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ABSTRACT

STATISTICAL IMPROVEMENTS FOR ECOLOGICAL

LEARNING ABOUT SPATIAL PROCESSES

SEPTEMBER 2021

GAETAN L. B. DUPONT, B.Sc., CORNELL UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Chris Sutherland

Ecological inquiry is rooted fundamentally in understanding population abundance,

both to develop theory and improve conservation outcomes. Despite this impor-

tance, estimating abundance is difficult due to the imperfect detection of individuals

in a sample population. Further, accounting for space can provide more biologically

realistic inference, shifting the focus from abundance to density and encouraging

the exploration of spatial processes. To address these challenges, Spatial Capture-

Recapture (“SCR”) has emerged as the most prominent method for estimating

density reliably. The SCR model is conceptually straightforward: it combines a

spatial model of detection with a point process model of the spatial distribution

of individuals, using data collected on individuals within a spatially referenced

sampling design. These data are often coarse in spatial and temporal resolution,

though, motivating research into improving the quality of the data available for

vii



analysis. Here I explore two related approaches to improve inference from SCR:

sampling design and data integration. Chapter 1 describes the context of this the-

sis in more detail. Chapter 2 presents a framework to improve sampling design

for SCR through the development of an algorithmic optimization approach. Com-

pared to pre-existing recommendations, these optimized designs perform just as

well but with far more flexibility to account for available resources and challenging

sampling scenarios. Chapter 3 presents one of the first methods of integrating an

explicit movement model into the SCR model using telemetry data, which provides

information at a much finer spatial scale. The integrated model shows significant

improvements over the standard model to achieve a specific inferential objective,

in this case: the estimation of landscape connectivity. In Chapter 4, I close by

providing two broader conclusions about developing statistical methods for ecolog-

ical inference. First, simulation-based evaluation is integral to this process, but the

circularity of its use can, unfortunately, be understated. Second, and often under-

appreciated: statistical solutions should be as intuitive as possible to facilitate their

adoption by a diverse pool of potential users. These novel approaches to sampling

design and data integration represent essential steps in advancing SCR and offer

intuitive opportunities to advance ecological learning about spatial processes.

Keywords: Spatial capture-recapture; population density; spatial sampling;

optimal design; data integration; animal movement; movement modeling
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C H A P T E R 1

INTRODUCTION

1.1 Spatial processes in ecology

Fundamental to ecological inquiry is an understanding of population abundance

through time and in space. This has long been recognized and motivates the two

main factions of modern ecological research: theory and application. As we wit-

ness the anthropogenically initiated decline of countless species globally (coined

“the biodiversity crisis”; Pimm et al. 1995; Dirzo and Raven 2003), the need for

the most basic information on population size is apparent and essential (Williams

et al., 2002). Even a static measurement of total population size is seriously lacking

for many wide-ranging and elusive species of conservation concern – like the snow

leopard (Jackson et al., 2006) – with multi-national initiatives focused solely on

this issue. From a theoretical perspective, many foundational questions relate to

changes in population size due to changing demographic rates such as survival and

fecundity, stemming from any of a multitude of intrinsic and extrinsic ecological

factors (Lack, 1954; MacArthur and Connell, 1967). A focus on population density,

then, makes the matter explicit by considering populations in well-defined physical

space, bringing much-needed biological realism to any ecological question or objec-

tive. Even the ongoing COVID-19 pandemic is a timely example of this: groups
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of unmasked and unvaccinated individuals have decidedly higher infection rates, as

density directly relates to disease spread (Chu et al., 2020). Such dynamics can

be more complicated still: those density-dependent relationships can themselves be

dynamic in time and space, as is the case with the house finch conjunctivitis sys-

tem in which host congregations are actually less likely to facilitate disease spread

due to genetically acquired immunity (Hochachka et al., 2021). To more efficiently

understand the inner workings of these processes, a bit of math often comes in

handy.

One of the classic works on understanding populations in space is the Levins

metapopulation model. This mathematical model elegantly posits that patches

of habitat can be occupied or not and are subject to colonization or extinction

through time (Levins, 1969, 1970). Though the model is simple, its implications

are profound: in further extensions, the importance of spatial processes and spatial

heterogeneity is apparent as they influence the portion of patches occupied (equi-

librium occupancy) and the entire spatial distribution of a species (Hanski, 1999).

Further, when expanding to multi-species systems, species coexistence is impossible

without spatial heterogeneity (Levins and Culver, 1971; Gravel and Massol, 2020).

Even within such a simplified conceptualization of reality, the role of space quickly

takes center stage. And real ecosystems are far more complex: how animals interact

with each other and their surroundings results from processes of movement, home

range selection, local dispersal, spatial stratification, for example, all of which can

occur within a single patch (Morales et al., 2010). Encoded in these processes are

responses to the environment, whether adapting to thermal tolerances, seeking al-

ternative resources, or otherwise operating in the broader food web and ecosystem

at large (Spiegel et al., 2017). Excitingly, we can investigate the majority of these

processes using the vast array of statistical methods now available.
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1.2 Spatial capture-recapture

To estimate population density, Spatial Capture-Recapture (“SCR”) is by far

the most prominent and advanced method (Efford, 2004; Borchers and Efford,

2008). In its most basic form, the SCR model combines a spatial model of detection

(which is related to space use within a home range or territory), along with a point

process model that describes the distribution of individuals in space (Efford, 2004;

Borchers and Efford, 2008). Data are collected in the form of observations by

an array of detectors with known configuration and relative coordinates (camera

traps, hair snares, etc.) that allow for the identification of individuals within some

explicitly defined study area (Royle et al., 2018). Despite the rapid uptake in

ecology, the model remains largely in its infancy (Royle et al., 2018). To advance

SCR and further promote its widespread use, I explore in this thesis two especially

fruitful (and highly related) research avenues: sampling design and data integration.

The advantages of SCR are derived from the bottom up, starting with sampling

design. To obtain precise estimates of density, one should first look to improve

data quality, which requires improved sampling. Even before arriving at a field

site, we can stack the deck in our favor. In more detail, the problem of sampling

design for SCR can be simply stated: we have some number of detectors available

(let’s say, camera traps), but where should we place them? Previous research has

explored this issue to some success: we want to capture a lot of individuals to

understand the extent of variation in a population, but we also want to capture

individuals at a lot of traps for a more precise understanding of how individuals

use space. To achieve these competing objectives simultaneously, we can simplify

trap configuration in SCR to a focus on ensuring trap spacing is not too far and

not too close; the Goldilocks paradigm of design. Trap spacing too close minimizes
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the probability of encountering individuals, while trap spacing too far minimizes

the chance of individuals being captured at multiple traps. From there, previous

research has utilized ad hoc approaches. These rely on simple comparisons of the

distance between traps to the size of an individual’s territory so that traps are

just close enough to have 3-to-4 of them within an individual’s territory (Sollmann

et al., 2012; Efford and Fewster, 2013; Efford and Boulanger, 2019). Though good

in theory, the recommendations lack applicability. Regular spacing between traps

implies a regular grid of traps, and a regular grid makes for a rectangular study area.

But landscapes have far more structural character. For example, rugged terrain

carves out inaccessible areas, and governments liberally outline large portions of

land for military bases or other forms of restricted access. Unless we intend to

sample on a chessboard, there’s an obvious need for more flexible approaches to

optimize sampling designs and get the most out of the SCR model.

Much like sampling design, data integration also stems from a desire to im-

prove the quality of the data available to the SCR model. Robust inference on

density alone is indeed achievable through the use of an expertly designed sur-

vey. Still, any further inference on finer-scale processes will be hindered by the

otherwise coarse spatial resolution delivered by typical ecological monitoring ini-

tiatives. In contrast, telemetry data can provide data at a much finer spatial scale.

Collected by deploying a tag on an individual that records the location in space,

telemetry data opens up a rich variety of possible movement models and many

potential questions (Cooke et al., 2004). What the telemetry data lacks, though,

is information on the location of all individuals in the population, which is one

of the strengths of SCR, making for a natural integration. Recent advances to

combine these two data types into a unified statistical framework are rudimentary.

They rely on sampling only a fraction of the telemetry data at some regular time
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interval (i.e., “thinning” the tracks) to satisfy SCR’s requirement of temporal inde-

pendence between observations (Royle et al., 2013c; Sollmann et al., 2016; Linden

et al., 2018). Unfortunately, this degrades important information encoded in the

autocorrelative structure of movement paths. SCR and animal movement mod-

eling continue to grow in popularity (Nathan et al., 2008), motivating the need

to integrate the approaches. SCR’s population model can serve as the “statistical

glue” for including more sophisticated movement processes to answer more detailed

ecological questions (Kery and Royle, 2020).

1.3 A thesis roadmap

For the following chapters, I present my work on these two related concepts.

Chapter 2 focuses on optimal sampling design for SCR, which brought me to the

Sutherland lab group. This work was the product of a collaboration with Andy

Royle at the Eastern Ecological Science Center, widely-known for helping to bring

hierarchical modeling methods to the modern field of ecology; Ali Nawaz, one of

the world’s leading experts on snow leopards, who is associated with several of

the largest organizations focused on the species; and of course, my advisor, Chris

Sutherland, now at the Centre for Research into Ecological and Environmental

Modelling at the University of St Andrews, who excels at seamlessly integrating

those two perspectives of statistics and conservation. In our study, published in

Ecology (Dupont et al. 2021c, Chapter 2), we start by acknowledging that sampling

design for SCR can be framed as a straightforward optimization problem that can

be solved using existing algorithms. We developed such an algorithm that selects

trap locations by maximizing criteria directly related to the SCR model, and, using

simulation, we confirmed the robust performance of the approach. Now packaged
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into a user-friendly R function, researchers are already using this new framework

to design monitoring protocols worldwide (at the time of writing: snow leopards

in Pakistan and Mongolia and common leopards in South Africa, among others).

Chapter 3 showcases the statistical skillset I have continued to develop during

my degree and focuses on data integration to characterize non-Euclidean distance

in the SCR model (Sutherland et al., 2015). This project was another exciting

collaboration with Chris, and we were accompanied by Dan Linden at the National

Oceanic and Atmospheric Administration. Dan’s keen focus on the details, paired

with his statistical prowess, thoroughly complemented Chris’ astute ability to tease

out the most important, big-picture takeaways that lend so much toward crafting

the story of a paper. I owe much of my developed skillset to many hours spent

on Zoom with Chris and Dan, screen-sharing my latest figure as my eyes flickered

between their windows. This study, too, has been accepted in Ecology (Dupont

et al. 2021a, In press, Chapter 3) and details one of the first attempts at integrating

an explicit movement model into the SCR model, allowing all of the available data

to be utilized rather than just a fraction of it. Finally, in Chapter 4, I provide a

future outlook for research on design and data integration for SCR, pointing the

reader to other recent developments, as well as providing a field guide of sorts

of things to look for in the coming years that will be most meaningful to these

endeavors.
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C H A P T E R 2

OPTIMAL SAMPLING DESIGN FOR SPATIAL

CAPTURE–RECAPTURE

Gates Dupont, J. Andrew Royle, Muhammad Ali Nawaz, Chris Sutherland

2.1 Abstract

Spatial capture-recapture (SCR) has emerged as the industry standard for es-

timating population density by leveraging information from spatial locations of

repeat encounters of individuals. The precision of density estimates depends funda-

mentally on the number and spatial configuration of traps. Despite this knowledge,

existing sampling design recommendations are heuristic and their performance re-

mains untested for most practical applications. To address this issue, we propose

a genetic algorithm that minimizes any sensible, criteria-based objective function

to produce near-optimal sampling designs. To motivate the idea of optimality, we

compare the performance of designs optimized using three model-based criteria re-

lated to the probability of capture. We use simulation to show that these designs

out-perform those based on existing recommendations in terms of bias, precision,

and accuracy in the estimation of population size. Our approach, available as a
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function in the R package oSCR, allows conservation practitioners and researchers

to generate customized and improved sampling designs for wildlife monitoring.

Keywords: SCR, spatial capture-recapture, spatially-explicit capture-recapture,

camera traps, density, optimal design, sampling design, spatial sampling, trap spac-

ing, genetic algorithm

2.2 Introduction

The need for conservation managers and practitioners to obtain reliable esti-

mates of population size (Williams et al., 2002) has driven the rapid development

of data collection and estimation methods. Capture-recapture (CR), and more re-

cently, spatial capture-recapture (SCR; Efford, 2004; Borchers and Efford, 2008)

methods were developed specifically for this purpose and are now routinely applied

in ecological research. Concurrently, SCR methods estimate detection, space use,

and density by analyzing individual encounter histories while explicitly incorpo-

rating auxiliary information from the spatial organization of encounters (Efford,

2004; Royle et al., 2013b). Despite widespread adoption and rapid method devel-

opment, recommendations about spatial sampling design have received relatively

little attention and are arguably heuristic.

The effects of sampling design have been investigated for both CR (Dillon and

Kelly 2007; Bondrup-Nielsen 1983) and SCR methods (discussed below). While CR

methods aim to balance the number of captures and the number of recaptures, SCR

requires a third consideration: the spatial pattern of recaptures at multiple traps.

The ability to reliably estimate density is directly related to these considerations:

the number of captured individuals n is the sample size; the number of recaptures is

8



directly related to the baseline detection probability, g0; and the number and spatial

distribution of recaptures are directly related to the spatial scale parameter, σ, as

well as the spatial distribution of activity centers. Therefore, improving sampling

design has great potential to increase the quality of the data and the precision of

parameter estimates.

Several simulation studies evaluating SCR designs have shown that inference is

robust to the spatial configuration of traps, as long as some minimum requirements

are met: the trap spacing must not be too large relative to individual space use in

order to reliably estimate σ, but the array must not be too small such that too few

individuals are exposed to capture (Sollmann et al., 2012; Sun et al., 2014; Wilton

et al., 2014; Efford and Boulanger, 2019; Tobler and Powell, 2013). Repeated illus-

trations of this trade-off have lead to recommendations that trap spacing should

be approximately two times σ, which maximizes accuracy and minimizes bias of

abundance estimates (Sollmann et al., 2012; Efford and Fewster, 2013; Efford and

Boulanger, 2019). While most of this research has focused on uniform grids, simula-

tion has also shown that clustered designs can outperform uniform designs (Efford

and Fewster, 2013; Sun et al., 2014), particularly for heterogeneously distributed

populations (Efford and Fewster, 2013; Wilton et al., 2014). In summary, formal-

ization of the factors that contribute to optimal sampling design for SCR is in

it’s infancy, described only in generalities. In particular, it is unclear whether ex-

isting design heuristics generally hold for spatially-varying density patterns, or in

highly-structured landscapes where recommended regular trapping arrays cannot

be accommodated, and guidance of generating clustered designs is lacking.

Generally speaking, sampling design for SCR can be conceived as a problem of

selecting a subset of all possible trap locations that maximizes some SCR-relevant

objective function. Here we develop an analytical framework that directly addresses
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this challenge. Our approach generates a near-optimal sampling design with respect

to some appropriately defined objective function and information about available

resources (traps), a set of all possible trap locations, and information about SCR

model parameters. To motivate the idea of optimality, we use simulation to com-

pare the performance of existing recommendation to designs optimized using three

model-based criteria related to current thinking about the relationship between

data quality and estimator bias and precision. We explore design performances for

scenarios where we vary the spatial coverage of traps, the landscape geometry, and

deviations from uniform spatial distribution of individuals. Finally, our approach

is available as a function in the R package oSCR.

2.3 Methods

2.3.1 The standard SCR model

Typically, SCR models have two model components: a spatial model of abun-

dance describing the distribution of individuals characterized by the center of their

home range (hereby referred to as an activity center), and a spatial model of de-

tection that relates encounter rates to the distance between the activity center and

a trap (e.g., a camera trap). The most basic form assumes a uniform prior for the

distribution of activity centers, si:

si ∼ Uniform(S),

where S, referred to as the state-space, describes all possible locations of activ-

ity centers. To facilitate analysis, S is represented as a uniform grid of points

representing the centroids of equal-sized pixels. All individuals within the region,
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N , are exposed to capture resulting in the observation of n individuals and hence

n0 = N − n unobserved individuals.

While several formulations of the encounter model exist, we use, without loss

of generality, a half-normal encounter model that describes encounter probability

as a decreasing function of distance from an individual’s activity center si:

pijk = g0 × exp(−d(si, xj)
2/(2σ2)), (2.1)

where pijk is the probability of detection of individual i with activity center si at

trap j during sampling occasion k; d(si, xj) is the distance between the activity

center si and the trap xj, and g0 and σ are the baseline encounter probability and

spatial scale parameters, respectively.

2.3.2 Model-based objective functions

From Equation 1, we can use values of g0 and σ (e.g., from the literature or

estimates from a pilot study), to compute the probability that an individual with

an activity center si is detected in any trap in an array X , which we denote as p̄:

p̄(si,X ) = 1−
J∏
j=1

{1− p(si, xj)}.

The corresponding marginal probability of not being encountered is thus: p̄0(si,X ) =

1−p̄(si,X ). Taking the average over all G activity center locations in the landscape

S, we can compute the marginal probability of encounter:

p̄(X ) =
1

G

∑
s

p̄(si,X ).

We can also compute the probability of being captured in exactly one trap:

p̄1(si,X ) = p̄0(si,X )
J∑
j=1

p(si, xj)

1− p(si, xj)
.
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Finally, the marginal probability of being encountered at more than one trap, i.e.,

of a spatial recapture is:

p̄m(X ) =
1

G

∑
s

{1− p̄0(si,X )− p̄1(si,X )}.

Given that the precision of SCR density estimates depends on the total number

of individuals captured, n, and the number of spatial recaptures, m (Efford and

Boulanger, 2019; Royle et al., 2013b) – Qp̄ and Qp̄m represent logical criteria for

optimizing SCR designs (Royle et al. 2013b, Chapter 10). Herein lies one of our

novel contributions: we suggest three design criteria: Qp̄ = −p̄(X ), Qp̄m = −p̄m(X ),

and Qp̄b = Qp̄+Qp̄m . Importantly, if approximate values of the SCR parameters, g0

and σ, are available, these objective functions can be evaluated analytically for any

number and configuration of traps, providing a metric for efficient identification of

optimal SCR designs.

2.3.3 Optimization method

We applied a genetic algorithm (GA) to the task of finding a design that mini-

mizes any criterion, noting that optimality here is with respect to the defined cri-

teria, and in the context of the GA is ’near-optimal’ (see Appendix A & Goldberg,

1989). The GA is a random search algorithm which produces multiple generations

of solutions, where subsequent generations retain characteristics of top performing

solutions from the previous generation. Generations are produced until converging

on a near-optimal solution. Wolters (2015) adapted the algorithm to solve a k-

of-n problem which describes concisely the challenge of the SCR sampling design:

the selection of some number of traps, k, in a landscape of n possible locations

according to some objective function. We provide a detailed description of the

general GA, the k-of-n adaptation, and our implementation in the R package oSCR
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in Appendix A and Appendix D.

Conceptually, minimizing the space-filling objective function Qp̄ maximizes the

expected sample size n. In contrast, minimizing Qp̄m prioritizes the exposure of

individuals to more than one trap and should maximize the number of spatial

recaptures m. The third criteria, Qp̄b , attempts to balance Qp̄ and Qp̄m .

2.3.4 Design constraints

We were primarily interested in evaluating the performance of SCR designs

produced by our framework under a range of biologically-realistic scenarios in an

attempt to develop a more general understanding of how performance varies as

a function of the following design constraints: geometry, defined as the shape of

the study area and ease at which a regular square trapping grid can be deployed;

density pattern, defined as the nature of departure from uniform distribution of

individuals; and effort, defined as the number of traps available for the design.

Geometry – As has been typical in studies investigating SCR sampling designs,

we begin using a square study area with complete accessibility and which lends

itself to uniform trapping grids (the regular area, Figure 1). To replicate the design

challenges posed when generating real-world designs, we also consider an irregular

area (Figure 1). For this, we use one of the study areas that motivated this work:

a large area in Northern Pakistan (3865 km2) that is the focus of a snow leopard

(Panthera uncia) camera trapping study, but that has several logistical challenges

that determine accessibility (i.e., remoteness, private property, altitude, and slope).

To define the complete region of the state-space, we used a 3σ buffer around the

trapping extent. The regular area is represented by 24 x 24 landscape with a

resolution of 0.5 units, the irregular study area is represented by 89.85 x 133.04

landscape with a resolution of 1.73 units, for a total of 2304 cells in each of the
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geometries (Figure 1). While these two state-spaces differ in absolute terms, we

insured comparability in relative terms by the definition of area-specific sigma (see

below).

Density pattern – Existing investigations of SCR sampling designs typically

assume a homogeneous distribution of individuals (but see Efford and Fewster,

2013). Here we formally test the adequacy of designs under specific violations of

this assumption. We consider three spatial density patterns: a uniform and two

spatially-varying. To generate non-uniform density patterns, we simulated land-

scapes defined by a parametric Gaussian random field that allows for specification

of the degree and range of spatial autocorrelation. Gaussian random fields were

generated using the R package, NLMR (Sciaini et al., 2018). The values of the simu-

lated landscape were scaled from 0 to 1 and individual activity centers distributed

according to the following cell probabilities:

πi =
eβ1∗Xi∑
eβ1∗Xi

, (2.2)

where Xi is the scaled landscape value at pixel i and β1 is defined as 1.2 to represent

a weak but apparent density pattern. The two inhomogeneous density patterns dif-

fer in the scale of spatial autocorrelation. For consistency, we defined this distance

in relative terms to the length of the longest side of the state-space: 6% for a weak

density pattern that produces a patchy landscape, and 100% for a strong density

pattern produces a landscape with a more contiguous gradient (see Figure 1 for a

single realization of the density patterns). Using these three density patterns al-

lows us to evaluate designs through a full range of biological realism, with uniform

and strong density patterns representing the polar ends of reality, and the patchy

landscape representing the most realistic sampling scenario.
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Figure 1. Simulation surfaces for design evaluation
Here we show all possible trap locations overlaid on the uniform landscape for the regular (top)
and irregular (bottom) study area geometries alongside a single realization of two (weak: middle,
strong: right) of the three (uniform not shown) landscape covariates. For the regular geometry,
we tested 12 designs each. For the irregular geometry, we tested 9 designs each. This makes for
a total of 63 scenarios.

2.3.5 Design generation

Designs were generated using fixed values of g0 and σ (see below), a set of po-

tential trap locations, and the number of traps that are available to deploy. It is

assumed that the user has knowledge or access to data on information approximate

values of SCR parameters, would be able to produce a set of all potential sampling

points, and would have some idea of resources (traps) available. For the regular

area, we generated Qp̄, Qp̄m , and Qp̄b designs for each of the three levels of effort

where there was no restriction on where traps could be placed. In addition, we

15



generated a regular 2σ design for comparison. For the irregular area in the moun-

tains of Pakistan, we generated only criteria-based designs at each of the three

levels of effort (Figure 2). In this case, areas known to be too remote, too high

altitude, or too steep to be accessed were removed from the set of potential trap

locations. Mirroring real design challenges faced by managers, it was not practical

to generate a 2σ grid for the irregular area, and therefore it is not included. This

full scenario analysis resulted in a total of 21 designs; 12 designs for the regular

area (the three optimized and the 2σ design), and 9 designs for the irregular area

(optimized designs only).

2.3.6 Evaluation by simulation

We exposed a population of N = 300 individuals to sampling via each of the

21 designs described above. We simulated encounter histories assuming proximity

detectors and under the binomial encounter model encounter (Eq.1) with g0 = 0.2,

k = 5. The two geometries differ in terms of their spatial units so area-specific

σ values were chosen such that the number of home ranges required to fill the

areas and achieve an equal density was equivalent: σreg = 0.80 and σirreg = 2.59.

We simulated individuals according to the three density patterns described above

(Eq.2), resulting in a total of 63 scenarios of interest (three density patterns for

each of the 21 design; Appendix C).
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Figure 2. Designs and detection surfaces in the irregular study area
Irregular study area with designs generated using our new framework with three SCR-intuitive,
model-based criteria (Qp̄, Qp̄m , and Qp̄b), under three levels of effort. 144 traps represents the
same number of traps as used to generate a full 2σ grid in a regular study area of the same area.
100 traps is nearly two-thirds as many traps, and 49 is nearly one-third as many traps. Each pixel
of the state-space is colored according to the probability of capture, p, for an individual with an
activity center at the centroid of the pixel.
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For each scenario, we simulated 300 realizations of activity centers. Covariate

surfaces were generated randomly using the same seed, again resulting in variation

among simulations but consistency across scenarios. In some cases, the realization

of activity centers did not provide at least one spatial recapture; we recorded the

number of these failure s and generated a new realization of activity centers until a

single spatial recapture was obtained in order to proceed with model fitting. This

only occurred for Qp̄ designs with minimum effort, and for less than 5% of the

simulations.

We analyzed the resulting encounter history data using a null SCR model (d·)

and, for spatially structured density scenarios, a density-varying model (ds). This

allowed us to test if accounting for the landscape would improve bias and precision

in parameter estimates. For each simulation, and each model, we retained estimates

of g0, σ, and total abundance (N̂).

We compared estimates of model parameters to the data-generating values in

terms of bias (percent realtive bias, %RB), precision (coefficient of variation, CV),

and accuracy (scaled root mean square error, SRMSE). All simulations were con-

ducted in R, SCR models were fit using the package oSCR (Sutherland et al., 2019),

and designs were generated using the scrdesignGA() function also in oSCR (de-

tailed workflow provided in Appendix D, repository referenced in Appendix I). De-

sign generation and simulations were performed in R version 3.6.1 (R Core Team,

2019).

2.4 Results

We first focus on relative bias. Encouragingly, under the regular-area, homogeneous-

density scenario, designs generated using the genetic algorithm perform as well
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as existing 2σ recommendations, producing unbiased estimates of abundance for

nearly all combinations of design and effort (Figure 3, Table 1). In the case of the

irregular geometry with uniform density, Qp̄m designs perform well for all levels

of effort, but performance of Qp̄ and Qp̄b designs declines as the number of traps

is reduced, a consequence of widely-spaced traps that result in very few spatial

recaptures (Figure 3, Table 1).

Table 1. Percent relative bias of point estimates from tested designs
Percent relative bias of baseline detection (g0), space use (σ) and total abundance (EN) for each simulation
scenario, varying: design criteria (Design), landscape shape (Geometry, Regular or Irregular), the number
of traps (Effort), and density patterns (Density). We present results from null (d·) and varying density (ds) models.

Regular Irregular

g0 σ EN g0 σ EN

Effort Density Design d· ds d· ds d· ds d· ds d· ds d· ds
49 uniform 2σ 2.52 – -0.38 – 0.78 – – – – – – –

Qp̄ 0.82 – -1.00 – 7.27 – 2.27 – -1.84 – 8.34 –
Qp̄m 1.33 – -0.19 – 1.76 – 1.78 – -0.15 – 0.62 –
Qp̄b -0.61 – -2.06 – 13.32 – 2.53 – -4.11 – 17.90 –

weak 2σ 3.16 3.16 -0.62 -0.61 -0.26 -0.05 – – – – – –
Qp̄ -0.58 -0.58 0.20 0.25 5.70 5.75 -1.51 -1.51 -1.11 -1.07 9.93 9.89
Qp̄m 0.08 0.08 0.06 0.11 0.99 1.99 1.15 1.15 -0.27 -0.22 0.07 2.74
Qp̄b -2.73 -2.73 -2.36 -2.16 16.12 14.83 0.19 0.19 -1.48 -1.46 13.68 14.09

strong 2σ 2.26 2.26 -0.47 -0.48 1.82 3.48 – – – – – –
Qp̄ 1.84 1.84 -0.75 -0.78 6.43 6.55 1.18 1.18 -0.27 -0.32 5.80 6.17
Qp̄m 2.09 2.09 -0.47 -0.48 1.20 6.82 2.29 2.29 -1.03 -1.01 2.40 9.02
Qp̄b 0.99 0.99 -3.47 -3.41 14.54 14.10 2.75 2.75 -3.32 -3.26 15.13 15.14

100 uniform 2σ 2.04 – -0.69 – 0.58 – – – – – – –
Qp̄ 2.42 – -0.61 – 0.90 – 1.42 – -0.77 – 2.11 –
Qp̄m -0.97 – 0.20 – 1.07 – 0.74 – -0.18 – 0.83 –
Qp̄b 0.07 – 0.05 – 1.12 – -0.15 – -0.51 – 2.55 –

weak 2σ -0.13 -0.13 0.15 0.14 -0.34 -0.19 – – – – – –
Qp̄ 0.61 0.61 -0.27 -0.29 0.95 0.98 0.97 0.97 -0.48 -0.49 1.82 1.89
Qp̄m 1.68 1.68 -0.77 -0.78 -0.24 0.34 -0.09 -0.09 0.09 0.08 0.34 1.04
Qp̄b 1.07 1.07 -0.16 -0.18 0.01 0.03 1.23 1.23 -0.30 -0.27 1.06 1.11

strong 2σ 0.35 0.35 -0.30 -0.30 1.42 1.72 – – – – – –
Qp̄ 0.18 0.18 -0.93 -0.95 2.89 3.12 1.07 1.07 -0.46 -0.49 0.93 1.40
Qp̄m 0.64 0.64 -0.04 -0.05 0.90 1.47 1.97 1.97 -0.56 -0.59 -0.44 1.34
Qp̄b 0.60 0.60 -0.43 -0.43 1.36 1.44 0.21 0.21 -0.05 -0.06 0.40 0.80

144 uniform 2σ 1.32 – -0.25 – 0.27 – – – – – – –
Qp̄ -1.06 – 0.28 – 1.53 – 0.72 – 0.08 – -0.27 –
Qp̄m 0.93 – -0.28 – 0.88 – 0.53 – 0.00 – 0.75 –
Qp̄b 0.35 – -0.07 – 0.90 – 2.12 – -0.77 – 0.72 –

weak 2σ 0.49 0.49 -0.33 -0.33 0.41 0.50 – – – – – –
Qp̄ 0.64 0.64 -0.24 -0.25 0.44 0.47 0.61 0.61 -0.20 -0.20 0.50 0.51
Qp̄m 1.31 1.31 -0.47 -0.48 -0.39 -0.21 0.03 0.03 0.05 0.04 0.07 0.43
Qp̄b -0.02 -0.02 -0.32 -0.33 1.00 0.98 0.77 0.77 -0.25 -0.26 0.93 0.92

strong 2σ 0.70 0.70 -0.25 -0.25 0.80 1.01 – – – – – –
Qp̄ 1.35 1.35 -0.31 -0.32 0.32 0.47 -0.13 -0.13 0.21 0.19 0.33 0.66
Qp̄m 0.14 0.14 0.15 0.14 0.32 0.58 1.74 1.74 -0.55 -0.57 -0.22 0.69
Qp̄b 1.18 1.18 -0.19 -0.20 -0.03 0.14 -0.59 -0.59 0.12 0.09 0.20 0.62
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For scenarios from the regular study area with inhomogeneous density, all de-

signs produced unbiased estimates of abundance, generally. There is a slight bias (±

5%) introduced as the number of traps declines, even for the 2σ designs. However,

this phenomenon is less apparent in Qp̄m designs, suggesting improved performance.

In the irregular study area, design performance is more dependent on the spatial

structure of density. Once again, Qp̄m designs produced unbiased estimates, and

Qp̄ and Qp̄b designs performed poorly with fewer traps (Figure 3, Table 1).

Interestingly, explicitly including the landscape covariate governing spatial vari-

ation in density (i.e., ds rather than d·) does not improve performance metrics for

any of the designs in any scenario (Figure 3, Table 1), reinforcing the general opin-

ion that SCR models are robust to misspecification of the density model. In fact,

fitting the data-generating model for the inhomogeneous cases actually performs

worse in low effort scenarios. This suggests that the low numbers of traps do not

adequately represent the variation in the landscape, and therefore, the model is

unable to reliably estimate the underlying landscape effect (Figure 3, Table 1).

Estimator precision and accuracy generally follow the same patterns as for the

bias (Appendix E, Appendix F, Appendix G). Design performance declines as ef-

fort decreases for all designs across every scenario. In the regular study area with

uniform density, the 2σ and Qp̄m designs share similar levels of precision, while the

Qp̄ and Qp̄b designs with minimal effort are less precise in comparison, with this

pattern being magnified in the irregular area. Generally, there is a slight loss of

precision in estimates across all designs, but this effect is less apparent for Qp̄m

designs, which maintain their relative equivalency to the standard recommenda-

tion, including for the lowest level of effort (when considering comparison across

geometries). In scenarios with inhomogenous density, both Qp̄ and Qp̄b designs

with minimum effort show precision that is obviously reduced using the null model.
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Figure 3. Results from simulation-based evaluations of designs
Percent relative bias (%RB) of estimates of total abundance from the three tested sampling designs
under three levels of effort on three density surfaces within two geometries, where estimates are
the result of one of two SCR models: density invariant (d·, open shapes) or density-varying (ds,
closed shapes). The four designs – 2σ, Qp̄, Qp̄m , Qp̄b – are represented by the four shapes: circles,
triangles, squares, and diamonds, respectively. To illustrate estimator precision, vertical lines are
50% confidence intervals, noting that the 50% intervals are proportional to 95% intervals but offer
a visual balance of bias and associated variance. The thick horizontal line represents no bias in
estimates, with the thin horizontal lines representing an allowable amount of bias (± 5%).

However, the density-varying model once again shows no noticeable improvement,

and causes a decrease in precision for Qp̄m designs with the fewest traps.

Overall, designs generated using our proposed framework showed comparable

performance to standard recommendations, and critically, these designs are robust
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to a variety of constraints that include effort, density signal, and geometry.

2.5 Discussion

In this study, we develop a conceptual and analytical framework for gener-

ating near-optimal designs for SCR studies. We suggested three intuitive and

statistically-grounded design criteria that can be optimized to produce candidate

designs. We demonstrate that designs generated using our framework can perform

at least as well as those based on existing heuristics, and further, that the generality

and flexibility of our approach means it can be applied to any species or landscape

according to logistics and available resources.

It is worth noting that the designs produced using this framework can be con-

sidered approximate in terms of specific location, and that the actual, finer-scale

site-selection for traps can be informed by knowledge of the species’ biology and

behavior (e.g., Fabiano et al., 2020). Further, while we develop this framework with

camera traps in mind, this method can easily be applied to determine the general

location of other non-invasive surveys, wherein the selection of a sampling location

instead activates some other form of sampling effort (see Fuller et al. 2016; Suther-

land et al. 2018). Importantly, the degree of sampling effort must be maintained

among all selected sampling locations.

The designs we created using model-based criteria exhibit their own unique be-

haviors (Figure 2, Appendix B). The Qp̄ criteria generates space-filling designs to

maximize the area covered and thereby the expected sample size of unique indi-

viduals. As more traps are added, the inner area becomes fully-saturated (such

that it is insured that every possible home range will contain at least one trap),

and the criteria instead focuses on selecting external traps that patrol the edge of
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the trapping extent in order to increase the probability of capture for individuals

outside of that area. However, despite the benefit of increasing the sample size

(n captured individuals), traps placed too distant from each other fail to generate

important spatial recaptures. This is precisely the issue that propagated failures

for both Qp̄ and Qp̄b designs with minimum effort (Appendix H).

In contrast, Qp̄m designs are space-restricting as a result of an inherent trade-off

between increasing the number of individuals exposed to capture and having traps

close together to insure captures at more than one trap. With fewer traps, however,

the effective sampling area is markedly decreased (Figure 2), thereby reducing the

sample size. This observation further motivated our evaluations of the designs for

inhomogeneous density, which along with the reduced spatial coverage and hence

non-representative sampling, is likely responsible for the bias observed in those

scenarios, as well as the lower precision.

The Qp̄b designs can best be described as ”clustered space-filling” (Figure 2,

Appendix B), as this criteria aims to balance the objectives of Qp̄ and Qp̄m , which

it can do effectively when provided with a sufficient number of traps. However,

as seen with Qp̄ designs, the Qp̄b design performance suffers when too few traps

are employed due to even larger distances between traps as a result of clustering,

greatly reducing performance even beyond that of Qp̄.

More generally, these designs support previous recommendations while also pro-

viding new insights. When full effort is possible in the regular area geometry, the

Qp̄ design fully saturates the trapping extent with some traps to spare in order

to meet its objective, while Qp̄m does not quite fill the trapping area (Figure 2,

Appendix B). Interestingly, the 2σ design falls somewhere between these two ex-

tents, likely striking an effective balance between the number of captures (as in Qp̄)

against the number of spatial recaptures (as in Qp̄m), which we also see with Qp̄b
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and similar to the effect described by Efford and Boulanger (2019). Despite these

differences in spatial configuration, differences in design performance are mostly

negligible (Figure 3, Table 1, Appendix E, Appendix F, Appendix G).

As shown by Sun et al. (2014), incorporating trap clustering into sampling

designs can be advantageous, as doing so allows for increased likelihood of spatial

recaptures to facilitate estimation of the spatial scale parameter, σ. However,

the clustered designs proposed by Sun et al. (2014) follow a regular pattern such

that there are a limited number of levels of trap spacing, whereas the designs we

generated result in a wider distribution of distances between traps. This shifts the

importance away from a regular spatial structure of trap configuration to one that

is decidedly irregular in order to gain better resolution of movement distances for

estimating σ. This is especially useful knowledge and central to generating designs

for irregular study areas. Interestingly, this results in designs with smaller effective

sampling areas, suggesting that it might be better to reduce the total area covered

by the design rather than focus on completely covering the area (within reason).

A major insight here is that hierarchical clustering (the selection of approximately

2σ-spaced clusters of traps with further reduced within-cluster spacing) emerges

naturally from the Qp̄m criterion, effectively formalizing the clustering heuristic

proposed by Sun et al. (2014).

Our proposed criteria produced designs which perform well, yet there is scope

for refinement. With a decrease in effective sampling area, the introduction of

bias and imprecision in parameter estimates could be complicated further when

the population being sampled has a stronger degree of spatial structuring than we

tested here. Designs sampling only areas where individuals are concentrated will

result in overestimates of population size and density relative to the whole study

area, while those sampling away from concentrated areas will do just the opposite.
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This effect is particularly noticeable from the density-varying model (ds), which

generally has relatively lower performance over the fully invariant model as it is

including information from nearby traps sampling a landscape that is intrinsically

spatially auto-correlated. Advancing this framework to generate designs that ex-

plicitly account for the spatial patterns in density as a function of a given landscape

is clearly an area for further development, especially if the inferential objective is

to estimate density-landscape relationships rather than density or total abundance.

Recently SCR sampling design for multi-species sampling has been considered,

with some discussion on how the distribution of trap spacing can allow for better

estimates for species with a variety of home range sizes (Rich et al., 2019). However,

the design proposed for this purpose lacks a reproducible framework that can be

generalized to any biological community. Alternatively, employing our framework

for multi-species sampling could be a straightforward approach to this problem,

with important implications for the use of SCR to be more easily applied for the

study of ecological communities. Again, a highly appealing feature of our Qp̄m

approach is the emergence of designs with much better distribution of trap spacing

than under regular designs such as 2σ grids, ideal for sampling groups of species

with varying spatial movement ecology.

We considered three criteria that are intuitive in the context of the performance

trade off of sample size (n) and spatial recaptures (m). While intuitive, alterna-

tive criteria surely exist. For example, Efford and Boulanger (2019) propose an

approximation of the variance of density which is related to n and m, and therefore

can easily be formulated as an objective function to be optimized in the same way

as Qp̄ and Qp̄m . Indeed, the function scrdesignGA() is designed such that any

user-defined objective functions can be used (e.g., Durbach et al. 2020 In press).

We hope that this ability to simultaneously (and efficiently) generate and evaluate
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designs based on a variety of design criteria will motivate further research on SCR

study design.

Our results show that designs obtained under our proposed criteria perform

well relative to design heuristics and can be obtained efficiently as solutions to

an optimization problem for arbitrary configurations of possible trapping locations

and landscapes, unlike standard recommendations based on 2σ and cluster designs.

Both CR and SCR studies are extremely expensive and require substantial effort to

conduct, making it imperative that managers are provided with a method to select

detector placement before deployment, such as the approach we have presented

here. As a result, designs will produce a greater amount of expected information

and will lead to more accurate estimates of parameters that describe biological

populations of interest, which is critical to global conservation efforts, especially for

low density and declining species that are of conservation concern but challenging

to monitor.
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C H A P T E R 3

IMPROVED INFERENCES ABOUT LANDSCAPE

CONNECTIVITY FROM SPATIAL

CAPTURE-RECAPTURE BY INTEGRATION OF A

MOVEMENT MODEL

Gates Dupont, Daniel W. Linden, Chris Sutherland

3.1 Abstract

Understanding how broad-scale patterns in animal populations emerge from

individual-level processes is an enduring challenge in ecology that requires inves-

tigation at multiple scales and perspectives. Complementary to this need for di-

verse approaches is the recent focus on integrated modeling in statistical ecology.

Population-level processes represent the core of spatial capture-recapture (SCR),

with many methodological extensions that have been motivated by standing eco-

logical theory and data integration opportunities. The extent to which these recent

advances offer inferential improvements can be limited by the data requirements

for quantifying individual-level processes. This is especially true for SCR models
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that use non-Euclidean distance to relax the restrictive assumption that individual

space use is stationary and symmetrical in order to make inferences about landscape

connectivity. To meet the challenges of scale and data quality, we propose inte-

grating an explicit movement model with non-Euclidean SCR for joint estimation

of a shared cost parameter between individual and population processes. Here, we

define a movement kernel for step selection that uses ”ecological distance” instead

of Euclidean distance to quantify availability for each movement step in terms of

landscape cost. We compare performance of our integrated model to that of ex-

isting SCR models using realistic animal movement simulations and data collected

on black bears. We demonstrate that an integrated approach offers improvements

both in terms of bias and precision in estimating the shared cost parameter over

models fit to spatial encounters alone. Simulations suggest these gains were only

realized when step lengths were small relative to home range size, and estimates

of density were insensitive to whether or not an integrated approach was used. By

combining the fine spatiotemporal scale of individual movement processes with the

estimation of population density in SCR, integrated approaches such as the one we

develop here have the potential to unify the fields of movement, population, and

landscape ecology and improve our understanding of landscape connectivity.

Keywords: Animal movement, connectivity, cost function, data-integration, spatial

capture-recapture

3.2 Introduction

Current ecological theory frames population processes as emerging from individ-

ual behaviors and interactions with local environments that scale up to landscape-
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level patterns (Levin, 1992; Morales et al., 2010; Spiegel et al., 2017). Complemen-

tary to this perspective are integrative statistical frameworks for the treatment of

data from multiple sources, now a prominent research focus in statistical ecology

(Plard et al., 2019). Integrated modeling offers an analytical approach that, by

combining data for inference across levels of biological organization, facilitates the

advance of ecological theory (McClintock et al., 2021). Spatial capture-recapture

(SCR; Efford 2004; Royle and Young 2008) presents an unparalleled opportunity

for exploration at the crossroads of these endeavors, built upon an implied model of

individual space use related to a model of how individuals are distributed in space.

However, the model is typically informed by data on spatially-explicit encounter

histories that are relatively sparse if not insufficient for characterizing more detailed

biological processes as opposed to population-level inferences (e.g., spatial variation

in density). Data integration can directly address this challenge, providing the abil-

ity to improve inferences about mechanism and creating an explicit link between

individual- and population-level processes and landscape-level spatial patterns.

Many methodological extensions of SCR have been motivated by standing eco-

logical theory (see review by Royle et al. 2018), although the extent to which these

advances offer inferential improvements is somewhat limited by data requirements.

Fortunately, the integration of spatially-rich telemetry data into SCR can enable

more complexity in the encounter model and improved inferences about density

(Royle et al., 2013c; Sollmann et al., 2016; Linden et al., 2018), as well as extend-

ing the types of spatial encounter data that can be used (Sollmann et al., 2013;

Tenan et al., 2017; Murphy et al., 2019). However, much of the focus has been on

processing telemetry data to match standard SCR assumptions (e.g., temporal inde-

pendence of detection locations), and, despite the obvious conceptual linkages, the

formal integration of an explicit movement model within SCR is surprisingly rare.
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Indeed, recognizing and implementing joint movement and SCR models represents

the next frontier in spatial population ecology (Royle et al., 2013b; McClintock

et al., 2021).

Non-Euclidean SCR models relax a restrictive, though statistically-convenient,

assumption that animal home ranges are stationary and symmetrical (Royle et al.

2013a, Sutherland et al. 2015). The implications of this formulation have an even

broader impact: the model offers an explicit statistical framework for understanding

how landscape structure determines spatial population structure, which is funda-

mental to a wide range of ecological processes (Tischendorf and Fahrig, 2000; Shaw,

2020). This is accomplished through the direct estimation of landscape resistance,

the mathematical inverse of which represents landscape connectivity, a central fea-

ture of all spatially-structured populations (Zeller et al., 2012).

Beyond the pervasiveness of structured landscapes, understanding the interplay

of landscape connectivity and the emergent spatial population structure at broad

spatial scales is especially critical as habitat conversion and fragmentation are in-

creasing globally, with critical implications for the management and conservation

of landscapes (Gupta et al., 2019) and for the viability of the majority of extant

megafauna (Haddad et al., 2015). However, despite the central role of connectivity

in modern conservation science (McRae et al., 2008; Rayfield et al., 2011), there

remain few methods for empirically estimating its components, let alone simultane-

ously describing spatial population structure (Tischendorf et al., 2005; Zeller et al.,

2012; Hanks and Hooten, 2013; Howell et al., 2018). By jointly estimating land-

scape resistance and population density, the non-Euclidean SCR model directly

addresses these challenges using standard ecological encounter history data (Morin

et al., 2017; Gupta et al., 2019).

It is perhaps optimistic to expect reliable estimation of cost function parameters
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using only sparse encounter history data that arise from capture-recapture studies

– particularly for elusive, low-density, and wide-ranging species for which estimates

of connectivity hold most value (Creel et al., 2020; Crooks et al., 2011, 2017).

Small sample sizes of coarse location data limit the space-use complexity of any

SCR model, particularly those using non-Euclidean distance, where least-cost paths

will have greater uncertainty as the distances in time and space increase between

observations. This problem could be mitigated through the integration of fine-

scale movement data (e.g., telemetry) and, to accommodate the inevitable temporal

autocorrelation, an explicit movement model (Hooten et al., 2017). The integration

of explicit movement in the non-Euclidean SCR model should help inform the

direction and strength of cost parameters that are challenging to estimate using

SCR data alone (Sutherland et al., 2015).

Here we develop a telemetry-integrated, non-Euclidean SCR model that incor-

porates an explicit movement model, in which the spatial encounter and teleme-

try likelihoods share parameters of a cost function. We use a straightforward

implementation of a weighted distribution for movement (Johnson et al., 2008)

where non-Euclidean distance defines availability. We evaluate our model using a

novel simulation approach that derives spatial encounter and telemetry data from

individual-based movement simulations, and analyze the resulting encounter histo-

ries using our integrated SCR-movement cost models, with standard SCR models

used for benchmarking. We evaluate the performance of the model under a range

of conditions designed to test sensitivity to data quality and the number of teleme-

tered individuals. As a case study, we apply the model to data on an American

black bear (Ursus americanus) population (Sun, 2014) and discuss these results in

the context of the simulations.
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3.3 Methods

3.3.1 Spatial capture-recapture with non-Euclidean distance

We begin with a brief description of a standard, constant-density SCR model

with a binomial encounter model. Specifically, we have spatially-indexed encounters

yij representing the number of detections of individual i at detector j across K

surveys. With no survey-specific variation, we model the encounters as Binomial

random variables having an encounter probability pij conditional on the latent

activity center si:

yij|si ∼ Binomial(K, pij).

We assume a homogeneous point process for si across the support of the state

space M which will require integration during likelihood estimation. Encounter

probability is a decreasing function of the Euclidean distance dEuc(xj, si) between

the activity center si and detector xj:

pij = p0 × exp

(
− dEuc(xj, si)

2

2σ2
det

)
,

where p0 is the baseline encounter probability and σdet is the scale parameter of

a Gaussian kernel (i.e., the half-normal detection function), both of which are

parameters to be estimated. We refer to this model as MEuc.

The encounter function of MEuc is assumed to be proportional to the individual’s

home range, which implies that home ranges are stationary and symmetric. While

statistically convenient, this core assumption is unlikely to hold in reality. Royle

et al. (2013a) demonstrated how the Euclidean distance assumption can be relaxed

with direct estimation of the parameter of a cost function by modeling encounter

probabilities using estimated distances of least-cost paths, dlcp(xj, si), rather than

simple measures in Euclidean space. This distance substitution gives rise to a
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model, which we refer to as Mlcp, where:

pij = p0 × exp

(
− dlcp(xj, si)

2

2σ2
det

)
.

The cost distance is calculated as follows. First consider a discrete landscape V of

some predefined resolution, where each pixel ν has associated coordinates x and a

covariate value, z(ν). Any path P between two locations (e.g., x and x′) consists

of M transitions between pairwise adjacent pixels {ν0, ν1, . . . , νM} and we define a

cost function for moving from pixel to pixel as:

cost(νm, νm+1) =
exp(α1z(νm)) + exp(α1z(νm+1))

2

Here, α1 is a cost parameter to be estimated. For a given value of α1 and all L

reasonable paths, the least cost path dlcp, calculated using Dijkstra’s Algorithm

(Dijkstra et al., 1959), is:

dlcp(x,x
′) = min

P1,...,PL

ML∑
m=0

cost(νm, νm+1)× dEuc(νm, νm+1).

Conceptually, the cost surface is a functional transformation of a spatially vary-

ing covariate surface using α1. When α1 = 0, dlcp(xj, si) = deuc(xj, si), and as

α1 increases, cost distance diverges from Euclidean distance. When informed by

spatially structured individual encounter data, this divergence of distance metrics

provides a mechanism for estimating α1, i.e., finding the value of the cost parameter

that best describes the spatial pattern of the encounter history data.

Regardless of the encounter function used, the latent activity centers must be

integrated out of the joint likelihood (over the support ofM) to form the marginal

likelihood of the encounter data, [y|α1, p0, σdet]. Following Borchers and Efford

(2008) we assume population size is a Poisson random variable such that the joint

likelihood can enable direct estimation of density as the mean intensity, λ, of a
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Poisson point process:

LSCR(α1, p0, σdet, λ|y) =

{
n∏
i=1

[yi|α1, p0, σdet]

}
Λnexp (−Λ(1− π0))

where Λ = λ||M|| = E(N) and π0 is the probability of an all-zero capture history.

3.3.2 Animal movement with non-Euclidean distance

Here we describe a simple approximation of a spatiotemporal point process

model for movement (Hooten et al., 2017) where the probability of an observed

location is determined by a redistribution kernel (Moorcroft and Barnett, 2008)

conditional on the previous location (i.e., a first-order Markov process) and an

attraction to the home range center. This type of weighted distribution approach

allows for estimation of resource selection from telemetry (Johnson et al., 2008;

Christ et al., 2008) though our model has reduced complexity and focuses on the

availability in terms of cost distance. Critically, it is the cost parameter α1 that is

to be estimated from a collection of telemetry locations.

Consider an observed movement trajectory for individual i over T fixed-interval

time steps, µit = µi1,µi2, ...,µiT , where we assume there is no observation error in

the observed location (i.e., u ≡ µ). To model movement between steps we define

an availability function or redistribution kernel, k(µit|µi,t−1, θ), where the relative

probability of a location µit is a decreasing function of both the cost distance from

the previous location µi,t−1 and the cost distance from the average of all locations

µ̄i for individual i:

k(µit|µi,t−1, θ) = exp

(
−
dlcp(µit,µi,t−1)2

2σ2
step

− dlcp(µit, µ̄i)
2

2σ2
home

)
.

The location µ̄i is treated as known and is used to capture the effect of central ten-

dency in movement (in this case, within the home range). Spatial scale parameters
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represent the variance in movement between observed locations in the movement

trajectory (σstep) and across the home range (σhome). We note also that σhome differs

from σdet from the SCR model in that there is not an additional detection process

occurring for telemetry data as there is for SCR data. Based on this redistribution

kernel, the normalized conditional probability of the observed locations becomes:

[µit|µi,t−1, θ] =
k(µit|µi,t−1, θ)∫
k(µ|µi,t−1, θ)dµ

For our discrete landscape from earlier, the locations µ are associated with pixels ν

and the integral in the denominator above becomes a summation across all ν ∈ V :

[νit|νi,t−1, θ] =
k(νit|νi,t−1, θ)∑V
g=1 k(νg|νi,t−1, θ)

To accommodate an excess number of steps where pixel location does not change,

potentially representing a behavioral state resulting in no movement, we model

the probability Pr(νit 6= νi,t−1) = ψ that an individual moves from the last known

location/pixel. The likelihood for the movement model therefore has the following

form:

Lmove(α1, σstep, σhome, ψ;ν) =

Ntel∏
i=1

T∏
t=2

ψ

(
k(νit|νi,t−1, θ)∑V∗

g=1 k(νg|νi,t−1, θ)

)I(νit 6=νi,t−1)

× (1− ψ)
I(νit=νi,t−1)

Here, the denominator calculates availability for pixels νg ∈ V∗, representing all

pixels in the discrete landscape not including νi,t−1. Note, we do not model the

first location (t = 1) under the assumption that this loss of information is small

with a long time series of telemetry locations (Johnson et al., 2008), although the

first location could be modeled as: µi1 ∼ Normal(µ̄i, σhome), in discrete space.

3.3.3 Integrating the movement model into SCR

The joint SCR-movement likelihood combines the cost-based SCR likelihood

and cost-based movement likelihood through shared estimation of the cost param-
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eter α1. We refer to this model as iMlcp, where ”i” stands for integrated :

LiMlcp
(α1, p0, σdet, λ, σstep, σhome, ψ;y,ν) = LSCR × Lmove.

Note that the joint estimation of cost assumes that the effect of landscape resis-

tance is equivalent across scales of movement, whether steps between telemetry

locations or the long-term utilization of a home range resulting in trap encounters.

An assumption of consistency should be reasonable since cost paths are scaled by

distance and calculated as accumulations of pixels with the same resolution.

The joint likelihood treats data from spatial encounter histories and teleme-

try as independent, i.e., there is no overlap in identities of passively-detected and

telemetered individuals. Though this is not always the case in practice, it does

create flexibility in the model to allow for sampling from different time periods,

and importantly, should have little consequence on the primary biological inference

objectives, namely: cost and density (Royle et al., 2013c).

The the joint likelihood function is provided in Appendix L. Model parameters

are estimated using maximum likelihood methods (Borchers and Efford, 2008) in

R (R Core Team, 2019). Least cost paths are computed using Dijkstra’s Algorithm

(Dijkstra et al., 1959) implemented in the R package gdistance (Etten, 2017).

3.3.4 Evaluation by simulation

Our primary evaluations of the model were conducted through simulation, test-

ing sensitivity to data quality and comparing performance against the standard

Euclidean and non-Euclidean SCR-only models.

We begin by defining the SCR state space (M), which is the area within which

all individual activity centers are simulated and the area for which density is esti-

mated. We defined a discrete set of 25 x 25 points representing the centers of 1 x
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Figure 4. Outline of movement simulations
General outline of realistic movement simulations, with subfigures a-c representing consecutive
steps in the workflow. (a) First, using a Gaussian field model we generate a cost surface, where
yellow is low cost and dark purple is high cost. Proximity detectors (traps) are black crosses,
and the black bounding box indicates the inset region shown in figures b and c. (b) Activity
centers are generated randomly (not shown) and are used to simulate movement tracks, with one
show in dark blue. These tracks differ in the value of σstep, either small (top) or large (bottom),
and relative to σhome as shown on the right side. (c) Movement tracks are thinned and recorded
as trap captures, collected as SCR data, as shown by the black circles with white text for the
number of captures at that trap.

1 unit pixels. Activity centers can be located at any pixel within M, but to allow

unconstrained movement trajectories, especially for those activity centers located

close to the edges, we define a second landscape, V , comprising all theoretically pos-

sible movement trajectories given our simulation settings, such that ||V|| > ||M||.

We define V as a grid of 137 x 137 points representing the centers of each 0.25 unit

x 0.25 unit pixels in the movement landscape, noting that the resolution of V is

finer than M to allow finer scale movement trajectories that better approximate
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continuous space. We generated a cost covariate landscape by assigning pixel val-

ues in V generated under a Gaussian random field model with weak autocorrelation

(maximum autocorrelation range = 6 pixels), which was then scaled from 0 to 1

(Figure 4a). Gaussian random fields were generated in R using the package NLMR

(Sciaini et al., 2018).

We simulated movement trajectories and subsequently derived encounter data

as emergent properties of the movement data based on proximity to an array of

traps. To do so, we randomly generatedN = 100 activity centers, with replacement,

fromM. Then, using the model described above and the availability landscape V ,

we simulated movement tracks for every individual using the activity center as

the initial location. Movement paths were generated for T = 2160 times steps

(or ”fixes”) approximating hourly fixes over a hypothetical three-month period

(Figure 4b). Parameters of the data-generating movement model were chosen to

reflect biologically-realistic parameter combinations and are provided in Table 2.

Spatial encounter histories were then derived from the simulated movement

paths based on a 10 x 10 trapping grid located in the center of the study area

(Figure 4c). If a movement step contained a trap, it was ‘detected’ with proba-

bility 0.1, where the binomial thinning ensures that the distribution of recaptures

and spatial recaptures were realistic when compared to empirical SCR data (see

Appendix J: Figure 9 for scenario-specific summaries of the spatial encounter his-

tories). Per standard design recommendations, detectors spaced 1.75 units apart

(approx. 2σhome) leaving a 3 unit (3σhome) buffer to the edge of M.

This approach of deriving spatial encounter histories from individual movement

data differs from the traditional approach of simulating data directly from the

SCR model. We believe our approach provides a valuable simulation framework

for exploring SCR model performance and sensitivity under a range of potential
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Table 2. Model parameters and simulation values
Parameters of the integrated model along with pre-defined values used for the simulation study,
where parameter name, symbol, and biological interpretation are shown in each row. Numbers
in bold highlight the main difference between the two simulation scenarios, small-σstep and
large-σstep.

Parameter Symbol Small-σstep Large-σstep Biology

Cost α1 1 1 Resistance of the landscape to
movement

Baseline detection p0 – – Detection probability at the ac-
tivity center in the home range

Detection spatial scale σdet 2.5 2.5 Scaling factor determining shape
of the detection kernel

Home range spatial scale σhome 2.5 2.5 Scaling factor determining size of
the home range

Density λ 0.16 0.16 Number of individuals in the
state-space

Step distance spatial scale σstep 0.625 2.5 Scaling factor determining the
size of the movement kernel

Probability moved ψ 0.9 0.9 The probability that an individ-
ual moves, i.e., that it leaves the
pixel

assumption violations and, as demonstrated here, movement characteristics.

We were interested in exploring model performance as a function of two features

of telemetry data: the number of telemetered individuals used in the analysis, and

ratio of the spatial variance parameters. First, to evaluate whether the performance

of the integrated model was sensitive to the number of telemetered individuals in-

cluded, we considered the inclusion of 1, 3, and 5 individuals. Second, we evaluated

model performance with respect to the variance ratios, which we motivate conceptu-

ally as representing potential differences in either species propensity for movement

or the telemetry fix rate. Specifically, we tested two ratios: the spatial scale of

the steps σstep being one quarter that of the home range space use parameter σhome
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(the ”small-σstep scenario”, σstep = 0.25σhome), and σstep and a ”large-σstep scenario”

where the ratio was 1 (σstep = σhome).

We simulated 100 data sets under each σstep-ratio scenario. For each, the ac-

tivity centers, corresponding movement paths (i.e., telemetry data), and the cost

surface were generated randomly. Individuals were subject to detection via the

trapping array resulting in n individuals with non-zero encounter histories (i.e.,

SCR data). We analyzed the SCR and telemetry data using the integrated non-

Euclidean model where the 1, 3, or 5 movement tracks were randomly selected

from all 100 individuals. As a comparison, we also analyzed each data set without

telemetry data, i.e., an SCR-only data set, using the non-Euclidean SCR model

(Mlcp), which is a special case with 0 telemetered individuals. In summary, we fit

two SCR variants – not integrated and integrated – to each data set, and for the

integrated model consider 1, 3, and 5 telemetered individuals, i.e., 4 comparisons

for each σstep-ratio scenario. We note that, rather than model the detections as a

function of the spatiotemporal proximity to the movement path as per the data

generating procedure, SCR detections are modelled as function of distance to the

latent activity center. The former requires an additional conditional structure and

individuals that appear in both the telemetry and SCR data. While dependency

is straightforward (e.g., Linden et al., 2018) a latent movement model for the en-

counter data would be a computationally intensive extension for our model, which

we do not consider.

For the 8 simulation sets, we evaluated model performance by computing per-

cent relative bias for each parameter. For model Mlcp in the large–σstep scenario, we

removed 4 simulation results due to poor model fit. All simulations and analyses

were conducted in R version 4.0.3 (R Core Team, 2019), and are available in our

Open Science Framework repository (Dupont et al., 2021b).
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3.3.5 Case study: New York black bears

As a demonstration of the model in practice and its relative performance, we

analyze data from a study of black bears in western New York (Sun, 2014). The

data consists of 103 hair snares from a non-invasive genetic mark-recapture study,

which resulted in spatial encounter histories for 33 individuals. In addition to the

trapping, three bears were fitted with GPS collars in the same study area during

the same time period (Figure 6a). These data are described in detail in Sun (2014).

We used percent forest (”% forest”) as the cost covariate, but note that our

model can easily accommodate the simultaneous estimation of multiple cost pa-

rameters associated with multiple landscapes. We derived % forest from the Na-

tional Land Cover Database (NLCD) (Yang et al., 2018) by aggregating the 30-m

raster to a 500 m resolution and calculating the proportion of forest pixels therein

(Figure 6a). NLCD data were accessed using the R package FedData (Bocinsky,

2016). We defined the state-space as a 4968 km2 rectangular area with a 3σdet buffer

around the trapping array, based on the σdet estimated in previous analyses of these

data (Royle et al., 2013c; Morin et al., 2017), and a resolution approximating σstep,

calculated from the raw fix locations using Euclidean distance.

We analyzed the bear data using the four models described above (see also:

Appendix J: Table 9). Our primary comparison was between the existing model

Mlcp and our integrated model, iMlcp. For more thorough reference and compar-

ison, we included all applicable null models. To explore the effect of individual

variation, we also fit the integrated model including only a single individual at a

time. These analyses were conducted in R and all code is provided in our Open

Science Framework repository (Dupont et al., 2021b).

After obtaining model results, we followed the procedure of Morin et al. (2017)
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to produce surfaces of realized density (i.e., the estimated density of activity centers

conditional on the observed data) and density-weighted connectivity (i.e., expected

pixel use based on estimated cost and weighted by realized density).

3.4 Results

3.4.1 Evaluation by simulation

We first report results from the small-σstep scenario. The standard non-Euclidean

SCR model (Mlcp) produced a biased estimate of cost (%RB =–17) with relatively

low precision (Figure 5, Appendix J: Table 10). In contrast, and consistent with

the remarkable robustness of SCR, estimates of density were unbiased (Figure 5).

In terms of estimating the cost parameter, integrating telemetry data improved

performance considerably: data from a single individual alone reduced the bias to

just –3%) and markedly improved the precision (Figure 5, Appendix J: Table 10).

Telemetry data from more individuals resulted in further improvements (Figure 5,

Appendix J: Table 10).

Thus, the integrated model consistently produced unbiased and precise esti-

mates of both the data-generating movement parameters and density (Figure 5

and Appendix J: Table 10). Moreover, the performance (both bias and precision)

improved with the addition of more telemetered individuals (Figure 5 and Appendix

J: Table 10).

In the large-σstep scenario, and consistent with the small-σstep scenario, estimates

of density were unbiased irrespective of whether integration was used, although

precision was marginally poorer (Figure 5). What was strikingly different in the

large-σstep scenario, where distances between locations were larger, and hence num-
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Figure 5. Results from simulation-based evaluations
Percent relative bias from simulation results. To illustrate estimator precision, vertical lines
are 50% confidence intervals. 50% intervals are proportional to 95% intervals but offer a visual
balance of bias and associated variance. Blue and fuschia shapes represent the small- and large-
σstep scenarios, respectively. Triangles represent model Mlcp and squares represent model iMlcp,
with an increasing number of telemetered individuals (inset number). Gray shaded area shows
an acceptable amount of bias (±5%). Full results in Appendix J: Table 10.

ber of possible least cost paths was greater, was the inability to reliably estimate

the cost parameter. In all cases, regardless of number of telemetered individuals

included, the integrated model produced biased estimates of α1, ranging from –26%

to –20% (Figure 5, Appendix J: Table 10).
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Table 3. Case study results
Results from American black bears analysis. From left to right: fitted model (see Methods:
Case study for reference), all estimated parameters showing point estimates with standard errors
directly below in parentheses, and the negative likelihood value.

model α1 log(λ) σdet p0 ψ σstep σhome –loglik AIC

MEuc - –3.843 1.238 –2.768 - - - 124.32 254.64

- (0.254) (0.139) (0.361) - - -

Mlcp 0.226 –3.845 1.284 –2.736 - - - 124.27 256.54

(0.753) (0.254) (0.209) (0.377) - - -

iMEuc - –3.843 1.238 –2.768 –0.666 –0.195 1.914 3874.45 7762.90

- (0.254) (0.139) (0.361) (0.048) (0.020) (0.164)

iMlcp –1.172 –3.841 0.812 –2.882 –0.666 –0.624 1.439 3835.42 7684.84

(0.111) (0.255) (0.138) (0.368) (0.048) (0.044) (0.165)

3.4.2 Case study: New York black bears

The results from the black bears case study were consistent with the simula-

tion results suggesting no appreciable influence of cost or telemetry integration on

density estimates (Table 3). Most importantly in the context of this study, the in-

tegrated model (iMlcp) captured an effect of cost that was both stronger and more

precise (estimate: –1.17 [SE: 0.11] vs 0.23 [SE: 0.75]; Table 3) than the SCR-only

model (Mlcp). In fact, the standard model suggests no compelling evidence of a

resistance effect due to forest whereas the integrated model reveals a strong and

highly plausible negative effect of decreased resistance as forest cover increases.

Finally, fitting the integrated model to each of the 3 individuals separately

indicated some heterogeneity in the estimated cost parameter but consistency in

the direction and relative magnitude of the effects (Appendix J: Figure 10).
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3.5 Discussion

Integrated data modeling represents a promising statistical framework for test-

ing and advancing theory about ecological processes across multiple scales. Here,

we illustrated an integration of trap encounters and telemetry locations that embed-

ded an explicit movement model within spatial capture-recapture, leveraging their

conceptual linkages. Together, movement data provide high-resolution information

on step selection, and encounter history data allow for landscape-scale inference

about spatial patterns of density, facilitating an improved understanding of how

landscape-scale patterns of density and connectivity emerge from individual-level

processes. Specifically, we provide an intuitive and flexible statistical framework for

integrating telemetry and encounter history data; we highlight the value of an inte-

grated modelling approach for improved inferences about the processes of density,

space use, and landscape connectivity simultaneously.

Our method for integrating fine-scale telemetry data offers key performance im-

provements over the original non-Euclidean SCR model, and suggests that these

improvements are related to the quantity and quality of the telemetry data. Here

we considered including data on only a few individuals (1, 3, 5), and observed pre-

cision gains for the cost parameter that increased with the number of telemetered

individuals added. In contrast, estimates of density did not benefit from the in-

tegration, likely due to the lack of spatial variation in density (e.g., Linden et al.,

2018). Notably, performance improvements were only realized in scenarios where

the spatial scale of consecutive fixes is much less than the spatial scale of individual

space use; here, the integrated model is both unbiased and more precise than the

non-integrated version. When the distance between fixes is relatively large, there

is a loss of precision in both density and cost and estimates of cost are negatively
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biased. The latter is likely due to uncertainty about the exact path taken between

two locations at larger distances, which degrades the effect size of any cost relation-

ships. In practice, the movement integrated model is recommended when telemetry

data are available, motivated by both the conceptual and empirical advantages pre-

sented here, but we note that efforts should be made to select fix rates that result

in short step lengths relative to the size of the home range (i.e., σstep < σhome). In

general, and when individual heterogeneity in movement is low, fix rate appears to

be more important than the number of collared individuals in terms of estimator

improvements.

It is perhaps optimistic to expect accurate inference about fine-scale movement

processes from coarse-scale SCR data (Sutherland et al., 2015). Indeed, this was

evident from both the simulations and the bear case study, where cost parameters

are not well estimated without the integration of high-resolution telemetry data via

an explicit movement model. The addition of even a single telemetered individual

resulted in the recovery of the cost parameters with accuracy and precision, a pat-

tern noted in the context of SCR models that integrate resource selection functions

(Royle et al., 2013c). Though it is not advisable to rely on a single animal for infer-

ences due to individual heterogeneity in movement (Revilla and Wiegand, 2008),

the bear case study did indicate consistency across individuals in the direction and

magnitude of the cost estimate (Appendix J: Figure 10). Either way, the benefits

of the non-Euclidean model may only be realized with large amounts of spatial

recaptures (which is unlikely in practice), or through integrated approaches such as

we develop here. Estimation of landscape connectivity is an important endeavour

in wildlife conservation, yet is not well developed, especially using empirical obser-

vations (Zeller et al., 2012). Our integrated model provides an important formal

statistical link between individual data and estimates of landscape connectivity
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(Figure 6).
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Figure 6. Case study data and results
Black bear data and results. (a) The % forest covariate surface, black crosses are hair snares and
colored paths are movement tracks for three individuals. Density-weighted connectivity (DWC)
from model Mlcp (c), and from model iMlcp (d). Boxplot representation of the percent difference
between DWC from model Mlcp and model iMlcp. Finally, (e) is a spatial representation of the
percent DWC differences (i.e., c minus d).

We demonstrated clear improvements in SCR model performance with teleme-

try integration, as has been shown previously (Royle et al., 2013c; Sollmann et al.,

2013; Linden et al., 2018). These other approaches formalized telemetry integration

by joint estimation of shared parameters, particularly the detection scale param-

eter (see our exploration on sharing the space use parameter within this model

presented in Appendix K). Royle et al. (2013c) additionally relied on diluting or

thinning their high-resolution telemetry data to match the coarser scale of spatial
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encounter histories rather than integrating an explicit movement model. Though

thinning telemetry data removes autocorrelation to satisfy independence assump-

tions, it removes by definition the conditional dependence in the observed locations

that directly reflects fine-scale decisions about movement. Retaining the sequential

structure of movement paths by explicitly modeling those decision processes yields

improved insights about animal movement (McClintock et al., 2021). By also lever-

aging the less obvious connection between SCR and movement models, namely the

existence of a shared cost function, we allowed those benefits to be realized at the

population and landscape level.

In contrast to conventional SCR simulation approaches, where encounter his-

tory data are simulated from the expected encounter model, we allowed encounter

data to emerge as a property of simulated animal movement paths. We did not

fit this data-generating model (due to the additional computational complexity),

but used it for simulation as it offers some specific benefits. Movement paths are

allowed to evolve from a wide range of well-established and flexible models that can

be parameterized according to known species characteristics (Hooten et al., 2017).

As a result, the emergent encounter data arise as a property of the movement

model rather than the specified SCR model, arguably a more preferable challenge

for model evaluation with greater ecological realism. This provides a flexible sim-

ulation structure for better understanding how model performance varies under a

wider range of scenarios that includes considerations specific to the system, the

species, or sampling. For example, we investigated model performance for two

scenarios related to the ratio of the variance parameters σstep and σhome, which we

motivate as being representative of potential differences in either species propensity

for movement or the telemetry fix rate, but ultimately that give rise to different

data structures (Figure 4b). In terms of density estimation, these differences had
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little effect, apart from a marginal increase in precision. However, the models were

sensitive to the characteristics of the data when estimating parameters related to

movement. In the large ratio scenario, estimates of the cost parameter (α1, Figure

5) and the movement scale parameter (σstep, Appendix J: Table 10) were system-

atically biased low whereas the estimated SCR spatial scale parameter (σdet) was

always higher (Appendix J: Table 10).

Our simulation structure also allowed us to consider the consequences of incor-

rect parameter sharing, motivated by the high prevalence in the SCR literature of

interpreting σdet as an estimate of space use, rather than explicitly defining it as

a detection range which is proportional to space use. Under this interpretation,

there is likely to be a temptation to assume some equivalency (i.e, σdet = σhome,

which we show produces negatively biased estimates of cost and density (Appendix

K). Depending on the assumed model of individual movement, the variance of a

bivariate normal kernel estimated from the location data may not be equivalent to

that as estimated by the encounter histories using SCR. Ultimately, our simula-

tions highlight that strict biological interpretations of movement parameters from

standard SCR models should generally be avoided.

Our movement model addresses a fraction of what is possible among the diverse

and complex animal movement processes for which models have been developed

(Hooten et al., 2017). Our implementation of the weighted distribution approach

makes a restrictive assumption that telemetry fixes have regular time intervals, and

while it did not affect simulations it did likely affect the black bear case study. We

expect that the consequence was similar to that for spatial encounter data alone,

namely that landscape cost was slightly underestimated when hourly steps were

diluted by steps with longer time periods between. This problem could be explored

through simulation or addressed more comprehensively by the movement model
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likelihood (Johnson et al., 2008). Relatedly, the first order Markov relationship

between steps ignores the history of movements prior to the step in time t− 1, and

this covariance across time could be estimated (Johnson et al., 2008). Finally, we

did not model the latent movement of individuals from the encounter data (i.e., the

data-generating model) which could inform far more spatial and temporal complex-

ity in the encounter model at the expense of computational burdens. Our approach

was intended to illustrate the clear benefits of including a straightforward move-

ment model when integrating telemetry into SCR using a likelihood approach that

can be easily implemented by extending existing software (e.g., Sutherland et al.,

2019). Current applications of integrated models are simply the tip of the iceberg

and will expand as technology and algorithm development continue (McClintock

et al., 2021).
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C H A P T E R 4

DISCUSSION

4.1 Summary and synthesis

Spatial capture-recapture is a promising approach to study spatial and temporal

dynamics in biological populations, creating a powerful opportunity to leverage the

mechanistic model for more detailed ecological learning about spatial processes,

as demonstrated in this thesis. These advanced methods allow us to formalize

hypotheses about landscape connectivity (Sutherland et al., 2015), spatial structure

(Royle et al., 2015), resource selection (Royle et al., 2013c), and demographic rates

(Gardner et al., 2010). The challenge of utilizing these advanced methods relies on

improving the quality of the data available, which is readily achievable through a

focus on sampling design and data integration.

In Chapter 2, I illustrated an algorithmic approach to optimize sampling design

using criteria directly related to the inner workings of the SCR model (Dupont et al.,

2021c). Compared to the pre-existing recommendations that focus on grid-based

designs, these optimal designs performed just as well but with far more flexibility to

account for available resources and challenging sampling scenarios. This approach

represents a fundamental shift in the design conceptualization process for SCR by

formalizing it within an optimization procedure applicable to any species in any

51



study area. Relieving the onus of trap placement selection from practitioners and

researchers with this solution will result in better designs with expected increases

in data quality, especially critical for species of conservation concern on a global

scale.

In Chapter 3, I demonstrated the integration of an explicit movement model

into the non-Euclidean SCR model to achieve a specific inferential objective, the es-

timation of landscape connectivity (Dupont et al., 2021a). Data integration shares

a similar motivation to sampling design but requires more nuanced approaches for

modeling. For example, previous demonstrations use only a fraction of the available

data to avoid addressing assumptions of independence. In contrast, the approach

I presented is one of the first descriptions of a method for integrating an explicit

model that allows for the comprehensive inclusion of auxiliary information into

the SCR model. The integrated model showed significant improvement over the

standard, non-integrated SCR model in terms of bias and precision for estimat-

ing landscape resistance and connectivity. In doing so, the modeling framework

provides a more insightful approach grounded in the ecological process of animal

movement.

4.2 Future directions

These novel approaches to sampling design and data integration represent es-

sential steps in advancing SCR while creating opportunities for more sophisticated

methods. Some extensions of this work have already commenced. For example,

Durbach et al. (2021) formulated a design criterion based on a metric proposed by

Efford and Boulanger (2019) and adopted the algorithmic approach from Chapter

2 to optimize trap locations accordingly. This new criterion could generate designs
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that accounted for expected spatial variation in density, representing a substantial

advancement for SCR and highlights the flexibility of the framework in Chapter

2. Other adaptations involving additional criteria should be pursued, such as for

multiple species sampling. I have begun preliminary work with colleagues on this:

the approach is made straightforward by the algorithm’s flexibility, but it requires

further evaluation before broad-scale field implementation. Improving sampling

design in any of these directions, whether single- or multi-species, delivers more

data to the SCR model and facilitates our ability to answer more sophisticated

ecological questions.

Data integration offers opportunities for improvement that are equally excit-

ing. First and foremost, more complicated movement models exist and could be

employed, especially those designed to address more directly the typical nuances of

telemetry data (such as irregular fixes or location error) or more complex processes

of animal movement. One obvious opportunity would be a more direct treatment

of the scales of selection (short-term steps and long-term home range). Although

the integrated model in Chapter 3 relies on the assumption of equivalence between

these two scales of selection with reasonable justification, there could be scenarios

that violate this assumption. One method for addressing this would be the Markov

chain Monte Carlo (”MCMC”) step selection models developed by Michelot et al.

(2019) (see also: Michelot et al., 2020). These models describe multi-scale selec-

tion resulting from the same underlying habitat selection process by leveraging the

conceptual similarity between animal movement and MCMC algorithms. Regard-

ing ecological advancements, a population model with an explicit movement model

could present one approach for direct inference on differences in selection on terri-

tory versus during dispersal and relative effects of landscape characteristics during

those distinct ecological processes (Cushman et al., 2013). Previous attempts have
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been limited or have used ad hoc approaches rather than formal estimation proce-

dures (Zeller et al., 2012).

Additional research opportunities exist at the crossroads of these two endeavors.

Movement corridor design would be a natural fit, leveraging an extension of the

spatial selection algorithm from Chapter 2 with the model for landscape resistance

from Chapter 3. For example, previous research has focused on corridor design

(Peterman, 2018) and reserve design (Gupta et al., 2019), but not through an in-

tegrated population-movement model. Similarly, species reintroduction programs

focus on the ideas of optimal placement and connectivity (Rout et al., 2007), the

decision-making process for which could benefit from the development of a for-

mal optimization approach. Interestingly, such an approach could serve at the

scale of a population or a metapopulation, utilizing a connectivity surface of either

density-weighted connectivity (Morin et al., 2017) or occupancy-weighted connec-

tivity (Meyer et al., 2020). Finally, pairing multi-species sampling methods with

species-specific models to estimate connectivity could illuminate new insights into

how communities share corridors for movement and whether there is convergence on

specific habitat types and structures across species. This could lead to advances in

both community and landscape ecology, especially to understand better the utility

of umbrella species in conservation planning (Simberloff, 1998).

4.3 On developing methods for ecology

I close by providing two broader conclusions about developing statistical meth-

ods for ecology. First, simulation-based evaluation is integral to this process, but

the circularity of its use can, unfortunately, be understated. In Chapter 2, I

adopted the typical approach where the data-generating model matched the model
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for estimation. In contrast, my evaluations in Chapter 3 employed a unique data-

generating model, considerably more sophisticated than the estimation model. The

estimation model served as an approximation for the data-generating model, prefer-

able for its relative simplicity and efficiency. This approach to model evaluation

highlighted critical nuances of the model, which could be investigated more directly

given the quality of the simulated data. For example, highlighting the nuances of

direct interpretation of SCR model parameters would not have been possible under

the typical approach. Though in scenarios using simpler models, as in Chapter 2,

the circularity between simulation and estimation should be less problematic.

A counterargument related to that circularity leads me to my second conclusion.

In Chapter 3, the existence of the more sophisticated model for data generation

means that it could be adapted for estimation, likely improving inference. This

assertation is undoubtedly true. Readily overlooked, though, is that statistical so-

lutions should be intuitive at some level to facilitate their widespread use. The

SCR model is a perfect example: it is a conceptually simple hierarchical model,

reasonably straightforward to specify in software like JAGS, making it easily un-

derstood by a diverse pool of potential users. Importantly, such simplicity should

also be matched in SCR model extensions when possible. Chapter 2 leveraged the

conceptual clarity of the SCR model, reflected by the model-based criteria, rather

than utilizing an alternative approach that could be less familiar to users. Chapter

3 used a relatively simple movement model but leveraged that model’s similarity

to the components of the SCR model. Indeed, the capabilities of the most ad-

vanced models are impressive – and in many ways, the work presented in Chapters

2 and 3 would be considered advanced by some audiences. Intuitive approaches,

though, are critical in encouraging the widespread use of new methods, promoting

the advancement of ecological inference.
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A P P E N D I X A

GENETIC ALGORITHM DETAILS

The design-generation function discussed here, scrdesignGA(), serves as a wrap-
per around the k-of-n genetic algorithm implemented by the R function, kofnGA()
(Wolters, 2015). The genetic algorithm that drives the design-generation process
conducts a random search for solutions until it converges on a near-optimal solution.
This algorithm is in the broader class of evolutionary algorithms, and following this,
its components are named in similar terms.

The algorithm starts by generating a random set of possible solutions, which
is the initial population of ‘offspring’ (in this context, designs). The size of the
population is constant throughout the process, and is determined by the user via
the popsize parameter. The offspring are then evaluated according to an objective
function, resulting in a ‘fitness’ value for each offspring. Some proportion of the
offspring are then allowed to ‘breed’ – determined via the keepbest parameter –
which in effect is a mechanism that shares the ‘genetic’ material of the most fit
offspring (i.e., the beneficial components) in order to make the next ‘generation’ of
offspring. This process repeats for some number of generations, predefined by the
ngen parameter. The k-of-n component of the specific genetic algorithm that we
employ adds location-switching functionality that allows flexibility such that some
number of traps, k, can be selected from n possible trap locations, fitting neatly
into the SCR design process.

While the three parameters mentioned above are important, we have found
that only ngen is critical for parameter tuning of the algorithm. The algorithm
should be parameterized to allow for a sufficient number of generations to reach
(near-)convergence, which can be found via visual inspection by plotting the output
object as illustrated in Appendix D. Beyond that, and assuming the algorithm has
converged on a (near-)optimal design, we have found that the genetic algorithm is
not particularly sensitive to sensible values for the other two tuning parameters,
popsize and keepbest, with the biggest differences relating to efficiency, which is
case-specific and not critical overall.

See the main text of this manuscript for details regarding the required SCR
components for design-generation, and for more details on the genetic algorithm
we direct the reader to Wolters (2015), as cited in the main text.
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A P P E N D I X B

REGULAR GEOMETRY DESIGNS

Figure 7. Regular geometry designs
Full set of designs in the regular study area, including the 2σ designs as well as the
criteria-based designs. From top to bottom, rows represent 144, 100, and 49 traps
included in the design, respectively.
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A P P E N D I X C

VIGNETTE OF CHAPTER 2 SIMULATION DESIGN

Vignette of simulation structure. Each row details a single scenario, for which we
generated 300 realizations of activity centers, generated detection histories for the
specified sampling design, and estimated SCR parameters using two models.
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Table 4. Vignette of simulation structure in the regular study area

Regular study area
Scenario Geometry Effort Design Density Model

1 regular 144 2σ uniform d·
2 weak d·; ds
3 strong d·; ds
4 100 uniform d·
5 weak d·; ds
6 strong d·; ds
7 49 uniform d·
8 weak d·; ds
9 strong d·; ds

10 144 Qp̄ uniform d·
11 weak d·; ds
12 strong d·; ds
13 100 uniform d·
14 weak d·; ds
15 strong d·; ds
16 49 uniform d·
17 weak d·; ds
18 strong d·; ds
19 144 Qp̄m uniform d·
20 weak d·; ds
21 strong d·; ds
22 100 uniform d·
23 weak d·; ds
24 strong d·; ds
25 49 uniform d·
26 weak d·; ds
27 strong d·; ds
28 144 Qp̄b uniform d·
29 weak d·; ds
30 strong d·; ds
31 100 uniform d·
32 weak d·; ds
33 strong d·; ds
34 49 uniform d·
35 weak d·; ds
36 strong d·; ds
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Table 5. Vignette of simulation structure in the irregular study area

Irregular study area
Scenario Geometry Effort Design Density Model

37 irregular 144 Qp̄ uniform d·
38 weak d·; ds
39 strong d·; ds
40 100 uniform d·
41 weak d·; ds
42 strong d·; ds
43 49 uniform d·
44 weak d·; ds
45 strong d·; ds
46 144 Qp̄m uniform d·
47 weak d·; ds
48 strong d·; ds
49 100 uniform d·
50 weak d·; ds
51 strong d·; ds
52 49 uniform d·
53 weak d·; ds
54 strong d·; ds
55 144 Qp̄b uniform d·
56 weak d·; ds
57 strong d·; ds
58 100 uniform d·
59 weak d·; ds
60 strong d·; ds
61 49 uniform d·
62 weak d·; ds
63 strong d·; ds
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A P P E N D I X D

EXAMPLE CODE FOR GENERATING DESIGNS

Example code implemented in R to generate and plot designs using the optimal
sampling design algorithm scrdesignGA() for the area of interest in Pakistan. For
more information on spatial data preparation and design generation, please see:

https://bookdown.org/chrissuthy/SCR-design-book/

library(oSCR)

library(kofnGA)

#----Load data from Pakistan----

data(pakistan)

# This loads the statespace: pakSS

# and the possible trap locations: pakTT

#----Plot this data----

plot(pakSS, asp=1, pch=16, col="grey")

points(pakTT, pch=20, cex = 0.5)

#----Run the design-finding algo----

testdesign <- scrdesignGA(

statespace = pakSS, alltraps = pakTT, # Study area components

ntraps = 25, # Number of available traps

beta0 = 0.2*5, # Expected data (where beta0 = log(g0 * k))

sigma = 3, crit = 1, # Expected data

popsize = 50, keepbest = 5, ngen = 50) # GA settings

# FOR BEST DESIGNS: ngen should be around 1500+

# See Appendix A for a brief discussion of the tuning parameters

#----Plot the results----

par(mfrow=c(1,3)) # Setup plotting area

plot(testdesign, which=4) # plots all 3 diagnostic plots

par(mfrow=c(1,1)) # Reset plotting area
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A P P E N D I X E

COEFFICIENT OF VARIATION SIMULATION RESULTS

Figure 8. Coefficient of variation from simulation evaluations
Coefficient of variation (precision; CV) of estimates of total abundance from the four tested
sampling designs under three levels of effort on three density surfaces within two geometries,
where estimates are the result of one of two SCR models: density invariant (d·, open shapes) or
density-varying (ds, closed shapes). The four designs – 2σ, Qp̄, Qp̄m , Qp̄b – are represented by
the four shapes: circles, triangles, squares, and diamonds respectively.
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A P P E N D I X F

COEFFICIENT OF VARIATION TABLE

Coefficient of variation (precision; CV) of baseline detection (g0), space use (σ)
and total abundance (EN) for each of the 63 simulation scenarios, in which we
varied the design criteria (Design), the shape and accessibility of the landscape
(Geometry, Regular or Irregular), the number of traps (Effort), and the underlying
density patterns (Density). Results from the null model (d·) are reported for all
scenarios, and models from the data generating density model (ds) are reported for
scenarios with spatially varying density.
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Table 6. Coefficient of variation from simulation evaluations

Regular Irregular

g0 σ EN g0 σ EN

Effort Density Design d· ds d· ds d· ds d· ds d· ds d· ds
49 uniform 2σ 19.68 – 7.28 – 13.87 – – – – – – –

Qp̄ 22.82 – 9.56 – 23.64 – 25.34 – 11.10 – 26.12 –
Qp̄m 16.19 – 7.61 – 16.10 – 18.31 – 8.14 – 15.84 –
Qp̄b 22.40 – 12.97 – 32.05 – 22.01 – 14.40 – 44.76 –

weak 2σ 18.29 18.29 7.33 7.35 14.49 14.79 – – – – – –
Qp̄ 23.05 23.05 9.86 9.87 22.09 22.12 21.94 21.94 11.52 11.45 27.04 27.17
Qp̄m 14.91 14.91 6.48 6.49 16.20 16.85 18.80 18.80 8.05 8.04 17.06 21.22
Qp̄b 21.20 21.20 12.59 12.20 38.41 30.18 25.28 25.28 13.85 14.01 36.26 37.80

strong 2σ 19.24 19.24 7.62 7.61 16.15 18.91 – – – – – –
Qp̄ 22.45 22.45 10.27 10.24 23.65 23.57 24.71 24.71 10.58 10.59 23.03 23.18
Qp̄m 17.43 17.43 7.59 7.63 16.08 25.31 19.90 19.90 8.07 8.06 18.40 29.23
Qp̄b 21.21 21.21 12.88 12.78 36.70 30.74 24.21 24.21 15.01 14.90 39.05 38.36

100 uniform 2σ 12.77 – 5.02 – 7.97 – – – – – – –
Qp̄ 13.02 – 6.02 – 8.90 – 14.50 – 6.07 – 11.26 –
Qp̄m 11.02 – 4.54 – 9.56 – 13.00 – 5.49 – 10.01 –
Qp̄b 13.74 – 5.51 – 9.03 – 13.74 – 5.87 – 9.71 –

weak 2σ 12.72 12.72 5.16 5.16 9.00 8.83 – – – – – –
Qp̄ 13.55 13.55 5.75 5.71 9.25 9.27 14.15 14.15 6.30 6.29 10.78 10.88
Qp̄m 12.42 12.42 5.02 5.03 10.92 10.52 13.99 13.99 5.84 5.84 10.77 10.87
Qp̄b 14.82 14.82 5.79 5.76 9.36 9.22 14.99 14.99 6.33 6.31 11.21 11.23

strong 2σ 13.20 13.20 5.28 5.28 10.22 9.01 – – – – – –
Qp̄ 14.79 14.79 6.05 6.07 10.66 10.60 14.77 14.77 6.27 6.25 10.56 10.35
Qp̄m 10.74 10.74 4.69 4.69 11.78 11.46 12.42 12.42 5.33 5.33 11.54 11.46
Qp̄b 14.74 14.74 5.58 5.57 10.16 9.95 15.18 15.18 6.80 6.79 10.41 10.19

144 uniform 2σ 10.86 – 4.24 – 6.46 – – – – – – –
Qp̄ 10.50 – 4.14 – 6.62 – 10.78 – 4.70 – 7.63 –
Qp̄m 9.68 – 3.95 – 6.78 – 10.69 – 4.20 – 8.21 –
Qp̄b 11.29 – 4.43 – 6.69 – 11.66 – 4.74 – 7.80 –

weak 2σ 10.42 10.42 3.94 3.95 6.80 6.79 – – – – – –
Qp̄ 11.00 11.00 4.42 4.43 6.90 6.75 11.58 11.58 4.81 4.83 7.41 7.44
Qp̄m 8.97 8.97 3.88 3.88 7.92 7.72 10.78 10.78 4.15 4.14 8.32 8.08
Qp̄b 10.20 10.20 4.17 4.15 7.08 7.08 11.91 11.91 4.94 4.93 7.66 7.65

strong 2σ 10.32 10.32 4.20 4.21 7.09 6.65 – – – – – –
Qp̄ 9.83 9.83 4.46 4.45 6.98 6.66 11.23 11.23 4.58 4.56 8.51 8.17
Qp̄m 9.47 9.47 4.04 4.03 8.81 7.74 10.65 10.65 4.54 4.54 9.01 8.66
Qp̄b 11.56 11.56 4.34 4.32 7.50 7.31 11.97 11.97 4.48 4.49 8.28 8.07
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A P P E N D I X G

SCALED ROOT MEAN SQUARE ERROR TABLE

Scaled root mean square error (accuracy; SRMSE) of baseline detection (g0), space
use (σ) and total abundance (EN) for each of the 63 simulation scenarios, in which
we varied the design criteria (Design), the shape and accessibility of the landscape
(Geometry, Regular or Irregular), the number of traps (Effort), and the underlying
density patterns (Density). Results from the null model (d·) are reported for all
scenarios, and models from the data generating density model (ds) are reported for
scenarios with spatially varying density.
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Table 7. Scaled root mean square error from simulation evaluations

Regular Irregular

g0 σ EN g0 σ EN

Effort Density Design d· ds d· ds d· ds d· ds d· ds d· ds
49 uniform 2σ 0.20 – 0.07 – 0.14 – – – – – – –

Qp̄ 0.23 – 0.10 – 0.26 – 0.26 – 0.11 – 0.29 –
Qp̄m 0.16 – 0.08 – 0.16 – 0.19 – 0.08 – 0.16 –
Qp̄b 0.22 – 0.13 – 0.39 – 0.23 – 0.14 – 0.56 –

weak 2σ 0.19 0.19 0.07 0.07 0.14 0.15 – – – – – –
Qp̄ 0.23 0.23 0.10 0.10 0.24 0.24 0.22 0.22 0.11 0.11 0.31 0.31
Qp̄m 0.15 0.15 0.06 0.06 0.16 0.17 0.19 0.19 0.08 0.08 0.17 0.22
Qp̄b 0.21 0.21 0.12 0.12 0.47 0.38 0.25 0.25 0.14 0.14 0.43 0.45

strong 2σ 0.20 0.20 0.08 0.08 0.17 0.20 – – – – – –
Qp̄ 0.23 0.23 0.10 0.10 0.26 0.26 0.25 0.25 0.11 0.11 0.25 0.25
Qp̄m 0.18 0.18 0.08 0.08 0.16 0.28 0.20 0.20 0.08 0.08 0.19 0.33
Qp̄b 0.21 0.21 0.13 0.13 0.44 0.38 0.25 0.25 0.15 0.15 0.47 0.47

100 uniform 2σ 0.13 – 0.05 – 0.08 – – – – – – –
Qp̄ 0.14 – 0.06 – 0.09 – 0.15 – 0.06 – 0.12 –
Qp̄m 0.11 – 0.05 – 0.10 – 0.13 – 0.05 – 0.10 –
Qp̄b 0.14 – 0.06 – 0.09 – 0.14 – 0.06 – 0.10 –

weak 2σ 0.13 0.13 0.05 0.05 0.09 0.09 – – – – – –
Qp̄ 0.14 0.14 0.06 0.06 0.09 0.09 0.14 0.14 0.06 0.06 0.11 0.11
Qp̄m 0.13 0.13 0.05 0.05 0.11 0.11 0.14 0.14 0.06 0.06 0.11 0.11
Qp̄b 0.15 0.15 0.06 0.06 0.09 0.09 0.15 0.15 0.06 0.06 0.11 0.11

strong 2σ 0.13 0.13 0.05 0.05 0.10 0.09 – – – – – –
Qp̄ 0.15 0.15 0.06 0.06 0.11 0.11 0.15 0.15 0.06 0.06 0.11 0.11
Qp̄m 0.11 0.11 0.05 0.05 0.12 0.12 0.13 0.13 0.05 0.05 0.11 0.12
Qp̄b 0.15 0.15 0.06 0.06 0.10 0.10 0.15 0.15 0.07 0.07 0.10 0.10

144 uniform 2σ 0.11 – 0.04 – 0.06 – – – – – – –
Qp̄ 0.10 – 0.04 – 0.07 – 0.11 – 0.05 – 0.08 –
Qp̄m 0.10 – 0.04 – 0.07 – 0.11 – 0.04 – 0.08 –
Qp̄b 0.11 – 0.04 – 0.07 – 0.12 – 0.05 – 0.08 –

weak 2σ 0.10 0.10 0.04 0.04 0.07 0.07 – – – – – –
Qp̄ 0.11 0.11 0.04 0.04 0.07 0.07 0.12 0.12 0.05 0.05 0.07 0.07
Qp̄m 0.09 0.09 0.04 0.04 0.08 0.08 0.11 0.11 0.04 0.04 0.08 0.08
Qp̄b 0.10 0.10 0.04 0.04 0.07 0.07 0.12 0.12 0.05 0.05 0.08 0.08

strong 2σ 0.10 0.10 0.04 0.04 0.07 0.07 – – – – – –
Qp̄ 0.10 0.10 0.04 0.04 0.07 0.07 0.11 0.11 0.05 0.05 0.09 0.08
Qp̄m 0.09 0.09 0.04 0.04 0.09 0.08 0.11 0.11 0.05 0.05 0.09 0.09
Qp̄b 0.12 0.12 0.04 0.04 0.07 0.07 0.12 0.12 0.04 0.04 0.08 0.08
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A P P E N D I X H

TABLE OF PROBLEMATIC SIMULATIONS

Table 8. Problematic simulations reporting
Percent of simulations failed for each scenario due to a lack of spatial recaptures. For
each scenario, we simulated encounter histories until 300 of those were acceptable
(i.e., included at least one individual captured in more than one trap) and recorded
the number of times that threshold was not met, which we recorded as a ‘failure’,
expressed here as a percentage failed across all simulations within each scenario.
Scenarios without failures are not included.

Scenario Geometry Design Density Effort % Failed

28 regular Qp̄ uniform 49 3.23
29 regular Qp̄ weak 49 3.85
30 regular Qp̄ strong 49 4.46
34 regular Qp̄b uniform 49 0.33
35 regular Qp̄b weak 49 0.33
55 irregular Qp̄ uniform 49 1.96
56 irregular Qp̄ weak 49 1.32
57 irregular Qp̄ strong 49 1.64
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A P P E N D I X I

SIMULATION CODE FOR CHAPTER 2

Code and data used for the analysis are publicly available:

https://github.com/GatesDupont/scr design sims.

The R code, found in the R subdirectory, operates within the file structure of this
repository (outlined below). Simulations are performed in the file 6 sims.r , which
pulls other files from the directory that are conveniently compiled into the R data
file: workspace/sims ws.RData. The simulations file is currently parameterized
to run all simulations simultaneously, and for sake of efficiency, the simulations are
distributed across several cores.
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File Description
R Sub-directory containing code for design genera-

tions and simulations.
R/0 functions.R R code containing functions for simulations, includ-

ing the simulator() function, which contains the
data-generating model.

R/1 SS regular.R R code to generate the regular, square statespace.
R/2 SS irregular.R R code to generate the irregular statespace.
R/3 designs regular.R R code to generate the designs for the regular area.
R/4 designs irregular.R R code to generate the designs for the irregular area.
R/5 sims gather ws.R R code for gathering data into a single workspace

for the simulations.
R/6 sims.R R code to run the simulations. Outputs csv file

containing rows for each simulation run.
R/7 evaluate R code to analyze the results of the simulation.
statespaces Sub-directory containing csv files of the statespaces

generated in R scripts 1 and 2.
traps Sub-directory containing csv files of the possible

trapping locations for the regular and irregular
statespaces.

designs Sub-directory containing csv files of all of the de-
signs evaluated in the simulations.

workspace Sub-directory containing an RData file of the
workspace compiled in R script 5.

it out Sub-directory that is used to print out each iteration
of the simulations.

output Sub-directory that is used to print out plots of each
simulation as well as the final results file.
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A P P E N D I X J

ADDITIONAL MATERIALS FROM CHAPTER 3

Table 9. Model components for all models from the evaluations

Model Data Distance Evaluations

MEuc SCR Euclidean Case study

Mlcp SCR Least-cost path Case study + Simulations

iMEuc SCR+Telem Euclidean Case study

iMlcp. SCR+Telem Least-cost path Case study + Simulations
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Table 10. Full simulation results of relevant parameters
Full simulation results of relevant parameters from both σstep scenarios, using
percent relative bias (%RB). Relative bias for σdet and σhome are both relative to
the data-generating value for σhome.

Small-σstep Large-σstep
Parameter Model ntel %RB %RB

α1 M 0 -17 -19
α1 iM 1 -3 -26
α1 iM 3 -3 -21
α1 iM 5 -2 -20
λ M 0 1 1
λ iM 1 0 0
λ iM 3 0 -1
λ iM 5 0 0
σdet M 0 -31 -22
σdet iM 1 -29 -23
σdet iM 3 -29 -22
σdet iM 5 -28 -22
σhome iM 1 3 -1
σhome iM 3 3 -1
σhome iM 5 3 0
σstep iM 1 -1 -8
σstep iM 3 -1 -7
σstep iM 5 -1 -7
ψ iM 1 0 0
ψ iM 3 0 0
ψ iM 5 0 0
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Figure 9. Summary of encounter data recorded from simulated tracks
Summary of spatial encounter histories from 100 simulations. From left to right,
horizontal facets show: number of individuals captured, number of individuals
captured on more than one trap, and mean number of captures per individual.
From top to bottom, vertical facets show the two scenarios: small-σstep and large-
σstep, respectively.
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Figure 10. Parameters estimates from case study
Results from exploring the effect of individual variation on parameter estimates
in the integrated model. Each closed circles represents parameter estimates from
a single model fit with one of the individuals (here: A, B, or C), and the open
circles represent parameter estimates from a model fit pooling all three individuals.
Error bars represent 95% confidence intervals. Each plot title denotes the model
parameter.

73



A P P E N D I X K

PARAMETER CONSISTENCY

Parameter sharing across data types and associated sub-models is widely pro-
moted as offering improved inferences about complex processes, but less attention
has been paid to understanding the consequences of misspecifying the sharing struc-
ture (Tenan et al., 2017; Murphy et al., 2019). The results reported in the main
text arise from an integrated model with a single shared parameter, the cost pa-
rameter α, and three independent scale or variance parameters, σstep and σhome in
the movement model, and σdet in the SCR model).

We note that σdet is the spatial scale of detection in the SCR model and is
proportional to space use, whereas σhome in the movement model is a direct estimate
of space use. However, given the frequent interpretation of σdet as an estimate of
space use that is subsequently converted to an estimate of home range size, some
may argue there is a conceptual equivalence between the two parameters under
this interpretation. Therefore, in addition to the model evaluations reported in the
main text, we also investigated the consequences of making such an assumption by
sharing a single ‘space use’ parameter across the SCR and movement models, and
hence forcing a σdet = σhome constraint.

Here we present the results of a simulation that includes evaluating a formu-
lation of the integrated model with a second shared parameter, name the scale
parameter: σdet = σhome. Following the model naming convention in the main text,
we refer to the integrated model with independent scale parameters as iM′′lcp and
the model with a shared scale parameter as iM′lcp (Appendix K: Table 11).

Model performance: simulations
Assuming that the SCR detection range and the spatial scale parameter in

the movement model were equivalent resulted in substantial bias in estimates of
density, which increased with the addition of more telemetered individuals (Ap-
pendix K: Table 12, Appendix K:Figure 11). In the small-σstep scenario, density
was underestimated by between –7% (ntel = 1) and –9% (ntel = 5) on average
when the scale parameters were shared, but was unbiased when scale parameters
were treated as independent (0% for ntel = 1; Appendix K: Table 12, Appendix
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K:Figure 11). This bias arises because the shared parameter is an average of the
emergent SCR spatial scale parameter and the true movement parameter. For ex-
ample, for ntel = 1, the average percent relative bias of σdet and σhome (relative
to σhome) for the independent model was –29% and –3%, respectively, compared
to –9% when the parameter is shared (Appendix K: Table 12, Appendix K:Figure
11). Furthermore, the estimate for the SCR parameter was always lower than the
equivalent movement model parameter (σdet vs. σhome; Appendix K: Table 12, Ap-
pendix K:Figure 11). As more individuals are added, estimates are more influenced
by the data-rich movement model and the bias increases. Thus, while iM′lcp model
improves estimation of cost compared to model Mlcp, the misspecification of the
encounter model renders density estimation significantly less useful. The results
from the large-σstep scenario were similar in that assuming parameter consistency
again resulted in bias that ranged from –7% (ntel = 1) to –9% (ntel = 5; Appendix
K: Table 12, Appendix K:Figure 11). In all cases in this scenario, regardless of
number of telemetered individuals or whether or not parameter consistency is as-
sumed, the integrated model produced biased estimates of the cost parameter α1,
ranging from –26% to –20% for iM′′lcp and –24% to –20% for iM′lcp model; Appendix
K: Table 12, Appendix K:Figure 11).

Model performance: empirical example
In our empirical example, and further supporting our findings, model iM′′lcp (the

independent parameterization of σdet) always outperformed the shared parameter-
ization of model iM′lcp, again identified by the large AIC differences (Appendix K:
Table 13). The shared model, iM′lcp, also appears to underestimate density (–3.956
vs –3.841; Appendix K: Table 13), though to a lesser degree than seen in the sim-
ulation study (Appendix K: Table 12, Appendix K:Figure 11).

Conclusions
Sharing the spatial scale parameter σdet inflated its estimate within the SCR

sub-model and introduced bias into the density estimator. The technical solution
was straightforward: including an independent scale parameter for the telemetry
data (σhome) completely remedied the bias, producing an accurate estimate of den-
sity simultaneously with cost. Thus, while the integration of an explicit movement
model is a logical extension of the SCR model, our results raise three important
issues. First, caution should be exercises when making assumptions about param-
eter sharing across data types or sub models. Second, independent verification of
consistency should be conducted where possible (see also Tenan et al. 2017). Third,
the interpretation of the spatial scale parameter should be considered carefully, for
example when converting σdet to an approximation of home range size.
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Table 11. Model components for all models from the evaluations

Model Data Distance σdet Evaluations

MEuc SCR Euclidean Standard Case study

Mlcp SCR Least-cost path Standard Case study + Simulations

iM′Euc SCR+Telem Euclidean Shared Case study

iM′′Euc SCR+Telem Euclidean Independent Case study

iM′lcp SCR+Telem Least-cost path Shared Case study + Simulations

iM′′lcp SCR+Telem Least-cost path Independent Case study + Simulations
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Table 12. Full results of relative bias
Full simulation results of relevant parameters from both σstep scenarios, showing
percent relative bias (%RB). Lower and upper values are from 95% quantiles. The
column σdet notes the model sharing structure. Relative bias for σdet and σhome are
both relative to the data-generating value for σhome.

Small-σstep Large-σstep
Parameter σdet ntel %RB %RB
α1 standard 0 -17 -19
α1 shared 1 -2 -24
α1 independent 1 -3 -26
α1 shared 3 -3 -21
α1 independent 3 -3 -21
α1 shared 5 -2 -20
α1 independent 5 -2 -20
λ standard 0 1 1
λ shared 1 -7 -7
λ independent 1 0 0
λ shared 3 -9 -7
λ independent 3 0 -1
λ shared 5 -9 -7
λ independent 5 0 0
σdet standard 0 -31 -22
σdet shared 1 -9 -4
σdet independent 1 -29 -23
σdet shared 3 -3 -1
σdet independent 3 -29 -22
σdet shared 5 -1 0
σdet independent 5 -28 -22
σhome independent 1 3 -1
σhome independent 3 3 -1
σhome independent 5 3 0
σstep shared 1 -1 -7
σstep independent 1 -1 -8
σstep shared 3 -1 -7
σstep independent 3 -1 -7
σstep shared 5 -1 -7
σstep independent 5 -1 -7
ψ shared 1 0 0
ψ independent 1 0 0
ψ shared 3 0 0
ψ independent 3 0 0
ψ shared 5 0 0
ψ independent 5 0 0
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Table 13. Case study results
Results from American black bears analysis. From left to right: fitted model, all
seven estimated parameters showing point estimates with standard errors directly
below in parentheses, and the negative likelihood value.

model α1 log(λ) σdet p0 ψ σstep σhome –loglik

MEuc – –3.8428 1.2377 –2.7677 – – – 124.3217

– (0.2545) (0.1386) (0.3608) – – –

Mlcp 0.2261 –3.8453 1.2845 –2.7356 – – – 124.2723

(0.7533) (0.2544) (0.2086) (0.3768) – – –

iM′Euc – –3.9861 1.6937 –3.5626 –0.6663 –0.1955 – 3880.029

– (0.2475) (0.0857) (0.3071) (0.0479) (0.0197) –

iM′′Euc – –3.8428 1.2377 -2.7677 –0.6663 –0.1949 1.9137 3874.447

– (0.2545) (0.1386) (0.3608) (0.0479) (0.0197) (0.1642)

iM′lcp –1.2414 –3.9560 1.2049 –3.6727 –0.6663 –0.6492 – 3840.379

(0.1223) (0.2527) (0.0980) (0.3145) (0.0479) (0.0485) –

iM′′lcp –1.172 –3.8407 0.8116 –2.8823 –0.6663 –0.6237 1.4391 3835.423

(0.1104) (0.2547) (0.1376) (0.3676) (0.0479) (0.0445) (0.1654)
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Figure 11. Percent relative bias from simulation results
To illustrate estimator precision, vertical lines are 50% confidence intervals, noting
that the 50% intervals are proportional to 95% intervals but offer a visual balance
of bias and associated variance. Black triangles represent model Mlcp. Blue circles
represent model iM′lcp, and orange squares represent model iM′′lcp, with an increasing
number of telemetered individuals included (inset number). Gray shaded area
shows an acceptable amount of bias (±5%). Columns left-to-right represent the
small- and large-σstep scenarios, respectively, and rows top-to-bottom represent cost
and density estimates, respectively.
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A P P E N D I X L

LIKELIHOOD FUNCTION FOR THE INTEGRATED

MODEL

R code for the likelihood function. Maximum likelihood optimization was car-
ried out using nlm and minimizing the negative log-likelihood.
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iM lcp <− f unc t i on (
param , share s igma = FALSE,
d i s t=c (” c i r c ” ,” l cp ” ) [ 3 ] , mod=c (” exp ” ,” gauss ” ) [ 2 ] ,
t e ldata , spatdata = NULL, landscape = NULL, use . sbar=FALSE,
s c r y = NULL, K = NULL, t r a p l o c s = NULL, s c r s s = NULL,
p r j = NULL){

#alpha1 : co s t parameter
#s igma step : s p a t i a l s c a l e ( s t ep s )
#p s i : pr (move from cur rent c e l l )
#sigma det : s p a t i a l s c a l e ( d e t e c t i o n ; shared OR SCR only )
#sigma home : s p a t i a l s c a l e c ( range )
#p0 : b a s e l i n e encounter p r o b a b i l i t y
#log lambda : populat ion dens i ty

# Bas i c s
nguys <− l ength ( t e l d a t a )
l l <− rep (NULL, nguys )
np <− nco l ( spatdata [ [ 1 ] ] ) − 2

# Some s t a r t i n g parameters
alpha1 <− matrix ( param [ 1 ] , nrow = nguys , nco l = np , byrow = TRUE)
s igma step <− rep ( exp ( param [ 2 ] ) , nguys )
p s i <− rep ( p l o g i s ( param [ 3 ] ) , nguys )
s igma det <− exp ( param [ 4 ] )

#−−−−S C R−−−−

# SCR s t a r t i n g parameters
a 1 s c r <− as . numeric ( unique ( alpha1 ) )
p0 <− p l o g i s ( param [ 5 ] ) # Probab i l i ty , on l i n k s c a l e
log lambda <− exp ( param [ 6 ] )
# Shouldn ’ t be negat ive , so on l i n k s c a l e

# Expanding K f o r l a t e r use
i f ( l ength (K)==1) K<− rep (K, nrow ( t r a p l o c s ) )

# Genera l i zed f o r i r r e g u l a r sampling pe r i od s

G <− coo rd ina t e s ( s c r s s ) # P i x e l s
nG <− nrow (G) # Number o f p i x e l s

# Cost d i s t ance p i e c e s
co s t <− exp ( a 1 s c r ∗ l andscape ) # Cost s u r f a c e w/ proposed parameter
t r1 <− t r a n s i t i o n ( cost , t r a n s i t i o n Fu n c t i o n=func t i on ( x ) 1/mean( x ) ,

d i r e c t i o n s =16)
tr1CorrC <− geoCorrect ion ( tr1 , type=”c ” , multpl=FALSE, s c l=FALSE)
D <− co s tD i s tance ( tr1CorrC , t r a p l o c s ,G) # Cost d i s t ance

# Half−normal encounter model
probcap <− p0 ∗ exp(− Dˆ2/(2∗ s igma det ˆ2) )
# rows = traps , c o l = p i x e l s

# Detect ion matrix , rows = traps , c o l s = p i x e l s
Pm <− matrix (NA, nrow=nrow ( probcap ) , nco l=nco l ( probcap ) )

# Encounter h i s t o r i e s s , augemented with 0 row
# to es t imate p r o b a b i l i t y o f an uncaptured i n d i v i d u a l
# being in one o f those p i x e l s
i f ( ! i s . na ( dim( s c r y ) [ 3 ] ) ) {

s c r y <− apply ( sc r y , 1 : 2 , sum)
}

ymat <− rbind ( sc r y , rep (0 , nco l ( s c r y ) ) )

# Loop through encounter h i s t o r i e s ( i n i d i v i d u a l s + extra )
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# Calcu la te l i k e l i h o o d o f that ind iv idua l ’ s a c t i v i t y cen te r
# being at each p i x e l
l i k . marg <− rep (NA, nrow (ymat ) )
f o r ( i in 1 : nrow (ymat ) ){

Pm[ 1 : l ength (Pm) ] <− ( dbinom (
rep (ymat [ i , ] , nG) ,
rep (K,nG) ,
probcap [ 1 : l ength (Pm) ] ,
l og=TRUE) )

l i k . cond <− exp ( colSums (Pm) )
# Like l i hood o f number o f capture s
# c o n d i t i o n a l on s i at p i x e l G i
l i k . marg [ i ] <− sum( l i k . cond ∗(1/nG) )

# Like l i hood averaged a c r o s s a l l p i x e l s
}

# Remaining l i k e l i h o o d p i e c e s
nv <− c ( rep (1 , l ength ( l i k . marg ) − 1) , 1)
atheta <− 1 − l i k . marg [ nrow (ymat ) ]
nind <− nrow (ymat ) − 1
part1 <− nind∗ l og (sum( log lambda ∗nG))−sum( log lambda ∗nG)∗ atheta
part2 <− sum( nv [ 1 : nind ] ∗ l og ( l i k . marg [ 1 : nind ] ) )
s c r o u t <− part1 + part2

#−−−− Movement model −−−−

sigma home <− i f e l s e ( share s igma==TRUE, sigma det , exp ( param [ 7 ] ) )

#loop over i n d i v i d u a l s
l l <− numeric ( nguys )
f o r ( ind in 1 : nguys ){

s s <− spatdata [ [ ind ] ] [ , 1 : 2 ]
# SPATDATA AS COORDINATES OF RASTER ( s t i l l the b igge r box )

t e l . l o c s <− as . matrix ( t e l d a t a [ [ ind ] ] )
p i x e l s <− r a s t e r : : e x t r a c t ( rasterFromXYZ ( cbind ( ss , z =1)) ,

t e l . l o c s , ce l lnumbers=T) [ , 1 ]
moved <− 1 − as . numeric ( d i f f ( p i x e l s ) == 0)

i f ( d i s t==”c i r c ”){
D <− as . matrix ( gd i s tance : : commuteDistance (

tr1CorrC ,
s s [ 1 : ( nrow ( s s ) −1) , ] ) )

D <− D/ n c e l l ( co s t )
D <− D[ p i x e l s , ]

}
i f ( d i s t==”lcp ”){

D ss <− gd i s tance : : co s tD i s tance ( tr1CorrC , ss , s s )
D <− D ss [ p i x e l s , ]

}

i f ( use . sbar ){

dsbar <− D ss [ which ( spatdata [ [ ind ] ] [ , 3 ] == 1 ) , ]

dsbar <− matrix ( dsbar , nrow=nrow (D) ,
nco l=length ( dsbar ) , byrow=TRUE)

i f (mod==”gauss ”){
kern<− {exp(−D∗D/(2∗ s igma step [ ind ]∗ s igma step [ ind ] ) −
dsbar ∗dsbar /(2∗ sigma home∗ sigma home ) )}

}
i f (mod==”exp ”){

kern<− {exp(−D/(2∗ s igma step [ ind ]∗ s igma step [ ind ] ) −
dsbar ∗dsbar /(2∗ sigma home∗ sigma home ) )}
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}
} e l s e {

i f (mod==”gauss ”){
kern <− exp(−D∗D/(2∗ s igma step [ ind ]∗ s igma step [ ind ] ) )

}
i f (mod==”exp ”){

kern <− exp(−D/(2∗ s igma step [ ind ]∗ s igma step [ ind ] ) )
}

}
kern [ cbind ( 1 : nrow ( kern ) , p i x e l s ) ] <− 0
# ∗ cannot move to same p i x e l bc CONDITIONAL on moved
kern <− kern /rowSums( kern )
probs <− kern [ cbind ( 1 : ( nrow ( kern ) −1) , p i x e l s [ −1] ) ]
# remove terminus because i t has no movement outcome
part1 <− moved∗ l og ( p s i [ ind ] ) + (1−moved)∗ l og (1− p s i [ ind ] )
part2 <− l og ( probs [ moved==1])
l l [ ind]<− sum( part1 ) + sum( part2 )

}
n l l <− −1∗(sum( l l )+ s c r o u t )
n l l

}
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