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SMAP Detects Soil Moisture Under Temperate
Forest Canopies
Andreas Colliander1 , Michael H. Cosh2 , Vicky R. Kelly3 , Simon Kraatz4,
Laura Bourgeau‐Chavez5, Paul Siqueira4 , Alexandre Roy6, Alexandra G. Konings7 ,
Natan Holtzman7 , SidharthMisra1 , Dara Entekhabi8 , Peggy O'Neill9, and Simon H. Yueh1

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2USDA ARS Hydrology and Remote
Sensing Laboratory, Beltsville, MD, USA, 3Cary Institute of Ecosystem Studies, Millbrook, NY, USA, 4Electrical and
Computer Engineering, University of Massachusetts Amherst, Amherst, MA, USA, 5Michigan Tech Research Institute,
Ann Arbor, MI, USA, 6Département des Sciences de l'Environnement, Université du Québec à Trois‐Rivières, Trois‐
Rivières, Québec, Canada, 7Department of Earth System Science, Stanford University, Stanford, CA, USA, 8Department of
Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA, 9NASA
Goddard Space Flight Center, Greenbelt, MD, USA

Abstract Soil moisture dynamics in the presence of dense vegetation canopies are determinants of
ecosystem function and biogeochemical cycles, but the capability of existing spaceborne sensors to support
reliable and useful estimates is not known. New results from a recently initiated field experiment in the
northeast United States show that the National Aeronautics and Space Administration (NASA) SMAP
(Soil Moisture Active Passive) satellite is capable of retrieving soil moisture under temperate forest canopies.
We present an analysis demonstrating that a parameterized emission model with the SMAP
morning overpass brightness temperature resulted in a RMSD (root‐mean‐square difference) range of
0.047–0.057 m3/m3 and a Pearson correlation range of 0.75–0.85 depending on the experiment location and
the SMAP polarization. The inversion approach included a minimal amount of ancillary data. This result
demonstrates unequivocally that spaceborne L‐band radiometry is sensitive to soil moisture under
temperate forest canopies, which has been uncertain because of lack of representative reference data.

1. Introduction

During times of low soil moisture availability, trees experience water stress whereby their ability to maintain
hydraulic integrity and continue physiological function becomes limited (Choat et al., 2012; Corlett, 2016;
Doughty et al., 2015). Mapping the available water in the soils of these ecosystems is restricted by the effects
of the canopy that stands between the remote sensing instrument and the forest floor. Remote sensing of soil
moisture in forested areas has been an elusive goal since the start of microwave remote sensing, while for
nonforested areas soil moisture data are being provided routinely (e.g., Chan et al., 2016, 2018; Das
et al., 2019; Dorigo et al., 2017; Kerr et al., 2016). Radiation emission and reflection from the soil surface
in the lower‐frequency range of the microwave region of the spectrum are less likely than higher frequencies
(including optical) to lose usefulness for tracking soil moisture dynamics in the presence of attenuation and
scattering by vegetation. Specifically, radiometer observations at L‐band (within the 1‐ to 2‐GHz band, a
small subband centered at 1.413 GHz is reserved for space and Earth science) have long been considered
to bemore suitable for soil moisture detection than higher frequencies (Schmugge et al., 1986). Forests repre-
sent the extreme of vegetation density where the low frequency is considered to be critical for a potential soil
moisture detection. In the past, a number of studies in fully or partially forested conditions included tower‐
based (e.g., Guglielmetti et al., 2008; Kurum et al., 2012) and airborne (e.g., Lang et al., 2001; Macelloni
et al., 2001; McNairn et al., 2015; Seppanen et al., 2016) measurements with L‐band radiometers. These stu-
dies showed mixed results for soil moisture sensitivity.

ESA (European Space Agency) launched a satellite carrying an L‐band radiometer in 2009 called Soil
Moisture Ocean Salinity (SMOS) (Mecklenburg et al., 2016) and NASA (National Aeronautics and Space
Administration) in 2015 called Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010). These missions
opened the door for wide scale retrieving of soil moisture in forested area from space (e.g., Djamai et al., 2015;
Kang et al., 2016, 2019; Monsiváis‐Huertero et al., 2020; Vittucci et al., 2016). However, the lack of
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appropriate reference soil moisture sources has been a major obstacle for quantifying, developing, testing,
and validating soil moisture retrieval algorithms from satellite observations (e.g., Vittucci et al., 2019).

Across nonforested or sparsely forested pixels, the performance of the SMAP radiometer‐based soil moisture
products meet the mission requirements as the requirements apply to conditions where the vegetation water
content is less than typical forested areas (up to 5 kg/m2) (Chan et al., 2016, 2018). The prevailing view is that
above this level of canopy water content, the attenuation and scattering of surface emission by the vegetation
are too strong to allow reliable inference about soil moisture. As the mission moved to the extended phase in
June 2018, one of its objectives was to expand the domain of validated retrievals to forested areas. As the core
sites used to validate the SMAP soil moisture retrieval performance did not include appropriate locations in
forested environments (Colliander, Cosh, et al., 2017), the mission decided to conduct field experiments in
forested regions. The first experiment, called SMAP Validation Experiment 2019–2021 (SMAPVEX19‐21),
started in 2019 in two locations in the northeastern United States and will continue through 2021. The
experiment follows a series of SMAP postlaunch validation experiments conducted in biomes with predomi-
nantly lower vegetation water content (e.g., Colliander, Jackson, et al., 2017; Colliander et al., 2019). The
objective of the experiment is to test the SMAP retrieval in both fully forested and partially forested areas
because a substantial portion of the United States and the globe have a nonuniform forest cover at the
SMAP resolution scale.

In this study, we present an analysis using the first‐year station measurements of SMAPVEX19‐21. Our
hypothesis is that with a correctly parameterized emission model it is possible to retrieve soil moisture for
the experiment domains. The parameterization of the low‐frequency microwave emission from forests
requires accounting for vegetation scattering in addition to vegetation attenuation and surface roughness.
Several electromagnetic models have been presented in the past for accounting for the vegetation effect
on the soil emission. The weakness of the widely used tau‐omega model is that it assumes a low scattering
for the vegetation in its formulation (Mo et al., 1982); this weakness has been addressed in many studies and
alternative approaches have been presented (e.g., Ferrazzoli et al., 2002; Kurum et al., 2011; Schwank
et al., 2018). The SMAP single channel algorithm (SCA) also uses the tau‐omega model for vegetation com-
pensation (O'Neill, Chan, Njoku, Jackson, & Bindlish, 2019). Here, we used one of the alternative models
presented in Colliander et al. (2018) that do not approximate the scattering contribution. The model has
essentially the same parameters as the tau‐omega model and in the absence of vegetation scattering it pro-
duces identical results to the tau‐omega model. We compare the retrieval results using the parameterized
model with the station‐measured values to investigate whether SMAP is sensitive to soil moisture at the
forested experiment sites.

2. Materials and Methods
2.1. SMAPVEX19‐21 Sites

The mission chose two locations for SMAPVEX19‐21, each encompassing an area corresponding to the
retrieval domain of the SMAP enhanced soil moisture product (about 33 km). Figure 1a shows the loca-
tions of the experiment sites in central Massachusetts and the Hudson Valley of New York. The
Massachusetts (MA) site is 84% forested incorporating the Harvard Forest research site (https://harvard-
forest.fas.harvard.edu/) within its boundaries. The SMAP grid cell for MA has a dominance of beech‐
maple (~46%) followed by pine forest (~24%) and oak‐hickory (~12%) based on the National Land
Cover Database (NLCD). The grid cell also has about 13% wetlands (~12% forested, ~1% herbaceous)
and only about 4% grassland/hay fields.

A permanent monitoring network of six soil moisture stations has been operating in upstate New York since
2015. The site is located near the village of Millbrook (MB) (Figure 1a). The site is about 36% nonforested,
with about 23% of the total grid cell area mapped as pasture/hay fields by NLCD. Most of the forested station
locations in the SMAP grid cell are oak‐hickory (~30%) or beech‐maple (~30%), with a few conifer
forests (~4%).

The forests in the experiment domains are representative of the northeastern temperate forests. The regional
(about 150‐km area around the experiment domains) mean biomass is about 130 t/ha with a standard devia-
tion of 70 t/ha based on the U.S. Forest Service Forest Inventory and Analysis data. The dominant species are
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Red and Sugar Maple, Red Oak, Eastern Hemlock, and Eastern White Pine, and other typical species are
White Ash, American Beech, Black Birch, and Black Cherry based on the same data set. The biomass
estimates and species composition found in local studies conducted at the experiment domains are mostly
consistent with the regional characteristics. For example, Katz et al. (2010) show biomass values in the
MB domain very close to the mean value of the region, while Ahmed et al. (2013) show that in the
Harvard Forest area (which is not atypical in the MA domain) the biomass values may be on the high end
of the regional values but within the range.

The experiment started by an installation of 23‐ and 25‐station networks at the MA and MB sites in May
2019, respectively (Cosh et al., 2020a, 2020b). Figures 1b and 1c show the locations of the stations. In order
to accurately determine the average soil moisture within the experiment domains, a sufficient number of
sampling locations are needed to account for the spatial variability. However, the spatial variability of soil
moisture is not known exactly over the domains. Studies have presented relationships between soil moisture
spatial variability and the required number of sampling locations (e.g., Famiglietti et al., 2008) as well as
uncertainty estimates for spatial means based on the variability (Chen et al., 2019). Based on the typical sta-
tion numbers required in the previous studies (see also Crow et al., 2012), the number of sensors at each of
the MA and MB sites should provide satisfactory accuracy for the average soil moisture estimate while
respecting the logistical challenges for deploying the stations in forested landscapes.

The temporary network stations include soil moisture measurements with Stevens Water HydraProbe sen-
sors at three different depths: one measuring a layer from the top down to about 6‐cm depth, one measuring
a layer at the depth of about 3–7 cm, and one a layer at the depth of about 8–12 cm. The first sensor is
installed vertically top down, while the other two are installed horizontally. The soil moisture sensors at each
depth also include a temperature sensor. Additionally, the stations include air temperature measurement at
about 1.5‐m height aboveground and a nadir pointing wildlife camera used for phenology monitoring. Some
of the locations also include sap flow sensors and dielectric measurement of the tree trunks to enhance the
vegetation monitoring (Matheny et al., 2015; Roy et al., 2020).

The factory calibration of the soil moisture sensors is not expected to provide unbiased soil moisture value
because of the complex textural composition of the soil at the sites. The top layers of the soil are mixed with
organic matter in different stages of decomposition. In this study, we used the measured real part of the
dielectric constant (εr) as the reference. Two intensive observation periods planned for 2021 will include col-
lection of soil core samples that will be used to eventually calibrate the soil moisture sensors using the ther-
mogravimetric method (Dane & Topp, 2002). Before using the measurements, each sensor time series was
checked to be sure it did not have anomalous behavior (spikes, steps, drifting, etc.) or data gaps that would
affect the mean value computed for the domains.

Figure 1. (a) Map of the experiment locations near Millbrook, New York (MB), and Amherst, Massachusetts (MA). (b) Locations of the temporary 25 soil moisture
stations in the Millbrook pixel, and the locations of the six permanent stations (PNET) operated in the area. (c) Locations of the temporary 23 soil moisture
stations (TNET) in the Massachusetts pixel. The background colors in (b) and (c) are based on the National Land Cover Database. The rectangles depict the SMAP
pixel and the outlines of (b) and (c) are 50 km by 50 km.
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2.2. SMAP Brightness Temperature Data

The L‐band radiometer on‐board the SMAP satellite includes vertically (V) and horizontally (H) polarized
brightness temperature (TB) channels. The satellite has a Sun‐synchronous 6 a.m./6 p.m. equator‐crossing
orbit, a constant 40° sensor incidence angle, and an approximately 1,000‐km swath width, which results
in global coverage every 2–3 days (Entekhabi et al., 2014). The measurements have about 38‐km resolution
(defined by the half‐power footprint on the Earth's surface of the radiometer antenna pattern) and the radio-
metric resolution of the gridded SMAP TB is less than 0.5 K (Piepmeier et al., 2017). The SMAP enhanced TB
and soil moisture products grid the values on a 9‐km EASE Version 2 grid (Chaubell et al., 2019; O'Neill,
Chan, Njoku, Jackson, Bindlish, & Chaubell, 2019). However, as the actual footprint of the measurement
is considerably larger than the grid size, the retrieval domain for the enhanced soil moisture product was
chosen to be about 33 km (Chan et al., 2018). The actual size is determined based on 11 by 11 cells of the
SMAP 3‐km grid, which is nested with the 9‐km grid. Thus, the domains are not exactly square, but follow
the shape of the EASE Version 2 grid used for SMAP (see Figure 1). The analysis presented here excluded the
TB measurements flagged for radio frequency interference contamination (Mohammed et al., 2016;
Piepmeier et al., 2014). The SMAP satellite experienced a data outage from 20 June to 22 July 2019 resulting
in no retrievals during this period.

2.3. Forward Model

In order to model the forest emission, we applied a two‐layer model introduced in Colliander et al. (2018).
The model represents propagation of emission in the soil‐vegetation‐air medium with vegetation transmis-
sion (tp; p stands for polarization, V orH) and scattering (Sp) parameters. The top of the vegetation TB is for-
mulated as follows:

TBp ¼ 1 − rp
� �

Tsoil
tp

1þ Sprp

� �
þ 1 −

tp
1 − Sp

� �
Tveg þ 1 −

tp
1 − Sp

� �
Tveg

tprp
1þ Sprp

(1)

where Tsoil is the effective temperature of the soil and Tveg is the effective temperature of the vegetation
layer. Effective temperatures corresponds to the average temperature of the parts of the medium emitting
the radiation (see, e.g., Njoku & Kong, 1977). The transmission, tp, parameter is related to the vegetation
optical (electromagnetic) depth parameter τp as follows:

tp ¼ e−τp (2)

The scattering parameter (Sp) is related to the radiative transfer scattering coefficient (κsp) as

Sp ¼ 1 − e−κsp (3)

Thus, the scattering albedo can be solved as ωp = κsp/τp. It is noted that for the τ‐ω model the τ and ω para-
meters are not exactly the same as defined in standard radiative transfer modeling although they serve a
similar purpose (Mo et al., 1982). Finally, the vegetation absorption (ap) is given by the 1 − tp/(1 − Sp) com-
ponent in 1. According to Kirchhoff's law, the absorption determines the emission by the vegetation. The
three terms on the right‐hand side of 1 represent from left to right: the soil emission through vegetation,
vegetation emission, and vegetation emission reflected from the ground and propagated up through the
vegetation, respectively.

We modeled the rough surface reflectivity (rp) with an adaptation of the classical Choudhury roughness
model (Choudhury et al., 1979), which with constant incidence angle reduces to a simple multiplicative fac-
tor (H0p) on the Fresnel flat surface reflectivity (r0p):

rp ¼ r0pH0p ¼ r0pe
−Hp ¼ r0pe

−hpcos2 θð Þ (4)

where hp is the original roughness parameter in the Choudhury model; Hp represents a normalized rough-
ness parameter used later to compare the parameterization to literature values, and θ stands for incidence
angle. We do not assume polarization mixing in the rough surface (Q = 0). The flat surface reflectivity is
related to the εr of the soil through the Fresnel equations (e.g., Njoku & Entekhabi, 1996).
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We transformed both the retrieved εr and themeasured εr to soil moisture using theMironov dielectric model
(Mironov et al., 2009) in order to assess the results in the soil moisture scale. The use of the same model for
themeasured εr and the retrieved εr eliminates the additional uncertainty of potentially inaccurate and diver-
gent dielectric models applied to the in situ sensors and the retrievals.

2.4. Parameter Optimization Approach

Our goal was to find a set of model parameters for predicting soil moisture from the SMAP measurements.
Relatively little is known about the surface and vegetation parameterization at the global scale, in particular,
for forests. The underrepresentation of the forested field campaigns in the past have led most retrieval algo-
rithms to assume a set of values that is globally uniform or dependent on the land cover classification
schemes that do not necessarily correspond to the real variability of these parameters. Similarly, because lit-
tle is known of what Tveg should be, most algorithms assume the same value for Tsoil and Tveg (and focus on
retrieval times when the diurnally variable vertical temperature gradient is assumed to be smallest), but in
taller and denser canopies, such as forests, this assumption is more likely to break down. The local optimiza-
tion of the parameters will help us to answer the question of whether SMAP retrievals are possible but does
not automatically translate to globally applicable parameters.

Essential for testing SMAP's skill to detect soil moisture changes is an adequate range of soil moisture during
the test period. The first‐year measurements of SMAPVEX19‐21 provide a 0.35 m3/m3 range at the MA pixel
and a 0.39m3/m3 range at theMB pixel, which satisfies this requirement. For computing the reference soil εr,
we averaged themeasurements from the vertically installed sensors representing the spatial domain (see sec-
tion 2.1). We inverted the forward model and simulated soil εr for the measured SMAP TB with different
model parameter values. Thus, for each parameter combination, we had a set of inverted εr values corre-
sponding to the measured TB, which we compared with respect to the station‐measured εr. Moreover, we
extended the optimization process to include the selection of temperature measurements for Tsoil and Tveg.
Each parameter combination was computed with different permutations of the measured temperatures as
follows: Tsoilwas one of the temperatures measured by the soil moisture sensors, and Tvegwas one of the tem-
peratures measured by the soil moisture sensors or the air temperature.

We computed the RMSD (root‐mean‐square difference), mean difference (MD), and slope between the set of
inverted and measured εr for each case with different parameter values and temperature selections. Each
parameter was swept over a range of values and the metrics were computed for each case. Because it is pos-
sible to achieve the best RMSD with poor MD and/or slope, we set a limit for the MD and the slope and then
picked the parameter values corresponding to the minimumRMSDwithin this subset. We executed this pro-
cess separately for V and H polarization and the two experiment domains resulting in optimized Hp, tp, and
Sp parameters as well as a choice of temperature source for Tsoil and Tveg for both domains. There is no rea-
son to assumemajor seasonality forHp. The tp parametermay vary as a result of the water content changes in
the trees over the season, especially as the domains are dominated by deciduous species, which may also
affect Sp. The multiyear data set will provide a more robust basis for investigation of the seasonality of these
parameters; here we focused on demonstrating the sensitivity to soil moisture variability.

3. Results

We performed the parameter optimization approach described in section 2.4 for the MA and MB domain.
The slope limits for the parameter search were 1 ± 0.1, and the bias limits were ±1 in εr. There was a fair
amount of variability in the results, but we also observed that some cases with different combinations of
the parameters resulted in relatively similar results. The results were also reasonably similar when we sepa-
rated the SMAP morning (AM) and evening (PM) overpasses. Therefore, after some iteration we fixed the
roughness parameter for V and H polarization and the choice of temperature measurement (see below) as
we noticed that we could achieve essentially the same performance, but with more consistent parameteriza-
tion across different cases. This helps the interpretation of the results. For the parameter search, we com-
bined the AM and PM overpasses but computed the eventual metrics separately for the two cases.

Figure 2 shows the scatterplots in soil moisture for the retrievals over each domain using the SMAP vertically
and horizontally polarized TB for AM and PM overpasses separately. The outliers marked with circle corre-
spond to mostly PM overpass measurements very early in the season before leaf flush (Figure S1 in the
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supporting information shows the time series of the measurements and retrievals and indicates also the
timing of the outliers). We decided to remove these data points from the metrics computation because the
conditions between snowmelt and leaf‐on require further investigation, which is better studied using the
multiyear time series that will be eventually collected in the experiment. The RMSD ranges from 0.047 to
0.057 m3/m3 for the AM overpasses and from 0.046 to 0.055 m3/m3 for the PM overpasses; the Pearson
correlation ranges from 0.75 to 0.85 for the AM overpasses and 0.64 to 0.82 for the PM overpasses. The
correlation is somewhat higher for AM than for PM but otherwise the differences between AM and PM
metrics are small. The bias is negligible because we purposefully eliminated it by limiting it to ±1 in εr.
For MB, the RMSD was higher for H polarization than for MA, but MB also had a larger range of soil
moisture. Thus, despite the higher RMSD, MB had better correlations than MA in all cases. The metrics
demonstrate that the SMAP measurements are sensitive to soil moisture under forest canopy at a
reasonable precision.

The surface roughness parameter H0p for each case was 0.51 for V polarization and 0.43 for H polarization,
which translates to hp of 1.15 and 1.44, respectively, andHp of 0.67 and 0.84, respectively (see Table 1). These

Figure 2. Scatterplots of the retrieved and reference soil moistures using vertical (top row) and horizontal (bottom row) polarizations for MA (left‐hand side) and
MB (right‐hand side) pixels. The metrics show RMSD (m3/m3), bias (m3/m3), unbiased RMSD (ubRMSD) (m3/m3), and correlation (R) (‐) (P values <0.01).
The black dots represent the morning overpasses (AM), and the red dots represent the evening overpasses (PM). The circled data points are the early season
outliers, which are not included in the metrics.
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values are significantly higher than that used by the SMAP in its SCA (0.16; see Table 1) and at the high end
of roughness values reported in the literature, but not exceptionally high. Table 2 in Colliander et al. (2016)
showed Hp values reported in several studies that ranged from 0.06 to 0.9.

Table 1 shows the vegetation parameter values obtained in the search process. For the attenuation, the table
shows the values for both the tp and τp, and for the scattering for both Sp and ωp. The transmissivity is lower
and scattering is higher for the V polarization for both sites. This is expected because the vertical structures
of the forest interfere with the V polarization more effectively than with the H polarization. The transmissiv-
ity is somewhat lower for the MA pixel than for the MB pixel, which is in line with fact that the MB pixel
contains more nonforested areas. The scattering parameters are very similar for both domains, and notably,
ωp is nearly uniform across all cases. Correspondingly, the absorption is larger for MA. As absorption of the
vegetation determines the emission by the vegetation, the values indicate that at 20 °C temperature the vege-
tation TB contribution (ap · Tveg) would range from 40% to 55% of the total TB depending on the case. This
result highlights the importance of compensating for the vegetation correctly with both transmission and
scattering parameters using the right temperature. Table 1 also shows that the τp parameters are significantly
lower and the ωp parameters are higher than those used in the SMAP SCA. The current SMAP SCA parame-
terization results in overestimation and reduced sensitivity to soil moisture through the large τp parameter
value (see Figure S1).

The temperature measured by the 5‐cm depth (horizontally installed) soil moisture sensors were used for
Tsoil and the temperature measured by the vertically installed soil moisture sensors were used for Tveg.
There was some variability in the results for the optimal temperature between the vertical sensor and
5‐cm sensor, but the utilization of the same choice of temperatures for each case did not affect the overall
results markedly. The choice of the temperature sources optimizes the parameter search together with the
other parameters; this result alone does not directly indicate that these particular choices for the measure-
ments would correspond most accurately to the real effective temperature of the soil and vegetation. As a
practical example, the vegetation emission is a product of the absorption and the effective temperature
(see above); parameters leading to a lower absorption could be compensated with a higher temperature
and vice versa.

4. Discussion and Conclusion

In this letter, we took the first step toward quantifiably defined soil moisture retrieval for forests using space-
borne L‐band radiometry. We used the SMAP TB measurements to achieve results that affirm the capability
to retrieve soil moisture under the full canopy of temperate forests. The study focused on showing that we
could find a set of emission model parameters that retrieve soil moisture with a reasonable performance
from TB and physical temperature measurements. The V polarization RMSD to the in situ measurements
were 0.049 and 0.054 m3/m3 over the MA and MB sites and correlation 0.66 and 0.85, respectively; the cor-
responding metrics for the H polarization were 0.046 and 0.57 m3/m3 for RMSD and 0.64 and 0.83 for cor-
relation. The differences between polarizations and overpass times were not substantial. Traditionally,
this level of performance has been considered as a sign of successful soil moisture retrieval.

One of the significant findings of the study was the general level of transmissivity through the forest vegeta-
tion layer. While the attenuation by the forest is considerable, it is not enough to entirely suppress the soil
moisture signal. The selection of the vegetation transmission and scattering parameters is critical as well

Table 1
The Parameterization of the Retrieval Algorithm Used to Produce the Results in Figure 2 and the Parameter Values Used in the SMAP Single Channel Algorithm
(SCA) for the Experiment Locations (O'Neill, Chan, Njoku, Jackson, & Bindlish, 2019)

Surface roughness Vegetation attenuation Vegetation scattering Vegetation absorption SMAP SCA parameters

Site Pol H0p hp Hp tp τp Sp ωp ap hp τp ωp

MA V 0.51 1.15 0.67 0.45 0.80 0.09 0.12 0.51 0.16 1.86 0.05
H 0.43 1.44 0.84 0.59 0.53 0.05 0.10 0.38 0.16 1.86 0.05

MB V 0.51 1.15 0.67 0.47 0.78 0.09 0.12 0.48 0.16 1.50 0.05
H 0.43 1.44 0.84 0.61 0.49 0.06 0.12 0.35 0.16 1.50 0.05
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as the use of a correct physical temperature for the estimation of the vegetation emission. Traditionally, AM
overpasses have been favored for soil moisture retrieval because the temperature gradient between vegeta-
tion and soil tends to be smaller than later in the day (O'Neill, Chan, Njoku, Jackson, & Bindlish, 2019).
However, the air and soil temperature measurements recorded in the experiment exhibited a seasonal
change in the timing and magnitude of the gradient: The gradient was smaller during the AM overpasses
in the spring, but toward the late summer, the gradient was, in fact, smaller during the PM overpasses
(Figure S2). This explains the relative similarity of the metrics computed for the AM and PM retrievals
and suggests PM observations may be more useful for soil moisture retrieval (if vegetation canopy tempera-
ture can be correctly accounted for) than traditionally considered.

The flip side of the relatively large vegetation attenuation is that the TB measurements also carry a great
amount of information on the vegetation properties. In the past studies, the vegetation transmission for
L‐band TB has been related to the vegetation water content (Jackson & Schmugge, 1991; Kirdiashev
et al., 1979). Recently, the vegetation optical depth in forests has been related to plant hydrology (Konings
et al., 2019). This study supports this line of utilization of L‐band TB measurements. However, the tuning
process showed there are substantial differences between V and H polarizations. The commonly used algo-
rithms for retrieving vegetation parameters assume the same transmission and scattering values for V and H
(e.g., Chan et al., 2016; Chaubell et al., 2020; Konings et al., 2017; Njoku & Li, 1999). In light of this study,
these algorithms may need to account for polarization differences for a better performance in the future.

This study focused on the first‐year station‐based soil moisture measurements from SMAPVEX19‐21 to
demonstrate the sensitivity of the spaceborne L‐band TB to soil moisture. Eventually, the experiment will
provide a very rich data set on both soil and vegetation properties with a longer time series that will enable
more detailed investigations into both soil moisture and vegetation retrievals in temperate forest canopies.

Data Availability Statement

The SMAP data products (https://doi.org/10.5067/017XZSKMLTT2) and the station data (https://doi.org/
10.5067/3LXL78PSKVXQ and https://doi.org/10.5067/NXNJWN9933UI) can be accessed through the
National Snow and Ice Data Center (https://nsidc.org).
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