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ABSTRACT 

ROBUSTNESS OF SUPPLY CHAIN SYNCHRONIZATION STRATEGIES 

SEPTEMBER 2021 

AJ FRERE 

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.I.E.O.R., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ana Muriel 

Modern manufacturing systems dealing with complex assemblies with large numbers of 

parts present particular challenges in the realm of supply chain management. Complex 

assemblies, such as those found in aerospace and automobile manufacturing, require thousands 

of parts to come together at the right time for final assembly. The large number of parts, often 

coming from hundreds of suppliers, combined with unreliable delivery times and high cost of 

many of these components can lead to incredibly high inventory costs and assembly delays. 

Typically, variable delays in part delivery are compensated for by either keeping a buffer of 

safety stock or a time buffer on the planned lead time of a component. In this thesis, we study the 

performance of various buffering strategies across a large range of practical scenarios in an effort 

to identify dominant, robust strategies and how their performance is impacted by the various 

parameters that define the system. The major conclusion is that aggressive part buffering 

consistently results in not only better delivery performance but also significant inventory 

reduction across all settings for assemblies with more than 500 parts.  
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CHAPTER I 

BACKGROUND 

This work builds upon previous research conducted at the Supply Chain 

Management Lab at UMass Amherst, which is described in Beladi (2014), Prokle (2017), 

Muriel et al. (2018). The objective is to generalize the study, strengthen the conclusions, 

and augment our understanding of assembly systems under variable component supply 

lead times in a wide variety of practical cases.  

The previous research established a counter-intuitive principle: in situations 

where a large number of individual components are needed to support a single assembly 

an aggressive time buffering strategy to mitigate delivery variability provides both 

reduced assembly lateness and reduced inventory holding cost. The fundamental basis for 

this argument is the statistical fact that as the number of components increases, the 

possibility of an exceptionally late arrival (delivery outlier) becomes more and more 

certain, while the ensuing inventory cost rises sharply as all components wait for the 

pacing one. 

As an illustrative example, consider an assembly system of just 8 components, 

and a seemingly aggressive buffer strategy that orders each component to achieve a 95% 

service level; that is, components are ordered early, allowing a buffer time based on their 

delay distribution that will ensure the part arrives before the targeted assembly time with 

probability 1-=0.95 (see Figure 1) 
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Figure 1 – Arrival distribution of a component with a variable lead time 

Figure 2 – Lateness parameters for a selection of components 

Figure 3 – Probability of being able to begin work on the final assembly if components are ordered to the 95th 
percentile of their lateness distributions 

Figure 2 provides the lateness parameters for the eight components – note the 

variation in the mean and standard deviation of the number of days late expected for each 

component. Figure 3 shows the effects of the compounded delays. Though each 

Expected order arrival Order has arrived
with probability 1-�

Buffer Time
Quoted Lead Time (QLT)
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component is ordered to what appears to be a high level of service (buffered so that there 

is a 95% chance the component will arrive before the planned assembly time), the 

compounded effect of these probabilities is such there is only a 66% chance of being able 

to begin work on the final assembly on time. The assembly will be nearly fifteen days 

late for the targeted 95% service level. In other words, there is still about a 5% chance 

that the assembly will be more than 15 days late, despite the seemingly aggressive 

buffers. This is because of the compounding of probabilities – across n components the 

real probability of all components being available is SLn, where SL=1- here indicates 

the targeted service level of each component. As n rises, so does the probability of the 

assembly being on-time fall exponentially. With 1000 components buffered to a 99% 

service level, the probability of on-time assembly is P = 0.991000, which is effectively 0. 

Even a 99.9% service level provides only a 36.7% chance of on-time assembly when 

spread across 1000 components. 

While the above math demonstrates that an aggressive time buffering strategy is 

necessary to meet adequate on-time performance for assembly, the other argument, that 

the aggressive buffer also reduces inventory holding cost, is more counter-intuitive and 

thus requires further investigation. 
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Figure 4 – The delivery performance of the components for a seven-piece assembly. The horizontal axis shows delivery 
performance in time (the further to the left, the earlier the part was, with the target MRP date marked). The vertical 

axis shows the inventory holding cost per unit of time for each component (a larger vertical gap between parts 
representing a higher holding cost for the next part) 

 

Consider the example provided in Figure 4. In this example we have a single 

delivery of seven components. Five of the components arrived before the target date, 

while two components had what proved to be an insufficient time buffer for this 

particular scenario and arrived late. The total holding cost contributed by an individual 

component is equal to its holding cost per unit of time multiplied by the amount of time 

that component is waiting for assembly to begin. Note that this waiting period is not 

equal to the amount of time the component was early by – each part must also wait for all 

other parts before assembly can begin. Thus, the assembly date, marked in purple in this 
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example, is determined by the lateness of the latest component. This is the key point. The 

shaded regions visually show what the holding costs incurred in this example are. The 

orange region is the holding cost incurred by buffering; this holding cost is driven by the 

early arrival of several parts. The red area shows the holding cost contributed by the two 

parts that were late. The total shaded region represents the total holding cost for this 

delivery set. Note that while early components only increase the total holding cost by an 

amount proportional to that component’s holding cost, the last component’s contribution 

is proportional to the sum of the holding costs for all other components. In other words, 

every additional day the last component is late means we must hold all other components 

for an additional day. In comparison, if the earliest component is a single day earlier it 

only increases total holding cost by its own holding cost value. This demonstrates that 

minimizing the lateness of the latest component is far more significant to the total cost 

than curtailing early arrivals. It is the lateness of the worst performing component that 

drives the cost of the system.  

The examples above clearly illustrate two effects: 

• The impact of compounding probabilities: as the number of components in an assembly 

increases, so too does the distribution of the lateness of the latest component. 

Restated, the probability that a component will arrive toward the tail of its distribution 

(the probability that at least one component will be a severe outlier) increases as the 

number of components increases.  

• The increasing cost of delay: while the cost of buffering a particular component remains 

fixed, proportional to its own cost, the cost of a delay rises as the number of 

components grows since ALL of the parts will need to be carried in inventory until the 

last pacing part arrives and the assembly can be completed.  
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It can then be concluded that as the number of components in an assembly increases it is 

beneficial in both cost and assembly delay performance to aggressively buffer the 

delivery lead time of each component against an increasingly high probability of lateness 

and associated inventory cost. 

These examples provide a mathematical and conceptual understanding of the factors 

that determine the cost and delivery performance of assembly systems.  Let’s now 

quantify their impact and identify attractive buffering strategies to mitigate the pervasive 

negative effect of unreliable delivery times across a wide-range of industry settings. The 

original research was done in conjunction with an industry partner in the aerospace sector 

and demonstrated the remarkable benefits of full time buffers (advance ordering 

components to the worst observed delivery time for each component). Compare the 

aerospace supply chain with the automotive supply chain. Both systems involve large 

numbers of individual components coming together for a single final assembly, but there 

the similarities largely end. The aerospace supply chain has a relatively small number of 

players working with specialized processes and low demand, in contrast to the 

automotive sector. As such, while the aggressive buffering strategy was found to be 

effective for the case of the aerospace partner, demonstrating the robustness of this 

strategy in other settings is of high importance. This leads us to the two major research 

questions we seek to answer in this thesis: 

1) Is aggressive (full) buffering attractive in other supply chain settings beyond the case 

study analyzed in the previous work? The goal is to identify the supply chain 

characteristics under which heavy time buffering of components results in improved 

inventory cost performance. 
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2) What is the impact of salient supply chain parameters on the cost and delivery 

performance of various buffering strategies? In particular, we need to understand the 

effect of the major parameters that define the supply system: the number of 

components that make up the assembly, the relative number of components with 

unreliable delivery times, their delay distribution, the relative cost of these components, 

as well as the information available to the firm when designing and implementing their 

buffering strategy. 
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CHAPTER II 

BUFFERING STRATEGIES 

To answer the above research questions, we designed a simulation to evaluate the 

effectiveness of aggressive buffering in different circumstances. This requires defining 

several buffering strategies, some more aggressive than others, that can be evaluated 

against each other. 

The first strategy we wanted to consider was a no-buffering strategy to serve as a 

baseline for the effectiveness of different strategies. 

We also wanted to consider likely strategies that industry might use. For this we 

were interested in relatively simple strategies that would be easy to implement with little 

computational requirements. Buffering components according to the mean of their 

observed lateness seemed the most obvious as well as highly defensible in industry. 

However, the lateness distributions frequently have a high skew affecting the mean 

results, so we also decided to examine a buffering strategy utilizing the median of the 

observed component lateness as perhaps a better representation of the distribution. 

The focus of this research is on the effectiveness of aggressive buffering 

strategies, so the remaining strategies shown would need to be more aggressive than the 

mean or median so that an adequate comparison could be performed. The prior research 

performed by Muriel et al. (2018) advocated for a “full buffering” strategy based on the 

observed deliveries. In other words, they found that observing recent component delivery 

data and buffering the delivery of new components by the maximum observed lateness 

for that component was an effective strategy. This is one of the key points we were 

interested in testing, so we included this as one of the strategies. This full buffer strategy 
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does not take into account anything except component lateness; it is possible that based 

on the specific lateness distribution and the particular holding cost of each component 

that this strategy might not be the optimal approach. Thus, a stochastic optimization 

model was applied to historic observed data to find the ideal component buffering for 

each component for that observed set. This buffering strategy would be optimized for the 

observed data but might not be optimal for the future deliveries based on the random 

nature of the lateness distributions. 

We were also interested in different means of augmenting the prior observed 

historical deliveries. In an industrial setting different components would be needed in 

different demand quantities; while some components are ordered in dozens or hundreds 

per day, some components are only ordered weekly, or even more rarely depending on 

the specific industry and position in the product life cycle. As such, getting the necessary 

quantity of delivery data to have confidence in an accurate representation of the 

underlying distribution could require months, or potentially even years, worth of delivery 

data. This raises the concern that the delivery distribution may have changed as the 

performance of the supply chain changes over time. To combat this, we wanted to 

evaluate two different means of sampling the observed historical data to hopefully 

provide improved buffering guidance. 

The first means of generating new data sampling we chose was to fit a lognormal 

distribution onto the observed data. From this fitted distribution we could simulate a 

number of new deliveries and build an optimal buffering strategy for each component 

from the stochastic optimization model. A different approach was required for the “full 

buffer” strategy, however, as the lognormal distribution being used has no maximum 
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value. On testing we determined that 3σ of the fitted distribution was an effective strategy 

in most cases, though we will share results below of testing the effectiveness of different 

distribution values. 

While we felt that a fitted distribution would provide a reasonable platform from 

which to generate samples, there was concern over how accurate the fitting would be, 

particularly in cases with a low number of observed deliveries. To that end, we also 

utilized a second means of data resampling: taking random samples for each component 

from that component’s observed delivery history. This method allows us to recombine 

existing data to create new delivery profiles without creating new data. As an example, a 

sampled delivery may have the lateness from component 1 being the lateness of its first 

delivery in the observed historical data, while component 2 is as late as it was on the 

eighth delivery. This creates new deliveries in terms of the lateness of each individual 

component without creating new lateness data. For this sampling methodology we 

applied the stochastic optimization to find an optimal method based on the resampling, 

but a full buffer strategy would be the same as for only the observed data, as no new data 

was generated. 

 

2.1 Stochastic Optimization Model 

 

Three of the strategies we evaluated included finding an optimized strategy 

according to the observed and sample data. This optimized time buffering strategy was 

determined according to a linear optimization (Figure 5). 
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Figure 5 – The linear optimization model used to find an “optimal” time buffering strategy 

 

This model finds the minimum costs by varying the buffering time for each component 

and the lateness of the assembly (which is determined by the lateness of the latest 

component). The derivation of this optimization is as follows: 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑗 =  ℎ𝑗(ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗) 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑗 =  𝐷𝑠 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗 

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑗 =  𝑋𝑗
𝑠 −  𝐵𝑇𝑗 

Substitution and distribution allows us to rearrange the above into: 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑗 =  ℎ𝑗(𝐷𝑠 − 𝑋𝑗
𝑠 + 𝐵𝑇𝑗) 

Note that Xj is a constant – it is the specific lateness being observed for a specific 

delivery determined by that component’s lateness distribution according to Step 1 of the 

simulation (Chapter 3.1.1). Since this is an observed value that cannot be adjusted by the 

optimization, its presence is irrelevant. While the specific holding cost would be affected, 

the Ds and BTj values that produce the minimum cost would be the same regardless of if 

Xj was considered or not. Since the goal of the optimization is to find the optimal values 

of BTj, Xj can be safely ignored, yielding the component holding cost formula utilized by 

the above objective function. Note as well that the buffer time is considered only in 
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relation to the component j regardless of which scenario is being run, as this methodology 

must produce a single buffer time that can be applied to a component for all future 

deliveries. 

The derivation of the constraints is presented below: 

𝐷𝑠 ≥  𝑋𝑗
𝑠 − 𝐵𝑇𝑗 

This inequality establishes that for a given scenario S the assembly time must be 

equal to or later than the arrival time of all components – in other words, you cannot 

begin an assembly until every single component has arrived. Simple rearrangement of the 

inequality produces the constraints in the optimization model. This rearrangement was 

necessary to support the data structure required by the Gurobi optimizer utilized by the 

simulation. 

The solution to this optimization model will provide the buffer time for each 

component that will provide the minimum cost across all the observed deliveries 

generated by the first step of the simulation (Chapter 3.1.1). Thus, these buffer times are 

considered “optimized”, though in the evaluation phase other strategies may outperform 

the “optimal” strategy due to random variation. 

 

2.2 Selection of Buffering Strategies for Further Study 

From the above, we settled on the following eight strategies for buffering component 

lateness: 

1. No buffer: no mitigation is made for part lateness. Parts arrive when they arrive. 

2. Median from observed: part lead time is offset according to the median lateness in the 

observed delivery set. 
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3. Mean from observed: part lead time is offset according to the mean lateness in the 

observed delivery set. 

4. Full buffer from observed: each part has its lead time offset according to the maximum 

lateness in the observed delivery set. 

5. Optimized buffer from observed: the optimized lead time buffer is determined 

according to a linear program run on the observed delivery set to minimize total cost. 

6. Full buffer from fitted distribution: a lognormal distribution is fitted for the lateness of 

each part. Each part then has its lead time offset by 99.7% of that distribution. 

7. Optimized buffer from fitted distribution: 1000 new deliveries are sampled from the 

fitted lognormal distribution. This new delivery set is used to create an optimized time 

buffering strategy according to the above linear program. 

8. Optimized buffer from created sample: utilizing a data set created by sampling the 

observed deliveries (sampling the observed deliveries directly as opposed to utilizing the 

fitted distribution), a third optimized buffering strategy is created with the same linear 

programming method. 
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CHAPTER III 

COMPUTATIONAL STUDY 

In this section, we carry out a comprehensive simulation study to answer the 

above-listed research questions. For this purpose, we first design the study making sure 

that all relevant supply chain features are captured to represent the full spectrum of 

supply chains encountered in practice. This requires the identification of the main 

parameters that define the supply chain and the ranges within which they vary in practice. 

Second, we develop a MATLAB program to generate the various supply chain settings, 

implement the various buffering strategies, and then evaluate and compare their 

performance. The cost and assembly delivery performance across the multiple settings is 

then analyzed for both aggregate and individual settings to understand the relative benefit 

of the various strategies and identify the settings where they are dominant.  

 

3.1 Simulation Design 

 

To evaluate the robustness of the buffering methodology proposed above we 

created a MATLAB simulation that could simulate the three phases necessary to the 

business process: observe prior component deliveries, develop buffering strategies based 

on those observed deliveries, and test those buffering strategies against unobserved 

component deliveries. The strategies could then be evaluated against inventory holding 

cost and final assembly delivery performance. 
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3.1.1 Step 1 

 

The first thing the simulation must accomplish is to simulate several deliveries of 

all of the components necessary for the assembly so that their lateness performance can 

be observed. To do this the simulation first establishes lateness parameters for each 

individual component according to a lognormal distribution. These lateness parameters 

are hidden from the code that generates the buffering strategies – those strategies are 

determined solely from the observed delivery performance that results from this 

underlying distribution. These lateness parameters are also persistent – a single 

component maintains its lateness distribution through the entire simulation process, both 

for the initial observed deliveries and the final deliveries used to evaluate performance. 

Once each component has been assigned a delay distribution a series of deliveries 

is simulated representing the deliveries required to support some number of assemblies. 

For each delivery a random lateness is generated for each component according to its 

specific distribution. This is used to feed the generation of buffer strategies. 

Additionally, each component is assigned a specific holding cost according to pre-

defined parameters. This holding cost is used for certain time buffering strategies and in 

the final evaluation of performance. 

 

3.1.2 Sampling 

 

Some of the buffering strategies we evaluated are based on only the observed 

deliveries, while others utilize resampling techniques to hopefully provide better insight 

from limited data (Chapter 2). Two different resampling techniques were used. 
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Figure 6 – An example showing the two different resampling strategies  

 

The first strategy is to first fit a lognormal distribution to the observed lateness of 

each component in an attempt to determine the underlying lateness distribution. This is 

shown in the top-right portion of Figure 6. The second strategy is to randomly resample 

the observed lateness for each delivery for each component, the goal being to preserve 

the underlying distribution (where a fitted distribution may be incorrect) while still 

generating new delivery combinations between the components. This second strategy is 

shown in the bottom-right portion of Figure 6. Note in Figure 6 that in the bottom-right 

we see repeats of the same data points (boxed in red, the table shown is a subset of a 

larger table so the paired data for the other indices is not visible here) but these data 

points are in different combinations between the components, while the top-right portion 

has entirely new lateness values determined from the fitted distribution. Each sampling 

technique was used to create 1000 additional samples that were used to determine buffer 

strategies. 
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3.1.3 Step 2 

 

Following the creation of the new, sampled, data sets, each component is assigned 

eight separate time buffers according to the defined strategies. 

 

Figure 7 – A sample of the buffer time generated for ten components according to the above strategies. 

 

This time buffer represents the additional ordering time that will be applied to that 

component (e.g. from Figure 7, the Mean from Observed strategy suggests that 

Component 5 should be ordered approximately five time units early). 

 

3.1.4 Step 3 

 

Following the assignment of individual buffer times to each component for each 

strategy we can evaluate the effectiveness of each strategy against our two performance 

metrics: inventory holding cost and assembly lateness. 

To do this, we simulate the lateness of each component for 1000 future deliveries 

according to each component’s individual lateness distribution from Step 1. Once the 

random lateness is determined for each component for each of the 1000 deliveries, this 

lateness is offset by each assigned buffer time to determine, for each delivery, what the 

assembly lateness is (which is equal to the lateness of the latest component) and what the 
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inventory holding cost is for each strategy. This process is demonstrated for a single 

delivery in Figure 8. 

 

Figure 8 – Buffered lateness for each component for a single delivery according to the eight buffering strategies 

 

3.2 Simulation Parameters 

Several parameters were established for the simulation to evaluate the performance of 

the eight different strategies in different circumstances: 

1. N*: The number of total components required for the assembly. 

2. Nvar*: The percentage of the components with a variable lead time. It was found 

working with the industry partner in the original research that many components 

arrived consistently on time. We included this parameter to examine the effect of this 

variation on the effectiveness of the different strategies. 

3. Mu*: The mean of the lognormal lead time distribution for a given component. 

4. CoV*: The coefficient of variation of the lognormal lead time distribution for a given 

component. 

5. Vhc*: The holding cost of a component with a variable lead time. Holding costs of 

components that did not have a variable delivery lead time were not of specific interest 
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and so were fixed to one unit per time unit (the specific units being irrelevant for 

testing). The vhc parameter allowed us to adjust the relative cost of the variable 

components (more or less expensive than the non-variable components) in case this had 

an effect on the effectiveness of different strategies. 

6. Obs Del*: The number of historic (observed) deliveries generated in Step 1 of the 

simulation which would be used to determine the specific buffering times according to 

the eight strategies. 

7. S: The number of times a specific case (a unique set of parameters) is repeated to 

mitigate outliers in performance caused by randomization. During testing the results 

were found to be incredibly robust and so a relatively small S of ten was chosen to aid 

computing speed. 

8. New Samples: The number of new “observed deliveries” generated by the sampling in 

Step 1. This was fixed to 1000. 

9. New Deliveries: The number of future deliveries used to evaluate the performance of 

each buffering strategy in Step 3. This was fixed to 1000. 

The parameters marked with an asterisk indicate the parameters of interest. The effects of 

these parameters on the effectiveness of the different buffering strategies are what we 

wanted to determine with this research, and so these are the parameters that were varied 

so that we could study the impact. 

 

3.3 Simulation Strategy 

 

We utilized two separate approaches to running simulations and evaluating the 

results: 1) a full experimental design to characterize the average performance under 
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various parameter settings, and 2) a detailed study of particular cases of interest that 

focuses on comparing the full distribution of cost and delivery outcomes associated with 

the various buffering strategies. 

 

3.3.1 Design of Experiments: Average Performance Analysis 

We run a comprehensive experimental design to explore the robustness of the various 

strategies to provide good average performance across a variety of settings and various 

parameter values. The results will be analyzed in the aggregate to allow for comparison 

of the performance of the various strategies as the parameters settings change.   

The following parameter variations will be utilized: 

1. Number of Components: 10, 100, 500, 1000 

2. Percent of Components with Variable Lead Time: 0.1%, 1%, 10%, 25%, 75%, 100% 

3. Observed Deliveries: 10, 50, 100 

4. Mean of Lateness Distribution for each Component: 0.1-1, 1-10, 0.1-10 

5. Coefficient of Variation for Lateness Distribution for each Component: 0.5-1, 1-10, 0.5-

10 

6. Holding Cost of Variable Components: 0.1-1, 1-10, 0.1-10 

Where ranges are listed, these represent allowable upper and lower bounds. Because 

not all parameters are fixed, we generate 10 replications for each combination of 

fixed parameters to ensure the results represent a broad set of settings. Within a 

particular replication, each individual component receives a value for these 

parameters determined from a uniform random distribution between the listed 
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bounds. Each of the parameters was varied against each other parameter, providing a 

complete set of 19,440 cases; there are 1,944 parameter combinations and each is 

replicated 10 times, as mentioned above. Once a case is generated, the component 

buffers for each of the eight strategies are calculated for those parameters and their 

performance evaluated. 

 

The first approach was to perform mass aggregate analysis, varying each 

parameter in relation to all other varied parameters for a total of 19,440 unique parameter 

sets (cases). This analysis allowed us to understand the impact not just of each parameter 

but also how different combinations of parameters would impact the effectiveness of each 

buffering strategy. For example, perhaps a particular strategy was very effective when a 

large percentage of components was variable, but not if those components had low 

individual delivery variation. The drawback to the large aggregate analysis is that the 

sheer volume of data limited the insights we could derive from these simulations to only 

statistics that could be aggregated, such as mean, median, minimum, and maximum 

values of our two performance metrics. 

 

3.3.2 Individual Case Analysis: Comparison of Cost and Delivery Distributions 

 

In practice, each individual case could have complex and nuanced behavior which 

was obscured by the simple aggregate statistics. As a result of this we used the aggregate 

analysis to guide us to particular cases of interest that could be run individually, allowing 

us to analyze these cases in detail. Instead of limiting ourselves to, for example, the 

average holding cost of a buffering strategy across all the deliveries in a particular case, 
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we can display the full distribution of costs given by the 1000 delivery delay scenarios 

used for evaluation. This provides much greater insight into the specific performance of 

these cases and allows us to identify which strategies lead to more robust, consistent 

performance.  
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CHAPTER IV 

COMPUTATIONAL RESULTS 

 

 

 The full experimental design and the detailed analysis of specific cases described 

in the previous section will provide deep insight into the performance of the various 

buffering strategies as the various parameters change and allow us to draw important 

conclusions. In the next two sections, we report the results and discuss the findings.  

 

 

4.1 Average Performance Results 

 

The full experiment evaluated a total of 19440 cases, 10 replications of each of 

the 1944 specific supply chain settings considered. The average performance of the eight 

strategies is summarized in Figure 9. The left side displays the average “Cost Ratio” and 

the right side the average “Delay”, across all of the cases tested. The “Cost Ratio” for 

each particular case and strategy is calculated as the average cost incurred when 

following that strategy in the 1000 scenarios used to evaluate performance, over the best 

average cost achieved by any of the strategies for that particular case. The “Delay” for 

each particular case and strategy is the average assembly delivery delay observed in the 

1000 scenarios when following that strategy. 

 

Figure 9 – Aggregate cost and delay performance across the 19440 cases tested. The costs listed are a normalized 
ratio between strategies, where a higher number indicates higher costs in relation to the other strategies. The delay 

values are absolute values. 
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Observe that: 

• The strategy that optimizes the buffers assuming the fitted lognormal distribution 

consistently provides the best cost performance and high delivery performance 

• Full buffer (to 3) strategies based on the fitted lognormal distribution consistently 

provide the best delivery performance for moderate number of parts in the assembly. 

As we shall see, for N≥ 1000 more aggressive buffering may be needed and the 

optimized strategy performs better. The superior delivery performance, however, 

comes at a high cost for for assemblies with low number of components. As the 

number of components rises, the cost becomes quite similar to that of the optimized 

strategy. Full buffering strategies are thus found to be very competitive for high 

numbers of components. 

• As the number of components rises, using the fitted distribution rather than the 

observed samples to make buffering decisions is a must. Both the cost and delay 

performance of the resulting strategies (FB Dist and Opt Dist) become increasingly 

superior to their counterparts (Full Buffer and Opt Obs or Opt Samp).  

• Surprisingly, the performance of the OptSamp strategy, which finds the optimized 

buffers using 1000 scenarios generated from independently resampling from each 

individual part observed deliveries, is virtually identical to that of the OptObs strategy, 

which optimizes only using the few observed scenarios, a much-reduced set of cases. 

There is only a slight improvement in average delivery delay gained by the resampling.   

Let’s explore further how these general tendencies are impacted by each of the 

important parameters that have been varied in the experiment. Figure 9 shows that N, the 

number of components, has a large impact on relative performance of the various 

strategies. Two other main parameters of interest are a) # of Obs. the number of observed 
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deliveries that the full buffer and optimized strategies are based on, and b) NVar, the 

number of components with unreliable deliveries out of the entire set of components in 

the assembly. Figures 10 and 11 report the performance, Cost Ratio and Delay, as the 

three parameters (N, # of Obs, and NVar) vary. 

 

 

Figure 10 – Aggregate simulation results for cases where N = 10 and N = 100. The costs listed are a normalized ratio 
between strategies, where a higher number indicates higher costs in relation to the other strategies. The delay values 

are absolute values. All values are based on the mean performance of each strategy for all iterations of each particular 
parameter set. 

 

 
Figure 11 – Aggregate simulation results for cases where N = 500 and N = 1000. The values listed are derived in a 

similar fashion to those in Figure 8. 
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In the low-N cases in Figure 10 the aggressive buffering strategies (the two Full 

Buffer strategies) called for in the prior research perform very poorly compared to the 

other strategies. While the assembly delay performance is expectedly good, the costs of 

the two Full Buffer strategies are very poor, even when compared to the No Buffer case. 

Recall the two key points from Chapter 1: 1) Reducing the lateness of the latest 

component has a disproportionate effect on the total holding cost compared to reducing 

the earliness of the earliest part; when the number of components is low, however, the 

costs of holding one part when early vs. holding the rest of the assembly when being last 

are not as different. 2) As the number of components increases so does the likelihood that 

any one component will arrive as an outlier on its delivery distribution. Effectively, when 

there are a large number of components at least one is very likely to be an outlier, and 

that outlier will incur a huge cost. An aggressive buffering strategy is warranted as it is 

effectively betting that there will be an outlier and mitigating appropriately. If no outlier 

occurs, then an aggressive buffering strategy will result in over-buffering, and the 

inventory cost will be driven by the buffering rather than the lateness. Consider N = 10 as 

shown in Figure 10. With only ten components, it is exceedingly unlikely that a severe 

outlier will occur on any given component, even if all ten components are allowed to vary 

(though you will note the relative cost performance of aggressive buffering strategies 

improves as Nvar increases). As such, an aggressive buffering strategy should result in a 

cost increase, as is shown here. Likewise, as the number of observed deliveries increases, 

it is more likely to observe later and later components, causing the Full Buffer from 

Observed Data strategy to become increasingly more expensive. Conversely, the No 

Buffer strategy assumes that components will be on-time. While this is clearly a poor 
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assumption in any case with observed delivery variation, in the cases with a low-N this is 

still a better assumption than that underlying an aggressive buffer. With very few 

components, it is more likely that all components will be closer to on-time than that any 

one component will be exceedingly late; in the rare case of a very late component, the 

inventory cost associated with carrying the few other components as they wait for the 

pacing part is not prohibitive compared with the extra cost of aggressively buffering that 

component in all other cases. 

Contrast this with the cost performance seen in Figure 11. As N increases, so too 

does the performance of our aggressive buffering strategies. There are two important 

things to note; not only do the Full Buffer strategies begin to consistently improve, but 

their corresponding Optimized strategies (obtained by solving the stochastic program on 

the same data set that the two Full Buffer strategies utilized) begin to perform more 

similarly to the Full Buffer strategies. This is reflected in many cases with a high N 

where the Optimized strategy’s performance was in fact the same as the Full Buffer. 

One other point of interest is the Opt Samp column, representing the performance 

of the strategy Optimized from the resampling of the observed data (as opposed to the 

Optimized based on the fitted distribution). Surprisingly, the Optimized from the 

resampled data performed very similarly to the Optimized from the observed data, even 

with a low number of observations. The additional scenarios generated from 

independently sampling from the observed data for each part were expected to lead to a 

more robust buffering strategy that would perform better when evaluated over the new set 

of 1000 scenarios. However, they did not fundamentally change the buffering strategy 

and resulted in almost identical performance. The detailed analysis in the next section 
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further supports this conclusion: The resampling strategy from observed data is 

ineffective and unnecessary; comparable performance is achieved from direct 

consideration of the observed scenarios. 

In the next section, we move beyond average performance and explore individual 

cases to gain a better understanding of the range of cost and delivery delay outcomes 

resulting from each of the buffering strategies in the various supply chain settings. 

  

4.2 Comparison of Cost and Delay Distributions 

 

With the results from the experimental design, we honed in on a few test cases 

and varying parameter settings to examine more closely. For these cases we generated 

box plots from the cost and delivery delay incurred for each of the 1000 deliveries in the 

evaluation set. This allowed us to examine the specific behavior of each strategy in 

particular cases of interest rather than relying solely on aggregate statistics. How robust 

are the buffers proposed to provide good performance across the spectrum of potential 

component delivery scenarios (captured by the 1000 scenarios used for evaluation)? 

From the aggregate results we identified four particular cases that warranted the more 

detailed analysis, as always looking at the impact of both inventory holding cost and final 

delivery performance: 

1. The effect of the total number of components in the assembly: From the initial 

analysis in Chapter 1 it is clear that the more aggressive buffering strategies are 

warranted where there are more components. We ran a series of detailed tests to 

examine more closely what the specific behavior is of the different strategies as 
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the number of components increases, at what point does more aggressive 

buffering become warranted, and how aggressive should that buffering be. 

2. The effect of the percentage of variable components in the assembly: The 

aggressive buffering strategy is justified as late components require holding all 

other components for increasing amounts of time, disproportionately increasing 

holding cost while also contributing to assembly lateness. How will this be 

impacted as the overall variability of the assembly increases? If the majority of 

components, or even all components, have variable delivery lead times, would 

aggressive buffering become counterproductive by increasing holding cost as a 

result of ordering the majority of components very early? 

3. The effect of the variation of late components: The initial research was performed 

for a case with high variability of component lead time. How does this variability 

affect the performance of the different strategies? What happens if component 

variability is increased or decreased? 

4. The effect of relative holding cost of the variable components vs. reliable 

components: Intuitively, the lower the holding cost of the variable components, 

the more affordable and attractive aggressive buffering of these components is.  

Will this effect be sufficient to make full buffers cost competitive in cases with 

low number of components? The aggregate results show that the more aggressive 

buffering strategies are less effective for a low number of components. This is 

expected behavior; the aggressive buffering strategies are reliant on the cost 

disparity between the limited holding cost of a single component being early 

compared to the higher holding cost of having to hold all components for a late 
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assembly. In cases where there are a low number of components, this disparity is 

reduced, and early deliveries have a correspondingly higher effect on the total 

holding cost. Additionally, smaller number of components reduce the likelihood 

that there will be an outlier in delivery performance. This creates a situation 

where parts are consistently arriving early, adding more cost to the total than is 

offset by the rare cases where the assembly might otherwise be very late. 

However, if the late components were relatively inexpensive compared to the rest 

of the assembly, the additional cost incurred by their early arrival will be lessened 

and would eventually result in more aggressive buffering once again being an 

effective strategy. 

In what follows we explore each of these cases in detail for representative settings. 

Effect of the Number of Components on the Cost and Delivery of each Buffering 

Strategy 

 

 

Figure 12 – Effect of the number of components on the cost of each buffering strategy. Parameters: Nvar = 25%, Mu = 
0.1-10, CoV = 0.5-10, Vhc = 1-10, 50 Observed Deliveries 
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Figure 13 – Effect of the number of components on the delay of the final assembly for each buffering strategy. 
Parameters as in Figure 11 

 

Figure 14 – Effect of the number of components on the cost of each buffering strategy for N = 500 and N = 600. Colors 
and parameters as in Figures 11 and 12 
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Figures 12 and 13 show the effect of increasing the number of components on 

both the cost and the final assembly delay for each strategy. Reinforcing the insights from 

the aggregate simulations, we see that though the delivery performance of the Full Buffer 

from the Fitted Distribution is consistently superior until N = 5000, the cost is 

prohibitively high until past N = 500 (the actual tipping point appears to be around N = 

600, see Figure 14). Additionally, we see that the cost and delivery performance for the 

Full Buffer from the Fitted Distribution begins to lose ground against the Optimized from 

the Fitted Distribution. Recall that the Full Buffer from the Fitted Distribution is defined 

as being 3σ of that distribution. It stands to reason from the above that as the number of 

components increases, so must the aggressiveness of the buffering strategy. This is what 

we are seeing here; past N = 1000, 3σ ceases to be as effective, and more aggressive 

buffering is required. Additionally, note the clipping on the top of the first three boxes for 

N = 5000 in Figure 12. This behavior will be seen in the following figures as well, and is 

explained in Appendix A. 
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Figure 15 – Effect of increasing the aggressiveness of the Full Buffer from the Fitted Distribution Strategy on the cost of 
a case with a high number of components. Parameters: N = 10,000, Nvar = 25%, Mu = 0.1-10, Cov = 0.5-10, Vhc = 1-10, 

50 Observed Deliveries 

As noted in Figure 12, as the number of components increases the 3σ buffer is no 

longer effective enough to mitigate the increased chance of wild outliers in delivery 

performance. As N increases, so too must the buffer aggressiveness to keep pace with the 

increase in compounding probabilities, as discussed in Chapter 1. Figure 15 shows the 

impact of the aggressiveness of the Full Buffer from the Fitted Distribution Strategy on 

the inventory holding cost in a case with a very high number of components (N = 

10,000). Where the 3σ buffer was effective at and below N = 1000, it was less effective at 

N = 5000 and even less effective as N further increases. A more aggressive 4σ buffer is, 

however, very effective, providing both the best cost performance of these strategies and 

a reduced variability of cost, representing less risk to the business. More aggressive 

buffering is ineffective in this case; the number of components would likely need to be 

much higher before a 5σ or 6σ buffering strategy is necessary. In addition, the incredibly 

long delivery delays suggested by the long tail of the lognormal distribution are 
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unrealistic in practice, since other business processes will be in place to ensure business 

continuity (alternative supplier, additional capacity, etc). 

 

Effect of the Percentage of Variable Components on the Cost and Delivery of Each 

Buffering Strategy 

 

 

Figure 16 – Effect of the percentage of variable components on the cost of each buffering strategy. Parameters: N = 
1000, Mu = 0.1-10, CoV = 0.5-10, Vhc = 1-10, 50 Observed Deliveries 
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Figure 17 – Effect of the percentage of variable components on the delay of the final assembly for each buffering 

strategy. Parameters as in Figure 15 

Figures 16 and 17 show the effect of increasing the percentage of components in 

the assembly that have a variable delivery time. As the percentage of variable 

components increases, we can see that cost increases and delivery performance decreases. 

However, the relative performance of each strategy remains relatively constant. A 

strategy that provides superior performance when 10% of the components have variable 

lead time provides superior performance when 100% of the components have variable 

lead times. 

Effect of the Variation of Late Components on the Cost and Delivery Performance 

of Each Buffering Strategy 
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Figure 18 – The effect of the variation of late components on the cost of each buffering strategy. Parameters: N = 
1000, Nvar = 25%, Mu = 5, Vhc = 1-10, 50 Observed Deliveries 

 
Figure 19 – The effect of the variation of late components on the delay of the final assembly for each buffering 

strategy. Parameters as in Figure 17 

 

In Figures 18 and 19 we see the impact of increase the variability of late 

components on both cost and delivery performance for each buffering strategy. Similarly 

to the impact of increasing the percentage of variable components, here we see that 

increased variability degrades the effectiveness of all strategies while maintaining their 
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relative position. Once again, increasing the variability does not seem to impact which 

strategy is most effective. 
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CHAPTER V 

CONCLUSION 

The above data supports the central argument of the prior work: for assemblies 

with a high number of components, an aggressive time buffering strategy both reduces 

cost and improves delivery performance. Importantly, this remains the case in situations 

of both high and low variability. We have shown that an aggressive buffering strategy has 

a robust performance as other parameters vary. Further, as the number of components 

increases so too must the aggressiveness of the buffering strategy. Where a 3σ buffer was 

effective at N = 1000, it had already begun to lose ground relative to the optimized 

strategies at N = 5000; a 4σ buffer becomes more attractive at that point. On the other 

hand, when N is low (e.g. N=10 or 100), significant time buffering is not cost effective 

unless the unreliable components that need buffering are very inexpensive. This is 

because the probability of one of the few components being very late is low and the cost 

of carrying all other components until the pacing one arrives is relatively low. While 

there is an impact from other parameters, their effect is more nuanced. Additionally, 

when choosing a strategy, it is worth pursuing a buffering strategy based on a fitted 

distribution rather than just on observed data as this was shown to have a consistently 

superior performance, regardless of preference for an optimized model or a simple 

percentile model. The optimized model based on the fitted distribution provides the best 

performance consistently across all cases, but as the number of components increases, the 

performance of a full buffer strategy becomes very competitive and in many cases more 

robust (less risky as the range of outcomes is smaller). The more the observations used to 
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fit the distribution, the greater the advantage of these models as the fitted distribution 

more accurately captures reality. 
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CHAPTER VI 

FURTHER WORK 

While this work has shown the robustness and effectiveness of an aggressive 

buffering strategy, there remains a question of just how aggressive the buffering should 

be in relation to the number of components in the assembly. 

 

Figure 20 – Delivery lateness distribution and cost incurred for a single component 

 

Figure 20 shows a proposed mathematical approach to the optimal buffering problem. 

Consider a particular component and let to be the lateness of the latest component other 

than the component in question. The initial component may arrive earlier, at a time te < to, 

or later at a time tL > to.   In the first case, the early component’s holding cost contribution 

to the overall total is equal to the holding cost of the component times (to-te). In contrast, 

in the latter case, the holding cost contribution of the late component is equal to (tL-to) 

times the sum of all holding costs for all other components (recall the discussion around 

Figure 4 in Chapter 1). It stands to reason that the ideal buffering strategy might be one 
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where the expected value of the marginal costs of being early or being late are balanced. 

The challenge to this approach is that the precise value of to is dependent on the 

individual lateness variation of every other component; as the number of components 

increases and their individual delivery variation increases, to will move to the right. 
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APPENDIX A: THE IMPACT OF CLIPPED DISTRIBUTIONS 

With the lognormal distributions which underlie all the delivery variation used in 

the simulation there is a very small chance of having extremely late deliveries. As the 

fundamental case being argued here is centered 

around the possibility of extreme outliers, so too 

can we expect severe, unrealistic outliers during 

simulation (in testing, components were 

observed to arrive more than ten years late). As 

such we made the decision to restrict all 

component lateness and buffering to a maximum 

lateness of one year, as we felt anything beyond 

this would be unrealistic in practice. For ease of 

computation, this was done by rounding any 

results greater than one year to be one year exactly. In 

the majority of cases this would have a limited impact, but in cases with high means or 

highly skewed distribution this could impact the results (Figure 21). This was deemed 

acceptable for three reasons: 1) such long delays are unrealistic because other suppliers or 

measures would be sought to ensure delivery continuity, 2) the extreme delays only 

occurred in very rare cases, and 3) in the cases where an extremely skewed distribution 

was clipped in this manner we were still able to determine that this distribution was 

highly skewed, minimizing the effect on our analysis. While the truncation of the 

lognormal distribution could have been done in a smoother way that spreads the 

Figure 21 – The effect of clipping distributions 
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probability of the tail across its full domain, the problem of clipped distributions was 

limited to extreme cases and should not have any effect on our final conclusions. 
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