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ABSTRACT 

COMPUTATIONAL APPROACHES FOR THE MULTIMODAL IMAGING OF 

NANOMATERIALS AND THEIR BIOCHEMICAL EFFECTS 

SEPTEMBER 2021 

LAURA JULIANA CASTELLANOS GARCIA 

B.S., UNIVERSIDAD INDUSTRIAL DE SANTANDER 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Richard W. Vachet 

 

Nanomaterial delivery systems constitute a group of drug delivery vehicles that have been used 

extensively in biodelivery. The proper characterization of the therapeutic function of these 

nanomaterials requires analytical methods to track the presence of the cargo and its biochemical 

effects. In some cases, the detection of the cargo and biochemical changes are not attainable in the 

same experiment, and more than one technique might be needed for the proper analysis of the drug 

delivery system. In this case, separate analysis of adjacent tissue sections is performed by 

techniques that offer complementary information such as MALDI-MS and LA-ICP-MS. However, 

the approaches to combine the information from these techniques to obtain insights into the 

mechanism of action of the nanomaterials have been limited to visual inspection and image overlay, 

which can only provide qualitative information. To advance towards a more quantitative analysis, 

in this dissertation we have developed computational techniques for image reconstruction, 

segmentation, and registration of MALDI-MS and LA-ICP-MS images to monitor the 

biodistribution, excretion and biochemical effects of nanomaterial delivery systems. First, we 

developed an open-source computational approach for LA-ICP-MS image reconstruction and 
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segmentation using Python, which revealed that nanomaterials distribute in different sub-organ 

regions based on their chemical and physical properties. For instance, in the analysis of gold 

nanoparticles and bismuth nanorods, we find that the nanomaterials distribute in different regions 

of the spleen, suggesting differences in their biochemical interactions within the same organ. Next, 

we developed a computational workflow in Python to register LA-ICP-MS and MALDI-MS 

images using image registration approaches, obtaining a method with errors below 50 µm. Finally, 

we used the developed approaches for registration of LA-ICP-MS and MALDI-MS images to 

evaluate the delivery vehicles and cargo, obtaining quantitative information about the correlation 

of the signals obtained in the two image modalities. The use of image registration for the analysis 

of siRNA delivery via nanoparticle stabilized capsules (NPSC) reveals that expected changes in 

lipid levels occur at different locations than the NPSC accumulate, thus providing deeper insight 

into how siRNA delivery by NPSCs influences lipid biochemistry in vivo. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Nanomaterials in biological applications 

The development of nanomaterials is revolutionizing many areas of medicine, including 

imaging,1–3 sensing4,5 and therapeutics.6–8 In particular, functionalized nanoparticles can serve as 

controlled drug delivery systems, which can improve the effectiveness and selectivity of 

therapeutics by transporting the drugs directly to the place of action.9–11 The use of nanomaterials 

helps to overcome limitations of conventional delivery, such as non-specific distribution,12 

inadequate accumulation,9 and intracellular trafficking.13 In addition, nanomaterials provide 

protection and improve stability of biologicals cargo.14,15 Although there are several type on 

nanomaterials used for drug delivery, they are classified in three main categories: inorganic, 

polymer and lipid-based nanomaterials.16  

Inorganic nanomaterials, such as gold nanoparticles (NPs),17 iron NPs,18 silica NPs19 and 

quantum dots,20 have distinctive electrical and magnetic properties, which make them useful for 

drug delivery and theranostics applications.21,22 Due to the extensive methods available for 

synthesis and functionalization, many types of inorganic nanomaterials with variability in size, 

structure and geometry had been reported.23–25. AuNPs, in particular, have been of great interest in 

the past decades because of its high intracellular accumulation17 and low toxicity.26 

In recent years, we had seen a surge in the development of biological therapies, such as 

proteins, RNA, CRISPR, among others.27 Due to this increasing interest, nanoparticle-based 

vehicles had been designed for the delivery of proteins,28 enzymes,14 and genome editing 

biologics.15,29 Nanoparticle-based delivery vehicles are synthesized by promoting the self-assembly 

of the biologics (proteins, enzymes, RNA) with inorganic nanoparticles.30 The resulting 
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nanoparticle-based vehicle is very versatile, provides protection to the cargo and have minimal 

toxicity.28 More importantly, its mechanism of action through membrane fusion allows efficient 

cellular transport of the vehicles to the cytosol, avoiding endosomal entrapment.28 

 

1.2 Characterization of nanomaterials in biological samples and tissues 

Several approaches involving optical, electrical, radioactive or magnetic measurements 

have been applied to monitor NPs in biological samples.31,32 Common methods including: scanning 

and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM) and X-

ray diffraction (XRD) focuses in the characterization of NPs size, shape and surface properties.33,34 

Although these techniques are fundamental for the quality control and reproducibility, the 

investigation of the NPs modes of action requires the development of methods that allows the 

characterization of the NPs in biological samples.  

Fluorescent imaging had been used successfully for nanomaterial imaging in biological 

samples using fluorescent probes with high brightness and photostability.35 Although the resolution 

of these approaches is noteworthy, the method is limited by the large variety of labels needed, 

limiting the multiplexed characterization of different NPs.36 In addition, other spectroscopy 

techniques as Surface-Enhanced Raman Spectroscopy (SERS) has been applied for metallic NPs 

imaging,34 but the lack of reproducibility caused by the variation in size and NPs aggregation 

prevents a quantitative analysis of in-vivo samples.34 More advanced imaging methods such as 

scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX) and particle-

induced X-ray emission (PIXE) offer excellent spatial resolution, whereas, laborious sample 

preparation is required, and the sensitivity is low.37 Synchrotron radiation X-ray fluorescence (SR-

XRF) also offers good resolution for nanomaterials imaging, but it requires access to a synchrotron 

facility, making it much less broadly applicable.38  
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1.3 Characterization of nanomaterials using mass spectrometry 

Mass spectrometry (MS) can overcome some of the limitations of the analytical techniques 

described above to characterize NPs in biological samples.39,40 MS offers multiplexing detection of 

thousands of chemical species in the same experiment, making this method very useful in the study 

of NPs mechanism of action in complex samples. Some of the most used methods for NPs detection 

in mass spectrometry are matrix assisted laser desorption ionization (MALDI-MS),41,42 laser 

ablation inductively coupled plasma (LA-ICP-MS),43,44 electrospray ionization (ESI-MS),45 and 

secondary ion mass spectrometry (SIMS).46,47 Each of the described methods have different sample 

ionization mechanisms, providing different types of ions and complementary information about the 

sample. In this dissertation, we use extensively MALDI-MS and LA-ICP-MS, and thus we will 

provide more details about these two techniques.     

In MALDI-MS, laser radiation (355nm) ionizes and desorbs molecules deposited on a thin 

layer using an organic matrix to protect the sample from fragmentation. The molecules and 

fragments obtained in this process are sorted by its mass to charge ratio, using a mass analyzer, as 

shown in Figure 1.1. Generally, MALDI-MS equipment’s are coupled to time-of-flight analyzers 

(TOF), which provide the same kinetic energy to the ions in order to spatially separate them 

according to their mass to charge value, as shown in Figure 1.1. When applied to biological samples 

containing NPs, MALDI-MS enables the quantification of NPs, it’s cellular uptake and stability in 

cells and tissues.48–50 

In LA-ICP-MS, a more energetic laser (213nm) is used for the complete ablation of the 

sample, generating ion fragments in gas phase. The ions are then transferred to a plasma, creating 

atoms, which are analyzed using a quadrupole, as shown in Figure 1.1. During the ablation and 

ionization process the nanomaterials are atomized, leaving only metals for detection. Since LA-

ICP-MS is very efficient at performing ablation, the technique is very quantitative and sensitive, 

allowing proper quantitation of metals in very complex samples. 
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Figure 1.1. MALDI-MS and LA-ICP-MS techniques used in the characterization of NPs.  

 

1.4 Mass Spectrometry Imaging 

Mass spectrometry imaging (MSI) comprises several techniques that allow the two-

dimensional analysis of several analytes in a solid sample.51,52 Figure 1.2. explains how MSI 

operates in MALDI-MS to provide images of a tissue section. Among MSI techniques, matrix-

assisted laser desorption/ionization (MALDI-MS)53–56 have been extensively used for the spatial 

analysis of metabolites,57,58 lipids,59,60 peptides,61,62 proteins,63,64 and exogenous analytes, like 

drugs.65–67 Alternatively, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-

MS) imaging is increasingly used for imaging metal distributions in biological tissues. Among 

metal imaging techniques, LA-ICP-MS is perhaps the most sensitive technique for elemental 

imaging with detection limits in the sub µg/g level, while providing multiplexed metal analysis 

with spatial resolutions in the 10 to 200 µm range.68–70 Given its combination of sensitivity, multi-

metal detection capability, and accessibility, LA-ICP-MS has been used broadly in applications 

that include analysis of metals in neurogenerative diseases like Alzheimer’s, Parkinson’s, and 
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Wilson’s disease,71–73 detection of anti-cancer metallodrugs,74,75 studies of metalloproteins,76,77 and 

analysis of nanomaterials in biological tissues.49,78 Several reviews have detailed the development 

and use of LA-ICP-MS imaging for analyzing biological tissues.37,44,68–70,79,80 

 

 

Figure 1.2. MALDI-MS imaging process: pixels in a tissue section are ablated (a), generating a 

spectra per pixel, containing all the detected analytes (b). Then, images of each analyte are 

rendered by plotting the signal intensity of the analyte in each pixel (c). Images of the analytes 

detected are overlaid to create a dataset that is collected and used for computational data 

analysis (d). 

 

1.5 Multimodal imaging in mass spectrometry imaging MSI 

Despite the near universal detection capabilities of MSI, it is difficult to detect all 

compounds of interest in a given MSI experiment.81,82 Furthermore, the right combination of MSI 

modalities can provide complementary data, allowing optimal information to be obtained from a 

given sample.76,83,84 Properly combining the data from different imaging modalities can allow the 

strengths of each modality to be leveraged and provide more in-depth information about a 

sample.85–88 For example, MALDI-MSI is very good at providing biomolecule information but can 
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suffer more significant pixel-to-pixel signal variability.89 On the other hand, LA-ICP-MSI is less 

subject to signal suppression and signal variability because samples are completely ablated, 

allowing it to provide excellent quantitative information about metal distributions.44 However, LA-

ICP-MSI provides less chemical information due to its destructive nature.68 

Although multimodal imaging implementation dates back two decades, mass spectrometry 

multimodal imaging is a novel concept, implemented just a few years ago, and considered to be the 

next generation approach in mass spectrometry molecular mapping.82,86 Very recently, several 

registration techniques had been applied to mass spectrometry for multimodal imaging: (i) MALDI-

MS and fluorescent microscopy registration to identify malaria infection in liver hepatocytes.90 (ii) 

MALDI-MS and confocal microscopy registration to identify stem cell colonies.91 (ii) Single probe 

MSI and microscopy registration to track amyloid plaques in Alzheimer’s disease.92 (iv) MALDI-

MS in reflectron and MALDI-MS in linear mode registration, for simultaneous lipid and protein 

analysis to study the mechanism of acute myocardial infarction.84 

 

1.6 Image registration 

Image registration is the process of transforming two images in the same coordinate system. 

When images are acquired by different instruments, they have different orientations and spatial 

coordinates. To correlate information among two image modalities, we can employ several 

strategies as described in Figure 1.3. First, we can compare the two images by eye and find visual 

correlation among the images. Second, we can optically overlay the images using image rendering 

tools. Third, we can use image registration approaches to transform the images to the same 

coordinate system, obtaining pixel-to-pixel correspondence. When data analysis is performed using 

only the first two strategies, the trends and correlation among the images are only qualitative. To 

go beyond a qualitative analysis, image registration becomes necessary as it enables the 



7 

 

combination of information obtained using different modalities as well as the use of statistical 

methods to quantify correlations and discover trends in the data that escape human inspection. This 

is particularly relevant for the analysis of multiplexing imaging, such as mass spectrometry 

imaging, where the richness of the data contains more information than what can be extracted by 

simply visualizing the images of individual channels. Furthermore, these approaches for image 

registration and analysis must be computerized in order to process the sheer amount of data 

generated by multiplexing techniques in an efficient manner, thus requiring the creation of 

computational workflows that implement these image analysis techniques. The application of such 

workflows to MALDI imaging opens many avenues for obtaining quantitative insights about the 

biochemical processes underlying the target in-vivo experiments. 

 

Figure 1.3. Strategies used for the analysis of two images providing complementary information. 

 

For performing image registration, one of the images is set as the fixed image and the other as 

the moving image, the moving image is then transformed to match the coordinates of the fixed 

image.93 This process happens using optimization algorithms, for instance, stochastic gradient 

descent (SGD), using a cost function to maximize the mutual information among the modalitites.93 
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Several iterations (>500) are needed to reach optimization, and the degree of mutual information is 

calculated during each iteration, until an optimal is reached. Several parameters determining the 

quality of the registration process need to be tuned to obtain a good registration. Among them, the 

parameter map is perhaps the most important factor. The parameter map defines the degrees of 

freedom that is conferred to the image in the optimization process, for example, a rigid parameter 

map only allows the translation and rotation of the moving image, while an affine parameter map 

allows translation, rotation, scaling and shearing.  

Table 1.1. Parameter maps for image registration.   

Type Transformation Degrees of freedom 

linear 

translation translation 

rigid translation, rotation 

affine translation, rotation, scaling and shearing 

non-linear no-linear affine + non-linear deformations 

 

 

1.7 Statistical models applied to mass spectrometry imaging 

As new instrumentation becomes available in MS providing better spatial resolution and more 

sensitivity, the increased number of pixels and molecular species detected considerably increase 

the amount of data generated in a single experiment. For example, an MSI dataset may contain 

hundreds or millions of individual data points, making the data very complex.94  Several approaches 

in data reduction, segmentation, correlation, and statistical analysis have been developed recently 

for hyperspectral datasets to help in the data analysis of mass spectrometry large datasets.  

Traditional linear correlation methods for MSI imaging analysis as principal component 

analysis (PCA)95 and non-negative matrix factorization (NNMF)96 are useful in MS. However, the 

linear nature of the statistical model makes them limited in finding subtle relationship between 

images.97 New no-linear approaches such as t-distributed stochastic neighbor embedding (t-

SNE),98–100 and uniform manifold approximation and projection (UMP)101 uses non-linear machine 
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learning to model local and global structures in high-dimensional data.100 Providing tools for data 

dimensionality reduction and finding subtle changes among MS hyperspectral images.   

Another very useful method in MS data analysis is segmentation, which comprises a set of 

methods to divide MS images into segments that possess similar spectral characteristics. One of 

the most used methods for segmentation is k-means clustering,102 which divides the image in k 

chosen segments. The segmentation done by k-means is agnostic of the spatial structure of the data, 

which does not consider pixel neighbors for the interpretation of each individual pixel. To include 

spatial awareness into the data analysis Alexandrov and co-workers introduced spatial aware 

(SA)103 clustering and spatially aware structure-adaptive (SASA)104 clustering, which introduce a 

factor that consider neighbors in the segmentation, while preserving the edges of the segments. To 

improve segmentation, Vitek and co-workers introduced spatial shrunken centroids 

segmentation,105 improving the quality of the SA and SASA segmentation and calculating the 

probability of segment membership for each pixel and assessing the uncertainty of the 

segmentation. Although segmentation algorithms for MALDI-MS imaging analysis are well 

developed, they highly depend on the data quality, making the segmentation process challenging 

for noisy datasets.105  

 

1.8 Dissertation overview 

Nanomaterial delivery systems constitute a group of drug delivery vehicles that had been used 

extensively in biodelivery. Since some of the nanomaterials are designed to perform a therapeutic 

function, analytical methods to determine the cargo and biochemical changes are needed. In some 

cases, the detection of the cargo and biochemical changes are not attainable in the same experiment, 

and more than one technique might be needed for the proper analysis of the drug delivery system. 

Laser ablation inductively coupled plasma (LA-ICP-MS) and matrix assisted laser desorption 
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ionization (MALDI-MS) imaging have been used for detecting metals and biomolecules in tissue 

sections. When both techniques are used on adjacent tissue slices, they provide complementary 

information about the correlation of the detected species in the two modalities. In this dissertation, 

we developed  computational techniques for image reconstruction, segmentation, and registration 

of MALDI-MS and LA-ICP-MS images to monitor the biodistribution, excretion and biochemical 

effects of nanomaterial delivery systems.  

In chapter 1, we described a software written in Python that automatically reconstructs, 

analyses, and segments images from LA-ICP-MS imaging data. Image segmentation is achieved 

using LA-ICP-MS signals from the biological metals Fe and Zn together with k-means clustering, 

followed by a spatial awareness strategy to automatically identify sub-organ regions in different 

tissues that are at the limit of the LA-ICP-MS imaging resolution. The value of the described 

algorithms is demonstrated for LA-ICP-MS images of nanomaterial biodistributions. The 

developed image reconstruction and processing approach reveals that nanomaterials distribute in 

different sub-organ regions based on their chemical and physical properties, opening new 

possibilities for understanding the impact of such nanomaterials in vivo. 

In chapter 2, we developed a computational image registration approach to register LA-ICP-

MS and MALDI-MS images of adjacent tissue slices to generate a dataset in the same coordinates. 

The computational workflow is open source and implemented in Python, with a Jupyter notebook 

interface for easy distribution and use. Evaluation of the computational method was performed by 

calculating the overlap of regions of interest (ROIs) in the two imaging modalities, showing more 

than 80% overlap and registration accuracies below 50 µm. Our computational approach shows 

that properly combining the data from LA-ICP-MS and MALDI-MS imaging can allow the 

strengths of the modalities to be leveraged and provide deep quantitative information about a tissue 

sample. 
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In chapter 3, we used the developed computational image registration approach to register 

LA-ICP-MS and MALDI-MS images of adjacent tissue slices of tissue injected with nanoparticle 

stabilized capsules (NPSC). The method is used to correlate images of gold metal NPSC (detected 

in LA-ICP-MSI) loaded with siRNA injected into mice, with images of the lipid profile (detected 

in MALDI-MSI). The correlation coefficients of the nanomaterial vehicles with the lipid 

biochemical changes provide a deeper insight into how nanomaterial delivery agents influence lipid 

biochemistry in tissues. Additionally, image registration allows us to leverage the higher quality 

images associated with LA-ICP-MS to better segment MALDI-MSI images and identify the lipids 

with a larger correlation to the three different suborgan regions of the spleen.   
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CHAPTER 2  

AUTOMATIC IDENTIFICATION OF SUB-ORGAN REGIONS IN TISSUES VIA 

MULTI-METAL ANALYSIS IN LA-ICP-MS IMAGING 

Majority of this chapter is published: Castellanos-García, L. J.; Elci, S. G.; Vachet, R. W. Analyst 

2020, 145, 3705-3712. 

 

2.1 Introduction 

Obtaining site-specific information about metal distributions in LA-ICP-MS imaging 

requires images to be reconstructed from the metal ion signals. In contrast to more widely used 

matrix assisted laser desorption\ionization (MALDI) MS imaging, relatively few approaches have 

been described for image reconstruction and statistical analysis. The program IMAGENA, which 

was developed by Osterholt et al.,1 was one of the first software developed for visualizing LA-ICP-

MS data. A similar program called HDIP2 was recently developed by Teledyne for image 

reconstruction of LA-ICP-MS images. While IMAGENA, HDIP, Iolite3 and its associated 

interphases: monocle4 and biolite5 are versatile tools for reconstructing images, they are not open 

source and offer minimal tools for the statistical analysis of the resulting images.  

In contrast, software such as LA-iMageS,6 MapIT!7 and iQuant28 are open-source 

programs that enable image reconstruction from LA-ICP-MS data via user-friendly graphical user 

interfaces, but they also have limited built-in statistical analysis tools. Other image reconstruction 

approaches, including those based on readily available software such as Microsoft Excel9 have also 

been described, although most have limited capability for the statistical analysis of the imaging 

data sets. For most existing software, image reconstruction is the principal aim.  
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As the applicability of LA-ICP-MS grows, though, especially for applications such as 

nanomaterial-based drug delivery systems,10–12 more sophisticated image processing methods such 

as image segmentation for region of interest (ROI) analysis or other statistical analysis methods are 

needed to extract more information from reconstructed images.13 Image segmentation, in particular, 

is valuable for characterizing analyte signals in histologically relevant regions of a tissue, so that 

the underlying biochemistry and biology can be better understood. Deeper biological insight into 

MALDI-MS imaging data has been achieved with image segmentation algorithms,14,15 but to our 

knowledge analogous approaches have not been readily adopted in LA-ICP-MS imaging methods. 

Here, we present an open-source software written in Python for LA-ICP-MS imaging 

reconstruction that implements more advanced segmentation algorithms for classification of ROIs 

in LA-ICP-MS images. The use of Python for image analysis offers tremendous flexibility because 

of the numerous libraries accessible via the software for image visualization,16 matrix operations,17 

statistical analysis,18 and even more complex tasks like multimodal imaging.19 Using code written 

in Python, we demonstrate that distinct sub-organ features can be automatically identified using 

different metal distributions to perform spatially aware segmentation analysis. As an application of 

these image segmentation approaches, we show that nanomaterials distribute in different sub-organ 

regions based on their chemical and physical properties. We believe the described software will 

benefit current and potential users of LA-ICP-MS imaging as it will make accessible more 

sophisticated image processing tools for more deeply understanding the biological ramifications of 

metal distributions in tissues.   
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2.2 Results and discussion 

2.2.1 Image reconstruction 

Generating a LA-ICP-MS image after data acquisition involves several data handling steps 

(Figure 2.1). Because the metal signals are generated by scanning the laser in a line across the 

tissue, the continuously ablated and detected stream of material must be summed to generate an 

image pixel. To do this, the file that is generated for each ablation line, which contains all the metal 

intensity data, is subjected to a data reduction step (Step 2, Figure 2.1). This step uses the laser spot 

size and scan rate to define the number of ion intensity measurements that are summed to create a 

pixel. For example, if the laser spot size is 50 µm and the laser scan rate is 15 µm/s, data acquired 

over a 3.3 s period is summed to create a single pixel. The resulting collection of pixels that contains 

ion intensity information is then separated into a set of different data matrices that correspond to 

the number of different metals measured (Step 3, Figure 2.1). Separate images for each metal can 

then be reconstructed using plotting tools such as Matplotlib to generate a 2D image for each of the 

studied metals (Step 4, Figure 2.1).16 Our approach, generates images with few user inputs that can 

be subsequently analyzed by the many Python statistical libraries that exist, such as SciPy20 and 

scikit-learn18 enabling us to automatically identify different tissue regions in LA-ICP-MS images. 

 

 

Figure 2.1. Process of image generation in LA-ICP-MS. Data is acquired, and then processed by data 

reduction and separation into data matrices for each metal (e.g. M1, M2, M3, etc.). 
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2.2.2 Tissue boundary identification  

The distribution of Zn signals from an imaging experiment can be used to delineate the 

edge of the tissue by differentiating the pixels that correspond to the tissue and those that correspond 

to the background. The procedure, illustrated in Figure 2.2, requires measurements of background 

regions outside the tissue. In the first step of the procedure, the background Zn signal is calculated 

from any row or column of the imaging dataset. The row and column data are saved as two 

independent vectors, and the signal average and standard deviations in each case are calculated. 

The resulting average signals and standard deviations calculated are used to set the background 

value B. Each pixel in the entire image is then compared against the background and classified as 

tissue or background depending on whether its intensity is significantly different from the 

background signal, according to the equation in Figure 2.2. From the classified image a background 

mask is generated in which tissue pixels are given a value of 1 and background pixels are 0. Any 

element can be used in the program to perform background subtraction by this thresholding 

approach.21 Defining the tissue boundary is necessary for performing various statistical analyses on 

the images, that will be described in subsequent chapters. 

 

Figure 2.2. Tissue boundary detection is determined from a background signal calculation, statistical 

classification of pixels as background or tissue, and creation of a background mask. Scale bars correspond to 

500 µm. 
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2.2.3 Image optimization 

In addition to helping define tissue boundaries, Zn signals can also help improve image 

quality in regions that are degraded by tissue inhomogeneities arising during sample preparation or 

from fluctuations in laser fluence or mass ablation rates. Zn is homogeneously distributed in many 

healthy tissues, such as liver, kidney and spleen, and in the tissues imaged in this work, Zn signals 

are homogeneously distributed as compared to other elements as seen in Figure 2.3.22 This relative  

 

Figure 2.3. Elemental distribution of Au, Fe and Zn in a spleen tissue from a mouse injected with Au 

nanoparticles. The figure show: a) Spleen images of Au, Fe and Zn. b) Raw signal data for the ablation of 

one of the tissue lines analyzed in LA-ICP-MS. The line is shown in gray over the LA-ICP-MS image. c) 

Data binning every 33 points is performed on the raw signal to obtain a pixel size of 50 µm x 50 µm. d) 

Histograms for the distribution of Au, Fe and Zn signals found in the tissue. e) Average Au, Fe and Zn signals, 

standard deviations, and % deviations across the tissue. One key conclusion from these data is that the Zn 

signal is relatively constant across the tissue. 
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homogeneity allows Zn to be used for normalization. Any element, like carbon23 or 

phosphorous24,25 could be used for normalization in the developed program. Figure 2.4 shows two 

examples of the advantage of using Zn signals for improving image quality. In Figure 2.4a, 

wrinkling of the edges of a mouse spleen section causes the Au image to be poor throughout most 

of the tissue. When the Au intensity matrix is divided by the Zn matrix on a pixel-by-pixel basis, 

this normalization process improves the image by eliminating the zones with anomalously high 

overall Au signal that are caused by folding of the tissue edges. Similar improvements can be 

obtained for Fe images where the laser energy deviated during the experiment (Figure 2.4b).   

 

Figure 2.4. Zn-based normalization improves LA-ICP-MS image quality. a) Image of a spleen tissue section 

from a mouse injected with gold nanocapsules that shows wrinkling of the edges of the tissue. b) Image of a 

spleen tissue section from a mouse injected with TTMA nanozymes that shows laser energy deviations. White 

scale bars in Au images correspond to 500 µm. 

 

 

2.2.4 Image segmentation for automatic sub-organ differentiation 

The distribution of Fe levels in a tissue depends on the blood flow to a specific sub-organ 

region and can be used to differentiate regions in various tissues, as shown in Figure 2.5.26–28 To 

distinguish sub-organ regions, image segmentation was performed using k-means clustering29 to 

partition areas of differential Fe composition. Figure 2.6 shows H&E stained, optical and LA-ICP-
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MS images of liver and kidney sections from a mouse injected with TTMA and TEG-COOH NPs. 

While the areas of high blood flow (i.e. veins) are readily apparent from the H&E stained, optical, 

and Fe LA-ICP-MS images, image segmentation can be used to automatically identify these and 

other regions that are not as readily apparent. Using the Fe matrix as input, we performed k-means 

clustering with the number of clusters assigned as 3, based on the ‘elbow method’ (as describe in 

the materials and methods section).   

 

Figure 2.5. Distribution of Fe signal in different suborgan areas for: a) liver section from a mouse injected 

with TTMA Au nanoparticles and b) kidney section from a mouse injected with TEG-COOH Au 

nanoparticles. White scale bars in both images correspond to 500 µm 

 

 

Figure 2.6. H&E stained, optical, Fe LA-ICP-MS, and Au LA-ICP-MS images illustrating how k-means 

clustering can be used to automatically segment images into biologically relevant regions. a) Images and 

segmentation of images from a liver section from a mouse injected with TTMA Au nanoparticles. b) Images 

and segmentation of images from a kidney section from a mouse injected with TEG-COOH Au nanoparticles. 

Bar graphs show the average Au signal with standard deviations in each of the segmented areas. White scale 

bars in both Fe images correspond to 500 µm. Distribution of Fe signal in different areas of the liver and 

kidney is found in Figure 2.5. 
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When using k-means clustering, it is possible to effectively segment the image between 

background, low Fe (tissue), and high Fe (vein). Using image segmentation in this way allows one 

to determine the average signal of another metal in a given classified area. For example, the average 

Au signal can be determined in the three classified areas in liver and kidney sections from mice 

injected with TTMA (Figure 2.6a) or TEG-COOH (Figure 2.6b) Au nanoparticles. From the signal 

averages we can conclude that the Au nanoparticles accumulate differently in the liver and kidney. 

In the liver, we find more Au in the tissue than in the veins, and in the kidney, we find higher Au 

signal in the veins than in the rest of the tissue. Previous work by our group found that positively-

charged nanoparticles, like TTMA are readily cleared from circulation while negatively-charged 

nanoparticles like TEG-COOH circulate longer in the bloodstream28 which explains the differences 

in the nanoparticle concentrations in the veins of the two organs. This image segmentation approach 

allows this information to be automatically determined for any LA-ICP-MS image that is imported 

into the developed Python program. 

The image segmentation method was also used to distinguish sub-organ regions of the 

spleen. The spleen tissue has a marked difference between the red pulp and white pulp in that each 

region fulfils a different biological role in this vital organ.26 The spleen red and white pulp can be 

differentiated by their Fe concentrations, as the red pulp has higher blood flow than the white pulp. 

An example Fe LA-ICP-MS image from a spleen section is shown in Figure 2.7a, showing areas 

of high and low Fe concentrations. To differentiate the sub-organ areas, we performed k-means 

clustering in the same manner as before. Using the elbow method, three clusters are again identified, 

but using a k-means clustering of three does not allow an effective differentiation between the white 

pulp and the background primarily because of the spread of Fe signals in the red pulp exceeds the 

difference between the white pulp and background Fe signals (Figure 2.7a, k-means = 3 image). To 

solve this issue and effectively differentiate the background and white pulp regions, we used a 

multi-metal segmentation strategy that is illustrated within the brackets of Figure 2.7a. For this 
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strategy, we choose a k-means cluster value of 2 for the Fe image to differentiate two clusters, one 

exclusively for the red pulp and another for the white pulp and background. The white pulp and 

background are then differentiated in the k-means = 2 clustered images using the Zn signal and the 

background mask procedure illustrated in Figure 2.2. By conjugating the k-means = 2 clustered 

image and the background mask (Figure 2.7a), we can generate a multi-metal segmented image 

with three distinctive areas: background, red pulp, and white pulp. 

 

 

Figure 2.7. Multimetal image segmentation and pixel evaluation for the differentiation of red pulp, white 

pulp, and marginal zones of spleen sections using LA-ICP-MS imaging. a) An Fe LA-ICP-MS image that is 

segmented using k-means = 3 does not allow the white pulp and background to be distinguished, but a k-

means = 2 clustering and Zn-based background mask (B. Mask) determination (in brackets) produces a 

segmented image that accurately defines the red pulp, white pulp, and background. b) Neighboring pixel 

evaluation adds spatial awareness to the multimetal segmented image by redefining each labeled image pixel 

(𝑃𝑛,𝑚) to a weighted image pixel (𝑊𝑃𝑛,𝑚) using the indicated equation. The result is a weighted image that 

clearly defines the boundary between the red and white pulp, allowing differentiation of the marginal zone 

that separates the two regions. White scale bars in Fe image correspond to 500 µm. 
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In addition to the distinct red and white pulp regions of the spleen, there is boundary region 

known as the marginal zone where the first steps of an immune response occur in this organ.28 

Image segmentation alone makes it difficult to effectively differentiate the marginal zone because 

it does not have a distinct metal composition. Because the marginal zone surrounds each white pulp 

region and is approximately 50 µm in size,26 this region can be distinguished if spatial awareness 

is added to the segmented image. The k-means approach, however, is performed on a vectorized 

dataset and thus does not have spatial awareness.14,29 Spatial awareness can be added by considering 

the neighboring pixels around any particular pixel in the image by arbitrarily assigning values of 0, 

1, and 2 to the background, red pulp, and white pulp pixels, respectively, that were identified via 

the multi-metal segmentation approach (see label image in Figure 2.7b).  

To further classify distinct areas in the spleen, including the marginal zone, each pixel 

value or label (𝑃𝑛,𝑚) can be redefined as a weighted pixel (𝑊𝑃𝑛,𝑚) that is equal to the weighted 

average of its eight immediately neighbor pixels (see equation in Figure 2.7b). In short, we apply 

an image filtering strategy with a linear filter to classify the boundary regions of the labeled image. 

After redefining the value of each pixel, we can then generate a weighted image that effectively 

distinguishes the marginal zone (in yellow) from the red and white pulp (see weighted image in 

Figure 2.7b). Newly weighted values of 1.2-1.3 correspond to the marginal zone, while lower and 

higher values correspond to the red and white pulp, respectively. This approach for distinguishing 

the red pulp, white pulp, and marginal zone can be validated by comparing the Fe image and an 

H&E stain of the spleen tissue with the multi-metal segmented image (Figures 2.8 and 2.9).  
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Figure 2.8. Overlay of the Fe distributions in the LA-ICP-MS data from a spleen tissue with the marginal 

zone mask calculated through multi-metal segmentation and neighboring pixel evaluation  

 

 

 

 

Figure 2.9. H&E stained image (left), and an overlay of the H&E stained and segmented images (right), 

demonstrating the success of the multi-metal image segmentation and pixel evaluation for the differentiation 

of the different regions of the spleen. 
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2.2.5 Gold nanoparticles and bismuth nanorods distributions in spleen tissues  

The value of distinguishing the three different regions in the spleen using multi-metal 

segmentation and the neighboring pixel evaluation can be illustrated by considering LA-ICP-MS 

images of tissue slices from mice injected with Au nanoparticles or bismuth sulfide nanorods. The 

Fe and Zn images from LA-ICP-MS imaging analysis of separate spleen tissues were used to 

segment the images into red pulp, white pulp, and background regions, and a neighboring pixel 

evaluation was used to further classify the marginal zone. By averaging the Au (Figure 2.10a) and 

Bi (Figure 2.10b) signals in each of the identified regions, which can be facilitated by a series of 

spatial mask images created by the proposed computational method (Figure 2.11), we find that Au 

and Bi accumulate in distinctive patterns in the spleen. Au tends to accumulate more extensively 

in the red pulp, whereas Bi tends to accumulate to a greater extent in the marginal zone. This 

observation is particularly important because these Bi nanorods were designed specially to target 

the marginal zone of the spleen.30  

 

 

Figure 2.10. Use of multi-metal segmentation and neighboring pixel evaluation to evaluate the distributions 

of a) Au nanoparticles and b) Bi sulfide nanorods in spleen tissues. Fe and Zn LA-ICP-MS images are used 

to perform multi-metal segmentation combined with a neighboring pixel evaluation approach to obtain a 

weighted image like that shown in Figure 2.7. The weighted images allow a determination of the relative 

amount of each metal in the marginal zone, red pulp, and white pulp, as show in each bar graph. White scale 

bars in Fe image correspond to 500 µm. 
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Figure 2.11. Spatial mask images of a spleen from a mouse injected with bismuth sulfide nanorods. Fe-based 

classification through k-means clustering and neighboring pixel evaluation allows the creation of different 

spatial masks that facilitate determination of the amount of the metal of interest in each sub-organ region. 

Scale bar correspond to 500 µm. 

 

2.3 Conclusions 

We have developed software written in Python that can automatically reconstruct and 

segment images from LA-ICP-MS imaging data. This new software identifies sub-organ regions 

of interest with minimal user input and can find regions that might be missed by manual analysis. 

The image reconstruction program takes advantage of the capability of open-source scientific 

libraries such as: NumPy, Matplotlib, Scikit-learn for various numerical and statistical analyses. 

Our image reconstruction and analysis method represent the first software, to our knowledge, that 

can perform sophisticated manipulations automatically and directly on LA-ICP-MS imaging data. 

Using this software, we demonstrate that segmentation of LA-ICP-MS images can be performed 

using a combination of Fe and Zn images, k-means clustering analysis, and neighboring-pixel 

evaluation to automatically classify sub-organ regions in kidney, liver, and spleen tissues. The 

neighboring-pixel evaluation procedure introduces spatial awareness to the segmentation process 

that can correct for misclassified pixels and can classify boundary regions that are at the limit of 

the measurement resolution (e.g. marginal zone in the spleen). Using tissues from mice injected 

with different nanomaterials as examples, classification of different sub-organ regions reveals the 

value of our described approach. For example, we find that Bi sulfide nanorods accumulate more 
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extensively than Au nanoparticles in the marginal zone as compared to other regions of the spleen. 

We believe that the described data reconstruction and image segmentation strategy that we have 

developed in Python will be beneficial to LA-ICP-MS imaging experts and non-experts alike. 

Moreover, the use of Python allows a wide array of other statistical methods to be applied to the 

data taken during an LA-ICP-MS imaging experiment. We envision future development of the code 

by the incorporation of standards into the workflow, Pearson’s coefficient calculation for 

calculating co-localization between the data channels and outlier detection in ROIs.  

 

2.4 Materials and methods 

2.4.1 Nanomaterial synthesis 

Different nanomaterials, including gold nanoparticles, nanozymes, nanocapsule and 

bismuth sulfide nanorods (Figure 2.12), were provided by collaborators who synthesized them 

according to published protocols. Gold nanoparticles were synthesized according to the Brust-

Schiffrin two phase method.31 Different ligand coatings, including ones with positively-charged 

(TTMA) and negatively-charged (TEG-COOH) functional groups were used.32 Nanozymes were 

synthesized using the method described by Rotello and co-workers.33,34 Nanocapsule synthesis was 

performed according to the protocol described by Rotello and co-workers,35–37 and the bismuth 

sulfide nanorods were synthesized according to the method developed by Gendelman and co-

workers.38 

 

2.4.2 Tissue sections 

To obtain tissues for the imaging experiments involving gold nanoparticles, nanozymes 

and nanocapsules, female Balb/c mice (8-week-old) were injected with the nanomaterial of interest. 
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After 24 h (nanoparticles, nanozymes) or 48 h (nanocapsules), the mouse tissues of interest were 

extracted, and flash frozen in liquid nitrogen and then kept at -80 °C until used for MS imaging. 

All animal protocols involving the gold nanomaterials were approved by the UMass Institutional 

Animal Care and Use Committee (IACUC), which is guided by the U.S. Animal Welfare Act and 

U.S. Public Health Service Policy. For the imaging experiments involving bismuth sulfide 

nanorods, six mice were injected, and the mouse tissues were extracted after 48 h, flash frozen, and 

sent to the University of Massachusetts Amherst for sectioning. The animal protocols in this case 

were conducted under the Animal Care protocols of the University of Nebraska Medical Center. In 

all cases, tissues were sliced at 20 µm using a LEICA CM1850 at -20˚C, and then deposited on 

regular glass slides. Hematoxylin and Eosin (H&E) staining on adjacent slices was performed using 

the Rapid Chrome frozen section staining kit (Thermo Fisher Scientific). 

 

 

Figure 2.12. Description of the nanomaterials used in this work. Nanoparticles, nanozymes, nanocapsules 

and bismuth sulfide nanorods. 
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2.4.3 LA-ICP-MS data acquisition 

LA-ICP-MS images were obtained on a CETAC LSX-213 G2 laser ablation system 

coupled with a Perkin Elmer NexION 300x ICP-MS. Unless otherwise specified, the following 

laser parameters were used: 50 μm spot size, 15 μm/s scan rate, 3.65 J laser energy, 10 Hz laser 

frequency, and a 10 s of shutter delay. The He carrier gas from laser ablation system was set to 0.6 

L/min. The ICP-MS parameters were the following: 0.7 L/min nebulizer argon flow rate, 16.5 

L/min plasma argon flow rate, 1.4 L/min auxiliary argon flow rate, -1650 V analog stage voltage, 

and 1000 V pulse stage voltage. These parameters were optimized for nanoparticle analysis in tissue 

sections, based on previous work.27,28,39 Different elements, including 197Au, 209Bi, 102Ru 57Fe, and 

66Zn, were detected with 50 ms dwell times.  

 

2.4.4 Code structure and repository 

 

Figure 2.13. Code workflow explained step by step. Gray boxes correspond to transformations performed to 

the imaging data; orange circles contain the inputs required by the program to run the workflow. The inputs 

are added to the program using a Jupyter notebook interphase as shown in Figure 2.14.  
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Image reconstruction and analysis was performed using a program written in Python, their 

key functions are described in Figure 2.13. The computational workflow consists of a series of 

steps (gray boxes in Figure 2.13) which perform a particular computational transformation to the 

data. The inputs needed for a particular step are highlighted in orange. For example, for step 1, that 

consists of image reconstruction, the program takes: the data files, data name, number of metals, 

spot size and scan rate, to perform step 1. This information is provided by the user into the code  

 

Figure 2.14. Jupyter notebook interphase for interacting with the source code. The image shows a grey box 

in which the inputs are added by the user, the images at the bottom correspond to the outputs generated when 

the code is compiled. 

 

using a graphical Jupyter notebook40 interphase as shown in Figure 2.14, the outputs or results of 

the particular step are displayed in the Jupyter notebook, after the code is compiled. The code 

consists of the Jupyter notebook and a source code. The Jupyter notebook contains only the inputs 

and outputs of each of the steps (Appendix A), while the source code contains all the functions 
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required to perform each step (Appendix B). The user only interacts with the Jupyter graphical 

interphase, making the processing of the data easier. Access to the scripts, examples and 

documentation can be found in Appendix A and B and in Github: https://github.com/Vachet-

Lab/RecSegImage-LA,  

 

2.4.5 Normalization 

Normalization of the data allows the correction of tissue inhomogeneities during sample 

preparation and due to differences in mass ablation rates during laser ablation. Normalization of 

the tissues were performed using the Zn signals as an internal standard, because we have 

empirically found that this element is constant over the tissue section at the spatial resolutions 

studied (see Figure 2.3). However, the user can perform normalization in the code using other 

metals, like Phosphorous or Carbon, they just need to specify the type of metal in the input of the 

analysis workflow. Each of the studied metals (Au, Fe, and Bi) were divided by the Zn matrix in 

the Python script, on a pixel-by-pixel basis.17 Matrix division is possible because the metal ion 

abundance matrices are co-registered as the multiple metals are detected at the same time during 

data acquisition. 

 

2.4.6 Image segmentation and k-means clustering 

A k-means clustering protocol was performed in Python, using the scikit-learn machine 

learning library.18 To do this, the image of interest was vectorized, and the clustering was performed 

over the flattened image, as shown in Figure 2.15. The number of clusters was specified as a 

parameter in the program. If the number of clusters were unknown, the ‘elbow method’ was used 

to estimate the number of clusters into which the data should be divided, as shown in Figure 2.16.41 

For the elbow method calculation, the segmentation is done with different k values, until the inertia 

values reach the inflection point. After k-means clustering was performed, the centroids of the 

https://github.com/Vachet-Lab/RecSegImage-LA
https://github.com/Vachet-Lab/RecSegImage-LA
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clusters were calculated, the data was reshaped, and the labelled image was generated, as shown in 

Figure 2.15. The labelled image corresponds to an arbitrary mathematical label that marks a specific 

area of the tissue as part of a cluster. 

 

Figure 2.15. k-means clustering process. The data matrix is vectorized, k centroids are calculated in an 

iterative process until the overall error remains constant, and finally the labeled image is reshaped 

 

 

 

Figure 2.16. Example of the use of the elbow method for clustering of an image. Inertia values were 

calculated for each number of clusters for the same image. The ideal value in these data corresponds to k=2 

or k=3. The elbow method is an empirical approach that allows the data analyst to select the optimal number 

of clusters from a given data set or image. For this purpose, k-means clustering is performed on the same 

data set, for different k values, and inertia values are calculated. The inertia values for each dataset correspond 

to the sum of squared distances of every sample to their closest cluster center. Once inertia values are 

calculated, they are plotted against the number of clusters to find the “elbow” or inflection point of the curve 
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CHAPTER 3  

A COMPUTATIONAL WORKFLOW FOR REGISTRATION OF LA-ICP-MS 

AND MALDI-MS IMAGES 

 

3.1 Introduction 

By appropriately leveraging the datasets from MALDI-MS and LA-ICP-MS imaging of a 

given tissue section, higher quality and more informative images should be accessible. The analysis 

of tissue sections by LA-ICP-MSI and MALDI-MSI is usually done by optical overlays of the 

data.1–3 However, simple image overlays hinder quantitative comparisons because the images have 

different coordinate systems and orientations.4 Multimodal image registration is the process of 

transforming a set of images from different sources, into a common spatial coordinate system.5 The 

aim of image registration is to align features to enable pixel-to-pixel comparison of datasets to 

obtain quantitative correlations among the images.6 Consequently, more quantitative information 

emerges from the dataset, enabling a level of analysis of the data that is hard to find by traditional 

data analysis methods, especially in multidimensional datasets, as in the case of mass spectrometry 

imaging.7 

Other groups have explored approaches for multimodal image registration. For instance, 

mass spectrometry imaging multimodal registration approaches have been implemented by 

Caprioli and co-workers to register MALDI-MS images (20 µm resolution) with autofluorescence 

microscopy images (1 µm resolution), in their python software regToolboxMSRC.8 However, this 

approach is harder to apply to cases where images have similar resolutions, as in the case of 

MALDI-MSI and LA-ICP-MSI, because the parameters used for the registration are optimized for 

images of different resolution. Although the regtools package is open source, it does not provide a 
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systematic way of optimizing parameters for LA-ICP-MS and MALDI-MS image registration. 

Holzlechner et al. recently reported an approach to register LA-ICP-MS and MALDI-MS images9 

that was based upon a multisensor image integration method that uses fiducial markers to align 

images in the same coordinate system.10 Since the approach is based on fiducial markers, the 

accuracy of the registration is limited, and only linear transformations of the images are possible, 

making it unsuitable for registering images from adjacent tissue slices.8 Moreover, this registration 

approach is performed in the software package Epina Imagelab10, which is not open source.  

Here, we describe a freely available computational workflow implemented in Python that 

allows the pre-processing and registration of LA-ICP-MS and MALDI-MS images in the same 

coordinate system, even for images from adjacent tissue sections. The proposed method was 

evaluated by calculating the overlap of regions of interest (ROIs), in the two imaging modalities, 

obtaining over 80% ROIs overlap. Additionally, the spatial accuracy of the registration was 

calculated to be close to 50 µm in many cases, demonstrating the applicability of the proposed 

method for the comparison of suborgan ROIs from LA-ICP-MS and MALDI-MS images. 

 

3.2 Results and discussion 

The computational workflow for LA-ICP-MS and MALDI-MS image registration and 

evaluation is summarized in Figure 3.1. First, we perform rendering and pre-processing (cropping, 

rotation, hotspot removal) of the LA-ICP-MS and MALDI-MS images. Second, a dimensionality 

reduction strategy is used to obtain a single MALDI-MS image representation for registration. 

Third, the registration of LA-ICP-MS and MALDI-MS images is implemented using a 

computational optimization, which maximizes the mutual information among the images, to bring 

them to the same coordinate system. Finally, the validation of the registration is performed by 
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calculating the ROI masks overlap and the accuracy of registration of corresponding points in the 

two images. These steps are described in more detail in the following sections. 

 

Figure 3.1. Summary of the steps followed to perform image registration and validation of LA-ICP-MS and 

MALDI-MS images. The process consists of the following steps: 1. Pre-processing of LA-ICP-MS and 

MALDI-MS data that involves: rendering, cropping, rotation, hotspot removal. 2. Dimensionality reduction 

to obtain a single image representation of the whole MALDI-MS dataset. 3. Registration of the LA-ICP-MS 

and MALDI-MS images. 4. Validation of the registration using mask overlay of ROIs and overlap of 

corresponding data points.   

 

 

3.2.1 Image pre-processing 

MALDI-MS images constitute complex datasets. They are usually composed of thousands 

of spectra, which results in large datafiles that are difficult to manipulate. For example, Figure 3.2a 

shows an image of a MALDI-MS experiment composed of three tissues and 30,631 spectra. In 

order to analyze this dataset, we use the parser pyimzML,11 to create a function for MALDI-MS 

data rendering and manipulation in Python. Additionally, we added a function for cropping, hotspot 

removal rotation of MALDI-MS and LA-ICP-MS images to render them in the proper 
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configuration as shown in Figure 3.2. Hotspots are pixels with very high intensity values, 

corresponding to outliers in the intensity scale typically produced by fluctuations in the data 

acquisition process. Experimental factors such as the presence of large crystals of the matrix and 

disturbances of the equipment might contribute to hotspots. For that reason, several methods to 

perform hotspot removal in MALDI-MS image processing had been reported.12 Preliminary runs 

for dimensionality reduction, registration, and calculation of correlation coefficients showed that 

the presence of hotspots decreases the quality of the output of these procedures. The hotspot 

removal function works by identifying pixels in the >0.99 quantile (1% high abundance pixels) and 

 

Figure 3.2. Pre-processing of MALDI-MS and LA-ICP-MS data. a) Rendered overview of a tissue slide 

containing a MALDI-MS experiment in which several tissues were analyzed. b) crop of the tissue section 

that will be used for registration, c) MALDI-MS image before and after hotspot removal, and box a whisker 

plots of the signal distribution (m/z 399.088). d) Au LA-ICP-MS image before and after hotspot removal, 

and box and whisker plots of signal distribution. 
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replacing them by the 0.99 quantile value, as shown in the box and whisker plots. After hotspot 

removal, the quality of the image processing routines as well as the statistical correlations inferred 

from the data improve significantly. The included functions for: cropping, rotation, and hotspot 

removal in the computational workflow are applied automatically to all the channels imported into 

the workflow for MALDI-MS (40 to 60 channels), and LA-ICP-MS (3 channels).  

 

3.2.2 Dimensionality reduction of MALDI-MSI datasets using t-SNE 

To properly implement image registration, one image per modality (LA-ICP-MS and 

MALDI-MS) is required as input. Generally, the Fe channel for LA-ICP-MS and the heme b 

channel for the MALDI-MS are used as the informative signal channels that display internal 

features of the image, such as the red pulp, white pulp, veins, etc.1 However, some sample 

preparation approaches, such as the use of sublimation for MALDI-MS matrix deposition, decrease 

considerably the abundance of the heme b signal in MALDI-MSI. In this case, we employ a 

dimensionality reduction approach to obtain a single image representation of the MALDI-MS 

dataset. The image obtained from this procedure is expected to capture most of the salient features 

from the images of different ion channels. The dimensionality reduction was performed using a t-

distributed stochastic neighboring embedding model (t-SNE) that operates by representing the 

hyperspectral data relationships associated with each pixel in a low-dimension 2D map.13 We built 

a function in the Python workflow to perform t-SNE on a set of selected ions in MALDI-MS to 

generate the t-SNE single image representation. Figure 3.3 illustrates the application of t-SNE for 

dimensionality reduction of the MALDI-MS dataset to generate a single t-SNE image (Figure 3.3a) 

by combining 39 different ions measured in MALDI-MS (Figure 3.3b). The resulting t-SNE 

MALDI-MS image is used as the MALDI-MS input in the registration process.    
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Figure 3.3. a) t-SNE MALDI-MS single image representation of the MALDI-MS dataset. b) 39 MALDI-

MS representative images in the mass range m/z 500 – 900 which were used as inputs to calculate the t-SNE 

MALDI-MS single image representation.  

 

 

3.2.3 Registration of LA-ICP-MS and MALDI-MS images 

Image registration involves transforming two or more images containing different data 

features into the same coordinate system. Once the images are registered, the combined information 

from the different imaging modalities allows deeper statistical and quantitative analyses of the 
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images. In the process of image registration, one of the images is set as the fixed image, and the 

other one is the moving image (e.g., Figure 3.4). The moving image is transformed to maximize its 

similarity to the fixed image, resulting in an image that has the same coordinates and pixel number 

as the fixed image. In this work, LA-ICP-MS and MALDI-MS images were registered using 

SimpleElastix registration algorithms14 in a custom Python workflow. Access to the scripts, 

examples and documentation can be found at Appendix C. 

 

 

Figure 3.4. Fixed, moving, and transformed images for: a) mouse liver sections analyzed by MALDI-MS, 

with matrix deposition via the ImagePrep matrix sprayer, and LA-ICP-MS, b) mouse spleen sections 

analyzed by MALDI-MS, with matrix deposition via the ImagePrep matrix sprayer, and LA-ICP-MS, c) 

mouse liver sections analyzed by MALDI-MS, with matrix deposition via sublimation, and LA-ICP-MS. The 

numbers at the bottom represent the pixel dimensions of the given image. The pixel dimensions of the moving 

image are transformed into the same coordinate system as the fixed image after registration 
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To carry out the registration we need to pick two images, one from each modality. Since 

each modality offers several images corresponding to different channels (different ions in the case 

of MALDI-MS or different elements for LA-ICP-MS), one strategy can be picking a pair of images 

that share common features. These internal signal features help to drive the optimization process, 

which seeks to maximize the mutual information present in both images. Ideally, these signal 

features should reflect the morphologic structure of the image (e.g., distinct sub-organ regions in a 

tissue) to ensure the best registration possible. Proper choice of the signal channels enables 

successful registration of LA-ICP-MS and MALDI-MS images when different MALDI-MS matrix 

deposition approaches are used or even when adjacent tissue sections are imaged. For LA-ICP-MS, 

we find that the Fe signal channel (i.e., 57Fe) is an effective feature to use as it indicates blood-rich 

regions that often define different regions in a tissue. For MALDI-MS images, we initially used the 

heme b signal (m/z 616), as analogous indicator of blood flow. Figures 3.5a and 3.5b illustrate the 

LA-ICP-MS (red) and MALDI-MS (blue) images of liver and spleen tissue sections before and 

after registration. The MALDI-MS image was used as the fixed image, and the LA-ICP-MS image 

was used as the moving image. Visual inspection of these images shows that the registration process 

successfully aligns the tissue boundaries and other internal structure features. For example, in 

Figure 3.5a, a large piece of connective tissue (CT) that is devoid of heme signal in the MALDI-

MS image aligns well with the same low Fe signal in the LA-ICP-MS image. Similarly, the red 

pulp (RP) and white pulp (WP) regions of the spleen are very well aligned after registration (Figure 

3.5b).  

When it is difficult to identify a single signal channel that captures the necessary features 

for registration, one can alternatively use computational techniques to generate a single image from 

multiple channels. In this case, we used a t-distributed stochastic neighbor embedding (t-SNE) 

approach to carry out dimensionality reduction for the MALDI-MSI datasets, as described in 

Section 3.2.2. This method has been used successfully on MALDI-MSI data.13,15,16 When the t-SNE 



51 

 

generated features from MALDI-MS images are used together with the Fe signal from LA-ICP-

MS, registration of the two images can be achieved. Using a liver section as an example (Figure 

3.5c), our approach successfully registers the two images, as indicated by the excellent overlap of 

the tissue boundaries and veins (V) in the images.  

 

Figure 3.5. Sequential slices of liver and spleen tissues from mice analyzed by LA-ICP-MS (red) and 

MALDI-MS (blue) using different MALDI-MS matrix deposition strategies and compared before and after 

registration. a) Liver: The MALDI-MS tissue sample was prepared using a matrix sprayer. Low heme and 

Fe signals are present in the connective tissue (CT), while higher heme and Fe signals are present in the 

parenchyma (P). b) Spleen: The MALDI-MS tissue sample was prepared using a matrix sprayer. High Fe 

and heme signals are present in the red pulp (RP), while low signals are found in the white pulp (WP). c) 

Liver: The MALDI-MS tissue sample was prepared using a sublimation chamber. High Fe and t-SNE signals 

are present in the vein (V). 

 

It should be noted that the registered images shown in Figure 3.5 are from adjacent tissue 

sections. Using adjacent tissue slices allows MALDI-MS and LA-ICP-MS imaging conditions to 

be separately optimized. Figure 3.6 shows the registration of the tissue sections using different 

transformations including linear (rigid and affine) and no-linear registration. The different 

transformations shows that registering adjacent tissue sections is more accurate when using non-

linear registration approaches to correct for local deformations in the tissues that can arise from 

placement of adjacent tissue slices.8 
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Figure 3.6. Examples of rigid, affine, and non-linear transformation for registering MALDI-MS and LA-

ICP-MS images of liver (a and c) and spleen tissues from mice. Rigid transformations involve translating or 

rotating images for better overlap. Affine transformations add scaling and skewing factors for images that 

are different sizes. non-linear transformation compensates for localized distortions.   

 

3.2.4 Registration evaluation 

The effectiveness of our registration approach was evaluated by two methods: Dice 

similarity coefficient (DSC) calculations and landmark validation. DSC values were calculated 

using the approach described by Rohlfin17 (equation 1 of the materials and methods section). For 

calculating the DSC values, ROIs were first chosen in both the LA-ICP-MS and MALDI-MS 

images (Figure 3.7). The chosen ROIs depended on the tissue type. For the liver, we used blood 

vessels, and for the spleen, we used the white pulp. Figure 3.7 shows the DSC analysis for the 

chosen ROIs before and after registration. White pixels in the overlay represent pixels that overlap 

in LA-ICP-MS and MALDI-MS images. The DSC value for the liver images increases from 0.42 

after simply overlaying the images before registration to 0.85 after registration, and in the spleen 

tissue the increase is from 0.64 to 0.77. Perfect overlap of the images would correspond to DSC 
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values of 1.0. Because these images are from adjacent tissue slices, DSC values below 1.0 are 

expected, as there are slight differences in the ROIs due to biological variations and imperfect 

placement of the tissue sections. The improvement in DSC values after registration is comparable 

to previous work by Caprioli and co-workers8 in which MALDI-MS and immunostained images of 

liver and spleen sections were registered.18 To further test the ability of our registration methods, 

we also tested tissues sections that were not immediately adjacent but were two sections apart. In 

one example, the DSC value increased from 0.34 to 0.69 after registration (Figure 3.8), indicating 

there is reasonable similarity between non-adjacent tissue sections. 

 

 

Figure 3.7. Registration validation using DSC calculations for liver and spleen tissue sections after 

registration of the MALDI-MS and LA-ICP-MS images from Figures 3.4c and b. a) Overlay of blood vessel 

masks and resulting DSC values before and after registration. b) Overlay of white pulp masks and resulting 

DSC values before and after registration. Green = LA-ICP-MS only pixels, Magenta = MALDI-MS only 

pixels, White = Overlayed pixels. Segmentation of the veins and white pulp was performed manually using 

the Fe image in LA-ICP-MS and the t-SNE image in MALDI-MS to generate computational masks for each 

of the two images. 
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Landmark validation8 was also used to assess registration effectiveness. In the landmark 

approach, several morphologically distinct points are chosen in both LA-ICP-MS and MALDI-MS 

images, and the distance between these points is calculated and averaged to provide an effective 

registration accuracy (Figure 3.9). For the images shown in Figure 3.4, average registration 

accuracies of 40 ± 30 µm and 70 ± 20 µm are obtained for the liver and spleen, respectively. Since 

the images were acquired at 50 µm resolution, the landmark distances show that most of the pixels 

are either perfectly correlated or one pixel off. Given that the diameters of veins in the liver vary 

between 300 and 600 µm, and the diameters of white pulp areas are typically between 300 and 900 

µm, these registration accuracies allow us to make conclusions about the veins and white pulp sub-

organ regions.   

 

Figure 3.8. Registration validation using DSC calculations for non-adjacent mouse liver tissue sections. a) 

LA-ICP-MS and MALDI-MS images and masks before registration. b) Overlay of vein masks and DSC 

values, before and after registration. Green = LA only pixels, Magenta = MALDI only pixels, White = 

Overlay pixels. Segmentation of the veins was performed manually using the Fe image in LA-ICP-MS and 

the t-SNE image in MALDI-MS to generate computational masks for each of the two images. 
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Figure 3.9. Landmark validation of LA-ICP-MS and MALDI-MS registration using selected pixels 

corresponding to morphologically distinct sites in liver and spleen tissues in mice. a) Mouse liver and b) 

mouse spleen. The numbers indicate the pixels that were chosen as landmarks in both imaging modalities. In 

the landmark validation process, the images are overlaid, and the Euclidean distance between corresponding 

points is measured to determine the registration accuracy  

 

 

3.3 Conclusions 

We have developed and evaluated a freely available computation workflow to register LA-

ICP-MS and MALDI-MS images. Our proposed workflow is the first computational approach, to 

our knowledge, that is developed for registration of adjacent tissue slices of LA-ICP-MS and 

MALDI-MS images. The workflow is written in Python and contains functions for image pre-

processing, dimensionality reduction, registration, and validation. By using the proposed method, 

we are able to render and pre-process MALDI-MS data using cropping, rotation, and hotspot 

removal functions. In addition, we have demonstrated the use of dimensionality reduction functions 

to obtain a single image representation of a MALDI-MS liver dataset. Registration of MALDI-MS 

and LA-ICP-MS images of several spleen and liver tissues from adjacent tissue slices were 

performed using the registration workflow functions. After registration, we obtain high correlations 

among the image modalities for the white and red pulp in the spleen and connective tissue, 

parenchyma, and veins in the liver tissue. Using different transformations (rigid, affine and non-

linear) indicates that non-linear transformations are crucial to ensure a proper registration among 
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adjacent tissue slices. Finally, the registration method has been evaluated using DSC and landmark 

registration, obtaining overlapping of ROIs close to 80% and registration accuracies below 50 µm. 

We point out that the combination of LA-ICP-MS and MALDI-MS images enabled by our 

workflow constitutes a systematic and statistically accurate approach for integrating the strengths 

of these two image modalities, providing access to quantitative information about tissue samples 

that cannot be obtain independently by each modality. In subsequent chapters, we will explore 

specific applications of these image processing techniques to acquire insight into biochemical 

processes in these tissue samples. 

 

 

3.4 Materials and methods: 

3.4.1 Nanomaterial synthesis: 

Nanoparticle (NP) synthesis was performed using the Brust-Schiffrin reaction,19 followed 

by functionalization of the Au NP core with different ligands, as described in previous work.20–23 

Similarly, nanoparticle stabilized capsules (NPSC) were synthesized by mixing arginine 

nanoparticles with linoleic acid, followed by its functionalization with siRNA.24–26  

 

3.4.2 Animal experiments and tissue sectioning: 

Balb/c mice were tail vein injected with the nanoparticles (NP) or nanoparticle stabilized 

capsules (NPSC) and euthanized after 24 and 48 hours, respectively. Mice were sacrificed by 

carbon dioxide inhalation and cervical dislocation. All animal experiments were approved by the 

University of Massachusetts Amherst Institutional Animal Care and Use Committee (IACUC), 

which is guided by the U.S. Animal Welfare Act and U.S. Public Health Service Policy. Tissues 

were flash frozen and kept at -80 °C, until slicing for imaging. Frozen tissues were sliced using a 

LEICA CMM1850 cryostat. Adjacent tissue slices of 12 µm thickness were thaw-mounted on 
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indium tin oxide (ITO)-coated glass and glass slides, for MALDI-MSI and LA-ICP-MSI 

experiments, respectively.  

 

3.4.3 MALDI-MSI: 

MALDI-MSI experiments were performed using 2,5-dihydroxybenzoic acid (2,5-DHB) as 

a matrix. Two different methods for matrix deposition were used: spraying and sublimation. 

Spraying was performed using a Bruker ImagePrep device to spray a 25 mg/mL matrix solution in 

1:1 methanol:water on the sliced tissue. Sublimation was performed on a home-built sublimation 

apparatus similar to the setup described by Chaurand and co-workers.27 For liver tissues, 200 mg 

of matrix were deposited at 140 °C at 7 mTorr for 9 minutes. For spleen tissue, 170 mg of matrix 

were deposited at 140 °C at 7 mTorr for 8 minutes. Data acquisition was performed on a Bruker 

UltrafleXetreme MALDI TOF/TOF at 50 μm resolution over an m/z range of 200 to 2000.  

 

3.4.4 LA-ICP-MSI: 

LA-ICP-MS images of 197Au, 57Fe, and 66Zn were acquired on a CETAC LSX-213 G2 laser 

ablation system coupled with a Perkin Elmer NexION 300x ICP-MS instrument. The following 

laser parameters were used: 50 μm spot size, 20 μm/s scan rate, 3.65 J laser energy, 10 Hz laser 

frequency, and a 10 s shutter delay. The He carrier gas from laser ablation system was set to 0.6 

L/min. The described parameters were used in previous contributions for the analysis of 

nanomaterials in tissue sections.28–30  

 

3.4.5 Image preprocessing:  

MALDI-MS images were normalized and exported as imzML files using FlexImaging 

(Bruker, Daltonics). The imzML files were imported to Python using the pyimzML parser, 

developed by Alexandrov and co-workers.31 Peak picking was performed using SCiLS Lab 2015b, 
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and the list of selected ions and mass tolerances were imported to Python as a text file. Images of 

the selected ions were rendered with the pyimzML parser using the text file ion list. LA-ICP-MS 

images were reconstructed, analyzed, and segmented using a custom Python script RecSegImage-

LA, which is described in Chapter 2 and is freely available at GitHub (https://github.com/Vachet-

Lab/RecSegImage-LA).32 Hotspot removal was performed on MALDI-MS and LA-ICP-MS 

images by selecting the intensities in the >0.99 quantile and replacing them with the 0.99 quantile 

value.12 In some cases, t-stochastic non-linear embedding (t-SNE) dimensionality reduction module 

from the scikit-learn Python library33 was applied to selected ion datasets in MALDI-MSI to obtain 

a single image representation of the dataset. 

 

3.4.6 Image registration and validation: 

Image registration was performed using the SimpleElastix14 Python wrapper of the Elastix 

C++ library.6 The MALDI-MSI image (t-SNE or heme channel) was set as the fixed image, while 

the LA-ICP-MSI image (Fe channel) was set as the moving image. Registration was performed 

using the default affine parameter map followed by the default no-linear parameter map in 

SimpleElastix with certain modifications as follows: 4,000 iterations for the affine parameter map, 

8,000 iterations for the non-linear parameter map and 50 final grid spacing in physical units. 

Validation of the registration was performed by Dice similarity coefficient calculations (DSC). We 

used the DSC equation described by Klein and co-workers (equation 1), Where X and Y represent 

the binary label images. Selected regions, such veins (liver) and white pulp (spleen) regions, were 

manually selected in Fiji,34 and imported to Python to calculate the DSC value. Landmark distance 

analysis after registration was calculated by selecting corresponding points in the two images, 

followed by image overlay and calculation of their distances in Fiji. 

𝐷𝑆𝐶(𝑋, 𝑌) =  
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 Equation (1) 
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CHAPTER 4  

LA-ICP-MS AND MALDI-MS IMAGING FOR CORRELATING 

NANOMATERIAL DISTRIBUTIONS AND THEIR BIOCHEMICAL EFFECTS 

Some of the analysis of this chapter is published in two papers: (1) Sikora, K. N.; Hardie, J. M.; 

Castellanos-García, L. J.; Liu, Y.; Reinhardt, B. M.; Farkas, M. E.; Rotello, V. M.; Vachet, R. W. 

Anal Chem. 2020, 92, 2011-2018. And (2) Sikora, K. N., Castellanos-García, L. J., Hardie, J., Liu, 

Y., Farkas, M., Rotello, V., & Vachet, R. Nanodelivery Vehicles Induce Remote Biochemical 

Changes in vivo. Nanoscale. 2021. In press.  

 

4.1 Introduction 

Nanoparticle-stabilized capsules (NPSC) (Figure 4.1) have been successfully used for the 

delivery of siRNA. NPSCs loaded with siRNA that is specific for tumor necrosis factor alpha (TNF-

α) have demonstrated the ability to knockdown the production of TNF-α in cell culture and in-

vivo.1–3 These particular NPSCs have potential as therapeutics as they can regulate the expression 

of this important protein To investigate the intracellular trafficking of the NPSC, several methods 

based on fluorescence imaging have been used to determine the mechanism of NPSC uptake.4 

However, fluorescent methods generally provide information of the NPSC distribution, but do not 

provide information about their biochemical effects.  

Mass spectrometry imaging (MSI) is an analytical technique that enables the untargeted 

spatial analysis of hundreds of analytes in tissue sections.5,6 Despite the multiplexing capabilities 

of MSI, not all analytes are detected in a single MSI experiment, and complementary MSI 

techniques are often required for the thorough analysis of the variety of elemental and molecular 

species in tissues.7 Among the MSI techniques, MALDI-MSI has been extensively used for the 
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spatial analysis of metabolites,8,9 lipids,10,11 peptides,12,13 and proteins,14,15 and thus it should be 

capable of revealing any biochemical changes caused by NPSCs.  On the other hand, LA-ICP-MS 

is a powerful tool for the analysis of metal distributions,16 and this method would be an excellent 

means of mapping the distributions of NPSCs that contain gold. Leveraging the information from 

the two imaging techniques to more fully understand the site-specific biochemical changes caused 

by the presence of the NPSCs requires the two modalities to be properly combined.  

 

 

Figure 4.1. Nanoparticle stabilize capsules (NPSC or nanocapsule) structure and its components 

(nanoparticle, SiRNA, linoleic acid). The NPSC delivers siRNA to the cells through a membrane fusion 

mechanism.  

 
 

Several approaches have been developed to combine MALDI-MS and LA-ICP-MS 

images, most of them named dual17 or dual-mode18 mass spectrometry imaging. Although these 

methods are very informative, the images from the two different modalities (LA-ICP-MS and 

MALDI-MS) are typically  overlaid and not compared quantitatively on a pixel-by-pixel basis, 

making the analysis of the images heavily reliant on the observer. Recently developed image 

registration approaches allow the combination of images from different sources into the same 

coordinates,19–21 opening an avenue for multimodal statistical analyses in complex datasets. 

Registration techniques have been applied to mass spectrometry images to register methods such 

as MALDI-MSI and fluorescence microscopy,22 MALDI-MSI and confocal microscopy23, 

microliquid extraction single probe MSI with microscopy imaging,24 and two different MALDI-
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MSI images.25 Despite, this work, there have been no examples of registering MALDI-MS and LA-

ICP-MS images. 

Here, we describe the application of a computational workflow for the registration of LA-

ICP-MS and MALDI-MS images to improve the analysis of NPSC drug delivery vehicles and their 

biochemical effects. Once the images are registered in the same coordinates, we investigate the use 

of two approaches for quantitative statistical analysis: multimodal calculations of Pearson’s 

correlation coefficients and LA-ICP-MSI assisted segmentation of MALDI-MSI datasets. The 

benefit of this approach is twofold. First, the use of correlation coefficients provides a means to 

calculate the co-localization of two analytes. Correlation coefficients are typically used in the 

exploration of MALDI-MS images of the same tissue;26 however, we report here a novel approach 

to perform this calculation among images obtained from different modalities (MALDI-MSI and 

LA-ICP-MSI) and tissue sections in registered datasets. Second, we leverage the information of the 

registered MALDI-MSI and LA-ICP-MSI datasets to improve segmentation of MALDI-MS 

images. Although segmentation algorithms for MALDI-MS imaging analysis are well 

developed,27–29 they highly depend on the data quality, making the segmentation process 

challenging for noisy datasets.29 LA-ICP-MSI usually produces images of higher quality than 

MALDI-MSI, primarily because the tissue section is completely ablated during the imaging 

process. We present a method to improve segmentation in MALDI-MS images using the 

segmentation obtained from LA-ICP-MS.  

To summarize, we have applied a computational workflow previously developed (see 

Chapter 3) to quantify the correlation between the nanomaterial vehicle and lipid biochemical 

changes, providing a deeper insight into how nanomaterial delivery agents influence lipid 

biochemistry in tissues. Additionally, registration allows us to leverage the higher quality images 
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associated with LA-ICP-MSI to better segment MALDI-MSI images and identify lipids that are 

correlated with different suborgan regions of the spleen, an organ in which the NPSCs accumulate.  

  

 

4.2 Results and discussion 

The results contained in this chapter uses the computational methods and datasets for image 

registration developed in chapter 3. Advances in the implementation and application of statistical 

functions for calculating correlation coefficients are described below, as well as the use of 

segmentation-based statistical analyses.  

 

4.2.1 Statistical correlations to study analyte co-localization in spleen tissues 

Spleen tissues from NPSC-treated and control mice were registered using the 

computational workflow described in chapter 3 (Figure 4.2). The overlay of the two registered 

images shows that there is a good image overlap of the red and white pulp features in the spleen. 

Furthermore, the two images share coordinates, enabling pixel-by-pixel comparisons between the 

two modalities. Once the images are registered, we can then compare how the signals in one image 

modality (LA-ICP-MS) correlate with the signals in the other modality (MALDI-MS), which 

allows us to understand better the underlying biochemistry of the tissues. Using Pearson’s 

correlations, which are one of the more accurate methods for quantifying the degree of co-

localization of two images,26 we can compare the extent to which metal distributions that are 

detected in LA-ICP-MS images correlate to specific biomolecule distributions that are detected in 

MALDI-MS images.  
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As examples, we correlate Fe signals in LA-ICP-MS images of the spleen with a range of 

lipids that are observed in MALDI-MS images of this same organ (Figure 4.3). For the spleen, we 

find that the signal levels for two classes of lipids, including ceramides (Cer) and some 

phosphatidylethanolamines (PE), correlate with the Fe signals (Figure 4.3a and 4.3b). Since high 

Fe signals in LA-ICP-MS indicate the location of red pulp regions in the spleen, the lipids that 

positively correlate with the Fe are predominantly located in the red pulp. In contrast, the lipids that 

anticorrelate with the Fe, including lysophosphatidylcholines (LPC), phosphatidylcholines (PC), 

sphingomyelins (SM), and carnitines (CAR) (Figure 4.3c and 4.3d), are predominantly located in 

the white pulp, which has low Fe levels. In fact, we have identified several lipids that can act as 

biomarkers of the red and white pulp regions of the spleen.  

 

 

Figure 4.2. Registration of MALDI-MS and LA-ICP-MS spleen adjacent images from: a) NPSC tissue and b) 

control tissue. Image dimensions are shown below the images.  
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Figure 4.3. Overlay of registered images from the with Fe images detected by LA-ICP-MS shown in red and 
different lipids detected by MALDI-MS in green. The lipids include a) PE (p-40:5)d and b) Glc d18:1/16:1(17Z) 
that localize in the red pulp, and lipids c) PC (p-40:5) and d) SM (d18:1/17:0) that localize in the white pulp.  

 

To correlate the Fe signal with the Au signal of NPSC injected tissues, we overlay the Fe 

and Au images (Figure 4.4). Visual inspection of the overlaid images shows high co-localization 

of the signals. When the Pearson’s correlation coefficient for Au and Fe images is calculated, we 

obtain a value of 0.69, which quantitatively indicates high co-localization of Au and Fe. 

Additionally, using the segmentation approach RecSegImage-LA30 described in chapter 2, we 

determine that the NPSC tissue shows 80% accumulation of the Au NPSC in the red pulp,17 

demonstrating that most of the NPSC localize in the red pulp of the spleen.  

 

Figure 4.4. Overlay of Au and Fe signals from a spleen tissue from a NPSC-treated mouse. The Au image 

shows nanomaterial accumulation in the red pulp of the spleen, and the Fe image distinguishes the areas 

between red and white pulp using blood as marker of the suborgan regions.  
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The value of these correlations is more informative when we analyze the tissue sections 

from mice injected with NPSCs that deliver TNF-α-specific siRNA. These NPSCs have shown the 

ability to knockdown the production of TNF-α in cell culture and in animals,1–3 and this knockdown 

causes changes in the levels of various lipids.31 LA-ICP-MS imaging is capable of indicating the 

distributions of the Au from the nanomaterials, while MALDI-MS images can indicate how 

biomolecules change in response to knockdown of TNF-α.  

Figure 4.5 indicates the distribution of the Au in a spleen from a NPSC-treated mouse as 

detected by LA-ICP-MS together with the lipid signals of 4 different lipid species as detected by 

MALDI-MS. These images indicate the localization of the lipids in the red or white pulp of the 

spleen. The overlaid images of carrier (Au) and biochemical effect (lipids) can only be rendered 

properly if the two images share coordinates, stressing the value of the registration approaches 

developed here. The rendered images in Figure 4.5 provide a quick qualitative method to compare 

the distribution of the lipids in the suborgan regions of the spleen. However, a qualitative approach 

alone is too reliant on the observer and is not informative for lipids that have signals in both 

suborgan regions,.  

 

 

Figure 4.5. Overlay of Au images detected by LA-ICP-MSI (red) with different lipids detected by MALDI-MSI 

(green) after registration of the LA-ICP-MS and MALDI-MS images. The included lipids are a) PE (p-40:5)d 

and b) Glc d18:1/16:1(17Z), which localize in the red pulp, and c) PC (p-40:5) and d) SM (d18:1/17:0), which 

localize in the white pulp.  
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To quantitatively determine the co-localization of the biochemical changes (MALDI-MSI) in 

comparison to the vehicle distribution (LA-ICP-MSI), we calculated the correlation map for the 

NPSC tissue (Figure 4.6) and control tissue (Figure 4.7). The map contains the Pearson’s 

correlation coefficients between each of the lipids detected in the MALDI-MS dataset to the Au 

and biometals (Fe and Zn) detected in LA-ICP-MS. Additionally, we can also calculate the 

correlations between images in the same modalities. For example, we can calculate the correlation  

 

 

Figure 4.6. Correlation map plot for a spleen from a NPSC-injected mouse, showing correlations among the 

LA-ICP-MS analytes (Au, Fe, Zn) with the lipids detected by MALDI-MS. 
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coefficient of Au vs. Fe images, both detected in LA-ICP-MS, and the correlation of PE (p-40:5)d 

with PC (p-40:5) images, both detected in MALDI-MS. Each of the correlation values correspond 

to a value between +1 and -1. A positive correlation  indicates that two chemical species are co-

localized, with a value of +1 being perfect co-localization, while a negative value indicates that two 

chemical species tend not to co-localize, with a value of -1 being no co-localization.  

 

 

Figure 4.7. Correlation map plot for a spleen control mouse, showing correlations among the LA-ICP-MS 

analytes (Fe, Zn), with the lipids detected by MALDI-MS. 
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We extracted the correlations of the Fe and Au signals with the lipids for control and NPSC-treated 

mice (TNF-α) in spleen tissue sections, and we plot them in Figure 4.8. Several of the lipids exhibit 

a significant change in their Pearson’s correlation values in spleens taken from NPSC-treated mice 

as compared to control mice (Figure 4.8a). For example, glucoceramide (Glc) d18:1/16:1(17Z) has 

a low correlation coefficient with Fe (i.e., 0.03) in the control tissue, which indicates the signal is 

located equally in the Fe-rich red pulp region and the Fe-poor white pulp region. After NPSC 

treatment, the Glc d18:1/16:1(17Z) correlation with Fe increases to 0.32, indicating higher 

localization of this lipid in the red pulp. Because the Au signal also highly correlates with this lipid 

(Figure 4.8b) and the Fe and Au signals have a high positive correlation value of 0.69. We conclude 

 

 

Figure 4.8. Pearson’s correlation coefficients obtained after registering LA-ICP-MS and MALDI-MS images 

of spleen tissue sections from control and NPSC treated mice. a) Correlation coefficients for Fe and select 

lipids that are measured from control and NPSC-treated mice. b) Correlation coefficients for Au and select 

lipids that are measured from NPSC-treated mice. LPC = lysophosphatidylcholines; PC = 

phosphatidylcholines; PE = phosphatidylethanolamines; SM = sphingomyelins; CAR = carnitines; Cer = 

ceramides; Glc = glucosylceramides. 
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that the presence of the NPSC promotes changes in the Glc d18:1/16:1(17Z) level. 

Glucosylceramides are known markers of inflammation,32 so it is possible that the presence of the 

NPSCs causes localized inflammation in the red pulp where they accumulate. PC (34:1) exhibits a 

similar behavior with its Pearson’s value changing from -0.09 in the control to 0.14 in the NPSC-

treated tissue. This lipid also positively correlates with Au, suggesting an NPSC-induced effect to 

the level of this lipid as well.  

In contrast, many more lipids show the opposite trend, becoming more negatively 

correlated with Fe and Au. For example, CAR (16:0) and SM (d18:1/17:0) have correlation values 

that change from 0.07 and -0.14 to -0.17 and -0.32, respectively. These anti-correlated values 

suggest that the presence of the NPSCs is generating changes to the levels of these lipids in places 

where the Fe and Au concentrations are low. That means that these lipid changes are occurring 

primarily in the white pulp where Fe concentrations are low and where Au accumulation is minimal 

(Figure 4.4 and Figure 4.5). TNF-α knockdown therapies, like these NPSCs, typically target 

macrophages and lymphocytes, which are highly abundant in the white pulp of the spleen,33 likely 

explaining why so many lipid changes occur in the white pulp. CAR (16:0), SM (d18:1/17:0), and 

several of the PC lipids are signaling lipids known to undergo changes in concentrations upon TNF-

α suppression,31 and the ability to correlate MALDI-MS and LA-ICP-MS images helps identify the 

specific sub-organ regions in which these changes are happening.    

 

4.2.2 LA-ICP-MS assisted segmentation of MALDI-MS spleen images 

The analysis of tissue regions upon MSI often involves the division of the image into 

segments so that the detected molecular features can be associated with different cell types and 

regions of the analyzed tissue. A commonly used methods for such image segmentation is k-means 

clustering, which is a statistical method that divides the image into segments that possess similar 
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spectral characteristics.34 In MALDI-MS imaging, several approaches have been used to further 

improve segmentation, such as the implementation of more sophisticated spatially aware 

methods27,28 and spatial shrunken centroids.29 Although segmentation algorithms for MALDI-MS 

imaging analysis are well developed, they highly depend on the data quality, making the 

segmentation process challenging for noisy datasets.29 LA-ICP-MSI usually produces less noisy 

images than MALDI-MSI primarily because the tissue section is completely ablated during the 

imaging process. Consequently, we sought to leverage this quality of LA-ICP-MSI to improve 

segmentation in MALDI-MS images. To do this, we first segment the LA-ICP-MS image and then 

apply the resulting segmentation masks to the registered MALDI-MS images to improve the 

segmentation of the MALDI-MS data.  

 

 

Figure 4.9. LA-ICP-MS assisted segmentation of MALDI-MS images. a) LA-ICP-MS Fe image, b) MALDI heme 

b image, c) MALDI segmentation in SCiLS using k-means with a cluster number of 4, d) MALDI segmentation 

in SciLS using bisecting k-means, e) LA-ICP-MS segmentation using RecSegImage-LA,30 and MALDI heme b 

images overlaid with the f) red pulp (RP) mask, g) marginal zone (MZ) mask, and h) white pulp (WP) mask.  
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As an example of LA-ICP-MS-assisted segmentation of MALDI-MS images, imaging data 

from mouse spleen tissues were acquired by both techniques (Figures 4.9a and 4.9b). First, we 

segmented the MALDI-MS images using two methods available in SCiLS lab: (i) k-means35 on the 

normalized dataset with a cluster number of 4 (Figure 4.9c) and (ii) bisecting k-means36 (Figure 

4.9d). Both segmentation approaches differentiate the red and white pulp regions of the spleen, but 

neither method identifies a segment associated with the marginal zone, which is the 50 – 100 µm-

sized region where initial immune responses occur in this organ.37 In contrast, segmentation of the 

Fe image from LA-ICP-MSI using RecSegImage-LA30 does classify the marginal zone of the 

spleen as a separate segment in the image in addition to the red and white pulp regions (Figure 

4.9e). The segmented areas from the LA-ICP-MS image can then be used as computational masks 

to classify the lipid signals from the MALDI-MS images that are most associated with each of the 

three different regions of the spleen (Figure 4.9f, 4.9g, and 4.9h).  

The segmented areas in Figure 4.9f, 4.9g, and 4.9h are used as computational masks for 

extracting the signals of the lipids in each of the areas and performing a comparison of the data 

using statistical approaches in python. A t test was applied to calculate the probability of statistical 

significance between the extracted values in the red pulp vs. white pulp, red pulp vs. marginal zone 

and white pulp vs. marginal zone, as shown in Table 4.1. The obtained values show that out of the 

43 analyzed lipids, 39 show statistically significant differences between the red and white pulp, as 

shown in yellow in Table 4.1. Additionally, the table also shows that there are more significant 

differences among the lipids in the red pulp and the marginal zone (34 lipids have significant 

differences) than the lipids in the white pulp and the marginal zone (22 lipids have significant 

differences).  

 



75 

 

Considering the data more closely, lipids such as glucoceramide and PC (34:1), we obtain 

the following average signal in the red pulp vs. white pulp for the two species: Glc (RP=44.2, 

WP=29.7) and PC (34:1) (RP=51.7, WP=44.7), demonstrating the higher localization of these 

lipids in the red pulp. CAR (16:0) has average signals of 37.0 and 44.3 in the red pulp and white 

pulp, respectively, and SM (d18:1/17:0) has values of 27.7 and 49.4 in the red and white pulp, 

respectively, demonstrating that these two lipids have higher average signals in the white pulp. The 

data for these lipids s is consistent with the localization of the lipids as determined by the Pearson’s 

correlation coefficients (see Figure 4.8). 

Table 4.1. Normalized signal intensities in each of the segmented regions (red pulp, white pulp, and 

marginal zone) of LA-ICP-MS and MALDI-MS signals. t test probabilities were calculated to obtain if there 

are statistically significant differences among red pulp and white pulp, red pulp and marginal zone and 

white pulp and marginal zone. Yes in green indicates significant differences between the compared areas, 

No in orange indicates no significant difference between the compared areas.  

Ion identity 

Red Pulp White Pulp Marginal Zone t test probabilities (P) 

Average SD Average SD Average SD 
RP vs 

WP 

RP vs 

MZ 

WP vs 

MZ 

Au 60.5 19.1 19.2 6.5 34.3 12.3 Yes Yes Yes 

Fe 71.9 14.8 44.6 3.2 50.1 7.0 Yes Yes Yes 

Heme B 53.3 25.9 24.9 21.5 39.3 26.1 Yes Yes Yes 

LPC (16:0) 52.8 11.2 60.6 13.5 57.1 13.2 Yes Yes Yes 

LPC (18:0) 37.1 13.9 36.7 11.9 38.9 13.6 No No No 

LPC (18:2) 72.0 6.6 75.0 6.8 74.1 6.6 Yes Yes No 

LPC (20:4) 46.2 13.9 52.2 14.4 48.8 13.6 Yes No Yes 

LPC (p-18:0) 43.9 14.4 50.3 15.9 47.8 16.3 Yes Yes No 

PC (30:0) 44.8 8.9 54.8 11.9 49.9 10.4 Yes Yes Yes 

PC (32:0) 49.0 20.6 63.9 23.7 61.5 25.5 Yes Yes No 

PC (34:0) 46.3 14.1 47.6 13.7 48.5 12.8 No No No 

PC (34:1) 51.7 16.7 44.7 13.4 49.5 15.4 Yes No Yes 

PC (34:2) 59.2 15.9 62.8 15.6 66.6 17.9 Yes Yes No 

PC (34:3) 50.6 14.2 56.0 15.0 58.0 17.9 Yes Yes No 

PC (36:0)d 54.5 16.6 64.4 19.8 62.7 18.9 Yes Yes No 

PC (p-32:0) 50.6 14.2 56.0 15.0 58.0 17.9 Yes Yes No 

PC (p-34:0) 47.9 18.7 51.6 20.5 55.9 20.1 Yes Yes No 

PC (p-34:1) 55.8 13.8 74.3 18.1 66.5 16.6 Yes Yes Yes 

PC (p-36:2) 53.4 15.2 61.8 17.2 60.4 16.7 Yes Yes No 
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PC (p-36:4) 53.6 17.7 64.2 18.2 60.0 18.6 Yes Yes No 

PC (p-36:5) 40.4 15.8 55.2 16.9 47.7 16.9 Yes Yes Yes 

PC (p-38:4) 47.5 18.6 61.6 22.8 58.5 21.2 Yes Yes No 

PC (p-38:5) 45.5 14.3 58.8 16.9 52.3 15.4 Yes Yes Yes 

PC (p-38:6)d 52.0 15.0 65.0 18.0 59.6 16.8 Yes Yes Yes 

PC (p-40:5) 48.8 14.1 68.2 18.7 58.2 16.6 Yes Yes Yes 

PE (26:4) 38.2 13.0 45.4 14.9 40.6 14.0 Yes No Yes 

PE (38:2) 44.0 20.3 48.6 22.5 50.5 22.8 Yes Yes No 

PE (p-34:1) 47.4 15.8 51.7 17.2 55.2 19.0 Yes Yes No 

PE (p-34:2) 44.2 20.6 55.9 22.6 54.8 25.1 Yes Yes No 

PE (p-34:3) 51.5 12.0 52.9 12.1 50.7 12.0 No No No 

PE (p-36:3) 52.8 12.0 66.7 16.3 58.9 13.9 Yes Yes Yes 

PE (p-36:4) 56.1 16.2 67.4 17.3 64.7 19.4 Yes Yes No 

PE (p-34:1)d 45.2 21.6 30.6 17.8 40.5 21.4 Yes Yes Yes 

PE (p-40:5)d 58.1 18.1 39.5 15.2 48.0 18.9 Yes Yes Yes 

SM (d18:1/17:0) 27.7 13.0 49.4 29.1 34.4 18.1 Yes Yes Yes 

SM (d18:1/20:0) 56.5 18.3 54.4 18.4 61.8 20.3 No Yes Yes 

SM (d18:1/21:1) 49.6 17.5 65.2 20.8 59.5 21.3 Yes Yes Yes 

SM (d18:1/23:2) 58.9 13.9 69.7 15.0 67.1 16.3 Yes Yes No 

SM (d18:1/24:0) 52.8 14.4 72.6 18.1 61.7 16.1 Yes Yes Yes 

SM (d18:1/24:3) 44.9 13.9 66.1 21.8 53.6 16.9 Yes Yes Yes 

CAR (16:0) 37.0 17.1 44.3 17.2 38.5 15.6 Yes No Yes 

CAR (18:1) 21.6 4.8 24.0 3.6 22.4 4.2 Yes No Yes 

2H Cer 

(d18:1/20:1) 
42.1 20.4 33.6 9.6 36.2 14.3 Yes Yes No 

2H Cer 

(d18:1/25:1) 
57.6 16.0 48.6 14.8 52.3 15.8 Yes Yes Yes 

2H OH Cer 

(d18:1/20:0) 
46.0 13.7 50.4 14.7 48.2 15.1 Yes No No 

Glc(d18:1/26:1(1

7Z)) 
44.2 19.6 29.7 10.7 36.4 14.9 Yes Yes Yes 

 

 

4.3 Conclusions 

We had used a custom computational workflow to register LA-ICP-MS and MALDI-MS 

images to generate a unified dataset and perform quantitative comparisons of NPSC-treated and 
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control spleen tissues. Registration of these images allows us to quantitatively compare the 

chemical information from both image modalities using statistical functions in Python, such as the 

calculation of Pearson’s correlation coefficients. By understanding changes in localization patterns 

of the lipids in the NPSC-treated tissues vs. control tissues, we obtain deeper insight into how 

NPSCs influence lipid biochemistry in tissues. Additionally, the registration also allows us to 

leverage the higher quality images associated with LA-ICP-MS to better segment MALDI-MS 

images, so that we can identify lipids that are most associated with the three different regions of 

the spleen and identify statistically significant changes. The development of statistical methods in 

Python for these compelling datasets (46 images, 414,000 data points), allows the automatic 

calculation of 1,058 correlation coefficients and 92 probability values for each image (NPSC and 

control). We believe that the automation of the tissue image data analysis workflows benefits 

researchers in need of methods to interrogate large datasets. We envision that Pearson’s correlations 

and segmentation t tests are just the initial examples of the statistical possibilities than can be 

achieved in these multimodal datasets. We expect that in the future, other statistical models, already 

present as libraries in Python, can be used to advance the interrogation of multimodal datasets and 

improve our understanding of drug delivery systems as NPSC.  

 

4.4 Materials and methods 

4.4.1 Nanomaterial synthesis: 

Nanoparticle (NP) synthesis was performed using the Brust-Schiffrin reaction,38 followed by 

functionalization of the Au NP core with different ligands, as described in previous work.39–42 

Similarly, nanoparticle stabilized capsules (NPSC) were synthesized by mixing arginine 

nanoparticles with linoleic acid, followed by its functionalization with siRNA that causes  

knockdown of tumor necrosis factor α (TNFα), as described in detail in previous reports.1–3  



78 

 

4.4.2 Animal experiments and tissue sectioning: 

Balb/c mice were tail-vein injected with the nanoparticles (NP) or nanoparticle stabilized capsules 

(NPSC) and euthanized after 24 and 48 hours, respectively. Mice were sacrificed by carbon dioxide 

inhalation and cervical dislocation. All animal experiments were approved by the University of 

Massachusetts Amherst Institutional Animal Care and Use Committee (IACUC), which is guided 

by the U.S. Animal Welfare Act and U.S. Public Health Service Policy. Tissues were flash frozen 

and kept at -80 °C, until slicing for imaging. Frozen tissues were sliced using a LEICA CMM1850 

cryostat. Adjacent tissue slices of 12 µm thickness were thaw-mounted on indium tin oxide (ITO)-

coated glass and glass slides, for MALDI-MSI and LA-ICP-MSI experiments, respectively.  

 

4.4.3 MALDI-MSI: 

MALDI-MSI experiments were performed using 2,5-dihydroxybenzoic acid (2,5-DHB) as a 

matrix. Spraying was performed using a Bruker ImagePrep device to spray a 25 mg/mL matrix 

solution in 1:1 methanol:water on the sliced tissue. Data acquisition was performed on a Bruker 

UltrafleXetreme MALDI TOF/TOF at 50 μm resolution over an m/z range of 200 to 2000. MS/MS 

experiments to confirm analyte identities were performed in a collision-induced dissociation (CID) 

LIFT cell. 

 

4.4.4 LA-ICP-MSI: 

LA-ICP-MS images of 197Au, 57Fe, and 66Zn were acquired on a CETAC LSX-213 G2 laser ablation 

system coupled with a Perkin Elmer NexION 300x ICP-MS instrument. The following laser 

parameters were used: 50 μm spot size, 20 μm/s scan rate, 3.65 J laser energy, 10 Hz laser 

frequency, and a 10 s shutter delay. The He carrier gas from laser ablation system was set to 0.6 
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L/min. The described parameters were used in previous contributions for the analysis of 

nanomaterials in tissue sections.18,43,44  

 

4.4.5 Image preprocessing:  

MALDI-MS images were normalized and exported as imzML files using FlexImaging (Bruker, 

Daltonics). The imzML files were imported to Python using the pyimzML parser, developed by 

Alexandrov and co-workers.45 Peak picking was performed using SCiLS Lab 2015b, and the list of 

selected ions and mass tolerances were imported to Python as a text file. Images of the selected 

ions were rendered with the pyimzML parser using the text file ion list. LA-ICP-MS images were 

reconstructed, analyzed, and segmented using a custom Python script RecSegImage-LA, which 

was described recently and is freely available at GitHub (https://github.com/Vachet-

Lab/RecSegImage-LA).30 Hotspot removal was performed on MALDI-MS and LA-ICP-MS 

images by selecting the intensities in the >0.99 quantile and replacing them with the 0.99 quantile 

value.26  

 

4.4.6 Image registration: 

Image registration was performed using the SimpleElastix46 Python extension of the Elastix C++ 

library.20 The MALDI-MSI image (t-SNE or heme channel) was set as the fixed image, while the 

LA-ICP-MSI image (Fe channel) was set as the moving image. Registration was performed using 

the default affine parameter map followed by the default no-linear parameter map in SimpleElastix 

with certain modifications as follows: 4,000 iterations for the affine parameter map, 8,000 iterations 

for the non-linear parameter map and 50 final grid spacing in physical units.  
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4.4.7 Statistical analysis of the registered images:  

Correlation coefficients between  signals in MALDI-MSI and LA-ICP-MSI data were calculated 

using the Pearson implementation in the Scipy library (pearsonsr)47 on the vectorized, background 

subtracted MALDI-MS and LA-ICP-MS images.  Implementation of the t test statistical analysis 

was performed by segmentation and vectorization of the segments, followed by the application of 

the stats (stats.ttest_ind) implementation in Scipy.  
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CHAPTER 5  

SUMMARY AND FUTURE WORK 

5.1 Dissertation summary 

In this dissertation, we developed computational method to advance the reconstruction, 

segmentation, and registration of MS data from MALDI-MS and LA-ICP-MS images. The 

computational and experimental methods introduced here helped us gain a deeper understanding of 

nanomaterials accumulation, distribution, and biochemical effects on tissue samples. First, we 

developed an open-source software in Python that automatically reconstructs, analyses, and 

segments images from LA-ICP-MSI. This approach allowed us to automatically segment ROIs 

from LA-ICP-MS images to extract information and automatically perform statistical calculations 

on the segmented areas, such as averages, standard deviation, etc. This software enabled us to 

automatically determine the difference in the distributions of Au NPs and Bismuth nanorods in 

spleen tissue, where we see accumulation in different suborgan regions. Before the software, we 

used to do manual reconstruction of the images, a process that took between 6 to 8 hours per tissue. 

Our new methodology reduces the processing time to less than 1 minute. Although the software 

works very well for LA-ICP-MS PerkinElmer data, it is not compatible with other vendor’s 

software, due to the differences in the data structure. We believe that if needed, we can expand the 

functionality of our program to import data from other vendors. Additionally, the functions we 

currently have for data analysis can be expanded to calculate other metrics among ROIs, as t-tests, 

histogram analysis, among others.  

After the successful reconstruction and segmentation of LA-ICP-MS data, we decided to 

conjugate the information obtained with MALDI-MS with LA-ICP-MS. To that purpose, in 

Chapter 2 we developed a computational workflow in Python to register LA-ICP-MS and MALDI-
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MS images of adjacent tissue slices to generate a dataset in the same coordinates. The workflow 

showed high registration accuracy with errors below 50 µm, making it ideal for finding correlations 

among suborgan regions. The combination of image modalities provides deeper quantitative 

information from the tissue sample to gain understanding about the complex biochemical processes 

happening in the tissues. 

We used the developed computational image registration workflow to register LA-ICP-MS and 

MALDI-MS images of adjacent tissue slices of tissue injected with nanoparticle stabilized capsules 

(NPSC). We were able to correlate images of the NPSC carriers (detected by LA-ICP-MS) and the 

biochemical effects of the NPSC functionalized with siRNA (detected by MALDI-MS). For 

quantifying correlations, we calculated the multimodal Pearson’s correlation coefficient between 

the Au and each of the detected lipids to identify lipids that change localization after NPSC 

injection. Several lipids (e.g., Glc(d18:1/26:1(17Z)) and PC (34:1)) were identified to correlate with 

the presence of the NPSC in comparison to the control, showing that these lipids change in locations 

in which the NPSC is present. In contrast, other lipids (e.g., SM (d18:1/17:0) and CAR (16:0)) were 

anticorrelated with the presence of the NPSC, suggesting that the NPSC might promote lipid 

changes in regions proximal to its accumulation sites. Using image registration, we were able to 

get a deeper insight into how nanomaterial delivery agents influence lipid biochemistry in tissues. 

 The ability to track nanomaterials in tissues had showed us that some of the lipid changes 

occurs in suborgan regions in which the NPSC are found (red pulp), and others in regions proximal 

to where the NPSC are located (white pulp). Although the NPSC do not reach the white pulp, it 

generates biochemical changes to lipids in both suborgan areas. The obtained information of non-

localized biochemical changes is valuable to understand that certain nanomaterials might generate 

responses in suborgan regions that are distant to its accumulation sites and opens a route to generate 

indirect means of therapy.   
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Additionally, since the LA-ICP-MSI and MALDI-MSI datasets are registered, we were 

able to perform segmentation in LA-ICP-MSI and apply the segmented masks to extract data from 

MALDI-MS images. Using this process, we performed t-tests over the segmented regions of the 

spleen for all lipids detected to determine the significant changes of the lipid in each of the regions. 

Using the automated workflow, we were able to calculate nearly 1,058 correlation coefficients and 

92 probability values for each of the analyzed tissues. We expect that in the future, other statistical 

models, already available as Python libraries, can be used to advance the interrogation of 

multimodal datasets and improve our understanding of drug delivery systems such as NPSC. The 

computational methods described in this work are applicable to the study of more types of 

nanomaterials, other than the gold nanoparticles, nanocapsules and the bismuth nanorods described. 

We envision that other nanomaterials, such as nanozymes in which the detection of the nanoparticle 

core is performed by LA-ICP-MS and the detection of the catalyst structure can be performed using 

MALDI-MS could be analyzed using the described computational methods to evaluate nanozyme 

stability.  

 

5.2 Future directions 

In the following sections, potential new applications of LA-ICP-MSI and MALDI-MSI to 

the analysis of nanomaterials will be discussed. 

 

5.2.1 Improving LA-ICP-MS image registration and image resolution 

The multimodal analysis of tissues by LA-ICP-MS and MALDI-MS allowed us to 

understand better how nanomaterials distribute in tissue sections, and how to correlate spatial 

biochemical effects (in MALDI-MSI) with the distribution of the nanomaterial (in LA-ICP-MS). 
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Our method for registration of LA-ICP-MS and MALDI-MS images work by registering images 

of 50µm resolution in both modalities, as shown in figure 5.1 as direct registration. When 

calculating the accuracy of the registration, we obtain that the accuracy of our method is around 50 

µm, meaning that the registration in some areas of the tissue might be 1 pixel off the spatial location, 

which is expected due to the 50 µm resolution of our input images. The approach introduced in this 

thesis is useful in comparison of tissue areas higher than 50 µm in size, for example white pulp 

areas of the spleen  that varies between 300 µm to 900 µm in size. However, our approach is limited 

in the comparison of very small areas in the tissue as the hepatocytes in the liver, which usually 

have sizes around the 100 µm. For comparing hepatocytes, a registration with better resolution 

should be performed. An example of such type of approach is shown in Figure 5.1 left, labeled as 

microscopy mediated registration. In microscopy mediated registration, before LA-ICP-MS and 

MALDI-MS image acquisition, we acquire an autofluorescence (AF) image at high resolution (1 

µm). 

 

Figure 5.1. Comparison of direct registration (left) with microscopy mediated registration (right). 
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This AF image can be acquired on the same tissue section because the process is non-

destructive. Each of the MS images are registered first to their AF counterparts through an intra-

section registration R* process, and then an inter-section registration is performed (R), as shown in 

Figure 5.1. Since the inter-section registration is performed on tissue sections that has resolutions 

in the 1 µm range, the final accuracy of the microscopy mediated registration for the two sections 

falls between 1 µm and 3 µm. Through microscopy mediated registration we can compare small 

features of the images, such as hepatocyte signal in LA-ICP-MS and MALDI-MS images, and 

obtain valuable information about NPs distribution. Some previous work in our group have 

determined that some of the NPs showed high accumulation in the liver hepatocytes,1,2 which are 

fundamental in the excretion and clearance of NPs from the liver. A registration method with higher 

accuracy will be fundamental to advance our understanding of the biochemical processes that 

occurs in small areas of the tissues. 

 Microscopy mediated registration was first described for MS images by Caprioli and 

coworkers for the registration of MALDI-MSI images with H&E microscopy images, using a AF 

intermediate image to improve the registration.3 But, the approach has not been used for LA-ICP-

MS and MALDI-MS image registration. The Caprioli group developed a code in Python named 

regToolboxMSRC for performing this registration, but the documentation is very limited. 

Additionally, since the code is based on SimpleElastix libraries in Python, debugging the code 

becomes difficult since many of the error messages observed during the registration correspond to 

errors in SimpleElastix and not regToolboxMSRC perse, making the troubleshooting more 

complex. For that reason, we developed code using SimpleElastix directly to optimize the 

registration of AF images with LA-ICP-MS images, and we were successful to certain extend in 

two areas as shown in Figure 5.2: (a) in designing an experimental method for the combined 

acquisition of LA-ICP-MS, MALDI-MS, and AF images in adjacent tissue slices and (b) improving 

the registration of AF sections of 8 µm images. However, optimizing the registration for images of 
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1 µm resolution was challenging. We believe that by investing time in optimizing the registration 

parameters, we can achieve registration at 1 µm for AF and 50 µm resolution for LA-ICP-MS and 

be close in the implementation of microscopy mediated registration. 

 

 

Figure 5.2. First steps in microscopy mediated registration. a) acquisition of AF and LA-ICP-MS images 

and b)Registration of 8 µm AF image with LA-ICP-MS.  

 

In addition to microscopy registration approaches we believe that new image fusion 

methods as the one described by Van der Plas and co-workers4 will be ideal to improve the 

resolution of LA-ICP-MS images and improve the quality of the information obtained from this 

technique, especially at resolutions lower than 50 µm. This will open new avenues to interrogate 

tissue sections at high resolution and obtain valuable information of suborgan regions at high 

resolution. The image fusion approach described by Van der Plas has been applied to MALDI-MSI, 

but not for LA-ICP-MS. We believe that a workflow similar to the one described in Figure 5.3. will 

be ideal for performing image fusion for microscopy and LA-ICP-MS. In our group, we had made 

advances in image registration and transformations that start building towards applying image 

fusion to microscopy and LA-ICP-MS. 
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Figure 5.3. Proposed workflow for LA-ICP-MS and microscopy image fusion 

 

 

5.2.2 Nanoparticle excretion 

We performed several experiments to determine the excretion of nanomaterials from 

tissues. Previous reports from our research group had study the excretion of NPs after 12 hours, 1 

or 2 days.1,2,5 However, longer timepoints to determine how NPs are being excreted had not been 

performed. We developed an experiment in which we compare the excretion of three nanomaterials 

with different surface charge TTMA (positive charge), TEGCOOH (negative charge) and ZW 

(neutral) in day 1 (D1) and day 6 (D6) after injection. With each of the mice we perform a mass 

balance in which we assume that the total ng of Au injected is 100% and based on this the total ng 

of Au found in mice was calculated. The total Au in mice correspond to the sum in ng of the Au 

found in each of the organs studied, on D1 and D6 and the results are displayed in Figure 5.4. Our 

results show that there is some excretion of NPs from TTMA and ZW after D6, but TEGCOOH 

NPs had very similar quantities of NPs on day 1 vs day 6, indicating that the NPs are not being 

excreted properly in TEGCOOH mice. 
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Figure 5.4. Mass balance showing average ng of Au found in mice injected with TTMA, ZW and 

TEGCOOH. Tissue collection was performed at day 1 and day 6. Each bar corresponds to the average of 3 

mouse. 

 

In addition to total Au in the mice, we calculated the concentration of Au in each organ, using 

tissue digestion in ICP-MS and the results are shown in Figure 5.5. We found the following 

differences in excretion of the three nanomaterials TTMA, ZW and TEGCOOH: 

• Liver: Au concentration decreases in TTMA (-50%) and ZW (-28%), but in COOH the 

concentration remains almost the same on D6. 

• Spleen: concentration increases in all NPs from D1 to D6 TTMA (+56%), ZW(+174%), 

COOH (+230%). This increase is considerably high in COOH.  

• Kidney: concentration slightly decrease in TTMA (-10%) and increases in ZW (+40%) and 

COOH (+146%). 

• Blood: The initial concentration of ZW in blood on D1 is considerable high, with respect of 

the other NPs. The concentration decreases for all NPs on D6.  
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The differences in the excretion patterns suggests that the TEGCOOH nanomaterials are 

not easily cleared from mice, as it shows nor or very small liver excretion and accumulation in 

Kidney and Spleen in comparison with its TTMA and ZW counterparts. To improve our 

understanding of the NPs excretion in the suborgan regions of the liver, we performed a series of 

images in LA-ICP-MS, from D1 and D6 liver tissue and the results are displayed in Figure 5.6. The 

scale on the images corresponds to a concentration scale, since the LA-ICP-MS experiments were 

performed using a calibration standard. Using our software for image reconstruction and analysis 

we calculated the average concentration, using all the tissue pixels and its standard deviation, to 

properly get an assessment of NPs distribution, results are displayed Table 5.1. 

 

 

Figure 5.5. concentration of Au in each of the organs by ICP-MS in solution digestion. D1 and D6 were 

evaluated for each of the three nanomaterials. Each bar corresponds to experiments performed on 3 mice.   

Liver Spleen Kidney Lung Heart S. Int L. Int Brain Blood
0

1x104

2x104

3x104

4x104

5x104

6x104

7x104

 TTMA D1

 TTMA D6

Liver Spleen Kidney Lung Heart S. Int. L. Int. Brain Blood
0

1x104

2x104

3x104

4x104

5x104

C
o

n
c

e
n

tr
a

ti
o

n
 [

p
p

b
]

 ZW D1

 ZW D6

Liver Spleen Kidney Lung Heart S. Int L. Int Brain Blood
0

1x104

2x104

3x104

4x104

5x104

6x104

7x104

 COOH D1

 COOH D6



93 

 

 

Figure 5.6. LA-ICP-MS images from tissue sections obtained from NPs injected mouse. 

 

The table and images in Figure 5.6 and Table 5.1 clearly shows that TTMA and ZW 

nanoparticles show a decrease in concentration in the tissues as shown by the tissue average. On 

the other hand, TEGCOOH nanoparticles show an increase in liver concentration, showing an 

accumulation of this type of nanomaterials in the tissue sections. Finally, we evaluated the 

distribution of all the tissue pixels using histograms as shown in Figure 5.7, and we determined that 

the TEGCOOH pixels shift towards higher concentration and broadens in its distribution as the NPs 

accumulate in the liver. These offer us already more information about the nature of the 

accumulation, showing that certain parts of the tissue section accumulate more of these NPs in 

time. To get a better picture of the accumulation process we could analyze the distribution per 
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suborgan regions, which would require the implementation of techniques that can improve the 

resolution of the images, such as Image Fusion. 

 

Table 5.1. Tissue average concentration in tissue sections injected with TTMA, ZW and TEGCOOH NPs on 

day 1 and day 6. 

 



95 

 

 

Figure 5.7. Evaluation of pixel distribution on liver tissues injected with TTMA, ZW and TEGCOOH.  
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APPENDIX A 

Jupyter Notebook RecSegImage-LA: Reconstruction, Segmentation of 

LA-ICP Imaging Data 

Here, we display the content of the Jupyter notebook used for the reconstruction and segmentation 

of LA-ICP data. The use of this code is described in Chapter 2. The workflow consists of six steps 

showed in the image below, orange circles show input parameters, while gray boxes show the 

workflow steps. Each of the steps is documented in the Jupyter notebook showing the variable type 

(“integer”, “string”, “float”, etc) and the input required in each case.  

 

 

 

import sys 

sys.path.append("../") # go to parent dir 

from recsegimage import * 

 

import numpy as np 

import matplotlib.pyplot as plt 

import glob 

import re 

%matplotlib inline 
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Reconstruction of images for the analyzed metals 

The following lines of code perform image reconstruction of LA-ICP-MS data, save the data in the 

results folder and generate plots of the reconstructed images. The final images are in order of 

acquisition in the raw data (Metal1, Metal2, Metal3, ... , Metaln) 

• foldername = string, name of the folder that includes the raw data files and the ipython 

script RecSegImage-LA.ipynb 

• data_name = string, name given to the data (no blank spaces allowed in the name) 

• spot_size = integer, spot size in microns of the laser used to acquire the data 

• scan_rate = integer, scan rate of the laser in microns/second 

• nmetals = integer, number of metals analyzed, when performing the images 

• ldiscard = integer, number of columns on the far left side of the image to be eliminated 

in case there is sample carryover. Default value is 0 

foldername = "data/"  

data_name = "Example"  

spot_size = 50 

scan_rate = 15 

nmetals = 4 

ldiscard = 0 

 

# Image reconstruction of the LA-ICP-MS raw data 

final_matrices,sumdata = 

image_reconstruction(foldername,ldiscard,"*.xl",nmetals,spot_size,sca

n_rate)  

 

# Save the analysis in .csv files in the folder RegSegImage-

LA/results folder 

write_data_analysis(final_matrices,ldiscard,sumdata,nmetals) 

 

# Generate the image plots of all the analyzed metals 

generate_plot_all_metals(final_matrices, nmetals) 
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Reconstruction of the image of a single metal 

Image reconstruction of one of all the analyzed metals. The metal index of the metal needs to be 

specified. The metal index corresponds to the order in which the metal is analyzed by the ICP-MS. 

For this particular example, the ICP-MS performs the readings of the metals in the following order: 

Bi, Fe, Zn, S. This means that the associated indexes are: Bi (Metal1, metal_index=1), Fe (Metal2, 

metal_index=2), Zn (Metal3, metal_index=3) and S (Metal4, metal_index=4) 

• metal_index = integer, index of the metal that we want to plot. For example, for Metal 2 

(Fe), the index is 2. 

metal_index = 2 

 

# Functions to generate image of one metal plot 

generate_metal_plot(final_matrices,metal_index,nmetals) 
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Background subtraction 

Use the Zn image (or other metal that marks the tissue boundary) to differentiate tissue from 

background 

• background_index = integer, index of the image used for background subtraction. In this 

case is the Zn image 

• line = integer, row or column from which the standard deviation will be calculated. By 

default, the value is 1, which corresponds to the first row and column. The script will 

calculate the smallest standard deviation among the selected rows and columns 

• std_threshold = integer, how many standard deviations will be tolerated to set the 

threshold of what is considered to be tissue and background 

background_index = 3 

line = 1 

std_threshold = 4 

 

background_mask = 

remove_background(final_matrices,background_index,line,std_threshold) 

background_plot = generate_background_plot(background_mask) 

 

 

 

 

Normalization with background subtraction 

Normalization of the image with background subtraction. Background subtraction should be done 

first to obtain the background mask. The normalization corresponds to a pixel/pixel division of the 

images, so metal_numerator/metal_denominator should be specified in the following parameters: 

• metal_numerator = integer, index of the metal that will correspond to the metal numerator 

in the division operation 

• metal_denominator = integer, index of the metal that will correspond to the metal 

denominator in the division operation 

The normalized image with background subtraction is saved as a text file in the results folder. The 

name of the file is: "Normalization Background Metal_numerator / Metal_denominator" 
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metal_numerator = 1 

metal_denominator = 3 

 

normalization_with_background(final_matrices,background_mask,metal_nu

merator,metal_denominator) 

 

 

 

k-means segmentation 

Segmentation of the images using k-means clustering. This is without spatial awareness. 

• metal_segmentation_index = integer, index of the metal used for segmentation. In this 

example we use Fe and the index of Fe in the reconstructed data corresponds to 2 

• clusters = integer, number of clusters to perform k-means segmentation. For this particular 

common example we had determined that the ideal number of clusters is 2 

metal_segmentation_index = 2 

segmentation_clusters = 2 

 

label_image,segmented_image = 

segmentation(final_matrices,background_mask,metal_segmentation_index,

segmentation_clusters) 
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k-means multimetal segmentation with neighboring pixel evaluation 

Application of neighboring pixel evaluation using average filtering. The k-means segmentation part 

of the code should be run first before performing neighboring pixel evaluation. The number of 

clusters and metal segmentation index are the ones specified in the k-means segmentation part of 

the code. If the user wants to change these parameters, this can be done in the k-means segmentation 

part of the code. No inputs are required here by the user 

Multimetal segmented images correspond to the segmented images using Fe and the background 

mask (Zn) for segmentation. A weighted image corresponds to the image after filtering to determine 

the tissue boundaries. 

weighted_pixels = neighbouring_average(label_image,background_mask) 

 

 

Image masks of the segmented areas 

It is possible to set up to four different areas determined by segmentation and neighboring pixel 

evaluation. It is necessary to set up the cutoffs of the areas in relation to the weighted image (0 to 

18 scale). For this particular example we set up the cutoff values for: 

Area 1 = Background (values between 0 and 5)  

Area 2 = Red Pulp (values between 6 and 10)  

Area 3 = Marginal zone (values between 11 and 14)  

Area 4 = White pulp (values between 15 and 18) 

The variables shown should specify the low and high cutoff of a particular area: 

• low_A1 = integer, low cutoff of Area 1 

• high_A1 = integer, high cutoff of Area 1 

• low_A2 = integer, low cutoff of Area 2 

• high_A2 = integer, high cutoff of Area 2 

• low_A3 = integer, low cutoff of Area 3 

• high_A3 = integer, high cutoff of Area 3 

• low_A4 = integer, low cutoff of Area 4 

• high_A4 = integer, high cutoff of Area 4 
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low_A1 = 0 

high_A1 = 0.59 

 

low_A2 = 0.60 

high_A2 = 1.19 

 

low_A3 = 1.20 

high_A3 = 1.49 

 

low_A4 = 1.50 

high_A4 = 2.0 

 

area1,area2,area3,area4 = 

image_masks(weighted_pixels,low_A1,high_A1,low_A2,high_A2,low_A3,high

_A3,low_A4,high_A4) 

 

 

 

 

Quantitation in different segments 

Quantitation of pixels in the different segments determined by the image masks. Four different 

areas of a tissue were determined after segmentation. The segmented areas can be use to get the 

number of pixels in each of the particular areas, find the average and error of any of the metals in 

each of the segmented areas. It is necessary to choose the metal that we desire to quantify in each 

of the areas as the (quantitation_index). In this particular example, we want to quantify the Bismuth 

(quantitation_index=1) so the index needs to be set to the Bi index (Bismuth index is 1). It is also 

possible to quantify the average signal of any of the other metals, for example if we want to quantify 

the Fe in each of the segmented areas we should set (quantitation_index=2) as the Fe corresponds 

to the metal with the index=2. 

• quantitation_index = int, index of the metal that we want to quantify in each of the 

segments 

quantitation_index = 2 

 

quantitation_segments(final_matrices,area1,area2,area3,area4,quantita

tion_index) 

 

Area 1 Quantitation: 

Area 1 pixels are: 5308 

Area 1 average is: 518.7432395475972 

Area 1 error is: 7.172345137306754 
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Area 2 Quantitation: 

Area 2 pixels are: 4822 

Area 2 average is: 3890.3483368180314 

Area 2 error is: 15.287243249381316 

  

Area 3 Quantitation: 

Area 3 pixels are: 1545 

Area 3 average is: 2777.1852567092023 

Area 3 error is: 23.262159826047085 

  

Area 4 Quantitation: 

Area 4 pixels are: 1509 

Area 4 average is: 1337.1421460333133 

Area 4 error is: 9.673310098229521 
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APPENDIX B 

Source code of RecSegImage-LA: Reconstruction, Segmentation of LA-

ICP Imaging Data 

Here we have generated a copy of the functions used for reconstruction and segmentation of LA-

ICP data, as defined in the module _functions.py of the RecSegImage-LA repository, as shown in 

the following github link (git@github.com:Vachet-Lab/RecSegImage-LA.git). The use of this code 

is described in Chapter 2. The comments for each of the functions are shown in red, the description 

contains a brief explanation of the function, input and outputs description with its variable type. 

 
import numpy as np 

import matplotlib.pyplot as plt 

import glob 

import re 

import warnings; warnings.simplefilter('ignore') 

from sklearn.cluster import KMeans 

 

global ldiscard 

ldiscard=0 

 

def atoi(text): 

    ''' 

        Natural Sorting of data: Functions used to organize the data in terms 

of type. Import the package re. Allow the use of  

        backslashes to indicate special forms without evoking the special 

meaning.  

     

        atoi function: 

            input = str, text 

            output = str and int, text  

    ''' 

    return int(text) if text.isdigit() else text 

 

def natural_keys(text): 

    ''' 

        alist.sort(key=natural_keys) sorts in human order 

        http://nedbatchelder.com/blog/200712/human_sorting.html 

        (See Toothy's implementation in the comments) 

    ''' 

    return [ atoi(c) for c in re.split('(\d+)', text) ] 

 

def processfile(filename,ldiscard,spot_size,scan_rate):     

    ''' 

        Function processfile used to load and read the data in a single file  

     

        Input: 

            filename = str, name of the folder where the data files are stored 

            ldiscard = integer, number of columns on the far left side of the 

image to be eliminated. Default value is 0 

            spot_size = integer, spot size in microns of the laser used to 

acquire the data 

            scan_rate = integer, scan rate of the laser in microns/second 

     

mailto:git@github.com:Vachet-Lab/RecSegImage-LA.git
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        Ouput: 

            new_matrix = nd array, reduced data summed by sumdata amounts 

            sumdata = int, number of data points that make one pixel (depends 

on laser spot size and scan rate) 

    ''' 

    data_matrix = np.loadtxt(filename, delimiter=",", skiprows=(2+ldiscard))     

    pixel_time = spot_size/scan_rate 

    data_point_time = data_matrix[6,0]-data_matrix[5,0] 

    sumdata = int(round(pixel_time/data_point_time)) 

    nrows = data_matrix.shape[0]//sumdata      

    ncols = data_matrix.shape[1]-1     

    new_matrix = np.zeros((nrows+1,ncols))      

    for n in range(nrows): 

        new_matrix[n,:] = 

np.sum(data_matrix[n*sumdata:(n+1)*sumdata,1:],axis=0)     

    new_matrix[n+1,:] = np.sum(data_matrix[(n+1)*sumdata:,1:],axis=0)     

    return new_matrix, sumdata 

 

def 

image_reconstruction(foldername,ldiscard,extension,ncolumns,spot_size,scan_rate

): 

    ''' 

        Function image_reconstruction used for load files in a directory 

         

        Input: 

            foldername = str, folder in which the data files and script are 

located 

            ldiscard = integer, number of columns on the far left side of the 

image to be eliminated. Default value is 0 

            extension = str, extension of the data files 

            ncolumns = int, number of columns in the reduced matrix (equal to 

the number of metals) 

            spot_size = integer, spot size in microns of the laser used to 

acquire the data 

            scan_rate = integer, scan rate of the laser in microns/second 

         

            Output: 

            final_matrices = dic, dictionary composed of np.arrays of the final 

data of different analyzed metals 

            sumdata = int, number of data points that make one pixel (depends 

on laser spot size and scan rate) 

    ''' 

    files = glob.glob1(foldername,extension) 

    files.sort(key=natural_keys) 

    nfiles = len(files) 

    dic_data = {} 

    for n in range(ncolumns): 

        dic_data[n]=[] 

    for file in files: 

        processed_matrix,sumdata = 

processfile(foldername+'/'+file,ldiscard,spot_size,scan_rate) 

        for col in range(ncolumns): 

            dic_data[col].append(processed_matrix[:,col]) 

    final_matrices={} 

    for n in range(ncolumns): 

        final_matrices[n]=np.array(dic_data[n]) 

    return final_matrices, sumdata 

 

def 

write_data_analysis(final_matrices,ldiscard,sumdata,nmetals,foldername='results

'): 

    ''' 
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        Function write_data_analysis use to write the processed data into 

separate csv files 

     

        Input: 

            final_matrices = dic, dictionary composed of np.arrays of the final 

data of different analyzed metals 

            ldiscard = int, number of datapoints discarded in each of the 

files, if needed 

            sumdata = int, number of data points that make one pixel (depends 

on laser spot size and scan rate) 

            nmetals = int, number of metals analyzed, when performing the 

images 

         

        Output: 

            files for each of the analyzed metals writen in .csv inside the 

/results directory 

    '''    

    dic_of_metals = {} 

    keys = range(nmetals) 

    for i in keys: 

        dic_of_metals[i+1] = "Metal" + str(i+1) 

    for metal in final_matrices: 

        filename = foldername + "/Reconstruction-%s.xl" % 

(dic_of_metals[metal+1]) 

        np.savetxt(filename, final_matrices[metal], delimiter=',', 

newline='\n') 

 

def generate_plot_all_metals(final_matrices,nmetals): 

    ''' 

        Function genetate_plot_all_metals to plot all the metal images in one 

plot 

     

        Input: 

            final_matrices = dic, dictionary composed of np.arrays of the final 

data matrices of different analyzed metals 

            nmetals = int, number of metals analyzed, when performing the 

images 

     

        Output: 

            matplotlib image of the analyzed metals in one image (in the 

Jupyter notebook) 

    ''' 

    dic_of_metals = {} 

    keys = range(nmetals) 

    for i in keys: 

        dic_of_metals[i+1] = "Metal" + str(i+1) 

    fig = plt.figure(figsize=[10,8])         

    for n in range(1,nmetals+1): 

        ax = fig.add_subplot(2,2,n) 

        plt.imshow(final_matrices[n-1], interpolation='None', cmap=plt.cm.hot) 

        plt.title("%s" % dic_of_metals[n]) 

        plt.axis('off') 

        plt.colorbar() 

    plt.show() 

  

 

def generate_metal_plot(final_matrices,metal_index,nmetals): 

    ''' 

        Function generate_metal_plot used to generate a plot of one metal  

     

        Input: 
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            final_matrices = dic, dictionary composed of np.arrays of the final 

data matrices of different analyzed metals 

            metal_index = int, index of the specified metal in the dictionary 

(1 to nmetals) 

            nmetals = int, number of metals analyzed, when performing the 

images 

     

        Output: 

            matplotlib image of a particular metal inline 

    ''' 

    dic_of_metals = {} 

    keys = range(nmetals) 

    for i in keys: 

        dic_of_metals[i+1] = "Metal" + str(i+1)     

    fig = plt.figure(figsize=[5,4])     

    ax = fig.add_subplot(1,1,1) 

    plt.imshow(final_matrices[metal_index-1], interpolation='None', 

cmap=plt.cm.hot) 

    plt.title("%s" % dic_of_metals[metal_index]) 

    plt.axis('off') 

    plt.colorbar() 

    plt.show() 

 

def populate_border(matrix): 

    ''' 

        Function populate_border used to fine tune, delimitate border of the 

tissue sample, based on any metal content. This function is 

        concatenated with the remove_background function 

     

        Input: 

            matrix = np array, correspond to the matrix index_threshold. This 

is the matrix that have the applied condition 

            matrix < threshold, this matrix correspond to a boolean matrix 

which have defined True and False values. 

     

        Output: 

            border = np array  

    ''' 

    border = np.ones(matrix.shape) 

    for n in range(matrix.shape[0]): 

        for m in range(matrix.shape[1]): 

            if matrix[n, m] == True: 

                border[n, m] = 0 

            elif matrix[n, m] == False: 

                break    

    for n in range(matrix.shape[0]): 

        for m in range(matrix.shape[1]): 

            if matrix[n, matrix.shape[1] - m - 1] == True: 

                border[n, matrix.shape[1] - m - 1] = 0 

            elif matrix[n, matrix.shape[1] - m - 1] == False: 

                break 

    for m in range(matrix.shape[1]): 

        for n in range(matrix.shape[0]): 

            if matrix[n, m] == True: 

                border[n, m] = 0 

            elif matrix[n, m] == False: 

                break 

    for m in range(matrix.shape[1]): 

        for n in range(matrix.shape[0]): 

            if matrix[matrix.shape[0] - n - 1, m] == True: 

                border[matrix.shape[0] - n - 1, m] = 0 

            elif matrix[matrix.shape[0] - n - 1, m] == False: 
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                break 

    return border 

 

def remove_background(final_matrices,background_index,line,std_threshold):    

    ''' 

        Function remove_background used to calculate the average and std of the 

background and set the theshold values 

     

        Input: 

            matrix = np array, data matrix with the Zn data 

final_matrices[Zn_index] 

            line = int, index of the line that will be used to perform the 

background calculation, usually 0  

            tolerance_std = int, tolerance of the std, usually is 3  

 

        Output: 

            background_mask = np array, background mask of the image data  

    ''' 

    matrix = final_matrices[background_index-1] 

    average_col = np.mean(matrix[:, line-1]) 

    std_col = np.std(matrix[:, line-1]) 

    average_row = np.mean(matrix[line-1, :])         

    std_row = np.std(matrix[line-1, :])    

    if std_col < std_row: 

        average = average_col 

        std = std_col     

    else: 

        average = average_row 

        std = std_row  

    threshold = average + std_threshold*std     

    index_threshold = matrix < threshold 

    background_mask = populate_border(index_threshold) 

    return background_mask 

 

def generate_background_plot(background_mask):    

    ''' 

        Function generate_background_plot used to generate a plot of the 

background mask 

 

        Input: 

            background_mask = np array, background mask of the image data 

         

        Output: 

            matplotlib inline image of the background mask 

    ''' 

    fig = plt.figure(figsize=[5,4])     

    ax = fig.add_subplot(1,1,1) 

    plt.imshow(background_mask, interpolation='None', cmap=plt.cm.hot) 

    plt.title('Background mask') 

    plt.axis('off') 

    plt.show() 

 

def 

normalization_with_background(final_matrices,background_mask,metal_numerator,me

tal_denominator,vmin=None,vmax=None,inter='None', 

                                  foldername='results'): 

    ''' 

        Function normalization_with_background to divide two matrices 

(metal1/metal2), saved the data and plotted it inline   

     

        Input: 
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            final_matrices = dic, dictionary composed of np.arrays of the final 

data matrices of different analyzed metals 

            background_mask = np array, background mask of the image data 

            metal_numerator = integer, index of the metal that will correspond 

to the metal numerator in the division operation 

            metal_denominator = integer, index of the metal that will 

correspond to the metal denominator in the division operation 

 

        Output: 

            file inside the results directory with the results of the 

metal_numerator/metal_denominator division 

            matplotlib inline image of the metal_numerator/metal_denominator 

division      

    ''' 

    old_err_state = np.seterr(divide='raise') 

    ignored_states = np.seterr(**old_err_state) 

    fig = plt.figure(figsize=[5,4])     

    ax = fig.add_subplot(1,1,1) 

    division_background = (final_matrices[metal_numerator-

1]/final_matrices[metal_denominator-1])*background_mask 

    division_background[np.isnan(division_background)] = 0     

    np.savetxt(foldername+'/Normalization-Background-

Metal'+str(metal_numerator)+'-

'+'Metal'+str(metal_denominator),division_background,delimiter=',',newline='\n'

) 

    

plt.imshow(division_background,interpolation=inter,vmin=vmin,vmax=vmax,cmap=plt

.cm.hot) 

    plt.title('Normalization BKG 

'+'Metal'+str(metal_numerator)+'/Metal'+str(metal_denominator)) 

    plt.axis('off') 

    plt.colorbar() 

    plt.show() 

 

def 

segmentation(final_matrices,background_mask,metal_segmentation_index,segmentati

on_clusters): 

    ''' 

        Function segmentation for the segmentation of the images using k-means 

clustering without filtering 

 

        Input: 

            final_matrices = dic, dictionary composed of np.arrays of the final 

data matrices of different analyzed metals 

            background_mask = np array, background mask of the image data 

            metal_segmentation_index = int, index of the metal used for 

segmentation.  

            segmentation_clusters = int, number of clusters to perform k-means 

segmentation. 

 

        Output: 

            label_image = np array, segmented image with its labels 

            segmented_image = np array, segmented image with its centroids 

    ''' 

    metal_segmentation = final_matrices[metal_segmentation_index-

1]*background_mask 

    rows = metal_segmentation.shape[0] 

    columns = metal_segmentation.shape[1] 

    metal_segmentation_vector = metal_segmentation.reshape(rows*columns, 1) 

    # specifies that kmeans will be applied with n-clusters 

    kmeans = KMeans(segmentation_clusters) 

    # Perform kmeans over metal_segmentation_vector 
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    kmeans.fit(metal_segmentation_vector) 

    # Find cluster center associated with each data point 

    segmented_vector = 

kmeans.cluster_centers_[kmeans.predict(metal_segmentation_vector)] 

    # Find labels associated with each cluster 

    centroids = np.sort(np.unique(segmented_vector)) 

    labels = np.zeros(segmented_vector.shape) 

    for index, centroid in enumerate(centroids): 

        labels[segmented_vector==centroid] = index 

    label_image = labels.reshape(rows, columns) 

    # Reshaped of the image, plotting and comparison with raw_data 

    segmented_image = segmented_vector.reshape(rows, columns) 

    # Image plot of the labels 

    plt.imshow(label_image, cmap='jet') 

    plt.colorbar() 

    plt.axis('off') 

    plt.show() 

    return label_image,segmented_image 

 

def neighbouring_average(label_image,background_mask): 

    ''' 

        Function neighbouring_average for filtering the multimetal image 

 

        Input: 

            label_image = np array, segmented image with its labels 

            background_mask = np array, background mask of the image data 

 

        Output: 

            weighted_pixels = np array, filtering of label image data 

    ''' 

    # Re-asignation of zero values 

    label_image[label_image == 0] = 2 

    # Differentiation of bacgkround using the background mask 

    M = label_image*background_mask 

    # Weighted pixel calculation 

    weighted_pixels = np.zeros(M.shape) 

    for n in range(1, M.shape[0]-1): 

        for m in range(1, M.shape[1]-1): 

            weighted_pixels[n, m]= (M[n-1,m-1] + M[n-1,m] + M[n-1,m+1] + M[n,m-

1] + M[n,m] + M[n, m+1] + M[n+1, m-1] + M[n+1, m] + M[n+1, m+1])/9     

    # Image generation of the multimetal segmentation 

    plt.figure(figsize=(9, 4)) 

    ax1=plt.subplot(1, 2, 1) 

    plt.imshow(M, cmap='jet') 

    plt.colorbar() 

    plt.axis('off') 

    plt.title('Multimetal segmented image') 

    # Image generation of the weighted image 

    ax1=plt.subplot(1, 2, 2) 

    plt.imshow(weighted_pixels, interpolation='none', cmap='jet') 

    plt.colorbar() 

    plt.axis('off') 

    plt.title('Weighted Image') 

    plt.show() 

    return weighted_pixels 

 

def image_masks(weighted_pixels, low_A1, high_A1, low_A2, high_A2, low_A3, 

high_A3, low_A4, high_A4): 

    ''' 

        Function image_masks to obtain the masks images of the segmented areas 

 

        Input: 
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            low_A1 = integer, low cutoff of Area 1 

            high_A1 = integer, high cutoff of Area 1 

            low_A2 = integer, low cutoff of Area 2 

            high_A2 = integer, high cutoff of Area 2 

            low_A3 = integer, low cutoff of Area 3 

            high_A3 = integer, high cutoff of Area 3 

            low_A4 = integer, low cutoff of Area 4 

            high_A4 = integer, high cutoff of Area 4     

 

        Output: 

            area1 = image of image mask of area 1 

            area2 = image of image mask of area 2 

            area3 = image of image mask of area 3 

            area4 = image of image mask of area 4 

    ''' 

    area1 = (weighted_pixels <= high_A1) 

    area2 = (weighted_pixels <= high_A2) ^ (weighted_pixels <= low_A2) 

    area3 = (weighted_pixels <= high_A3) ^ (weighted_pixels <= low_A3) 

    area4 = (weighted_pixels <= high_A4) ^ (weighted_pixels <= low_A4) 

    # Image generation 

    plt.figure(figsize=(12, 9)) 

    ax=plt.subplot(1, 4, 1) 

    plt.imshow(area1, cmap='gray') 

    plt.axis('off') 

    plt.title('Area 1') 

    ax=plt.subplot(1, 4, 2) 

    plt.imshow(area2, interpolation='none', cmap='gray') 

    plt.axis('off') 

    plt.title('Area 2') 

    ax=plt.subplot(1, 4, 3) 

    plt.imshow(area3, interpolation='none', cmap='gray') 

    plt.axis('off') 

    plt.title('Area 3') 

    ax=plt.subplot(1, 4, 4) 

    plt.imshow(area4, interpolation='none', cmap='gray') 

    plt.axis('off') 

    plt.title('Area 4') 

    plt.show() 

    return area1, area2, area3, area4 

 

def 

quantitation_segments(final_matrices,area1,area2,area3,area4,quantitation_index

): 

    ''' 

        Function quantitation_segments to obtain the masks images of the 

segmented areas 

 

        Input: 

            final_matrices = dic, dictionary composed of np.arrays of the final 

data matrices of different analyzed metals 

            area1 = image of image mask of area 1 

            area2 = image of image mask of area 2 

            area3 = image of image mask of area 3 

            area4 = image of image mask of area 4 

            quantitation_index = int, index of the metal that we want to 

quantify in each of the segments 

 

        Output: 

            inline results of the averages, standard error and number of pixels 

of the segmented areas 

    '''    

    metal_quantitation = final_matrices[quantitation_index-1] 
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    # Area 1 

    print ('Area 1 Quantitation:') 

    pixels_A1 = len(metal_quantitation[area1]) 

    avg_A1 = np.mean(metal_quantitation[area1]) 

    error_A1 = np.std(metal_quantitation[area1])/np.sqrt(pixels_A1) 

    print ('Area 1 pixels are:', pixels_A1) 

    print ('Area 1 average is:', avg_A1) 

    print ('Area 1 error is:', error_A1) 

    # Area 2 

    print (' ') 

    print ('Area 2 Quantitation:') 

    pixels_A2 = len(metal_quantitation[area2]) 

    avg_A2 = np.mean(metal_quantitation[area2]) 

    error_A2 = np.std(metal_quantitation[area2])/np.sqrt(pixels_A2) 

    print ('Area 2 pixels are:', pixels_A2) 

    print ('Area 2 average is:', avg_A2) 

    print ('Area 2 error is:', error_A2) 

    # Area 3 

    print (' ') 

    print ('Area 3 Quantitation:') 

    pixels_A3 = len(metal_quantitation[area3]) 

    avg_A3 = np.mean(metal_quantitation[area3]) 

    error_A3 = np.std(metal_quantitation[area3])/np.sqrt(pixels_A3) 

    print ('Area 3 pixels are:', pixels_A3) 

    print ('Area 3 average is:', avg_A3) 

    print ('Area 3 error is:', error_A3) 

    # Area 4 

    print (' ') 

    print ('Area 4 Quantitation:') 

    pixels_A4 = len(metal_quantitation[area4]) 

    avg_A4 = np.mean(metal_quantitation[area4]) 

    error_A4 = np.std(metal_quantitation[area4])/np.sqrt(pixels_A4) 

    print ('Area 4 pixels are:', pixels_A4) 

    print ('Area 4 average is:', avg_A4) 

    print ('Area 4 error is:', error_A4) 
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APPENDIX C 

Code for LA-ICP-MS and MALDI-MS dimensionality reduction, 

registration, and validation 

Here we present the code used for registration described in Chapter 3. Comments to the code are 

shown in (#). The code has the following steps, commented through the code: 

• t-SNE dimensionality reduction of MALDI and LA-ICP datasets 

- Rendering of MALDI tissue slide 

- Image rotation 

- Hotspot removal 

- Rendering of MALDI images before background subtraction 

- Rendering of MALDI images after hotspot removal 

- t-SNE dimensionality reduction of each analyte in 3D embedded space 

- t-SNE dimensionality reduction for single image representation 

- Display of the reduced images in RGB colors 

- MALDI t-SNE reduction to one image 

- Image pre-processing LA-ICP 

- Hotspot removal LA-ICP 

• Registration and validation of MALDI and LA-ICP images 

- Upload segments masks 

- Upload images for registration 

- Translation registration 

- Rigid registration 

- Affine registration 

- No-linear registration 

- Transformation of the masks 

- DSC calculation 

- Landmark registration 

- Annotated mask registration 

- Correlation coefficients calculation 

- Transformation of LA-ICP signals into the MALDI coordinate system 

- Correlation plot of LA and MALDI signals 

 

t-SNE Dimensionality reduction of MALDI and LA-ICP datasets 

 

Rendering of MALDI tissue slide 

from pyimzml.ImzMLParser import ImzMLParser 

import matplotlib.pyplot as plt 

import numpy as np 
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# Parse the data into slide 

 

slide = ImzMLParser('111920_Liver_TTMA_D6.imzML') 

 

# Obtain spectrum coordinates for p1 

 

for i, (x,y,z) in enumerate(slide.coordinates): 

    slide.getspectrum(i) 

 

# Get the ion image of the slide, import geitionimage class from the parser. 

Choose the 796.554 +- 0.501 signal 

 

from pyimzml.ImzMLParser import getionimage 

 

peakMZ1 = 339.088 

tolMZ1 = 0.286 

 

im1 = getionimage(slide, peakMZ1, tol=tolMZ1) 

 

plt.figure(figsize=(16, 4)) 

plt.imshow(im1) 

plt.colorbar() 

plt.show() 

 

print ('Shape of the imzML file', im1.shape) 

 

Shape of the imzML file (397, 1461) 

 

Image Rotation 

# Function to cut the image from the slide in X and Y 

 

from scipy import ndimage 

 

Y1 = 150 

Y2 = 270 

X1 = 1035 

X2 = 1140 

 

Degree_rotation = 180 

 

MALDI_image_raw = getionimage(slide, peakMZ1, tol=tolMZ1)[Y1:Y2, X1:X2] 

MALDI_rot = ndimage.rotate(MALDI_image_raw, Degree_rotation, reshape=True) 

 

print ('MALDI image shape:', MALDI_image_raw.shape) 

 

plt.figure(figsize=(12, 5)) 
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ax=plt.subplot(1,2,1) 

plt.imshow(MALDI_image_raw) 

plt.colorbar() 

plt.axis('off') 

plt.title('Raw image') 

ax=plt.subplot(1,2,2) 

plt.imshow(MALDI_rot) 

plt.colorbar() 

plt.axis('off') 

plt.title('Rotated image') 

plt.show() 

MALDI image shape: (120, 105) 

 

 

Hotspot removal 

# We will calculate the 0.99 quantile range and assign the data points above 

this value to the 0.99 value.  

 

Quantile_99 = np.quantile(MALDI_rot, 0.99)  

print('Quantile 0.99 is:', Quantile_99) 

 

MALDI_image_hot = MALDI_rot.copy() 

MALDI_image_hot[MALDI_image_hot > Quantile_99] = Quantile_99 

print('Data points above 99% =', np.count_nonzero([MALDI_rot > Quantile_99])) 

print('Data points below 99% =', np.count_nonzero([MALDI_rot < Quantile_99])) 

 

# np.savetxt('D6_mz_796.csv', MALDI_image_hot) 

 

# box and whisker plots 

 

row_hot, col_hot = MALDI_image_hot.shape 

 

MALDI_vector_raw = MALDI_rot.reshape(row_hot*col_hot) 

MALDI_vector_hot = MALDI_image_hot.reshape(row_hot*col_hot) 

 

plt.figure(figsize=(18, 10)) 

ax = plt.subplot(2, 2, 1) 

plt.imshow(MALDI_rot) 

plt.axis('off') 

plt.colorbar() 

ax = plt.subplot(2, 2, 2) 

plt.boxplot(MALDI_vector_raw) 

ax = plt.subplot(2, 2, 3) 
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plt.imshow(MALDI_image_hot) 

plt.colorbar() 

plt.axis('off') 

ax = plt.subplot(2, 2, 4) 

plt.boxplot(MALDI_vector_hot) 

plt.show() 

Quantile 0.99 is: 0.9698840579710164 

Data points above 99% = 126 

Data points below 99% = 12474 

 

 

Rendering of MALDI images before background substraction 

# Import list of the most abundance signals above 500m/z 

 

import csv 

import math 

 

datafile = open('111920_Signals_M2.csv', 'r') 

reader = csv.reader(datafile) 

 

Ions = [] 

Tolerance = [] 

for row in reader: 

    Ions.append(float(row[0])) 

    Tolerance.append(float(row[1])) 

     

images = [] 
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for i,t in zip(Ions, Tolerance): 

    image = (getionimage(slide, i, tol=t)[Y1:Y2, X1:X2]) 

    im = ndimage.rotate(image, Degree_rotation, reshape=True) 

    images.append(im) 

# Images of the selected signals 

 

length = len(images) 

rows_graph = math.ceil(length/5) 

 

plt.figure(figsize=(18, 28)) 

for n,im in enumerate(images): 

    ax = plt.subplot(rows_graph, 5, (n+1)) 

    plt.imshow(im) 

    plt.axis('off') 

    plt.colorbar() 

    plt.title('m/z {0}'.format(Ions[n])) 

plt.show() 
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Rendering of MALDI images after hotspot removal 

images_hotspot = images.copy() 

 

plt.figure(figsize=(18, 28)) 

for n,im in enumerate(images_hotspot): 

    Quantile_99 = np.quantile(im, 0.99) 

    im[im > Quantile_99] = Quantile_99   

    ax = plt.subplot(rows_graph, 5, (n+1)) 

    plt.imshow(im) 

    plt.axis('off') 

    plt.colorbar() 

    plt.title('m/z {0}'.format(Ions[n])) 

plt.show() 

 

np.savetxt('D1_mz_796.csv', images_hotspot[17], delimiter=',') 
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# Save all the coregistered data in a .npy file to open it in a new script 

 

MALDI_M2_All = np.array(images_hotspot)  

 

np.save('MALDI_M2_All', MALDI_M2_All) 

 

t-SNE dimensionality reduction of each analyte in 3D embedded space 

# Upload of background mask used for substract background 

 

MALDI_BM = np.loadtxt('M2_MALDI_796_mask.csv', delimiter=',') 

MALDI_BM[MALDI_BM == 255] = 1 

 

# Generate array of vectorized images for dimensionality reduction 

 

rows = images[0].shape[0] 

columns = images[0].shape[1] 

 

n_images = len(images) 

n_pixels = len(MALDI_BM[MALDI_BM == 1]) 

 

print('Total number of pixels per image:', rows*columns) 

print('Number of tissue pixels', len(MALDI_BM[MALDI_BM == 1])) 

print('Number of background pixels', len(MALDI_BM[MALDI_BM == 0])) 

 

vector_3D_raw = np.zeros((n_images, n_pixels)) 

vector_3D_hot = np.zeros((n_images, n_pixels)) 

 

flat_mask = MALDI_BM.reshape(rows*columns)   

 

for n, image in enumerate(images): 

    flat_raw = image.reshape(rows*columns) 

    vector_3D_raw[n,:] = flat_raw[flat_mask==1] 

     

for n, image in enumerate(images_hotspot): 

    flat_hot = image.reshape(rows*columns) 

    vector_3D_hot[n,:] = flat_hot[flat_mask==1] 

Total number of pixels per image: 12600 

Number of tissue pixels 6964 

Number of background pixels 5636 

 

 

from sklearn import manifold 

from mpl_toolkits.mplot3d import Axes3D 

 

# Apply tsn to the vectorized images, with and without hotspots 

 

tsne_3D = manifold.TSNE(n_components=3, random_state=0) 

vector_tsne_3D_raw = tsne_3D.fit_transform(vector_3D_raw) 

vector_tsne_3D_hot = tsne_3D.fit_transform(vector_3D_hot) 

 

print('vector images 3D without reduction:', vector_3D_raw.shape, 

vector_3D_hot.shape) 

print('vector images 3D tsne reduced dimensions', vector_tsne_3D_raw.shape, 

vector_tsne_3D_hot.shape) 

 

# Separation of the reduced matrix into component vectors 

 

X_3D_raw = vector_tsne_3D_raw[:,0]  
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Y_3D_raw = vector_tsne_3D_raw[:,1]  

Z_3D_raw = vector_tsne_3D_raw[:,2] 

 

X_3D_hot = vector_tsne_3D_hot[:,0]  

Y_3D_hot = vector_tsne_3D_hot[:,1]  

Z_3D_hot = vector_tsne_3D_hot[:,2] 

 

# Images of the embedded space classification in 3D 

 

fig = plt.figure(figsize=(18, 8)) 

 

ax = fig.add_subplot(121, projection='3d') 

ax.scatter(X_3D_raw, Y_3D_raw, Z_3D_raw, c='r', marker='o') 

for i, ion in enumerate(Ions): 

    ax.text(X_3D_raw[i], Y_3D_raw[i], Z_3D_raw[i], ion) 

plt.title('Embedded Space Raw') 

     

ax = fig.add_subplot(122, projection='3d') 

ax.scatter(X_3D_hot, Y_3D_hot, Z_3D_hot, c='r', marker='o') 

for i, ion in enumerate(Ions): 

    ax.text(X_3D_hot[i], Y_3D_hot[i], Z_3D_hot[i], ion) 

plt.title('Embedded Space without Hotspot') 

     

plt.show() 

vector images 3D without reduction: (39, 6964) (39, 6964) 

vector images 3D tsne reduced dimensions (39, 3) (39, 3) 

 

 

t-SNE dimensionality reduction for single image representation 

# initial vector used for classification in the embedded space is transposed 

for reduction in the other dimension 

 

vector_seg_raw = vector_3D_raw.T 

vector_seg_hot = vector_3D_hot.T 

 

print('vector images before tsne seg:', vector_seg_raw.shape, 

vector_seg_hot.shape) 
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# Aplication of the TSNE dimensionality reduction to 3 image channels of only 

tissue pixels (no backgroung) 

 

tsne_seg = manifold.TSNE(n_components=3, random_state=0) 

vector_tsne_seg_raw_tissue = tsne_seg.fit_transform(vector_seg_raw) 

vector_tsne_seg_hot_tissue = tsne_seg.fit_transform(vector_seg_hot)  

 

print('vector images after tsne seg:', vector_tsne_seg_raw_tissue.shape, 

vector_tsne_seg_hot_tissue.shape) 

vector images before tsne seg: (6964, 39) (6964, 39) 

vector images after tsne seg: (6964, 3) (6964, 3) 

# Generation of a set of vectors that will correspond to the reduced images 

plus background pixels for proper 

# image reconstruction vector_tsne_seg_raw and vector_tsne_seg_hot 

 

vector_tsne_seg_raw = np.zeros((rows*columns, 3)) 

vector_tsne_seg_hot = np.zeros((rows*columns, 3)) 

 

# for loop over the three reduced vectors that will introduce the background 

pixels that were removed for tsne 

# to introduce the 0 bacgkround pixels, the minimum value of the image should 

be zero, so the minimum value should 

# be substracted in the loop. 

 

for n in range(0,3): 

    vector_tsne_seg_raw[:,n][flat_mask==1]=vector_tsne_seg_raw_tissue[:,n]-

np.min(vector_tsne_seg_raw_tissue[:,n]) 

    vector_tsne_seg_hot[:,n][flat_mask==1]=vector_tsne_seg_hot_tissue[:,n]-

np.min(vector_tsne_seg_hot_tissue[:,n]) 

 

# Separation of the 3 image into the three components of the embedded space 

     

X_seg_raw = vector_tsne_seg_raw[:,0]  

Y_seg_raw = vector_tsne_seg_raw[:,1]  

Z_seg_raw = vector_tsne_seg_raw[:,2] 

 

X_seg_hot = vector_tsne_seg_hot[:,0]  

Y_seg_hot = vector_tsne_seg_hot[:,1]  

Z_seg_hot = vector_tsne_seg_hot[:,2] 

 

# Plot of the embedded spcae for the reduced data 

 

fig = plt.figure(figsize=(18, 8)) 

ax = fig.add_subplot(121, projection='3d') 

ax.scatter(X_seg_raw, Y_seg_raw, Z_seg_raw, c='b', marker='o') 

plt.title('Embedded Space Raw Data') 

ax = fig.add_subplot(122, projection='3d') 

ax.scatter(X_seg_hot, Y_seg_hot, Z_seg_hot, c='b', marker='o') 

plt.title('Embedded Space Hotspot Removal Data') 

plt.show() 
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# Normalization of the 3 reduced images to the 0-255 scale 

 

# Calculation of max values of the positive scale images for normalization to 

the 255 scale: 

 

X_seg_raw_max, Y_seg_raw_max, Z_seg_raw_max = np.max(X_seg_raw), 

np.max(Y_seg_raw), np.max(Z_seg_raw) 

X_seg_hot_max, Y_seg_hot_max, Z_seg_hot_max = np.max(X_seg_hot), 

np.max(Y_seg_hot), np.max(Z_seg_hot) 

 

print('X raw and hot max:', X_seg_raw_max, X_seg_hot_max) 

print('Y raw and hot max:', Y_seg_raw_max, Y_seg_hot_max) 

print('Z raw and hot max:', Z_seg_raw_max, Z_seg_hot_max) 

 

# Conversion of values to the RGB 255 scale: 

 

X_seg_raw_RGB = ((X_seg_raw/X_seg_raw_max)*255) 

Y_seg_raw_RGB = ((Y_seg_raw/Y_seg_raw_max)*255) 

Z_seg_raw_RGB = ((Z_seg_raw/Z_seg_raw_max)*255) 

 

X_seg_hot_RGB = ((X_seg_hot/X_seg_hot_max)*255) 

Y_seg_hot_RGB = ((Y_seg_hot/Y_seg_hot_max)*255) 

Z_seg_hot_RGB = ((Z_seg_hot/Z_seg_hot_max)*255) 

 

# Plot of the scattered data: 

 

fig = plt.figure(figsize=(18, 8)) 

ax = fig.add_subplot(121, projection='3d') 

ax.scatter(X_seg_raw_RGB, Y_seg_raw_RGB, Z_seg_raw_RGB, c='b', marker='o') 

plt.title('Embedded Space Raw Data') 

 

ax = fig.add_subplot(122, projection='3d') 

ax.scatter(X_seg_hot_RGB, Y_seg_hot_RGB, Z_seg_hot_RGB, c='b', marker='o') 

plt.title('Embedded Space Hotspot Removal Data') 

plt.show() 

X raw and hot max: 29.78743553161621 29.78743553161621 

Y raw and hot max: 39.464359283447266 39.464359283447266 

Z raw and hot max: 36.77463150024414 36.77463150024414 
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# Reshape of the 3 reduced vectors into 2D images 

 

import seaborn as sns 

 

X_seg_raw_RGB_rsp = X_seg_raw_RGB.reshape(rows, columns).astype(int) 

Y_seg_raw_RGB_rsp = Y_seg_raw_RGB.reshape(rows, columns).astype(int) 

Z_seg_raw_RGB_rsp = Z_seg_raw_RGB.reshape(rows, columns).astype(int) 

 

X_seg_hot_RGB_rsp = X_seg_hot_RGB.reshape(rows, columns).astype(int) 

Y_seg_hot_RGB_rsp = Y_seg_hot_RGB.reshape(rows, columns).astype(int) 

Z_seg_hot_RGB_rsp = Z_seg_hot_RGB.reshape(rows, columns).astype(int) 

 

print ('Reshaped Image Shape:', X_seg_raw_RGB_rsp.shape) 

 

# image display in the 0-255 scale 

 

plt.figure(figsize=(15, 10)) 

plt.subplot(2,3,1) 

plt.imshow(X_seg_raw_RGB_rsp) 

plt.colorbar() 

plt.axis('off') 

plt.title('Raw 1') 

plt.subplot(2,3,2) 

plt.imshow(Y_seg_raw_RGB_rsp) 

plt.colorbar() 

plt.axis('off') 

plt.title('Raw 2') 

plt.subplot(2,3,3) 

plt.imshow(Z_seg_raw_RGB_rsp) 

plt.colorbar() 

plt.axis('off') 

plt.title('Raw 3') 

plt.subplot(2,3,4) 

plt.imshow(X_seg_hot_RGB_rsp) 

plt.colorbar() 

plt.axis('off') 

plt.title('Hot 1') 

plt.subplot(2,3,5) 

plt.imshow(Y_seg_hot_RGB_rsp) 

plt.colorbar() 

plt.axis('off') 
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plt.title('Hot 2') 

plt.subplot(2,3,6) 

plt.imshow(Z_seg_hot_RGB_rsp) 

plt.colorbar() 

plt.axis('off') 

plt.title('Hot 3') 

plt.show() 

Reshaped Image Shape: (120, 105) 

 

 

Display of the reduced images in RGB colors 

# Display of the reduced images in the RGB colors 

 

plt.figure(figsize=(15, 10)) 

plt.subplot(2,3,1) 

cmap1 = sns.dark_palette("Red", as_cmap=True) 

sns.heatmap(X_seg_raw_RGB_rsp, square=True, cmap=cmap1, xticklabels=False, 

yticklabels=False) 

plt.title('Raw 1') 

plt.subplot(2,3,2) 

cmap2 = sns.dark_palette("Green", as_cmap=True) 

sns.heatmap(Y_seg_raw_RGB_rsp, square=True, cmap=cmap2, xticklabels=False, 

yticklabels=False) 

plt.title('Raw 3') 

plt.subplot(2,3,3) 

cmap3 = sns.dark_palette("Blue", as_cmap=True) 

sns.heatmap(Z_seg_raw_RGB_rsp, square=True, cmap=cmap3, xticklabels=False, 

yticklabels=False) 

plt.title('Raw 4') 
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plt.subplot(2,3,4) 

cmap1 = sns.dark_palette("Red", as_cmap=True) 

sns.heatmap(X_seg_hot_RGB_rsp, square=True, cmap=cmap1, xticklabels=False, 

yticklabels=False) 

plt.title('Raw 1 BS') 

plt.subplot(2,3,5) 

cmap2 = sns.dark_palette("Green", as_cmap=True) 

sns.heatmap(Y_seg_hot_RGB_rsp, square=True, cmap=cmap2, xticklabels=False, 

yticklabels=False) 

plt.title('Raw 2 BS') 

plt.subplot(2,3,6) 

cmap3 = sns.dark_palette("Blue", as_cmap=True) 

sns.heatmap(Z_seg_hot_RGB_rsp, square=True, cmap=cmap3, xticklabels=False, 

yticklabels=False) 

plt.title('Raw 3 BS') 

plt.show() 

 

''' 

    Merge of the RGB images into a color image using the merge approach in 

cv2. The colors are different, due to 

    all the possible color combinations: 

 

        RGB_merged_1 merging of the images using cv2.merge and using R=X, 

G=Y, B=Z 

        RGB_merged_2 merging of the images using cv2.merge and using R=Z, 

G=X, B=Y 

''' 

 

import cv2 

 

RGB_merged_raw_1 = cv2.merge((X_seg_raw_RGB_rsp, Y_seg_raw_RGB_rsp, 

Z_seg_raw_RGB_rsp)) 
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RGB_merged_raw_2 = cv2.merge((Z_seg_raw_RGB_rsp, X_seg_raw_RGB_rsp, 

Y_seg_raw_RGB_rsp)) 

 

RGB_merged_hot_1 = cv2.merge((X_seg_hot_RGB_rsp, Y_seg_hot_RGB_rsp, 

Z_seg_raw_RGB_rsp)) 

RGB_merged_hot_2 = cv2.merge((Z_seg_hot_RGB_rsp, X_seg_hot_RGB_rsp, 

Y_seg_raw_RGB_rsp)) 

 

print ('Shape of the merged image ', RGB_merged_raw_1.shape) 

 

plt.figure(figsize=(18, 6)) 

plt.subplot(1,4,1) 

plt.imshow(RGB_merged_raw_1) 

plt.axis('off') 

plt.subplot(1,4,2) 

plt.imshow(RGB_merged_raw_2) 

plt.axis('off') 

plt.subplot(1,4,3) 

plt.imshow(RGB_merged_hot_1) 

plt.axis('off') 

plt.subplot(1,4,4) 

plt.imshow(RGB_merged_hot_2) 

plt.axis('off') 

plt.show() 

Shape of the merged image  (120, 105, 3) 

 

 

MALDI t-SNE reduction to one image 

# Copy the input vector containing the tissue only data for segmentation 

 

vector_R1_raw_tissue = vector_seg_raw.copy() 

vector_R1_hot_tissue = vector_seg_hot.copy() 

 

print('vector images before tsne seg:', vector_R1_raw_tissue.shape, 

vector_R1_hot_tissue.shape) 

 

# Aplication of the TSNE dimensionality reduction to 1 channels 

 

tsne_R1 = manifold.TSNE(n_components=1, random_state=0) 

vector_tsne_R1_raw_tissue = tsne_R1.fit_transform(vector_R1_raw_tissue) 

vector_tsne_R1_hot_tissue = tsne_R1.fit_transform(vector_R1_hot_tissue) 

 

print('vector images after tsne seg:', vector_tsne_R1_raw_tissue.shape) 

vector images before tsne seg: (6964, 39) (6964, 39) 

vector images after tsne seg: (6964, 1) 
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# Generation of a set of vectors that will correspond to the reduced images 

plus background pixels for proper 

# image reconstruction vector_tsne_seg_raw and vector_tsne_seg_hot 

 

vector_tsne_R1_raw = np.zeros((rows*columns, 1)) 

vector_tsne_R1_hot = np.zeros((rows*columns, 1)) 

 

print('Image vector for the whole image', vector_tsne_R1_raw.shape) 

 

# to introduce the 0 bacgkround pixels, the minimum value of the image should 

be zero, so the minimum value should 

# be substracted. 

 

vector_tsne_R1_raw[flat_mask==1] = vector_tsne_R1_raw_tissue - 

np.min(vector_tsne_R1_raw_tissue) 

vector_tsne_R1_hot[flat_mask==1] = vector_tsne_R1_hot_tissue - 

np.min(vector_tsne_R1_hot_tissue) 

 

vector_R1_raw_norm = (vector_tsne_R1_raw/np.max(vector_tsne_R1_raw))*100  

vector_R1_hot_norm = (vector_tsne_R1_hot/np.max(vector_tsne_R1_hot))*100  

 

vector_R1_raw_rsp = vector_R1_raw_norm.reshape(rows, columns) 

vector_R1_hot_rsp = vector_R1_hot_norm.reshape(rows, columns) 

 

plt.figure(figsize=(15, 6)) 

plt.subplot(1,2,1) 

plt.imshow(vector_R1_raw_rsp) 

plt.colorbar() 

plt.axis('off') 

plt.title('R1 raw') 

plt.subplot(1,2,2) 

plt.imshow(vector_R1_hot_rsp) 

plt.colorbar() 

plt.axis('off') 

plt.title('R1 hot') 

plt.show() 

Image vector for the whole image (12600, 1) 

 

# save the t-sne images as .csv files and .npy images to use in the 

registration script 

 

np.savetxt('M2_MALDI_tSNE.csv', vector_R1_raw_rsp, delimiter=',') 
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Image pre-processing LA-ICP 

# import LA-ICP data from text images 

 

LA_1_raw = np.loadtxt('M2_LA_1.xl', delimiter=',') 

LA_2_raw = np.loadtxt('M2_LA_2.xl', delimiter=',') 

LA_3_raw = np.loadtxt('M2_LA_3.xl', delimiter=',') 

 

plt.figure(figsize=(18, 6)) 

ax=plt.subplot(1, 3, 1) 

plt.imshow(LA_1_raw) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA Fe') 

ax=plt.subplot(1, 3, 2) 

plt.imshow(LA_2_raw) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA Au') 

ax=plt.subplot(1, 3, 3) 

plt.imshow(LA_3_raw) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA Zn') 

plt.show() 

 

 

Hotspot removal LA-ICP 

# We will calculate the 0.99 quantile range and assign the data points above 

this value to the 0.99 value.  

 

Q_LA_1 = np.quantile(LA_1_raw, 0.99)  

Q_LA_2 = np.quantile(LA_2_raw, 0.99) 

Q_LA_3 = np.quantile(LA_3_raw, 0.99) 

 

print('Quantile of LA images is:', Q_LA_1, Q_LA_2, Q_LA_3) 

 

LA_1_hot = LA_1_raw.copy() 

LA_2_hot = LA_2_raw.copy() 

LA_3_hot = LA_3_raw.copy() 
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LA_1_hot[LA_1_raw > Q_LA_1] = Q_LA_1 

LA_2_hot[LA_2_raw > Q_LA_2] = Q_LA_2 

LA_3_hot[LA_3_raw > Q_LA_3] = Q_LA_3 

 

# box and whisker plots 

 

row_LA, col_LA = LA_1_raw.shape 

 

print ('LA image shape:', LA_1_raw.shape) 

 

vector_LA_1_raw = LA_1_raw.reshape(row_LA*col_LA) 

vector_LA_2_raw = LA_2_raw.reshape(row_LA*col_LA) 

vector_LA_3_raw = LA_3_raw.reshape(row_LA*col_LA) 

 

vector_LA_1_hot = LA_1_hot.reshape(row_LA*col_LA) 

vector_LA_2_hot = LA_2_hot.reshape(row_LA*col_LA) 

vector_LA_3_hot = LA_3_hot.reshape(row_LA*col_LA) 

 

plt.figure(figsize=(18, 15)) 

ax = plt.subplot(3, 3, 1) 

plt.imshow(LA_1_raw) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA 1 raw') 

ax = plt.subplot(3, 3, 2) 

plt.imshow(LA_1_hot) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA 1 hot') 

ax = plt.subplot(3, 3, 3) 

plt.boxplot([vector_LA_1_raw, vector_LA_1_hot]) 

plt.title('LA 1 boxplot') 

ax = plt.subplot(3, 3, 4) 

plt.imshow(LA_2_raw) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA 2 raw') 

ax = plt.subplot(3, 3, 5) 

plt.imshow(LA_2_hot) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA 2 hot') 

ax = plt.subplot(3, 3, 6) 

plt.boxplot([vector_LA_2_raw, vector_LA_2_hot]) 

plt.title('LA 2 boxplot') 

ax = plt.subplot(3, 3, 7) 

plt.imshow(LA_3_raw) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA 3 raw') 

ax = plt.subplot(3, 3, 8) 

plt.imshow(LA_3_hot) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA 3 hot') 

ax = plt.subplot(3, 3, 9) 

plt.boxplot([vector_LA_3_raw, vector_LA_3_hot]) 

plt.title('LA boxplot') 

plt.show() 

Quantile of LA images is: 5015.872981954924 14492.288902966888 940.002934010539 

LA image shape: (129, 118) 
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# Vectorize the images from the images to a matrix vector_images_seg with 

dimensions(n_pixels_seg, n_signals_seg) 

 

n_pixels_LA = row_LA*col_LA 

n_signals_LA = 3 

 

vector_images_LA = np.zeros((n_pixels_LA, n_signals_LA)) 

 

vector_images_LA[:,0] = vector_LA_1_hot 

vector_images_LA[:,1] = vector_LA_2_hot 

vector_images_LA[:,2] = vector_LA_3_hot 

 

print('vector images shape:', vector_images_LA.shape) 

 

# Aplication of the TSNE dimensionality reduction to 1 channel 

 

tsne_LA = manifold.TSNE(n_components=1, random_state=0) 

reduction_tsne_LA = tsne_LA.fit_transform(vector_images_LA) 

 

print('LA tsne reduction:', reduction_tsne_LA.shape) 

vector images shape: (15222, 3) 

LA tsne reduction: (15222, 1) 



134 

 

# Image the TSNE one channel reduction to LA 

 

LA_tsne_reshaped = reduction_tsne_LA.reshape(row_LA, col_LA) 

LA_tsne_reshaped = LA_tsne_reshaped.astype(int) 

 

plt.imshow(LA_tsne_reshaped) 

plt.colorbar() 

plt.axis('off') 

plt.title('LA image segmentation') 

plt.show() 

 

# save the LA-ICP Fe image as .csv files and .npy images to use in the 

registration script 

 

np.savetxt('M2_LA_hot_1.csv', LA_1_hot, delimiter=',') 

np.savetxt('M2_LA_hot_2.csv', LA_2_hot, delimiter=',') 

np.savetxt('M2_LA_hot_3.csv', LA_3_hot, delimiter=',') 

 

 

Registration and validation of MALDI and LA-ICP images 

import SimpleITK as sitk 

import numpy as np 

import matplotlib.pyplot as plt 

import PIL 

# import images from the pre-processing script for MALDI t-SNE and LA-ICP - 

image crop 

 

from numpy import loadtxt 

 

LA_background_mask = np.loadtxt('M2_LA_Background_Mask.csv', delimiter=',') 

LA_background_mask[LA_background_mask == 255] = 1 

 

LA_raw = loadtxt('M2_LA_hot_1.csv', delimiter=',') 

LA_BS = LA_raw*LA_background_mask 

LA_crop = LA_BS[0:129, 5:118] 

 

MALDI_raw = loadtxt('M2_MALDI_tSNE.csv', delimiter=',') 

 

print('LA raw:',LA_raw.shape,'LA crop:',LA_crop.shape,'MALDI 

raw:',MALDI_raw.shape) 

 

plt.figure(figsize=(18, 10)) 

ax=plt.subplot(1, 4, 1) 

plt.imshow(LA_raw, cmap='Reds') 
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plt.axis('off') 

plt.title('LA raw Fe') 

ax=plt.subplot(1, 4, 2) 

plt.imshow(LA_BS, cmap='Reds') 

plt.axis('off') 

plt.title('LA BS Fe') 

ax=plt.subplot(1, 4, 3) 

plt.imshow(LA_crop, cmap='Reds') 

plt.axis('off') 

plt.title('LA cropped Fe') 

ax=plt.subplot(1, 4, 4) 

plt.imshow(MALDI_raw, cmap='Blues') 

plt.axis('off') 

plt.title('MALDI t-SNE') 

plt.show() 

 

#np.savetxt('M2_LA_reg_input.csv', LA_crop, delimiter=',') 

#np.savetxt('M2_MALDI_reg_input.csv', MALDI_raw, delimiter=',') 

LA raw: (129, 118) LA crop: (129, 113) MALDI raw: (120, 105) 

 

 

Upload segment masks 

# Segment masks obtained in imagej 

 

LA_mask = np.loadtxt('M2_LA_reg_mask.csv', delimiter=',')[0:129, 5:118] 

LA_mask[LA_mask == 255] = 1 

 

MALDI_mask = np.loadtxt('M2_MALDI_reg_mask.csv', delimiter=',') 

MALDI_mask[MALDI_mask == 255] = 1 

 

LA_norm = LA_crop/np.amax(LA_crop) 

MALDI_norm = MALDI_raw/np.amax(MALDI_raw) 

 

plt.figure(figsize=(18, 9)) 

ax=plt.subplot(1,4,1) 

plt.imshow(MALDI_norm, cmap='Blues') 

plt.axis('off') 

plt.title('MALDI image') 

ax=plt.subplot(1,4,2) 

plt.imshow(MALDI_norm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(MALDI_mask, cmap='Greys', alpha=0.6) 

plt.axis('off') 

plt.title('MALDI overlay') 

ax=plt.subplot(1,4,3) 
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plt.imshow(LA_norm, cmap='Reds') 

plt.axis('off') 

plt.title('LA image') 

ax=plt.subplot(1,4,4) 

plt.imshow(LA_norm, cmap='Reds', alpha=0.8) 

plt.axis('off') 

plt.imshow(LA_mask, cmap='Greys', alpha=0.6) 

plt.axis('off') 

plt.title('LA overlay') 

plt.show() 

 

 

Upload images for registration 

# Uploading Fixed and Moving images in simpleelastix 

 

FixedImage = sitk.GetImageFromArray(MALDI_raw) 

MovingImage = sitk.GetImageFromArray(LA_crop) 

 

print ('Fixed image type:', type(FixedImage), 'Input image shape:', 

np.shape(FixedImage)) 

print ('Moving image type:', type(MovingImage), 'Input image shape:', 

np.shape(MovingImage)) 

Fixed image type: <class 'SimpleITK.SimpleITK.Image'> Input image shape: (12600,) 

Moving image type: <class 'SimpleITK.SimpleITK.Image'> Input image shape: (14577,) 

 

Translation registration 

# Set the fixed and moving images, the parameter map and execute the 

calculation with translation 

 

parameterMap_1 = sitk.GetDefaultParameterMap('translation') 

 

elastixImageFilter = sitk.ElastixImageFilter() 

elastixImageFilter.SetFixedImage(FixedImage) 

elastixImageFilter.SetMovingImage(MovingImage) 

elastixImageFilter.SetParameterMap(parameterMap_1) 

elastixImageFilter.Execute() 

 

# Obtain result image and transform parameter map 

 

ResultImage_1 = elastixImageFilter.GetResultImage() 

transformParameterMap_1 = elastixImageFilter.GetTransformParameterMap() 
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# Convert SITK images to np arrays for visualization of the result and input 

images in Matplotlib 

 

ResultArray_1 = sitk.GetArrayFromImage(ResultImage_1) 

 

FixedArray = sitk.GetArrayFromImage(FixedImage) 

MovingArray = sitk.GetArrayFromImage(MovingImage) 

 

# Normalization of the images for proper overlap 

 

FixedArrayNorm = FixedArray/np.amax(FixedArray) 

MovingArrayNorm = MovingArray/np.amax(MovingArray) 

ResultArrayNorm_1 = ResultArray_1/np.amax(ResultArray_1) 

 

# Rendering of the translation optimization 

 

plt.figure(figsize=(18,8)) 

ax = plt.subplot(1, 5, 1) 

plt.imshow(FixedArray, cmap='Blues') 

plt.axis('off') 

plt.title('Fixed Image') 

ax = plt.subplot(1, 5, 2) 

plt.imshow(MovingArray, cmap='Reds') 

plt.axis('off') 

plt.title('Moving Image') 

ax = plt.subplot(1, 5, 3) 

plt.imshow(ResultArray_1, cmap='Reds') 

plt.axis('off') 

plt.title('Result Image') 

ax = plt.subplot(1, 5, 4) 

plt.imshow(FixedArrayNorm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(MovingArrayNorm, cmap='Reds', alpha=0.4) 

plt.axis('off') 

plt.title('Before optimization') 

ax = plt.subplot(1, 5, 5) 

plt.imshow(FixedArrayNorm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(ResultArrayNorm_1, cmap='Reds', alpha=0.4) 

plt.axis('off') 

plt.title ('After optimization') 

plt.show() 

 

 

Rigid registration 

# Set the fixed and moving images, the parameter map and execute the 

calculation with rigid 
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parameterMap_2 = sitk.GetDefaultParameterMap('rigid') 

parameterMap_2['MaximumNumberOfIterations'] = ['2000'] 

 

elastixImageFilter = sitk.ElastixImageFilter() 

elastixImageFilter.SetFixedImage(FixedImage) 

elastixImageFilter.SetMovingImage(MovingImage) 

elastixImageFilter.SetParameterMap(parameterMap_2) 

elastixImageFilter.Execute() 

 

# Obtain result image and transform parameter map 

 

ResultImage_2 = elastixImageFilter.GetResultImage() 

transformParameterMap_2 = elastixImageFilter.GetTransformParameterMap() 

# Convert SITK image to np arrays for visualization of the input images in 

Matplotlib 

 

ResultArray_2 = sitk.GetArrayFromImage(ResultImage_2) 

 

# Normalization of the images for proper overlap 

 

ResultArrayNorm_2 = ResultArray_2/np.amax(ResultArray_2) 

 

# Rendering of the translation optimization 

 

plt.figure(figsize=(18,8)) 

ax = plt.subplot(1, 5, 1) 

plt.imshow(FixedArray, cmap='Blues') 

plt.axis('off') 

plt.title('Fixed Image') 

ax = plt.subplot(1, 5, 2) 

plt.imshow(MovingArray, cmap='Reds') 

plt.axis('off') 

plt.title('Moving Image') 

ax = plt.subplot(1, 5, 3) 

plt.imshow(ResultArray_2, cmap='Reds') 

plt.axis('off') 

plt.title('Result Image') 

ax = plt.subplot(1, 5, 4) 

plt.imshow(FixedArrayNorm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(MovingArrayNorm, cmap='Reds', alpha=0.4) 

plt.axis('off') 

plt.title('Before optimization') 

ax = plt.subplot(1, 5, 5) 

plt.imshow(FixedArrayNorm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(ResultArrayNorm_2, cmap='Reds', alpha=0.4) 

plt.axis('off') 

plt.title ('After optimization') 

plt.show() 
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Affine registration 

# Set the fixed and moving images, the parameter map and execute the 

calculation with affine 

 

parameterMap_3 = sitk.GetDefaultParameterMap('affine') 

parameterMap_3['MaximumNumberOfIterations'] = ['4000'] 

 

elastixImageFilter = sitk.ElastixImageFilter() 

elastixImageFilter.SetFixedImage(FixedImage) 

elastixImageFilter.SetMovingImage(MovingImage) 

elastixImageFilter.SetParameterMap(parameterMap_3) 

elastixImageFilter.Execute() 

 

# Obtain result image and transform parameter map 

 

ResultImage_3 = elastixImageFilter.GetResultImage() 

transformParameterMap_3 = elastixImageFilter.GetTransformParameterMap() 

# Convert SITK image to np arrays for visualization of the input images in 

Matplotlib 

 

ResultArray_3 = sitk.GetArrayFromImage(ResultImage_3) 

 

# Normalization of the images for proper overlap 

 

ResultArrayNorm_3 = ResultArray_3/np.amax(ResultArray_3) 

 

# Rendering of the translation optimization 

 

plt.figure(figsize=(18,8)) 

ax = plt.subplot(1, 5, 1) 

plt.imshow(FixedArray, cmap='Blues') 

plt.axis('off') 

plt.title('Fixed Image') 

ax = plt.subplot(1, 5, 2) 

plt.imshow(MovingArray, cmap='Reds') 

plt.axis('off') 

plt.title('Moving Image') 

ax = plt.subplot(1, 5, 3) 

plt.imshow(ResultArray_3, cmap='Reds') 

plt.axis('off') 

plt.title('Result Image') 

ax = plt.subplot(1, 5, 4) 

plt.imshow(FixedArrayNorm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(MovingArrayNorm, cmap='Reds', alpha=0.4) 

plt.axis('off') 

plt.title('Before optimization') 

ax = plt.subplot(1, 5, 5) 

plt.imshow(FixedArrayNorm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(ResultArrayNorm_3, cmap='Reds', alpha=0.4) 

plt.axis('off') 

plt.title ('After optimization') 

plt.show() 
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Non-linear registration 

elastixImageFilter = sitk.ElastixImageFilter() 

elastixImageFilter.SetFixedImage(FixedImage) 

elastixImageFilter.SetMovingImage(MovingImage) 

 

parameterMapVector = sitk.VectorOfParameterMap() 

 

parameterMapAffine = sitk.GetDefaultParameterMap('affine') 

parameterMapAffine['MaximumNumberOfIterations'] = ['4000'] 

 

parameterMapBspline = sitk.GetDefaultParameterMap("bspline") 

parameterMapBspline['MaximumNumberOfIterations'] = ['8000'] 

parameterMapBspline['Metric'] = ['NormalizedMutualInformation'] 

parameterMapBspline['FinalGridSpacingInPhysicalUnits'] = ['50.00000'] 

 

parameterMapVector.append(parameterMapAffine) 

parameterMapVector.append(parameterMapBspline) 

elastixImageFilter.SetParameterMap(parameterMapVector) 

elastixImageFilter.Execute() 

 

# Obtain result image and transform parameter map 

 

ResultImage_4 = elastixImageFilter.GetResultImage() 

transformParameterMap_4 = elastixImageFilter.GetTransformParameterMap() 

#Convert SITK image to np arrays for visualization of the input images in 

Matplotlib 

 

ResultArray_4 = sitk.GetArrayFromImage(ResultImage_4) 

 

# Normalization of the images for proper overlap 

 

ResultArrayNorm_4 = ResultArray_4/np.amax(ResultArray_4) 

 

# Rendering of the translation optimization 

 

plt.figure(figsize=(18,8)) 

ax = plt.subplot(1, 5, 1) 

plt.imshow(FixedArray, cmap='Blues') 

plt.axis('off') 

plt.title('Fixed Image') 

ax = plt.subplot(1, 5, 2) 

plt.imshow(MovingArray, cmap='Reds') 

plt.axis('off') 

plt.title('Moving Image') 

ax = plt.subplot(1, 5, 3) 

plt.imshow(ResultArray_4, cmap='Reds') 

plt.axis('off') 
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plt.title('Result Image') 

ax = plt.subplot(1, 5, 4) 

plt.imshow(FixedArrayNorm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(MovingArrayNorm, cmap='Reds', alpha=0.4) 

plt.axis('off') 

plt.title('Before optimization') 

ax = plt.subplot(1, 5, 5) 

plt.imshow(FixedArrayNorm, cmap='Blues', alpha=0.8) 

plt.axis('off') 

plt.imshow(ResultArrayNorm_4, cmap='Reds', alpha=0.4) 

plt.axis('off') 

plt.title ('After optimization') 

plt.show() 

 

 

Transformation of the masks 

# Transformation of the manual mask using the appropiate ParameterMap 

 

transformixImageFilter = sitk.TransformixImageFilter() 

transformixImageFilter.SetTransformParameterMap(transformParameterMap_4) 

 

transformixImageFilter.SetMovingImage(sitk.GetImageFromArray(LA_mask)) 

transformixImageFilter.Execute() 

LA_trans_mask = 

sitk.GetArrayFromImage(transformixImageFilter.GetResultImage()) 

 

print('LA mask shape:', LA_mask.shape) 

print('Transformed mask shape', LA_trans_mask.shape) 

 

# Background_transformed is the transformed image 

 

from sklearn.cluster import KMeans 

 

rows_transformed = LA_trans_mask.shape[0] 

columns_transformed = LA_trans_mask.shape[1] 

 

transformed_vector = 

LA_trans_mask.reshape(rows_transformed*columns_transformed, 1) 

kmeans_background = KMeans(2) 

kmeans_background.fit(transformed_vector) 

transformed_segmented = 

kmeans_background.cluster_centers_[kmeans_background.predict(transformed_vect

or)] 

 

transformed_labels = kmeans_background.labels_ 
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transformed_reshaped = transformed_segmented.reshape(rows_transformed, 

columns_transformed) 

centroids = np.sort(np.unique(transformed_segmented)) 

labels = np.zeros(transformed_segmented.shape) 

for index, centroid in enumerate(centroids): 

    labels[transformed_segmented==centroid] = index 

LA_trans_final = labels.reshape(rows_transformed, columns_transformed) 

 

plt.figure(figsize=(18,5)) 

ax = plt.subplot(1, 4, 1) 

plt.imshow(LA_mask, cmap='gray') 

plt.colorbar() 

plt.axis('off') 

plt.title('LA mask') 

ax = plt.subplot(1, 4, 2) 

plt.imshow(LA_trans_mask, cmap='gray') 

plt.colorbar() 

plt.axis('off') 

plt.title('Transformed LA Mask') 

ax = plt.subplot(1, 4, 3) 

plt.imshow(LA_trans_final, cmap='gray') 

plt.colorbar() 

plt.axis('off') 

plt.title('Transformed LA kmeans') 

ax = plt.subplot(1, 4, 4) 

plt.imshow(MALDI_mask, cmap='gray') 

plt.colorbar() 

plt.axis('off') 

plt.title('MALDI mask') 

plt.show() 

LA mask shape: (129, 113) 

Transformed mask shape (120, 105) 

 

 

DSC calculation 

## MALDI scaled will be changed to find out which are the true positives and 

the true negatives 

 

MALDI_overlay_scale = np.zeros(MALDI_mask.shape) 

MALDI_overlay_scale[MALDI_mask==1] =2 

 

Combined_masks = MALDI_overlay_scale + LA_trans_final 

 

plt.figure(figsize=(10,7)) 

plt.imshow(Combined_masks, cmap='jet') 
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plt.title('Combined mask') 

plt.colorbar() 

plt.axis('off') 

plt.show() 

 

Pixel_1 = Combined_masks[Combined_masks == 1] 

Pixel_2 = Combined_masks[Combined_masks == 2] 

Pixel_3 = Combined_masks[Combined_masks == 3] 

 

DSC = (2*len(Pixel_3))/((2*len(Pixel_3))+len(Pixel_2)+len(Pixel_1)) 

 

print('Pixel 1 - LA Only pixels (FN) =', len(Pixel_1)) 

print('Pixel 2 - MALDI Only pixels (FP) =', len(Pixel_2)) 

print('Pixel 3 - Overlapping pixels =', len(Pixel_3)) 

print('DSC value', DSC) 

Pixel 1 - LA Only pixels (FN) = 20 

Pixel 2 - MALDI Only pixels (FP) = 15 

Pixel 3 - Overlapping pixels = 117 

DSC value 0.8698884758364313 

 
import seaborn as sns 

import matplotlib.colors 

 

norm = matplotlib.colors.Normalize(0,3) 

colors = [[norm(0), "#000000"], [norm(1), "#7CFC00"], [norm(2), "#FF00FF"], 

[norm(3), "#FFFFFF"]] 

cmap1 = matplotlib.colors.LinearSegmentedColormap.from_list("", colors) 

 

plt.figure(figsize=(10,10)) 

sns.heatmap(Combined_masks, square=True, cmap=cmap1, cbar=False, 

xticklabels=False, yticklabels=False) 

<matplotlib.axes._subplots.AxesSubplot at 0x7fd7c5efafd0> 



144 

 

 

 

Landmark registration 

# Annotated data points were obtained in imagej 

 

Annotated_LA = np.zeros(MovingArray.shape)  

 

Annotated_LA[70,32] = 1 

Annotated_LA[66,89] = 2 

Annotated_LA[32,77] = 3 

Annotated_LA[35,87] = 4 

Annotated_LA[108,60] = 5 

Annotated_LA[120,20] = 6 

Annotated_LA[82,23] = 7 

Annotated_LA[64,32] = 8 

Annotated_LA[11,14] = 9 

Annotated_LA[22,95] = 10 

 

Annotated_MALDI = np.zeros(FixedArray.shape) 

 

Annotated_MALDI[63,25] = 1 

Annotated_MALDI[64,82] = 2 

Annotated_MALDI[32,73] = 3 

Annotated_MALDI[35,81] = 4 

Annotated_MALDI[100,48] = 5 

Annotated_MALDI[107,8] = 6 

Annotated_MALDI[72,15] = 7 

Annotated_MALDI[55,25] = 8 

Annotated_MALDI[8,11] = 9 

Annotated_MALDI[23,90] = 10 

 

from matplotlib import cm 

from matplotlib.colors import ListedColormap, LinearSegmentedColormap 

 

cmap1 = ListedColormap(['white', 'darkblue', 'dodgerblue', 'forestgreen', 

'lime', 'yellow', 'orange', 'red', 

                        'darkviolet', 'deeppink', 'lightpink']) 
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cmap2 = ListedColormap(['black', 'darkblue', 'dodgerblue', 'forestgreen', 

'lime', 'yellow', 'orange', 'red', 

                        'darkviolet', 'deeppink', 'lightpink']) 

 

plt.figure(figsize=(18,20)) 

ax = plt.subplot(2, 2, 1) 

plt.imshow(Annotated_LA, cmap=cmap2) 

plt.axis('off') 

ax = plt.subplot(2, 2, 2) 

plt.imshow(MovingArrayNorm, cmap='gray_r', alpha=0.7) 

plt.axis('off') 

plt.imshow(Annotated_LA, cmap=cmap1, alpha=0.8) 

plt.axis('off') 

ax = plt.subplot(2, 2, 3) 

plt.imshow(Annotated_MALDI, cmap=cmap2) 

plt.axis('off') 

ax = plt.subplot(2, 2, 4) 

plt.imshow(FixedArrayNorm, cmap='gray_r', alpha=0.7) 

plt.axis('off') 

plt.imshow(Annotated_MALDI, cmap=cmap1, alpha=0.8) 

plt.axis('off') 

plt.show() 
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Annotated mask registration 

# LA ablation annotated mask (Moving image) should be transformed 

 

transformixImageFilter = sitk.TransformixImageFilter() 

transformixImageFilter.SetTransformParameterMap(transformParameterMap_4) 

 

transformixImageFilter.SetMovingImage(sitk.GetImageFromArray(Annotated_LA)) 

transformixImageFilter.Execute() 

Transformed_annotated_LA = 

sitk.GetArrayFromImage(transformixImageFilter.GetResultImage()) 

 

print('Initial annotation shape:', Annotated_LA.shape) 

print('Transformed annotated shape', Transformed_annotated_LA.shape) 

 

plt.figure(figsize=(18,7)) 

ax = plt.subplot(1, 3, 1) 

plt.imshow(Annotated_LA, cmap=cmap2) 

plt.axis('off') 

ax = plt.subplot(1, 3, 2) 

plt.imshow(Transformed_annotated_LA, cmap='jet') 

plt.axis('off') 

ax = plt.subplot(1, 3, 3) 

plt.imshow(ResultArray_4, cmap='gray_r', alpha=0.8) 

plt.axis('off') 

plt.imshow(Annotated_MALDI, cmap=cmap1, alpha=0.7) 

plt.axis('off') 

plt.show() 

Initial annotation shape: (129, 113) 

Transformed annotated shape (120, 105) 

 

 

Annotated binary mask transformation 

# Conversion of the annotated mask to a binary 

 

Annotated_LA_bin = np.zeros(Annotated_LA.shape) 

Annotated_LA_bin[Annotated_LA > 0] = 1 

 

# LA ablation annotated mask (Moving image) should be transformed 

 

transformixImageFilter = sitk.TransformixImageFilter() 

transformixImageFilter.SetTransformParameterMap(transformParameterMap_4) 

 



147 

 

transformixImageFilter.SetMovingImage(sitk.GetImageFromArray(Annotated_LA_bin

)) 

transformixImageFilter.Execute() 

Transformed_annotated_LA_bin = 

sitk.GetArrayFromImage(transformixImageFilter.GetResultImage()) 

 

print('Initial annotation shape:', Annotated_LA_bin.shape) 

print('Transformed annotated shape', Transformed_annotated_LA_bin.shape) 

 

plt.figure(figsize=(18,9)) 

ax = plt.subplot(1, 2, 1) 

plt.imshow(Annotated_LA_bin, cmap='gray') 

plt.axis('off') 

plt.colorbar() 

ax = plt.subplot(1, 2, 2) 

plt.imshow(Transformed_annotated_LA_bin, cmap='gray') 

plt.axis('off') 

plt.colorbar() 

plt.show() 

Initial annotation shape: (129, 113) 

Transformed annotated shape (120, 105) 

 

Annotated_MALDI_bin = np.zeros(Annotated_MALDI.shape) 

Annotated_MALDI_bin[Annotated_MALDI > 0] = 1 

 

plt.figure(figsize=(18,10)) 

ax = plt.subplot(1, 3, 1) 

plt.imshow(Annotated_MALDI_bin, cmap='gray') 

plt.axis('off') 

ax = plt.subplot(1, 3, 2) 

plt.imshow(Transformed_annotated_LA_bin, cmap='gray') 

plt.axis('off') 

ax = plt.subplot(1, 3, 3) 

plt.imshow(Annotated_MALDI_bin, cmap='gray', alpha=1) 

plt.axis('off') 

plt.imshow(Transformed_annotated_LA_bin, cmap='gray', alpha=0.7) 

plt.axis('off') 

plt.title ('overlay') 

Text(0.5, 1.0, 'overlay') 
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import seaborn as sns 

import matplotlib.colors 

 

#norm = matplotlib.colors.Normalize(0,3) 

#colors = [[norm(0), "#000000"], [norm(1), "#7CFC00"], [norm(2), "#FF00FF"], 

[norm(3), "#FFFFFF"]] 

#cmap1 = matplotlib.colors.LinearSegmentedColormap.from_list("", colors) 

 

vmin = 0 

vmax = 1 

 

cmap1 = sns.dark_palette("Green", as_cmap=True) 

cmap2 = sns.dark_palette("Magenta", as_cmap=True) 

 

plt.figure(figsize=(18, 20)) 

plt.subplot(2, 2, 1) 

sns.heatmap(Annotated_MALDI_bin, square=True, cmap=cmap1, xticklabels=False, 

yticklabels=False, cbar=False) 

plt.subplot(2, 2, 2) 

sns.heatmap(Transformed_annotated_LA_bin, square=True, cmap=cmap2, 

xticklabels=False, yticklabels=False, vmin=0,  

            vmax=1, cbar=False) 

plt.subplot(2, 2, 3) 

sns.heatmap(Annotated_MALDI_bin, square=True, cmap=cmap1, xticklabels=False, 

yticklabels=False, cbar=False) 

sns.heatmap(Transformed_annotated_LA_bin, square=True, cmap=cmap2, 

xticklabels=False, yticklabels=False,  

            cbar=False, vmin=0, vmax=1, alpha=0.3) 

plt.subplot(2, 2, 4) 

sns.heatmap(Annotated_LA_bin, square=True, cmap=cmap2, xticklabels=False, 

yticklabels=False, cbar=False) 

 

plt.show() 
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np.savetxt('M2_LDM_LA_pixels', Annotated_LA_bin, delimiter=',') 

np.savetxt('M2_LDM_LA_transformed_pixels', Transformed_annotated_LA_bin, 

delimiter=',') 

np.savetxt('M2_LDM_MALDI_pixels', Annotated_MALDI_bin, delimiter=',') 

 

Correlation coefficient calculations 

# Import the MALDI data and apply the same transformations as the t-sne 

image: 

 

from pyimzml.ImzMLParser import ImzMLParser 

from pyimzml.ImzMLParser import getionimage 

from scipy import ndimage 
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# Parse the data into slide 

 

slide = ImzMLParser('111920_Liver_TTMA_D6.imzML') 

 

# Specify where the slide will be cut to get the images 

 

Y1 = 150 

Y2 = 270 

X1 = 1035 

X2 = 1140 

 

Degree_rotation = 180 

 

# Import list of the most abundance signals above 500m/z 

 

import csv 

import math 

 

datafile = open('111920_Signals_M2.csv', 'r') 

reader = csv.reader(datafile) 

 

Ions = [] 

Tolerance = [] 

for row in reader: 

    Ions.append(float(row[0])) 

    Tolerance.append(float(row[1])) 

     

images = [] 

 

# Extract the signals in MALDI 

 

for i,t in zip(Ions, Tolerance): 

    image = (getionimage(slide, i, tol=t)[Y1:Y2, X1:X2]) 

    im = ndimage.rotate(image, Degree_rotation, reshape=True) 

    Quantile_99 = np.quantile(im, 0.99) 

    im[im > Quantile_99] = Quantile_99 

    images.append(im) 

 

print('MALDI images shape:', images[0].shape)     

     

# Images of the selected signals 

 

length = len(images) 

rows_graph = math.ceil(length/5) 

 

plt.figure(figsize=(18, 28)) 

for n,im in enumerate(images): 

    ax = plt.subplot(rows_graph, 5, (n+1)) 

    plt.imshow(im) 

    plt.axis('off') 

    plt.colorbar() 

    plt.title('m/z {0}'.format(Ions[n])) 

plt.show() 

MALDI images shape: (120, 105) 
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Transformation of LA-ICP signals into the MALDI coordinate system 

# Transformation of the LA-ICP images 

 

Fe = loadtxt('M2_LA_hot_1.csv', delimiter=',')[0:129, 5:118] 

Au = loadtxt('M2_LA_hot_2.csv', delimiter=',')[0:129, 5:118] 

Zn = loadtxt('M2_LA_hot_3.csv', delimiter=',')[0:129, 5:118] 

 

MALDI_BM = np.loadtxt('M2_MALDI_796_mask.csv', delimiter=',') 

MALDI_BM[MALDI_BM == 255] = 1 

 

transformixImageFilter = sitk.TransformixImageFilter() 

transformixImageFilter.SetTransformParameterMap(transformParameterMap_4) 

 

transformixImageFilter.SetMovingImage(sitk.GetImageFromArray(Fe)) 

transformixImageFilter.Execute() 

Fe_trans = sitk.GetArrayFromImage(transformixImageFilter.GetResultImage()) 

 

transformixImageFilter.SetMovingImage(sitk.GetImageFromArray(Au)) 

transformixImageFilter.Execute() 

Au_trans = sitk.GetArrayFromImage(transformixImageFilter.GetResultImage()) 

 

transformixImageFilter.SetMovingImage(sitk.GetImageFromArray(Zn)) 

transformixImageFilter.Execute() 

Zn_trans = sitk.GetArrayFromImage(transformixImageFilter.GetResultImage()) 

 

Fe_trans_BS = Fe_trans*MALDI_BM 

Au_trans_BS = Au_trans*MALDI_BM 

Zn_trans_BS = Zn_trans*MALDI_BM 

 

print('Transform LA shape:', Fe_trans.shape) 

 

plt.figure(figsize=(18, 10)) 

ax=plt.subplot(1, 6, 1) 

plt.imshow(Fe_trans, cmap='gray') 

plt.axis('off') 

plt.title('Fe transformed') 

ax=plt.subplot(1, 6, 2) 

plt.imshow(Au_trans, cmap='gray') 

plt.axis('off') 

plt.title('Au transformed') 

ax=plt.subplot(1, 6, 3) 

plt.imshow(Zn_trans, cmap='gray') 

plt.axis('off') 

plt.title('Zn transformed') 

ax=plt.subplot(1, 6, 4) 

plt.imshow(Fe_trans_BS, cmap='gray') 

plt.axis('off') 

plt.title('Fe transformed BS') 

ax=plt.subplot(1, 6, 5) 

plt.imshow(Au_trans_BS, cmap='gray') 

plt.axis('off') 

plt.title('Au transformed BS') 

ax=plt.subplot(1, 6, 6) 

plt.imshow(Zn_trans_BS, cmap='gray') 

plt.axis('off') 

plt.title('Zn transformed BS') 

plt.show() 

Transform LA shape: (120, 105) 
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Calculation of correlation coefficients 

# Calculation of the correlation values, rows and columns values need to be 

calculated. Background mask needs to  

# be imported and cut to have the same dimensions as the MALDI input images. 

 

import scipy.stats 

 

MALDI_rows = images[0].shape[0] 

MALDI_columns = images[0].shape[1] 

 

images_all = [Fe_trans_BS, Au_trans_BS, Zn_trans_BS] + images 

Ions_all = ['Fe', 'Au', 'Zn'] + Ions 

 

corr_matrix = np.zeros((len(images_all), len(images_all))) 

 

for index1,im1 in enumerate(images_all): 

    im1_vector = im1[MALDI_BM==1] 

    for index2,im2 in enumerate(images_all): 

        im2_vector = im2[MALDI_BM==1] 

        corr, p = scipy.stats.pearsonr(im1_vector, im2_vector) 

        corr_matrix[index1, index2] = corr 

 

Correlation plot of LA and MALDI signals 

# To change scale of the plot change vmin and vmax 

 

import matplotlib as mpl 

 

fig = plt.figure(figsize=(18, 15)) 

 

ax1 = plt.gca() 

 

cmap = plt.get_cmap('RdBu_r') 

 

ax1.imshow(corr_matrix, cmap=cmap, origin='upper', vmin=-1, vmax=1) 

 

ax1.set_xticks(range(len(Ions_all))) 

ax1.set_xticklabels(Ions_all, rotation=90) 

ax1.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False, 

labelsize=16) 

ax1.set_aspect('equal') 

 

ax1.set_yticks(range(len(Ions_all))) 

ax1.set_yticklabels(Ions_all) 

 

norm = mpl.colors.Normalize(vmin=-1,vmax=1) 
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norm = 

mpl.colors.Normalize(vmin=np.amin(corr_matrix),vmax=np.amax(corr_matrix)) 

sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) 

sm.set_array([]) 

plt.colorbar(sm, pad=0.01, aspect=30)  

 

plt.show() 
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