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ABSTRACT 

SPATIOTEMPORAL METABOLIC MODELING OF PSEUDOMONAS 

AERUGINOSA BIOFILM EXPANSION 

SEPTEMBER 2021 

ROBERT L. SOURK II, B.S. IOWA STATE UNIVERSITY 

MSCHE, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by Michael Henson 

 Spatiotemporal metabolic modeling of microbial metabolism is a step closer to 

achieving higher dimensionalities in numerical studies (in silico) of biofilm maturation. 

Dynamic Flux Balance Analysis (DFBA) is an advanced modeling technique because this 

method incorporates Genome Scale Metabolic Modeling (GSMM) to compute the 

biomass growth rate and metabolite fluxes. Biofilm thickness is pertinent because this 

variable of biofilm maturation can be measured in a laboratory (in vitro). Pseudomonas 

aeruginosa (P. aeruginosa) is the model bacterium used in this computational model 

based on previous research conducted by Dr. Michael Henson, available GSMMs, and 

the societal significance of patients suffering from P. aeruginosa airway infections. 

Spatiotemporal Flux Balance Analysis (SFBA) will be the computational method used in 

this thesis to simulate biofilm growth. Another level of accuracy will be introduced to 

SFBA which is a dynamic finite difference grid that will vary relative to the biofilm’s 

velocity of expansion/contraction. This novel idea is governed by a differential equation 

that defines the biofilm’s velocity and updates the spatial dependency of the finite 

difference grid which has never been done while utilizing GSMM. Environmental 

conditions (bulk concentrations of metabolites) are altered to investigate how varying 

nutrients (glucose, oxygen, lactate, nitrate) affected biofilm maturation.  
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CHAPTER 1  
INTRODUCTION 

1.1- Lung Infections in Cystic Fibrosis Patients caused by Pseudomonas aeruginosa 

The simplest scientific definition of a bacterium is a single cellular 

microorganism (prokaryote) with simple internal structures that lack a nucleus and range 

in size from 0.2–2.0 nanometers (nm) [1, 2]. Bacteria’s size allows these microorganisms 

to flourish in their environments by forming microcolonies, and this can lead to biofilm 

formation [3, 4]. The formation of biofilms is an active research area for chemical 

engineer’s because transport phenomena governs’ biofilm growth. Studying biofilm 

formation and maturation of Pseudomonas aeruginosa (P. aeruginosa) which occurs 

within the lungs of patients that suffer from Cystic Fibrosis (CF) is an area that is 

currently under academic research [5, 6].  

 Short lifespans of CF patients are plagued with symptoms such as frequent lung 

infections (pneumonia or bronchitis) and shortness of breath [7]. CF is caused by a 

mutation the gene Cystic Fibrosis Transmembrane Conductance Regulator (CTFR), and 

this gene controls the flow of salts and fluids in the cell [8, 9]. Mutations in the CTFR 

gene does not allow mucus from the lungs to be secreted, and this environment is ideal 

for P. aeruginosa which is often the cause for progressive and severe lung disease in CF 

patients [10, 11]. P. aeruginosa forms a biofilm in the lungs and is detrimental because 

the lungs cannot secrete contaminated sputum and has shown an increased tolerance to 

antibiotics [12]. Studying P. aeruginosa’s biofilm growth is done using various 

techniques such as in vitro and in silico studies.  
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1.2 – In Vitro Studies of Biofilms  

In vitro methods have been used to study biofilms and consist of three 

approaches: Closed, Open, and Microcosms [13, 14]. Open studies are dynamic and 

allow for the quantification of wastes, metabolic byproducts, and dispersed or dead 

bacteria [13]. The dynamical nature of biofilm growth is governed by transport 

phenomena, and in vitro methods collect data used for in silico modeling. In vitro 

methods allow researchers to obtain the complete picture of the necessary steps that lead 

to biofilm growth. 

Open studies of P. aeruginosa biofilms have shown that biofilm formation on 

biotic and abiotic surfaces give resistant to the host’s immune defenses and antibiotic 

medications [15, 16]. These studies have been motivated by CF and has given rise to an 

understanding of the environmental conditions that contribute to microcolony formation. 

Environmental factors alter P. aeruginosa‘s metabolism, ultimately causing the bacteria 

to flourish or perish. Specifically, glucose and lactate are carbon sources metabolized by 

P. aeruginosa and have shown nutrient diversity that aid in the survival of the bacterium 

[17, 18]. Glucose and lactate are converted to pyruvate which is then metabolized based 

on the cellular environment (anaerobic/aerobic) [19, 20].  

These methods have been important to the field of biofilm research; however, 

they are also critiqued due to being oversimplistic [13]. One way in which in vitro 

methods are unrealistic is because they are not able to estimate the concentration 

gradients of most metabolites throughout the biofilm’s matrix. To quantify the 

concentration throughout a biofilm’s matrix this is done via a mathematical model 

because of the size of a biofilm [21]. On average biofilm thickness ranges from 50-400 
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microns and trying to measure the concentration at this scale with current technologies is 

impractical [22]. However, microsensors have been used to measure the local oxygen 

concentration in a defined region of a biofilm [23, 24]. 

1.3 – In Silico Studies of Biofilms  

One method that has been used to describe how biofilms mature is referred to as 

Cellular Automaton (CA), which states that the spatiotemporal variations can only have a 

finite number of possible states [25]. CA biofilm models generate a wide range of 

observed biofilm morphologies because they utilize a spatial lattice/grid and it is 

advantageous because of this ability [25]. The Convection, Diffusion, Reaction and 

Growth model (CDGR) couples CA with transport phenomena to simulate biofilm 

growth in environments where fluid is flowing perpendicular to the biofilm. CDRG is a 

multidimensional model that simulates biofilm maturation, and includes fluid flow over 

irregular biofilm surfaces, substrate transport by convection and diffusion, substrate 

consumption, and biomass growth [26]. This is done by combining dynamic equations 

with CA, which governs the numbers of finite states a biofilm can assume. Boundary 

conditions that govern the systems dynamics and geometry can be changed which gives 

CDRG flexibility to simulate a multitude of differing scenarios [26].  

A computational technique was developed at the Process Engineering Laboratory 

at Massachusetts  Institute of Technology (M.I.T.) by Jose Gomez, Kai Höffner, and Paul 

Barton called Dynamic Flux Balance Analysis (DFBAlab) [27, 28]. DFBAlab solves 

systems of differential equations which have been derived with respect to transport 

phenomena, but only vary relative to time. This report will describe how transport 

equations are utilized in DFBAlab to numerically calculate spatiotemporal variations 
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during biofilm maturation, which is referred to as Spatiotemporal Flux Balance Analysis 

(SFBA). SFBA will be used to simulate biofilm growth of P. aeruginosa by utilizing 

partial differential equations coupled with a dynamic finite difference grid dependent on 

the velocity of the biofilm boundary layer. SFBA incorporates solutions from FBA to 

approximate the bacterial growth rate, metabolite uptake, and metabolite secretion rates 

for varying compositions [27]. Concentration gradients effect the metabolic network 

because it is governed by Michaelis-Menten kinetics [29, 30].  

1.4 –Contributions For this Thesis 

An objective of this thesis will be coupling Genome Scale Metabolic Modeling 

(GSMM) and SFBA with a dynamic boundary condition relative to the biofilm expanding 

and/or contracting which has never be done, and the coupling of these ideas relative to 

biofilm expansion makes this thesis novel. Local optima (biomass growth rate, metabolite 

uptake/secretion rates) from FBA will be used to understand the model bacterium’s 

metabolic response and these parameters will govern their corresponding partial 

differential equations used in SFBA. The algorithm proposed in this thesis allows for a 

more accurate portrayal of the physical aspect of biofilm growth. A differential equation 

that describes the biofilms length is numerically advantageous, because if the biofilm 

ceases to expand and/or contract the simulation will reach a steady state relative to the 

length. Spatial dependency of the finite difference grid increases spatial resolution by 

dividing up the portion of the biofilm where dynamics occurs. Traditionally, the biofilm 

length is defined as a constant value and space is discretized accordingly. This possesses 

a problem because the dynamics occurs before and potentially after the defined points, 

and when the biofilm is starting to grow points that capture the dynamics at the end of the 
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biofilm are not used. Allowing the finite difference grid to change relative to the length of 

the biofilm increases spatial resolution and allows this numerical method to concentrate 

its computational power consistently throughout the biofilm.   
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CHAPTER 2 
REVIEW OF LITERATURE 

2.1 –Genome Scale Metabolic Modeling for Flux Balance Analysis   

Bacterium’s metabolic pathways must be defined using GSMM. This model was 

taken from Genome-Scale Metabolic Network Analysis of the Opportunistic Pathogen 

Pseudomonas aeruginosa for P. aeruginosa [31, 32]. FBA is “solved” by constructing a 

metabolite stoichiometric matrix and used in a Linear Programming (LP) software. LPs 

are systems of algebraic equations that can take continuous (mixed integer) or discrete 

(integer) values [33, 34]. Growth rate and metabolite fluxes are continuous because of 

how they are used to scale the governing partial differential equations (Equations 5,6). 

For example, on average a typical bacterium’s mass is 1x10-12 grams and depending on 

the volume under study the density will fluctuate [35]. The LP is solved and the solutions 

are governed by the cells mass balance which are then used to scale local concentrations. 

The mass balance was constructed using P. aeruginosa’s metabolic pathways and was 

mathematically described by the following equation [36]. 

𝑑𝐶

𝑑𝑡
= 𝜆 , 𝜈 (1)  

Equation 1 is a mass balance that can be written for each metabolite (i) in a metabolic 

pathway. Metabolic pathways consume metabolites produced as a part of metabolic 

cycles; this is accounted for on the right-hand side (RHS) of Equation 1 by summing over 

all reactions (r) that produce or consume the metabolite. Metabolite fluxes (νj) are scaled 

by the stochiometric coefficient (λi,j) relative to the specific reaction (j) in the metabolic 

pathway. Given this information a system of differential equations can be constructed 

with respect to the metabolic pathways.  
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𝑑𝑋

𝑑𝑡
= 𝑆𝜈 − 𝑏 (2) 

Equation 2 represents the time differential mass balance of an organism’s metabolic 

pathway. This time derivative is set equal to zero stating that the consumption or 

production of metabolites during the bacteria’s metabolic pathway is time independent 

[37]. This defines the system of differential equations to be a system of algebraic 

equations which can then be solved as an LP. Gurobi™ is a widely used program that 

solves LPs and is done by the implementation of a biomass objective function.  

𝑆𝜈 = 𝑏 =
0
⋮
0

 

𝑍 =  𝐶 𝜈 (3) 

𝜈 , < 𝜈 < 𝜈 , (4) 

Equations 2–4 are used in Gurobi™ to obtain an optimum solution to the set of algebraic 

equations. Equation 3 is the biomass objective function (Z), and it is the summation of 

the metabolite fluxes that are being studied in P. aeruginosa’s metabolism. The objective 

function is scaled by the weight (Ci) of a particular metabolite [27]. 

 Furthermore, once the LP has found an optimum this gives definite values for the 

fluxes that maximize the growth rate. These values are consistent with the constrained 

range and gave insight into how the bacteria will act under varying the maximum 

metabolite uptake rates. Once FBA has found an optimal solution, the solution can then 

be used as inputs to scale the differential equations that govern DFBAlab.  
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2.2 –Spatiotemporal Modeling of Biofilm Metabolism   

 SFBA utilizes partial differential equations along with the corresponding 

boundary conditions to mathematically characterize biofilm growth. A variety of 

boundary conditions are used such as convective mass transfer, diffusion, and “no flux”, 

which are used with respect to the environment. To numerically simulate biofilm growth 

these equations are spatially discretized to relieve the spatial dependency (length of the 

biofilm) making the equations only time dependent.  

  

Figure 1: A process flow diagram of Spatiotemporal Flux Balance Analysis. 

Figure 1 is a process flow diagram of the algorithm that the numerical method uses to 

calculate biofilm growth. SFBA uses the bacterium’s metabolic pathways defined 

through GSMM to calculate parameters used to scale the spatially discretized partial 

differential equations that govern biofilm growth.  

Dr. Poonam Phalak in Dr. Michael Henson’s group used the fundamental 

principles of continuum equations in SFBA to model chronic wound biofilm consortium. 

This spatiotemporal modeling of biofilm metabolisms with P. aeruginosa and  

Staphylococcus aureus (S. aureus) predicted individual species metabolism and 

interspecies interaction spatiotemporally with genome-scale resolution [38]. Therefore, 
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SFBA should be chosen when simulating biofilms that are spatiotemporally dependent, 

and this thesis adds another level of accuracy to the algorithm by prediction of the 

biofilm thickness as a function of time as opposed to specifying a constant thickness a 

priori as in previous work within the Henson group [37, 38, 39, 40].  
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CHAPTER 3 
METHODS 

3.1 –Biofilm Model Formulation 

 Model formulation was done using reaction diffusion equations related to 

transport phenomena, and this states the model does not violate continuum mechanics. 

The model was derived relative to in vitro studies, and this states that at the biofilm-

surface interface there is a semipermeable membrane and during expansion the biofilm-

air interface has no resistance to expansion (ambient air). 

 

Figure 2: Representation of a biofilm comprised of Pseudomonas aeruginosa [32]. 

Figure 2 is a representation of the mature state of a biofilm, and for P. aeruginosa its 

essential metabolites are glucose and oxygen [32]. These metabolites allow the bacterium 

to flourish, but the bacterium has evolved to metabolize lactate and nitrate which is 

prevalent to survival of the bacterium in varying environments. 

𝜕𝑋

𝜕𝑡
= 𝜇 𝑋 − 𝜇 𝑋 −

𝜕

𝜕𝑧
(𝑢𝑋 ) + 𝐷

𝜕 𝑋

𝜕𝑧
(5)
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𝜕𝑀

𝜕𝑡
= 𝜐 , 𝑋 −

𝜕

𝜕𝑧
𝑢𝑀 + 𝐷

𝜕 𝑀

𝜕𝑧
(6) 

Equations 5 and 6 are partial differential equations that describe the concentration 

gradients of P. aeruginosa, glucose, oxygen, acetate, succinate, lactate, and nitrate 

throughout the biofilm. The RHS of these equations are governed by the change in the 

diffusive flux and the reaction terms. Equation 5 specifically describes the concentration 

gradient of P. aeruginosa throughout the biofilm, and this equation accounts for growth 

(𝜇 𝑋 ) and death (𝜇 𝑋 ) of the bacterium. The replication of the bacterium relies on the 

growth rate (𝜇 ) and mortality relies on the death rate (𝜇 ). Equation 6 describes the 

metabolites, and the production (𝜐 , ) relies on the optimal metabolite fluxes. The next 

term ( (𝑢𝑋 ), 𝑢𝑀 ) in Equations 5 and 6 describe how the velocity and velocity 

gradient effects the concentration gradients. Finally, the last term (𝐷 , 𝐷 ) is the 

change in diffusive flux, which states that diffusion within the biofilm governs the 

concentration gradients.  

 Another key part of the model is the boundary conditions that govern the behavior 

of the equations at the boundaries.  

Table 1: Boundary conditions used to govern the corresponding partial differential 
equations. Each boundary condition relies on how the biomass or metabolites act at the 
biofilm-surface interface (z = 0) or the biofilm-air interface (z = L) [32]. 

 

Table 1 defines the boundary conditions that govern the partial differential equations at 

the biofilm-surface and biofilm-air interfaces. Starting at the initial length (z = 0) the no 

flux boundary condition is applied to P. aeruginosa (Xl) because the membrane is 

impermeable to cells. The metabolites boundary conditions at the biofilm-surface 
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interface are governed by convective mass transfer, diffusion, and velocity. Metabolites 

can penetrate the membrane, and this is equal to the convective mass transfer, change in 

diffusive flux through the biofilm and these are scaled by the velocity of the biofilm 

boundary layer. At the biofilm-air interface (z = L) P. aeruginosa and the metabolites 

boundary conditions are the same and represent how the velocity of the boundary layer is 

governed by diffusion and convective mass transfer.  

3.2 – Simulation of Biofilm Expansion 

Classically the implementation of finite difference is based on defining the area of 

interest, and in the case of a biofilm it is the length. Without physical knowledge of a 

biofilm’s length, this proposes a problem because biofilms expand and contract stating 

that the length is not constant. Incorporating a differential equation that describes the 

expansion and contraction of the biofilm was done to gain another level of accuracy.  

𝑑𝑢

𝑑𝑧
=

(𝜇 𝑋 − 𝜇 𝑋 )

𝜌
(7) 

𝑑𝐿

𝑑𝑡
= 𝑢(𝑡, 𝑧) (8) 

𝐿(𝑧, 𝑡 ) = 𝐿 (9) 

Equation 7 describes how the velocity changes throughout the length of the biofilm 

which is dependent on the local concentration of biomass, growth, and death rate of P. 

aeruginosa. Upon spatial discretization Equation 7 becomes algebraic and is solved 

simultaneously and the solution is substituted into Equation 8. Equation 8 is then 

integrated with the system of discretized partial differential equations, ultimately 

calculating a new length relative to the time interval [32]. Equation 8 is defined as an 

initial value problem and is governed by the length of the biofilm, which is defined at the 

starting of the simulation (Equation 9). Once the simulation is executed relative to the 
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first time step the initial condition is updated by the solution (Equation 8) and the biofilm 

is spatially re-discretized, 

 
Figure 3: A edited pictorial representation of SFBA utilizing a dynamic finite difference 
grid. A Classical representation of finite difference being applied to biofilm maturation. B 
Novel simulation approach to numerically simulate biofilm maturation [41]. 

Figure 3A represents how a classical finite difference, and dynamic finite difference 

(Figure 3B) can be applied to numerically simulate biofilm maturation. Comparing these 

two methods reveals an obvious advantage based on how space is discretized. Classically 

the amount of spatial discretization points is fixed over a certain area, and this poses an 

issue pertaining to the accuracy of the dynamical nature that exists between these points. 

Thinking of how the governing equations are spatially discretized this implies that during 

the maturation process not all the equations are used, making the numerical simulation 

less accurate. Now looking at the dynamic finite difference it shows that space where 

dynamical growth is taking place is “fully” discretized and this will inherently increase 

accuracy based on the smaller spatial resolution. Another key characteristic of this model 

is updating the amount of growth that has taken place with the solution to Equation 8.  
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Figure 4: A process flow diagram of Spatiotemporal Flux Balance Analysis that utilizes a 
dynamic boundary.  
Figure 4 is a process flow diagram of the complete algorithm of SFBA with a variable 

finite difference grid. Initially the user defines the initial concentrations of P. aeruginosa, 

metabolites, initial biofilm length, simulation time, and number of discretization points. 

A total of 20 discretization points were chosen because it enhanced spatial resolution and 

adding more points was inconsequential. Simulation times were all chosen to be between 

75 and 150 hours, and these were chosen to make sure the biofilm had reached a mature 

state (pseudo-steady state). 
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Table 2: Summary of spatiotemporal flux balance analysis parameters used to simulate 
biofilm maturation with a dynamic finite difference grid [39, 42]. 

 

Table 2 are the defined parameters that were used to simulate P. aeruginosa biofilm 

growth. Various parameters included in this table show benefit to utilizing SFBA with a 

dynamic finite difference grid. As previously shown in Figure 4 the initial biofilm length 

was specified at one micron, which encompasses the idea of the simulation starting after 

the bacterium has formed a microcolony. Mathematically this means that one micron was 

spatially discretized using 20 node points which increased spatial resolution. 

Expansion/contraction velocity was initially set to zero to emulate reality. Parameters 

such as the bulk concentrations, diffusion coefficients, and mass transfer coefficients of 

the metabolites were defined to enhance biofilm growth and test the simulation based on 

physical attributes to biofilm maturation. For example, the base case was considered to 

have a high bulk concentration of glucose (20 mmol/L) and atmospheric dissolved 

oxygen (0.21 mmol/L) with no initial concentrations of acetate, succinate, lactate, and 

Parameter Value Units Reference

tSIM 75 - 150 hours Specified

tstep 1.0 hour Specified

Npoints 20.0 N/A Specified

L0 1.0 µm Specified

u0 0.0 µm/hour Specified

µd 0.01 1/hour Fitted

ρcell 200.0 g/L Fitted

[X]0 1.0 mmol/L Specified

[G]b < 20.0, 20.0 , 2.0, 2.0 > mmol/L Specified

[O]b < 0.21, 0.09, 0.21 0.09 > mmol/L Specified

DX 1.00E-10 cm2/s Specified

DG 9.40E-06 cm2/s [39]

DO 2.68E-05 cm2/s [39]

DA 1.62E-06 cm2/s Specified

DS 1.26E-06 cm2/s Specified

DL 3.54E-06 cm2/s [42]

DN 1.70E-05 cm2/s Specified

km,G 2.00E-04 cm/s Specified

km,O 2.00E-02 cm/s Specified

km,A,S 5.00E-04 cm/s Specified

km,L,N 2.00E-03 cm/s Specified

Number of Spatial Discretization Points 

Lactate Diffusion Coefficent

Cell Density

Pseudomonas aeruginosa Death Rate

Initial Velocity

Initial Biofilm Length

Nitrate Diffusion Coefficent

Time Step Interval

Final Simulation Time

Description

Lactate and Nitrate Mass Transfer Coefficient

Pseudomonas aeruginosa Diffusion Coefficient

Initial Pseudomonas aeruginosa Concentration Applied at the Biofilm-Surface Interface

Bulk Glucose Concentration Applied at the Biofilm-Surface Interface

Bulk Oxygen Concentration Applied at the Biofilm-Air Interface

Glucose Diffusion Coefficient

Oxygen Diffusion Coefficient

Acetate Diffusion Coefficient

Succinate Diffusion Coefficient

Acetate and Succinate Mass Transfer Coefficient

Oxygen Mass Transfer Coefficient

Glucose Mass Transfer Coefficient
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nitrate. This allows for the concentrations of glucose and oxygen to be depleted which 

showed how the biofilm reacted to “starvation.” Once the base cases were studied bulk 

concentrations of nitrate and lactate could be added to see how the biofilm reacted 

relative to results obtained from FBA.  

 GSMM is governed by Michaelis-Menten kinetics, which effects the parameters 

used to scale the partial differential equations. Michaelis-Menten kinetics are functions of 

the local compositions of metabolites which increased accuracy. 

Table 3: Summary of parameters that governed the Michaelis-Menten equation. 

 

Table 3 summarizes the conceptual idea of FBA and gives the need for an upper bound 

(ub) and lower bound (lb) to find the optima for the biomass objective function. All the 

upper bounds were set to 1000 mmol/gDW/h which was defined in MATLAB™ [27]. 

Lower bounds were calculated and were functions of the maximum uptake (𝜐 ) and 

saturation rates (𝐾 ), and these parameters were taken from previous research [40, 43].   
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CHAPTER 4 
RESULTS AND DISCUSSION 

4.1 - Metabolite Flux Analysis of Pseudomonas aeruginosa 

FBA aids in understanding how the bacterium will grow relative to the metabolite 

uptake. This is valuable before simulating biofilm growth using SFBA, because FBA 

shows how the bacterium will react to local compositions of metabolites throughout the 

biofilm. PA01 iMO1056 genome model was used for FBA [31]. Glucose and oxygen are 

P. aeruginosa’s natural metabolites, and this implies that these metabolites will allow the 

bacterium to replicate [32].  

 
Figure 5: FBA results for P. aeruginosa metabolic response to glucose and oxygen 
uptake. A Calculated biomass growth rate [1/h]. B Oxygen uptake rate [mmol/gDW/h]. C 
Acetate secretion rate [mmol/gDW/h]. D Succinate secretion rate [mmol/gDW/h].  

Figure 5 shows that P. aeruginosa’s growth rate increases and is dependent on the 

oxygen and glucose uptake. Mathematically the sign of the value dictates whether the 

value is an uptake rate (−) or secretion rate (+), and that is embedded in the mathematical 

analysis. Determining the lower uptake bounds was not straight forward, and while 

running these simulations with no oxygen and glucose the bacterium would show a 

A B

C D
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minuscule growth rate. Within the genomic model (PA01) the ability for the bacterium to 

perform anaerobic metabolism is present via nitrate, but no nitrate was being supplied 

during these simulations [31]. This simulation showed that glucose was always 

completely metabolized, and the bacterium limited the metabolization of oxygen 

according to glucose uptake shown in Figure 5B. Prior studies done by Dr. Poonam 

Phalak and Dr. Michael Henson has shown that P. aeruginosa produces acetate and 

succinate as metabolic byproducts [39]. The study showed that acetate and succinate is 

produced in anaerobic environments shown in Figures 5C-5D. These results coincide 

with literature and show that when P. aeruginosa is in an anaerobic environment the 

bacterium produces acetate and succinate via pyruvate fermentation [44, 45, 46]. 

 FBA utilizing glucose and oxygen uptake is the base case in this study because of 

P. aeruginosa’s “natural” metabolic pathways. However, P. aeruginosa has shown 

nutrient diversity based on its ability to evolve to survive in its current environment [47, 

48, 49]. The first evolutionary step that was studied was the ability for the bacterium to 

metabolize lactate (carbon source) [50]. 



- 19 - 
 

 
Figure 6: FBA results for P. aeruginosa metabolic response to glucose, lactate, and 
oxygen uptake. A Calculated biomass growth rate [1/h]. B Lactate uptake rate 
[mmol/gDW/h]. C Acetate secretion rate [mmol/gDW/h]. D Succinate secretion rate 
[mmol/gDW/h]. 

Figure 6 shows how the bacterium reacted to glucose and lactate uptake at a constant 

oxygen uptake rate (-20 mmol/gDW/h). Minimally, increasing the amount of carbon 

sources should increase the total biomass growth rate. This phenomenon is shown in 

Figure 6A, and portrays the bacterium and FBA is behaving according to previous studies 

[48]. Lactate uptake was always maximized to the bound which shows that the bacterium 

has evolved relative to glucose poor environments. Now in question is the ability for the 

bacterium to produce acetate and succinate as metabolic byproducts. Figures 6C-6D show 

that lactate has an inversely affected anerobic production of acetate and made succinate 

production cease.  

 Finally, the last variation studied relative to P. aeruginosa’s evolutionary 

advantage is the metabolism of nitrate [51, 52]. This studied was aimed to understand 

how the bacterium reacted under anerobic environments.  

A B 

C D 
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Figure 7: FBA results for P. aeruginosa metabolic response to glucose, nitrate, and 
oxygen uptake. A Calculated biomass growth rate [1/h]. B Nitrate uptake rate 
[mmol/gDW/h]. C Acetate secretion rate [mmol/gDW/h]. D Succinate secretion rate 
[mmol/gDW/h]. 

Figure 7 shows how the bacterium reacted to oxygen, and nitrate uptake relative to a 

fixed glucose uptake (-10 mmol/gDW/h). Specifically, the biomass growth rate increased 

with the maximum oxygen and nitrate uptake rate bounds. Figure 7B shows that the 

bacterium will uptake all available nitrate and is not reliant on oxygen uptake. Nitrate 

uptake during low oxygen uptake states the bacterium will replicate in low oxygen 

environments. Figures 7C-7D show the acetate and succinate secretion rate, and these 

rates follow the same trend, but the secretion rates increased due to P. aeruginosa’s 

metabolic pathways.  

4.2 - Pseudomonas aeruginosa Biofilm Growth 

 The main objective of this thesis is to use SFBA with a finite difference grid that 

varied spatiotemporally. The equations and algorithm have been previously stated, and 

these results were simulated with parameters that are included in Table 2 and Table 3. 

A B

C D
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SFBA simulations were done with the notion of reaching a pseudo-steady state 

concentration of biomass and metabolites throughout the biofilm. This aided in 

understanding how the concentration of biomass and metabolites varied with time and 

behaved at the two boundaries.  

 

Figure 8: SFBA predictions of time variations for P. aeruginosa biofilm growth for 
different supplied glucose and oxygen concentrations ([G]B = 20 mmol/L [O2]B = 0.21 
mmol/L, [G]B = 20 mmol/L [O2]B = 0.09 mmol/L, [G]B = 2 mmol/L [O2]B = 0.21 mmol/L, 
[G]B = 2 mmol/L [O2]B = 0.09 mmol/L) respectively. A P. aeruginosa biofilm-surface 
interface temporal concentration [g/L]. B P. aeruginosa biofilm-air interface temporal 
concentration [g/L]. C Variations in axial velocity at biofilm-surface interface [μm/h]. D 
Variations in axial velocity at biofilm-air interface [μm/h]. E Glucose temporal 
concentration at biofilm-surface interface [mmol/L]. F Glucose temporal concentration at 
biofilm-air interface [mmol/L]. 

Figure 8 are results of biofilm simulation over a duration of 75 hours, and this simulation 

time was chosen for reassurance of reaching a pseudo-steady state (mature biofilm). Two 

sections of the biofilm were plotted to show how the metabolites and axial velocity of the 

boundary behaved, and four different supplied concentrations of glucose and oxygen at 

the boundaries were simulated. Figure 8A-8B are simulated results of the biomass 

concentration at the biofilm-surface and biofilm-air interface, respectively. Both plots 

A B 

C D 

E F 
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show exponential growth in biomass during the first 10 hours of simulation which is 

directly correlated with the metabolization of glucose and oxygen. Axial velocity of the 

biofilm boundary was calculated using Equation 8. Figure 8C is how the axial velocity 

behaved at the biofilm-surface interface, which is governed by the no flux boundary 

condition. Figure 8D shows that the biofilm showed peak expansion during the first ten 

hours, and then started to decrease as the biomass reached steady state. Behavior of 

biomass and velocity should be governed by the local concentrations of glucose and 

oxygen at the boundaries and throughout the biofilm. Figure 8E-8F shows how glucose is 

consumed over the duration of the simulation at the boundary. Both plots show that 

glucose is consumed during the first 10 hours, except at the biofilm-surface interface with 

high bulk concentrations (20 mmol/L). 

 
Figure 9: SFBA predictions of time variations for P. aeruginosa biofilm growth for 
different supplied glucose and oxygen concentrations. A Oxygen temporal concentration 
at the biofilm-surface interface [mmol/L]. B Oxygen temporal concentration at the 
biofilm-air interface [mmol/L]. C Acetate temporal concentration at the biofilm-surface 
interface [mmol/L]. D Acetate temporal concentration at the biofilm-air interface 
[mmol/L]. E Succinate temporal concentration at the biofilm-surface interface [mmol/L]. 
F Succinate temporal concentration at the biofilm-air interface [mmol/L]. 

A 

C D 

E F 
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 Figure 9 contains the simulation results of oxygen, acetate, and succinate. Figures 

9A-9B show the concentration gradients of oxygen throughout the simulation. 

Specifically, Figure 9A shows that oxygen is completely depleted and is not dependent 

on the bulk glucose concentration. Oxygen depletion explains why glucose was not fully 

consumed at the biofilm-surface interface in Figure 8E. Figures 9C-9F show that acetate 

and succinate were produced when the local composition of oxygen was low in the 

biofilm which corresponds to simulation results from FBA. 

 The spatiotemporal variation for the axial velocity governs the dynamic finite 

difference grid, and this implies that the biofilm thickness is calculated after every time 

step within the simulation. Figure 10 shows that the bulk concentration of glucose is the 

determining factor for the  maximization of biofilm thickness. It also shows that having a 

higher bulk concentration of oxygen allows for the biofilm to become thicker but is less 

significant compared to glucose.  

   
Figure 10: SFBA predictions of biofilm thickness for different supplied glucose and 
oxygen concentrations. A Biofilm thickness after a fifty-hour simulation. B Biofilm 
thickness after the first twenty hours of simulation. C Pseudo-steady state biofilm 
thicknesses at fifty hours for varying bulk concentrations of glucose and oxygen. 

A 

C 
B
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 Figures 8-10 have shown how the velocity, biomass, and metabolites have varied 

with respect to time. These analyses do not show spatial variations within the biofilm. 

Therefore, the velocity, biomass concentrations, and metabolite concentrations were 

plotted as a function of position.  

 
Figure 11: SFBA predictions of spatial gradients for different supplied glucose and 
oxygen concentrations. A Spatial biomass concentrations [g/L]. B Axial velocities 
[μm/h]. C Spatial concentration of glucose [mmol/L]. D Spatial concentration of oxygen 
[mmol/L]. E Spatial concentration of acetate [mmol/L]. F Spatial concentration of 
succinate [mmol/L]. 

Specifically, the noticeable difference in Figure 11 is during high and low bulk glucose 

concentrations. When glucose is in excess P. aeruginosa concentration decreases slightly 

as the biofilm length increases, and when glucose is not in excess P. aeruginosa’s 

concentration increases as the biofilm thickens. This is because the concentration of the 

essential metabolites and where they are prominent. Glucose is supplied at the base 

(Position = 0) and this metabolite is the essential carbon containing compound that is 

oxidized, and for the case of high glucose concentration the bacterium metabolizes the 

oxygen at a higher rate. On the other hand, when the glucose bulk concentration is low, 

A B 

C D 

E 
F 
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we see an increase in the concentration  of P. aeruginosa, and this is due to the ability to 

completely metabolize glucose throughout the biofilm.  

 FBA was used to calculate the parameters that served as inputs to scale the 

discretized partial differential equations. Figure 12 are the calculated parameters as a 

function of position in the biofilm. Figure 12A shows that the biomass growth rate never 

becomes zero which implies the bacterium is always growing, because of local growth 

through the combined uptake of glucose and oxygen. Figure 12B states that glucose does 

not limit the ability for the bacterium to replicate and growth is reliant on oxygen uptake. 

Figures 12D-12E follow the same trend as FBA, which when oxygen uptake is limited 

the secretion rate of acetate and succinate are maximized. 

 
Figure 12: SFBA predictions for the calculated growth rate and metabolite fluxes relative 
to the position in the biofilm for different supplied glucose and oxygen concentrations A 
Spatially distributed biomass growth rate [1/h]. B Spatially distributed glucose uptake 
rate [mmol/gDW/h]. D Spatially distributed oxygen uptake rate [mmol/gDW/h]. E 
Spatially distributed acetate secretion rate [mmol/gDW/h]. F Spatially distributed 
succinate secretion rate [mmol/gDW/h]. 

A 
B 
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D 
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FBA predicted that P. aeruginosa can replicate via the metabolization of glucose 

and lactate. This phenomenon was also studied using SFBA governed by a dynamic finite 

difference grid.  

 
Figure 13: SFBA predictions of time variations for P. aeruginosa biofilm growth for 
different supplied glucose, lactate, and oxygen concentrations ([G]B = 20 mmol/L [L]B = 
10 mmol/L, [G]B = 20 mmol/L [L]B = 1.0 mmol/L, [G]B = 2.0 mmol/L [L]B = 10 mmol/L, 
[G]B = 2.0 mmol/L [L]B = 1.0 mmol/L) respectively. A P. aeruginosa biofilm-surface 
interface temporal concentration [g/L]. B P. aeruginosa biofilm-air interface temporal 
concentration [g/L]. C Variations in axial velocity at biofilm-surface interface [μm/h]. D 
Variations in axial velocity at biofilm-air interface [μm/h]. E Glucose temporal 
concentration at biofilm-surface interface [mmol/L]. F Glucose temporal concentration at 
biofilm-air interface [mmol/L]. 

Figure 13 contains 150-hour simulation results for varying the supplied concentrations of 

glucose and lactate, while holding the bulk oxygen concentration constant  (0.21 

mmol/L). Figure 13A shows that the concentration of lactate has a negligible effect 

compared to glucose at the biofilm-surface interface. Biomass at the biofilm-air interface 

(Figure 13B) shows that lactate is inconsequential on the pseudo-steady state biomass 

concentration. Axial velocity and glucose show the same trends at both interfaces as the 

previous simulation (Figures 13C-13F). 
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Figure 14: SFBA predictions of time variations for P. aeruginosa biofilm growth for 
different supplied glucose, lactate, and oxygen concentrations. A Oxygen temporal 
concentration at the biofilm-surface interface [mmol/L]. B Oxygen temporal 
concentration at the biofilm-air interface [mmol/L]. C Lactate temporal concentration at 
the biofilm-surface interface [mmol/L]. D Lactate temporal concentration at the biofilm-
air interface [mmol/L]. E Biofilm thickness after a 150-hour simulation.  

 Figure 14 are the simulated results of oxygen, lactate, and biofilm thickness. 

Comparing Figure 9A to Figure 14A the consumption of oxygen in the presence of 

lactate at the biofilm-surface interface is depleted at the same rate and is not specifically 

dependent on the concentrations of glucose. Figure 9B and Figure 14B shows that the 

presence of lactate aids in oxygen consumption at the biofilm-air interface. Figures 14C-

14D shows that lactate is not completely consumed until an excess of oxygen is available 

(biofilm-air interface). The biomass growth rate increased by increasing glucose and 

lactate uptake (Figure 6), and this is shown in comparing Figure 10 to Figure 13E. 

Lactate is supplied at the biofilm-surface interface which caused the biofilm thickness to 

increase without respect to the glucose concentration.  
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 Concentrations relative to the position in the biofilm were also plotted to 

understand how introducing lactate effected the local concentration.  

 
Figure 15: SFBA predictions of spatial gradients for different supplied glucose, lactate, 
and oxygen concentrations. A Spatial biomass concentration [g/L]. B Axial velocities 
[μm/h]. C Spatial concentration of glucose [mmol/L]. D Spatial concentration of oxygen 
[mmol/L]. E Spatial concentration of lactate [mmol/L].  

Starting with the biomass concentration, when comparing Figure 11A to Figure 15A 

shows similar trends except for low glucose and low lactate bulk concentrations (purple 

line). The biomass concentration is higher relative to position because of the length of the 

biofilm, which increases oxygen permeability (Figure 15D). Comparing the axial velocity 

from figure 11B to figure 15B shows that the bulk concentration of glucose determines 

the axial velocities behavior. Another noticeable difference was the local oxygen 

concentration throughout the biofilm. Figure 11C and Figure 15D show a similar trend 

when oxygens concentration is depleted. Lastly, the concentrations of lactate showed 

linear profiles, which mathematically stated the gradients are governed by diffusion [32]. 

Bulk concentrations of lactate increased the magnitude throughout the biofilm, but the 

trends were similar regarding diffusional limitations.  
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 The last evolutionary advantage studied was supplying nitrate at the biofilm-

surface interface. As before these results will be compared to the base case to see how 

this metabolite altered biofilm maturation,  

 
Figure 16: SFBA predictions of time variations for P. aeruginosa biofilm growth for 
different supplied glucose, nitrate, and oxygen concentrations ([O2]B = 0.21 mmol/L [N]B 

= 0.01 mmol/L, [O2]B = 0.09 [N]B = 0.1 mmol/L, [O2]B = 0.21 [N]B = 0.02 mmol/L, [O2]B 
= 0.02 [N]B = 0.02 mmol/L) respectively. A P. aeruginosa biofilm-surface interface 
temporal concentration [g/L]. B P. aeruginosa biofilm-air interface temporal 
concentration [g/L]. C Variations in axial velocity at biofilm-surface interface [μm/h]. D 
Variations in axial velocity at biofilm-air interface [μm/h]. E Glucose temporal 
concentration at biofilm-surface interface [mmol/L]. F Glucose temporal concentration at 
biofilm-air interface [mmol/L]. 

Comparing Figure 8A to Figure 16A shows a significant increase in the biomass 

concentrations from introducing nitrate. Nitrate promotes metabolism at the biofilm-

surface interface and oxygen promotes metabolism at the biofilm-air interface. Axial 

velocity behaves the same as the base case with no significant increase in the peak at the 

biofilm-air interface. Increases in the biomass concentrations should be correlated with a 

sharp depletion of glucose, however, when comparing the base case (Figures 8E-8F) to 

supplying a bulk nitrate concentration (Figures 16E-16F) the glucose time profiles are 

A B 

C D 

E 
F 



- 30 - 
 

similar. This paradox is because of the nitrate concentration profile, which is included in 

Figure 17.  

 
Figure 17: SFBA predictions of time variations for P. aeruginosa biofilm growth for 
different supplied glucose, nitrate, and oxygen concentrations. A Oxygen temporal 
concentration at the biofilm-surface interface [mmol/L]. B Oxygen temporal 
concentration at the biofilm-air interface [mmol/L]. C Nitrate temporal concentration at 
the biofilm-surface interface [mmol/L]. D Nitrate temporal concentration at the biofilm-
air interface [mmol/L]. E Biofilm thickness after a 150-hour simulation.  

Throughout this study oxygen has been limited at the biofilm-surface interface which 

agrees with this simulation (Figure 17A). Nitrate being supplied at the biofilm-surface 

interface should aid in the consumption of glucose, but Figure 17C shows that nitrate is 

consumed at the same rate of oxygen, and this explained why the time profile of glucose 

were similar. Oxygen and nitrate at the biofilm-air interface (Figures 17B,17D) shows 

that each metabolite is consumed relatively quickly which agrees with all the previous 

results. An anomaly that did occur was in the biofilm thickness (Figure 17E) which 

increases exponentially during the first period of simulation but starts to fall as the 
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simulation continues. This is due to the local composition of glucose because it is the 

limiting metabolite at the biofilm-air interface.  

 
Figure 18: SFBA predictions of spatial gradients for different supplied glucose, nitrate, 
and oxygen concentrations. A Spatial biomass concentration [g/L]. B Axial velocities 
[μm/h]. C Spatial concentration of glucose [mmol/L]. D Spatial concentration of oxygen 
[mmol/L]. E Spatial concentration of nitrate [mmol/L]. 

 Figure 18 is the spatial profiles of the velocity and metabolites throughout the 

biofilm relative to a supplied concentration of nitrate at the biofilm-surface interface. 

Biomass concentrations at the biofilm-surface interface (Figure 18A) shows a significant 

increase compared to the base case (Figure 11A), and these results coincide with previous 

results. Figure 18B shows a positive steady state axial velocity for a duration of the 

numerical study (≈ 10 microns) which deviated from the previous studies. This is due to 

the rapid growth of  P. aeruginosa which caused the boundary layer to reach a net 

positive axial velocity for those specific time intervals. Figures 18C-18D show similar 

profiles to the previous studies. Finally, Figure 18E depicts how the concentration 

gradient of nitrate is depleted within the first 10 microns of the biofilm, which allows the 

biofilm to flourish at the biofilm-surface interface.  
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 These studies have all shown a similar trend when viewing biofilm growth in 

terms of metabolites and where they are supplied. Base cases showed that as the biofilm 

expands the concentration of oxygen becomes the limiting metabolite. Introducing lactate 

to the biofilm-surface interface followed a similar trend to the base case because of the 

inability for glucose and lactate to be metabolized simultaneously. Furthermore, 

introducing nitrate at the boundary allowed the bacterium to replicate and stay “dense” at 

the interface, but as the biofilm grew cells were also limited by oxygen diffusion from the 

biofilm-air interface. These result state a logical physical definition of what would alter 

biofilm growth in vitro. Since these results mimic reality, they are conclusive examples 

of this novel approach to incorporate GSMM and SFBA with a dynamic finite difference 

to calculate the length of the biofilm to be adequate. 
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CHAPTER 5 
FUTURE WORK 

 
 Utilization of SFBA relative to a dynamic finite difference grid has simulated 

idealistic results. P. aeruginosa’s GSMM was used to compute governing parameters 

used by the governing partial differential equations. To obtain a more accurate picture of 

metabolism the cell death rate could be added to FBA that is embedded within this 

numerical simulation. Making the cell death rate a function of the biomass objective 

function would make the model more mathematically fit. P. aeruginosa has a broad range 

of metabolites as well, and it has been shown that the bacterium can metabolize acetate 

and succinate. Utilizing all metabolites uptakes and using them efficiently (with respect 

to computational time) is another goal that would be done via the biomass objective 

function. 

 Additionally, adding higher dimensionality to the governing partial differential 

equations would allow for an more accurate result of the concentration gradients within 

the biofilm. Adding width (x) and depth (y) to the numerical simulation would allow for 

the simulation to take on in vitro laboratory studies. Increasing spatial resolution would 

logically coincide with similar boundary layer analyses (biofilm-air interface). To 

construct a simulation in this matter the biofilm boundary layer would have a velocity in 

three directions, which would add more equations that are spatially discretized and 

generate a very computationally demanding biofilm model. During the construction of a 

high dimensional model, data for this simulation could be obtained through in vitro 

studies allowing for a more detailed comparison. In turn the in vitro data can also be 

taken to support the higher dimensional model. 
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