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ABSTRACT

DEEP LEARNING MODELS FOR IRREGULARLY
SAMPLED AND INCOMPLETE TIME SERIES

SEPTEMBER 2021

SATYA NARAYAN SHUKLA

B.Tech., INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

M.Tech., INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Benjamin M. Marlin

Irregularly sampled time series data arise naturally in many application domains

including biology, ecology, climate science, astronomy, geology, finance, and health.

Such data present fundamental challenges to many classical models from machine

learning and statistics. The first challenge with modeling such data is the presence

of variable time gaps between the observation time points. The second challenge is

that the dimensionality of the inputs can be different for different data cases. This

occurs naturally due to the fact that different data cases are likely to include different

numbers of observations. The third challenge is that different irregularly sampled

instances have observations recorded at different times. This results in a lack of

temporal alignment across data cases. There could also be a lack of alignment of ob-

servation time points across different dimensions in the same multivariate time series.

vii



These features of irregularly sampled time series data invalidate the assumption of

a coherent fully-observed fixed-dimensional feature space that underlies many basic

supervised and unsupervised learning models.

In this thesis, we focus on the development of deep learning models for the prob-

lems of supervised and unsupervised learning from irregularly sampled time series

data. We begin by introducing a computationally efficient architecture for whole time

series classification and regression problems based on the use of a novel determinis-

tic interpolation-based layer that acts as a bridge between multivariate irregularly

sampled time series data instances and standard neural network layers that assume

regularly-spaced or fixed-dimensional inputs. The architecture is based on the use of

a radial basis function (RBF) kernel interpolation network followed by the application

of a prediction network. Next, we show how the use of fixed RBF kernel functions

can be relaxed through the use of a novel attention-based continuous-time interpola-

tion framework. We show that using attention to learn temporal similarity results in

improvements over fixed RBF kernels and other recent approaches in terms of both

supervised and unsupervised tasks. Next, we present a novel deep learning framework

for probabilistic interpolation that significantly improves uncertainty quantification

in the output interpolations. Furthermore, we show that this framework is also able

to improve classification performance. As our final contribution, we study fusion ar-

chitectures for learning from text data combined with irregularly sampled time series

data.
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CHAPTER 1

INTRODUCTION

An irregularly sampled time series is a sequence of time-value pairs with non-

uniform intervals between successive time points. Such time series data naturally oc-

cur in domains where the observation process is constrained to a degree that prohibits

regular observation of continuously varying phenomena. This occurs in a number of

scientific and industrial domains and is also a prominent feature of some types of data

in the health domain (Eckner, 2014).

For example, observational studies of free-living animals in biology and ecology

inevitably lack data points due to movement of subjects, weak transmitter reception,

or poor weather and lighting conditions that hinder observation (Ruf, 1999). In as-

tronomy, measurements of properties such as the spectra of celestial objects are taken

at times determined by seasonal and weather conditions as well as the availability of

time on required instruments (Scargle, 1982). In climate science, paleoclimate time

series data are often sampled irregularly due to the difficulty in obtaining historical

information (Schulz and Stattegger, 1997). In electronic health records data, vital

signs and other measurements are recorded at time points determined by a number

of factors that may include the type of measurement, the patient’s state of health,

and the availability of clinical staff (Marlin et al., 2012). Irregularly sampled time

series data also commonly occur in a range of other areas with similar complex obser-

vation processes including geology (Rehfeld et al., 2011), finance (Manimaran et al.,

2006), economics (Kling and Bessler, 1985), meteorology (Mudelsee, 2002), and traffic

analysis (Ye et al., 2010).
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Univariate regularly sampled  Univarite irregulalry sampled

Multivariate regularly sampled Multivariate irregularly sampled (aligned) 

Multivariate irregularly sampled (unaligned)

Figure 1.1: Illustration of regularly and irregularly sampled univariate and two-
dimensional multivariate time series. Univariate irregularly sampled time series data
are characterized by variable time intervals between observations. Multivariate irreg-
ularly sampled time series are also characterized by variable time intervals between
observations, but can have aligned or unaligned observation times across dimensions.
When observation time points are unaligned across dimensions, different dimensions
also often contain different numbers of observations. Finally, while this figure only
illustrates single univariate or multivariate time series, it is important to note that
in data sets containing multiple univariate or multivariate time series as data cases,
the observation times in different data cases are also typically unaligned and different
data cases often also have different numbers of observations.

This thesis is motivated by problems in the analysis of electronic health records

(EHRs). While the volume of electronic health records (EHR) data continues to grow,

it remains rare for hospital systems to capture dense physiological data streams, even

in the data-rich intensive care unit setting. Instead, it remains more common for

the physiological time series data in electronic health records to be both sparse and

irregularly sampled.

Irregularly sampled time series data (as shown in Figure 1.1) present fundamental

challenges to many classical models from machine learning and statistics. To illustrate

these challenges, consider the case of a supervised learning task where a model takes

as input an irregularly sampled time series and must predict a scalar output. To

learn such a model, we assume access to a data set D where each instance is a tuple
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(sn, yn). Here sn represents the irregularly samples time series and yn represents the

corresponding prediction target. There are a number of challenges in modeling such

data:

(i) The first challenge with modeling such data is the presence of variable time

gaps between the observation time points.

(ii) The second challenge is that the dimensionality of the inputs sn can be different

for different data cases n. This occurs naturally due to the fact that different

data cases are likely to include different numbers of observations.

(iii) The third challenge is that even if all data cases contain the same number of

observations, we would expect different irregularly sampled instances to have

observations recorded at different times. This results in a lack of temporal

alignment across data cases. For multivariate irregularly sampled time series

data, we may also have a situation where different variables (or channels) within

the same multivariate time series are observed at a different collection of time

points.

These features of irregularly sampled time series data invalidate the assumption

of a coherent fixed-dimensional feature space that underlies most basic supervised

and unsupervised learning models including K-nearest neighbours (Altman, 1992),

decision trees (Quinlan, 1986), linear and logistic regression (Hastie et al., 2001; Hos-

mer Jr et al., 2013), linear, polynomial and radial basis function kernel support vector

machines (Cortes and Vapnik, 1995), multi-layer perceptrons (Hastie et al., 2001),

K-means (Lloyd, 1982), mixtures models (with standard component distributions)

(Mclachlan and Basford, 1988), factor analysis (Harman, 1976), PCA (Hotelling,

1933), autoencoders (Kramer, 1991), and more.

In this thesis, we focus on the development of deep learning models for the prob-

lems of supervised and unsupervised learning from irregularly sampled time series
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data. Below we provide an overview of the rest of the thesis and highlight our con-

tributions.

1.1 Thesis Outline and Contributions

In Chapter 2, we present a survey of prior specialized models and architectures

for learning from irregularly sampled multivariate time series data. The primary

contributions of this chapter are listed below.

• We identify three underlying data representation for multivariate irregularly

sampled time series that, while equivalent, expose different properties and sug-

gest different approaches to modeling.

• Another categorization that we focus on is the set of inference tasks that a given

approach is designed to solve. Carefully specifying different inference tasks is

necessary to properly categorize models in terms of the tasks they can perform.

• We define modeling primitives to be the basic building blocks leveraged in larger

and more complex models. We identify several such modeling primitives that

specifically provide the interface between irregularly sampled time series data

and more standard model components.

• We describe a large number of specific models and methods with respect to the

model primitives they build on, the tasks they aim to solve, and their relative

strengths and weaknesses.

In Chapter 3, we present a computationally efficient model architecture for super-

vised learning with multivariate sparse and irregularly sampled data: Interpolation-

Prediction Networks. The architecture is based on the use of RBF kernel-based inter-

polation layers organized into an interpolation network, followed by the application
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of a prediction network that can leverage any standard deep learning model. Exper-

iments show that this approach outperforms a range of baseline and recently pro-

posed models on both classification and regression tasks with multivariate irregularly

sampled time series. This approach achieved state-of-the-art results at the time of

publication. The primary contributions of this chapter are listed below.

• We propose a novel method to handle irregularly sampled time series directly

without any adhoc preprocessing.

• Our approach allows computing an explicit multi-timescale representation of an

irregularly sampled time series.

• Our approach is fully modular that any standard deep learning network for

fixed-length inputs can be used as the prediction network.

In Chapter 4, we show how the use of fixed RBF kernel functions can be relaxed

through the use of a novel attention-based continuous-time interpolation framework:

Multi-Time Attention Networks. Multi-Time Attention Networks are based on a time

attention mechanism coupled with a learned continuous-time embedding function that

replaces the use of a fixed similarity kernel. We show that using attention to learn

temporal similarity provides significantly more representational flexibility and results

in improvements over fixed RBF kernels and other recent approaches in terms of

both supervised and unsupervised tasks. The primary contributions of this chapter

are listed below.

• We provide a more flexible approach to modeling multivariate, sparse and ir-

regularly sampled time series data (including irregularly sampled time series of

partially observed vectors) by leveraging a time attention mechanism to learn

temporal similarity from data instead of using fixed kernels.

• Our approach uses a temporally distributed latent representation to better cap-

ture local structure in time series data.
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• Our approach provides interpolation and classification performance that is as

good as current state-of-the-art methods or better, while providing significantly

reduced training times.

In Chapter 5, we point out that Multi-Time Attention networks are not able to

effectively reflect uncertainty due to variable input sparsity. In fact, they produce

overly confident and incorrect imputations when faced with long segments with no

observations. To address these issues, we present a novel encoder-decoder architec-

ture for multivariate probabilistic time series interpolation that we refer to as the

Heteroscedastic Temporal Variational Autoencoder or HeTVAE. HeTVAE consists of

an input sparsity-aware encoder, parallel deterministic and probabilistic pathways

for propagating input uncertainty to the output, and a heteroscedastic output distri-

bution to represent variable uncertainty in the output interpolations. The primary

contributions of this chapter are listed below.

• We introduce a novel Uncertainty-Aware Multi-Time Attention Network layer

that encodes information about input uncertainty due to variable sparsity.

• We propose an augmented training objective to combat the presence of addi-

tional local optima that arise from the use of the heteroscedastic output struc-

ture.

• Our results show that the proposed model significantly improves uncertainty

quantification in the output interpolations as evidenced by significantly im-

proved log likelihood scores compared to several baselines and state-of-the-art

methods.

In Chapter 6, we present architectures for combining time series and text data.

Specifically, we show how we can leverage the content in text data and fuse the

information they contain with irregularly sampled time series data. We build on the
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previously described frameworks for modeling sparse and irregularly sampled time

series data. We study several embedding-based methods for representing the text

data. We present fusion architectures that combine the different frameworks for

time series with the embedding-based models for text data. Finally, we explore the

predictive value of irregularly sampled time series data compared to text data on a

real-world data set.

In Chapter 7, we conclude the thesis and discuss future directions for this work.

Bibliographic note: Chapter 2 is mainly based on Shukla and Marlin (2020b).

Chapter 3 is based on Shukla and Marlin (2019). Chapter 4 is based on Shukla and

Marlin (2021a). Chapter 5 is based on Shukla and Marlin (2021b). Chapter 6 is

based on Shukla and Marlin (2020a).
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CHAPTER 2

BACKGROUND AND RELATED WORK

There has been significant progress over the last decade on developing specialized

models and architectures for learning from irregularly sampled multivariate time series

data within the machine learning community. This chapter reviews many of these

approaches with a focus on categorizing methods in terms of three key properties

including the underlying data representation they use, the fundamental mechanism

they use to accommodate irregular sampling, and the types of machine learning tasks

to which they can be applied.

We identify three primary underlying data representations for irregularly sampled

time series that we refer to as series-based, vector-based, and set-based representa-

tions. In the series-based representation, a multivariate irregularly sampled time

series is viewed as consisting of a collection of univariate time series, each with its

own collection of observation times and values. In the vector-based representation,

a multivariate time series is viewed as a time series of vector-valued observations.

When observations for different dimensions are not temporally aligned, the result is

missing dimensions in the vector-valued observations. The set-based representation

views a multivariate irregularly sampled time series as a set of tuples of the form

(t, d, x) where t is a time point, d is a dimension, and x is the observed value of

dimension d at time t. As we will see, different approaches are based on different of

these representations, leading to methods with different capabilities and limitations.

Different approaches also leverage different “modeling primitives” for accommo-

dating irregular sampling. We define modeling primitives to be the basic building

8



Modeling
Primitives

Discretization

Interpolation

Recurrence

Attention

Structural
Invariance

Deterministic
Interpolation

Probabilistic
Interpolation

Similarity

RNN-based

ODE-based

Lu et al. [2008], Li and Marlin [2015]

Ghassemi et al. [2015],  
Liu and Hauskrecht [2016], Li and Marlin [2016], 

Futoma et al. [2017], Soleimani et al. [2018] 

 Li and Marlin [2020]

Choi et al. [2016a], Neil et al. [2016], Pham et al. [2017], 
Baytas et al. [2017], Yoon et al. [2018b], Che et al.[2018a], 
Kim and Chi [2018], Cao et al. [2018], Che et al. [2018b],  

Luo et al. [2018], Yoon et al. [2019], Li and Xu [2019], 
Luo et al. [2019], Guo et al. [2019], Tan et al. [2020]

Chen et al. [2018], Rubanova et al. [2019],
De Brouwer et al. [2019], Kidger et al. [2020]

Horn et al. [2020]

Choi et al. [2016b], Song et al. [2018], 
Zhang et al. [2019], Xu et al. [2019], 

Horn et al. [2020]

Marlin et al. [2012], Lipton et al. [2016], Song et al. [2018],
Harutyunyan et al. [2019],  Bahadori and Lipton [2019],

Bianchi et al. [2019], Fortuin et al. [2020]

Figure 2.1: This figure illustrates a taxonomy of methods based on modeling primi-
tives. We define modeling primitives as the fundamental approach that methods use
to accommodate irregular sampling. We identify five high-level modeling primitives
including discretization, interpolation, recurrence, attention and structural invari-
ance.

blocks or modules leveraged in larger and more complex models. We identify several

such modeling primitives that specifically provide the interface between irregularly

sampled time series data and more standard model components. These modeling

primitives fall into several categories including approaches based on temporal dis-

cretization, interpolation, similarity, recurrence, attention and structural invariance.

We categorize approaches in terms of their use of such modeling primitives, which

can sometimes be obscured in larger and more complex models. In Figure 2.1, we

provide a categorization of different approaches under a taxonomy based on modeling

primitives.
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The third categorization that we focus on is the set of inference tasks that a given

approach is designed to solve. These tasks include detection, prediction, filtering,

smoothing, interpolation, and forecasting. Some approaches can be applied to multi-

ple of these tasks, while others can not. Understanding the range of problems a given

approach can be applied to in a valid way is obviously important, but can again be

unclear for some larger and more complex models.

The rest of this chapter is organized as follows. In Section 2.1 we describe the

categorization of representations for irregularly sampled time series. In Section 2.2,

we define modeling tasks for irregularly sampled time series. In Section 2.3, we

define modeling primitives for irregularly sampled time series. In Sections 2.4 to

2.8, we present a detailed discussion of specific models and approaches organized by

their primary modeling primitives including temporal discretization, interpolation,

similarity, recurrence, attention and structural invariance. In Section 2.10 we discuss

data sets commonly used to evaluate models for irregularly sampled time series.

2.1 Data Representations for Irregularly Sampled Time Se-

ries

There are several possible data representations for multivariate irregularly sampled

time series. While equivalent, they expose different properties and suggest different

approaches to modeling. In all cases we will assume that a data set contains N data

cases and that each data case consists of observations of D different variables through

time. We being by describing what we will refer to as the series-based representation

followed by the vector-based representation and the set-based representation.

2.1.1 Series-Based Representation

As shown in Figure 2.2, the series-based representation of a multivariate irregularly

sampled time series data set views the data for a single data case n as a collection of
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Multivariate irregularly sampled (unaligned)

 

 

Figure 2.2: Illustration of the series-based representation for a two-dimensional mul-
tivariate irregularly sampled time series. In the series-based representation, a d-
dimensional multivariate irregularly sampled time series s = [s1, ..., sD] is represented
as a collection of univariate irregularly sampled time series, one per dimension. Here
sd = (td,xd) indicates the time series for dimension d. td indicates the collection of
time points with observed values for dimension d while xd indicates the corresponding
collection of observed values.

D univariate irregularly sample time series with one item in the collection for each

of the D dimensions. We define Ldn to be the number of observations of variable d

for data case n. We define tdn = [t1dn, ..., tLdndn] to be the collection of time points

at which variable d is observed for data case n. We define xdn = [x1dn, ..., xLdndn]

to be the corresponding collection of observed values. We assume that the data are

in time order (i.e., tidn < tjdn for i < j). The data for time series n and variable

d is then a univariate irregularly sampled time series sdn = (tdn,xdn). We define

sn = [s1n, ..., sDn] to be the complete multivariate irregularly sampled time series for

data case n.

We note that in this representation, there is no missing data. We represent only

the observations available for each dimension. Further, this structure exposes the fact

that in the fully general case of multivariate irregular sampling, different dimensions

can be observed at different collections of time points with different total numbers

of observations for the same data case. We also note that this representation can

be wasteful in scenarios where all variables are observed at each time point. This

motivates the vector-based representation, which we introduce next.
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Multivariate irregularly sampled (unaligned)

 

Figure 2.3: Illustration of the vector-based representation for multivariate irregularly
sampled time series in the case of two dimensions with unaligned observation times.
In this representation, there is a single collection of time points t. At each time point
ti, we define a D-dimensional vector-valued observation xi. In the general case, not
all dimensions of xi are observed, leading to the need to explicitly represent which
dimensions are observed and which are missing. Following Little and Rubin (2014),
we introduce a D-dimensional binary response indicator vector ri at each time point
ti to indicate which dimensions are observed and which are missing. The complete
representation for the time series is thus s = (t,x, r) where t is the collection of
observation times, x is the collection of vector-valued observations (with missing
values), and r is the collection of response indicators.

2.1.2 Vector-Based Representation

As shown in Figure 2.3, the vector-based representation of a multivariate irregu-

larly sampled time series data set views the data for a single data case n as a single

series of D dimensional vectors. We define Ln to be the number of time points with

observations for data case n. We define tn = [t1n, ..., tLnn] to be the collection of time

points with observations for data case n. As in the series-based representation, the

data are assumed to be in time order (i.e., tin < tjn for i < j). Next, we define

xn = [x1n, ...,xLnn] to be the corresponding collection of D-dimensional vector-valued

observations. We again let xidn be the observed value of dimension d at time point

tin. We define sn = (tn,xn) to be the irregularly sampled time series for data case n.

Under this representation, different data cases n can still have different observation

time points as well as different numbers of observation time points. However, the

observations across dimensions within a single data case are assumed to be aligned

in time.

12



Multivariate irregularly sampled (unaligned)

Figure 2.4: Illustration of the set-based representation for multivariate irregularly
sampled time series in the case of two dimensions. In this representation, a D-
dimensional multivariate irregularly sampled time series is represented as a set of
(time, dimension, value) tuples, one for each observation.

When the vector xin is not fully observed at time tin, the vector-based representa-

tion results in the need to represent missing data. Following Little and Rubin (2014),

the standard approach to representing which elements of xn are observed and which

are missing is to introduce an auxiliary response indicator series rn = [r1n, ..., rLnn]

where ridn = 1 if the value of xidn is observed and ridn = 0 otherwise. The full

vector-based representation of an irregularly sampled time series with incomplete ob-

servations is thus sn = (tn,xn, rn). Compared to the series-based representation, the

vector-based representation can thus be substantially more space efficient, but only

if all vectors are completely observed.

2.1.3 Set-Based Representation

As shown in Figure 2.4, the set-based representation of a multivariate irregu-

larly sampled time series data set views the data for a single data case n as set of

time-dimension-value tuples of the form (tin, din, xin). Here we let Ln represent the

total number of observations across all dimensions. The irregularly sampled time

series for data case n is thus represented as sn = {(tin, din, xin)|1 ≤ i ≤ Ln}. Like

the series-based representation, the set-based representation does not require explicit

representation of missing data. Unlike both the the series and vector-based represen-
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tation, the time ordering of the data is not explicitly reflected in the structure of the

set-based representation.

2.2 Inference Tasks

In this section, we define time series inference tasks. While these tasks are not

specific to the case of irregularly sampled time series, carefully specifying inference

tasks is necessary to properly categorize models for learning from irregularly sampled

time series in terms of the tasks that they can perform. In the definition of these

tasks, it will be important to specify the time ranges that are conditioned on for a

given input irregularly sampled time series. We will use the notation s[: t] to denote

all of the data contained in time series s that are observed up to and including time

t. We will use x[t] to refer to the vector of observations available at time t, some (or

all) of which may be missing. For brevity, we will use xm[t] to indicate the sub-set

of dimensions with values that are missing at time t. Some of the tasks we consider

are supervised in the sense that they involve learning to infer values that are distinct

from the input irregularly sampled time series. We denote these prediction targets at

time t by y[t]. Below we define and discuss six inference tasks shown in Figure 2.5.

Definition 1 Detection: Inferring prediction target values y[t∗] at time t∗ condi-

tioning on the observations s[: t∗] available up to and including time t∗.

The detection task is to infer the value of the prediction target variable at time

t∗. All time series data observed up to and including time t∗ can be conditioned on

when making this inference. In machine learning, the inference for any quantity that

is not known is often referred to as a “prediction,” but in this context we reserve the

term “prediction” to refer to a task where the inference is for the value of a variable

at a time that is in the relative future of the time point t∗ at which the inference is

made, as we describe next.
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Inferred value

(a) Detection

Inferred value

(b) Prediction

Inferred value

(c) Forecasting

Inferred values

(d) Filtering

Inferred values

(e) Smoothing

Inferred values

(f) Interpolation

Figure 2.5: This figure illustrates time series inference tasks. (a) The detection task
involves predicting the target values y[t∗] at time t∗ conditioning on the observations
available up to and including time t∗. (b) The prediction task requires inferring the
prediction target value y[t∗ + δ] at time t∗ + δ for δ > 0 by conditioning on the
observations available up to and including time t∗. (c) The forecasting task requires
inferring x[t∗ + δ] by conditioning on the observations up to an including time t∗.
(d) The filtering task requires inferring missing variables at time t∗ by conditioning
on the observations up to an including time t∗. (e) The smoothing task requires
inferring missing variables at time t∗ using all observed data. (f) The interpolation
task requires inferring the values of x[t∗] at time t∗ using all observed data.

Definition 2 Prediction: Inferring prediction target values y[t∗ + δ] at time t∗ + δ

(for δ > 0) conditioning on the observations s[: t∗] available up to and including time

t∗.

In the prediction problem, t∗ refers to the time point at which the prediction is

made and t∗ + δ refers to the time point at which the value of the target variable is

to be predicted. We assume δ > 0. The case δ = 0 recovers the detection problem.
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We note that in some supervised problems, the prediction target variables may

not have time stamps explicitly associated with them. Such problems include whole

time series regression and classification where an input time series s is associated with

a single scalar output y. These problems are equivalent in structure to the prediction

problem defined above where all available data are allowed to be conditioned on when

inferring the target value.

Definition 3 Filtering: Inferring missing variables xm[t∗] at time t∗ by conditioning

on the observations s[: t∗] up to an including time t∗.

The filtering task is the analog of the detection task but where the inference of

interest is about the values of the multivariate time series itself. In the irregularly

sampled setting, it may be that some dimensions of x[t∗] are observed at time t∗. In

this case, these values and any values observed before this time point can be used to

infer the unobserved values xm[t∗].

Definition 4 Smoothing: Inferring the values of xm[t∗] at time t∗ using the ob-

served data in s.

The smoothing task is similar to the filtering task except that all observed data

can be used to infer the unobserved values xm[t∗]. This includes observations in both

the relative past and future of xm[t∗].

Definition 5 Interpolation: Inferring the values of x[t∗] at time t∗ using the ob-

served data in s.

The interpolation task is similar to the filtering task except that in the interpo-

lation task, we infer the values of all variables at time t∗, not just those that are

unobserved. This distinction is only relevant in scenarios when the time point t∗

coincides exactly with an observation time point contained in the time series s.
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Definition 6 Forecasting: Inferring x[t∗ + δ] (for δ > 0) by conditioning on the

observations s[: t∗] up to an including time t∗.

The forecasting task is the analog of the prediction task, but where we seek to

predict the value of the time series itself at a future time point. In this problem,

t∗ again refers to the time point at which the forecast is made and t∗ + δ for δ > 0

refers to the time point about which the forecast is made. All observations up to and

including time t∗ can be used to compute a forecast at time t∗. δ is often referred

to as the forecast horizon, the amount of time into the future we are forecasting the

value of the time series.

2.3 Modeling Primitives for Irregularly Sampled Time Series

While there has been a significant volume of work in recent years on modeling

sparse and irregularly sampled time series data in the context of different tasks and

applications, the number of fundamental approaches for accommodating irregular

sampling itself is much more limited. In this section, we describe several “modeling

primitives” for accommodating irregular sampling. These modeling primitives are

the basic building blocks or modules for dealing with irregular sampling that are

leveraged in larger and more complex models and methods for solving specific tasks

using irregularly sampled time series. We discuss a number of modeling primitives

including discretization, interpolation, similarity, recurrence, attention and structural

invariance. Figure 2.1 provides a taxonomy of modeling primitives and associated

methods.

2.3.1 Discretization

Temporal discretization is a basic modeling primitive used to convert irregularly

sampled time series data into a regularly sampled time series, as shown in Figure 2.6.

To apply this primitive, one first defines a sequence of K+1 regularly spaced reference
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Figure 2.6: This figure illustrate the discretization of irregularly sampled time series
into regularly spaced time series with missing values. The discretization process
requires dividing the time axis into equal sized non-overlapping intervals and defining
a value within each time interval based on the observed values falling within that
interval. In cases where a given interval contains no observations on a particular
dimension, the result is missing data. We can again represent these missing values
via auxiliary response indicator vectors.

time points τ0, ..., τK . Given an irregularly sampled time series sn, we define a new

regularly sampled time series in the vector-based representation with missing data

indicators s′n = (t′n,x
′
n, r
′
n). We let t′n = [t′1, ..., t

′
K ] for all n where t′i = (τi−1 + τi)/2.1

Next, we define a function that maps the observed values of sn falling within the

discretization window [τi−1, τi) to the vectors x′in and r′in. Assume there are j > 0 ob-

servations for dimension d in sn within the interval [τi−1, τi) and let their indices be o =

[o1, ..., oj]. We require a function of the form x′idn = f([to1n, ..., tojn], [xo1dn, ...,xojdn])

that maps the set of observations within the discretization window to a single repre-

sentative value. A common approach is to set this function to be the average of the

1We choose the midpoint of the interval [τi−1, τi) to represent the interval, but the starting point
or any other consistent choice could also be made.
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j values. To complete the representation for this interval, we set r′idn = 1 to indicate

that the interval has an observed value.

In the case where j = 0, the original time series has no observations of dimension d

within the interval [τi−1, τi). In this case we set r′idn = 0 to indicate no observations are

available. The value set in x′idn will typically be 0 or nan, but is not consequential as

any correct algorithm for this representation will not use values in x′idn when r′idn = 0

(Little and Rubin, 2014).

As we can see, the discretization primitive provides a reduction from the problem

of modeling irregularly sampled time series to the problem of modeling regularly sam-

pled time series that may contain missing data. As discretization windows become

larger, the volume of missing data will generally decrease. However, more values will

potentially also fall within the same discretization window leading to more aggrega-

tion. This may remove information needed to perform some tasks. As discretization

windows become shorter, aggregation effects are reduced, but the length of the dis-

cretized time series increase as does the volume of missing data. Thus, the window

size becomes an important hyperparameter of methods based on this approach.

We note that when discretization does result in significant volumes of missing

data, the problem of dealing with the resulting missing data can itself be highly

non-trivial as the presence of incomplete data also violates the assumptions of most

standard discriminative machine learning methods. Imputation methods can be used

as a final stage of pre-processing to address the problem of missing data, but care

is needed when reflecting input uncertainty is important. A number of recent deep

learning approaches have addressed the problem of providing flexible single and mul-

tiple imputation methods (Yoon et al., 2018a; Li et al., 2019; Mattei and Frellsen,

2019; Śmieja et al., 2018). Many simpler methods are also commonly used for time

series including mean imputation, zero imputation and forward-filling (Lipton et al.,

2016; Harutyunyan et al., 2019).
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Interpolation

Figure 2.7: Illustration of interpolation in the case of a two-dimensional irregularly
sampled time series. In this example, we illustrate the basic use of linear interpolation
against a fixed set of reference time points.

2.3.2 Interpolation

Interpolation primitives provide an approach to accommodating irregular sam-

pling that is closely related to discretization but provides improved flexibility with

potentially fewer ad-hoc assumptions. Interpolation methods are often used to pro-

vide an interface between irregularly sampled time series data and models for either

fixed-dimensional feature spaces or for variable length sequences.

Similar to discretization, we begin by defining a set of K reference time points

τ = [τ1, ..., τK ]. In the case of a length Ln univariate irregularly sampled time series

sn = (tn,xn), the interpolated output x′in at reference time point τi can be computed

as shown in Equation 2.1. The interpolated time series is then given by s′n = (τ ,x′n).

The function κθ() is a similarity kernel that puts higher weight on pairs of time points

(τi, tjn) that are closer together in time. This function can depend on a set of learnable

parameters θ. The squared exponential kernel function κθ(t, t
′) = α exp(−β(t− t′)2)

is a common choice in the literature for non-linear interpolation (with θ = [α, β]).

x′in =

∑
j κθ(τi, tjn) xjn∑
j κθ(τi, tjn)

(2.1)

For multivariate irregularly sampled time series, there are more possibilities in terms

of the construction of interpolation methods as these methods can account for both

correlation in time and correlation across different dimensions. One basic approach
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motivated by the series-based view of a multivariate time series is to separately in-

terpolate each dimension of the time series using univariate interpolation as shown

in Equation 2.1 and in Figure 2.7, but with the same set of reference time points

used across all dimensions. This ignores cross-dimension correlations, but provides

regularly spaced output to which further modeling can be applied to account for

cross-dimensional correlations.

One potential issue when inter-observation times exhibit significant variability is

variable uncertainty in interpolated values. The use of Gaussian process regression

(GPR) models can provide a better alternative to deterministic interpolation meth-

ods in such cases (Rasmussen and Williams, 2006). The primary strength of GPR

models is that they provide a joint posterior distribution over an arbitrary collection

of reference time points τ = [τ1, ..., τK ] conditioned on an input irregularly sampled

time series sn. This posterior distribution is a joint Gaussian defined in terms of a

mean mn over τ and a corresponding covariance matrix Sn (Rasmussen and Williams,

2006).

This approach is most straightforward to apply in the univariate case where

sn = (tn,xn). The model is defined in terms of a covariance function κθ(·, ·) with

parameters θ. Unlike the case of basic deterministic interpolation methods mentioned

previously, GPR models require the covariance function to be a valid Mercer kernel

(Rasmussen and Williams, 2006). The GPR model also includes a noise variance term

σ2 and a mean function µφ(). Under this model, the posterior probability density over

the values x′n = [x′1n, ..., x
′
Kn] is given by p(x′n|τ, sn, θ, φ, σ) = N (x′n; mn,Sn) where

the conditional mean and covariance matrices mn and Sn are shown below. Kt,t′

denotes the covariance matrix defined by [Kt,t′ ]ij = κθ(ti, t
′
j).

mn = µφ(τ ) + Kτ ,tn(Ktn,tn + σ2I)−1(xn − µφ(tn)) (2.2)

Sn = Kτ ,τ −Kτ ,tn(Ktn,tn + σ2I)−1Ktn,τ (2.3)
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One possible application of GPR to the interpolation problem is to define s′n =

(τ ,mn). This approach simply uses the posterior mean on τ as the interpolated

values. This approach has no particular advantage over deterministic interpolation

methods using direct smoothing kernels introduced above as it discards all poste-

rior uncertainty. A potentially better approach is to draw J samples of the form

x′nj ∼ N (x′n; mn,Sn) for 1 ≤ j ≤ J and to construct J interpolated time series

using s′nj = (τ ,x′nj). The ensemble of interpolants {s′nj}j=1:J will exhibit greater

cross-sample variation in regions where there are few observations in sn, reflecting

natural uncertainty due to observation sparsity. Such an ensemble can be used in

down-stream analyses in a way that is analogous to multiple imputations in a missing

data problem (Little and Rubin, 2014).

However, as we can see, applying GPR in this way can be quite expensive as the

naive computation of the matrix inverse in the posterior mean mn and covariance

matrix Sn computations requires time cubic in Ln. While faster approximations are

available for these computations as well as for drawing samples from these posteriors,

GPR-based approaches are typically still much slower than deterministic interpolation

methods. We also note that as with deterministic interpolation methods, GPR has

several parameters to estimate. These can be fit in a number of ways including the use

of marginal likelihood maximization when given a data set consisting of irregularly

sampled time series (Rasmussen and Williams, 2006).

The discussion of GPR thus far has focused only on the case of univariate irregu-

larly sampled time series. Like with deterministic interpolation methods, GPR-based

methods can also be applied to the case of multivariate irregularly sampled time

series. The two basic approaches are again to leverage the series-based view and pro-

duce a posterior distribution or set of samples over each dimension separately, or to

define a joint covariance function that applies both over time and across dimensions.

A full GPR model over all dimensions (using a multi-task or multi-output Gaussian
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process) has the advantage of being able to leverage covariance structure across all

dimensions while producing a posterior distribution for any individual dimension at

any time point (Bonilla et al., 2008). However, defining flexible covariance functions

for multivariate problems can be quite challenging due to the requirement of positive

definiteness.

2.3.2.1 Similarity

The previous section discusses the use of similarity functions and kernels within

individual irregularly sampled time series. These approaches essentially aim to inter-

polate a single time series by considering the local similarity of time points and/or

dimensions. However, we can also consider applying similarity to pairs of multivari-

ate irregularly sampled time series s and s′, providing a similarity-based modeling

primitive.

At a minimum, a similarity kernel between irregularly sampled time series Kθ(s, s′)

needs to provide non-negative values and needs to encode the notion that when s

and s′ are more “similar” in some sense, Kθ(s, s′) takes larger values. Any such

kernel function Kθ(s, s′) can then be used to solve machine learning tasks that can

be formulated in terms of similarity between data points. Basic examples include K-

nearest neighbor classification and regression methods (Altman, 1992). If the function

Kθ(s, s′) also satisfies the requirements of a Mercer kernel function, a wider set of

classical kernel methods can be applied including support vector classification (Cortes

and Vapnik, 1995), support vector regression (Smola and Schölkopf, 2004), kernel

ridge regression (Hastie et al., 2001), kernel logistic regression (Wahba, 1999), kernel

principle components analysis (Schölkopf et al., 1998), etc.

A number of kernels have been proposed for irregularly sampled time series, some

of which are valid Mercer kernels. For example, Lu et al. (2008) proposed an approach

for the univariate case that can be thought of as constructing a latent function condi-
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Figure 2.8: This figure illustrates the recurrence based modeling primitive for a two-
dimensional irregularly sampled time series with unaligned observations. In this case,
we show the use of recurrent neural network (RNN) cell that integrates the input at
each time point with the latent state from the previous time point. Basic RNN models
view time series as general sequences and require completely observed input vectors.
However, many RNN-based models have been developed that explicitly represent time
to deal with irregular sampling and integrate methods for dealing with missing data.

tioned on an observed time series s using a temporal similarity kernel. The construc-

tion of this latent function is identical to the construction of the Gaussian process

posterior mean function described in the previous section. Lu et al. (2008) then show

that a kernel between two such latent functions induced by two different irregularly

sampled time series s and s′ can be computed only in terms of the observed values

and time points that define the two time series. This construction is quite elegant in

that it avoids the need to materialize the latent functions at reference time points.

However, since it measures the similarity between deterministic latent functions, it

discards all uncertainty due to sparse sampling. Other approaches include kernels

that consider alignment and warping when assessing similarity (Shimodaira et al.,

2001; Cuturi, 2011).

2.3.3 Recurrence

As noted in the previous sections, one of the issues when dealing with time se-

ries in general is the possibility of different data cases containing different numbers
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of observations. This problem can be dealt with by defining models that appeal to

primitives based on recurrence. The key property of such primitives is that they use

a fixed, finite set of parameters to model sequences of arbitrary length. Examples

include classical autoregressive structures used in Markov models, hidden Markov

models (Rabiner, 1990), conditional random fields (Lafferty et al., 2001), and re-

current neural networks (Rumelhart et al., 1986). In this section, we will focus on

recurrent neural network (RNN) models as an example recurrent primitive as shown

in Figure 2.8.

An RNN provides a basic building block for modeling fully observed multivariate

sequences zn = [z1n, ..., zLnn]. The key is to define a cell whose hidden state hi is

updated based on the previous state hi−1 and the current input zin through a non-

linear function fθ() with parameters θ. The model can also optionally output values

ŷin via a second function oφ() applied to the hidden state. The model is thus able to

process sequences of arbitrary length due to the fact that it processes elements of the

sequence one at a time and the parameters θ and φ are position-independent.

hi = fθ(hi−1, zin) (2.4)

ŷin = oφ(hi) (2.5)

Due to the ability to process sequences of arbitrary length, RNNs are a useful build-

ing block for modeling time series in general. In the case of univariate irregularly

sampled time series or multi-variate series with completely observed vector-valued

observations, an RNN can be directly applied simply by processing the data in time

order and discarding the values of the time points. Such an approach could be suit-

able for problems where the variation in inter-observation intervals is relatively small.

When that is not the case, discarding the time values makes the model invariant to

time gaps in a way that may be harmful to performance on tasks of interest.
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A number of simple approaches can be taken to solve this problem. One approach

is to append the time points or inter-observation intervals to the vector-valued obser-

vations yielding the sequence of values x′in = [xin, tin] or x′in = [xin, tin − ti−1n]. An

RNN model can then be applied to this modified sequence. In theory, a sufficiently

powerful non-linear mapping fθ() should be able to account for irregular sampling

based on this representation. In practice, this approach can under-perform other

approaches to dealing with time (Che et al., 2018a).

Recent work on ordinary differential equation (ODE) models (Chen et al., 2018)

in machine learning provides an alternative recurrence-based solution with better

properties than traditional RNNs in terms of their ability to accomodate irregularly

sampled data. In these models, ODEs are used to evolve the hidden state between

continuous time observations. At each observation time-point, the hidden state is

updated using a standard RNN update. These models are often referred to as ODE-

RNNs. The hidden state update equations are defined below:

h′i = ODESolve(gγ,hi−1, (ti−1n, tin)) (2.6)

hi = fθ(h
′
i,xin) (2.7)

The function gγ is a time-invariant function that takes the value at the current time

step and outputs a gradient: ∂h(t)
∂t

= gγ(h(t)). This function is parameterized using a

neural network. The ODE defined by gγ(h(t)) is then solved at the given time point

tin to produce a new hidden state h′i. This hidden state is further updated to fold

in the input value at time tin, yielding the final hidden state value hi at time tin.

This model does not explicitly depend on tin or tin− ti−1n when updating the hidden

state, but does depend on time implicitly through the resulting latent state of the

dynamical system.

The ODE-RNN model primitive is a substantially more elegant approach to deal-

ing with irregular sampling than adaptations of discrete time RNNs, but it can also be
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Figure 2.9: This figure illustrates the attention modeling primitive for two dimensional
irregularly sampled time series. The attention-based primitive processes time series in
parallel instead of sequentially as for an RNN. Attention models learn which regions
of an input time series to attend to when computing outputs at different points in
time by leveraging positional or time encodings.

substantially slower due to the need to repeatedly apply an ODE solver. Further, we

note that when irregularly sampled time series are multivariate, but the vector-valued

observations are not fully observed, the application of both standard RNN models

and ODE-RNNs becomes significantly more challenging as both models require a fully

observed xin vector in order to update the hidden state.

A common baseline approach to missingness is to perform some form of imputation

by defining a new sequence of values x′in = rin xin+(1−rin) x̃in where x̃in is the value

to impute when the response indicator rin = 0. Forward filling, zero imputation, and

mean imputation can sometimes be reasonable options when the volume of missing

data is low.

2.3.4 Attention

Attention has become a key modeling component for many machine learning

tasks including image caption generation, speech recognition and neural translation

(Vaswani et al., 2017). In self-attention models, each element of a sequence learns

which other elements of a sequence to attend to without relying on recurrent network
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structures. Self-attention models offer computational advantages over RNNs since

sequence processing can be fully parallelized. Self-attention is a particular instance

of scaled dot-product attention, which is defined as:

Attn(Q,K,V) = softmax

(
Q KT

√
C

)
V (2.8)

where Q,K,V denote the query, key, value representation respectively, and C is the

dimension of the key or query representation. In self-attention, all of the queries, keys

and values come from the input sequence. Self-attention relies on positional encoding,

a vector representation for each position in the sequence to recognize and capture the

sequential ordering information. The above defined Q,K,V matrices are typically

linear projections of position-value joint representations.

To provide a primitive for irregular sampling (as shown in Figure 2.9), time val-

ues can be converted into a vector representation similar to positional encoding and

concatenated with the observation value as described for RNNs. Missing values in

vector-valued observations are also problematic for attention-based modules, which

(like standard RNNs) expect fully observed vectors as input. Approaches based on

attention thus also need to solve the problem of missing dimensions, and a variety of

imputation solutions can be used as described previously.

2.3.5 Structural Invariance

While the modeling primitives presented to this point all attempt to represent

the time ordering of observations in the structure of the model this is not strictly

required. Leveraging such structural invariance has the potential to simplify learning

problems.

Recently, set-based neural network approaches (as shown in Figure 2.10) have been

employed to deal with irregularly sampled data and they exactly express this form
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Multivariate irregularly sampled (unaligned)

FF

FF

FF
Pooling FF

Figure 2.10: An illustration of the structural invariance-based modeling primitive.
Inspired by the set-based view of a multivariate irregularly sampled time series, this
approach processes individual (time, value, dimension) tuples via an encoding func-
tion and then pools over the output of all such tuples. The model structure thus does
not reflect the time ordering of the data in any way.

of structural invariance. Set-based model architectures (Zaheer et al., 2017) support

variable length sequences, partially observed vectors, sparse observations and irregular

intervals between observation times while avoiding the need for temporal discretiza-

tion, imputation and interpolation. These approaches leverage the set-based represen-

tation of an irregularly sampled time series data set sn = {(tin, din, xin)|1 ≤ i ≤ Ln}.

As shown below, such approaches produce an encoding of an input irregularly sam-

pled time series by applying an initial encoder fθ to individual time-dimension-value

tuples.

h = gφ(pool({fθ(tin, din, xin)|1 ≤ i ≤ Ln}) (2.9)

The approach then performs a pooling operation over all initial encodings in a way

that is completely invariant to the temporal structure of the data. The output of

pooling is mapped through one additional set of encoding layers gφ to produce the

final representation. Commonly used pooling functions are max, mean and sum.

2.3.6 Summary

The discretization, interpolation, similarity, recurrence, attention and structural

invariance modeling primitives that we have just described underlie essentially all
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of the recent work on models for irregularly sampled time series across all of the

tasks described in Section 2.2. In the following sections, we survey over 40 papers

categorized by the fundamental modeling primitive used and discuss the tasks to

which each method can be applied.

2.4 Discretization-Based Approaches

In this section, we discuss approaches to modeling irregularly sampled time series

that leverage discretization as their primary modeling primitive for accommodating

irregular sampling.

Marlin et al. (2012), Lipton et al. (2016), Bahadori and Lipton (2019) and Haru-

tyunyan et al. (2019) all apply discretization as a modeling primitive for dealing with

irregular sampling. These papers all discretize time into consecutive, hour-long, non-

overlapping intervals within a fixed time interval [0, T ] common to all data cases.

The application of discretization under these conditions enables the use of models

that operate on fixed-dimensional vectors. However, in all of the tasks considered in

these papers, the application of discretization results in missing data that must be

dealt with, as well as instances where aggregation is required within time intervals.

Marlin et al. (2012) make the assumption that the missing data is missing at

random and apply probabilistic mixture models that can efficiently deal with missing

data under this assumption. This allows models to be learned without requiring

explicit imputation. Marlin et al. (2012) leverage this capability of the probabilistic

mixture model framework to define a generative mixture of experts classifier for whole

time series classification. The case of multiple values for a given dimension being

defined within the same time interval is dealt with via averaging.

Lipton et al. (2016) apply discretization followed by an RNN to build a whole time

series classification model. This approach requires explicit imputation of missing

data created during the discretization step. They consider two basic approaches:
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forward-filling and zero imputation. Missing values are replaced with zeros in the

zero-imputation strategy. In the forward-filling approach, a missing value xidn at time

tin on dimension d is set to the last observed value on dimension d (e.g., the value of

xjdn where j is such that tjn is the largest time value satisfying tjn < tin and rjdn = 1).

In the absence of previous measurements (or if the variable is missing entirely), it is

replaced with the median estimated over all measurements in the training data.

One important feature of missing data problems is the potential for the sequence

of observation times to itself be informative (Little and Rubin, 2014). Since the set of

response indicators ridn is always observed, this information is easy to condition on as

well. This approach was also used by Lipton et al. (2016) where they include as input

to the RNN both the observed and imputed values of the multivariate time series

and the values of the response indicator vector. In addition to the binary indicator

variable, Lipton et al. (2016) add hand-engineered features derived from the response

indicator time series such as mean and standard deviation of indicator variables for

each time series.

Harutyunyan et al. (2019) also consider the application of discretization followed

by RNNs. They apply averaging or selection of the last time point in an interval to

deal with multiple observations in the discretization window, and use mean imputa-

tion or forward filling to deal with missing values. Harutyunyan et al. (2019) augment

standard RNN models by predicting outputs for multiple tasks jointly. Unlike in stan-

dard RNNs where the hidden state from the last position in the sequence is decoded

to predict supervised outputs, Harutyunyan et al. (2019) apply supervision at each

time step. This framework has been applied to whole time series classification tasks,

detection tasks and prediction tasks.
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Song et al. (2018) follow Harutyunyan et al. (2019)2 and also discretize the sparse

and irregularly sampled time-series data into hour long intervals, and use similar

imputations for dealing with missing data. This model has been applied to the tasks

of whole time series classification, detection and prediction. However, Song et al.

(2018) adopt the multi-head attention mechanism similar to Vaswani et al. (2017)

instead of an RNN as the primary model structure. They use positional encoding to

incorporate the temporal order into the representation learning. They use the dense

interpolation technique (Trask et al., 2015) to obtain a unified representation for a

sequence.

Several approaches have also employed an encoder-decoder framework for learning

with missing data in time series, which can also be applied to irregularly sampled

time series after discretization. Bianchi et al. (2019) proposed an autoencoder-based

approach to learn representations of multivariate time series with missing data for the

whole time series classification and smoothing tasks. They use a standard RNN as

the decoder. For the encoder, they use a bi-directional RNN where they combine the

hidden layer output of forward and backward RNNs using a fully-connected layer.

In the presence of missing data, they replace the missing values with zero or the

mean while encoding, and use the decoder as a final imputer. Bianchi et al. (2019)

also introduce a kernel alignment procedure to preserve the pairwise similarities of

the inputs in the learned representations. These pairwise similarities are encoded in

a positive semi-definite matrix that is also passed as input to the model. Fortuin

et al. (2020) proposed a variational autoencoder (VAE) (Kingma and Welling, 2014;

Rezende et al., 2014) approach for the task of smoothing in multivariate time series

with a Gaussian process prior in the latent space to capture temporal dynamics.

2Harutyunyan et al. (2019) had an arxiv version available since 2017.
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In summary, temporal discretization provides a solution for learning from irregu-

larly sampled time series that replaces the problem of irregular observation intervals

with the problem of missing data. While convenient in some respects, this approach

requires several ad-hoc choices including the width of the discretization windows and

the aggregation function used within windows. In the next section, we turn to meth-

ods based on the use of interpolation as a modeling primitive. These approaches still

require specifying a discrete set of interpolation points, but use more sophisticated

global methods for defining values at the interpolation points.

2.5 Interpolation-Based Approaches

In this section we discuss methods for learning from irregularly sampled time series

that are based on interpolation as a modeling primitive. Similar to discretization

methods, interpolation methods require specifying a discrete set of reference time

points. However, they materialize interpolants at these time points in a way that can

leverage all available observations in the input if desired. This can make them much

more powerful than discretization methods with ad-hoc local aggregation functions.

Li and Marlin (2020) proposed an encoder-decoder architecture for modeling ir-

regularly sampled time series data. Encoder in this framework is based on a piecewise

linear function, which learns an interpolation on a fixed set of reference time points.

This framework uses a kernel smoother as a decoder to interpolate at arbitrary times.

One of the potential disadvantages of using deterministic kernel smoothing-based

interpolation approaches is that they do not reflect uncertainty due to long intervals

with no observations. An alternative line of work on interpolation-based approaches

instead leverages Gaussian processes as a building block, enabling uncertainty prop-

agation as described previously (Rasmussen and Williams, 2006). In response to the

shortcomings of the kernel-based approach of Lu et al. (2008), Li and Marlin (2015)

developed a two-step interpolation-based approach to modeling the similarity between
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sparse and irregularly sampled time series in a way that is sensitive to uncertainty.

In the first step of this approach, they use marginal likelihood maximization to fit a

Gaussian process regression model to a data set of irregularly sampled time series.

Once the model is trained, they define a set of evenly spaced interpolation points

and materialize the Gaussian process posterior for each time series at the same set of

reference time points. In the second phase of the method, they define Mercer kernels

between the Gaussian process posteriors at the reference time points. This approach

allows for the use of irregularly sampled time series with classical supervised and

unsupervised kernel methods such as support vector machines and kernel PCA.

In subsequent work, Li and Marlin (2016) showed how the materialized Gaussian

process regression posterior representation could be extended for use as an uncer-

tainty preserving interface between irregularly sampled time series and arbitrary deep

learning model components that expect regularly spaced or fixed dimensional inputs.

Further, this work showed how the Gaussian process regression model parameters

and the deep learning model parameters can be learned jointly and end-to-end using

the re-parameterization trick (Kingma et al., 2015). This model structure allows for

solving a variety of tasks, but was primarily evaluated in the context of whole time

series classification.

While the model of Li and Marlin (2016) was only applied to univariate irregularly

sampled time series in the original work, in follow-up work the model was extended to

multivariate time series using a multi-output Gaussian process regression model (Fu-

toma et al., 2017). However, modeling multivariate time series within this framework

is quite challenging due to the constraints on the covariance function used in the GP

regression layer. Futoma et al. (2017) deal with this problem using a sum of separable

kernel functions (Bonilla et al., 2008), which somewhat limits the expressiveness of

the model. The work of Futoma et al. (2017) also focused on the whole time series

classification as a task.
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In terms of the tasks of interpolation and forecasting, Ghassemi et al. (2015)

proposed a multi-task Gaussian process (MTGP) model for irregularly sampled phys-

iological signals and clinical notes, which jointly transforms the measurements into a

unified latent space. They showed that MTGP models provide better performance

than single-task GP models for interpolation and forecasting. Liu and Hauskrecht

(2016) combine state-space models with GPs for learning forecasting models from

irregularly sampled multivariate clinical data. Soleimani et al. (2018) also employed

multi-output GPs to jointly model multivariate physiological signals.

In summary, interpolation as a modeling primitive provides more sophisticated

approaches than the more basic discretization-based methods. The two main fam-

ilies of approaches explored to date in this area are deterministic kernel smoothing

methods and probabilistic Gaussian process-based methods. Both approaches natu-

rally accommodate continuous time observations and can provide interfaces to other

modeling building blocks such as kernel machines and neural networks. The main

advantage of Gaussian process-based modeling primitives is the ability to represent

and propagate uncertainty into downstream model components. Their main draw-

back is the significantly higher run times during both training and prediction, and

the added complexity of needing to define valid mercer kernels for multivariate time

series. Deterministic interpolation frameworks do not have the elegance of Gaussian

processes in terms of representing uncertainty, but can be much more flexible in terms

of how they express temporal and cross-dimensional relationships. Importantly, they

are also one to two orders of magnitude more computationally efficient during train-

ing. In the next section we turn to the case of recurrence as a modeling primitive and

explore methods based on recurrent neural networks.
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2.6 Recurrence-Based Approaches

In this section, we discuss approaches to modeling irregularly sampled time series

that leverage recurrence as their primary modeling primitive for accommodating ir-

regular sampling. We begin with traditional discrete RNN models, and then discuss

more recent work on ODE-based models. Importantly, methods in this section do not

rely on discretization prior to the application of RNNs. This is the primary distinction

relative to methods presented in the previous sections, some of which also leverage

RNNs after discretization has been applied to accommodate irregular sampling.

2.6.1 RNN-Based Methods

Similar to Lipton et al. (2016), Che et al. (2018a) present several methods based

on gated recurrent unit networks (GRUs, Chung et al. (2014)) for the whole time

series classification task. Their approach is cast in the vector-based representation.

Thus, even though they do not apply discretization, they still need to deal with the

problem of missing data inherited from this view of the problem. In their baseline

methods, Che et al. (2018a) deal with the issue of missing values in vectors observed

at irregularly sampled time points using simple imputation methods including mean

imputation and forward filling. They also consider augmenting inputs with binary

response indicator values and per-dimension inter-observation time intervals. This

last approach attempts to provide the RNN with information about how long it has

been since a value on a given dimension was last observed. When applying forward

filling as the imputation method, the inter-observation time interval values indicate

how long it has been since a new value for the variable was last observed.

However, the primary contribution of Che et al. (2018a) is the GRU with decay

(GRU-D) model that adds a temporal decay mechanism to the the input variables

and the hidden states. The decay rate function is defined as:
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γ(δ) = exp{−max(0,Wγδ + bγ)} (2.10)

where Wγ and bγ are learned jointly with GRU parameters at training time. δ

represents the length of the inter-observation interval. They introduce input decay

for missing variables to decay the previously observed value toward the empirical

mean for a given dimension over time. For large inter-observation intervals, this can

be a more sensible choice than continued forward filling as the previously observed

value will become uncorrelated with the current value over sufficiently long intervals.

This can make the overall mean for that dimension a better imputed value. We

describe the GRU-D layer below:

x′idn = ridn xidn + (1− ridn) (γ(δ)xjdn + (1− γ(δ))x̄d) (2.11)

where xjdn is the last observation (tj < ti) for dimension d, and x̄d is the empiri-

cal mean of the dth dimension in multivariate time series. Importantly, while this

approach can be thought of as a form of imputation, the parameters that control

imputation are learned end-to-end with the rest of the model parameters based on a

supervised objective.

As a further modification, Che et al. (2018a) also consider decaying the hidden

states in the absence of observations. This has the effect of partially resetting the

hidden state when there is a long interval with no observations. This is also a sensible

modification as any accumulated hidden state may be irrelevant following a long time

interval with no observations. Choi et al. (2016a) employed a similar method where

they concatenate the time gaps between observations with the actual observations and

supply it directly as input to a GRU model. Pham et al. (2017) proposed to capture

time irregularity by modifying the forget gate a LSTM (Hochreiter and Schmidhuber,

1997) using a decay combined with a parametric function of the time gap between

current and past measurement.
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Neil et al. (2016) proposed the phased LSTM for supervised learning from irreg-

ularly sampled time series. The phased LSTM model introduced a time-dependent

gating mechanism by adding a new time gate which regulates access to the hidden

and cell state of the LSTM. The time-aware LSTM (T-LSTM) (Baytas et al., 2017)

instead transforms time intervals into weights using a decay function and uses them to

adjust the hidden state passed from the previous time step. While these approaches

allow the network to handle event-based sequences with irregularly spaced observa-

tions, they do not support incomplete multivariate observations.

Li and Xu (2019) argue that the time difference δ between the current time step

and last observation used in the dynamic imputation mechanism is not sufficient for

the model to fully capture the overall pattern of missingness across a time series.

They present VS-GRU, which also considers the observation rate of each dimension.

They adopt a similar decay mechanism to that used by GRU-D. Li and Xu (2019)

proposed VS-GRU-i, which adds a standard GRU layer on top of VS-GRU. They add

a penalized mechanism at the input of the second GRU layer to detect if one variable

is completely missing or there are only a few observed values.

Kim and Chi (2018) also propose an approach to dealing with missing data in an

RNN using decay, which they refer to as a temporal belief memory. When an input is

missing, the belief gate computes the belief of the last observation based on the time

gap between the current time and the last observation time. If the belief is greater

than a threshold, the model imputes using the last observation; otherwise, it sets the

missing value to the mean value of observations for that dimension. The belief gate

function γ(δ) for a given dimension d is defined as:

γ(δ) =


1 if exp(−βdδ/τ) > π

0 otherwise

(2.12)
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where βd is a tuneable decay parameter, τ is a window length, and δ is the time

difference from the last observation to the current observation. Imputed input can

then be defined using Equation 2.11.

One drawback of all of the approaches mentioned so far is that they only process an

input time series in time order. This is clearly a disadvantage for RNN-based models

that attempt to accommodate missing values under a vector-based representation as

any imputation that occurs corresponds to the application of a filtering approach.

This is overly restrictive when models are applied to problems like interpolation or

whole time-series classification since in these problems it is permissible to integrate

information from both the relative past and relative future of each time point. Indeed,

methods like GRU-D make maximally uninformative imputations immediately prior

to the next observation, whereas smoothing approaches would be informed by the

next as well as the previously observed values in the time series.

A separate line of work has looked at using data from the future as well as from

the past for imputation of missing data in RNNs. Yoon et al. (2019) and Yoon

et al. (2018b) present an approach based on a multi-directional RNN (M-RNN) which

operates across dimensions as well as within dimensions. It consists of two separate

blocks for imputing missing values. They first construct an imputation function using

a bi-directional RNN that operates within a given dimension. The second imputation

block constructs an imputation function using a fully connected layer that operates

only across streams at a given time point. They also concatenate the input with the

response indicator vector and time gap from the last observed value to the current

timestamp.

Cao et al. (2018) also proposed models for imputing the missing values for multi-

ple correlated time series using smoothing-like methods. Their basic approach learns

the missing values directly in a recurrent dynamical system based on the observed

data. They combine the hidden decay mechanism of GRU-D (Che et al., 2018a) and
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the RNN missing data imputation methods proposed in Han-Gyu Kim et al. (2017).

They also propose a bidirectional variant, BRITS-I, where they model the recurrent

dynamics in the forward as well as backward direction. They introduce an additional

loss in the bidirectional case to enforce consistency of predictions obtained in both

directions. They extend BRITS-I for correlated recurrent imputation where the im-

putation is a weighted sum of history-based estimation and feature-based estimation.

History-based estimation is simply uncorrelated recurrent imputation while feature-

based estimation is computed based on only other features available at that time.

They also concatenate the input with mask variables and time gaps from the last

observed value to the current time point.

Tan et al. (2020) also introduce a time-aware structure based on a GRU to han-

dle irregular time intervals. Similar to GRU-D, they handle irregular sampling by

decaying the hidden state between the successive observations. However, instead of

using exponential decay as in GRU-D, they apply inverse log decay, which they claim

works better:

ĥt−1 =
1

log(e+ δt)
� ht−1 (2.13)

Tan et al. (2020) use a dual attention mechanism for dealing with missing values

caused by partially observed vectors or misalignment of observation time points on

different dimensions. They perform imputations using Gaussian processes and a sep-

arate time-aware GRU model and combine them using an embedding layer to get the

transformed input.

Luo et al. (2018) and Guo et al. (2019) employed generative adversarial networks

(GANs) to impute missing values in irregularly sampled time series data by leveraging

GRU-D style models to take into account irregular sampling. They propose a 2-stage

method for imputation of missing data in time series. In the first stage, they train

a GAN with GRU-D as generator and discriminator. In the second stage, they train
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the input “noise” of the generator of the GAN so that the generated time series is

as close as possible to the original incomplete time series and the generated data has

high probability of being real. They achieve this by minimizing a weighted sum of

reconstruction loss and discriminative loss.

Luo et al. (2019) propose a single-stage generative model to impute missing values

in multivariate time series without the need of the two-stage process as in Luo et al.

(2018). They use a two-layer GRU-D network (Che et al., 2018a) and a fully con-

nected layer as generator. They begin with a zero imputed input. After a recurrent

processing of the input time series using GRU-D, the last hidden state is processed

using a fully connected layer which outputs a compressed low-dimensional vector.

The compressed low dimensional vector acts as the input to another fully connected

layer which transforms it into the initial input for the second GRU-D layer. The

second GRU-D layer then outputs the generated sample at every time step. The

generator model is trained in a denoising autoencoder fashion where they add some

noise to the input samples and reconstruct them at the output. The discriminator

model is implemented using a GRU-D layer and a fully-connected layer. The fully

connected layer takes the hidden state of GRU-D and outputs the probability of being

true. The task of the discriminator is to distinguish between generated sample and

the input/true sample.

Che et al. (2018b) proposed a deep generative model that uses a latent hierarchical

structure to capture the temporal dependencies of multivariate time series with dif-

ferent sampling rates. This model captures the underlying data generation process by

using a VAE-based approach and learns latent hierarchical structures using learnable

switches and auxiliary connections. In particular, the switches use an update-and-

reuse mechanism to control the updates of the latent states of a layer based on their

previous states and the lower latent layers. The auxiliary connections between time

series of different sampling rates and different latent layers help the model effectively
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capture short-term and long-term temporal dependencies. Their inference network

consists of different RNN models for time series with different sampling rates. They

jointly learn the parameters of the generative model and the inference network by

maximizing the ELBO. In the case of irregularly sampled time series or missing data,

missing values are interpolated by adding auxiliary connections using a model trained

using only the observed data points. While training, missing data points are replaced

with zero in the inference network and the corresponding auxiliary connections are

removed in the generative model.

In summary, a great deal of work in the area of modeling and learning from

irregularly sampled time series has been based on modifications of standard recurrent

neural network models. RNN-based approaches have the primary advantage that

they can deal with input sequences of different lengths. However, basic RNNs have

no direct ability to deal with irregular sampling and no way to deal with missing

values. GRU-D and related methods attempt to solve both problems using temporal

decay, but the resulting models lack true continuous time semantics. In the next

section, we turn to ODE-based recurrent models, which can provide a more elegant

approach to modeling continuous time data at increased computational cost.

2.6.2 ODE Based Methods

Chen et al. (2018) proposed a variational auto-encoder (VAE) model (Kingma

and Welling, 2014; Rezende et al., 2014) for continuous time data based on the use

of a neural network decoder combined with a latent ordinary differential equation

(ODE) model. They model time series data via a latent continuous-time function

z(t). This function is defined via a neural network representation of its gradient field

that takes the form ∂z(t)
∂t

= fθ(z(t)). The full generative process for a single data case

sampled from the neural ODE latent time series model is shown below. Note that

the generative process conditions on the set of observation time points t = t0, ..., tL.
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z(t0) ∼ p(z(t0)) (2.14)

z(t1), · · · , z(tL) = ODESolve(z(t0), f, θ, t0, · · · , tL) (2.15)

xi ∼ p(xi|gφ(z(ti))) (2.16)

While this model has many appealing properties as a continuous time generative

model, VAE’s also require the specification of a recognition network or encoder func-

tion to map observations into the latent space. Due to the deterministic nature of

the ODE model, it suffices to identify the distribution over the latent space at any

single time t. Chen et al. (2018) use a basic RNN model as the encoder/recognition

network for computing the approximate posterior. In the case of irregularly sam-

pled time series, Chen et al. (2018) propose to apply the encoder to the sequence of

observed values backward in time from the end of the time series to the beginning.

However, the RNN encoder used did not account for variable inter-observation in-

tervals at all and also did not account for partially observed input vectors. This means

that the overall model has fairly asymmetric capabilities with the ODE used only in

the generator and much more basic components applied in the encoder. Rubanova

et al. (2019) subsequently proposed using an ODE-RNN model as an encoder for the

latent ODE model. This yields a much more capable model with the intrinsic ability

to accommodate irregularly sampled time series of fully observed vectors.

However, this model still has the limitation that it does not directly accommodate

irregularly sampled time series of incompletely observed vectors. In addition, the

encoder used by Rubanova et al. (2019) is also applied backwards in time only. While

in theory all information in the input time series can be encoded into the latent state

at the start of the time series, in practice this structure can be limiting as the encoder

may not be able to adequately preserve information about structures in later sections

of the time series.
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De Brouwer et al. (2019) proposed a related method based on a combination of

ODE and GRU components that they refer to as GRU-ODE-Bayes. This model is

a continuous-time version of the Gated Recurrent Unit model (Chung et al., 2014)

that can be applied to irregularly sampled time series. Instead of the encoder-decoder

architecture where the ODE is decoupled from the input processing, GRU-ODE-Bayes

provides a tighter integration by interleaving the ODE and the input processing steps.

GRU-ODE-Bayes uses the ODE to propagate the hidden state between continuous-

time observations. It updates the current hidden state whenever a new observation

is available.

Contrary to the previous approaches in this subsection, GRU-ODE-Bayes can also

handle partially observed vectors. Partially observed input in the RNN hidden update

equation is replaced with a transformed input defined as a function (with learnable

parameters) of previous hidden state, partially observed input and mask variable,

similar to the approach used in the GRU-D model. However, due to the structure

of the GRU-ODE-Bayes model, it only has access to information from the relative

past of individual time points when accounting for missing data. This means that it

suffers from the same problem as the GRU-D model where imputed values for missing

dimensions have maximum uncertainty immediately before the next observation. This

makes GRU-ODE-Bayes a poor choice for a smoothing or interpolation method, while

the local structure of the hidden state updates make it better suited for filtering tasks.

The final hidden states can also be used as input to prediction and detection tasks.

One of the disadvantages of the latent ODE models defined by Equation 2.15 is

that once θ has been learned, the solution to Equation 2.15 is determined by the initial

condition at z0, and there is no direct mechanism for incorporating data or hidden

state at a later time. The ODE-RNN model tries to solve this problem by using a RNN

in conjunction with ODE which updates the hidden state in the presence of a new

observation and then solves the ODE using this new hidden state as the initial point.
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This leads to jumps in the hidden state values, which may not be suitable for defining

continuous time dynamics. Kidger et al. (2020) solve this problem using Neural

Controlled Differential Equations (CDEs). Neural CDEs are capable of processing

incoming irregularly sampled data in a more principled way. Neural CDEs also have

the capability to deal with incomplete observations by independently interpolating

each channel.

In summary, ODE-based modeling primitives provide an interesting basis for learn-

ing from continuous time data. They solve the problem of accommodating irregularly

sampled time series of fully observed vectors in a way that is significantly cleaner than

standard RNNs. However, ODE models can be quite a bit slower during training and

deployment due to the need to make repeated calls to an ODE solver. Finally, some

of the model structures proposed to date are also limiting in their inability to cleanly

accommodate incomplete observations. While Neural CDEs are a recent approach,

they appear to have interesting advantages over the ODE-RNN framework and re-

lated models by providing an improved approach to integrating observations through

time.

2.7 Attention-Based Approaches

Several recent models have leveraged attention mechanisms as their fundamental

approach to dealing with irregular sampling (Horn et al., 2020; Song et al., 2018;

Zhang et al., 2019). Most of these approaches are similar to Vaswani et al. (2017)

where they replace the positional encoding with an encoding of time and model se-

quences using self-attention. Instead of adding the time encoding to the input rep-

resentation as in Vaswani et al. (2017), they concatenate it with the input represen-

tation. These methods use a fixed time encoding similar to the positional encoding

of Vaswani et al. (2017). Xu et al. (2019) learn a functional time representation and

concatenate it with the input event embedding to model time-event interactions.
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Zhang et al. (2019) proposed an attention-based time-aware approach for modeling

the time irregularity between events. This approach adjusts the memory of an LSTM

when accumulating previous information. Instead of reading the information from

just one previous cell state, it combines values in previous cell states using attention

weights and time gaps.

Choi et al. (2016b) learn an interpretable representation of irregularly sampled

events using a two-level attention model. Attention vectors are generated by running

RNNs backward in time. These models are subsequently used to compute a final rep-

resentation using a weighted average of the event embedding with the corresponding

attention weights. They showed that performance can be improved by concatenating

the corresponding timestamps with the event embedding.

Xu et al. (2019) proposed a set of time embedding methods for functional time

representation learning, and demonstrate their effectiveness when combined with self-

attention in continuous-time event sequence prediction. The proposed functional

forms are motivated from Bochner’s (Loomis, 2011) and Mercer’s (Mercer, 1909)

theorem.

Horn et al. (2020) employed a transformer-based (Vaswani et al., 2017) approach

for modeling irregularly sampled time series. This approach deals with irregular sam-

pling by defining a time embedding to represent the time point of an observation.

The time embedding defined here is a variant of positional encoding (Vaswani et al.,

2017) which takes continuous time values as input. The transformer architecture was

applied to the time series by concatenating the vectors of each time point with a mask

variable indicating whether the variable is observed or missing and the corresponding

time embedding. If the observation is missing, the input is set to zero for that dimen-

sion. The output of the transformer architecture is a sequence of embeddings, which

can be aggregated into a final representation using mean-pooling for classification

tasks.
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2.8 Structural Invariance-Based Approaches

In this section we describe work in the area of using structural invariance as a

modeling primitive. Such approaches leverage the set-based view of an irregularly

sampled time series to build a model whose structure does not depend on the time

order of the input time series.

In recent work, Horn et al. (2020) propose a set function-based approach for

the task of classification and detection on time-series with irregularly sampled and

unaligned observations. This approach can inherently handle irregular sampling and

partially observed vectors. Similar to the positional encoding used in transformer

models (Vaswani et al., 2017), Horn et al. (2020) define an embedding for continuous

values of time. This approach represents the irregularly sampled time series data

as a set of tuples consisting of a time embedding, value and dimension indicator

to differentiate between different dimensions. Following the approach described in

Section 2.3.5, tuples are independently transformed using a multi-layer feed-forward

network. Horn et al. (2020) suggest a weighted mean approach to aggregate the

encoded tuples in order to allow the model to decide which observations are relevant

and which should be considered irrelevant. This is achieved by computing attention

weights over the set of input elements, and subsequently, computing the weighted

sum over all elements in the set corresponding to their attention weights.

2.9 Predictive Performance

In this section, we summarize evidence regarding the relative predictive perfor-

mance of methods presented in the previous sections. We provide a brief introduction

to the data sets that are commonly used to evaluate models for sparse and irregularly

sampled time series in Section 2.10.

In terms of discretization-based methods, Lipton et al. (2016) showed that dis-

cretization combined with zero imputation and conditioning on response indicators
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outperformed LSTM models that do not condition on response indicators. Lipton

et al. (2016) also showed that in presence of missing indicators, zero imputation

performed better than forward filling based imputation. Harutyunyan et al. (2019)

demonstrated the advantages of using channel-wise LSTMs and learning to predict

multiple tasks using a single neural model. Song et al. (2018) showed that the perfor-

mance of Harutyunyan et al. (2019) on the challenging MIMIC-III benchmark data

set can be further improved by using self-attention instead of an LSTM. Bahadori

and Lipton (2019) showed that a temporal clustering based approach achieves better

performance than Song et al. (2018) and Harutyunyan et al. (2019) on classification

and detection tasks.

However, discretization-based methods for irregular sampling are typically outper-

formed by models with the ability to directly use an irregularly sampled time series

as input. Kim and Chi (2018) showed that a simple imputation based on the time

gap between the current time and the last observed time achieved better performance

than imputation methods based on mean and forward-filling on classification tasks.

They also showed that using response indicators further improved performance. Choi

et al. (2016b) showed that the classification performance of their attention model

on irregularly sampled events can be improved by concatenating the corresponding

timestamps with the event embedding.

Che et al. (2018a) and Pham et al. (2017) showed that introducing a decay func-

tion based on the time gap between current and past measurement inside an RNN

model improves performance on classification and prediction tasks as compared to

several off-the-shelf machine learning models and RNN baselines based on mean and

forward filling imputation schemes as well as RNN models based on concatenating

time gaps and missing indicators. Che et al. (2018a) also showed that for classifi-

cation and prediction tasks, combining exponential decay of hidden states with an

imputation scheme based on the weighted average of previous values and the em-
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pirical mean further outperforms RNNs that use exponential decay on hidden state

only. The T-LSTM proposed by Baytas et al. (2017) improved on Pham et al. (2017)

by transforming time gaps into weights using a decay function and using them to

adjust the hidden state. Li and Xu (2019) improved on GRU-D (Che et al., 2018a)

by considering the observation rate in addition to the exponential decay on hidden

state and weighted imputation. Zhang et al. (2019) showed that using a time-aware

attention model outperforms Choi et al. (2016b) and the T-LSTM on detection tasks.

Recurrent methods based on bidirectional RNNs typically achieve better perfor-

mance than those based on single directional RNNs for both smoothing and clas-

sification tasks. Yoon et al. (2019) and Yoon et al. (2018b) proposed an MRNN

based on bidirectional RNNs, which outperforms Che et al. (2018a), Futoma et al.

(2017), Lipton et al. (2016) and Choi et al. (2016a) on both smoothing and detection

tasks. On the smoothing (imputation) task, it also outperforms standard methods

such as spline and cubic interpolation, MICE, Miss Forest, matrix completion and

auto-encoder based approaches. Cao et al. (2018) show that another bidirectional

RNN-based approach for learning the missing values in vector-based representations

outperforms GRU-D and MRNN on both smoothing and classification tasks.

GAN-based methods for imputing missing values in irregularly sampled time se-

ries data (Luo et al., 2018, 2019) have been shown to achieve better classification

performance than GRU-D. Luo et al. (2019) also outperforms Luo et al. (2018) and

Yoon et al. (2018a) on classification and smoothing tasks and Cao et al. (2018) on

classification tasks. The VAE-based approach of Fortuin et al. (2020) achieves better

classification performance than Luo et al. (2018) and Cao et al. (2018).

ODE-based recurrent models typically achieve better classification, imputation,

detection and prediction performance on irregularly sampled time series than discrete

time RNN-based recurrent models. For example, Latent-ODE (Rubanova et al., 2019)

outperforms GRU-D, an RNN with exponential decay on hidden state, an RNN with
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imputation based on the weighted average of previous values and the empirical mean,

and an RNN with values concatenated with time gaps and response indicators on

both classification and detection tasks. Similarly, another related method based on

the combination on ODE and RNN components (De Brouwer et al., 2019) achieves

better forecasting performance than GRU-D and T-LSTM. Neural CDE (Kidger et al.,

2020) achieves better performance than De Brouwer et al. (2019), GRU-D and ODE-

RNN (Rubanova et al., 2019) on whole time series classification tasks.

Among attention based methods, a dual-attention time-aware method introduced

by Tan et al. (2020) outperforms T-LSTM and GRU-D on classification task. Horn

et al. (2020) showed that a set-based and transformer-based approach for model-

ing irregularly sampled time series achieve comparable performance to GRU-D on

classification tasks.

In Section 2.11, we provide a final distillation of the above evidence in terms of

the strengths and weaknesses of different approaches.

2.10 Data Sets

The previous sections have described methods for modeling irregularly sampled

time series that can be applied to a variety of inference tasks. In this section, we

describe some of the data sets that have been widely used in the machine learning

community to conduct experiments with irregularly sampled time series and describe

some of the commonly used tasks associated with each data set.

2.10.1 MIMIC-III

The MIMIC-III data set (Johnson et al., 2016) is a de-identified data set col-

lected at Beth Israel Deaconess Medical Center from 2001 to 2012. It consists of

approximately 58,000 hospital admission records. This data set contains sparse and

irregularly sampled physiological signals, medications, diagnostic codes, in-hospital
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mortality, length of stay, discharge summaries, progress notes, demographics infor-

mation and more. Benchmark tasks on this data set include in-hospital mortality

prediction, length of stay prediction and phenotype prediction. In-hospital mortality

and length of stay prediction are whole time series classification and regression tasks

while phenotype classification task is a multi-label classification task. The length of

stay prediction task has also be framed as a classification task by discretizing the

length of stay variable into a fixed number of buckets. MIMIC-III is available at

https://mimic.physionet.org/.

2.10.2 PhysioNet 2012

The PhysioNet Challenge 2012 data set (Silva et al., 2012) consists of multi-

variate time series data with 37 variables extracted from intensive care unit (ICU)

records. Each record contains sparse and irregularly spaced measurements from the

first 48 hours after admission to ICU. The data set includes 4000 labeled instances

and 4000 unlabeled instances. Benchmark tasks on this data set are in-hospital

mortality prediction (whole time series classification) and interpolation. All 8000 in-

stances can be used for interpolation experiments while only 4000 labeled instances

are available for classification experiments. The PhysioNet dataset is available at

https://physionet.org/content/challenge-2012/.

2.10.3 Human Activity

The Localization Data for Human Activity data set (Kaluža et al., 2010) consists

of 3D positions of the waist, chest and ankles collected from five individuals perform-

ing several activities including walking, sitting, lying, standing, etc. Following the

data preprocessing steps of Rubanova et al. (2019), a data set of 6, 554 sequences

with 12 channels and 50 time points can be constructed. Labels are provided for

each observation time point and denote the type of activity that the person is per-

forming, such as walking, sitting, lying, etc. The data set consists of 11 classes.
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A per-time point classification task (detection task) is the benchmark task on this

data set. The data set is available at https://archive.ics.uci.edu/ml/datasets/

Localization+Data+for+Person+Activity.

2.10.4 eICU Collaborative Research Data Set

The eICU Collaborative Database (Pollard et al., 2018) is a database relating

to patients who were treated as part of the Philips eICU program across intensive

care units in the United States. eICU consists of medical records from 200,859 pa-

tients collected from 208 critical care units in the United States between 2014 and

2015. The database is deidentified, and includes sparse and irregularly sampled vi-

tal sign measurements, care plan documentation, severity of illness measures, diag-

nosis information, treatment information, and more. The data set is available at

https://eicu-crd.mit.edu/.

2.10.5 PhysioNet 2019

PhysioNet 2019 (Reyna et al., 2019) is a publicly available data set collected from

two hospital systems. It contains 40,336 ICU patient admission records and 2,359

records of diagnosed sepsis cases. The data set consists of a set of multivariate time

series that contains 40 variables including 8 vital signs, 26 laboratory values and 6

demographic variables. Each timestamp is labeled with a binary variable indicating

whether the onset of sepsis has occurred. The benchmark task on this data set is the

early detection of sepsis using physiological data.

2.10.6 UWave Dataset

UWave dataset is an univariate time series data consisting of simple gesture pat-

terns divided into eight categories. The dataset has been split into 3582 train and 896

test instances. Each time series contains 945 observations. 10% of the observations

points from each time series are randomly sampled to create a sparse and irregularly
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sampled data. The benchmark task on this data set is whole time series classification.

The data set is available at http://timeseriesclassification.com/description.

php?Dataset=UWaveGestureLibraryAll.

2.10.7 USHCN Climate Dataset

The U.S. Historical Climatology Network Monthly (USHCN) dataset (Menne

et al., 2016) is a publicly available dataset consisting of daily measurements of 5 cli-

mate variables − daily maximum temperature, daily minimum temperature, whether

it was a snowy day or not, total daily precipitation, and daily snow precipitation.

It contains data from the last 150 years for 1, 218 meteorological stations scattered

over the United States. Following the preprocessing steps of Che et al. (2018b), we

extract daily climate data for 100 consecutive years starting from 1910 to 2009 from

54 stations in California. To get multi-rate time series data, we split the stations

into 3 groups with sampling rates of 2 days, 1 week, and 1 month respectively. We

divide the data into smaller time series consisting of yearly data and end up with

a dataset of 100 examples each consisting of 270 features. Benchmark tasks on this

dataset are interpolation and forecasting. The dataset is available for download at

https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/.

2.10.8 UCI Electricity Dataset

The UCI household electricity dataset contains measurements of seven different

quantities related to electricity consumption in a household. The data are recorded

every minute for 47 months between December 2006 and November 2010, yielding

over 2 million observations. To simulate irregular sampling, we keep observations

only at durations sampled from an exponential distribution with λ = 20. Following

the preprocessing step of Binkowski et al. (2018), we also do random feature sampling

where we choose one out of seven features at each time step. The probabilities of the

features were chosen to be proportional to [1.50, 1.51, · · · 1.56] and randomly assigned
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to each feature before sampling. We divide the data into smaller time series consisting

of monthly data and end up with a dataset of 1431 examples each consisting of 7

features. Benchmark tasks on this dataset are interpolation and forecasting. The

dataset is available for download at https://archive.ics.uci.edu/ml/datasets/

individual+household+electric+power+consumption.

2.11 Conclusion

In this chapter, we have discussed the relationship between the three fundamental

representations of multivariate irregularly sampled time series (series-based, vector-

based, and set-based), which motivate the use of different modeling primitives. We

have introduced a categorization of approaches to modeling irregularly sampled time

series data based on the fundamental modeling primitives used to accommodate ir-

regular sampling. These modeling primitives include temporal discretization, inter-

polation, recurrence, attention and structural invariance. As we have shown, these

modeling primitives underlie essentially all recent work on the modeling multivariate

irregularly sampled time series.

Importantly, different modeling primitives are imbued with different strengths

and weaknesses as a result of the representations that they leverage. A key example

of this is the case of recurrent methods that, by leveraging the vector-based repre-

sentation, must explicitly tackle the problem of incomplete vector-valued irregularly

sampled observations that the interpolation and set-based primitives avoid by lever-

aging representations that do not yield explicit missing data when multi-dimensional

observations are unaligned.

We have also defined a range of inference tasks that can be performed using ir-

regularly sampled time series including detection, prediction, filtering, smoothing,

interpolation and forecasting. As we have seen, there are also fundamental relation-

ships between certain modeling primitives and the ability to successfully carry out
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particular tasks. Single-directional recurrent models and the interpolation/smoothing

tasks are a prime example of this where the inherent structure of single-directional re-

current model typically results in maximally uncertain predictions immediately prior

to the next observation. This is again an issue that is avoided by interpolation, atten-

tion and set-based methods that can inherently consider observations in the relative

past and future of a given time point.

Finally, we have described a large number of specific models and methods catego-

rized by the modeling primitives they build on. We believe this categorization is very

useful as the models and methods based on particular modeling primitives inherit

intrinsic strengths and weaknesses from the underlying modeling primitives. This

includes strengths and weaknesses derived from the underlying time series represen-

tations and the relationships between modeling primitives and tasks. We summarize

the identified strengths and weaknesses of each category of approaches below, as well

as evidence regarding the relative predictive performance of approaches.

1. Discretization combined with imputation and any supervised model provides a

simple, easy to implement, and modular baseline for solving whole time series

classification and regression problems. The inclusion of response indicators as

additional inputs has been found to help predictive performance under such

an approach. However, the evidence indicates that such approaches are out-

performed by methods based on other primitives.

2. As described above, due to the inherent filtering nature of single-directional dis-

crete recurrent models, basic discrete RNNs are more suited for detection and

prediction tasks than interpolation and smoothing problems. Bi-directional

recurrent models typically out-perform single-directional models in terms of

supervised tasks and can provide reasonable solutions to smoothing and in-

terpolation problems. Using time stamps or time deltas as additional inputs

appears to be helpful in overcoming the gap between representing a sequence
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and representing an irregularly sampled time series. However, RNNs must also

deal with the problem of incomplete vector-valued inputs. Here, more sophisti-

cated approaches for end-to-end learning of model components (such as decay

mechanisms) that enable imputation appear to be helpful.

3. ODE-based recurrent approaches provide a more elegant solution to dealing with

irregular sampling than discrete RNNs and can be applied to all tasks described

in Section 2.2. ODE-based approaches have been shown to outperform discrete

RNN-based models on several tasks including whole time series classification,

interpolation, detection, and prediction. However, ODE-RNN models still have

limitations related to their nature as intrinsic filtering methods as well as their

inability to accommodate incomplete vector-valued observations. The related

neural CDE-based model family appears to have a number of advantages over

ODE-RNN models in terms of its ability to incorporate observations through

time.

4. Attention and structural invariance-based methods both break the sequential

nature of recurrent approaches and have the potential for reductions in training

time relative to recurrent models as a result. However, to date prior models have

been able to meet but not exceed the performance of ODE and interpolation-

based methods.
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CHAPTER 3

INTERPOLATION PREDICTION NETWORKS

In this chapter, we present a new model architecture for supervised learning with

multivariate sparse and irregularly sampled data: Interpolation-Prediction Networks.

The architecture is based on the use of several semi-parametric interpolation layers

organized into an interpolation network, followed by the application of a prediction

network that can leverage any standard deep learning model. The interpolation net-

work is an example of an interpolation primitive based model (Section 2.3.2). In this

work, we use GRU networks (Chung et al., 2014) as the prediction network. We focus

on whole time series regression and classification tasks (Section 2.2) with multivariate

sparse and irregularly sampled time series.

The interpolation network allows for information contained in each input time

series to contribute to the interpolation of all other time series in the model. The

parameters of the interpolation and prediction networks are learned end-to-end via a

composite objective function consisting of supervised and unsupervised components.

The interpolation network serves the same purpose as the multivariate Gaussian pro-

cess used in the work of Futoma et al. (2017), but remove the restrictions associated

with the need for a positive definite covariance matrix.

Our approach also allows us to compute an explicit multi-timescale representation

of the input time series, which we use to isolate information about transients (short

duration events) from broader trends. Similar to the work of Lipton et al. (2016) and

Che et al. (2018a), our architecture also explicitly leverages a separate information

channel related to patterns of observation times. However, our representation uses
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a semi-parametric intensity function representation of this information that is more

closely related to the work of Lasko (2014) on modeling medical event point processes.

Our architecture thus produces three output time series for each input time series:

a smooth interpolation modeling broad trends in the input, a short time-scale inter-

polation modeling transients, and an intensity function modeling local observation

frequencies.

We evaluate the proposed architecture on the MIMIC-III (Section 2.10.1) and

UWave (Section 2.10.6) data set for both classification and regression tasks. Our

approach outperforms a variety of simple baseline models as well as the basic and

advanced GRU models introduced by Che et al. (2018a) across several metrics. We

also compare our model with to the Gaussian process adapter (Li and Marlin, 2016)

and multi-task Gaussian process RNN classifier (Futoma et al., 2017). Further, we

perform full ablation testing of the information channels our architecture can produce

to assess their impact on classification and regression performance.

3.1 Model Framework

In this section, we present the proposed modeling framework. We begin by pre-

senting notation, followed by the model architecture and learning criteria.

3.1.1 Notation

We let D = {(sn, yn)|n = 1, ..., N} represent a data set containing N data cases.

An individual data case consists of a single target value yn (discrete for classifica-

tion and real-valued in the case of regression), as well as a D-dimensional, sparse

and irregularly sampled multivariate time series sn. We follow the series-based data

representation and notation (Section 2.1.1).
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Figure 3.1: Architecture of the Interpolation-Prediction network.

3.1.2 Model Architecture

The overall model architecture consists of two main components: an interpolation

network and a prediction network. The interpolation network interpolates the mul-

tivariate, sparse, and irregularly sampled input time series against a set of reference

time points τ = [τ1, ..., τT ]. We assume that all of the time series are defined within

a common time interval (for example, the first 24 or 48 hours after admission for

MIMIC-III dataset). The T reference time points τ are chosen to be evenly spaced

within that interval. In this work, we propose a two-layer interpolation network with

each layer performing a different type of interpolation.

The second component, the prediction network, takes the output of the interpo-

lation network as its input and produces a prediction ŷn for the target variable. We

focus on whole time series classification and regression tasks (Section 2.2). The pre-

diction network can consist of any standard supervised neural network architecture

(fully-connected feedforward, convolutional, recurrent, etc). Thus, the architecture

is fully modular with respect to the use of different prediction networks. In order

to train the interpolation network, the architecture also includes an auto-encoding

component to provide an unsupervised learning signal in addition to the supervised

learning signal from the prediction network. Figure 3.1 shows the architecture of the

proposed model. We describe the components of the model in detail below.
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3.1.2.1 Interpolation Network

We begin by describing the interpolation network. The goal of the interpolation

network is to provide a collection of interpolants of each of the D dimensions of an

input multivariate time series defined at the T reference time points τ = [τ1, ..., τT ].

In this work, we use a total of C = 3 outputs for each of the D input time series.

The three outputs (discussed in detail below) capture smooth trends, transients, and

observation intensity information. We define fθ(τ , sn) to be the function computing

the output ŝn of the interpolation network. The output ŝn is a fixed-sized array with

dimensions (DC)× T for all inputs sn.

The first layer in the interpolation network separately performs three semi-parametric

univariate transformations for each of the D time series. Each transformation is based

on a radial basis function (RBF) network to accommodate continuous time observa-

tions. The transformations are a low-pass (or smooth) interpolation σd, a high-pass

(or non-smooth) interpolation γd and an intensity function λd. These transformations

are computed at reference time point τk for each data case and each input time series

d as shown in Equations 3.1, 3.2, 3.3 and 3.4.1 The smooth interpolation σd uses a

squared exponential kernel with parameter αd, while the non-smooth interpolation

γd uses a squared exponential kernel with parameter καd for κ > 1.

1We drop the data case index n for brevity in the equations below.
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Z(τ, t, α) =
∑
t∈t

w(τ, t, α) , w(τ, t, α) = exp(−α(τ − t)2) (3.1)

λkd = hλθ (τk, td,xd) = Z(τk, td, αd) (3.2)

σkd = hσθ (τk, td,xd) =
1

Z(τk, td, αd)

Ldn∑
j=1

w(τk, tjd, αd) xjd (3.3)

γkd = hγθ (τk, td,xd) =
1

Z(τk, td, καd)

Ldn∑
j=1

w(τk, tjd, καd) xjd (3.4)

The second interpolation layer merges information across all D time series at each

reference time point by taking into account learnable correlations ρdd′ across all time

series (Equation 3.5). This results in a cross-dimension interpolation χd for each input

dimension d. We further define a transient component ηd for each input dimension

d as the difference between the high-pass (or non-smooth) interpolation γd from the

first layer and the smooth cross-dimension interpolation χd, as shown in Equation

3.6.

χkd = hχθ (τk, s) =

∑
d′ ρdd′ λkd′ σkd′∑

d′ λkd′
(3.5)

ηkd = hηθ(τk, s) = γkd − χkd (3.6)

In the experiments presented in the next section, we use a total of three interpo-

lation network outputs per dimension d as the input to the prediction network. We

use the smooth, cross-channel interpolants χd to capture smooth trends, the tran-

sient components ηd to capture transients, and the intensity functions λd to capture

information about where observations occur in time.

3.1.2.2 Prediction Network

Following the application of the interpolation network, all D dimensions of the

input multivariate time series have been re-represented in terms of C outputs defined
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on the regularly spaced set of reference time points τ1, ..., τT (in our experiments, we

use C = 3 as described above). Again, we refer to the complete set of interpolation

network outputs as ŝn = fθ(τ , sn), which can be represented as a matrix of size

(DC)× T .

The prediction network must take ŝn as input and output a prediction ŷn =

gφ(ŝn) = gφ(fθ(τ , sn)) of the target value yn for data case n. There are many possible

choices for this component of the model. For example, the matrix ŝn can be converted

into a single long vector and provided as input to a standard multi-layer feedforward

network. A temporal convolutional model or a recurrent model like a GRU or LSTM

can instead be applied to time slices of the matrix ŝn. In this work, we conduct

experiments leveraging a GRU network as the prediction network.

3.1.3 Learning

To learn the model parameters, we use a composite objective function consisting of

a supervised component and an unsupervised component. This is due to the fact that

the supervised component alone is insufficient to learn reasonable parameters for the

interpolation network given the amount of available training data. The unsupervised

component used corresponds to an autoencoder-like loss function. However, the semi-

parametric RBF interpolation layers have the ability to exactly fit the input points

by setting the RBF kernel parameters to very large values.

To avoid this solution and force the interpolation layers to learn to properly inter-

polate the input data, it is necessary to hold out some observed data points xjdn during

learning and then to compute the reconstruction loss only for these data points. This

is a well-known problem with high-capacity autoencoders and past work has used

similar strategies to avoid the problem of trivially memorizing the input data without

learning useful structure.
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To implement the autoencoder component of the loss, we introduce a set of mask-

ing variables mjdn for each data point (tjdn, xjdn). If mjdn = 1, then we remove

the data point (tjdn, xjdn) as an input to the interpolation network and include the

predicted value of this time point when assessing the autoencoder loss. We use the

shorthand notation mn � sn to represent the subset of values of sn that are masked

out, and (1 −mn) � sn to represent the subset of values of sn that are not masked

out. The value x̂jdn that we predict for a masked input at time point tjdn is the value

of the smooth cross-channel interpolant at that time point, calculated based on the

un-masked input values: x̂jdn = hχθ (tjdn, (1−mn)� sn).

We can now define the learning objective for the proposed framework. We let `P

be the loss for the prediction network (we use cross-entropy loss for classification and

squared error for regression). We let `I be the interpolation network autoencoder loss

(we use standard squared error). We also include `2 regularizers for both the interpo-

lation and prediction networks parameters. δI , δP , and δR are hyper-parameters that

control the trade-off between the components of the objective function.

θ∗, φ∗ = arg min
θ,φ

N∑
n=1

`P (yn, gφ(fθ(sn)) + δI‖θ‖22 + δP‖φ‖22 (3.7)

+ δR

N∑
n=1

D∑
d=1

Ldn∑
j=1

mjdn`I(xjdn, h
χ
θ (tjdn, (1−mn)� sn))

3.1.4 Implementation Details

The model is learned using the Adam optimization method in TensorFlow with

gradients provided via automatic differentiation. The multivariate time series rep-

resentation used during learning is based on the union of all time stamps that exist

in any dimension of the input time series. Undefined observations are represented

as zeros and a separate auxiliary response indicator series is used to keep track of

which time series have observations at each time point (Section 2.1.2). Equations 3.1

to 3.6 are modified such that data that are not available are not taken into account
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at all. This implementation is exactly equivalent to the computations described, but

supports parallel computation across all dimensions of the time series for a given data

case.

Finally, we note that the learning problem can be solved using a doubly stochastic

gradient based on the use of mini batches combined with re-sampling the artificial

missing data masks used in the interpolation loss. In practice, we randomly select

20% of the observed data points to hold out from every input time series.

For the time series missing entirely, our interpolation network assigns the starting

point (time t = 0) value of the time series to the global mean before applying the

two-layer interpolation network. In such cases, the first interpolation layer outputs

the global mean for that channel, but the second interpolation layer performs a more

meaningful interpolation using the learned correlations from other channels.

3.2 Experiments and Results

In this section, we present experiments based on both classification and regression

tasks with sparse and irregularly sampled multivariate time series. In both cases, the

input to the prediction network is a sparse and irregularly sampled time series, and

the output is a single scalar representing either the predicted class or the regression

target variable. We test the model framework on two publicly available real-world

datasets: MIMIC-III (Section 2.10.1), and UWaveGesture (Section 2.10.6).

On MIMIC-III, we focus on predicting in-hospital mortality and length of stay

using the first 48 hours of data. We extracted 12 standard physiological variables

from each of the 53,211 records obtained after removing hospital admission records

with length of stay less than 48 hours. There are 4310 (8.1%) patients with a yn = 1

mortality label. Since the data set includes some very long stay durations, we let

yn represent the log of the length of stay in days for all models. We convert back

from the log number of days to the number of days when reporting results. Table
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3.1 shows the features, sampling rates (per hour) and their missingness information

computed using the union of all time stamps that exist in any dimension of the input

time series.

We use the MIMIC-III mortality and length of stay prediction tasks as example

classification and regression tasks with multivariate time series. We use the UWave

gesture classification task for assessing training time and performance relative to

univariate baseline models.

Table 3.1: Features extracted from MIMIC III for our experiments

feature #Missing Sampling Rate

SpO2 31.35% 0.80
HR 23.23% 0.90
RR 59.48% 0.48
SBP 49.76% 0.59
DBP 48.73% 0.60
Temp 83.80% 0.19
TGCS 87.94% 0.14
CRR 95.08% 0.06
UO 82.47% 0.20
FiO2 94.82% 0.06
Glucose 91.47% 0.10
pH 96.25% 0.04

3.2.1 Baseline Models

We compare our proposed model to a number of baseline approaches including

off-the-shelf classification and regression models learned using basic features, as well

as more recent approaches based on customized neural network models.

3.2.1.1 Non-Neural Network Baselines

Following the discretization modeling primitive (Section 2.3.1), we create a fixed-

size representation and use forward filling imputation to replace the missing values.

We use this representation for non-neural network baselines. We evaluate Logistic
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Regression (Hosmer Jr et al., 2013), Support Vector Machines (SVM) (Cortes and

Vapnik, 1995), Random Forests (RF) (Breiman, 2001) and AdaBoost (Freund and

Schapire, 1997) for the classification task.

For the length of stay prediction task, we apply Linear Regression (Hastie et al.,

2001), Support Vector Regression (SVR), AdaBoost Regression (Drucker, 1997) and

Random Forest Regression.

3.2.1.2 Neural Network Models

We compare to several existing deep learning baselines built on GRUs using simple

interpolation or imputation approaches. In addition, we compare to prior state-of-

the-art models for mortality prediction including the work of Che et al. (2018a).

Their work proposed to handle irregularly sampled and missing data using recurrent

neural networks (RNNs) by introducing temporal decays in the input and/or hidden

layers (Section 2.6.1). We also evaluate the scalable end-to-end Gaussian process

adapter (Li and Marlin, 2016) as well as multi-task Gaussian process RNN classifier

(Futoma et al., 2017) for irregularly sampled univariate and multivariate time series

classification respectively. The complete set of models that we compare to is as

follows:

• GP-GRU: End-to-end Gaussian process with GRU as classifier.

• GRU-M: Missing observations replaced with the global mean of the variable

across the training examples.

• GRU-F: Missing values set to last observed measurement within that time

series (referred to as forward filling).

• GRU-S: Missing values replaced with the global mean. Input is concatenated

with masking variable and time interval indicating how long the particular vari-

able is missing.
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• GRU-D: In order to capture richer information, decay is introduced in the

input as well as hidden layer of a GRU. Instead of replacing missing values

with the last measurement, missing values are decayed over time towards the

empirical mean.

• GRU-HD: A variation of GRU-D where decay in only introduced in the hidden

layer.

3.2.2 Empirical Protocols

The Logistic Regression model is trained with cross entropy loss with regular-

ization strength set to 1. The support vector classifier is used with a RBF kernel

and trained to minimize the soft margin loss. We use the cross entropy loss on the

validation set to select the optimal number of estimators in the case of Adaboost and

Random Forests. Similar to the classification setting, the optimal number of estima-

tors for the regression task in Adaboost and Random Forests is chosen on the basis

of squared error on the validation set.

3.2.2.1 MIMIC-III Experiments

We evaluate all models using a five-fold cross-validation estimate of generalization

performance. In the classification setting, all the deep learning baselines are trained

to minimize the cross entropy loss while the proposed model uses a composite loss

consisting of cross-entropy loss and interpolation loss (with δR = 1) as described in

section 3.1.3. In the case of the regression task, all baseline models are trained to

minimize squared error and the proposed model is again trained with a composite

loss consisting of squared error and interpolation loss.

We follow the multi-task Gaussian process implementation given by Futoma et al.

(2017) and treat the number of hidden units and hidden layers as hyper-parameters.

For all of the GRU-based models, we use the already specified parameters (Che et al.,
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2018a). The models are learned using the Adam optimization. Early stopping is used

on a validation set sub-sampled from the training folds. In the classification case, the

final outputs of the GRU hidden units are used in a logistic layer that predicts the

class. In the regression case, the final outputs of the GRU hidden units are used as

input for a dense hidden layer with 50 units, followed by a linear output layer.

3.2.2.2 UWave Experiments

We independently tune the hyper-parameters of each baseline method. For GRU-

based methods, the number of hidden units is searched over the range {25, 26, · · · , 211}.

Learning is done in same way as described above. We evaluate all the baseline models

on the test set and compare the training time and accuracy. For the Gaussian process

model, we use the squared exponential covariance function. We use the same number

of inducing points for both the Gaussian process and the proposed model. The Gaus-

sian process model is jointly trained with the GRU using stochastic gradient descent

with Nesterov momentum. We apply early stopping based on the validation set (30%

of the training set).

3.2.3 Results

In this section, we present the results of the classification and regression exper-

iments, as well as the results of ablation testing of the internal structure of the

interpolation network for the proposed model. We use the UWaveGesture dataset to

assess the training time and classification performance relative to the baseline mod-

els. We use the standard train and test sets. We report the training time taken for

convergence along with accuracy on test set.

For MIMIC-III, we report the results of a 5-fold cross validation experiment in

terms of the average area under the ROC curve (AUC score), average area under

the precision-recall curve (AUPRC score), and average cross-entropy loss for the clas-

sification task. For the regression task, we use average median absolute error and
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Figure 3.2: Classification performance on the UWaveGesture dataset. Models with
almost same performance are shown with the same dot e.g. (GRU-M, GRU-F) and
(GRU-D, GRU-HD).

average fraction of explained variation (EV) as metrics. We also report the standard

deviation over cross validation folds for all metrics.

Figure 3.2 shows the classification performance on the UWaveGesture dataset.

The proposed model and the Gaussian process adapter (Li and Marlin, 2016) signifi-

cantly outperform the rest of the approaches. However, the proposed model achieves

similar performance to the Gaussian process adapter, but with a 50x speed up (note

the log scale on the training time axis). On the other hand, the training time of the

proposed model is approximately the same order as other GRU-based models, but it

achieves much better accuracy.

Table 3.2 compares the predictive performance of the mortality and length of

stay prediction task on MIMIC-III. We note that in highly skewed datasets as is the

case with MIMIC-III, AUPRC (Davis and Goadrich, 2006) can give better insight

into classification performance compared to the AUC score. The proposed model

consistently achieves the best average score over all metrics. We note that a paired t-

test indicates that the proposed model results in statistically significant improvements

over all baseline models (p < 0.01) with respect to all the metrics except median
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Table 3.2: Performance on Mortality (classification) and Length of stay prediction (re-
gression) tasks on MIMIC-III. Loss: Cross-Entropy Loss, MedAE: Median Absolute
Error (in days), EV: Explained variance

Model Classification Regression

AUC AUPRC Loss MedAE EV score

Log/LinReg 0.772± 0.013 0.303± 0.018 0.240± 0.003 3.528± 0.072 0.043± 0.012
SVM 0.671± 0.005 0.300± 0.011 0.260± 0.002 3.523± 0.071 0.042± 0.011
AdaBoost 0.829± 0.007 0.345± 0.007 0.663± 0.000 4.517± 0.234 0.100± 0.012
RF 0.826± 0.008 0.356± 0.010 0.315± 0.025 3.113± 0.125 0.117± 0.035
GRU-M 0.831± 0.007 0.376± 0.022 0.220± 0.004 3.140± 0.196 0.131± 0.044
GRU-F 0.821± 0.007 0.360± 0.013 0.224± 0.003 3.064± 0.247 0.126± 0.025
GRU-S 0.843± 0.007 0.376± 0.014 0.218± 0.005 2.900± 0.129 0.161± 0.025
GRU-D 0.835± 0.013 0.359± 0.025 0.225± 0.009 2.891± 0.103 0.146± 0.051
GRU-HD 0.845± 0.006 0.390± 0.010 0.215± 0.004 2.893± 0.155 0.158± 0.037
GP-GRU 0.847± 0.007 0.377± 0.017 0.215± 0.004 2.847± 0.079 0.217± 0.020
Proposed 0.853± 0.007 0.418± 0.022 0.210± 0.004 2.862± 0.166 0.245± 0.019

absolute error. The version of the proposed model used in this experiment includes all

three interpolation network outputs (smooth interpolation, transients, and intensity

function).

3.2.4 Ablation Experiments

In this section, we address the question of the relative information content of the

different outputs produced by the interpolation network used in the proposed model

for the MIMIC-III dataset. Recall that for each of the D = 12 vital sign time series,

the interpolation network produces three outputs: a smooth interpolation output

(SI), a non-smooth or transient output (T), and an intensity function (I). The above

results use all three of these outputs.

To assess the impact of each of the interpolation network outputs, we conduct a

set of ablation experiments where we consider using all sub-sets of outputs for both

the classification task and for the regression task.
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Table 3.3: Performance of all subsets of the interpolation network outputs on Mor-
tality (classification) and Length of stay prediction (regression) tasks. SI: Smooth
Interpolation, I: Intensity, T: Transients, Loss: Cross-Entropy Loss, MedAE: Median
Absolute Error, EV: Explained variance

Model Classification Regression

AUC AUPRC Loss MedAE EV score

SI, T, I 0.853± 0.007 0.418± 0.022 0.210± 0.004 2.862± 0.166 0.245± 0.019
SI, I 0.852± 0.005 0.408± 0.017 0.210± 0.004 2.745± 0.062 0.224± 0.010
SI, T 0.820± 0.008 0.355± 0.024 0.226± 0.005 2.911± 0.073 0.182± 0.009

SI 0.816± 0.009 0.354± 0.018 0.226± 0.005 3.035± 0.063 0.183± 0.016
I 0.786± 0.010 0.250± 0.012 0.241± 0.003 2.697± 0.072 0.251± 0.009

I, T 0.755± 0.012 0.236± 0.014 0.272± 0.010 2.738± 0.101 0.290± 0.010
T 0.705± 0.009 0.192± 0.008 0.281± 0.004 2.995± 0.130 0.207± 0.024

Table 3.3 shows the results from five-fold cross validation mortality and length

of stay prediction experiments. When using each output individually, smooth inter-

polation (SI) provides the best performance in terms of classification. Interestingly,

the intensity output is the best single information source for the regression task and

provides at least slightly better mean performance than any of the baseline methods

shown in Table 3.2. Also interesting is the fact that the transients output performs

significantly worse when used alone than either the smooth interpolation or the in-

tensity outputs in the classification task.

When considering combinations of interpolation network components, we can see

that the best performance is obtained when all three outputs are used simultaneously

in classification tasks. For the regression task, the intensity output provides better

performance in terms of median absolute error while a combination of intensity and

transients output provide better explained variance score. However, the use of the

transients output contributes almost no improvement in the case of the AUC and cross

entropy loss for classification relative to using only smooth interpolation and intensity.

Interestingly, in the classification case, there is a significant boost in performance by

71



Table 3.4: Classification performance for in-hospital mortality prediction task on
benchmark dataset

Model AUC score AUPRC score

Logistic Regression 0.8485 0.4744
LSTM 0.8547 0.4848

LSTM + Deep Supervision 0.8558 0.4928
Multitask LSTM 0.8607 0.4933

Interpolation Network + LSTM 0.8610 0.5370

combining smooth interpolation and intensity relative to using either output on its

own. In the regression task, smooth interpolation appears to carry little information.

3.2.5 Additional Experiments

In this section, we compare the performance of the proposed model on a previous

MIMIC-III benchmark dataset (Harutyunyan et al., 2019). This dataset only consists

of patients with age > 18. Again, we focus on predicting in-hospital mortality using

the first 48 hours of data. This yields training and test sets of size 17,903 and 3,236

records respectively.

We compare the proposed model to multiple baselines from Harutyunyan et al.

(2019). In all the baselines, the sparse and irregularly sampled time-series data has

been discretized into 1-hour intervals. If there are multiple observations in an interval,

the mean or last observation is assigned to that interval, depending on the baseline

method. Similarly, if an interval contains no observations, the mean or forward filling

approach is used to assign a value depending on the baseline method. We compare

with a logistic regression model and a standard LSTM network. In the multitask

setting, multiple tasks are predicted jointly. Unlike the standard LSTM network

where the output/hidden-state from the last time step is used for prediction, we

provide supervision to the model at each time step. In this experiment, we use an
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LSTM as the prediction network in the proposed model to match the baselines. Table

3.4 shows the classification performance of the methods in terms AUC and AUPRC

score. The proposed model achieves the best score across both metrics.

3.3 Conclusion

In this chapter, we have presented a new framework for dealing with the problem

of supervised learning in the presence of sparse and irregularly sampled time series.

The proposed framework is fully modular. It uses an interpolation network to ac-

commodate the complexity that results from using sparse and irregularly sampled

data as supervised learning inputs, followed by the application of a prediction net-

work that operates over the regularly spaced and fully observed, multi-channel output

provided by the interpolation network. The proposed approach also addresses some

difficulties with prior approaches including the complexity of the Gaussian process

interpolation layers used in (Li and Marlin, 2016; Futoma et al., 2017), and the lack

of modularity in the approach of Che et al. (2018a). Our framework also introduces

novel elements including the use of semi-parametric, feed-forward interpolation lay-

ers, and the decomposition of an irregularly sampled input time series into multiple

distinct information channels. Our results show statistically significant improvements

for both classification and regression tasks over a range of baseline and state-of-the-art

methods.
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CHAPTER 4

MULTI-TIME ATTENTION NETWORKS

In this chapter, we show how the use of fixed RBF kernel functions can be relaxed

through the use of a novel attention-based continuous-time interpolation framework:

Multi-Time Attention Networks or mTANs. The primary innovation in mTANs is

the inclusion of a learned continuous-time embedding mechanism coupled with a time

attention mechanism that replaces the use of a fixed similarity kernel when forming

representations from continuous time inputs. This gives mTANs significantly more

representational flexibility than previous interpolation-based models.

Our approach re-represents an irregularly sampled time series at a fixed set of

reference points similar to IP-Nets (Chapter 3). The proposed time attention mecha-

nism uses reference time points as queries and the observed time points as keys. We

propose an encoder-decoder framework for end-to-end learning using an mTAN mod-

ule to interface with given multivariate, sparse and irregularly sampled time series

inputs. The encoder takes the irregularly sampled time series as input and produces

a fixed-length latent representation over a set of reference points, while the decoder

uses the latent representations to produce reconstructions conditioned on the set of

observed time points. Learning uses methods established for variational autoencoders

(Rezende et al., 2014; Kingma and Welling, 2014).

The main contributions of the mTAN model framework are:

• It provides a flexible approach to modeling multivariate, sparse and irregularly sam-

pled time series data (including irregularly sampled time series of partially observed
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vectors) by leveraging a time attention mechanism to learn temporal similarity from

data instead of using fixed kernels.

• It uses a temporally distributed latent representation to better capture local struc-

ture in time series data.

• It provides interpolation and classification performance that is as good as current

state-of-the-art methods or better, while providing significantly reduced training

times.

4.1 The Multi-Time Attention Module

In this section, we present the proposed Multi-Time Attention Module (mTAN).

The role of this module is to re-represent a sparse and irregularly sampled time series

in a fixed-dimensional space. This module uses multiple continuous-time embeddings

and attention-based interpolation. We begin by presenting the time embedding and

attention components. We follow the series-based data representation (Section 2.1.1)

and follow the notation introduced in Section 3.1.1.

4.1.1 Time Embedding

The time attention module is based on embedding continuous time points into a

vector space. We generalize the notion of a positional encoding used in transformer-

based models to continuous time. Time attention networks simultaneously leverage

H embedding functions φh(t), each outputting a representation of size dr. Dimension

i of embedding h is defined as follows:

φh(t)[i] =


ω0h · t+ α0h, if i = 0

sin(ωih · t+ αih), if 0 < i < dr

(4.1)

where the ωih’s and αih’s are learnable parameters. The periodic terms capture the

periodicity in the time series. In this case, ωih and αih represent the frequency and
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phase of the sine function. The linear term, on the other hand, can capture non-

periodic patterns dependent on the progression of time. For a given difference ∆,

φh(t+ ∆) can be represented as a linear function of φh(t).

Learning the periodic time embedding functions is equivalent to using a one-layer

fully connected network with a sine function non-linearity to map the time values into

a higher dimensional space. By contrast, the positional encoding used in transformer

models is defined only for discrete positions. We note that our time embedding

functions subsume positional encodings when evaluated at discrete positions.

4.1.2 Multi-Time Attention

The time embedding component described above takes a continuous time point

and embeds it into H different dr-dimensional spaces. In this section, we describe

how we leverage time embeddings to produce a continuous-time embedding module

for sparse and irregularly sampled time series. This multi-time attention embedding

module mTAN(t, s) takes as input a query time point t and a set of keys and values in

the form of a D-dimensional multivariate sparse and irregularly sampled time series

s (as defined in Section 2.1.1), and returns a J dimensional embedding at time t.

This process leverages a continuous-time attention mechanism applied to the H time

embeddings. The complete computation is described below.

mTAN(t, s)[j] =
H∑
h=1

D∑
d=1

x̂hd(t, s) · Uhdj (4.2)

x̂hd(t, s) =

Ld∑
i=1

κh(t, tid)xid (4.3)

κh(t, tid) =
exp

(
φh(t)WV Tφh(tid)

T/
√
dk
)∑Ld

i′=1 exp
(
φh(t)WV Tφh(ti′d)T/

√
dk
) (4.4)

As shown in Equation 4.2, dimension j of the mTAN embedding mTAN(t, s)[j]

is given by a linear combination of intermediate univariate continuous-time functions
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x̂hd(t, s). There is one such function defined for each input data dimension d and each

time embedding h. The parameters Uhdj are learnable linear combination weights.

As shown in Equation 4.3, the structure of the intermediate continuous-time func-

tion x̂hd(t, s) is essentially a kernel smoother applied to the dth dimension of the time

series. However, the interpolation weights κh(t, tid) are defined based on a time at-

tention mechanism that leverages time embeddings, as shown in Equation 4.4. As we

can see, the same time embedding function φh(t) is applied for all data dimensions.

The form of the attention mechanism is a softmax function over the observed time

points tid for dimension d. The activation within the softmax is a scaled inner product

between the time embedding φh(t) of the query time point t and the time embedding

φh(tid) of the observed time point, the key. The parameters W and V are each dr×dk

matrices where dk ≤ dr. We use a scaling factor 1√
dk

to normalize the dot product to

counteract the growth in the dot product magnitude with increase in the dimension

dk.

Learning the time embeddings provides our model with flexibility to learn more

complex temporal kernel functions κh(t, t
′). The use of multiple simultaneous time

embeddings φh(t) and a final linear combination across time embedding dimensions

and data dimensions means that the final output representation function mTAN(t, s)

is extremely flexible. Different input dimensions can leverage different time embed-

dings via learned sparsity patterns in the parameter tensor U . Information from

different data dimensions can also be mixed together to create compact reduced di-

mensional representations. We note that all of the required computations can be

parallelized using masking variables to deal with unobserved dimensions, allowing for

efficient implementation on a GPU.
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Figure 4.1: Architecture of the mTAND module. It takes irregularly sampled time
points and corresponding values as keys and values and produces a fixed dimensional
representation at the query time points. The attention blocks (ATT) perform a
scaled dot product attention over the observed values using the time embedding of
the query and key time points. Equation 4.3 and 4.4 defines this operation. Note
that the output at all query points can be computed in parallel.

4.1.3 Discretization

Since the mTAN module defines a continuous function of t given s, it can not

be directly incorporated into neural network architectures that expect inputs in the

form of fixed-dimensional vectors or discrete sequences. However, the mTAN module

can easily be adapted to produce such an output representation by materializing its

output at a set of reference time points τ = [τ1, ..., τK ]. In some cases, we may have

a fixed set of such points. In other cases, the set of reference time points may need

to depend on s itself. In particular, we define the auxiliary function ρ(s) to return

the set of time points at which there is an observation on any dimension of s.

Given a collection of reference time points τ , we define the discretized mTAN

module mTAND(τ , s) as mTAND(τ , s)[i] = mTAN(τi, s). This module takes as in-

put the set of reference time points τ and the time series s and outputs a sequence

of mTAN embeddings of length |τ |, each of dimension J . The architecture of the

mTAND module is shown in Figure 4.1. The mTAND module can be used to inter-
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Figure 4.2: Architecture of the proposed encoder-decoder framework mTAND-Full.
The classifier is required only for performing classification tasks. The mTAND module
is shown in Figure 4.1.

face sparse and irregularly sampled multivariate time series data with any deep neural

network layer type including fully-connected, recurrent, and convolutional layers. In

the next section, we describe the construction of a temporal encoder-decoder archi-

tecture leveraging the mTAND module, which can be applied to both classification

and interpolation tasks.

4.2 Encoder-Decoder Framework

As described in the last section, we leverage the discretized mTAN module in an

encoder-decoder framework as our primary model in this chapter. We develop the

encoder-decoder framework within the variational autoencoder (VAE) framework in

this section. The architecture for the model framework is shown in Figure 4.2.
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4.2.1 Model Architecture

As we are modeling time series data, we begin by defining a sequence of latent

states zi. Each of these latent states are iid-distributed according to a standard mul-

tivariate normal distribution p(zi). We let the set of latent states be z = [z1, ..., zK ]

defined at K reference time points.

We define a three-stage decoder. First, the latent states are processed through

an RNN decoder module to induce temporal dependencies, resulting in a first set of

deterministic latent variables hdecRNN = [hdec1,RNN , ...,h
dec
K,RNN ]. Second, the output of

the RNN decoder stage and the K time points hdecRNN are provided to the mTAND

module along with a set of T query time points t. The mTAND module outputs a

sequence of embeddings hdecTAN = [hdec1,TAN , ...,h
dec
T,TAN ] of length |t|. Third, the mTAN

embeddings are independently decoded using a fully connected decoder fdec() and the

result is used to parameterize an output distribution. In this work, we use a diagonal

covariance Gaussian distribution with mean given by the final decoded representation

and a fixed variance σ2. The final generated time series is given by ŝ = (t,x) with

all data dimensions observed. The full generative process is shown below. We let

pθ(x|z, t) define the probability distribution over the values of the time series x given

the time points t and the latent variables z. θ represents the parameters of all

components of the decoder.

zk ∼ p(zk) (4.5)

hdecRNN = RNNdec(z) (4.6)

hdecTAN = mTANDdec(t,hdecRNN) (4.7)

xid ∼ N (xid; f
dec(hdeci,TAN)[d], σ2I) (4.8)

For an encoder, we simply invert the structure of the generative process. We begin by

mapping the input time series s through the mTAND module along with a collection
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of K reference time points τ . We apply an RNN encoder to the mTAND model that

outputs hencTAN to encode longer-range temporal structure. Finally, we construct a

distribution over latent variables at each reference time point using a diagonal Gaus-

sian distribution with mean and variance output by fully connected layers applied to

the RNN outputs hencRNN . The complete encoder architecture is described below. We

define qγ(z|τ , s) to be the distribution over the latent variables induced by the input

time series s and the reference time points τ . γ represents all of the parameters in

all of the encoder components.

hencTAN = mTANDenc(τ , s) (4.9)

hencRNN = RNNenc(hencTAN) (4.10)

zk ∼ q(zk|µk,σ2
k), µk = f encµ (henck,RNN), σ2

k = exp(f encσ (henck,RNN)) (4.11)

4.2.2 Unsupervised Learning

To learn the parameters of our encoder-decoder model given a data set of sparse

and irregularly sampled time series, we follow a slightly modified VAE training ap-

proach and maximize a normalized variational lower bound on the log marginal like-

lihood based on the evidence lower bound or ELBO. The learning objective is defined

below where pθ(xjdn|z, tn) and qγ(z|τ , sn) are defined in the previous section.

LNVAE(θ, γ) =
N∑
n=1

1∑
d Ldn

(
Eqγ(z|τ ,sn)[log pθ(xn|z, tn)]−DKL(qγ(z|τ , sn)||p(z))

)
(4.12)

DKL(qγ(z|τ , sn)||p(z)) =
K∑
i=1

DKL(qγ(zi|τ , sn)||p(zi)) (4.13)

log pθ(xn|z, tn) =
D∑
d=1

Ldn∑
j=1

log pθ(xjdn|z, tjdn) (4.14)
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Since irregularly sampled time series can have different numbers of observations

across different dimensions as well as across different data cases, it can be helpful

to normalize the terms in the standard ELBO objective to avoid the model focusing

more on sequences that are longer at the expense of sequences that are shorter. The

objective above normalizes the contribution of each data case by the total number

of observations it contains. The fact that all data dimensions are not observed at all

time points is accounted for in Equation 4.14. In practice, we use k samples from the

variational distribution qγ(z|τ , sn) to compute the learning objective.

4.2.3 Supervised Learning

We can also augment the encoder-decoder model with a supervised learning com-

ponent that leverages the latent states as a feature extractor. We define this compo-

nent to be of the form pδ(yn|z) where δ are the model parameters. This leads to an

augmented learning objective as shown in Equation 4.15 where the λ term trades off

the supervised and unsupervised terms.

Lsupervised(θ, γ, δ) = LNVAE(θ, γ) + λEqγ(z|τ ,sn) log pδ(yn|z) (4.15)

In this work, we focus on classification as an illustrative supervised learning prob-

lem. For the classification model pδ(yn|z), we use a GRU followed by a 2-layer fully

connected network. We use a small number of samples to approximate the required

intractable expectations during both learning and prediction. Predictions are com-

puted by marginalizing over the latent variable as shown below.

y∗ = arg max
y∈Y

Eqγ(z|τ ,s)[log pδ(y|z)] (4.16)
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4.3 Quantitative Experiments

In this section, we present interpolation and classification experiments using a

range of models and three real-world data sets − Physionet Challenge 2012 (Sec-

tion 2.10.2), MIMIC-III (Section 2.10.1), and the Human Activity dataset (Section

2.10.3). For MIMIC-III, we follow the data extraction process described in Section

3.2 and focus on predicting in-hospital mortality using the first 48 hours of data.

On PhysioNet, we use all 8000 instances for interpolation experiments and the 4000

labeled instances for classification experiments. We focus on predicting in-hospital

mortality. On the human activity dataset, we focus on classifying each time point in

the sequence into one of eleven types of activities.

4.3.1 Experimental Protocols

We conduct interpolation experiments using the 8000 data cases in the PhysioNet

data set. We randomly divide the data set into a training set containing 80% of

the instances, and a test set containing the remaining 20% of instances. We use

20% of the training data for validation. In the interpolation task, we condition on a

subset of available points and predict values for rest of the time points. We perform

interpolation experiments with a varying percentage of observed points ranging from

50% to 90% of the available points. At test time, the values of observed points are

conditioned on and each model is used to infer the values at the rest of the available

time points in the test instance. We repeat each experiment five times using different

random seeds to initialize the model parameters. We assess performance using mean

squared error (MSE).

We use the labeled data in all three data sets to conduct classification experiments.

The PhysioNet and MIMIC III problems are whole time series classification. Note

that for the human activity dataset, we classify each time point in the time series. We

treat this as a smoothing problem and condition on all available observations when
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producing the classification at each time-point (similar to labeling in a CRF). We

use bidirectional RNNs as the RNN-based baselines for human activity dataset. We

randomly divide each data set into a training set containing 80% of the time series,

and a test set containing the remaining 20% of instances. We use 20% of the training

set for validation. We repeat each experiment five times using different random seeds

to initialize the model parameters. Due to class imbalance in the Physionet and

MIMIC-III data sets, we assess classification performance using area under the ROC

curve (the AUC score). For the Human Activity dataset, we evaluate models using

accuracy.

4.3.2 Models

The model we focus on is the encoder-decoder architecture based on the discretized

multi-time attention module (mTAND-Full). In the classification experiments, the

hidden state at the last observed point is passed to a two-layer binary classification

module for all models. For each data set, the structure of this classifier is the same

for all models. For the proposed model, the sequence of latent states is first passed

through a GRU and then the final hidden state is passed through the same classi-

fication module. For the classification task only, we consider an ablation of the full

model that uses the proposed mTAND encoder, which consists of our mTAND mod-

ule followed by a GRU to extract a final hidden state. The result is then passed

to the classification module (mTAND-Enc). We compare to several deep learning

models that expand on recurrent networks to accommodate irregular sampling. We

also compare to several encoder-decoder approaches. The full list of model variants is

briefly described below. We use a Gated Recurrent Unit (GRU) (Chung et al., 2014)

module as the recurrent network throughout.
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• RNN-Impute: Missing observations replaced with weighted average of last ob-

served measurement within that time series and global mean of the variable across

training examples (Che et al., 2018a).

• RNN-∆t: Input is concatenated with masking variable and time interval ∆t indi-

cating how long the particular variable has been missing.

• RNN-Decay: RNN with exponential decay on hidden states (Mozer et al., 2017;

Che et al., 2018a).

• GRU-D: combining hidden state decay with input decay (Che et al., 2018a).

• Phased-LSTM: Captures time irregularity by a time gate that regulates access

to the hidden and cell state of the LSTM (Neil et al., 2016) with forward filling to

handle partially observed vectors.

• IP-Nets: Interpolation prediction networks, which use several semi-parametric

RBF interpolation layers, followed by a GRU (Chapter 3).

• SeFT: Uses a set function based approach where all the observations are modeled

individually before pooling them together using an attention based approach (Horn

et al., 2020).

• RNN-VAE: A VAE-based model where the encoder and decoder are standard

RNN models.

• ODE-RNN: Uses neural ODEs to model hidden state dynamics and an RNN to

update the hidden state in presence of a new observation (Rubanova et al., 2019).

• L-ODE-RNN: Latent ODE where the encoder is an RNN and decoder is a neural

ODE (Chen et al., 2018).

• L-ODE-ODE: Latent ODE where the encoder is an ODE-RNN and decoder is a

neural ODE (Rubanova et al., 2019).

85



4.3.3 Architecture Details

Multi-Time Attention Network (mTAND-Full): In our proposed encoder-

decoder framework (Figure 4.2), we use a bi-directional GRU as the recurrent model

in both the encoder and decoder. In the encoder, we use a two-layer fully connected

network with 50 hidden units and ReLU activations to map the RNN hidden state

at each reference point to mean and variance. Similarly, in the decoder, mTAND

embeddings are independently decoded using a two-layer fully connected network

with 50 hidden units and ReLU activations. The result is used to parameterize the

output distribution. For classification tasks, we use a separate GRU layer on top of

the latent states followed by a 2-layer fully connected layer with 300 units and ReLU

activations to output the class probabilities.

Multi-Time Attention Encoder (mTAND-Enc): As we show in the exper-

iments, the proposed mTAN module can be used alone for classification tasks. The

mTAND-Enc consists of a Multi-Time attention module followed by a GRU to ex-

tract the final hidden state, which is then passed to a 2-layer fully connected layer to

output the class probabilities.

Loss Function: For computing the evidence lower bound (ELBO) during train-

ing, we use negative log-likelihood with fixed variance as the reconstruction loss. For

all the datasets, we use a fixed variance of 0.01. For computing ELBO, we use five

samples for the interpolation task and one sample for classification tasks. We use cross

entropy loss for classification. For the classification tasks, we tune the λ parameter in

the supervised learning loss function (Equation 15). We achieved best performance

using λ equal to 100 and 5 for Physionet and MIMIC-III respectively. For the human

activity dataset, we achieved the best results without using the regulaizer or ELBO

component. We found that KL annealing with coeff 0.99 improved the performance

of interpolation and classification tasks on Physionet.
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4.3.4 Hyperparameters

For both interpolation and prediction, we select hyper-parameters on the held-out

validation set using grid search, and then apply the best trained model to the test

set.

Baselines: For the Physionet and Human Activity datasets, we use the reported

hyperparameters for RNN baselines as well as ODE models from Rubanova et al.

(2019). For the MIMIC-III dataset, we independently tune the hyperparameters of

the baseline models on the validation set. We search for the number of GRU hidden

units, the latent dimension, and the number of hidden units in the fully connected

network for the ODE function in the recognition and generative models over the range

{20, 32, 64, 128, 256}. For ODEs, we also searched for the number of layers in the fully

connected network over the range {1, 2, 3}.

mTAN: We learn time embeddings of size 128. The number of embeddings

H ∈ {1, 2, 4}. The linear projection matrices used for projecting the time embedding

W are each dk × dk/h where dk is the embedding size. We search for the latent

dimension and GRU encoder hidden size over the range {32, 64, 128}. We keep the

GRU decoder hidden size at 50. For the classification tasks, we use 128 reference

points. For the interpolation task, we search for the number of reference points over

the range {8, 16, 32, 64, 128}. We use the Adam optimizer for training the models.

For classification, experiments are run for 300 iteration with learning rate 0.0001,

while for the interpolation task experiments are run for 500 iterations with learning

rate 0.001.

4.3.5 Results

Physionet Experiments: Table 4.1 compares the performance of all methods on

the interpolation task where we observe 50%−90% of the values in the test instances.

As we can see, the proposed method (mTAND-Full) consistently and substantially

87



Table 4.1: Interpolation performance versus percent observed time points on Phys-
ioNet

Model Mean Squared Error (×10−3)

RNN-VAE 13.418± 0.008 12.594± 0.004 11.887± 0.005 11.133± 0.007 11.470± 0.006
L-ODE-RNN 8.132± 0.020 8.140± 0.018 8.171± 0.030 8.143± 0.025 8.402± 0.022
L-ODE-ODE 6.721± 0.109 6.816± 0.045 6.798± 0.143 6.850± 0.066 7.142± 0.066
mTAND-Full 4.139± 0.029 4.018± 0.048 4.157± 0.053 4.410± 0.149 4.798± 0.036

Observed % 50% 60% 70% 80% 90%

outperforms all of the previous approaches across all of the settings of observed time

points. We note that in this experiment, different columns correspond to different

setting (for example, in the case of 70%, we condition on 70% of data and predict the

rest of the data; i.e., 30%).

Table 4.2 compares predictive performance on the PhysioNet mortality prediction

task. The full Multi-Time Attention network model (mTAND-Full) and the classifier

based only on the Multi-Time Attention network encoder (mTAND-Enc) achieve

significantly improved performance relative to the current state-of-the-art methods

(ODE-RNN and L-ODE-ODE) and other baseline methods.

We also report the time per epoch in minutes for all methods. We note that the

ODE-based models require substantially more run time than other methods due to

the required use of an ODE solver (Chen et al., 2018; Rubanova et al., 2019). These

methods also require taking the union of all observation time points in a batch, which

further slows down the training process. As we can see, the proposed full Multi-Time

Attention network (mTAND-Full) is over 85 times faster than ODE-RNN and over

100 times faster than L-ODE-ODE, the best-performing ODE-based models.

MIMIC-III Experiments: Table 4.2 compares the predictive performance of

the models on the mortality prediction task on MIMIC-III. The Multi-Time Atten-

tion network-based encoder-decoder framework (mTAND-Full) achieves better per-

formance than the recent IP-Net and SeFT model as well as all of the RNN baseline

models. While ODE-RNN and L-ODE-ODE both have slightly better mean AUC
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Table 4.2: Classification Performance on PhysioNet, MIMIC-III and Human Activity
dataset.

Model
AUC Score Accuracy

time
PhysioNet MIMIC-III Human Activity per epoch

RNN-Impute 0.764± 0.016 0.8249± 0.0010 0.859± 0.004 0.5
RNN-∆t 0.787± 0.014 0.8364± 0.0011 0.857± 0.002 0.5
RNN-Decay 0.807± 0.003 0.8392± 0.0012 0.860± 0.005 0.7
RNN GRU-D 0.818± 0.008 0.8270± 0.0010 0.862± 0.005 0.7
Phased-LSTM 0.836± 0.003 0.8429± 0.0035 0.855± 0.005 0.3
IP-Nets 0.819± 0.006 0.8390± 0.0011 0.869± 0.007 1.3
SeFT 0.795± 0.015 0.8485± 0.0022 0.815± 0.002 0.5
RNN-VAE 0.515± 0.040 0.5175± 0.0312 0.343± 0.040 2.0
ODE-RNN 0.833± 0.009 0.8561± 0.0051 0.885± 0.008 16.5
L-ODE-RNN 0.781± 0.018 0.7734± 0.0030 0.838± 0.004 6.7
L-ODE-ODE 0.829± 0.004 0.8559± 0.0041 0.870± 0.028 22.0

mTAND-Enc 0.854± 0.001 0.8419± 0.0017 0.907± 0.002 0.1
mTAND-Full 0.858± 0.004 0.8544± 0.0024 0.910± 0.002 0.2

than mTAND-Full, the differences are not statistically significant. Further, as shown

on the PhysioNet classification problem, mTAND-Full is more than an order of mag-

nitude faster than the ODE-based methods.

Human Activity Experiments: Table 4.2 shows that the mTAND-based clas-

sifiers achieve significantly better performance than the baseline models on this pre-

diction task, followed by ODE-based models and IP-Nets.

4.4 Qualitative Evaluation

In this section, we demonstrate the effectiveness of learning temporally distributed

latent representations with mTANs on a synthetic dataset. We generate a synthetic

dataset consisting of 1000 trajectories each of 100 time points sampled over t ∈ [0, 1].

We fix 10 reference points and use an RBF kernel (κ(t, t′) = exp(−γ(t − t′)2) with

γ = 100 for constructing local interpolations at 100 time points over [0, 1]. The values

at the reference points are drawn from a standard normal distribution.
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Observed data Ground truth Reconstructions

Figure 4.3: Interpolations on the synthetic interpolation dataset. The columns repre-
sent 3 different examples. First row: Ground truth trajectories with observed points,
second row: reconstructions on the complete range t ∈ [0, 1] using the proposed model
mTAN, third row: reconstructions on the complete range t ∈ [0, 1] using the Latent
ODE model with ODE encoder.

We randomly sample 20 observations from each trajectory to simulate a sparse

and irregularly sampled multivariate time series. We use 80% of the data for training

and 20% for testing. At test time, the encoder conditions on 20 irregularly sampled

time points and the decoder generates interpolations on all 100 time points. Figure

4.3 illustrates the interpolation results on the test set for the Multi-Time Attention

Network and the Latent ODE model with ODE encoder (Rubanova et al., 2019). For

both the models, we draw 100 samples from the approximate posterior distribution.

As we can see from Figure 4.3, the ODE interpolations are much smoother and do

not capture the local structure as well as mTANs. This property of mTANs helps to

improve the interpolation performance in terms of mean squared error.
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Table 4.3: Synthetic Data: Mean Squared Error

Latent Dimension Model Reconstruction Interpolation

10
L-ODE-ODE 0.0209 0.0571

mTAND-Full 0.0088 0.0409

20
L-ODE-ODE 0.0191 0.0541

mTAND-Full 0.0028 0.0335

Table 4.3 compares the proposed model with best performing baseline Latent-ODE

with ODE encoder (L-ODE-ODE) on the reconstruction and interpolation tasks. For

both tasks, we condition on the 20 irregularly sampled time points and reconstruct

the input points (reconstruction) and the whole set of 100 time points (interpolation).

We report the mean squared error on the test set.

4.5 mTAN Ablation Study

In this section, we perform ablation experiments to show the performance gain

achieved by learning the similarity kernel and time embedding. Table 4.4 shows

the ablation results obtained by substituting a fixed positional encoding (Vaswani

et al., 2017) in place of the learnable time embedding defined in Equation 4.1 in the

mTAND-Full model on the PhysioNet and MIMIC-III data sets for the classification

task. We report the average AUC score over 5 runs. As we can see from Table 4.4,

learning the time embedding improves AUC score by 1% as compared to using fixed

positional encodings.

Table 4.4: Ablation with time embedding

Dataset Time Embedding AUC Score

PhysioNet
Positional Encoding 0.845± 0.004

Learned Time Embedding 0.858± 0.004

MIMIC-III
Positional Encoding 0.843± 0.001

Learned Time Embedding 0.854± 0.002
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Since mTANs are fundamentally continuous-time interpolation-based models, we

perform an ablation study by comparing mTANs with the IP-Nets (Chapter 3). IP-

Nets use several semi-parametric RBF interpolation layers, followed by a GRU to

model irregularly sampled time series. In this framework, we replace the RBF kernel

with a learnable similarity kernel using the mTAND module. This model corresponds

to mTAND-Enc. Table 4.5 compares the performance of the two methods on the

classification task on the PhysioNet, MIMIC-III and Human Activity data sets. We

report the average AUC score over 5 runs. Table 4.5 shows that learning the similarity

kernel using mTAND module performs as well or better than using a fixed RBF kernel.

Table 4.5: Comparing interpolation kernels

Dataset Model AUC Score

PhysioNet
IP-Nets 0.819± 0.006

mTAND-Enc 0.854± 0.001

MIMIC-III
IP-Nets 0.839± 0.001

mTAND-Enc 0.842± 0.001

Human Activity
IP-Nets 0.869± 0.007

mTAND-Enc 0.907± 0.002

4.6 Visualizing Attention Weights

In this section, we visualize the attention weights learned by our proposed model.

We experiment using the synthetic dataset (described in 4.4), which consists of uni-

variate time series. Figure 4.4 shows the attention weights learned by the encoder

mTAND module. The input shown in the figure is the irregularly sampled time series

and the edges show how the output at reference points attends to the input time

points. The final output can be computed by substituting the attention weights in

Equation 4.3.

92



Irregularly sampled time points

Regularly sampled time points

Figure 4.4: Visualization of attention weights. mTAN learns an interpolation over
the query time points by attending to the observed values at key time points. The
brighter edges correspond to higher attention weights.

4.7 Conclusion

In this chapter, we have presented the Multi-Time Attention (mTAN) module for

learning from sparse and irregularly sampled data along with a VAE-based encoder-

decoder model leveraging this module. We show that the use of fixed RBF kernel

functions used in Chapter 3 to learn temporal similarity can be relaxed through the

use of a time attention mechanism coupled with a learned continuous-time embedding

function. The proposed method provides significantly more representational flexibility

and results in improvements over fixed RBF kernels. Our results also show that the

resulting model performs as well or better than a range of baseline and state-of-the-

art models on both the interpolation and classification tasks, while offering training

times that are one to two orders of magnitude faster than previous state of the art

methods.
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CHAPTER 5

HETEROSCEDASTIC TEMPORAL VARIATIONAL
AUTOENCODER

The mTAN framework introduced in Chapter 4 has been shown to provide state-

of-the-art classification and deterministic interpolation performance on irregularly

sampled time series. However, like many VAEs, the mTAN architecture produces

a homoscedastic output distribution conditioned on the latent state. This means

that the model can only reflect uncertainty due to variable input sparsity through

variations in the VAE latent state. As we will show, this mechanism is insufficient to

capture differences in uncertainty over time. On the other hand, Gaussian Process

Regression-based (GPR) methods (Rasmussen and Williams, 2006) have the ability

to reflect variable uncertainty through the posterior inference process. The main

drawbacks of GPR-based methods are their significantly higher run times during

both training and inference, and the added restriction of needing to define positive

definite covariance functions for multivariate time series (Section 2.5).

In this chapter, we propose a novel encoder-decoder architecture for multivariate

probabilistic time series interpolation that we refer to as the Heteroscedastic Tem-

poral Variational Autoencoder or HeTVAE. HeTVAE aims to address the challenges

described above by encoding information about input sparsity using an uncertainty-

aware multi-time attention network (UnTAN), flexibly capturing relationships be-

tween dimensions and time points using both probabilistic and deterministic latent

pathways, and directly representing variable output uncertainty via a heteroscedastic

output layer.
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The proposed UnTAN layer generalizes the previously introduced mTAN layer

with an additional intensity network that can more directly encode information about

input uncertainty due to variable sparsity. Similar to mTANs, the proposed UnTAN

layer uses an attention mechanism to produce a distributed latent representation of

irregularly sampled time series at a set of reference time points. The UnTAN module

thus provides an interface between input multivariate, sparse and irregularly sampled

time series data and more traditional deep learning components that expect fixed-

dimensional or regularly spaced inputs. We combat the presence of additional local

optima that arises from the use of a heteroscedastic output layer by leveraging an

augmented training objective where we combine the ELBO loss with an uncertainty

agnostic loss component. The uncertainty agnostic loss component helps to prevent

learning from converging to local optima where the structure in the data is explained

as noise.

We evaluate the proposed architecture on both synthetic and real data sets. The

results show that our approach outperforms a variety of baseline models and recent

approaches in terms of log likelihood, which is our primary metric of interest in the

case of probabilistic interpolation. Finally, we perform ablation testing of different

components of the architecture to assess their impact on interpolation performance.

5.1 Probabilistic Interpolation with the HeTVAE

In this section, we present the proposed architecture for probabilistic interpo-

lation of irregularly sampled time series, the Heteroscedastic Temporal Variational

Autoencoder (HeTVAE). HeTVAE leverages a sparsity-aware layer as the encoder

and decoder in order to represent input uncertainty and propagate it to output inter-

polations. We begin by describing the architecture of the encoder/decoder network

followed by the complete HeTVAE architecture. We follow the series-based data

representation introduced in Section 2.1.1.
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Figure 5.1: Architecture of UnTAND module. This module takes D-dimensional
irregularly sampled time points t = [t1, · · · , tD] and corresponding observations x =
[x1, · · · ,xD] as keys and values and produces a fixed dimensional representation at the
query time points r = [r1, · · · , rK ]. Shared time embedding and attention function
provide input to parallel intensity (Int) and value (Val) encoding networks, whose
outputs are subsequently fused via concatenation and an additional linear encoding
layer.

5.1.1 Representing Input Sparsity

As noted in the previous section, the mTAN encoder module does not represent

information about input sparsity due to the normalization of the attention weights.

To address this issue, we propose an augmented module that we refer to as an

Uncertainty Aware Multi-Time Attention Network (UnTAN). The UnTAN module

is shown in Figure 5.1. This module includes two encoding pathways that leverage

a shared time embedding function and a shared attention function. The first encod-

ing pathway (the intensity pathway, INT) focuses on representing information about

the sparsity of observations while the second encoding pathway (the value pathway,
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VAL) focuses on representing information about values of observations. The outputs

of these two pathways are concatenated and mixed via a linear layer to define the

final output of the module. The mathematical description of the module is given in

Equations 5.1 to 5.3 and is explained in detail below.

inth(tq, td) =
pool({exp(αh(tq, tid)) | tid ∈ td})
pool({exp(αh(tq, ti′u)) | ti′u ∈ tu})

(5.1)

valh(tq, td,xd) =
pool({exp(αh(tq, tid)) · xid | tid ∈ td, xid ∈ xd})

pool({exp(αh(tq, ti′d)) | ti′d ∈ td})
(5.2)

αh(t, t
′) =

(
φh(t)wvTφh(t

′)T√
de

)
(5.3)

Time Embeddings and Attention Weights: Similar to the mTAN module, the

UnTAN module uses time embedding functions φh(t) to project univariate time values

into a higher dimensional space. Each time embedding function is a one-layer fully

connected network with a sine function non-linearity φh(t) = sin(ω ·t+β). We learn H

time embeddings each of dimension de. w and v are the parameters of the scaled dot

product attention function αh(t, t
′) shown in Equation 5.3. The scaling factor 1/

√
de

is used to normalize the dot product to counteract the growth in the dot product

magnitude with increase in the time embedding dimension de.

Intensity Encoding: The intensity encoding pathway is defined by the function

inth(tq, td) shown in Equation 5.1. φh refers to the hth time embedding function. The

inputs to the intensity function are a query time point tq and a vector td containing all

the time points at which observations are available for dimension d. The numerator

of the intensity function exponentiates the attention weights between tq and each

time point in td to ensure positivity, then pools over the observed time points. The

denominator of this computation is identical to the numerator, but the set of time

points tu that is pooled over is the union over all observed time points for dimension

d from all data cases.
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Intuitively, if the largest attention weight between tq and any element of td is small

relative to attention weights between tq and the time points in tu, then the output

of the intensity function will be low. Importantly, due to the use of the non-linear

time embedding function, pairs of time points with high attention weights do not

necessarily have to be close together in time meaning the notion of intensity that

the network expresses is significantly generalized relative to IP-Net model (Section

3.1.2.1).

We also note that different sets could be used for tu including a regularly spaced

set of reference time points. One advantage of using the union of all observed time

points is that it fixes the maximum value of the intensity function at 1. The two

pooling functions applicable in the computation of the intensity function are max

and sum. If the time series is sparse, max works well because using sum in the

sparse case can lead to very low output values. In a more densely observed time

series, either sum or max can be used.

Value Encoding: The value encoding function valh(tq, td,xd) is presented in Equa-

tion 5.2 in a form that highlights the symmetry with the intensity encoding function.

The primary differences are that valh(tq, td,xd) takes as input both observed time

points td and their corresponding values xd, and the denominator of the function

pools over td itself. While different pooling options could be used for this function,

in practice we use sum-based pooling. These choices lead to a function valh(tq, td,xd)

that interpolates the observed values at the query time points using softmax weights

derived from the attention function. The values of observed points with higher at-

tention weights contribute more to the output value. This structure is equivalent to

that used in the mTAN module when sum-based pooling is used. We can also clearly

see that this function on its own can not represent information about input sparsity

due to the normalization over td. Indeed, the function is completely invariant to an

additive decrease in all of the attention weights α′h(tq, tid) = αh(tq, tid)− δ.
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Module Output: The last stage of the UnTAN module concatenates the value

and intensity pathway representations and then linearly weights them together to form

the final J-dimensional representation that is output by the module. The parameters

of this linear stage of the model are U int
hdj and U val

hdj . The value of the jth dimension of

the output at a query time point tq is given by Equation 5.4.

UnTAN(tq, t,x)[j] =
H∑
h=1

D∑
d=1

 inth(tq, td)

valh(tq, td,xd)


T U int

hdj

U val
hdj

 (5.4)

Finally, similar to the mTAN module, the UnTAN module can be adapted to

produce fully observed fixed-dimensional discrete sequences by materializing its out-

put at a set of reference time points. For a given set of reference time points

r = [r1, · · · , rK ], the discretized UnTAN module UnTAND(r, t,x) is defined as

UnTAND(r, t,x)[i] = UnTAN(ri, t,x). This module takes as input the time se-

ries s = (t,x) and the set of reference time points r and outputs a sequence of K

UnTAN embeddings, each of dimension J corresponding to each reference point. As

described in the next section, we use the UnTAND module to provide an interface

between sparse and irregularly sampled data and fully connected MLP network struc-

tures.

5.1.2 The HeTVAE Model

In this section, we describe the overall architecture of the HeTVAE model, as

shown in Figure 5.2. The HeTVAE consists of parallel deterministic and probabilistic

pathways for propagating input information to the output distribution, including

information about input sparsity. We begin by mapping the input time series s =

(t,x) through the UnTAND module along with a collection of K reference time

points r. In the probabilistic path, we construct a distribution over latent variables
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Figure 5.2: Architecture of HeTVAE consisting of the UnTAND module to repre-
sent input uncertainty, parallel probabilistic (Prob) and deterministic (Det) encoding
paths, and a heteroscedastic output distribution that aims to reflect uncertainty due
to input sparsity in the output distribution.

at each reference time point using a diagonal Gaussian distribution q with mean and

variance output by fully connected layers applied to the UnTAND output embeddings

henc = [henc1 , · · · ,hencK ] as shown in Equation 5.6. In the deterministic path, the

UnTAND output embeddings henc are passed through a feed-forward network g to

produce a deterministic temporal representation (at each reference point) of the same

dimension as the probabilistic latent state.

The decoder takes as input the representation from both pathways along with

the reference time points and a set of query points t′ (Equation 5.8). The UnTAND

module produces a sequence of embeddings hdec = [hdec1 , · · · ,hdec|t′| ] corresponding to

each time point in t′. The UnTAND embeddings are then independently decoded
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using a fully connected decoder fdec and the result is used to parameterize the output

distribution. We use a diagonal covariance Gaussian distribution where both the mean

µ = [µ1, · · · ,µ|t′|],µi ∈ RD and variance σ2 = [σ2
1, · · · ,σ2

|t′|],σ
2
i ∈ RD are predicted

for each time point by the final decoded representation as shown in Equation 5.9. The

final generated time series is sampled from this distribution and is given by ŝ = (t′,x′)

with all data dimensions observed.

The complete model is described below. We define qγ(z|r, s) to be the distribution

over the probabilistic latent variables z = [z1, · · · , zK ] induced by the input time

series s = (t,x) at the reference time points r. We let phetθ (x′id | zcat, t′id) define the

final probability distribution over the value of time point t′id on dimension d given the

concatenated latent state zcat = [zcat
1 , · · · , zcat

K ]. γ and θ represent the parameters of

all components of the encoder and decoder respectively.

henc = UnTANDenc(r, t,x) (5.5)

zk ∼ qγ(zk |µk,σ2
k), µk = f encµ (henck ), σ2

k = f encσ (henck ) (5.6)

zcat
k = concat(zk, g(henck )) (5.7)

hdec = UnTANDdec(t′, r, zcat) (5.8)

phetθ (x′id | zcat, t′id) = N (x′id; µi [d], σ2
i [d]), µi = fdecµ (hdeci ), σ2

i = fdecσ (hdeci ) (5.9)

x′id ∼ phetθ (x′id | zcat, t′id) (5.10)

Compared to the constant output variance used to train the mTAN-based VAE

model proposed in Chapter 4, our proposed model produces a heteroscedastic out-

put distribution that we will show provides improved modeling for the probabilis-

tic interpolation task. However, the increased complexity of the model’s output

representation results in an increased space of local optima. We address this is-

sue using an augmented learning objective, as described in the next section. Fi-

nally, we note that we can easily obtain a simplified homoscedastic version of the
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model with constant output variance σ2
c using the alternate final output distribution

pcθ(x
′
id | z, t′id) = N (x′id; µi [d], σ2

c ).

5.1.3 Augmented Learning Objective:

To learn the parameters of the HeTVAE framework given a data set of sparse and

irregularly sampled time series, we propose an augmented learning objective based

on a normalized version of the evidence lower bound (ELBO) combined with an

uncertainty agnostic scaled squared loss. We normalize the contribution from each

data case by the total number of observations so that the effective weight of each data

case in the objective function is independent of the total number of observed values.

We include the scaled squared loss term to counteract the propensity of the het-

eroscedastic model to become stuck in poor local optima where the mean is essentially

flat and all of the structure in the data is explained as noise. Including a small con-

tribution from the uncertainty insensitive squared loss component helps to regularize

the model toward finding more informative parameters. As we will show in the ex-

periments, the use of this augmented training procedure has a strong positive impact

on final model performance. The augmented learning objective is defined below. µn

is the predicted mean over the test time points as defined in Equation 5.9. Also recall

that the concatenated latent state zcat depends directly on the probabilistic latent

state z.

LNVAE(θ, γ) =
N∑
n=1

1∑
d Ldn

(
Eqγ(z|r,sn)[log phetθ (xn|zcat

n , tn)]−DKL(qγ(z|r, sn)||p(z))

+ λEqγ(z|r,sn)‖xn − µn‖22]
)

(5.11)

DKL(qγ(z|r, sn)||p(z)) =
K∑
i=1

DKL(qγ(zi|r, sn)||p(zi)) (5.12)

log phetθ (xn|zcat
n , tn) =

D∑
d=1

Ldn∑
j=1

log phetθ (xjdn|zcat
n , tjdn) (5.13)
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5.2 Experiments

In this section, we present interpolation and classification experiments using a

range of models and four real-world data sets consisting of multivariate, sparse and

irregularly sampled time series data − Physionet Challenge 2012 (Section 2.10.2),

MIMIC-III (Section 2.10.1), USHCN climate dataset (Section 2.10.7), and UCI elec-

tricity dataset (Section 2.10.8). We also show qualitative results on a synthetic

dataset.

5.2.1 Datasets

5.2.1.1 Real Data

On PhysioNet, we use all 8000 instances for interpolation experiments and the

4000 labeled instances for classification experiments. For MIMIC-III, we follow the

data extraction process described in Section 3.2 and focus on interpolation and clas-

sification experiments using all 53, 211 records. For climate and electricity dataset,

we use all the records obtained after preprocessing steps described in Section 2.10.7

and 2.10.8 respectively and focus on interpolation task. We rescale time to be in

[0, 1] for all datasets. We also re-scale all dimensions. Specifically for PhysioNet and

MIMIC-III, for each dimension we first remove outliers in the outer 0.1% percentile

region. We then compute the mean and standard deviation of all observations on that

dimension. The outlier detection step is used to mitigate the effect of rare large values

in the data set from affecting the normalization statistics. Finally, we z-transform all

of the available data (including the points identified as outliers). No data points are

discarded from the data sets during the normalization process.

5.2.1.2 Synthetic Data

We also show qualitative results on a synthetic dataset to demonstrate the capa-

bilities of our model. We generate a synthetic dataset consisting of 2000 trajectories

each consisting of 50 time points with values between 0 and 1. We fix 10 reference
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time points and draw values for each from a standard normal distribution. We then

use an RBF kernel smoother with a fixed bandwidth of α = 120.0 to construct local

interpolations over the 50 time points. The data generating process is shown below:

zk ∼ N (0, 1), k ∈ [1, · · · , 10]

rk = 0.1 ∗ k

ti = 0.02 ∗ i, i ∈ [1, · · · , 50]

xi =

∑
k exp(−α(ti − rk)2) · zk∑
k′ exp(−α(ti − rk′)2)

+N (0, 0.12)

We randomly sample 3−10 observations from each trajectory to simulate a sparse

and irregularly sampled univariate time series.

5.2.2 Experimental Protocols

We conduct interpolation experiments on all the datasets. We use the labeled

data in Physionet and MIMIC-III to perform classification experiments. We randomly

divide the real data sets into a training set containing 80% of the instances, and a test

set containing the remaining 20% of instances. We use 20% of the training data for

validation. In the interpolation task, we condition on a subset of available points and

produce distributions over the rest of the time points. On the real-world datasets,

we perform interpolation experiments by conditioning on 50% of the available points.

At test time, the values of observed points are conditioned on and each model is

used to infer single time point marginal distributions over values at the rest of the

available time points in the test instance. In the case of methods that do not produce

probabilistic outputs, we make mean predictions. In the case of the synthetic dataset

where we have access to all true values, we use the observed points to infer the values at

the rest of the available points. We repeat each real data experiment five times using
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different random seeds to initialize the model parameters. We assess performance

using the negative log likelihood, which is our primary metric of interest. We also

report mean squared and mean absolute error for interpolation experiments and area

under ROC curve (AUC score) for classification experiments. For all experiments,

we select hyper-parameters on the held-out validation set using grid search and then

apply the best trained model to the test set. The hyper-parameter ranges searched

for each model and dataset are fully described in Section 5.2.5.

5.2.3 Models

We compare our proposed model HeTVAE to several probabilistic and determinis-

tic interpolation methods. We compare to two Gaussian processes regression (GPR)

approaches. The most basic GP model for multivariate time series fits one GPR

model per dimension. This approach is known as a single task GP model (STGP)

(Rasmussen and Williams, 2006). A potentially better option is to model data using

a Multi Task GP (MTGP) (Bonilla et al., 2008). This approach models the correla-

tions both across different dimensions and across time by defining a kernel expressed

as the Hadamard product of a temporal kernel (as used in the STGP) and a task

kernel.

We also compare to several VAE-based approaches. These approaches use a ho-

moscedastic output distribution with different encoder and decoder architectures.

HVAE RNN employs a gated recurrent unit network (Chung et al., 2014) as encoder

and decoder, HVAE RNN-ODE (Chen et al., 2018) replaces the RNN decoder with

a neural ODE, HVAE ODE-RNN-ODE (Rubanova et al., 2019) employs a ODE-

RNN encoder and neural ODE decoder. Finally, we compare to HTVAE mTAN

(Shukla and Marlin, 2021a), a temporal VAE model consisting of multi-time atten-

tion networks producing homoscedastic output. For VAE models with homoscedastic

output, we treat the output variance term as a hyperparameter and select the vari-
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ance using log likelihood on the validation set. Architecture details for these methods

can be found in Section 5.2.4. As baselines, we also consider deterministic mean and

forward imputation-based methods. Forward imputation always predicts the last

observed value on each dimension, while mean imputation predicts the mean of all

the observations for each dimension.

5.2.4 Architecture Details

HeTVAE: Learnable parameters in the UnTAND architecture shown in Figure

5.1 include the weights of the three linear layers and the parameters of the shared time

embedding functions. Each time embedding function is a one layer fully connected

network with a sine function non-linearity. The two linear layers on top of embedding

function are linear projections from time embedding dimension de to de/H where H is

the number of time embeddings. Note that these linear layers do not share parameters.

The third linear layer performs a linear projection from 2 × D × H to J . It takes

as input the concatenation of the VAL encoder output and INT encoder output and

produces an output of dimension J . de, H and J are all hyperparameters of the

architecture. The ranges considered are described in the next section.

The HeTVAE model shown in the Figure 5.2 consists of three MLP blocks apart

from the UnTAND modules. The MLP in the deterministic path is a one layer fully

connected layer that projects the UnTAND output to match the dimension of the

latent state. The remaining MLP blocks are two-layer fully connected networks with

matching width and ReLU activations. The MLP in the decoder takes the output

of the UnTAND module and outputs the mean and variance of dimension D and

sequence length |t′|. We use a softplus transformation on the decoder output to get

the variance σi = 0.01 + softplus(fdecσ (hdeci )). Similarly, in the probabilistic path,

we apply an exponential transformation to get the variance of the q distribution

σ2
k = exp(f encσ (henck )). We use K reference time points regularly spaced between 0
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and 1. K is considered to be a hyperparameter of the architecture. The ranges

considered are described in the next section.

Baselines: For the HTVAE mTAN, we use a similar architecture as HeTVAE

where we remove the deterministic path, heteroscedastic output layer and use the

mTAND module instead of the UnTAND module (Shukla and Marlin, 2021a). We

use the same architectures for the ODE and RNN-based VAEs as Rubanova et al.

(2019).

5.2.5 Hyperparameters

HeTVAE: We fix the time embedding dimension to de = 128. The number

of embeddings H is searched over the range {1, 2, 4}. We search for the num-

ber of reference points K over the range {4, 8, 16, 32}, the latent dimension over

the range {8, 16, 32, 64, 128}, the output dimension of UnTAND J over the range

{16, 32, 64, 128}, and the width of the two-layer fully connected layers over {128, 256, 512}.

In the augmented learning objective, we search for λ over the range {1.0, 5.0, 10.0}.

We use the Adam Optimizer for training the models. Experiments are run for 2, 000

iterations with a learning rate of 0.0001 and a batch size of 128. We use 100 samples

from the probabilistic latent state to compute the evaluation metrics.

Ablations: We follow the same procedure as HeTVAE in tuning the hyper-

paramters for the several ablations. We note that the ablation HeTVAE - PROB -

ALO consists of only the deterministic pathway and is trained only with the ELBO

objective.

VAE Baselines: For VAE models with homoscedastic output, we treat the

output variance term as a hyperparameter and select the variance over the range

{0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. For HTVAE mTAN, we search

for the corresponding hyperparameters over the same range as HeTVAE. For the

ODE and RNN based VAEs, we search for GRU hidden units, latent dimension, the
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Table 5.1: Interpolation performance on PhysioNet.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

Mean Imputation − 0.7396± 0.0000 1.1634± 0.0000
Forward Imputation − 0.4840± 0.0000 0.9675± 0.0000
Single-Task GP 0.7875± 0.0005 0.4075± 0.0001 0.6110± 0.0003
Multi-Task GP 0.9250± 0.0040 0.4178± 0.0007 0.7381± 0.0051
HVAE RNN 1.5220± 0.0019 0.7634± 0.0014 1.2061± 0.0038
HVAE RNN-ODE 1.4946± 0.0025 0.7372± 0.0026 1.1545± 0.0058
HVAE ODE-RNN-ODE 1.2906± 0.0019 0.5334± 0.0020 0.7622± 0.0027
HTVAE mTAN 1.2426± 0.0028 0.5056± 0.0004 0.7167± 0.0016
HeTVAE 0.5542± 0.0209 0.3911± 0.0004 0.5778± 0.0020

Table 5.2: Interpolation performance on MIMIC-III.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

Mean Imputation − 0.7507± 0.0000 0.9842± 0.0000
Forward Imputation − 0.4902± 0.0000 0.6148± 0.0000
Single-Task GP 0.8360± 0.0013 0.4167± 0.0006 0.3913± 0.0002
Multi-Task GP 0.8722± 0.0015 0.4121± 0.0005 0.3923± 0.0008
HVAE RNN 1.4380± 0.0049 0.7804± 0.0073 1.0382± 0.0086
HVAE RNN-ODE 1.3464± 0.0036 0.6864± 0.0069 0.8330± 0.0093
HVAE ODE-RNN-ODE 1.1533± 0.0286 0.5447± 0.0228 0.5642± 0.0334
HTVAE mTAN 1.0498± 0.0013 0.4931± 0.0008 0.4848± 0.0008
HeTVAE 0.6662± 0.0023 0.3978± 0.0003 0.3716± 0.0001

number of hidden units in the fully connected network for the ODE function in the

encoder and decoder over the range {20, 32, 64, 128, 256}. For ODEs, we also search

for the number of layers in the fully connected network in the range {1, 2, 3}. We use

a batch size of 50 and a learning rate of 0.001. We use 100 samples from the latent

state to compute the evaluation metrics.

Gaussian Processes: For the single task GP, we use a squared exponential

kernel. In case of the multi-task GP, we experimented with the Matern kernel with

different smoothness parameters, and the squared exponential kernel. We found that

108



Table 5.3: Interpolation performance on Climate Dataset.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

Mean Imputation − 0.4539± 0.0000 0.8403± 0.0000
Forward Imputation − 0.2979± 0.0000 0.8426± 0.0000
Single-Task GP 0.2478± 0.0016 0.2738± 0.0002 0.4886± 0.0001
Multi-Task GP − − −
HVAE RNN 1.3666± 0.0674 0.4838± 0.0474 0.8587± 0.0863
HVAE RNN-ODE 1.1769± 0.0032 0.3514± 0.0067 0.6076± 0.0059
HVAE ODE-RNN-ODE 1.1766± 0.0053 0.3531± 0.0034 0.5953± 0.0051
HTVAE mTAN 0.9262± 0.0073 0.2916± 0.0046 0.5162± 0.0060
HeTVAE 0.1287± 0.0242 0.2813± 0.0034 0.5013± 0.0116

Table 5.4: Interpolation performance on Electricity Dataset.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

Mean Imputation − 0.6765± 0.0000 1.0311± 0.0000
Forward Imputation − 0.6163± 0.0000 1.2626± 0.0000
Single-Task GP 0.8972± 0.0009 0.5456± 0.0007 0.7827± 0.0005
Multi-Task GP 0.7767± 0.0033 0.5324± 0.0016 0.7782± 0.0006
HVAE RNN 1.3981± 0.0043 0.6267± 0.0055 0.9577± 0.0093
HVAE RNN-ODE 1.3947± 0.0054 0.6262± 0.0074 0.9469± 0.0111
HVAE ODE-RNN-ODE 1.4089± 0.0095 0.6453± 0.0042 0.9792± 0.0184
HTVAE mTAN 1.4040± 0.0148 0.6392± 0.0250 0.9724± 0.0366
HeTVAE 0.7055± 0.0103 0.5049± 0.0039 0.7503± 0.0162

the Matern kernel performs better. We use maximum marginal likelihood to train the

GP hyperparameters. We search for the learning rate over the range {0.1, 0.01, 0.001}

and run for 100 iterations. We search for smoothness parameter over the range

{0.5, 1.5, 2.5}. We search for the batch size over the range {32, 64, 128, 256}.

5.2.6 Interpolation Results

Tables 5.1, 5.2, 5.3 and 5.4 compare the interpolation performance of all the ap-

proaches on PhysioNet, MIMIC-III, Climate and Electricity dataset respectively. The

proposed model HeTVAE outperforms the previous approaches in terms of log like-
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lihood on all datasets. The Gaussian Process based methods − Single-Task GP and

Multi-Task GP1 achieve second and third best performance. We emphasize that while

the MAE and MSE values for some of the prior approaches are close to those obtained

by the HeTVAE model, the primary metric of interest for comparing probabilistic in-

terpolation approaches is log likelihood, where the HeTVAE performs much better

than the other methods. We also note that the MAE/MSE of the VAE-based models

with homoscedastic output can be improved by using a small fixed variance during

training. However, this produces even worse log likelihood values.

In terms of the number of parameters, GP-based approaches (STGP and MTGP)

have very few learnable parameters compared to other deep learning based approaches.

Hence, these approaches would have an advantage over the HeTVAE and other VAE-

based approaches in very low data regimes.

5.2.7 Classification Results

Similar to mTANs, we can augment the HeTVAE model with a supervised learn-

ing component that leverages the latent states as a feature extractor (HeTVAE -

Latent State). We also consider using the output interpolations as a feature extrac-

tor (HeTVAE - Output Interpolations). In this work, we focus on classification as

an illustrative supervised learning problem. We use a one layer Transformer encoder

(Vaswani et al., 2017) as the classification model. In order to perform classification,

we use the standard approach of adding an extra learnable token whose state at the

output of the Transformer encoder is passed through a two-layer fully connected layer

to output the class probabilities.

We compare to several deep learning models that expand on recurrent networks

to accommodate irregular sampling. We also compare to several encoder-decoder

1The current implementation of Multi-Task GP is not scalable to the Climate dataset (270
dimensions).
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Table 5.5: Classification performance on PhysioNet.

Models AUC Score
Negative Log

Likelihood

GRU-D 0.818± 0.008 0.348± 0.002
Phased-LSTM 0.836± 0.003 0.330± 0.002
IP-Nets 0.819± 0.006 0.344± 0.005
SeFT 0.795± 0.015 0.363± 0.009
ODE-RNN 0.833± 0.009 0.333± 0.003
L-ODE-ODE 0.829± 0.004 0.336± 0.003
mTAND-Full 0.858± 0.004 0.310± 0.001

HeTVAE - Output Interpolation 0.852± 0.002 0.323± 0.003
HeTVAE - Latent State 0.857± 0.003 0.319± 0.004

Table 5.6: Classification performance on MIMIC-III.

Models AUC Score
Negative Log

Likelihood

GRU-D 0.8270± 0.0010 0.2213± 0.0010
Phased-LSTM 0.8429± 0.0035 0.2187± 0.0012
IP-Nets 0.8390± 0.0011 0.2216± 0.0006
SeFT 0.8485± 0.0022 0.2150± 0.0030
ODE-RNN 0.8561± 0.0051 0.2110± 0.0004
L-ODE-ODE 0.8559± 0.0041 0.2127± 0.0005
mTAND-Full 0.8544± 0.0024 0.2139± 0.0005

HeTVAE - Output Interpolation 0.8807± 0.0007 0.1992± 0.0004
HeTVAE - Latent State 0.8874± 0.0008 0.1952± 0.0005

approaches. The full list of model variants is described in Section 4.3.2. Table 5.5 and

5.6 compare the predictive performance of the models on the mortality prediction task

on PhysioNet and MIMIC-III respectively. The HeTVAE classifier using the latent

state significantly outperforms other models on the MIMIC-III dataset across both

metrics, while on PhysioNet it achieves comparable performance to the mTAND-Full

model introduced in Chapter 4. We can also see that the HeTVAE classifier using

latent state achieves better performance than the classifier using output interpolations

on the MIMIC-III, while their performance are similar on the PhysioNet dataset.
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Table 5.7: Ablation Study of HeTVAE on PhysioNet.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

HetVAE 0.5542± 0.0209 0.3911± 0.0004 0.5778± 0.0020
HeTVAE - ALO 0.6087± 0.0136 0.4087± 0.0008 0.6121± 0.0063
HeTVAE - DET 0.6278± 0.0017 0.4089± 0.0005 0.5950± 0.0018
HeTVAE - INT 0.6539± 0.0107 0.4013± 0.0005 0.5935± 0.0015
HeTVAE - HET - ALO 1.1304± 0.0016 0.3990± 0.0003 0.5871± 0.0016
HeTVAE - DET - ALO 0.7425± 0.0066 0.4747± 0.0024 0.6963± 0.0031
HeTVAE - PROB - ALO 0.7749± 0.0047 0.4251± 0.0029 0.6230± 0.0040
HeTVAE - INT - DET - ALO 0.7866± 0.0029 0.4857± 0.0003 0.7120± 0.0007
HeTVAE - HET - INT - DET - ALO 1.2426± 0.0028 0.5056± 0.0004 0.7167± 0.0016

5.3 HeTVAE Ablation Study

Tables 5.7 and 5.8 show the complete results of ablating several different compo-

nents of the HeTVAE model and training procedure with respect to all three eval-

uation metrics on PhysioNet and MIMIC-III respectively. The first row shows the

results for the full proposed approach HeTVAE. We denote different components of

the HeTVAE model as follows −

• HET: heteroscedastic output layer

• ALO: augmented learning objective

• INT: intensity encoding

• DET: deterministic pathway

The results show selected individual and compound ablations of these components

and indicate that all of these components contribute significantly to the model’s per-

formance in terms of the negative log likelihood score. We provide detailed comments

below.

5.3.1 Effect of Heteroscedastic Layer

Since the augmented learning objective is introduced to improve the learning in

the presence of heteroscedastic layer, we remove the augmented learning objective
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Table 5.8: Ablation Study of HeTVAE on MIMIC-III.

Model Negative Log Mean Absolute Mean Squared
Likelihood Error Error

HetVAE 0.6662± 0.0023 0.3978± 0.0003 0.3716± 0.0001
HeTVAE - ALO 0.6869± 0.0111 0.4043± 0.0006 0.3840± 0.0007
HeTVAE - DET 0.7478± 0.0028 0.4129± 0.0008 0.3845± 0.0009
HeTVAE - INT 0.7430± 0.0011 0.4066± 0.0001 0.3837± 0.0001
HeTVAE - HET - ALO 0.9272± 0.0002 0.4044± 0.0001 0.3765± 0.0001
HeTVAE - DET - ALO 0.9005± 0.0052 0.5177± 0.0004 0.5325± 0.0008
HeTVAE - PROB - ALO 0.7472± 0.0056 0.4049± 0.0006 0.3833± 0.0008
HeTVAE - INT - DET - ALO 0.9245± 0.0021 0.5208± 0.0009 0.5358± 0.0012
HeTVAE - HET - INT - DET - ALO 1.0498± 0.0013 0.4931± 0.0008 0.4848± 0.0008

(ALO) with the heteroscedastic layer (HET). This ablation corresponds to HeTVAE

- HET - ALO. As we can see from both Table 5.7 and 5.8, this results in a highly

significant drop in the log likelihood performance as compared to the full HeTVAE

model on both datasets. However, it results in only a slight drop in performance

with respect to MAE and MSE, which is sensible as the HET component only affects

uncertainty sensitive performance metrics.

5.3.2 Effect of Intensity Encoding

HeTVAE - INT removes the intensity encoding pathway from the UnTAND mod-

ule. It results in an immediate drop in performance on both datasets. We also

compare the effect of intensity encoding after removing the deterministic pathway

and the augmented learning objective. These ablations are shown in HeTVAE - DET

- ALO and HeTVAE - INT - DET - ALO. The performance drop is less severe in

this case because of the propensity of the heteroscedastic output layer to get stuck in

poor local optima in the absence of the augmented learning objective (ALO).

5.3.3 Effect of Augmented Learning Objective

The HeTVAE - ALO ablation shows the result of removing the augmented learn-

ing objective and training the model only using only the ELBO. This results in an
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immediate drop in performance on PhysioNet. The performance drop is less severe

on MIMIC-III. We further perform this ablation without the DET component and

observe severe drops in performance across all metrics on both datasets. These ab-

lations correspond to HeTVAE - DET and HeTVAE - DET - ALO. This shows that

along with ALO component, the DET component also constrains the model from

getting stuck in local optima where all of the structure in the data is explained as

noise. We show interpolations corresponding to these ablations in Section 5.4.1.

5.3.4 Effect of Deterministic Pathway

HeTVAE - DET removes the deterministic pathway from the model, resulting in

a performance drop on both MIMIC-III and PhysioNet across all metrics. We further

compare the performance of both the probabilistic and deterministic pathways in

isolation as shown by ablation HeTVAE - DET - ALO and HeTVAE - PROB - ALO.

We observe that the deterministic pathway HeTVAE - PROB - ALO outperforms the

probabilistic pathway HeTVAE - DET - ALO in terms of log likelihood on MIMIC-III

while the opposite is true in case of PhysioNet. However, on both datasets using only

the deterministic pathway (HeTVAE - PROB - ALO) achieves better MAE and MSE

scores as compared to using only the probabilistic pathway (HeTVAE - DET - ALO).

5.4 Qualitative Evaluation

In this section, we show sample visualizations on PhysioNet and a synthetic

dataset.

5.4.1 Interpolations on PhysioNet

Figure 5.3 shows example interpolations on the PhysioNet dataset. Following

the experimental setting mentioned in Section 5.2, the models were trained using all

dimensions and the inference uses all dimensions. We show interpolations correspond-

ing to Heart Rate only as an illustration. As we can see, the STGP and HeTVAE
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Figure 5.3: In this figure, we show example interpolations of one dimension corre-
sponding to Heart Rate on the PhysioNet dataset. The columns correspond to differ-
ent examples. The rows correspond to STGP, HeTVAE, HTVAE mTAN, HeTVAE-
DET-ALO and HeTVAE-DET respectively. The shaded region corresponds to ±
one standard deviation. STGP, HeTVAE and HeTVAE-DET exhibit variable output
uncertainty and good fit while mTAN and HETVAE-DET-ALO does not.

models exhibit good fit and variable uncertainty on the edges where there are no

observations. We can also see that mTAN trained with homoscedastic output is not

able to produce as good a fit because of the fixed variance at the output (discussed

in Section 5.2).

The most interesting observation is the performance of HeTVAE - DET - ALO,

an ablation of HeTVAE model that retains heteroscedastic output, but removes the

deterministic pathways and the augmented learning objective. This ablation signifi-

cantly underfits the data and performs similar to mTAN. This is an example of local

optima that arises from the use of a heteroscedastic output layer where the mean
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is excessively smooth and all of the structure in the data is explained as noise. We

address this with the use of augmented learning objective described in Section 5.1.2.

As seen in the Figure 5.3, adding the augmented learning objective (HeTVAE - DET)

clearly improves performance.

5.4.2 Synthetic Data Visualizations: Sparsity

In this section, we show sample interpolation results on the synthetic dataset.

The setting here is same as in Section 5.2. Figure 5.4 compares HTVAE mTAN, the

single task Gaussian process STGP, the proposed HeTVAE model and an ablation of

the proposed model without intensity encoding HeTVAE - INT. We vary the number

of observed points (3, 10, 20) and each model is used to infer the distribution over

the remaining time points. We draw multiple samples from the VAE latent state

for HeTVAE, HeTVAE - INT and HTVAE mTAN, and visualize the distribution of

the resulting mixture. Figure 5.4 illustrates the interpolation performance of each

of the models. As we can see, the interpolations produced by HTVAE mTAN have

approximately constant uncertainty across time and this uncertainty level does not

change even when the number of points conditioned on increases. On the other hand,

both HeTVAE and STGP show variable uncertainty across time. Their uncertainty

reduces in the vicinity of input observations and increases in gaps between obser-

vations. Even though the STGP model has an advantage in this experiment (the

synthetic data were generated with an RBF kernel smoother and STGP uses an RBF

kernel as the covariance function) the proposed model HeTVAE shows comparable

interpolation performance. The HeTVAE-INT model performs slightly better than

HTVAE mTAN model but it does not show variable uncertainty due to input sparsity

like HeTVAE.

116



Observed data Ground truth Reconstructions

ST
GP

He
TV

AE
m

TA
N

He
TV

AE
-IN

T

(a) Example 1.

ST
GP

He
TV

AE
m

TA
N

He
TV

AE
-IN

T

(b) Example 2.

Figure 5.4: Sample interpolation results on the synthetic dataset. The 3 columns
correspond to interpolation results with increasing numbers of observed points: 3,
10 and 20 respectively. The shaded region corresponds to ± one standard deviation.
STGP and HeTVAE exhibit variable output uncertainty in response to input sparsity
while mTAN and HeTVAE - INT do not.
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5.4.3 Synthetic Data Visualizations: Inter-Observation Gap

To demonstrate the effectiveness of intensity encoder (INT), we perform another

experiment on the synthetic dataset where we increase the maximum gap between

the observations. We follow the same training protocol as described in Section 5.2.

At test time, we condition on 10 observed points with increasing maximum inter-

observation gap. We vary the maximum inter-observation gap from 20% to 80% of

the length of the original time series. Each model is used to infer single time point

marginal distributions over values at the rest of the available time points in the test

instance.

Figure 5.5 shows the interpolations with increasing maximum inter-observation

gap. STGP and HeTVAE show variable uncertainty with time and the uncertainty

increases with increasing maximum inter-observation gap. On the other hand, HT-

VAE mTAN with homoscedastic output shows approximately constant uncertainty

with time and also across different maximum inter-observation gaps. These results

clearly show that HTVAE mTAN produces over-confident probabilistic interpolations

over large gaps.

Furthermore, we show an ablation of the proposed model HeTVAE - INT, where

we remove the intensity encoder and perform the interpolations. As we see from the

figure, this leads to approximately constant uncertainty across time as well as different

maximum inter-observation gaps. This shows that the HeTVAE model is not able to

capture uncertainty due to input sparsity as effectively without the intensity encoder.
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Figure 5.5: In this figure, we show example interpolations on the synthetic dataset
with increasing maximum inter-observation gap. The columns correspond to an inter-
observation gap of size 20%, 40%, 60% and 80% of the length of original time series.
The rows correspond to STGP, HeTVAE, HTVAE mTAN and HeTVAE-INT respec-
tively. The shaded region corresponds to the confidence region. STGP and HeTVAE
exhibit variable output uncertainty while mTAN and HeTVAE-INT does not.
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5.5 Conclusion

In this chapter, we have proposed the Heteroscedastic Temporal Variational Au-

toencoder (HeTVAE) for probabilistic interpolation of irregularly sampled time series

data. HeTVAE consists of an input sparsity-aware encoder, parallel deterministic

and probabilistic pathways for propagating input uncertainty to the output, and a

heteroscedastic output distribution to represent variable uncertainty in the output

interpolations. Furthermore, we propose an augmented training objective to combat

the presence of additional local optima that arise from the use of the heteroscedastic

output structure. Our results show that the proposed model significantly improves un-

certainty quantification in the output interpolations as evidenced by significantly im-

proved log likelihood scores compared to several baselines and state-of-the-art meth-

ods.
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CHAPTER 6

FUSION MODELS

In this chapter, we present architectures for combining time series and text modal-

ity. Specifically, we show how we can leverage the content in text data and fuse the

information they contain with irregularly sampled time series data. We build on the

previously described frameworks for modeling sparse and irregularly sampled time

series data. We study several methods for representing the text data, along with

both early and late fusion approaches to integrating the two data modalities (Kiela

and Bottou, 2014; Fiterau et al., 2017). Finally, we explore the predictive value of

integrating irregularly sampled time series data and text into a unified prediction

model.

We begin by presenting the proposed fusion approach. Next, we present mortality

prediction experiments on the MIMIC-III data set (Johnson et al., 2016) demonstrat-

ing how the relative predictive value of clinical text and physiological data change

during the first 48 hours after admission. We show that the late fusion approach can

provide a significant improvement over using individual modalities in isolation.

6.1 Fusion Model Framework

In this section, we present the proposed fusion modeling framework. We begin by

presenting a description of the models used for text followed by a discussion of fusion

approaches. We follow the notation introduced in Section 3.1.1. Additionally, we let

vn represent the unstructured text data present in the clinical notes as a sequence of

words.
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6.1.1 Text Models

We consider several different approaches to modeling unstructured text including

approaches based on bag-of-words and word embedding representations. We describe

each text representation approach below.

• TF-IDF: Each text document is first represented using TF-IDF features com-

puted from a bag-of-words representation. We remove stop words and select

a vocabulary consisting of the top 6,000 most frequent remaining words. We

apply a one hidden layer (1NN) fully connected network of size 128 on top of

the TF-IDF inputs, followed by the rest of the prediction network.

• Word Embedding (WE): Each document is first represented as a matrix

where rows are words in the document and columns are word embedding di-

mensions. Word embeddings are computed using a standard, pre-trained 300-

dimensional GloVe model (Pennington et al., 2014). We then apply a convo-

lutional neural network model with one 1D convolution and one pooling layer,

followed by a fully-connected layer of size 128 connected to the rest of the pre-

diction network. Stop words and words with no embeddings are removed. All

documents are zero-padded to match the length of the longest document. We

select the number of convolution kernels on a validation set.

• Unweighted Sentence Embedding (USE): Each document is first repre-

sented as a matrix where rows are sentences in the document and columns are

the sentence embedding dimensions. The sentence embeddings are computed by

averaging the GloVe embeddings (Pennington et al., 2014) of their constituent

words. We then apply a GRU model (Chung et al., 2014) to the sequence of

sentence embeddings, followed by a fully-connected layer of size 128 connected

to the rest of the prediction network. We consider GRU models with between

32 and 512 hidden units and select the best on a validation set.
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• Weighted Sentence Embedding (WSE): Each document is represented

as a matrix where rows are sentences in the document and columns are are

the sentence embedding dimensions. We compute the sentence embedding by

weighting the GloVe word embeddings (Pennington et al., 2014) based on their

unigram probability in the entire corpus as described in Arora et al. (2017). The

remainder of this approach matches the unweighted case as described above.

In all cases, the text representations described above are connected to the remain-

der of a prediction network via a 128-dimensional hidden layer. Recalling that vn

represents the raw, unstructured text data available as input for data case n, we can

view each of the methods described above as a different approach to computing a

fixed, 128-dimensional embedding v̂n = hφ(vn). To learn the parameters φ for each

approach, we use a supervised pre-training approach. We directly connect the text

embedding layer v̂n to the prediction target, and minimize a prediction loss. In this

work, we focus on in-hospital mortality prediction and use binary cross entropy as

the loss function during pre-training.

6.1.2 Fusion Approaches

In this section, we present fusion architectures that combine the networks for irreg-

ularly sampled time series introduced in previous chapters with the embedding-based

models for representing unstructured text described in Section 6.1.1. In particular,

we present two fusion architectures that accept as input the representations produced

by the interpolation network1 and the text embeddings produced by the unstructured

text models. Both architectures are shown in Figure 6.1 and are described below.

• Late Fusion: In this approach, the fusion architecture uses the GRU archi-

tecture to extract a fixed-dimensional latent representation of the physiological

1We refer to the architectures for irregularly sampled time series as interpolation network.
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Figure 6.1: Fusion architectures (top: late fusion, bottom: early fusion) for combining
time series and text information.

time series data. This representation is concatenated with the text embedding

layer and the combined latent representation is connected to the prediction

target using a linear layer. This architecture is shown in Figure 6.1a.

• Early Fusion: We also consider a deeper integration of the information con-

tained in both physiological time series and clinical notes. In this method, our

prediction network has access to the clinical text data prior to incorporating

physiological time series data via a GRU layer, as shown in Figure 6.1b.
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Since the output of the interpolation network is always a fully-observed fixed

dimensional temporal representation, we can also replace the GRU architecture in

fusion models with the recent Transformer (Vaswani et al., 2017) model. In both cases,

the fusion architecture takes as input the time series interpolants ŝn = fθ(sn) (where

fθ denote the interpolation network) as well as the text embedding v̂n = hφ∗(vn) and

outputs a prediction ŷn = gω(ŝn, v̂n) = gω(fθ(sn), hφ∗(vn)). As described above, we

use supervised pre-training of all of the model parameters by training the interpolation

and text embedding networks in isolation. During the fusion stage, we freeze the text

embedding parameters φ to their optimal pre-trained values φ∗, and fine-tune the rest

of the network parameters θ and ω.

The learning objective for the fusion framework requires specifying a loss `P for

the prediction network (we use cross-entropy loss for classification). We let `I be

the interpolation network loss. We also include `2 regularizers for all the network

parameters. δF , δG, and δR are hyper-parameters that control the trade-off between

the components of the objective function. The full objective is shown below.

θ∗, ω∗ = arg min
θ,ω

N∑
n=1

`P (yn, gω(fθ(sn), hφ∗(vn)))

+ δR

N∑
n=1

`I(sn, ŝn) + δF‖θ‖22 + δG‖ω‖22 (6.1)

The interpolation network loss `I corresponds to autoencoder loss, ELBO and

ELBO with augmented objective for IP-Nets, mTANs and HeTVAE respectively.

Note again that we leverage a pre-trained text embedding model, thus the text em-

bedding model parameters φ are fixed to their optimal pre-trained values φ∗. The

parameters of the fusion model (as well as all other models used in this work) are

learned using the Adam optimization method in TensorFlow with gradients provided

via automatic differentiation.
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6.2 Experiments

In this section, we present experiments and results. Our experiments focus on

the relative predictive performance of text-only models, time series-only models, and

fusion models for the problem of in-hospital mortality prediction. The prediction

output is a single binary variable representing the occurrence of in-hospital morality

more than 48 hours after admission. The time series inputs to the prediction task

are sparse and irregularly sampled physiological time series. We consider making

predictions using physiological time series data available between 6 and 48 hours

after admission. The text inputs to the prediction task consist of text content known

at the time of admission and progress notes available between 6 and 48 hours after

admission. We begin by briefly describing the data set used, followed by the set of

baseline and comparison models, the empirical protocols used, and finally the results.

6.2.1 Dataset

Our experiments are based on the publicly available MIMIC-III dataset (Section

2.10.1). We start with the dataset used in Section 3.2 which consists of hospital admis-

sion records with hospital admission-to-discharge length of stay more than 48 hours.

From that dataset, we obtained 42,984 records for our experiments after removing

newborns and hospital admission records containing no clinical notes. A hospital

admission may correspond to zero or multiple ICU episodes. In this chapter, we only

consider the data cases that were admitted to ICU at least once during their hospital

stay. We use text data known at the time of admission such as chief complaints,

past medical history and history of present illness. We take care in extracting this

information from discharge summaries in order to avoid any information leak. We

also extract progress notes from non-discharge reports such as respiratory, ECG, echo,

radiology, and nursing reports. We use the date and time stamps on these reports to

create a set of notes available between 6 and 48 hours after admission. Note that the
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physiological data and clinical notes are aligned in a conservative manner. If a clinical

note has both a date and time associated with it, we assume that information was

available at the specified time. For notes that have dates but not times available, we

assume that information was available at the end of the indicated day. This happens

for some ECG and Echo reports in the data set.

6.2.2 Baseline Models

We compare fusion models with a number of baseline approaches that model the

physiological time series or the clinical text data individually. We use the models

introduced in Chapter 3, 4 and 5 as baselines for time series. We use the pre-trained

text-only models described in Section 6.1.1 to provide text-only baselines.

6.2.3 Empirical Protocols

Each unique hospital admission-to-discharge episode for a patient is assigned a

unique ID in the MIMIC-III data set. The data in each episode are treated as being

independent. In the train-test split, we divide the data based on the hospital admis-

sion ID (i.e. 80% (27510) of IDs are used for training and 20% (8597) are used for

testing). We set aside another 20% (6877 data cases) from the training set to use as

a validation set. Since we only use data from within individual hospital-to-discharge

episodes, the data cases we construct are temporally non-overlapping. Again, this

is consistent with how the MIMIC-III data set has been used in past research (Che

et al., 2018a).

All models are trained to minimize the cross entropy loss. For all of the models,

we independently tune the following hyper-parameters : number of hidden layers,

hidden units, convolutional filters, filter-size, learning rate, dropout rates and regu-

larization parameters on the validation set. For TF-IDF-based models, we also tune

the number of TF-IDF features. The neural network models are learned using the

Adam optimizer. Early stopping is used on the validation set. The final outputs of
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Table 6.1: Text-only baselines.

Text Model Hours from AUC
Admission

WE / CNN 0 0.6974
WSE / RNN 0 0.7364
USE / RNN 0 0.7473
TF-IDF / 1-NN 0 0.7965
TF-IDF / 1-NN 6 0.8035
TF-IDF / 1-NN 12 0.8173
TF-IDF / 1-NN 18 0.8263
TF-IDF / 1-NN 24 0.8410
TF-IDF / 1-NN 30 0.8454
TF-IDF / 1-NN 36 0.8503
TF-IDF / 1-NN 42 0.8554
TF-IDF / 1-NN 48 0.8627

the hidden layers are used in a logistic layer that predicts the class. We evaluate all

the models using an estimate of generalization performance computed on the test set.

We report the performance on the test set in terms of the area under the ROC curve

(AUC score).

6.3 Results

In this section, we present the results of the mortality prediction experiments. We

begin with text-only and time series-only baseline results, followed by fusion model

results.

6.3.1 Text-Only Baselines

Table 6.1 shows the classification performance for the text-only models described

in Section 6.1.1. We evaluate all models in the case of text data available at the time

of admission. These results show that the TF-IDF-based model performs significantly

better than the embedding methods. This may be due to the fact that health-specific

concepts are not well represented in the standard Glove embeddings used. Another
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Table 6.2: Performance Comparison of Time Series-Only baselines in terms of Area
under ROC Curve (AUC Score).

Hours IP-Net mTAN HeTVAE

6 0.7106 0.7255 0.7433
12 0.7380 0.7678 0.7762
18 0.7645 0.7880 0.7981
24 0.7759 0.7921 0.8137
30 0.7902 0.8085 0.8185
36 0.7958 0.8176 0.8319
42 0.8023 0.8221 0.8413
48 0.8245 0.8366 0.8467

possible reason could be the use of abbreviated terms, which are quite common in

clinical notes. For this reason, we only consider the TF-IDF model when making

predictions based on all the progress notes available after admission. We can see that

prediction performance using the TF-IDF model increases significantly as more text

data become available over time.

6.3.2 Time Series-Only Baseline

Table 6.2 assesses the predictive performance of the time series-only baseline. We

consider all the three models introduced in this thesis − IP-Nets (Chapter 3), mTAN

(Chapter 4) and HeTVAE (Chapter 5). As expected, predictive performance increases

as the amount of observed physiological data increases. HeTVAE model achieves the

best performance consistently across all the settings. We can also see that mTAN

model always provides improvement over the IP-Net model. Comparing to the results

in Table 6.1, we can see that the predictive value of the clinical text available at the

time of admission exceeds that of the available physiological data until near the end

of the 42 hour period following admission in case of IP-Nets, while in case of HeTVAE

that period reduces to 18 hours. We note that the results reported here are different

from that in their respective chapters because of additional data filtering required for
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Table 6.3: Performance of Early and Late Fusion approach with notes available at
admission time and increasing amount of physiological signals in terms of AUC score.

Hours IP-Net mTAN HeTVAE

Early Late Early Late Early Late
Fusion Fusion Fusion Fusion Fusion Fusion

6 0.7850 0.8027 0.8028 0.8208 0.8019 0.8234
12 0.7916 0.8161 0.8145 0.8338 0.8171 0.8407
18 0.8046 0.8138 0.8251 0.8436 0.8243 0.8318
24 0.8126 0.8256 0.8262 0.8483 0.8327 0.8454
30 0.8284 0.8324 0.8358 0.8554 0.8442 0.8525
36 0.8291 0.8320 0.8390 0.8563 0.8495 0.8643
42 0.8380 0.8376 0.8469 0.8651 0.8523 0.8697
48 0.8427 0.8453 0.8521 0.8714 0.8612 0.8741

removing hospital admission records containing no clinical notes and neonates data.

The next set of experiment aims to assess whether these two modalities can result in

improved performance when fused.

6.3.3 Fusion Approaches with Admission Notes

Based on the observed success of the TF-IDF-based model in the text-only baseline

experiments, we examine the performance of fusion approaches using the TF-IDF-

based model to embed the clinical text data. We begin by assessing the performance

of a fusion approach that only has access to the clinical text data available at the

time of admission, but increasing amounts of physiological time series data up to

the end of the 48 hour period following admission. Table 6.3 shows the classification

performance of the early and late fusion models under this experimental scenario.

Figure 6.2 shows the performance of early and late fusion relative to the time series-

only and text-only baselines. We see that the late fusion approach achieves better

performance than the early fusion approach while both significantly improve on the

time series-only baseline. However, we see that all three models that incorporate

physiological data increase in predictive performance as the amount of physiological
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(c) HeTVAE

Figure 6.2: Performance comparison on the mortality prediction task with text avail-
able at admission only but increasing amounts of physiological time series.

data increases. Comparing performance across different models, we see that fusion

approaches with attention-based models mTAN and HeTVAE achieve similar results

while both performing better than that with IP-Net. Further, we see that the per-

formance gap between fusion and time series-only models decreases over time, which

indicates that the advantage provided by the initial fusion with text data available

at time of admission decreases over time as that information becomes less relevant.

Finally, we note that the late fusion model outperforms the text-only baseline at all

times while the early fusion model with IP-Net initially exhibits lower performance

than the text-only TF-IDF baseline, but goes on to match and then outperforms the

text-only baseline.

6.3.4 Fusion Approaches with Progress Notes

Next, we consider the fusion process as increasing volumes of text data become

available through time, as well as increasing volumes of physiological data. For this

experiment, we consider only the TF-IDF-based text embedding model and limit

the discussion to the late fusion approach as these models have achieved the best

performance in our experiments to date. We consider incorporating text data known

at admission at time 0, followed by the text of all notes known between 6 and 48 hours
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Figure 6.3: Performance comparison on the mortality prediction task with increasing
amount of physiological time series and progress notes using 5 randomly generated
train-validation-test splits. Bands correspond to 95% confidence interval around the
mean.

following admission . The results of this experiment are shown in Figure 6.3 and Table

6.4. We can see the predictive performance of progress notes is significantly better

than physiological time series data. We can also see that the performance of the fused

model always exceeds that of the corresponding text-only baseline at a given point in

time, with performance generally rising as additional physiological/text data become

available. Table 6.4 shows that the trend is the same in case of all three interpolation

network architectures. Furthermore, we see that with the availability of additional

text data through time, the performance of all three late fusion models employing

different interpolation network architectures is very similar, which indicates that the

relevance of the time series data has reduced. By comparing with Figure 6.2, we can

see that the addition of progress notes past admission results in a final fused model

that significantly outperforms models that only have access to text data from the

time of admission.

To verify the statistical significance of the gap between the late fusion approach

and the single-modality approaches, we perform a five-fold random resampling as-

sessment of the test AUC by randomly generating 5 train-validation-test splits. We
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Table 6.4: Performance of Late Fusion approach with increasing amount of physio-
logical signals and progress notes in terms of AUC score.

Hours IP-Net mTAN HeTVAE

6 0.8235± 0.0099 0.8244± 0.0007 0.8227± 0.0019
12 0.8351± 0.0064 0.8435± 0.0018 0.8383± 0.0013
18 0.8477± 0.0049 0.8534± 0.0013 0.8503± 0.0022
24 0.8581± 0.0050 0.8619± 0.0021 0.8616± 0.0021
30 0.8655± 0.0058 0.8664± 0.0027 0.8658± 0.0037
36 0.8699± 0.0046 0.8714± 0.0025 0.8725± 0.0049
42 0.8749± 0.0052 0.8793± 0.0030 0.8787± 0.0058
48 0.8813± 0.0063 0.8838± 0.0010 0.8862± 0.0027

run the complete hyper-parameter selection and learning pipeline for each approach

on each of the five data sets. Figure 6.3 shows the mean with 95% confidence interval

for all the baselines.

6.4 Conclusion

In this chapter, we have developed methods for investigating the relative predictive

value of the content of clinical notes and physiological time series data in ICU EHRs.

We have considered models based on clinical text only, models based on physiological

time-series only, and a novel fusion approach that combines both modalities. Our

experiments have focused on using this methodology to assess the relative predictive

value of clinical text and physiological data as a function of time since admission.

We have focused on the task of predicting in-hospital mortality events which take

place more than 48 hours after admission. We have performed experiments with

all three frameworks for irregularly sampled time series introduced in this thesis.

Our results show that the relative value of information in text records known at

the time of admission decreases over time as more physiological data are observed.

However, incorporating newly available text data can significantly boost predictive

performance. Finally, our results strongly support the conclusion that fusing both
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data modalities results in the best overall predictive performance. The use of the

more powerful mTAN and HeTVAE frameworks improves the performance of the time

series-only and late fusion approaches when considering the notes available only at

the time of admission. However, with the availability of additional text data through

time, we see no advantage with the mTAN and HeTVAE framework indicating that

the relevance of the time series data has reduced.
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Summary

In this thesis, we have focused on the development of deep learning models for the

problems of supervised and unsupervised learning from irregularly sampled time se-

ries data. We started by presenting a range of principles for learning from irregularly

sampled time series data. We have provided a categorization of current approaches

for this setting into groups based on the fundamental modeling primitives used to

accommodate irregular sampling. These modeling primitives include temporal dis-

cretization, interpolation, recurrence, attention and structural invariance. We have

discussed the relationship between the three fundamental representations of multivari-

ate irregularly sampled time series (series-based, vector-based, and set-based) that,

while equivalent, motivate the use of different modeling primitives and result in dif-

ferent specific models and methods. We have also defined a range of inference tasks

that can be performed using irregularly sampled time series (detection, prediction, fil-

tering, smoothing, interpolation and forecasting). Finally, we have described a large

number of specific models and methods with respect to the model primitives they

build on, the tasks they aim to solve, and their relative strengths and weaknesses.

Next, we present three methodological advances for unsupervised and supervised

learning with irregularly sampled time series. These approaches are based on the in-

terpolation modeling primitive. First we present Interpolation-prediction Networks,

a computationally efficient architecture based on RBF-kernel interpolation layers re-

sulting in state-of-the-art results on classification and regression tasks at the time of
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publication. Next, we show how the use of fixed RBF kernel functions can be relaxed

through the use of a novel attention-based continuous-time interpolation framework:

Multi-Time Attention Networks. This approach improves on interpolation-prediction

networks and provides interpolation and classification performance better than the

current state-of-the-art methods, while providing significantly reduced training times.

However, these approaches are not able to reflect the input uncertainty due to sparsity

and missingness in the output interpolations. To address this, we present HeTVAE,

novel deep learning framework for probabilistic interpolation. HeTVAE significantly

improves uncertainty quantification in the output interpolations compared to the

current state-of-the-art methods. Furthermore, we show that this framework is also

able to improve classification performance over the current state-of-the-art methods.

Finally, we use these building blocks to present fusion architectures for integrated

modeling of irregularly sampled time series and text data.

Overall, we have shown that interpolation-based models introduced in this the-

sis outperform current methods based on GPs, RNNs, and ODEs on several tasks

including whole time series classification, interpolation, smoothing, and prediction.

These models have also been shown to be substantially faster to train than Gaussian

process regression and ODE-based models.

7.2 Limitations

We note that the proposed models in this thesis are focused on learning from

time series generated from underlying continuously varying, real-valued univariate or

multivariate functions. While these models can be used with binary and ordinal time

series by treating them as real-valued, these models do not currently produce discrete

outputs. This is an interesting direction for future work as approaches for dealing

with irregularly sampled discrete data are also significantly lacking.
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Another limitation is that the approaches discussed in this thesis are not ap-

plicable to the continuous-time data generating process that do not correspond to

sampling continuously varying latent functions. Examples of such processes include

various types of temporal point processes and marked temporal point processes. In

particular, a marked temporal point process generates a sequence of time-value pairs

(t, x) that is structurally identical to data generated by an irregular sampling of a con-

tinuously varying function; however, these two categories of generative processes are

quite distinct. Point processes have time-to-event generative semantics and there is

no notion of a value that is defined during inter-event intervals. As a result, temporal

point process models focus on modeling the distribution of inter-event times and the

corresponding modeling approaches are largely distinct from those considered here.

We also note that while the HeTVAE model can produce a probability distribu-

tion over an arbitrary collection of output time points, it is currently restricted to

producing marginal distributions in the final layer. As a result, sampling from the

model does not necessarily produce smooth trajectories as would be the case with

GPR-based models. Augmenting the HetVAE model to account for residual corre-

lations in the output layer is also an interesting direction for future work. Another

possible direction would be to use more expressive posterior distribution on the tem-

poral latent state to reflect correlations in time as compared to the fully factorized

posterior used in HeTVAE.

Finally, we note that we have not evaluated the proposed models or baseline

approaches from the perspective of algorithmic bias, an important consideration when

learning models from observational healthcare data and another important direction

for future work.
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7.3 Future Directions

While in this thesis, we have focused on VAE-based encoder-decoder architecture,

the proposed mTAN and UnTAN modules can also be used in GAN-based frame-

works. The frameworks presented in this thesis can readily incorporate most tech-

niques developed for generative models including recent advances in GANs and VAEs.

Furthermore, recent advances in the development of improved attention techniques

can also be easily incorporated in the mTAN and HeTVAE frameworks.

One of the goal of this thesis has been to develop efficient methods for learning from

irregularly sampled time series. The proposed approaches are already substantially

faster than other competitive methods based on Gaussian processes and ODEs. The

standard scaled dot product attention used in the approaches introduced here has the

run time complexity of O(TK) for an input time searies of length T and number of

reference points K. The proposed approaches can become slow for longer length time

series. We can further improve the run time complexity from O(TK) to O(wK) by

using local attention (Beltagy et al., 2020) with the receptive field w. Investigating

the effectiveness of this approach for irregularly sampled time series is an interesting

direction for future work.

In this thesis, we mainly focused on irregularly sampled time series data but the

methods introduced here, particularly Multi-Time Attention Network and HeTVAE,

could easily be employed for modeling irregularly sampled spatial data. These ap-

proaches are also applicable for learning from regularly spaced data. The techniques

introduced in Chapter 5, specifically heteroscedastic output layers with augmented

learning objective, could also be useful for probabilistic imputation of other data

modalities such as images.

In terms of the fusion models, our experiments showed that the TF-IDF based

approach achieve better performance than the word embedding and sentence embed-

ding based approaches. With the recent advances in NLP, BERT and Transformer
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based models pre-trained specifically on medical notes can be utilized to learn rep-

resentation of the admission and progress notes. Investigating these approaches for

text data and incorporating in the fusion approaches is another interesting direction

for future work.

Based on the survey of prior methods for irregularly sampled time series, it is

apparent that recent research in the machine learning community has focused most

heavily on supervised problems, followed by interpolation and smoothing. There has

been significantly less attention on the forecasting task. Indeed, most of the prior

methods and the proposed methods in this thesis have not been applied to fore-

casting tasks. The development of methods for learning to forecast accurately from

irregularly sampled inputs thus appears to be a significantly more open problem than

the development of methods for the other tasks described. Investigating and extend-

ing the approaches introduced in this thesis for the forecasting task is an interesting

future direction.

In terms of directions for future work considering the different modeling primitives,

the attention and structural invariance modeling primitives have promising properties,

but have been much less explored than other primitives including recurrence. The fur-

ther development of attention and structural invariance-based approaches may lead

to improved accuracy-speed trade-offs by leveraging the enhanced parallel computa-

tion that these primitives enable. Within the area of recurrent models, differential

equation-based models for irregular time series have advanced the state-of-the-art

over discrete RNNs. Neural CDEs appear to have interesting advantages over ODE-

based models as noted above and are also an interesting area for further exploration.

Recent advances in multi-task GP-based methods also provide an important future

research direction for probabilistic time series interpolation.
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C. Ré, and S. L. Delp. ShortFuse: Biomedical Time Series Representations in the
Presence of Structured Information. In Proceedings of the 2nd Machine Learning
for Healthcare Conference, pages 59–74, 2017.

V. Fortuin, D. Baranchuk, G. Raetsch, and S. Mandt. GP-VAE: Deep Probabilistic
Time Series Imputation. In Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics, pages 1651–1661, 2020.

141



Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):
119–139, 1997.

J. Futoma, S. Hariharan, and K. A. Heller. Learning to detect sepsis with a multitask
gaussian process RNN classifier. In Proceedings of the 34th International Conference
on Machine Learning, pages 1174–1182, 2017.

M. Ghassemi, M. A. Pimentel, T. Brennan, D. A. Clifton, P. Szolovits, T. Naumann,
and M. Feng. A multivariate timeseries modeling approach to severity of illness
assessment and forecasting in ICU with sparse, heterogeneous clinical data. In
Proceedings of the National Conference on Artificial Intelligence, 2015.

Z. Guo, Y. Wan, and H. Ye. A data imputation method for multivariate time series
based on generative adversarial network. Neurocomputing, 2019.

Han-Gyu Kim, Gil-Jin Jang, Ho-Jin Choi, Minho Kim, Young-Won Kim, and Jaehun
Choi. Recurrent neural networks with missing information imputation for medical
examination data prediction. In 2017 IEEE International Conference on Big Data
and Smart Computing (BigComp), pages 317–323, 2017.

H. H. Harman. Modern Factor Analysis. The University of Chicago Press, 1976.

H. Harutyunyan, H. Khachatrian, D. C. Kale, and A. Galstyan. Multitask learning
and benchmarking with clinical time series data. Scientific Data, 6, 2019.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. 2001.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

M. Horn, M. Moor, C. Bock, B. Rieck, and K. Borgwardt. Set functions for time
series. In Proceedings of the 25th International Conference on Machine Learning,
2020.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied logistic regression.
John Wiley & Sons, 2013.

H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24(6):417–441, 1933.

A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-wei, M. Feng, M. Ghassemi, B. Moody,
P. Szolovits, L. A. Celi, and R. G. Mark. Mimic-iii, a freely accessible critical care
database. Scientific data, 3, 2016.
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