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ABSTRACT

DESIGN AND TESTING OF A FOUNDATION RAISED

OSCILLATING SURGE WAVE ENERGY CONVERTER

September 2021

Jacob R. Davis, B.S., University of Massachusetts Amherst

M.S.M.E. University of Massachusetts Amherst

Directed by: Professor Krish Thiagarajan Sharman

Our oceans contain tremendous resource potential in the form of mechanical energy. With the ability to capture

and convert the energy carried in surface waves into usable electricity, wave energy converters (WECs) have been

a long-held aspiration in ocean renewable energy. One of the most popular wave energy design concepts is the

Oscillating Surge Wave Energy Converter (OSWEC). True to their namesake, OSWECs extract energy from the

surge force induced by incident waves. In their most basic form, OSWECs are analogous to a bottom-hinged paddle

which pitches fore and aft in the direction of wave motion. Most commonly, OSWECs are designed for nearshore use

in water depths of less than 20 m where they are mounted to the seafloor at their point of rotation. This work seeks

to explore the response and design loads of foundation raised OSWECs for use in deeper waters, unlocking new and

greater areas of wave energy resource.

A foundation raised OSWEC was designed, built, and tested in a laboratory wave tank. The scale OSWEC

was modeled using two methods and compared to data from the experiments. The first of these methods is a

highly efficient, analytical approach which derives from the solution to the boundary value problem transformed into

elliptical coordinates. Previous validation results demonstrate the analytical model is capable of reproducing results

from higher fidelity numerical simulations with computation times on the order of seconds. The second approach

combines hydrodynamic coefficients evaluated in WAMIT with the open-source time domain solver WEC-Sim.

Two model configurations were observed: the scale OSWEC with no external attachments, and the OSWEC with

external torsion springs, as to excite the model at its natural period. The pitch displacement, surge and heave forces,

and pitch moment were recorded at the base of the model foundation in response to regular waves with periods

ranging from 0.8 s to 2.8 s and heights from 1.5 mm to 14.3 mm. The experimental results show the surge force

and pitch moment increase drastically across the observed period range from the addition of external springs. The

vi



increase is 20–30 times greater in the most extreme cases. Little to no change in heave forcing was observed between

the configurations. The analytical and numerical models capture the natural period of the two configurations well,

but the pitch displacement responses of both models fall short of the observations by as much as 60-80% at some

periods. Excellent agreement in surge, heave, and pitch loading was obtained between the experimental data and

both models. The models were used to simulate a simple power takeoff (PTO) system to approximate the additional

PTO torque on the OSWEC. This torque was found to be substantial in magnitude relative to the pitch foundation

moment over much of the observed period range.
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Chapter 1

INTRODUCTION

1.1 Motivation

Imagine yourself at the beach. You’re waist-deep in the ocean, and waves roll towards the shore at shoulder-height.

A single wave—call it half a meter at 6 seconds—carries over 1000 Watts of power across the width of your body.

Moving further offshore to depths of over 20 m, the power distributed across the wave crests can exceed well over

10 kW per meter. Nationwide, experts approximate the wave energy resource is as high as 1400 TWh/yr, much of

which is directly distributed to our shorelines. The motivation for wave energy development is clear; nevertheless, it

is not without its challenges.

First and foremost, the marine environment is harsh and unforgiving. The same waves that carry vast amounts

of energy to our shores for potential conversion cause tremendous load on wave energy conversion systems. In

response, these systems must be robust. Corrosion and biofouling trouble most ocean-bound technologies, and the

conversion and transport of a WEC’s mechanical energy to electricity and then land has proved to be no easy task.∗

Fortunately, wave energy developers worldwide–university researchers, national laboratories, industry leaders, and

enthusiasts–have risen to the occasion, making strides in our understanding and overcoming of these challenges on

all fronts. Through theory, simulation, experimentation, and deployment, developers continue to innovate the wave

energy status quo, all with the unified goal of elevating wave energy to commercial success.

Of the present wave energy technologies, oscillating surge wave energy converters (OSWECs†) demonstrate some

of the highest wave energy conversion efficiencies [1]. Analogous to a bottom-hinged paddle, OSWECs pitch fore

and aft in the direction of wave motion in response to the wave surge force distributed across their face (see Fig.

1.1). With a surge force driven actuation, however, comes intense structural loading. At the utility scale, structural

loading is estimated to be the largest driver of the levelized cost of energy (LCOE) of oscillating surge wave energy

converters [2]. When OSWECs are raised on a fixed foundation, as to access the higher resource potential available

in deeper waters, these loads are exacerbated by the extension of the distance of the OSWEC to the foundation base.

This increase in loading requires a more resilient support structure, thereby further increasing costs [3]‡. This work

seeks to characterize the loading on a foundation raised, oscillating surge wave energy converter using a combination

1



Figure 1.1: An oscillating surge wave energy converter, as viewed from the side

of analytical modeling, numerical simulation, and wave tank experimentation. By providing a more comprehensive

understanding of the loads on raised OSWECs, they can be better handled during subsequent design and innovation,

motivating avenues for future cost reduction and bringing wave energy conversion closer to commercial realization.

1.2 Review

Oscillating surge wave energy converters have been the focus of a broad number of studies in WEC literature. These

include theoretical, numerical, and experimental studies, as well as full-scale implementations at wave energy test

sites globally. Recent OSWEC studies and their accompanying results, deriving primarily from experimental and

field programs, are summarized in this section.

A prominent example of a full-scale OSWEC implementation is the Aquamarine Power Oyster Wave Energy

Converter, a surface piercing, 18 m wide by 11 m tall OSWEC which is rigidly fixed to the seafloor [5]. With 800 kW

of capacity, the Oyster was installed at the European Marine Energy Centre and connected to the UK National Grid

in 2009, where it was monitored until its decommissioning in 2015 [6]. Howard et al. monitored the dynamic loads at

the base of a 1:40 scale Oyster model using a five degree of freedom load transducer [7]. Their work provided detailed

∗For a more comprehensive discussion of these complex, yet remarkably engaging challenges, refer to [4].
†Also known as oscillating wave surge converters (OWSCs).
‡The thesis author is a co-author of this work.
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insight to the surge and heave load paths in relation to the Oyster pitch angle and the incident wave cycle. Further,

the experiments revealed little increase in foundation loading from an undamped to PTO-damped configuration.

AW-Energy’s WaveRoller is a full-scale, bottom-fixed OSWEC designed to operate in 8-20 m water depths [8, 9,

10]. Unlike the Oyster, the WaveRoller is fully submerged. Data from an experimental evaluation of the loads on

a 1:24 scale WaveRoller are discussed in both [8] and [9]. The scale model was outfitted with 25 pressure sensors

distributed across the model face, and loads were recorded at the foundation. Loads in surge, sway, and heave were

evaluated in 0 deg and 20 deg incident waves, and surge loads were found to dominate by an approximately 30%

margin. The 0 deg conditions induced the maximum surge and heave loads, and fairly significant directionality

was observed from onshore vs onshore load directions. Support reaction loads were monitored at the base of the

operational WaveRoller in [10], and surge and heave load trends were reported as a function of significant wave height

(AW-Energy Oy, a private company, does not report actual values in their publications).

(a) Aquamarine Power Ltd. Oyster Wave Energy Converter [11] (b) AW-Energy’s WaveRoller

Figure 1.2: Full scale OSWEC implementations

In 2005, the Engineering Business Ltd. (EB), a contractor, performed an extensive experimental campaign at the

University of Lancaster to study variations of a bottom-hinged OSWEC, the EB Fond [12]. Following a multitude of

1:25-scale tests to study variations in shape and dimension, the authors adopted an OSWEC with a thick, triangular

shape (as viewed from the side). Subsequent development of the FB Fond OSWEC was not pursued by the authors.

Choiniere et al. performed tank testing on a bottom fixed OSWEC variant with variable geometry in [13]. In this

concept, termed the variable geometry oscillating surge wave energy converter (VGOSWEC), a standard OSWEC is

modified through the implementation of variable geometry modules which open and close to alter the frontal surface

of the paddle. It is hypothesized that the modules enable load-shedding through the reduction of wave excitation

forces and moments. In Choiniere et al.’s work, the pitch response and wave excitation moment were evaluated in

regular waves over several frequencies. Numerical simulations demonstrated a foundation surge force reduction as

high 55% following the actuation of the variable geometry. Irregularities in the experimental model responses were
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noted and attributed to the damming of flow caused by OSWEC spanning the entire width of the tank. Subsequent

experiments were performed in a wave basin at the University of Maine’s Alfond W2 Ocean Engineering Lab. With

the influence of the tank walls effectively removed, currently unpublished experimental data demonstrated a 40%

reduction in wave excitation moment following the actuation of the variable geometry modules.∗

Experimental investigations into the nonlinear hydrodynamic event, wave slamming, were conducted by Henry et

al. in [14, 15] and compared to numerical simulations. While such events are a significant design load in the design

of OSWECs, slamming will not be considered in this work.

In 2017, Ning et al. reported results from tank testing on a 1:5 scale OSWEC with a magnetic brake power

takeoff [16]. The influence of the PTO torque on the hydrodynamic performance was studied in both regular and

irregular waves. Brito et al. also performed recent (2020) tank testing on a 1:10 OSWEC, including a hydraulic

power take off system [17]. The experimental results showed significant nonlinearities, driving differences between

the experimental data and results from an analytical model. The authors attributed these nonlinearities primarily

to the power takeoff, as well as nonlinear wave events such as overtopping. The OSWEC spanned the width of the

tank.

Schmitt et al. conducted experimental tests on a 1:25 scale OSWEC and modeled the results with an analytical

model, a weakly nonlinear model, and computational fluid dynamics simulations [18]. The authors reported an

undesired increase in wave excitation moment due to the effects of the blockage in wave tanks, and also encouraged

the use of multiple methods in the modeling of an OSWEC design.

1.3 Objectives and Scope

This work begins with an introduction to the governing physics of the foundation raised OSWEC. The general

equation of motion will be derived from the hydrodynamic, reactionary, and external forces, and the result will be

transformed into the frequency domain and described in detail. Key performance characteristics—metrics based on

dynamic response, loading, and anticipated power output—will be defined for comparison amongst the methods used

in the work. The modeling of foundation raised OSWECs using both analytical and numerical techniques will be

explored, including a powerful, computationally efficient approach which derives from the solution to the boundary

value problem transformed into elliptical coordinates. The use of these techniques to size and dimension a scale

model for wave tank experimentation will be described.

∗A manuscript of this work is currently under preparation. The thesis author is a co-author.

4



The resulting scale OSWEC model was used for experiments at the Ocean Resources and Renewable Energy

Lab wave tank. Experimental runs were performed to identify the system and observe its response to first-order

waves. Two configurations of the model setup were employed: the OSWEC on its foundation with no additional

attachments, and the OSWEC with additional torsional springs attached, as to lower the natural period to within

the range of periods producible by the tank’s wave maker. The design and fabrication of the model and its support

structure will be described in detail, along with a thorough description of instrumentation and methods used in the

experiments. The experimental results will be presented, including the pitch displacement and forces and moments

in surge, heave, and pitch measured at the base of the foundation. A comparison of the data with results from the

analytical and numerical methods used to size the model will be shown and analyzed. The models will be taken one

step further through the simulation of an idealized power takeoff system.
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Chapter 2

DESIGN AND MODELING OF FOUNDATION RAISED OSWEC GEOMETRIES

2.1 Governing Dynamics

2.1.1 Hydrodynamic Coefficients and Exciting Forces/Torques

The equations, methods, and results used in this work rely on the use of hydrodynamic coefficients and exciting

forces/torques which characterize the hydrodynamic loading on submerged bodies. These include the hydrodynamic

coefficients—the added mass, Aij and radiation damping Bij coefficients—and the exciting forces and torques, Xi.

The subscripts i and j generally refer to the six body motions: 1–surge, 2–sway, 3–heave, 4–roll, 5–pitch, and 6–yaw.

These are analogous to the translational motions in x, y, z and rotations about their respective axes, in the presented

order.

The coefficients discussed here derive from linear hydrodynamic theory, and are the result of the incident,

diffracted, and radiated forces that arise from the wave-structure interactions. While a partial derivation of these

forces is the purview of a subsequent section, 2.4 Analytical Methods, readers are referred to external references

for a foundational approach to the subject (see [19], for example).

2.1.2 Force and Torque Balances

First, consider the forces on the OSWEC body: gravity and buoyancy body forces, FG and FB , act vertically in

opposing directions at their respective centers, G and B. If we consolidate the hydrodynamic wave load to equivalent

forces and torques at the hinge, excitation and radiation forces act in the surge (Fex1 and Frad1) and heave (Fex3

and Frad3) directions. The hinge provides reactionary forces in both the surge and heave directions, Fr1 and Fr3.

These forces are summarized in Fig. 2.1a. The sum of forces is then

ΣFx = Fex1 + Frad1 + Fr1 (2.1)

ΣFz = Fex3 + Frad3 + FG + FB + Fr3 (2.2)
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(a) Forces (b) Torques

Figure 2.1: Forces and Torques on the OSWEC body.

Next, consider the torques about the hinge, point O. As the OSWEC pitches, both gravity and buoyancy produce

counteracting moments about the hinge, TG and TB . Hydrodynamic forces in the heave and surge direction resolve

into an excitation and radiation torque in the pitch direction of motion, Tex5 and Trad5. Additional torques, resulting

from the PTO (TPTO), external springs (Ts), and viscous sources (Td), also contribute to a moment about the hinge.

Torques are summarized in Fig. 2.1b. Viscous sources include friction in the bearings as well as fluid-induced drag.

The sum of torques:

ΣTO = Tex5 + Trad5 + TG + TB + TPTO + Ts + Td (2.3)

The OSWEC is constrained to motion only in the pitch direction. The general one degree of freedom equation of

motion then derives from the sum of torques as

I55φ̈ = Tex5 + Trad5 + TG + TB + TPTO + Ts + Td (2.4)

where I55 is the pitch moment of inertia and φ̈ is the second time derivative of the pitch displacement φ, or the pitch

angular acceleration.
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2.1.3 Equation of Motion in the Frequency Domain

In the case of regular, monochromatic waves, the incident wave elevation is described by linear wave theory as

η(x, t) = <
{
aeiωt−kx

}
(2.5)

where a is the wave amplitude, or half the wave height H, i is the imaginary unit, ω is the angular frequency, and k

is the wavenumber. The harmonic response of the OSWEC in pitch motion is then described as

φ(t) = <
{
φ̃eiωt

}
(2.6)

φ̇(t) = <
{
iω φ̃eiωt

}
(2.7)

φ̈(t) = <
{
−ω2 φ̃eiωt

}
(2.8)

where φ̃ is the complex pitch amplitude

φ̃ = |φ|ei φ (2.9)

which comprises of the pitch magnitude |φ| and a phase φ.

The torques on the right hand side of (2.4) can now be expressed as functions of frequency. Beginning with the

excitation torque [19]

Tex5(ω) = <
{
aX5(ω) eiωt

}
(2.10)

where X5 is the frequency-dependent complex pitch excitation torque, again comprised of an ordinary amplitude

|X5|and phase X5. The radiation torque is represented as the linear sum of the added mass and radiation damping

contributions, which are in phase with the OSWEC angular acceleration and velocity, respectively: [20]

Trad5(ω) = <
{
−ω2A55(ω) φ̃eiωt + iωB55(ω) φ̃eiωt

}
(2.11)

Here A55 is the frequency-dependent pitch added moment of inertia and B55 is the pitch radiation damping coefficient.

The torque contributions due to gravity and buoyancy are [20]

TG = −mg rg sin(φ(t)) (2.12)

TB = ρg–V rb sin(φ(t)) (2.13)

where m is the mass of the OSWEC body, –V is its displaced volume,g is the acceleration of gravity, ρ is the fluid
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density, rg ≡ OG is the distance measured from the hinge axis to the center of gravity, and rb ≡ OB is the distance

from the hinge axis to the center of buoyancy. These two contributions are combined to obtain a net hydrostatic

torque

Ths = TG + TB

= (ρ–V rb −m rg) g︸ ︷︷ ︸
C55

sin(φ(t))
(2.14)

The coefficients are grouped into a hydrostatic restoring coefficient, denoted C55, and the sine term is linearized

under the assumption that, for small pitch displacements, sin(φ(t)) ≈ φ(t):

T ′hs(ω) = C55 φ(t)

= <
{
C55 φ̃e

iωt
} (2.15)

The power take off applies a torque on the OSWEC as it extracts energy. Depending on the type of PTO system

used, the applied torque can have components which are in phase with both velocity and position: [21]

TPTO(ω) = <
{
iωBPTO φ̃e

iωt + CPTO φ̃e
iωt
}

(2.16)

here BPTO and CPTO are the power take off damping and restoring coefficients, respectively. Depending on the

capabilities of the PTO and the applied control scheme, these coefficients can be time-varying or constant. Power

extraction assumptions will be discussed in subsequent sections.

The remaining two torque contributions, which account for externally attached springs and viscous damping

sources, are described as

Ts(ω) = <
{
Cext φ̃e

iωt
}

(2.17)

Td(ω) = <
{
iωBv φ̃e

iωt
}

(2.18)

where Cext is the net restoring coefficient of any externally attached springs and Bv is the net damping coefficient,

comprising of any viscous sources which can be approximated as linearly proportional to the pitch angular velocity.

The latter will be approximated here through system identification, and will be discusse in subsequent sections.

The expressions in (2.6)-(2.17) are substituted into the general equation of motion (2.4), grouped, and rearranged
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to obtain the frequency domain equation of motion:

<
{[
−ω2 (I55 +A55(ω)) + iω (B55(ω) +BPTO +Bv) + (C55 + CPTO + Cext)

]
φ̃eiωt

}
= <

{
aX5(ω)eiωt

}
(2.19)

and dropping the time-dependent sine terms, the equation of motion in its final form is:

φ̃
[
−ω2 (I55 +A55(ω)) + iω (B55(ω) +BPTO +Bv) + (C55 + CPTO + Cext)

]
= aX5(ω) (2.20)

2.2 Loads

2.2.1 Hinge Reaction Forces

Neglecting centrifugal forces, the surge and heave reaction forces, Fr1 and Fr3, at the hinge (point O in Fig. 2.1) of

a fore-aft symmetrical OSWEC can be described in the frequency domain as [22]

Fr1(ω) =
(
−ω2A15 + iωB15

)
φ̃− aX1 (2.21)

Fr3(ω) = − (ρ–V −m)− aX3 (2.22)

where A15 and B15 are the surge-pitch added mass and surge-pitch radiation damping coefficients, respectively, and

X3 is the complex heave excitation force. The surge reaction force is composed of entirely dynamic terms which

result from the motion of the OSWEC itself and the incident wave load. The heave reaction force is composed of a

static contribution from the net hydrostatic forces and a time-varying wave load component.

2.2.2 Power Takeoff Torque

As the power takeoff absorbs power during normal wave energy converter operation, it applies a torque to the

OSWEC. The idealized power takeoff systems considered in literature typically apply torques in phase with velocity

and position, and are characterized by coefficients which are linear with respect to motion and vary only with

frequency. The torque contribution is then described in the frequency domain as

TPTO(ω) = (iωBPTO + CPTO) φ̃ (2.23)
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which is equivalent to PTO torque described previously in (2.16).

Depending on the implementation and interfacing of the PTO system, PTOs may also apply a force on the

OSWEC. For instance, the hydraulic piston type PTO systems, which are typically mounted above the hinge point

and rely on linear actuation in combination with small pitch displacements to produce power. Such systems are

most commonly used for experimental and full-scale OSWEC implementations [17, 5]. In absence of an experimental

PTO implementation in this work, a simplified, rotary-type PTO system, which only contributes a torque, will be

considered when used in numerical and analytical implementations.

2.2.3 Foundation Shear Force and Bending Moment

Structural loads are of principal concern during the design of OSWECs. Generally, these are the result of the hinge

reaction forces and power takeoff torque/forces described in the previous subsections. When raised on a foundation,

these dynamics induce a significant shear force and bending moment at the base of the foundation. Additionally, if the

wave orbitals penetrate to the depths of the foundation, and/or if external currents are present, the hydrodynamics

of the foundation itself contribute to this load.

Figure 2.2: Foundation force and torque balance

Treating the foundation as its own hydrodynamic body which is rigidly fixed to the sea bottom, the force balances
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and torques about point F at the base of the foundation are

ΣFx = Fex1,f + Ffr1 + Fr1 (2.24)

ΣFz = Fex3,f + Ffr3 + Fr3 + FG + FB (2.25)

ΣTF = Tex5,f +Mfr5 + rfFr1 (2.26)

where: Fex1,f and Fex3,f are the foundation surge excitation and heave excitation forces, respectively (distinguished

from those of the OSWEC body through the use of the f subscript); Tex5,f is the foundation pitch excitation torque;

Ffr1, Ffr3, and Mfr5 are the foundation reaction forces/torques in the surge, heave, and pitch directions; rf ≡ FO

represents the distance from the base of the foundation F to the hinge point O; and FG and FB are the gravitational

and buoyancy forces on the foundation, separate from those of the OSWEC body force balance. Contrary to the

OSWEC body, the foundation does not experience any radiation hydrodynamic loads, as it does not undergo any

rigid body motion. Fr1 and Fr3 are the equal but opposite hinge reaction forces introduced in the OSWEC force

balance. These forces and torques are summarized in Fig. 2.2.

2.3 Performance Characterization

2.3.1 Response Amplitude Operator

The response amplitude operator (RAO) represents the transfer function between the OSWEC (pitch) motion and

the incident wave amplitude. For waves in the linear regime, it provides a prediction of the OSWEC pitch response

for any wave period and amplitude combination. It is derived simply from the rearrangement of the frequency domain

equation of motion (2.20)

RAO ≡ φ̃

a
=

X5(ω)

[−ω2 (I55 +A55(ω)) + iω (B55(ω) +BPTO +Bv) + (C55 + CPTO + Cext)]
(2.27)

The RAO is commonly nondimensionalized by the wave number of the incident wave

RAO∗ ≡ φ̃

ka
(2.28)

where an asterisk has been used to distinguish the nondimensionalized quantity from its dimensional counterpart.

The RAO will be integral to characterizing and understanding the OSWEC dynamics in subsequent sections.
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2.3.2 Power Takeoff Assumptions

The power takeoff (PTO) system is responsible for converting the mechanical motion of the OSWEC into a useable

form of electricity. These systems are typically electromechanical, the most common being of the hydraulic type

where a working fluid is pumped through a hydraulic circuit to drive a hydraulic motor coupled to an A/C generator

[23]. Examples of OSWECs with hydraulic PTO systems include both numerical [24, 25], experimental [17], and

full-scale [5, 26] implementations.

The power takeoff fundamentally alters the dynamics of the OSWEC. It is characterized in the most basic form by

its inertial, damping, and restoring coefficients (MPTO, BPTO, and CPTO). When applicable, PTOs act as a source

of dynamic control and can effectively be used to tune the response of the OSWEC for a variety of objectives [27,

28, 29]. At small experimental scales (s ≥ 25), physical PTO implementations can introduce undesired nonlinearities

into the system [30, 31]. Instead, the object of the experiments in this work will be to characterize the dynamics

and loads in absence of a PTO system, and to use the results to validate numerical and analytical models in which

an idealized PTO system can be implemented.

The theoretical power takeoff will be modeled as a simple rotary system with linear coefficients proportional to

velocity and position. The reaction torque in the time domain, as modeled by WEC-Sim, is then

TPTO(t) = −BPTO φ̇(t)− CPTO φ(t) (2.29)

and the instantaneous power absorbed by the PTO becomes the product of the PTO torque and OSWEC pitch

angular velocity:

PPTO(t) = −TPTO φ̇(t) (2.30)

In subsequent WEC-Sim and analytical model simulations, BPTO will be obtained using a passive damping control

strategy. This strategy implies the PTO damping can be modified on a per wave basis, and that the PTO restoring

coefficient is a constant value. The PTO damping coefficient that maximizes the instantaneous power absorbed by

the PTO is related to the OSWEC body’s wave radiation damping coefficient as [29]

BPTO(ω) = εB55 (passive damping control) (2.31)

ε =

√
1 +

(
C55 − ω2 (I55 +A55)

ωB55

)2

(2.32)

where ε is a nondimensional coefficient which is always greater than or equal to 1.
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2.3.3 Time-averaged power and capture width

When a PTO is simulated, the power performance of an OSWEC and its PTO system can be characterized by the

commonly used capture width (CW)

CW =
PT
wPW

(2.33)

where w is the width of the OSWEC and PT and PW are the time averaged power absorbed by the system and the

time averaged wave power per unit crest-width, respectively. The former is calculated in the time domain as

PT (t) =
1

T

∫ t+T

t

PPTO(t′) dt′ (2.34)

and in the special case of passive damping control, it can be obtained in the frequency domain as [29]

PT (ω) =
1

4

|X5|2

B55

1

1 + ε
(2.35)

where ε is the same coefficient used to obtain the optimal PTO damping coefficient in (2.31) and (2.32). The time

averaged wave power per unit crest-width is purely a function of the wave conditions, and is calculated as

PW =
1

2
ρga2Vg (2.36)

with wave group velocity

Vg =
1

2

√
g

k0
tanh k0h

(
1 +

2k0h

sinh 2k0h

)
(2.37)

The expressions in (2.33 – 2.36) are evaluated for a single wave period (or frequency), thus the capture width is

typically characterized over a desired range of wave frequencies. These metrics will be used in subsequent sections

to evaluate the performance of the OSWEC when simulated with a PTO.

2.4 Analytical Methods

In the early stages of a typical OSWEC design and modeling workflow, the dynamics are characterized primarily in the

frequency domain using the equation of motion derived in Section 2.1. This requires knowledge of the hydrodynamic

coefficients Aij , Bij , and Xi where the subscripts i, j = 1, 2, ...6 correspond to the 6 motions: surge, sway, heave,

roll, pitch, and yaw.∗ These coefficients can be characterized over a desired range of frequencies using controlled

experiments (forced oscillation), high-fidelity numerical simulations (computational fluid dynamics), mid-fidelity
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numerical simulations (boundary element method solvers such as WAMIT), or when possible, analytical approaches.

While typically the most accurate, the first two methods (experimental and high-fidelity numerical simulations)

rely on extensive setup, preparation, and run time. Much of the literature has presented results which derive from

mid-fidelity numerical simulations, which discretize the surface of the body and rely on an inviscid, incompressible,

and irrotational potential flow solution. These models can be created and run more quickly than their higher-fidelity

counterparts. At the expense of the ability to model fine scale details†, analytically derived models benefit from

rapid run times and ease of setup, but may be difficult or entirely impossible to solve based on the complexity of the

boundary conditions. In this section, a powerful analytical method, originally introduced by Michele et al. in [32]

and later extended to foundation raised OSWEC applications in [33], is presented for later use and comparison with

the experimental work described in this thesis.

2.4.1 Formulation of the Boundary Value Problem

The analytical model derives from the boundary value problem formulated using linear wave theory and a simplified

representation of the OSWEC geometry. Consider a foundation-raised OSWEC with width w and height HO hinged

on a foundation of height c. The height and width dimensions of the OSWEC are significantly greater than its

thickness, such that it can be represented by a thin flap. The OSWEC pierces the surface at all pitch angles, such

that no overtopping occurs. See Fig. 2.3a.

A velocity potential (or total wave potential) Φ(x, y, z, t) is sought which satisfies the Laplace equation for an

inviscid, incompressible, and irrotational fluid domain

∇2Φ(x, y, z, t) = 0 (2.38)

Due to the harmonic nature of the wave and body motion, the total potential can be rewritten in a complex form

and the time dependence factored out

Φ(x, y, z, t) = <
{

Φ̃(x, y, z)eiωt
}

(2.39)

where Φ̃ is the spatial potential which is a function of only x, y, z and can be decomposed into a linear sum of the

∗In most bottom-hinged OSWEC applications, the hinge constraint limits the degrees of freedom to surge, heave, and pitch
†e.g. surface topography which may be present in physical models to suit fabrication or favorable structural/hydrodynamics (see the

Aquamarine Power Ltd. Oyster OSWEC shown in Fig. 1.2a, for example)
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(a) Side view (b) Plan view in elliptical coordinates

Figure 2.3: OSWEC boundary value problem

incident, scattered, and radiated wave potentials [19]

Φ̃(x, y, z) = Φ̃
I

+ Φ̃
S

+ Φ̃
R

(2.40)

These describe the potential of the incident waves in absence of any bodies (Φ̃
I
), the potential of the incident wave

as it is modified (through diffraction) by the presence of a fixed OSWEC (Φ̃
S

), and the potential of the waves which

radiate from the moving OSWEC in the absence of any incident waves (Φ̃
R

). Refer to Fig. 2.4 for a visual depiction.

The governing equations are subject to the following boundary conditions [33]:

1. Combined free surface boundary condition on z = 0:

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 (2.41)

2. No-flux condition at the sea bottom, z = −h:

∂Φ

∂z
= 0 (2.42)

3. The flow velocity is equal to the velocity of the OSWEC and its foundation on their respective surfaces,

z ∈ [−h, 0]:

∂Φ

∂x
= −dφ̃

dt
(z + h− c) H (z + h− c) (2.43)
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4. The scattered and radiated components of the spacial potential are to remain bounded for
√
x2 + y2 →∞

The Heaviside step function,

H ≡


1, x > 0

0, x ≤ 0

(2.44)

has been used in (2.43) to equate the OSWEC body and flow velocities over the paddle height (HO = h − c) and

to set the flow velocity to zero otherwise, such that fluid flow is prevented beneath the OSWEC. This condition is

representative of a wall-like foundation spanning the width of the OSWEC. A small pitch amplitude assumption has

also been invoked in (2.43) such that the lateral velocity of a point on the surface of the OSWEC can be approximated

by the product of the pitch velocity and the distance of the point from the hinge.

Figure 2.4: Total wave potential decomposition

In the ordinary solution process, solutions to the incident, diffraction, and radiation potentials are obtained in

x, y, z and integrated over the body surface to derive their respective force amplitudes. The resulting forces are used

to derive the added mass and radiation damping coefficients, as well as the wave excitation force and moments. Due

to the complexity of the OSWEC boundary value problem, however, only semi-analytical solutions are possible in

Cartesian coordinates (see [34, 35, 36] [37] [38]). An alternative solution process, originally employed Michele et al.

[32], instead transforms the governing equations and boundary conditions into elliptical coordinates. Following this

transformation, an analytical solution can still be obtained using the separation of variables. The result is a powerful

design tool which captures the physics of the more comprehensive semi-analytical and numerical methods, yet in a

fraction of the setup and solution time.
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2.4.2 Analytical Frequency Domain Hydrodynamic Coefficients

The elliptical coordinate system is defined by three coordinate variables: υ, which represents a confocal ellipse for

each constant value; ν, which represents a hyperbola of focal length w for each constant angle; and z, which describes

elevation [39]. The Cartesian coordinates (x, y, z) are related to the elliptical coordinates (υ, ν, z) as

x =
w

2
sinh(υ) sin(ν) y =

w

2
cosh(υ) cos(ν) z = z (2.45)

With the focal width set to the width of the OSWEC, the body of the OSWEC is then described by the confocal

ellipse at υ = 0 (i.e. a flat line lying on the y-axis), ν ∈ [0, 2π], and z ∈ [0,−HO]. This configuration is best observed

in the plan view, Fig. 2.3b. With the use of (2.45), the governing equations formed by (2.38 – 2.40) and the 4

boundary conditions can be transformed into the new coordinate system and separation of variables employed to

obtain solutions for Φ̃
S

and Φ̃
R

(Φ̃
I

is independent of the body geometry and is thus already known). The details of

the derivation are omitted here, and readers are referred to the work of Michele et al. [32] and Nguyen et al.§ [33].

The former introduces the concept and derives the solution for a bottom-fixed OSWEC, while the latter describes the

solution process and results for a foundation-raised OSWEC, as shown here. The resulting solutions of the radiated

and scattered potentials describing the foundation-raised OSWEC are

Φ̃
R

n (υ, ν) = −iωφ̃fnw
∞∑
m=0

B
(2m+1)2

1 Ho
(1)
2m+1(0, τn) se2m+1(ν, τn)

2Ho
(1)
2m+1,υ(0, τn)

(2.46)

Φ̃
S

n(υ, ν) = adnw

∞∑
m=0

B
(2m+1)2

1 Ho
(1)
2m+1(0, τn) se2m+1(ν, τn)

2Ho
(1)
2m+1,υ(0, τn)

(2.47)

and from the subsequent surface integrals, the pure pitch motion added mass, radiation damping, and excitation

torque are obtained as

A55 = ρw2π

∞∑
n=0

f2n Im

{ ∞∑
m=0

B
(2m+1)2

1 No2m+1(0, τn)

4Ho
(1)
2m+1,υ(0, τn)

}
(2.48)

B55 = −ρw2ωπf20 Re

{ ∞∑
m=0

B
(2m+1)2

1 No2m+1(0, τ0)

4Ho
(1)
2m+1,υ(0, τ0)

}
(2.49)

X5 = ρw2aωπf0d0 cos θ

∞∑
m=0

B
(2m+1)2

1 No2m+1(0, τ0)

4Ho
(1)
2m+1,υ(0, τ0)

(2.50)

§The thesis author is a co-author of this work
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with

fn =

√
2 [kn(h− c) sinh knh+ cosh knh]

k2n
[
h+ (g/ω2) sinh2 knh

] 1
2

(2.51)

dn =


gk0(h+(g/ω2) sinh2 k0h)

1
2

√
2ω cosh k0h

n = 0

dn = 0 n ≥ 1

(2.52)

τn = 1
16w

2k2n (2.53)

where Ho and se are the odd Hankel–Mathieu and odd Mathieu functions of the first kind, B1 is the first coefficient

of the se function, and No is the odd radial Mathieu function of the second kind. The first subscript of Ho2m+1,υ

denotes the function is of order 2m+ 1 and that a derivative is to be taken with respect to the elliptical coordinate

υ. The variable θ in (2.50) represents the angle of the incident waves with respect to the x-axis (see Fig. 2.3b).

For information on Mathieu functions, refer to [40] and the appendices of [32]. Visually oriented readers are also

encouraged to refer to [41]. Finally, the surge-pitch added mass and radiation damping and the surge excitation

force, useful in characterizing loads, are derived as

A15 = ρw2π

∞∑
n=0

fnλn Im

{ ∞∑
m=0

B
(2m+1)2

1 No2m+1(0, τn)

4Ho
(1)
2m+1,υ(0, τn)

}
(2.54)

B15 = −ρw2ωπf0λ0 Re

{ ∞∑
m=0

B
(2m+1)2

1 No2m+1(0, τ0)

4Ho
(1)
2m+1,υ(0, τ0)

}
(2.55)

X1 = ρw2aωπλ0d0π cos θ

∞∑
m=0

B
(2m+1)2

1 No2m+1(0, τ0)

4Ho
(1)
2m+1,υ(0, τ0)

(2.56)

with

λn =

√
2 (sinh knh− sinh knc)

kn
(
h+ g

ω2 sinh2 knh
) 1

2

(2.57)

Using an appropriate number of orders m and terms n in the summations, the hydrodynamics can be characterized

over a desired frequency range and used to obtain frequency domain results as usual.

2.4.3 Validation

To substantiate the analytically derived hydrodynamic coefficients for later use, a comparison of results from the

analytical model and a numerical model is shown here. The subject of both models is a 1:14 scale, bottom-raised

OSWEC model which was previously tested in a 4.5-m deep wave basin at the University of Maine’s Harold Alfond
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W2 Ocean Engineering Laboratory. The properties of the validation model are provided in Table 2.1. The validation

results derive from a boundary element method (WAMIT) model created to reproduce the dynamics of the experi-

ments. The numerically simulated and experimental time series compared exceptionally well, indicating the model

hydrodynamic coefficients provide a valid representation of the real-world OSWEC dynamics.

Table 2.1: Validation model properties

Symbol Property Value Unit
h Water depth 4.5 m
c Hinge to seabed 3.85 m
HO OSWEC height 0.61 m
w OSWEC width 0.94 m
p OSWEC thickness 0.1 m
M OSWEC mass 25.7 kg
I55 Moment of inertia∗ 4.25 kg-m2

C55 Hydrostatic restoring coeff.∗ 137 kg-m2 s-2

∗Calculated about the hinge point

Pitch added mass and radiation damping, surge-pitch added mass and radiation damping, surge excitation force,

and pitch excitation torque were calculated over a frequency range of 0.1 rad/s to 11 rad/s with a step size of 0.1

rad/s using both models. A total of 15 frequencies (n = 15) were retained in the solutions to (2.46 – 2.57) with m

= 4. The results are presented in Fig. 2.5.

The pitch added mass and radiation damping (a) and surge-pitch added mass and radiation damping (b) curves

of Fig. 2.5 compare well between the two models. The trends of the validation model are well-captured by the

analytical model, with less than 5% error across the entire observed frequency range. Discrepancies are observed

in the surge and pitch excitation force/torque curves (c and d) however; while the magnitudes agree well for both

curves, the phasing deviates significantly beyond 5 rad/s. The validation model drops to a phase angle of about

0.4 rad at 7 rad/s before rising again to 0.6 rad at the highest frequency of 11 rad/s, whereas the analytical model

predicts a dip to 0.1 rad at 7.5 rad/s before peaking slightly and converging toward 0 rad at 11 rad/s. The cause of

the deviation between the analytical and numerical model phase predictions may arise from two sources: 1) whereas

the physical OSWEC tested in the wave basin and modeled in WAMIT has a width to thickness aspect ratio of w/p

= 9.4, the analytical model operates on a flat plate assumption (w/p→∞); and 2) while the OSWEC tested in the

W2 basin was in fact bottom-raised, no foundation or flow-blocking structure was present beneath the device. This

is unlike the boundary value problem formulated here, which stipulates a no-flow condition beneath the width of the

OSWEC through boundary condition 3. While this boundary condition could be modified and the expressions in

(2.46 – 2.57) re-derived to model free flow beneath the OSWEC, these expressions are provided in this manner here

to mimic the presence of a flow-blocking foundation which will later be used in the experiments.
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(a) Pitch added mass (µ55) and radiation damping (ν55) (b) Surge-pitch added mass (µ15) and radiation damping (ν15)

(c) Surge excitation force magnitude (|X1|) and phase (ϕ1) (d) Pitch excitation torque magnitude (|X5|) and phase (ϕ5)

Figure 2.5: Comparison of analytically derived (solid) and numerically derived (dashed) hydrodynamic coefficients.

Despite deviations in the excitation phasing at higher frequencies, the strength of the analytical model remains

evident; whereas the WAMIT model used to produce validation results requires preparation on the order of hours

and requires several minutes to run a single frequency step, the analytical model can be setup on the order of minutes

and used to produce similar results, averaging seconds to run each frequency. Both models will be compared to the

experimental results in subsequent sections.
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2.5 Numerical Methods

2.5.1 WAMIT Setup

Hydrodynamic coefficients and exciting forces/torques in all six degrees of freedom, evaluated in the panel method

solver WAMIT (WAMIT Inc.), were used to perform numerical simulations of the OSWEC and its support struc-

ture.∗ Similar to the analytical solution process, where the incident, scattered, and radiated potentials are solved

independently of one another and combined into a linear solution, WAMIT solves for the velocity potential and fluid

pressure at each “panel” (suface mesh element) of a discretized body surface. For more information, refer to the

WAMIT theory manual at https://www.wamit.com/Publications/tmanual.pdf.

The surfaces of the geometry were discretized into panels using the external software, Rhinoceros 3D. Parallel

tank walls, spaced the same 1.2 m distance apart as the ORRE wave tank, were included in the simulation to better

represent the experiments. The tank was not capped at the front and end, however. The hydrodynamic coefficients

and exciting forces were evaluated at frequencies ranging from 0.05 rad/s to 20 rad/s in increments of 0.05 rad/s.

While hydrodynamic coefficients and exciting forces/torques for all 6 degrees of freedom are solved by WAMIT, only

the components in surge, pitch, and heave are needed. These coefficients and exciting forces/torques, solved for the

experimental-scale OSWEC, are presented in Fig. 2.6. As required by WEC-Sim, the presented hydrodynamics are

computed about the center of gravity (as opposed to the hinge).

2.5.2 WEC-Sim Setup

WEC-Sim (Wave Energy Converter SIMulator) is a MATLAB/Simulink-based, open-source wave energy converter

simulation software developed by the National Renewable Energy Laboratory (NREL) and Sandia National Lab-

oratories (Sandia). Using the hydrodynamic inputs from WAMIT (or another boundary element method solver –

WAMIT, AQWA, Nemoh or CAPYTAINE), WEC-Sim solves the time domain equations of motion in all six degrees

of freedom. For more information, refer to the WEC-Sim user and theory manual at https://wec-sim.github.io/

WEC-Sim/master/index.html.

The OSWEC and its support structure were modeled in WEC-Sim as two hydrodynamic bodies connected by a

rotational constraint (Fig. 2.7a). The rotational constraint was configured to prevent motion in all degrees of freedom

but rotation about the y-axis. A damping coefficient and, when appropriate, a torsional restoring coefficient, are

∗The WAMIT simulations used in this work were performed by Dr. Nathan Tom, National Renewable Energy Laboratory
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(a) pitch added mass and radiation damping (b) surge-pitch added mass and radiation damping

(c) pitch excitation force magnitude and phase (d) surge excitation force magnitude and phase

Figure 2.6: Hydrodynamic coefficients and exciting forces/torques calculated with WAMIT

applied at this joint to apply restoring and damping torques. The foundation is rigidly connected to the seafloor by

a fixed constraint. The Simulink configuration is shown in Fig. 2.7b.

Each model configuration was simulated at the design wave period and amplitude conditions used in the exper-

iments. The regular convolution integral calculation class, regularCIC, was used with a convolution integral time

(CITime) of 20 s and the fixed time step MATLAB solver, ODE 4. A linear ramp function was applied to the inci-

dent wave forcing to prevent unwanted transients and numerical instabilities. The Multiple Condition Runs (MCR)

feature was used to script the simulation process based on the wave heights, periods, ramp times, end times, and

time steps provided in an external MCR case file. The wave ramp time, simulation end time, and simulation time

step size were set to 20 times, 40 times, and 1/400 times the period, respectively. A summary of the WEC-Sim
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simulation parameters is provided in Table 2.2. Run conditions are provided in Table 2.3.

Table 2.2: WEC-Sim simulation parameters

Parameter Value Description
Wave class regularCIC regular waves with convolution integral calculation
Solver ODE 4 MATLAB ordinary differential equation solver with a fixed time step
dt 1/400T solution time step
CITime 20 s convolution integral time
rampTime 20T wave forcing ramp time
endTime 40T simulation end time

Table 2.3: WEC-Sim run conditions

H T rampTime endTime dt
(m) (s) (s) (s) (s)

0.0031 0.8 16 32 0.002
0.0059 1.0 20 40 0.0025
0.0090 1.3 26 52 0.00325
0.0130 1.6 32 64 0.004
0.0122 1.7 34 68 0.00425
0.0157 1.8 36 72 0.0045
0.0120 1.9 38 76 0.00475
0.0098 1.95 39 78 0.004875∗

0.0104 2.0 40 80 0.005
0.0151 2.05 41.2 82.4 0.00515∗

0.0205 2.1 42 84 0.00525
0.0212 2.2 44 88 0.0055
0.0203 2.4 48 96 0.006
0.0262 2.6 52 104 0.0065
0.0287 2.8 56 112 0.007

∗ This row applies only to the OSWEC with external torsion
springs configuration
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(a) WEC-Sim geometry (b) Simulink bodies and constraints

Figure 2.7: WEC-Sim and Simulink setup
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Chapter 3

EXPERIMENTAL STUDY OF A FOUNDATION RAISED OSWEC

3.1 Scale Model Sizing

The experimental OSWEC was designed at the tank scale to make best use of the available space in the ORRE wave

tank test section. The cross section of the tank’s test section is approximately 1.2 m wide with a nominal water

depth of 1 m. The following objectives were targeted throughout the sizing process:

• The top of the OSWEC should be flush with the mean water line when it is at its mean position. Mathemat-

ically, the OSWEC’s height (HO) plus the foundation height (Hf ) and the gap required for the hinge-related

components (Hg) should equal the water depth (h): HO +Hf +Hg = h

• Effects from the tank walls on the hydrodynamics of the OSWEC should be minimized; sufficient clearance

should be left on either side of the model to enable flow to pass relatively freely

• The OSWEC should be stable in the unperturbed configuration. This requires the hydrostatic restoring coef-

ficient, C55, be greater than zero

• The net balance of the weight and buoyancy forces, FG and FB , should be minimized such that the vertical

force on the hinge is near zero when the paddle is submerged to its design depth

The final dimensions and properties of the scale OSWEC used in the experiments are summarized in Tables 3.1

and 3.2. The design rationale followed to select the width, height, inertial properties, and hydrostatic properties are

described in the following subsections.
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Table 3.1: Primary dimensions of the experimental OSWEC

Symbol Dimension Value Unit
h Water depth 1 m
HO Height 0.5 m
w Width 0.4 m
p Thickness 0.076 m
rg Hinge to center of gravity 0.175 m
rb Hinge to center of buoyancy 0.284 m
rg,B Hinge to ballast center of gravity 0.082 m
zh Hinge depth, measured from MWL∗ 0.534 m
yw Wall clearance (one side) 0.4 m
Hg Gap between the OSWEC and top of the foundation 0.089 m
Hf Foundation height 0.411 m
Df Foundation diameter 0.133 m
zf Foundation depth, measured from MWL to top 0.569 m

∗ MWL ≡ mean water line

Table 3.2: Properties of the experimental OSWEC

Symbol Property Value Unit
mO Body mass 6.40 kg
mB Ballast mass 7.92 kg
M Total mass 14.32 kg
–V Displaced volume 0.0155 m3

I55 Moment of inertia about hinge† 0.855 kg-m2

IG55 Moment of inertia about center of gravity 0.414 kg-m2

C55 Hydrostatic restoring coefficient† 18.54 kg-m2 s-2

Cext External torsion spring restoring coefficient‡ 0, 56 kg-m2 s-2

Tn Natural period‡ 4.22, 1.76 s
ωn Natural frequency‡ 1.49, 3.57 rad/s

|FB | − |FG| Net hydrostatic vertical force 11.57 N

†A superscript indicating the calculation point has been omitted from the symbol to remain con-
sistent with the derivations throughout the text. Unless otherwise noted, the properties used in the
figures and equations are calculated about the hinge, point O.

‡Two experimental configurations were used: the OSWEC with no external attachments and the
OSWEC with external torsion springs.
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3.1.1 Height Selection

The height of the experimental OSWEC was chosen to be 0.5 m, 50% of the 1 m water depth in the ORRE wave

tank. At this height, the height of the foundation the remains sufficiently tall, as to lift the OSWEC sufficiently close

to the mean water line, where the wave action is the greatest, and to observe the effect of greater loading at the

foundation base. As the water particle motion beneath the design waves decay with depth (the design waves used in

the experiments range from intermediate to deep water waves), any hydrodynamic bodies placed to close to the sea

bottom will experience little water motion.

The height of the resulting experimental foundation, Hf , was approximately 0.411 m. This dimension follows

the integration of a 0.089 m gap, Hg, necessary to accommodate the shaft, shaft mounts, and OSWEC pillow block

bearings. At this height, the foundation spanned the sea floor to a depth of 0.569 m below the mean water line (zf ).

A cylindrical cross-section foundation with a diameter, Df , of 0.133 m was used.

3.1.2 Width Selection

A common limitation of wave tank experimentation is the width of the channel itself. In OSWEC experiments,

insufficient clearance between the edges of the model and the tank walls can introduce undesired irregularities into

the model response [13]. At the expense of a greater scale factor, s, the width of the OSWEC model developed for

this work was sized to allow clearance on either side of the body, with the goal of minimizing the effect of the tank

walls on the OSWEC hydrodynamics.

To observe the effects of the tank walls on the hydrodynamics, a series of WAMIT simulations were performed to

observe the hydrodynamic coefficients and exciting forces over a range of feasible widths [42].∗ The pitch excitation

torque and pitch added moment of inertia for a 0.5 m tall OSWEC with widths varying from 0.3 m to 0.6 m,

simulated with tank walls (3.1a and 3.1b) and without tank walls (3.1c and 3.1d), are presented in Fig. 3.1. The

following observations are highlighted: 1) regardless of width (over the observed range), the presence of tank walls

appears to induce a sharp, heightened peak at the maximum values of most of the curves. This is true for the pitch

excitation torque at all widths, and for the added inertia curves at widths less than 0.5 m; 2) as the width increases,

the frequency at which the maximum value occurs also shifts towards higher values for both the pitch excitation

torque and the added inertia curves at all widths but 0.3 m (the 0.3 m case shifts to a lower frequency); and 3)

for the pitch excitation torque curves, the peaks of the “with walls” curves trend towards a maximum at the same

frequency of 7.1 rad/s, regardless of width. A steep decline is observed in the added inertia at this frequency. The
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latter two observations are emphasized in Fig. 3.2, in which the wall and no wall simulation results are superimposed

for widths of 0.4 m and 0.6 m. Consider the pitch excitation curves of 3.2a: while the sharpening of the peaks occurs

for both widths, the peak value of the 0.4 m width curves occur closer in frequency–approximately 7.3 rad/s (no

wall) and 7.1 rad/s (wall)–compared to the 0.6 m width curves, which peak at 6.2 rad/s (no wall) and 7.1 rad/s

(wall). The significance of 7.1 rad/s remains to be studied, but the source is likely a result of the tank physics.

Based on these observations, the 0.4 m width was chosen as it is the maximum width at which the peak values

of the exciting torque are not significantly shifted in frequency. This resulted in a clearance, yw, of 0.4 m between

the tank walls and either side of the OSWEC.

(a) Pitch excitation torque, no walls (b) Pitch excitation torque, with walls

(c) Pitch added inertia, no walls (d) Pitch added inertia, with walls

Figure 3.1: Comparison of the pitch excitation torque and added moment of inertia simulated in WAMIT with and
without tank walls

∗The WAMIT simulations and results presented in this section were prepared by Cole Burge, a Science Undergraduate Laboratory
Intern at the National Renewable Energy Laboratory
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(a) Pitch excitation torque (b) Pitch added moment of inertia

Figure 3.2: Superimposition of the simulation results with and without tank walls for widths of 0.4 m and 0.6 m

3.1.3 Inertial and hydrostatic properties

The OSWEC dimensions required to satisfy the conditions described in the previous subsections result in a body

whose free response natural period is generally above the range of wave periods producible by the ORRE tank

wavemaker. With the frontal area of the OSWEC (0.4 m x 0.5 m), and thus the added moment of inertia, set, the

remaining design parameters were chosen to maximize the available mechanical power. These parameters include

the following dimensions: the thickness (p), center of gravity (rg), and center of buoyancy (rb); and properties: the

body mass (mO), ballast mass (mB), and the restoring coefficient of any external springs (Cext). The remaining

properties, including the displaced volume (–V ), moment of inertia (I55), hydrostatic restoring coefficient (C55), net

hydrostatic vertical force (|FB | − |FG|), and the natural frequency/period (wn,Tn) derive from these values.

The mechanical power available from a symmetric body undergoing pure pitch motion is the product of the wave

moment and the angular velocity of the body [43]:

PM = φ̇(t) aX5 (3.1)

Qualitatively, (3.1) implies that the mechanical power available from a hinged OSWEC is maximized when its pitch

angular velocity and the pitch exciting torque are simultaneously maximized. The former occurs at the OSWEC’s

natural frequency:

ωn =

√
C55 + Cext
I55 +A55

(3.2)
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From (2.15), the hydrostatic restoring coefficient is

C55 = (ρ–V rb −m rg) g (3.3)

and the moment of inertia can be approximated from that of a bottom-hinged box:

I55 =
1

3
mOH

2
O

[
1 +

(
p

2HO

)2
]

+mBrg,B (3.4)

where the parallel axis theorem has been used to account for the inertia of the additional ballast mass mB with

center of gravity rg,B , as measured from the hinge axis.

Using the analytical model established in 2.4, the added moment of inertia of the 0.5 m tall by 0.4 m wide OSWEC

was approximated as 5 kg-m2. Further, the excitation torque was predicted to peak at approximately 0.80 s, just at

the lower end of the tank’s wave period range. For reasonable values of body thickness and ballast mass (up to the

mass of the OSWEC body itself), the mass moment of inertia approximated by (3.4) is on O(1 kg-m2). Hence the

properties are best tuned using the hydrostatic restoring coefficient, (3.3). With the natural period (Tn = 2π/ωn)

significantly above the highest wave maker period of ≈ 3 s, the restoring coefficients must be increased to drive the

natural period down closer to that of the peak excitation torque period.

From (3.3), the hydrostatic restoring stiffness can be increased by maximizing the quantity ρ–V rb. Since the

OSWEC is a rectangular paddle, the center of gravity was fixed at the center (the addition of a buoyancy chamber

will not be considered in this work). Hence, the OSWEC thickness was set to a fairly high value of 0.076 m (3 in)

to drive up the displaced volume up to 0.0155 m3. To counteract the large buoyancy force, 7.92 kg of additional

ballast mass was incorporated into the bottom of the OSWEC at a distance of 0.082 m above the hinge axis. The net

hydrostatic force remained positive at 11.57 N, and the moment of inertia and hydrostatic stiffness were estimated to

be 0.855 kg-m2 and 18.54 kg-m2 s-2, respectively. With the volume and mass properties set, the final natural period

of the OSWEC with no external springs was obtained as 4.22 s. To observe the OSWEC dynamics in resonance, an

experimental configuration was also setup with torsion springs (Cext = 56 kg-m2 s-2) to reduce the natural period

to 1.76 s.

See Tables 3.1 and 3.2 for a summary of the final dimensions and properties. At an example scale of 1:40, the final

design is representative of a 16 m wide by 20 m tall OSWEC sited in 40 m water depths.
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3.2 Scale Model Fabrication

3.2.1 Design

The experimental scale model of the OSWEC was designed in SolidWorks and fabricated in the Department of

Mechanical Engineering machine shop (Fig. 3.3). The primary body dimensions (height, width, and thickness)

were sized to match those determined from the analysis described in the previous section. Upper and lower ballast

ports were included to incorporate ballast weight, enabling the desired center of gravity and moment of inertia to be

attained. The ports were sealed with two watertight doors on one end of the body.

(a) Schematic (b) Primary dimensions; units: in. [m.]

Figure 3.3: Experimental scale OSWEC model design

3.2.2 Materials and Methods

The top, base, and sides of the body were cut from 1/2” acrylic bar stock. 1/4” acrylic sheet was used for the fore

and aft faces (Fig. 3.4a). Members were assembled and welded together using an acrylic cement. Care was taken

during the fabrication process to ensure all adjoining members had clean, square faces, as to ensure the cementing

process attained structurally sound and watertight bonds. Plastic dowels were used to ensure accurate alignment
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during assembly. Heat set threaded brass inserts were incorporated into the design to allow for the fastening of

ballast doors and bracketry (Fig. 3.4b). Two pillow block mounts, each set with an acetal ball bearing, were bolted

to the base of the body (Fig. 3.4c) and the entire assembly was connected to a 1/2” stainless steel shaft rigidly fixed

to the support frame. The tilt sensor, used to track the motion of the body, was fixed to the top of the body through

a 9” tall, 3” wide, and 1/8” thick stainless steel bracket, sized to elevate the sensor above the maximum expected

water elevation and oriented to have a minimal effect on the hydrodynamics (Fig. 3.4d). The completed model is

shown in Figure 3.5.

(a) Materials (b) Threaded inserts

(c) Pillow block bearings (d) Tilt sensor bracket

Figure 3.4: Experimental OSWEC model materials and methods
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(a) Front (b) Side (c) Top

Figure 3.5: Experimental OSWEC model body

3.2.3 Support Structure

To ensure a single load path through the load cell positioned at the base of the OSWEC and its foundation, the

support structure of the OSWEC was designed to support the assembly from the bottom up. Frame members enabled

the entire support structure to be rigidly fixed to the tank rails (Fig. 3.6a). The OSWEC shaft was supported by

a wide tee section at mid water depth (Fig. 3.6b). The shaft was fixed at opposing ends via two shaft mounts. A

six-axis load cell was installed at the base of the assembly, as to record the shear and bending moments at the base

of the foundation during experimentation. A rigid center beam connected the upper tee to the top of the load cell,

where it was interfaced using a bracket and adapter plate assembly (Fig. 3.7a). The load cell was attached at its

base to a 0.5” thick aluminium crossmember (Fig. 3.7b). The entire support structure was designed in SolidWorks

and fabricated from aluminum bar and angle stock.

To capture the hydrodynamics due to the presence of a monopile foundation beneath the OSWEC, a rigid, 5.25”

diameter acrylic tube was integrated into the support structure (Fig. 3.8). The tube was secured to the center beam

via stainless steel threaded rod, as to isolate the tube from making contact the lower part of the frame. Once lifted

down into the tank, the acrylic tube was allowed to flood with water. It is noted here that exact similarity between

the WEC-Sim, analytical, and experimental support structures was not obtained; whereas the experimental OSWEC

includes a 5.25 inch diameter foundation tube, the WEC-Sim model only includes the slimmer support beam (see

Fig. 2.7a). The boundary conditions of the analytical model are representative of a wall-like foundation with a width

equivalent to that of the OSWEC itself.

34



(a) OSWEC support structure (b) Tee, center beam, and load cell interface

Figure 3.6: Experimental setup support structure

(a) Load cell adapter plate (b) Kistler load cell

Figure 3.7: Load cell and interface

3.3 Experimental Setup

3.3.1 Instrumentation

The Ocean Resources and Renewable Energy facility’s wave tank is 11 m long and 1.2 wide with an operating water

depth of 1 m. At one end, a plunger-type wave maker is capable of producing waves over a period range of 0.6 to
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(a) Front (b) Isometric

Figure 3.8: Foundation tube assembly

3 seconds with heights up to 0.25 m. A beach with a quarter-ellipse profile is fixed at the opposing end to absorb

waves and reduce reflections. The wave maker, general test section, and beach locations are indicated in Fig. 3.9.

Figure 3.9: ORRE wave-current flume schematic; the wave maker, test section, and beach are located in the tank
section; the recirculating section of the tank (used to generate currents), shown in the upper portion of the diagram,
is not used in this work.

Wave elevation was measured in the tank using two types of probes. The first of these, the OSSI-010-002E Wave

Staff (Ocean Sensor Systems Inc., FL), is a capacitive-type probe outfitted with a 1 m long teflon coated staff. The

probe was configured to sample at 110 Hz and has an accuracy and resolution of ±2.5 mm and 0.25 mm, respectively.

Prior to use, the staffs were calibrated by measuring the output voltage at a sequence of heights to obtain the linear

calibration constant in V/m. A surfactant was periodically applied to the staff during experimentation to minimize

the effect of surface tension on the recorded measurements. The second probe type, the OSSI-010-036 Sonic Wave

Sensor RV (Ocean Sensor Systems Inc., FL), is a sonic-type probe. It has an accuracy of ±3.75 mm, a resolution of
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Figure 3.10: Wave probes used in the ORRE wave tank

0.1 mm, can record waves with a maximum steepness (H/L) of 0.114, and was configured to sample at its maximum

rate of 32 Hz. The non-invasive nature of the sonic probe makes it well-suited for placement close to models, such

that the surrounding wavefield is not disturbed. The factory calibration constant provided with each of the sonic

probes was validated ahead of use. Outputs from both types of wave probes were sent directly to the laboratory

data acquisition system as a 0-5 V signal. An image of both probes configured in the tank is shown in Fig. 3.10.

Loads were recorded at the base of the model foundation using a 6-axis piezoelectric force and torque sensor.

The Type 9306A load cell (Kistler Instrument Corp., MI) is an IP68-rated (submersible) sensor capable of measuring

dynamic loads in 6-axes: Fx, Fy, up to ± 5 kN; Fz from -5 to 10 kN; and Mx,My,Mz up to ± 200 N-m. The load

cell was oriented such that its x-axis was aligned along the length of the tank and its z-axis was aligned vertically up

(see Fig. 3.11). The force/torque range of each channel was individually adjusted to maintain good resolution over

the range of expected loads for each run. Outputs from the sensor were directed through a charge amplifier (Kistler

LabAmp 5165A) prior to entering the laboratory data acquisition system as a ± 10 V signal.

The angular position of the OSWEC was recorded via an MV5-AR industrial tilt sensor (Parker-LORD Mi-

croStrain, VT). The MV5-AR is a compact, 6 DOF gyro-stabilized inclinometer with an accuracy of ±2 deg and a

resolution of 0.05 deg. Digital output from the MV5-AR was acquired at 500 Hz through the laboratory’s CANopen

communication network.

All equipment and instruments used in the experiments were interfaced through the laboratory’s CompactRIO

Controller (National Instruments cRIO-9047). Wave maker control and acquisition of the wave elevation, load, and

position signals were synchronized and collected at 500 Hz.
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(a) Force and moment conventions (b) Dimensions; units: mm

Figure 3.11: Kistler Type 9306A six-axis load cell; figures adapted from the Type 9306A Technical Data Sheet [44]

3.3.2 Wave Tank Configuration

The OSWEC model and its support frame were centered in the test section of the ORRE wave flume, a distance

193.5 in (4.91 m) from the start of the tank. Four wave probes (abbreviated WP1–WP4 in subsequent figures and

discussion) were set up along the length of the tank: WP1, a sonic probe, was placed ahead of the model at a distance

of 134 in (3.4 m); WP2, another sonic probe, was placed overhead the model location at 193.5 in; WP3, a capacitive

staff, was placed behind the model at 274.5 in (6.97 m); and WP4, a capacitive staff, was placed just ahead of the

beach at 332.5 in (8.45 m). WP1, WP3, and WP4 were centered laterally in the tank throughout the duration of

the experiments. WP2 was also centered in the tank during the design wave calibration, but was offset laterally to

be centered in the 0.413 m gap between one side of the model and the tank wall during model runs. The beach was

offset 2 in from the back wall of the tank, a position previously deemed optimal in reducing the effects of reflection

for the design waves used in the experiments. A schematic of the wave tank configuration is presented in Fig. 3.13
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Figure 3.12: Image of the experimental setup

(a) plan

(b) side

Figure 3.13: Wave tank configuration; breakout sections have been included to reveal the location of the wavemaker
and beach; units: in. [m.]
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3.3.3 Test Matrix

Two model configurations were used in the experiments: 1) the OSWEC with no external springs; and 2) the

OSWEC with external torsional springs, added to observe the dynamics of the OSWEC at its natural frequency.

These two configurations will be labeled and colored as no external springs and external springs in subsequent figures

and discussion. Both configurations employed the 5.25 inch diameter acrylic tube designed to mimic a monopile

foundation.

Free decay experiments were performed for each configuration to observe the natural frequency and for later

tuning of the numerical and analytical models. Initial pitch displacements of approximately 5 to 25 degrees were

observed. All the design waves used in the experiments were regular, first order waves (monochromatic waves). The

wave periods spanned the wave maker capabilities, ranging from 0.8 s to 2.8 s. A target steepness of H/L=0.0035

was set, resulting in amplitudes from 1.5 mm to 14.3 mm. Each design wave and model experiment run lasted for 60

s: the wavemaker began operation at 0 s with a 3 s ramp time, and ended operation at 40 s. 20 s of additional time

was allotted before the sensor readings stopped. The design waves were calibrated at the location of the model (193.5

in from the start of the tank). The wave amplitudes were calculated as the mean amplitude of three runs, where the

individual amplitudes were determined from the Fourier transform of a 30 s wave elevation time history recorded by

WP2. On average, the standard deviation of the three runs was 0.60 % of the mean value. The highest standard

deviation to mean ratio was 3%, observed for the smallest wave condition with an amplitude of 1.25 mm. A target

number of 1-2 runs was set for each model run wave condition (repeated for both model configurations), except for

the 1.3 s and 2.0 s conditions, which were repeated 5 times to better quantify the repeatability of the experiments.

The periods, wavemaker actuator amplitudes, calibrated wave amplitude mean and standard deviations, and target

number of runs for each condition are summarized in Table 3.3.

3.3.4 Post-Processing

Following data collection, the signals from the wave probes, tilt sensor, and load cell were processed as follows:

1. The 60 s raw signal was sliced from 10 s to 40 s. The start time of 10 s was selected to remove the wavemaker

ramp and any model transients. The end time of 40 s was chosen to omit the end portion of the time history

significantly affected by wave reflections. This resulted in a 30 s signal of approximately steady-state data.

Both times were verified by observation for each experimental run.

2. A fast Fourier transform (FFT) of the 30 s sliced signal was performed in MATLAB to identify the dominant
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Table 3.3: Test matrix

T Actuator Amp amean
∗ astd

∗ Target No. Runs
(s) (mm) (mm) (mm) (#)
0.8 1.25 1.5 0.05 1-2
1.0 3.75 3.0 0.02 1-2
1.3 16.75 4.5 0.02 5
1.6 15 6.5 0.06 1-2
1.7 16.5 6.1 0.01 1-2
1.8 18.75 7.9 0.11 1-2
1.9 20 6.0 0.01 1-2
1.95 23 4.9 0.01 1-2
2.0 26 5.2 0.01 5
2.05 29 7.5 0.02 1-2
2.1 32.5 10.3 0.02 1-2
2.2 35 10.6 0.01 1-2
2.4 40 10.1 0.02 1-2
2.6 42 13.1 0.06 1-2
2.8 80 14.3 0.11 1-2

∗ Calculated from FFT of 3 independent runs

frequency. This was the frequency corresponding to the FFT peak with the highest amplitude. The signal was

then filtered using a fourth-order Butterworth low pass filter with the cutoff frequency set to a value 5 times

higher than the dominant frequency identified by the FFT (i.e. for a signal corresponding to wave condition

with a 2 s period, or 0.5 Hz frequency, the cutoff frequency was set to 2.5 Hz such that content above this

frequency, or below 0.4 s, was attenuated). If higher harmonics (due to wave reflection) with an amplitude at

least 25% of the dominant peak were present in the FFT, the cutoff frequency was instead set to 5 times higher

than this value. The filtering was performed using the MATLAB Signal Processing Toolbox.

3. The peaks of the filtered signal were identified, and the signal was trimmed at its first and final peaks to obtain

a time history with an integer number of cycles. An FFT was performed on the trimmed signal, and the final

frequency and amplitude were determined from the dominant peak.

4. This process was repeated for each experimental run. If multiple runs of the same experimental configuration

and wave condition were available, the period and amplitude were recorded as the mean of the combined

results. If more than 2 runs were present, a standard deviation was calculated. These are the experimental

values reported in the following results and discussion.
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Chapter 4

RESULTS AND DISCUSSION

4.1 System Identification

Experimental free decay responses were used to perform system identification on both OSWEC configurations. This

process ensured the accurate representation of the physical OSWEC by the WEC-Sim and analytical models. The

system parameters of interest included estimates of the viscous damping, quadratic damping, and the natural period

(or natural frequency).

To approximate the viscous (or linear) damping, a standard logarithmic decrement method was performed on each

free decay run. The logarithmic decrement, which represents the rate at which the damped free response amplitude

decays, is obtained from two successive peaks of the response as [45]

δ =
1

n
ln

φk
φk+n

(4.1)

where φk and φk+n are peaks occurring n cycles apart beginning at the kth oscillation cycle. This expression is

related to the damping ratio, ζ, by

ζ =
1√

1 +
(
2π
δ

)2 (4.2)

which is in turn related to the system parameters as

ζ =
B55 +Bv +BPTO
2 (I55 +A55)ωn

(4.3)

Using the pitch added mass and radiation damping coefficients (A55 and B55) approximated in WAMIT and the

natural frequency obtained from the free decay response, the additional viscous damping, Bv, required in the model

can be approximated from (4.3).

To better characterize the damping in the system, a theoretical approach to approximating both a viscous (linear)

and quadratic damping coefficient from a hydrodynamic free decay response was also adopted from [46]. A quadratic
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damping term is first introduced into the equation of motion as

Td,quad = CD φ̇|φ̇| (4.4)

where CD is the quadratic damping coefficient, including the projected area and water density. If the decayed

oscillation is assumed to be approximately sinusoidal over one half cycle, the quadratic velocity term can be linearized

using a Fourier series expansion:

φ̇|φ̇| ≈ 8

3π
ωnφkφ̇ (4.5)

If peaks from oscillation cycles spaced two periods apart are considered, the following linear equation is obtained:

[46]

1

2π
ln
φk−1
φk+1

= ζ +
4

3π

CD
(I55 +A55)︸ ︷︷ ︸

m

φk (4.6)

The expression in (4.6) is fit with the quantity on the left-hand side as the dependent variable and φk as the

independent variable. The resulting intercept represents the damping ratio, as in (4.3), and the slope, m, is directly

related to the quadratic drag coefficient.

Results from the free decay experiments and both damping identification methods are presented in Table 4.1 (no

external springs) and Table 4.2 (external springs). The natural period estimates were obtained from the difference

of adjacent peaks, φk and φk+1, averaged over all the positive and negative peaks separated by 1 period (n = 1).

Table 4.1: Free decay results, no external springs

φ0 ωn Tn ζlogdec ζquad mquad R2
quad

(deg) (rad/s) (s) (-) (-) (-) (-)
-10.4 1.58 3.97 0.096 0.229 -0.613 0.57
-11.6 1.55 4.05 0.093 0.187 0.039 0.12
-16.3 1.51 4.16 0.088 0.148 0.458 0.69
-15.3 1.52 4.14 0.096 0.209 -0.360 0.27
-10.4 1.57 4.01 0.097 0.214 -0.409 0.54

Clear disagreement is observed between the logarithmic decrement and quadratic damping estimates for the no

external spring case, Table 4.1. Whereas the mean damping ratio predicted by the logarithmic decrement method,

ζlogdec, is 0.094, the mean damping ratio predicted from the intercept of the quadratic method, ζquad, is over twice

this value at 0.197. With the exception of the runs with initial conditions, φ0, of -11.6 deg and -16.3 deg, a majority of

the ζquad values are accompanied by a negative quadratic damping coefficient slope, mquad, which is likely fictitious.

Further, the quadratic results display poor R-squared values, indicating the observed points do not follow a sufficiently

linear trend.
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Table 4.2: Free decay results, external springs

φ0 ωn Tn ζlogdec ζquad mquad R2
quad

(deg) (rad/s) (s) (-) (-) (-) (-)
-24.4 3.62 1.74 0.106 0.091 1.998 0.99
-21.4 3.67 1.71 0.110 0.115 1.764 1.00
-17.3 3.54 1.77 0.095 0.104 1.673 0.94
-16.1 3.58 1.76 0.088 0.069 2.219 0.98
-29.8 3.54 1.77 0.110 0.048 2.638 0.97
-25.2 3.58 1.76 0.112 0.105 1.908 0.98
-6.8 3.91 1.61 0.082 0.118 1.628 0.21
-16.0 3.72 1.69 0.099 0.117 1.752 1.00
-11.8 3.67 1.71 0.090 0.094 2.370 0.89

(a) No springs (b) Springs

Figure 4.1: Quadratic damping fits. Here, φk is the peak of the kth oscillation cycle, φk−1 is the peak occurring one
cycle behind, and φk+1 is the peak occurring one cycle ahead.

Instead, observing the damping estimates for the external spring case, Table 4.1, fairly good agreement is present

between the logarithmic decrement and quadratic damping identification results. The mean damping ratio values

are 0.099 and 0.096, respectively, and the mean quadratic damping coefficient slope is positive at a fairly high value

of 1.99. Except for the low amplitude -6.8 deg run, the R-squared values are high at 0.89 or above.

Bulk quadratic damping coefficients were obtained from collating the dependent and independent variables of

(4.6) for every run of each configuration. The fits are presented in Fig. 4.1. Results for the no spring configuration

again predict negative quadratic damping with ζquad = 0.197 and mquad = -0.14; the spring configuration results

predict ζquad = 0.105 and mquad = 1.83. The coefficients predicted on the bulk free decay runs for the spring

configuration (Fig. 4.1b) were evaluated on the WEC-Sim model without springs (WEC-Sim does not currently

support the setting of a free decay initial position when springs are configured). Using (4.3) and (4.6) in combination

with the WAMIT hydrodynamic coefficients evaluated at the natural frequency, the viscous and quadratic damping
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coefficients were calculated as Bv = 0.632, 1.699 (no springs, springs); and CD = 9.576, 10.442 (no springs, springs).

A sample comparison of the experimental and WEC-Sim responses is presented in Fig. 4.2. The initial results

compare fairly well, though the WEC-Sim response is slightly overdamped. Variations should be expected due to the

variation in natural frequency between to the two models. The spring configuration experiences more fluid-induced

quadratic damping due to its faster angular velocity. As these coefficients were derived directly from theory, they

were elected for use in the remainder of the simulations.

A sample free decay time history for the configuration with external springs is shown in Fig. 4.3.

Figure 4.2: Comparison of experimental and WEC-Sim free decay time histories for the model configuration without
springs. The damping parameters used in the simulation were those identified using the quadratic damping fit for
the free decay experiments with springs.

Figure 4.3: Experimental free decay time history for the model configuration with springs
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4.2 Design Waves

The design waves were calibrated without the model in the tank at the exact model position of 193.5 in (4.91 m)

from the start of the tank. The periods and mean amplitudes were calculated from 3 individual runs using the

post-processing procedure described in the previous section. A majority of the design waves were calibrated ahead

of the model experiments, and were designed with a target steepness of H/L = 0.0035. This excludes periods of

1.9 s, 1.95 s, 2.0 s, and 2.05 s, which were added during the experimental runs to better capture the region near

the natural period of the spring configuration. These conditions were later calibrated to identify the actual wave

amplitude post-experiment. A plot of the design wave amplitudes as a function of their period is presented in Fig.

4.4.

Figure 4.4: Design wave amplitude as a function of period

The design wave conditions are summarized in Table 4.3, including additional parameters such as the wave length

and number, steepness, and the corresponding depth classification. Per the typical wave depth limits determined by

the ratio of water depth to wave length, h/L, a majority of the waves are classified as intermediate waves. Only the

shortest waves at 0.8 s and 1.0 s are considered deep water waves, whose water particle trajectories do not penetrate

the full depth of the tank. An intermediate wave classification implies the water particle trajectories beneath the

wave are elliptical and elongated in the direction of the wave travel, extend to the sea bottom, but still decay with

depth. The elongation increases with decreasing h/L until the trajectories are near horizontal and do not decay

with depth [47]. A sample raw wave elevation time history, FFTs of the raw and filtered signals, the filter frequency

response, and the trimmed signals of a single 1.6 s period wave condition run are presented in Fig. 4.5. Note the
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Table 4.3: Design waves

Tmean
∗ Tstd

∗ amean
∗ astd

∗ k L H/L h/L Depth Classification†

(s) (s) (mm) (mm) (m-1) (m) (m/m) (m/m)
0.80 0.0004 1.5 0.05 6.30 0.998 0.0031 1.00 deep
1.00 0.0007 3.0 0.02 4.04 1.557 0.0038 0.64 deep
1.30 0.0007 4.5 0.02 2.41 2.609 0.0035 0.38 intermediate
1.60 0.0015 6.5 0.06 1.68 3.741 0.0035 0.27 intermediate
1.70 0.0037 6.1 0.01 1.53 4.117 0.0030 0.24 intermediate
1.80 0.0009 7.9 0.11 1.40 4.477 0.0035 0.22 intermediate
1.89 0.0002 6.0 0.01 1.31 4.814 0.0025 0.21 intermediate
1.95 0.0031 4.9 0.01 1.25 5.037 0.0020 0.20 intermediate
2.01 0.0027 5.2 0.01 1.20 5.237 0.0020 0.19 intermediate
2.05 0.0004 7.5 0.02 1.16 5.422 0.0028 0.18 intermediate
2.10 0.0007 10.3 0.02 1.13 5.560 0.0037 0.18 intermediate
2.20 0.0029 10.6 0.01 1.06 5.927 0.0036 0.17 intermediate
2.41 0.0000 10.1 0.02 0.94 6.686 0.0030 0.15 intermediate
2.61 0.0005 13.1 0.06 0.85 7.371 0.0036 0.14 intermediate
2.79 0.0014 14.3 0.11 0.79 7.985 0.0036 0.13 intermediate

∗ Calculated from FFT of 3 independent runs
† Wave depth classifications: h/L < 1/20 (shallow); 1/20 ≤ h/L ≤ 1/2 (intermediate); h/L > 1/2 (deep)

much smaller, but not insignificant, FFT peak at 1.25 Hz in Fig. 4.5b; at twice the frequency of the wave, 0.625 s,

this is a 2nd harmonic of the wave attributed to reflections from the beach at the far end of the wave tank.
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(a) Original (raw) time history

(b) FFT and filter frequency response

(c) Comparison of original and filtered signals

Figure 4.5: Sample wave elevation signal from WP2 (T = 1.6 s)
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4.3 Pitch response and response amplitude operator

The pitch response signals recorded by tilt sensor were post-processed using the methodology described in 3.3.4

Post-Processing to obtain the frequency-dependent pitch amplitude, |φ|. When normalized by the incident wave

amplitude to produce an estimate of the response amplitude operator, as in (2.27), the response can provide valuable

insight into the dynamics of an OSWEC design. Typically, a sharp peak in the RAO will be present at the natural

frequency. The amplitude of this peak is determined by the magnitude of the damping. This region generally

corresponds to frequency range where the highest loads are observed, and in the case of power extraction, the

frequency at which the available power is maximized [43].

The experimental pitch response and response amplitude operator results are presented in Fig. 4.6 and tabulated

in Tables 4.4 and 4.5. As anticipated, the response of the configuration with external springs near its natural period

exceeds that of the OSWEC without springs. The response of the external spring configuration appears flattened

from a period of 1.7 s to 2.2 s, though this is due in part to the reduction in design wave amplitude over the

same period (see 4.4). The relatively small pitch amplitude at these frequencies may also be a result of fluid-induced

quadratic damping which is likely to dominate as the body undergoes high pitch angular velocity motion. Normalized

by amplitude, the nondimensionalized RAO reveals the sharp peak characteristic of resonance. The peak occurs at

a period of around 2 s, higher than the anticipated natural period of 1.76 s. A similar, yet smaller spike is observed

in the RAO of the configuration with no external springs at the same period of 2 s. The physical significance of this

period is currently unknown and further investigation is needed. The pitch amplitude and RAO of the configuration

with no external springs continues to climb towards the end of the observed period range.

A typical pitch response time history and the accompanying post-processing figures are shown in 4.7 for T=1.9

s. Similar to the sample design wave history, a higher harmonic is present in the FFT at twice the signal frequency.

The formation of an additional irregularity can also be seen below this frequency; starting around 0.2 Hz, additional

frequency content is present up to the signal frequency of 0.53 Hz. These irregularities are better observed in Fig.

4.8. Labeled are the frequencies and corresponding amplitudes of the signal frequency, its second harmonic, and the

new peak, which occurs around 0.266 Hz. One possible cause of this could be the excitation of the tank’s seiching

natural period. For a rectangular basin, the seiching natural period is approximated by [47]

Tn,seiche =
2Lt√
gh

(4.7)

where Lt is the length of the tank (basin). Given the ORRE tank length of 11.53 m, it has a seiching natural period
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(a) Pitch response

(b) Response amplitude operator

Figure 4.6: Experimental pitch response and response amplitude operator

of 7.36 s (.136 Hz). The irregularity at 0.266 Hz could roughly correspond to the second seiching mode. Further,

given that the tank is subdivided by the OSWEC, two other “basins” could be formed fore and aft of the model.

These correspond to lengths of 4.91 m and 6.62 m and frequencies of 0.318 Hz and 0.237 Hz, respectively. Further

analysis will be needed to verify the exact cause of this peak. The effect of these irregularities are evident in the

corresponding time history, Fig. 4.8a.

Finally, a sample time history and FFT of the configuration with external springs is provided in Fig. 4.9. The

response is sinusoidal and almost no irregularities are present in the FFT.
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Table 4.4: Experimental pitch response and RAO results, no external springs

T |φ|† |φ|std† k · a RAO∗ No. Runs
(s) (deg) (deg) (rad/m·m) (rad/rad) (#)
0.8 0.79 0.010 1.4 1
1.0 1.60 0.012 2.3 2
1.3 2.44 0.013 0.012 3.7 5
1.6 4.53 0.011 7.2 2
1.7 3.30 0.010 6.1 1
1.8 3.95 0.011 6.2 2
1.9 3.90 0.008 8.8 1
2.0 5.74 0.023 0.007 15.2 5
2.1 8.43 0.012 12.3 1
2.2 6.58 0.011 10.3 1
2.4 3.63 0.010 6.7 2
2.6 9.96 0.011 15.8 1
2.8 17.50 0.012 25.7 2

† When results for multiple runs are availible, the mean is calculated from the com-
bined FFT amplitudes of each run; if more than 2 runs are available, the standard devi-
ation is reported.

Table 4.5: Experimental pitch response and RAO results, external springs

T |φ|† k · a RAO∗ No. Runs
(s) (deg) (rad/m·m) (rad/rad) (#)
0.8 0.89 0.010 1.6 1
1.0 2.23 0.012 3.2 1
1.3 4.69 0.012 7.1 1
1.6 9.96 0.011 16.0 2
1.7 8.70 0.010 16.0 2
1.8 11.94 0.011 18.8 2
1.9 12.54 0.008 28.4 1
1.95 12.40 0.006 34.9 1
2.0 12.64 0.007 33.4 1
2.05 13.20 0.009 25.6 1
2.1 13.55 0.012 19.7 1
2.2 8.04 0.011 12.6 2
2.4 1.68 0.010 3.1 1
2.6 4.80 0.011 7.6 1
2.8 8.16 0.012 12.0 1

† When results for multiple runs are available, the mean is calculated from the com-
bined FFT amplitudes of each run.
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(a) Original (raw) time history

(b) FFT and filter frequency response

(c) Comparison of original and filtered signals

Figure 4.7: Sample pitch response signal (no external springs, T = 1.9 s)
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(a) Sliced time history, original and filtered

(b) FFT

Figure 4.8: Sample pitch response with significant tank physics influence (no external springs, T = 1.3 s)
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(a) Sliced time history, original and filtered

(b) FFT

Figure 4.9: Sample pitch response signal (external springs, T = 2.0 s)
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4.4 Foundation Loads

The amplitudes of the surge and heave reaction forces and the pitch reaction moment at the base of the foundation

are plotted as a function of frequency in Fig. 4.10. A drastic increase in loading is observed from the OSWEC

configuration without springs to the configuration with springs. Near its resonance, the surge force and pitch

moment at the base of the external spring model are 20–30 times greater. Both force and moment drop drastically

from 2.1 s to 2.4 s before rising again due to the increasing wave amplitude. When normalized by wave amplitude, a

bell-like curve, similar to that of a pitch response RAO, would be observed. Far from resonance, the surge reaction

force and pitch reaction moment of the no spring configuration increase slowly.

The heave reaction force displays little to no variation from one configuration to another. The dynamic contri-

butions to this load are a result of the changing water elevation overhead, the vertical centrifugal force, and any

local particle motion which acts beneath the OSWEC [7]. The heave reaction force steadily increases with wave

amplitude.

The experimental foundation loads are tabulated in Tables 4.6 and 4.7. Sample raw time histories, FFT and filter

frequency responses, and processed signals are presented in Figs. 4.11, 4.12, and 4.13.
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(a) Surge reaction force

(b) Pitch reaction moment

(c) Heave reaction force (dynamic component only)

Figure 4.10: Experimental foundation base reaction forces and moments
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Table 4.6: Experimental foundation load results, no external springs

T |Ffr1| |Ffr1|std |Mfr5| |Mfr5|std |Ffr3| |Ffr3|std No. Runs†

(s) (N) (N) (N-m) (N-m) (N) (N) (#)
0.8 0.32 0.14 0.02 1
1.0 0.40 0.20 0.09 2
1.3 0.32 0.029 0.22 0.020 0.38 0.011 5
1.6 0.47 0.35 0.73 2
1.7 0.50 0.34 0.84 1
1.8 0.61 0.39 1.35 2
1.9 0.70 0.42 0.92 1
2.0 0.90 0.031 0.52 0.013 0.84 0.004 5
2.1 1.29 0.69 1.83 1
2.2 1.27 0.65 1.96 1
2.4 1.07 0.53 1.98 2
2.6 2.45 1.06 2.45 1
2.8 4.46 1.84 1.97 2

† When results for multiple runs are availible, the mean is calculated from the combined FFT
amplitudes of each run; if more than 2 runs are available, the standard deviation is reported.

Table 4.7: Experimental foundation load results, external springs

T |Ffr1| |Mfr5| |Ffr3| No. Runs†

(s) (N) (N-m) (N) (#)
0.8 1.11 0.58 0.02 1
1.0 3.07 1.72 0.09 1
1.3 7.74 4.46 0.85 1
1.6 16.74 10.11 0.92 2
1.7 16.21 9.62 0.42 2
1.8 21.38 13.01 0.75 2
1.9 23.55 14.17 0.68 1
1.95 23.91 14.37 1.32 1
2.0 24.89 14.90 1.06 1
2.05 26.23 15.66 0.84 1
2.1 27.14 16.23 0.91 1
2.2 19.80 11.28 1.52 2
2.4 6.48 3.36 1.98 1
2.6 15.22 8.31 2.66 1
2.8 23.85 13.33 2.38 1

† When results for multiple runs are available, the mean is calculated from the
combined FFT amplitudes of each run.
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(a) Original (raw) time history

(b) FFT and filter frequency response

(c) Comparison of original and filtered signals

Figure 4.11: Sample foundation base surge force signal (no external spring run, T = 1.9 s)
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(a) Original (raw) time history

(b) FFT and filter frequency response

(c) Comparison of original and filtered signals

Figure 4.12: Sample foundation base pitch moment signal (no external spring run, T = 1.9 s)
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(a) Original (raw) time history

(b) FFT and filter frequency response

(c) Comparison of original and filtered signals

Figure 4.13: Sample foundation base heave force signal (no external spring run, T = 1.9 s)
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4.5 Comparison with Analytical and Numerical Results

The analytical and numerical models were used to simulate the experimental response and foundation loads at the

same wave conditions identified during the design wave calibration. The OSWEC configuration with no external

springs will be discussed first. A comparison of experimentally obtained pitch amplitude and response amplitude

operator with those predicted by the model are shown in Fig. 4.14. Both models under predict the experimental

response by a significant margin. For most of the observed periods, the models predict a response that is less

than 50% of the observations. The model observations, however, lie nearly on top of one another for a majority

of the range. At first glance, this result would be attributed to the model damping approximated during system

identification. However, simulation results with the predicted radiation damping and no additional damping (viscous

or quadratic), Fig. 4.15, demonstrate little increase in amplitude. Rather, the increased motions observed during the

experiments may be induced by tank physics which are not represented by the models; neither the WAMIT/WEC-

Sim simulations nor the analytical derivation model the ends of the tank. The simulations do model the tank walls

on either side of the OSWEC, but the analytical boundary conditions do not. This may be compounded by small

errors in the experimentally-derived scale OSWEC properties used in the models, as well an over prediction of the

radiation damping in both models.

The foundation loads in surge, pitch, and heave are compared in Fig. 4.16. The heave reaction forces are not

yet modeled analytically, hence no results are shown in Fig. 4.16c. Relative to the pitch response results, excellent

agreement is obtained between both models and the data. Again, the numerical and analytical models lie close to

one another, and the curves stay tight against the data up to a period of 2.2 s. Beyond this period, the models

over predict the surge and pitch reactions. Discrepancies associated with the finite the tank length may again be at

play. At these longer periods, the lengths of the design waves range from 6 to 8 m, over half the length of the 11.5

m tank. If undesired tank physics are the primary source of the aforementioned discrepancy between the modeled

and observed pitch displacements, however, it is not clear why similar error is not present in the surge and pitch

foundation load comparisons. Further work is required to investigate the dominant contributor to the observed

foundation loads, which comprises of contributions from the surge excitation force, surge-pitch coupling, and any

hydrodynamic loading on the foundation itself [20]. As the experiment, numerical model, and analytical model have

dissimilar foundation support structures, it is likely the hydrodynamic loading on the foundation has a minimal

influence. Finally, the heave reaction force is well-predicted by the WEC-Sim model, except for the longest period

run, 2.8 s.

The results for the spring configuration are similar in description and quality. See Figs. 4.17 and 4.18. The
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predicted pitch responses are just 50% of the experiment. Peaks in the modeled pitch amplitude and RAO curves

occur around 1.8-1.9 s, below the experimental RAO peak but much closer to the anticipated natural period of this

configuration. The surge and pitch reaction load comparisons are much improved, though neither of the models

capture the steadily increasing peak from 1.8 to 2.1 s. Rather, a sharp dip in load is predicted by both models

before a second local maximum at 2.1 s. The numerical and analytical models follow the same trend, but the

latter consistently falls short by about 4-5 N in surge and 2-3 N-m in pitch. This may be attributed to the surge

centrifugal force which is neglected in the analytical model. Good agreement is obtained between the experimental

and WEC-Sim heave forces.

(a) Pitch response

(b) Response amplitude operator

Figure 4.14: Simulated pitch response and response amplitude operator, no external springs
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Figure 4.15: Comparison of simulated pitch response with and without damping, no external springs
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(a) Surge reaction force

(b) Pitch reaction moment

(c) Heave reaction force (dynamic component only)

Figure 4.16: Simulated foundation base reaction forces and moments, no external springs
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(a) Pitch response

(b) Response amplitude operator

Figure 4.17: Simulated pitch response and response amplitude operator, external springs
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(a) Surge reaction force

(b) Pitch reaction moment

(c) Heave reaction force (dynamic component only)

Figure 4.18: Simulated foundation base reaction forces and moments, external springs
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4.6 Power Takeoff Simulation

To understand the influence of a basic power takeoff on the dynamics of the scale OSWEC, the WEC-Sim and

analytical models were rerun over the same wave conditions with a rotational PTO. External springs were not

considered. A passive damping control scheme, or resistive control scheme, was adopted to appoint PTO damping

coefficient values across the observed period range (see 2.3.2 Power Takeoff Assumptions). The PTO was

assumed ideal, and no losses were incorporated.

The time averaged power and resulting power takeoff torque predictions of both models are presented in Fig.

4.19. A steady increase in power is obtained as the incident wave amplitude and period grow. The dip from 1.8 s to

2.1 s is a result of the reduced amplitude of the design waves over the same period range. Employing Froude scaling

and the assumption of a 1:40 scale model (s = 40), the maximum predicted power (which scales as s3.5) of 0.15 W

at 2.8 s is equivalent to 60 kW at full-scale [48, 49].

More interestingly, the power takeoff torque hovers around 1-1.2 N-m (except for the aforementioned dip). Below

periods of 2 s, this torque is significantly greater than the foundation pitch reaction moment magnitude which ranges

from 0.1 to 0.4 N-m over the same periods. Though the theoretical rotary PTO does not contribute directly to the

foundation loading (due to the hinged connection between the OSWEC and its foundation), an equivalent linear

PTO could induce a significant load at the foundation base, contributing especially the pitch reaction moment.

The numerical and/or experimental implementation of such a system onto the foundation-raised OSWEC will be

considered in future analyses.
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(a) Time Averaged Power

Figure 4.19: Simulated time averaged power and PTO torque, no external springs
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(a) Time Averaged Power (simulated results provided for comparison)

Figure 4.20: Time averaged wave power and capture width ratio
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CONCLUSIONS AND FUTURE WORK

The response and loading on a foundation raised oscillating surge wave energy converter (OSWEC) were studied

experimentally and compared to model predictions using both numerical (WAMIT/WEC-Sim) and analytical meth-

ods. Two configurations of the model setup were employed: the OSWEC on its foundation with no additional

attachments, and the OSWEC with additional torsional springs attached, as to lower the natural period to within

the range of periods producible by the tank’s wave maker. Both configurations were assembled on a support structure

which is hydrodynamically similar to a monopile foundation, though the influence of this foundation was found to

be minimal. Experimental runs were performed to identify the system dynamics and observe its response to regular

first order waves. The OSWEC pitch angular displacement and reaction loads in surge, heave, and pitch, measured

at the base of the foundation, were reported in the frequency domain.

When excited at resonance, the OSWEC configured with external springs undergoes a maximum pitch amplitude

of only 13.6 deg, whereas the unmodified configuration rises continually across the observed period range, reaching

a maximum displacement of 17.5 deg. The numerical and analytical models capture the natural period of the two

configurations well, but the pitch responses of both models appear to fall short of those observed in the experiments.

The pitch response magnitudes of both models were only 50% of the observations. The disparity persisted when

the simulations were run without additional damping. A possible explanation for this discrepancy derives from tank

physics; due to its finite length, not modeled by either the numerical or analytical methods, both wave reflection and

seiching events can disrupt and modify the incident waves from the wavemaker.

Experimental observations of the surge and pitch reaction loads at the base of the foundation demonstrated a

20-30× increase from the natural OSWEC response to the spring configuration in resonance. The maximum surge

and pitch reactions were measured at just over 27 N and 16 N-m, respectively. Conversely, the observed heave load

demonstrated little variation between configurations, increasing steadily across the observed period range for both

configurations. Excellent agreement was obtained between both models and experimental observations of the surge

and pitch reaction loads at the base of the foundation. The heave load, not described by the analytical approach, was

well-captured by the WEC-Sim simulations. A brief exploration of power capture via a model-implemented power

takeoff system demonstrated a considerable torque contribution to the system over a majority of the observed period

range. Under passive damping control assumptions, the PTO torque of O(1 N-m) was found to be 150-400% greater

than the foundation base moment in the OSWECs the natural response.
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The future work motivated by these findings include the following:

• Discrepancies in pitch response between the experimental observations and model predictions need future

investigation. The experimental time histories should be studied further to evaluate the influence of reflection

and seiching due to the limited tank length.

• The effect of directional waves (incident waves which are not head-on) should be studied. Even at small angles,

directional waves can induce a torsional yaw moment on the foundation. These load cases were emphasized by

[10], but directional wave tests are not well suited for narrow wave tank testing.

• Results from the model-implemented PTO study warrant the future implementation of an experimental power

takeoff. Not only can the PTO load can be large, but Brito et al. found fairly significant discrepancies between

data from experiments with a physical PTO and results from an analytical model [17].

• Future experimental work is needed to separate the contributions to base foundation loads which result from the

OSWEC from those which arise from hydrodynamic loading on the foundation itself. Further, hydrodynamic

interactions between the upper foundation/support structure and the dynamic OSWEC body could also the

subject of a future experimental investigation. See [3] for a discussion of this topic based on numerical results.

The loads on a foundation raised OSWEC are significant, especially at resonance. Load reduction pathways should

continue to be investigated to prevent cost-prohibitive foundation structures [2]. One such pathway is the variable

geometry oscillating surge wave energy converter (VGOSWEC) developed by researchers the National Renewable

Energy Lab. In this concept, a standard OSWEC is modified through the implementation of variable geometry

modules which open and close to alter the frontal surface of the paddle, similar to the louvers commonly found on

household blinds. Analogous to the blade-pitching capabilities of wind turbine blades, the rotating flaps enable load-

shedding through the reduction of wave excitation forces and moments. Work on this concept is already underway: see

[50] and [21] for foundational work; [28, 29, 51, 52] for subsequent model investigations; and [13] for an experimental

implementation. A manuscript describing compelling experimental results from previous work performed at the

University of Maine’s Alfond W2 Ocean Engineering Lab wave basin are in progress. Experiments on a foundation

raised VGOSWEC implementation were also performed at the University of Massachusetts in parallel with the work

presented in this thesis, and the analysis of the results is ongoing.
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[9] T Mäki, M Vuorinen, and T Mucha. “WaveRoller – One of the Leading Technologies for Wave Energy Con-

version”. In: 5th International Conference on Ocean Energy. Halifax, Canada, 2014, p. 7.
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