
mild class imbalance between active and inactive compounds.
It is noted that 65 of these compounds (except 5 inactive
compounds) are derivatives of niclosamide [26], suggesting
high structural similarities among these 70 compounds.

In this work, we chose to build 2D QSAR models from
the aforementioned 70 compounds for prediction of Wnt
signaling inhibition. We chose this dataset because these
70 compounds are all experimentally validated with the same
biological assay (i.e., the internalization of Frizzled receptor
proteins in U2OS cells) and form a mild class imbalance.
It is noted that assays targeted at the dynamics of other Wnt-
signaling-inhibition related proteins are also available in the
ChEMBL database [31]–[36]. However, these assays have
yet to experimentally test a sufficient number of active or
inactive compounds, therefore making the QSAR modeling
challenging (e.g., 3 active compounds in [36]). On the other
hand, we found that the size of our dataset, 70, is on par
with other small-dataset QSAR studies (e.g., 16 in [19], and
48 in [20]); we thus believe this dataset has a sufficient
number of data to build good-performing QSAR models.

We then represented the chemical structures of these
70 compounds listed in the ChEMBL database in a simpli-
fied molecular-input line-entry system (SMILES) notation.
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Each compound was labeled as 0 (inactive) or 1 (active) by its
effectiveness onWnt signaling inhibition, which was tested in
the assay of internalizing Frizzled receptor proteins (Fig. 1).
We next randomly selected 80 % of these 70 compounds to
form a training dataset (56 compounds; 31 inactive, 25 active)
to develop 2D QSARmodels and perform cross-validation to
statistically analyze their performance; we used the remain-
ing 20 % of these 70 compounds as an external validation
dataset (14 compounds; 10 inactive, 4 active) to examine if
these QSAR models can predict the activity of compounds
that were not used in model training [37]. We noted that
the class imbalance of the randomly selected training dataset
(25/56 = 44 % active samples) is on par with the class
imbalance in the overall 70-compound dataset (31/70= 41 %
active samples) [38].

FIGURE 1. Schematic diagrams on benchmarking small-dataset QSAR
models. R1–R4 represent the structural features in the compound.

B. FINGERPRINT REPRESENTATION
To train 2D QSAR models, we used OpenBabel graphical
user interface (GUI) to convert the SMILES notation of
the compounds in the training dataset to 2D molecular
fingerprint representations (Fig. 1) [39]–[41]. Each of these
fingerprint representations is a binary bit vector with a
defined length; each bit or group of bits represents the
presence or absence of structural features in the compound.
For instance, the niclosamide compound is represented by
MACCS fingerprint with a length of 128 in the following
steps: 1) finding the SMILES notation of niclosamide
in the ChEMBL database, O=C(Nc1ccc([N+] (=O)
[O-])cc1Cl)c1 cc(Cl)ccc1O; 2) converting this SMILES
notation in the OpenBabel GUI to a hexadecimal vector
4a5124612940006 04091001f7aebecf6; and 3) converting
the hexadecimal vector to a binary one, 01001010010100010
01001000110 0001001010010100000000000000011000000
10000001001 0001000000000001111101111010111010111
110110011110110. The resulting binary vector and the effec-
tiveness of niclosamide for Wnt signaling inhibition (active)
will then be used to train QSAR models using MATLAB
Classification Learner application (see Section 2C).

In this work, we chose to benchmark QSAR models using
3 linear 2D fingerprints (FP2, FP3, and FP4) and 3 nonlinear
2D fingerprints (MACCS, ECFP4, and ECFP6). These
fingerprints are computationally effective and have been
broadly used in drug activity prediction based on solubil-
ity, permeability, and protein–ligand interactions [42], [43].
Specifically, FP2 (default length: 1024) is a path-based fin-
gerprint which recognizes the rings and linear substructures
in drug molecules [39]. FP3 (default length: 64) and FP4
(default length: 512) are substructure-based fingerprints to
mark sub-structural patterns by SMILES arbitrary target
specification (SMARTS) [39]. MACCS (default length: 256)
is a substructure-key based fingerprint using 166 structural
keys to characterize SMARTS patterns [39], [44]. ECFP4 and
ECFP6 (no default lengths) are circular fingerprints stem-
ming from the Morgan algorithm [39], [45] and are explicitly
designed to capture molecular features related to molecular
activity.

C. ALGORITHMS
Using the fingerprint representations of 56 compounds in
the training dataset with known activity for Wnt signaling
inhibition, we developed predictive QSAR models based on
four machine learning algorithms: QSVM, fine tree, bagged
tree, and RUSboosted tree. We selected these algorithms in
our benchmarking study since their resulting QSAR mod-
els showed the highest accuracy and AUC values among
25 available algorithms in MATLAB Classification Learner
application. Specifically, 1) QSVM is a binary classifier to
define an optimal hyperplane that maximally separates two
classes of high-dimensional data [46]; 2) fine tree algorithm
(abbreviated as Fine) uses up to 100 decision rules (i.e. deci-
sion tree) for precise classification of the data [47]; 3) bagged
tree algorithm (abbreviated as Bagged) first forms several
subsets of data that are randomly sampled from the entire
training dataset with replacement [48]. Each subset of data
will be used to train a decision-tree based sub-model. This
algorithm finally makes a robust classification of an unknown
data by either voting or averaging the prediction results of this
data from all sub-models [49]; 4) RUSboosted tree algorithm
(abbreviated as RUSboosted) iteratively trains a series of
decision-tree based sub-models, each of which is based on
a subset of data formed by randomly under-sampling the
majority class of the training dataset to alleviate the class
imbalance [50], [51]. During the iteration, each data used for
internal validation will increase its weight if it was incorrectly
classified during the previous iteration, so that it is likely to
be correctly classified in the current iteration. For this reason,
the decision tree upon the completion of the iteration is a
weighted vote from all involved sub-models and will be used
to classify unknown data.

D. MODEL ASSESSMENT
To benchmark our models, we first studied the dependence
of their FOMs on the cross-validation folding number k and
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the fingerprint length, respectively. We then benchmarked the
FOM values of these models using the preferred k value and
fingerprint lengths, followed by evaluating their capability
to predict the activity of the 14 compounds in the external
validation dataset.

To evaluate the statistical significance in our results, 1) all
these models were trained for 3 independent times to obtain
the mean values and the standard deviation of all 4 FOMs;
2) selectedmodels (see details below)were then applied to the
external validation dataset to obtain the mean values and the
standard deviation of correct predictions. All QSAR models
were trained and validated using the MATLAB Classification
Learner application, detailed as follows:

1) FOLDING NUMBER K
During the training of QSAR models, we applied the
k-fold cross-validation procedure [52], which splits the
training dataset into k sub-groups, iteratively selects one
sub-group to validate the model trained by the remaining
(k-1) sub-groups, and evaluates the model performance by
the collective results. Specifically, we compared the 4 FOM
values in 72 QSAR models with both 5- and 10-fold cross-
validation, which are commonly used in training machine
learning models [52], [53]. We then chose one preferred k
value for the rest of our analysis based on the overall perfor-
mance of these 72 models.

2) FINGERPRINT LENGTH
With the chosen k value, we next evaluated the FOM val-
ues in 24 models (based on 6 fingerprints by 4 algorithms)
with 3 different fingerprint lengths, aiming to balance sim-
plicity, resolution, and uniqueness of the fingerprint repre-
sentations [40], [54]. For FP2, FP3, FP4, and MACCS, we
trained our models using: 1) half the default length, 2) the
default length, and 3) double the default length, and chose one
preferred length for each fingerprint that yielded higher FOM
values than the other two lengths (see details below). For
ECFP4, we chose lengths of 2048, 4096, and 8192, whereas
for ECFP6, we chose lengths of 1024, 2048, and 4096 in our
analysis, because ECFP6 has no default length reported and
its performance was suggested to likely improve when the
length increases [55].

3) MODEL FOMS
We next benchmarked the 4 FOM values of FP2, FP3, FP4,
andMACCSmodels with their chosen fingerprint lengths and
those of ECFP4 and ECFP6 models with all three lengths
(a total of 40 models based on 4 algorithms by 10 lengths,
evaluated at the chosen k value). For eachmodel, we analyzed
its confusion matrix results in the MATLAB classification
learner toolbox to obtain the values of true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). Here TPs [FPs] refer to the number of correct [incor-
rect] predictions of active compounds, whereas TNs [FNs]
refer to the number of correct [incorrect] predictions of inac-
tive compounds. We then obtained the four FOM values as:

accuracy= (TP+ TN) / (TP+ TN+ FP+ FN); sensitivity=

TP / (TP+ FN); and specificity= TN / (TN+ FP); AUCwas
defined as the integrated area underneath the receiver operat-
ing characteristic curve (i.e., sensitivity versus 1-specificity).

To evaluate if these models can well predict the activity
of unknown compounds, we benchmarked their percentage
of correct predictions (PCP) out of the 14 compounds in
the external validation dataset that were not used in model
training [56].

III. RESULTS AND DISCUSSION
A. FOLDING NUMBER K
We first studied the effect of k values (5 and 10) on FOMs
in 72 QSAR models based on 4 algorithms by 6 finger-
prints by 3 fingerprint lengths (see representative cases in
Fig. 2 and Table 1). If one model shows less than 5 %
difference in all 4 FOMs between two k values, or if one
model shows that k = 5 and k = 10 yields more than 5 %
improvement in different FOMs, we will view this model as
one that has no preferred k value. If one model shows more
than 5 % improvement in 1-4 FOMs at one k value (either 5
or 10), we will select this k value as the preferred k value
for that model. According to these definitions, our data show
that: 1) half of themodels (33/72, in Fig. 2a) have no preferred
k value; and 2) about one quarter of the models (20/72 in
Fig. 2b, 19/72 in Fig. 2c) have a preferred k value (either
5 or 10). This result shows that overall k = 5 and k =

10 yield comparable performance among these 72 models.
We therefore chose k = 5 for the following analysis.

FIGURE 2. Effect of k values on FOMs in representative models. a) One
model with no preferred k value. b) One model in which k = 5 is
preferred. c) One model in which k = 10 is preferred. In a) – c), each
model is noted as fingerprint/ algorithm (fingerprint length).
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TABLE 1. Effect of k values on FOMs in representative models.

B. FINGERPRINTS
1) FINGERPRINT LENGTH
Using k = 5, we next evaluated the effect of fingerprint
lengths (3 lengths per fingerprint) on FOMs in 24 models
based on 4 algorithms by 6 fingerprints (see representative
cases in Fig. 3 and Table 2). Our data show that 16/24 models
have at least one FOMwhere one length yields more than 5%
improvement over the other two lengths. If one model shows
that different lengths yieldmore than 5% improvement in dif-
ferent FOMs, or if one model shows less than 5 % difference
in all 4 FOMs among all 3 lengths, we will view this model
as one that has no preferred length. If one model shows more
than 5 % improvement in 1 to 3 FOMs at one length, we will
select this length as the preferred length for that model (note:
no model has one preferred length that yields more than 5 %
improvement in 4 FOMs). According to these definitions, our
data show that 50 % of the models (12/24, Fig. 3a) had no
preferred length and 50 % of the models (12/24, Fig. 3b) had
a preferred length.

FIGURE 3. Effect of fingerprint lengths on FOMs in representative models.
a) One model with no preferred length: b) One model with one preferred
length: In a) and b), each model is noted as fingerprint/algorithm.

TABLE 2. Effect of fingerprint lengths on FOMs in representative models
(k = 5).

In FP2, FP3, FP4, and MACCS models (a total of 16 by
4 algorithms), we found that: 1) increasing the length from
default values does not capture additional structural details
of the compounds in their fingerprint representations (i.e.,
merely adding extra zeros to representation vectors). As a
result, half of the models (9/16) do not have more than 5 %
improvement in any FOM, whereas 2 of the 7 remaining
models do not have their longest length as the preferred
length; 2) decreasing the length from default values will make
fingerprints lose their resolution and likely fail to capture
structural details that are needed to differentiate highly simi-
lar compound structures (see Section II.A) [35], [57], [58].
As a result, one quarter of the models (4/16) have more
than 5 % degradation in 1 or 2 FOMs, whereas 50 % of
the models (8/16) do not have their shortest length as the
preferred length.

In ECFP6 models (a total of 4 by 4 algorithms), we found
that at the length of 2048 and/or 4096: 1) 1 model has more
than 5 % improvement in 2 FOMs than those at the length
of 1024; 2) 2 models have more than 5 % degradation in 1
or 2 FOMs than those at length 1024; and 3) one model
shows less than 5 % difference in all 4 FOMs compared to
those at the length of 1024. This result shows that the ECFP6
fingerprint does not always capture more structural details in
our dataset at lengths longer than 1024 [40], [58].

Based on these analyses, we chose the default lengths in
FP2 (1024), FP3 (64), FP4 (512), and MACCS (256) mod-
els for the rest of our analysis because: 1) only half (9/16)
of the models have a preferred length, 2) a longer length
often adds no new structural information, and 3) a shorter
length often results in a loss of structural details. For ECFP6,
we chose to analyze all 3 lengths in the following (1024,
2048, and 4096 labeled as ECFP6A, ECFP6B, and ECFP6C,
respectively) because there is no default length reported for
this fingerprint [46]. For ECFP4, we again chose to analyze
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FIGURE 4. FOMs values across 40 models with k = 5 and the chosen lengths for each fingerprint.

all 3 lengths (2048, 4096, and 8192 labeled as ECFP4A,
ECFP4B, and ECFP4C, respectively).

2) FINGERPRINT UNIQUENESS
Due to the structure similarity of the compounds in our
dataset, we also examined if these fingerprints at their cho-
sen lengths can uniquely represent the compound structures.
If not, there would be identical representation vectors repre-
senting both active and inactive compounds, which can result
in misclassifications by the corresponding model [3], [59].
From this respective, our data show that FP2, ECFP4, and
ECFP6 fingerprints each yield only 2 identical vectors across
56 compounds in the training dataset, suggesting that they can
represent most compound structures in a unique vector [39],
[45], [58]. In contrast, FP3, FP4, and MACCS fingerprints
each yields over 20 identical vectors among the training
dataset, suggesting that they are less unique in representing
compound structures [58].

C. MODEL FOMS
Using k = 5 and the fingerprint lengths we chose, we next
benchmarked the 4 FOM values in 40 models based on
4 algorithms by 10 fingerprints (ECFP4 and ECFP6 eachwith
3 lengths) (see Fig. 4 and Table 3), with the results described
as follows:

1) ACCURACY AND AUC
Our accuracy and AUC data (Figs. 4a and 4b) show that:
1) all 40 models have more than 50 % accuracy with
less than 10 % standard deviation; 2) except FP3/Bagged
tree and FP4/Bagged tree models, all the other 38 models

have more than 51 % AUC with less than 10 % stan-
dard deviation; 3) FP2/QSVM, MACCS/RUSboosted tree,
ECFP6B/RUSboosted tree, and ECFP6C/RUSboosted tree
(x/y: x: fingerprint, y: algorithm) models have more than
70 % accuracy and more than 75 % AUC, suggesting the
promise of these 4 small-dataset models.

Based on accuracy and AUC values, we found that FP2/
QSVM, MACCS/RUSboosted tree, ECFP6B/RUSboosted
tree, and ECFP6C/RUSboosted tree models performed the
best, whereas FP3/Bagged tree and FP4/Bagged tree models
performed the worst. The overall fair performance of the
remaining 34 models (50-70 % accuracy and AUC) can result
from the small size of the training dataset and the challenge
in classifying compounds with similar structures [60].

2) SENSITIVITY AND SPECIFICITY
Our sensitivity and specificity data (Figs. 4c and 4d) show
that: 1) except for the FP3/Bagged tree, FP4/Bagged tree,
ECFP4A/Bagged tree, ECFP4B/Bagged tree, and ECFP4C/
Bagged tree models, the remaining 35models have more than
50 % sensitivity; the majority of these models (21/35) show
less than 10% standard deviation; 2) 15 models show> 10%
standard deviation; 3) except for the FP4/QSVM model,
the remaining 39 models have more than 40 % specificity;
the majority of these models (39/40) show less than 10 %
standard deviation; 4) 36 models have less than 40 %
difference between their sensitivity and specificity values;
of the four exceptions, FP3/Bagged tree, FP4/Bagged, and
ECFP4B/Bagged tree models showed low sensitivity (< 5%)
due to a large number of FNs, and high specificity (> 90 %)
due to a small number of FPs.
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TABLE 3. FOM values of best performing models for each fingerprint (k = 5).

The imbalance between sensitivity and specificity in
FP3/Bagged tree, FP4/Bagged tree, and ECFP4B/Bagged
tree models is likely due to a significant bias they develop
to the majority class (inactive compounds) in our training
dataset. This bias can result from the class imbalance in
our training dataset (31 inactive versus 25 active) [60], [61],
which can make these models form classification rules pri-
marily on inactive compounds. This in turn would lead to 1)
misclassifications of active compounds, thus increasing the
number of FNs [60] and 2) overall a small number of true
predictions, thus decreasing the number of FPs. Furthermore,
such imbalance can be worsened by the way the bagged
tree algorithm from sub-models based on randomly sam-
pled subsets of the entire training dataset. Such sampling
process may drop active compounds and result in subsets
where inactive compounds are even more dominated (i.e.,
yielding a greater imbalance between inactive and active
compounds) [48], [60], [62], [63].

Overall, our sensitivity and specificity data highlight the
importance of benchmarking all 4 FOMs when evaluating
the model performance. Accuracy and AUC alone may not
fully capture the downside of the model performance, such
as the imbalance between sensitivity and specificity trained
from imbalanced training datasets.

D. MODEL VALIDATION
To evaluate if the aforementioned 40 models can predict the
activity of unknown compounds, we examined their PCP on
14 compounds (10 inactive versus 4 active) in the external

TABLE 4. Models with the maximum PCP values in each fingerprint
(k = 5).

validation dataset (see Fig. 5 and Table 4) [4]. Our data
show that: 1) FP3/Fine tree model performs the best with
PCP= 92.86%, whereas the FP2, FP4,MACCS, ECFP4, and
ECFP6 models have their PCP up to 76.19 %; 2) PCP values
across all 40 models have less than 15 % standard deviation.
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FIGURE 5. PCP values across 40 models with k = 5 and the chosen lengths for each fingerprint.

These results suggest the promise of our small-dataset mod-
els in predicting Wnt inhibitors. For each of these models,
we compared its PCP from the validation process (Fig. 5) with
its accuracy value from the training process (Fig. 4a) to check
if it is an overfitted model [56]. Our data show that: 1) PCP is
more than 15 % lower than the accuracy in 1 FP2 model and
2 ECFP6A models; and 2) PCP is less than 15 % lower than
the accuracy in all ECFP4C, ECFP6B, and ECFP6C models.
For models listed in the first category, PCP is significantly
lower than the accuracy, suggesting that these models likely
overfitted compound structures (e.g., captured unnecessary
structural details) in the training dataset [64].

Based on both PCP and 4 FOMs of these 40 mod-
els, we observe that ECFP4 and ECFP6 fingerprint at the
longer lengths offers unique and sufficient representations
of structural details with no overfitting. In contrast, FP3,
FP4, and MACCS fingerprints also show no overfitting but
fail to offer unique representations. FP2 fingerprint features
high accuracy and AUC but also shows overfitting. These
results suggest that fingerprints should be chosen to suffi-
ciently, uniquely, but not overly represent structurally similar
compounds in developing high performance small-dataset
QSAR models.

E. PERFORMANCE COMPARISON
We finally remarked that the FOMs in our QSAR mod-
els are on par with other computational methods used for
drug discovery. For instance, Mayr et al. have comprehen-
sively studied ca. 500,000 drug compounds across more
than 1000 assays. They built predictive models of the drug
activity (in the respective assay) by machine learning algo-
rithms [65]. By averaging the AUC values of each model,
they reported typical AUC values around 70 %. As another
example, Hofmarcher et al. have built predictive models from
over 30000 compounds across 209 assays by neural network
algorithms [66]. By averaging the FOMs over all assays, they
reported typical accuracy values around 77 %, AUC values
around 70 %, sensitivity values around 50 %, and specificity
values around 76 %. In comparison, our models typically
obtained accuracy values around 65 %, AUC values around
70 %, sensitivity values around 70 %, and specificity values
around 60 %. Nonetheless, we noted that computational
methods on prediction of Wnt signaling inhibitors are still at
their early stage of development at this moment. We expect
that future efforts on this essential field of cell biology will
allow more direct comparison with our QSAR models.

IV. CONCLUSION
In this study, we present a systematic small-dataset QSAR
study for prediction of effective Wnt signaling inhibitors that
are essential to therapeutics development in prevalent human
diseases. Specifically, we trained 72 QSAR models based on
4 algorithms, 6 fingerprints, and 3 fingerprint lengths using a
training dataset (56 compounds), evaluated their performance
on 4 FOMs, and examined their PCP using an external vali-
dation dataset (14 compounds). Our data show that the model
performance is maximized when: 1) molecular fingerprints
are selected to provide sufficient, unique, and not overly
detailed representations of the compound structures (i.e. to
avoid fingerprint lengths that lose fine structural features,
identical representation vectors for multiple compounds, and
overfitting); 2) algorithms are selected to reduce the number
of false predictions due to class imbalance in the dataset;
and 3) models are selected to reach balanced performance on
all 4 FOMs. These results may provide general guidelines in
developing high-performance small-dataset 2D QSAR mod-
els for drug activity prediction. Moving forward, it will be
useful to test if these guidelines would apply to QSAR studies
based on other Wnt signaling related assays. To achieve this,
we will need to expand the experimental data in those assays,
which are often associated with other targeted proteins (e.g.,
Wnt-3a, kinases) or host cells (e.g., MCF7, ST14A).
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