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ABSTRACT

MATHEMATICAL MODEL FOR OSTEOSARCOMA

PROGRESSION AND TREATMENTS

SEPTEMBER 2021

TRANG LE,

B.S., IOWA STATE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Leili Shahriyari

Cancer is a complex disease where every tumor has its own characteristics, and

thus different tumors may respond differently to the same treatments. Osteosar-

coma, which is a rare type of cancer with poor prognosis, is especially characterized

by its high heteogeneity. Therefore, it is important to study the progression of os-

teosarcoma tumors in different groups of patients with distinct characteristics. The

immune system has been reported to play an important role in the development of

various cancers with some immune cells having anti-tumor effects and others having

pro-tumor effects. With recent advances in digital cytometry methods, which are

techniques to estimate the fractions of various cell types from gene expression data

of a bulk of cells, it became possible to obtain relative abundance of immune cells

in tumors.
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In this project, we review common digital cytometry methods, compare their

performances and report the best method. We apply this best performing digital

cytometry method to estimate abundance of immune cells in osteosarcoma tu-

mors, and perform clustering using the estimated immune fractions to find groups

of tumors with distinct immune compositions. We then model the growth of os-

teosarcoma tumors in each group while taking into account the interactions be-

tween immune cells and cancer cells. Lastly, we investigate the effects of adding

chemotherapy on the progression of osteosarcoma, find the optimal chemotherapy

dosages for tumors in each cluster, and compare the behaviors of immune and can-

cer cells under several conditions such as different treatment regimens and various

treatment start times.
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C H A P T E R 1

INTRODUCTION

Cancer is the name for a group of diseases in which cells begin to grow uncon-

trollably. Every patient’s tumor develops and progresses in its own unique way,

and different tumors can have different sensitivities to cancer therapies [2]. The

variations between tumors, called inter-tumor heterogeneity, have become an im-

portant task to be studied by researchers in order to provide more individualized

and more effective treatments to cancer patients.

Several studies have shown that cancer cells and tumor infiltrating immune

cells play a key role in tumor progression and the identification of malignant tumor

types [3, 4, 5]. Innate immune cells contribute to tumor suppression in several

ways, such as recognition and killing of cancer cells [6]. The immune response

in the cancer microenvironment can be triggered by tumor antigen detection by

immature dendritic cells, which then mature into dendritic cells [7]. Dendritic cells

present these antigens to helper and cytotoxic T cells, resulting in their activation

and the direct killing of cancer by cytotoxic cells [8, 9, 10]. Helper T cells and

cytotoxic T cells also produce IFN-γ that inhibits tumor growth [10, 11, 12].

On the other hand, certain immune cells have promoting or dual effects on

cancer progression. Regulatory T cells inhibit the differentiation and activities of

helper and cytotoxic T cells, thus, indirectly promoting tumor by suppressing the
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immune response [9, 13, 12, 14]. Macrophages, the most abundant immune cells

in many cancers, have anti-tumor properties by activating helper and cytotoxic

T cells through IL-12 and IL-23 production [15, 12, 16, 9], and also have pro-

tumor properties through secreting IL-6, which supports cancer cells’ proliferation

[15, 17, 18, 19, 20].

Moreover, the immune system is one of the major players in the response to

various cancer therapies [21, 22, 23], as it can improve or inhibit treatment effective-

ness and tumor behaviors [24]. For example, the necrotic cell death of tumor cells

caused by radiotherapy or chemotherapy triggers the production of high mobility

group box 1 (HMGB1), which is a damage-associated molecular pattern (DAMP)

molecule, and thus can induce immune responses [25, 26, 27, 28]. HMGB1 can pro-

mote dendritic cell maturation from naive dendritic cells [29, 30, 31, 32], leading

to the activation of T cells and elimination of cancer cells. Meanwhile, most can-

cer therapies also kill immune cells, where immune cells have complex interactions

with cancer cells, so the death of immune cells can have an indirect impact on the

growth of tumor.

Since cancer is a heterogeneous disease with numerous components, such as

immune cells, cancer cells, and lymphatic vessels [33], it is important take these

various components of cancer into consideration while studying the tumor pro-

gression. However, in typical in vitro and in vivo studies, cancer mechanisms or

components are usually analyzed one by one. While these experimental studies

provide relevant insights about the mechanisms, none of them can provide the ad-

equate required information to understand the complexity of cancer [34]. On the

other hand, mathematical modeling allows us to investigate multiple components

of a tumor at the same time. Thus, we can utilize mathematical models to combine

our knowledge on the individual cancer components and study the heterogeneity
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of cancer.

Mathematical models are commonly used to examine the growth of tumors, to

identify the optimal combination of treatments, to improve responses to therapies,

and to combat drug resistance in various types of cancer [35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45]. Among those, several studies model the interactions of immune

cells and cancer cells; however, most of them only study one or two immune cells in

their framework [46, 47, 48, 49, 50, 51, 52, 53]. A study by Wilkie et al. modeled

the combination of all immune cells as one variable and analyzed its effects on

tumor growth [54]. However, the impacts of the immune system on cancer are

diverse with some immune cells having anti-tumor effects while others had pro-

tumor effects, and thus modeling the whole immune system as one variable would

fail to capture these important interactions. Only a few papers explore multiple

immune cells [55, 56, 57], but even these models did not investigate the influence

of macrophages, which have been shown to be the most abundant cell type in the

tumor microenvironment of many cancers.

Malignant bone tumors are a rare type of cancers that arises in the bones.

Osteosarcoma is the most common type of malignant bone tumors with about

1000 new cases diagnosed each year in the United States [58]. It can affect people

of any age, but it is mostly occurred in the children aged 10 to 14 and in adults aged

65 and older [59, 60]. Osteosarcoma usually starts in the femur, the tibia and the

humerus, and less commonly the skull, the jaw or the pelvis [15]. There are some

factors such as gender, age, heritable syndromes and certain conditions such as Li-

Fraumeni syndrome, hereditary retinoblastoma, and Bloom and Werner syndromes

that affect the risk of osteosarcoma [61]. However, the cause of osteosarcomas is

still not clear [62]. The types of standard treatments for osteosarcoma include

surgery, chemotherapy, radiotherapy, and targeted therapy [63].
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Although neoadjuvant chemotherapy has improved the outcomes of osteosar-

coma, the overall survival of patients with metastatic tumors still remains in low

rate in the last three decades [64, 65, 66]. Immunotherapy and targeted therapy

have recently demonstrated significant results in the treatment of certain cancer

types [67, 68]. Although these are popular alternative treatments for osteosar-

coma, they are still ineffective for many patients [69]. Osteosarcoma tumors have

also been reported to be resistant to the radiotherapy [70, 71]. Due to the poor

prognosis of osteosarcoma, it would be beneficial to build mathematical models to

investigate the progression of osteosarcoma, study the effects of common treatments

on its growth, analyze the drug resistance, and explore new treatments’ options.

There are a limited number of mathematical models that study cells in the

bones or treatments for osteosarcoma. Some of these studies examine the growth

of osteoblasts and osteoclasts in vitro, in healthy tissues or in bone metastases

[72, 73, 74]. Osteoclasts are the cells that break down bones to initiate bone

remodelling, while osteoblasts are the cells that synthesize new bone, and are also

the cells of origin of osteosarcoma. Other studies focus on the pharmacokinetics of

chemotherapy drugs for the treatment of osteosarcoma, [75, 76, 77]. However, to the

best of our knowledge, there is currently no model that investigates the growth of

primary tumors in osteosarcoma. And since the immune system plays an important

role in cancer growth as mentioned above, we want to build a mathematical model

for osteosarcoma that takes into account the interactions between cancer cells and

immune cells.

The relationship between clinical outcome and immune abundance in osteosar-

coma has been reported in many studies. Cytotoxic T cells, known as the primary

receptor of immune response targeting ostersarcoma [10], have an important role in

the immunological responses of osteosarcoma patients [78]. Also, a high number of
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M1 macrophages in osteosaroma tumors has been associated with good prognosis

in many studies [79, 85, 86], and it has been reported that low-risk patients have a

high number of cytotoxic T cells and NK cells [80]. Moreover, certain chemother-

apy drug such as Cisplatin can increase the cancer killing capacity of cytotoxic T

cells [81, 82, 83, 84], so the effectiveness of the drug also depends on the number

of cytotoxic T cells in the tumor microenvironment. Therefore, in this project, we

will model osteosarcoma progression separately for patients with different immune

compositions.

In order to distinguish patients with different immune compositions, we first

need to obtain the relative immune abundance within the primary tumor of each

patient. Many experimental approaches such as single-cell analysis tools, including

immunohistochemistry, flow cytometry and mass cytometry, have been utilized to

document tumor immune infiltrates. However, these methods are expensive and

time-consuming [87], because they require laboratories, professionals and equip-

ment. Obtaining the gene expression levels of a bulk of cells has become easier and

cheaper thanks to new advances in high-throughput RNA-sequencing tools [88].

Therefore, several deconvolution methods (DMs) have been developed in recent

years to estimate the relative abundance of each cell type in a bulk of cells, such

as tumors, from their gene expression profiles. This process of digitally estimating

the distribution of cell types from bulk gene expression data has also been referred

to as digital cytometry [89].

We will use a digital cytometry method to estimate the relative number of each

immune cell in primary tumors. We then divide osteosarcoma patients into groups

based on their immune profiles and model osteosarcoma progression separately for

each group. The estimated immune abundance will also be used as inputs to our

model. The outline of this dissertation is as follows:
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• Chapter 2: We review common digital cytometry methods and report the

method with the best performance. The results of this chapter has been

published in Briefings in Bioinformatics [90].

• Chapter 3: Using the best performing digital cytometry method to estimate

immune abundance, we group osteosarcoma patients based on their immune

compositions and compare survival outcomes among these groups. The re-

sults of this chapter has been published in Mathematical Biosciences and

Engineering [91].

• Chapter 4: We build a mathematical model to study the progression of os-

teosarcoma tumors in each group and compare our findings to the results of

Chapter 3. The results of this chapter has been published in Cancers [92].

• Chapter 5: We extend the model given in Chapter 4 to include common

chemotherapy drugs for osteosarcoma and analyze the effects of chemotherapy

on the growth of osteosarcoma tumors. The results of this chapter has been

published in Cells [93].
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C H A P T E R 2

A REVIEW OF DIGITAL CYTOMETRY METHODS:

ESTIMATING THE RELATIVE ABUNDANCE OF CELL

TYPES IN A BULK OF CELLS

In order to build a mathematical model for osteosarcoma progression, we want

to apply a digital cytometry method to estimate immune abundance in osteosar-

coma tumors. The estimated abundance of immune cells in these tumors are then

used to divide tumors into groups and as inputs to the mathematical model. As

several digital cytometry methods have been recently developed, it is important to

evaluate and compare their performance in estimating fractions of cells from the

gene expression data of a bulk of cells, since the quality of the digital cytometry

method we use will affect the results of our mathematical model.

There are two main categories of digital cytometry methods: linear models and

ranked based models. In this chapter, we review five common digital cytometry

methods [90], including three linear models: DeconRNASeq [94], CIBERSORT [95],

and CIBERSORTx [89], and two rank-based models [96]: ssGSEA deconvolution

method (DM) [97] and SingScore DM [98].
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2.1 Methods

2.1.1 Linear models

DeconRNASeq

DeconRNASeq [94] stands for Deconvolution of RNA-Seq. This method treats

the deconvolution task as a linear regression model with constraints on the model

coefficients. This method assumes the total expression level of a gene in a sample

is the sum of all the expression levels of the given gene in all cells in the sample.

DeconRNASeq takes as input the gene expression profile of a sample tissue,

called mixture data, and a “signature matrix” where each column is a “typical”

gene expression of a cell type. The method outputs the fractions of each cell type

included in the signature matrix for the given sample. The general formula for this

model is given as:

y = Xβ. (2.1)

Here, y denotes the observed gene expression level vector of a sample (mixture

data), X denotes the signature matrix where each column is the gene expression

level of a specific cell type, and β is the vector of estimated proportions of cell

types.

DeconRNASeq finds the estimated proportions of cell types (β) by minimizing

the following objective function:

‖y −Xβ‖2 s.t.
∑
i

βi = 1 and βi ≥ 0,∀i, (2.2)

where βi is the estimated proportion of cell i in the sample. By minimizing this

objective function, the linear regression model finds the coefficients that result in

the smallest sum of squared difference between the observed and the predicted
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expression levels in the sample. The constraints are designed to make sure that the

cell proportions are positive and add up to 1. The optimization procedure is done

using quadratic programming [99, 100, 101].

CIBERSORT

CIBERSORT [95] stands for Cell-type Identification By Estimating Relative

Subsets Of RNA Transcripts. Like DeconRNASeq, this method assumes the total

expression level of a gene in a sample is the sum of expression levels of that gene

in all the cells in that sample. CIBERSORT utilizes a machine learning technique

called Support Vector Regression (SVR) for estimating cell proportions. Unlike

linear regression, which tries to find the linear function that minimizes the sum of

squared error, SVR tolerates a margin of error ε and only tries to minimize the sum

of absolute error of data points that lie outside this margin of error. In particular,

CIBERSORT uses the ν-SVR algorithm for this task. The general formula for

CIBERSORT is the same as DeconRNASeq (Eq. (2.1)). Similar to DeconRNASeq,

CIBERSORT takes a mixture data and a signature matrix as input and returns

the model coefficient β as estimated fractions of each cell type in the sample.

The only difference between these two methods is their optimization procedure;

CIBERSORT finds β by minimizing the following objective function:

1

2
‖β‖2 + C

(
νε+

1

N

N∑
i

(ξi + ξ∗i )

)
(2.3)

s.t. yi − ŷi ≤ ε + ξi and ŷi − yi ≤ ε + ξ∗i and ξi, ξ
∗
i ≥ 0. Here, ε is the margin of

error, and (ξi + ξ∗i ) is the absolute error of data points that lie outside margin of

error ε. ν is a model hyperparameter that gives an upper bound on the fraction

of training error and a lower bound on the fraction of support vectors. Thus, the
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value of ν is between 0 and 1.

Since y is a linear combination of X (Eq. (2.1)), CIBERSORT uses a linear

kernel in ν-SVR. Unlike DeconRNASeq, CIBERSORT does not put any constraints

on the model coefficient β during optimization, and there is no guarantee that

elements of β will be non-negative and add up to 1. Thus, after the optimization

process, CIBERSORT sets any negative coefficients to 0 and then normalizes the

coefficients such that they sum to 1.

CIBERSORTx

Since the gene expression data sets can be collected through completely different

experimental settings with the use of different experimentation plans, platforms,

and methodologies, there are undesired batch effects in the gene expression val-

ues. These technical variations can in some cases be as large as the biological

variations between different cell types [102]. It has been shown that the Com-

Bat algorithm [103] can effectively remove these unwanted variations from bulk

RNA-Seq data[102]. Newman et al. introduced CIBERSORTx [89], which extends

CIBERSORT by adding batch correction using ComBat to address the possible

cross-platform variations in gene expression data sets. CIBERSORTx introduces

two strategies for batch correction: B-mode and S-mode.

CIBERSORTx B-mode

As in CIBERSORT, mixture data y is modeled as a linear combination of sig-

nature matrix X and cell fractions β.

y = Xβ.

The algorithm of CIBERSORTx B-mode is as follows:
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1. Use CIBERSORT to obtain estimated fractions β̂ from mixture data y and

signature matrix X.

2. Create estimated mixture data ŷ, where ŷ = Xβ̂.

3. Use ComBat [103] to eliminate the cross-platform variation between y and ŷ,

producing adjusted mixture data yadj.

4. Use CIBERSORT to estimate final cell fractions β from yadj and X.

CIBERSORTx S-mode

When the technical variation between signature matrix and mixture data is more

severe, Newman et al. [89] recommend to use S-mode, which adjusts the signature

matrix instead of mixture data. As input, S-mode requires the mixture data y and

the set of single-cell reference profiles R from which the signature matrix X was

derived. R consists of single-cell transcriptomes from different cell types, typically

multiple transcriptomes per cell type. The gene expression profile of each cell type

in X is constructed by aggregating the corresponding single-cell transcriptomes in

R. CIBERSORTx S-mode estimates cell fractions in the following way:

1. Let µ = [µ1, ..., µc] be the fractions of each cell type from X in R and σ = 2µ.

2. Generate artificial cell fractions β∗ by drawing from normal distributionNormal(µ, σ).

3. Set negative values of β∗ to 0 and normalize β∗ so its components sum to 1.

4. Sample single-cell transcriptomes from R according to β∗ and add them to-

gether to create artificial mixture data y∗.

5. Use ComBat [103] to eliminate the cross-platform variation between y and

y∗, producing adjusted mixture data yadj and y∗adj.
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6. Use non-negative least squares to find Xadj that minimizes (y∗adj −Xadjβ
∗)2

such that Xadjij ≥ 0 for all i, j.

7. Use CIBERSORT to estimate final cell fractions β from original y and Xadj.

2.1.2 Rank-based models

ssGSEA DM

All above-mentioned linear models rely on a signature matrix to deconvolve

a bulk of cells using its gene expression profile. However, obtaining an accurate

signature matrix is very challenging in practice, because factors such as variations in

experimental settings and laboratory measurements can bias the signature matrix

[104]. Fortunately, the most highly expressed genes for any given cell type are

usually consistent across different laboratories and conditions. The deconvolution

method based on single sample gene set enrichment analysis (ssGSEA) only uses

these highly expressed genes of each cell type, here called cell signatures or up-

regulated gene sets, instead of a signature matrix.

The ssGSEA method [104], which is a modification of gene set enrichment anal-

ysis (GSEA) [105], was developed in order to get an enrichment score for a single

sample instead of two groups of samples. Here, we call the method developed by

Senbabaoglu et al. [97], which utilizes the ssGSEA score specifically for the digital

cytometry task, ssGSEA DM. This method takes mixture data and sets of highly

expressed genes for each cell type as input, and returns the enrichment score for

each cell type. The algorithm of ssGSEA DM is as follows:

1. Order mixture data by absolute expression from highest to lowest.

2. Replace gene expression values in mixture data by their ranks.
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3. For each gene i, in the ordered rank data from step 2, compute the following:

Pw
G (G, y, i) =

∑
rj∈G,j≤i

|rj|α∑
rj∈G

|rj|α
, (2.4)

PNG(G, y, i) =
∑

rj /∈G,j≤i

1

(N −NG)
, (2.5)

where G is the given cell signature, containing NG up-regulated genes, y is

the mixture data, containing N genes, rj is the rank of a gene j, and α is a

parameter in (0, 1].

4. The enrichment score for the sample y and cell signature G is given by:

ES(G, y) =
N∑
i=1

[Pw
G (G, y, i)− PNG(G, y, i)] . (2.6)

The enrichment score of the cell signature G tells us the relative fraction of the

cell type with cell signature G. For example, assume T-cells and B-cells respectively

have the cell signatures G1 and G2. If the enrichment score of the cell signature

G1 is higher than the enrichment score of the cell signature G2, we conclude that

the number of T-cells is higher than the number of B-cells in the mixture data.

SingScore DM

SingScore [98] stands for single sample scoring of molecular phenotypes. Similar

to ssGSEA DM, SingScore DM uses enriched gene sets instead of a signature matrix

for performing digital cytometry. While ssGSEA DM only uses a set of up-regulated

genes for each cell type, SingScore DM has the option to use both up-regulated and

down-regulated gene sets for each cell type. Thus, SingScore DM takes as input

a set of up-regulated genes and an optional set of down-regulated genes for each

cell type along with the mixture data, and outputs a score for each cell type. The

algorithm of SingScore DM is as follows:
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1. Order mixture data by gene expression levels from highest to lowest.

2. Use the top half of genes in the sample as the up-set and the bottom half as

the down-set. An important remark is that these up-set and down-set genes

of the sample are different from the up-regulated and down-regulated gene

sets of each cell type.

3. Rank these genes in ascending order for up-set and descending order for down-

set.

4. For a given cell type and its up-regulated gene set Gup and down-regulated

gene set Gdown, calculate the following:

Sdir,i =


∑
g∈Gdir

Rg
dir,i

Ndir,i

 (2.7)

where dir is the gene set direction (up-/down-regulated), Sdir,i is the score

for sample i against the directed gene set, Rg
dir,i is the rank of gene g in the

directed set from the sample (up-set or down-set), Ndir,i is the number of

genes in Gdir that are observed within the mixture data.

5. Calculate the normalized score:

S̄dir,i =
Sdir,i − Smin,i
Smax,i − Smin,i

(2.8)

where Smin,i =
Ndir,i+1

2
and Smax,i =

2Ntotal,i−Ndir,i+1

2

6. Calculate output score for sample i:

S̄total,i = S̄up,i + S̄down,i (2.9)

Similar to ssGSEA DM, the output scores of SingScore DM algorithm are the

relative levels of each cell type in the sample, rather than the actual fractions.
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2.2 Approach

To compare the performance of the above-mentioned methods on the deconvo-

lution task, we generate simulation data with known mixing fractions and signal to

noise ratio (SNR) ranging from 100:5 to 100:50 (n = 100 samples for each SNR). We

use two different signature matrices: LM22 [95] and LM6 [106] for DeconRNASeq,

CIBERSORT, and CIBERSORTx. LM22 is derived from microarray data and con-

sists of 547 gene expressions for twenty-two leukocytes, while LM6 is derived from

RNA-Seq data and has 684 gene expressions for six leukocytes. These signature

matrices are also used to derive the up-regulated gene sets used for ssGSEA DM

and SingScore DM. We note that the single-cell reference profiles needed to run

CIBERSORTx S-mode are not available for the LM6 signature matrix, hence this

method is excluded from the LM6 results.

We construct the simulation data in the following manner: first, “known”

mixing fractions for a sample are obtained by drawing random numbers from

Uniform(0, 1) and then normalized so that the fractions in a sample sum to 1.

Mixture data is then formed by a linear combination of the LM22 source gene

expression profile and the known mixing fractions, where LM22 source gene ex-

pression profile is the gene expression profile used to create LM22, before the gene

selection step. Noise is induced to the simulation data by adding values drawn

from Normal(0, k
100
· σ), where σ is the global standard deviation of the original

simulation data without noise, and k is an integer. This results in a SNR ratio of

100:k for a given value of k. We create ten sets of simulated data with k chosen

from 5 to 50, in steady increments of 5, resulting in SNR ratios ranging from 100:5

to 100:50.

It is conceivable to encounter mixture data that consists of more cell types than
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those available in the signature matrix. To test for each method’s robustness to

this phenomenon, we delete a few cell types in the signature matrix LM22 and

run all five methods using the simulated mixture data with two signature matrices:

reduced LM22 and the original LM6.

We also apply these methods on two experimental data sets: whole blood RNA-

Seq data with ground truth cell fractions estimated by flow cytometry (n = 12)

(available on Gene Expression Omnibus under the accession number GSE127813

[89]), and PBMC microarray data with ground truth fractions estimated by flow

cytometry (n = 20) (available on Gene Expression Omnibus under the accession

number GSE65133 [95]). Although these data sets come from different platforms,

we cannot make any conclusive statements that these methods perform better on

RNA-Seq vs microarray data due to the limited availability of data sets with ground

truth fractions. For each experimental data set, we run all five methods with the

original LM22 and the original LM6.

To facilitate a fair comparison of the performance of the five deconvolution

methods, we want the signature matrix used in linear methods to come from the

same database as the gene sets used in rank-based methods. Thus, we use the data

sources of LM22 to create up-regulated gene sets for ssGSEA DM and SingScore

DM by applying a method similar to [107]. First, we separate the samples in the

single cell reference profiles of LM22 into groups according to their cell type. For

each gene, we calculate the difference between the minimum expression in the group

of interest and the highest mean expression of all other groups. If this difference

is greater than a threshold, we select this gene as an up-regulated gene for the

cell type of the analyzed group. We do this for every group to select the highly

expressed genes in each cell type specific group. We apply the same technique to

derive up-regulated gene sets from LM6. However, since we do not have access to
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the reference profiles of LM6, we apply this technique on LM6 itself. These gene

sets derived from LM22 and LM6 are available for download on our GitHub page

(see section 2.5).

We ran the above digital cytometry methods using the following software:

• DeconRNASeq package in R for DeconRNASeq,

• CIBERSORT’s R source code for CIBERSORT,

• CIBERSORTx’s website application for CIBERSORTx,

• gsva package in R for ssGSEA DM,

• SingScore package in R for SingScore.

Each of these methods have their own form of normalization in their algorithm.

In ssGSEA DM and SingScore DM, the normalization is not applied on the input

mixture data, and since input gene sets are only lists of gene names, no normal-

ization can be applied here either. The only normalization in rank-based methods

is applied on output scores at the end of the algorithm, thus making output scores

nicer for visualization without changing the correlation of the predicted values with

the ground truth fractions. On the other hand, CIBERSORT and CIBERSORTx

use z-score normalization on their inputs (the signature matrix and mixture data)

as a mandatory initial step in their software, and DeconRNASeq software pro-

vides an option to first standardize the input mixture data. The results of these

linear models with normalization will differ from those without. CIBERSORT

and CIBERSORTx also have optional quantile normalization on the input mix-

ture data. This quantile normalization is recommended for microarray data but

not for RNA-Seq data. Since the PBMC microarray data set has been previously

normalized with the limma package in R, using ‘normexp’ background correction

17



with negative controls [95], and the whole blood data set is RNA-Seq data, we use

CIBERSORT and CIBERSORTx without quantile normalization in this study. For

DeconRNASeq, ssGSEA DM and SingScore DM, we use normalization (which is

the default setting for these methods).

We note that since rank-based methods output relative scores as opposed to

frequencies, we cannot use traditional metrics such as mean square error to compare

the performance of each method to the original data. Thus, we instead consider

four different measures of correlation: Pearson correlation per sample, Pearson

correlation per cell, Spearman correlation per sample, and Spearman correlation

per cell. Correlation per sample between estimated and true fractions tells us how

well a method estimates the relative frequency of all cell types in a given sample,

while correlation per cell tells us how well a method estimates the relative frequency

of a given cell type between all samples.

2.3 Results

2.3.1 Analysis of simulation data

We create simulation data as described in the Approach section, and apply each

of the above-mentioned methods with both the reduced LM22 and the original LM6

signature matrices (or corresponding derived gene sets for rank-based methods).

For all methods and signature matrices, the Pearson and Spearman correlation

results are consistent with one another. With reduced LM22, the more noise is

added to the data set, the lower the correlations observed between the ground truth

fractions and the methods’ predictions, with the following exceptions: the sample-

level correlation of DeconRNASeq, ssGSEA DM, and SingScore DM does not vary
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Figure 2.1. Results on simulation data with different SNR from 100:5
to 100:50. Note in A and B, the ssGSEA results align with
SingScore. A-D: mean correlation between flow cytometry cell frac-
tions and predicted cell fractions obtained from running methods
with reduced LM22, across different noise levels. A: sample-level
Pearson correlation, B: sample-level Spearman correlation, C: cell-
level Pearson correlation, D: cell-level Spearman correlation. F-I:
mean correlation between flow cytometry cell fractions and pre-
dicted cell fractions obtained from running methods with LM6,
across different noise levels. F: sample-level Pearson correlation,
G: sample-level Spearman correlation, H: cell-level Pearson corre-
lation, I: cell-level Spearman correlation.

19



much when the signal to noise changes (Figure 2.1A,B). For LM22, CIBERSORT

and CIBERSORTx B-mode perform best on data with high signal to noise. The

batch correction in CIBERSORTx does not appear to improve the method for this

simulated data, however we note that the simulated data and signature matrix are

both derived from LM22, and therefore there should not be any cross platform

variation to eliminate. Interestingly, DeconRNASeq with reduced LM22 performs

just as well as CIBERSORT and CIBERSORTx when the noise level is high.

For all methods with LM6, cell-level correlations with true fractions again de-

crease as noise increases, but sample-level correlations stay roughly the same across

all noise levels (Figure 2.1E-H). The insensitivity to the noise levels of sample-

level results with LM6 could be due to the fact that simulation data was cre-

ated using LM22 source gene expression profile instead of LM6. When LM6 is

used, CIBERSORT and CIBERSORTx B-mode again perform the best per sam-

ple, although correlations are lower than with reduced LM22. Figure 2.1E,F shows

that CIBERSORTx B-mode outperforms CIBERSORT with LM6, suggesting that

CIBERSORTx B-mode is better than CIBERSORT when the signature matrix and

mixture data are from different platforms. Interestingly, DeconRNASeq with LM6

performs worst per sample (Figure 2.1 E,F), but best per cell (Figure 2.1G,H). The

poor performance per sample of DeconRNASeq with LM6, but strong performance

with LM22, may indicate DeconRNASeq’s lack of robustness when signature ma-

trix comes from a different platform than mixture data. It is worth noting that

the rank-based methods perform poorly across all noise levels with both signa-

ture matrices. In particular, rank-based methods produce very low sample-level

correlations with ground truth fractions (Figure 2.1A-B,E-F).

In addition to examining the mean correlations, we created box plots of the

100 different sample-level correlations, and the sixteen (LM22) or six (LM6) dif-
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Figure 2.2. Results on simulation data with SNR 100:10. A-D: box
plots of correlations between ground truth cell fractions and pre-
dicted cell fractions obtained from running methods with LM22. A:
sample-level Pearson correlation, B: sample-level Spearman corre-
lation, C: cell-level Pearson correlation, D: cell-level Spearman cor-
relation. F-I: box plots of correlations between ground truth cell
fractions and predicted cell fractions obtained from running meth-
ods with LM6. F: sample-level Pearson correlation, G: sample-level
Spearman correlation, H: cell-level Pearson correlation, I: cell-level
Spearman correlation.
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ferent cell-level correlations, using the simulation data generated with SNR 100:10

(Figure 2.2). We observe in Figure 2.2A-B,E-F that the variances in sample-level

correlations, particularly with LM6, are quite large for all methods. The cell-level

correlation plots (Figure 2.2C-D) show that while CIBERSORT and CIBERSORTx

with LM22 produce results that are highly correlated (r > .75) with the ground

truth for all individual cell types besides CD4 memory resting T-cells, the other

methods show a larger variation in performance among the different cell types. In

particular, we note that DeconRNASeq does a poor job predicting the number of

resting NK cells, bringing down the method’s mean correlation per cell with LM22.

However this observation does not hold when LM6 is used. This may help explain

the discrepancy in DeconRNASeq’s performance in mean cell-level correlation with

LM22 and LM6. With LM6, all methods besides DeconRNASeq do a poor job

predicting the relative number of CD4 T Cells, but do a great job predicting the

relative level of Neutrophils.

2.3.2 Analysis of whole blood data

We obtain the ground truth fractions of neutrophils, lymphocytes, monocytes,

T-cells, CD8+ T-cells, CD4+ T-cells, B-cells, and NK cells for whole blood data

(GSE127813) from CIBERSORTx [89] and compare them with the corresponding

estimated fractions obtained using the above-mentioned methods. Since LM22

has twenty-two leukocytes, we sum the estimated fractions of certain cell sub-

types to match them with the ground truth cell types. For example, we sum the

estimated fractions of CD4+ naive T-cells, CD4+ memory resting T-cells, and

CD4+ memory activated T-cells to compare it with the ground truth fraction of

CD4+ T-cells. However, there are still eight leukocytes that do not have a similar

match to the categories of the ground truth cells, and so we exclude them from our
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analysis. These cell types are macrophages (M0, M1, M2), dendritic cells (resting,

activated), mast cells (resting, activated), and eosinophils. Hence we do not expect

estimated percentages to sum precisely to 1. A similar procedure is applied to

the results obtained with LM6, and we end up comparing estimated fractions and

ground truth fractions in neutrophils, monocytes, T-cells, CD8+ T-cells, CD4+

T-cells, B-cells and NK cells.

In agreement with the simulation data results, the linear methods perform better

in overall than the rank-based methods in terms of correlation per sample (Figure

2.3A-B,F-G). Of all the methods, CIBERSORT and CIBERSORTx B-mode again

perform best per sample, both with LM22 and LM6, while CIBERSORTx S-mode

performs worse than these two. DeconRNASeq performs much better in terms of

Pearson correlation (and slightly better in terms of Spearman correlation) with the

use of LM22 than with LM6. On the other hand, ssGSEA DM and SingScore DM

perform very poorly with gene sets from LM22 (Figure 2.3A-B), but do a better

job with gene sets from LM6 (Figure 2.3F-G). We should note that sample-level

Pearson correlations of ssGSEA DM and SingScore DM are low for both gene sets,

but since Pearson correlation is not a good measure for rank-based results, we

should focus on Spearman correlation when analyzing the performance of these

two methods.

With regards to correlation per cell, CIBERSORT and CIBERSORTx B-mode

perform the best with LM22 (Figure 2.3C-D). In contrast to the simulation data re-

sults, rank-based methods perform best with LM6 (Figure 2.3H,I), though CIBER-

SORT and CIBERSORTx B-mode are not far behind. DeconRNASeq performs

the worst out of all methods with LM6, but still achieves cell-level Pearson and

Spearman correlations > 0.6. CIBERSORTx S-mode performs very well, but still

worse than original CIBERSORT and CIBERSORTx B-mode. In particular, all
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Figure 2.3. Results on whole blood data. A-D: box plots of correlations
between flow cytometry cell fractions and predicted cell fractions
obtained from running methods with LM22. A: sample-level Pear-
son correlation, B: sample-level Spearman correlation, C: cell-level
Pearson correlation, D: cell-level Spearman correlation. E: stacked
bar charts of predicted cell fractions by each method with LM22
and ground truth flow cytometry cell fractions. F-I: box plots
of correlations between flow cytometry cell fractions and predicted
cell fractions obtained from running methods with LM6. F: sample-
level Pearson correlation, G: sample-level Spearman correlation, H:
cell-level Pearson correlation, I: cell-level Spearman correlation. J:
stacked bar charts of predicted cell fractions by each method with
LM6 and ground truth flow cytometry cell fractions.
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linear methods do a somewhat poor job predicting NK cells, compared to other cell

types, and rank-based methods do a poor job at predicting monocytes.

Overall, CIBERSORT and CIBERSORTx give the best results for the whole

blood data set (Figure 2.3). Among CIBERSORT models, CIBERSORTx S-mode

performs poorly, but still gives relatively good results in terms of Spearman cor-

relation with ground truth fractions (Figure 2.3 B,D). The comparison between

Figure 2.3A and Figure 2.3F shows that DeconRNASeq results are very different

between LM22 and LM6, suggesting that DeconRNASeq is very sensitive to the

signature matrix. In combination with the analysis of DeconRNASeq in simulation

data, this result indicates that DeconRNASeq’s performance is highly dependent

on the compatibility between signature matrix and mixture data.

Lastly, we compare the cellular profiles generated by each method to the ground

truth fractions in Figure 2.3E,J. Since ssGSEA DM and SingScore DM return

enrichment scores instead of estimated fractions, the total sum of the output scores

for each sample does not need to be less than or equal to 1. As mentioned earlier,

since they are rank-based, we should not expect them to produce scores close to

ground truth fractions, but rather hope to see their output scores consistent with

the ranks of true fractions (i.e. if neutrophil have the highest number in the ground

truth data, we would expect these methods to give neutrophils the highest score

among all cell types). However, ssGSEA DM and SingScore DM estimate similar

scores of cell types for different samples, even though ground truth fractions differ

across samples (Figure 2.3E,J). Linear methods, on the other hand, are able to

capture the difference in distribution of fractions across samples. Although fractions

estimated by CIBERSORT and CIBERSORTx do not completely match the ground

truth fractions, these methods do succeed in capturing important patterns such

as the relative levels of neutrophils, T-cells, B-cells, and NK cells in samples. All
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methods overestimate the fraction of B-cells, and all but DeconRNASeq with LM22

drastically underestimate the fraction of neutrophils (Figure 2.3E). The two rank-

based methods, ssGSEA DM and SingScore DM, produce similar output scores to

each other. CIBERSORT and CIBERSORTx are expected to give similar estimated

fractions since they both use ν-SVR and the only difference is that CIBERSORTx

uses batch-correction before applying ν-SVR. We observe a slight improvement in

performance with CIBERSORTx compared to CIBERSORT for this data set.

2.3.3 Analysis of PBMC data

PBMC data, (GSE65133) [95], includes flow cytometry fractions for naive B-

cells, memory B-cells, CD8+ T-cells, CD4+ naive T-cells, CD4+ memory resting

T-cells, CD4+ memory activated T-cells, γδ T-cells, NK cells, and monocytes. Fol-

lowing the same procedure as mentioned before, we compare the estimated fractions

to flow cytometry fractions of naive B-cells, memory B-cells, CD8+ T-cells, CD4+

naive T-cells , CD4+ memory resting T-cells, CD4+ memory activated T-cells,

γδ T-cells, NK cells and Monocytes for LM22, and B-cells, CD8+ T-cells, CD4+

T-cells, NK cells, and Monocytes for LM6.

We repeat the correlation analysis with the PBMC data set, and the sample-

level results are somewhat different from our findings from the whole blood data set.

In general, the rank-based methods perform much better in terms of correlation per

sample on the PBMC data than on the other two data sets, while DeconRNASeq

performs considerably worse. With LM6, sample-level Spearman correlations show

high variance across samples for all methods (Figure 2.4F-G). This implies that

all methods have an inconsistent behaviour; i.e. for some samples they perform

better than other samples. However, it is worth noting that there are only five

cell types overlapping between LM6 cell types and ground truth cell types. The
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sample-level correlation across only five cell types is susceptible to being low when

only one or two cell types are poorly predicted, and as seen in Figure 2.4H-I, these

methods do a poor job estimating the relative frequency of B-cells with LM6. In

fact, we also observe high variance in LM6 sample-level results on the simulation

data (Figure 2.2G), where the number of cell types (six) is small as well and the

poor estimation of CD4 T-cells likely contributes to some samples having low corre-

lation with true fractions with all methods. Overall, CIBERSORT, CIBERSORTx

B-mode, ssGSEA DM and SingScore DM perform better per sample than Decon-

RNASeq and CIBERSORTx S-mode with LM22 (Figure 2.4A,B), and Figure 2.4

F,G indicates no significant differences in performance between linear models and

rank-based methods with LM6.

With regards to cell-level correlation, CIBERSORT and CIBERSORTx B-mode

again perform best with the LM22 signature matrix, while the rank-based methods

perform considerably worse compared to the whole blood and simulation data (Fig-

ure 2.4C,D,H,I). However, when LM6 is used, the rank-based methods outperform

the linear models (Figure 2.4H-I). All methods except DeconRNASeq with LM22

signature matrix do well on predicting the number of CD8+ T-cells and Mono-

cytes. Additionally, all methods but DeconRNASeq with LM6, ssGSEA DM and

SingScore DM with LM22 show high correlations with the ground truth for NK

cells. CIBERSORT and CIBERSORTx B-mode with LM22 signature matrix are

the only methods for which the majority of cell types have correlation coefficients

r > 0.5. However, even these methods struggle to accurately predict the number of

CD4+ memory resting T-cells and γδ T-cells with LM22 (Figure 2.4C-D), as well

as the number of B-cells when using LM6 (Figure 2.4H-I).

Similar to the whole blood data set, we also plot the predicted cellular profiles

estimated by the methods in a stacked bar chart, along with the ground truth
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Figure 2.4. Results on PBMC data. A-D: box plots of correlations between
flow cytometry cell fractions and predicted cell fractions obtained
from running methods with LM22. A: sample-level Pearson cor-
relation, B: sample-level Spearman correlation, C: cell-level Pear-
son correlation, D: cell-level Spearman correlation. E: stacked bar
charts of predicted cell fractions by each method with LM22 and
ground truth flow cytometry cell fractions. F-I: box plots of cor-
relations between flow cytometry cell fractions and predicted cell
fractions obtained from running methods with LM6. F: sample-
level Pearson correlation, G: sample-level Spearman correlation,
H: cell-level Pearson correlation, I: cell-level Spearman correlation.
J: stacked barcharts of predicted cell fractions by each method with
LM6 and ground truth flow cytometry cell fractions.
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fractions (Figure 2.4E,J). We again note that we have omitted cell types that were

present in the signature matrix but not in the PBMC data. Hence, we do not expect

the frequencies to necessarily sum to 1. The rank-based methods do a slightly better

job at capturing variations among samples in this data set as compared to the whole

blood data. However, the CIBERSORT methods, particularly CIBERSORTx B-

mode, again exhibit the best overall performance.

2.4 Discussion

As mentioned in the Approach section, the normalization in linear methods can

affect their performance on the deconvolution of bulk gene expression data. Unlike

CIBERSORT and CIBERSORTx, DeconRNASeq does not have clear guidance on

whether to use its normalization and when to use it. We tried DeconRNASeq both

with and without normalization on our data sets. DeconRNASeq with normaliza-

tion gives overall better results in the whole blood and PBMC data sets, and gives

similar results to without normalization in simulation data. However, we would

like to note that just because DeconRNASeq with normalization works better on

these specific data sets does not mean it would work better on other data sets as

well. One positive aspect of the linear methods’ normalization is that it helps these

algorithms converge faster and easier, which reduces the run time significantly.

We provide a comparison of each of these methods’ run time per sample in

Table 2.4. Run time for each of the three data sets was calculated as the average

of twenty runs, using a 2.5 GHz Intel Core i7 CPU with 16 GB of RAM, and

then normalized by the number of samples in the data set. All methods besides

CIBERSORTx were run in R. We note that the CIBERSORTx team provides a web

portal to run their software, removing any dependencies on hardware or software.
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Table 2.1: Method Runtimes per Sample (mean +/- stan-

dard deviation, in milliseconds)

Data set Method Runtime Runtime

with LM22 with LM6

DeconRNASeq 53.11± 1.93 41.23± 0.81

Wholeblood CIBERSORT 325.23± 15.11 181.84± 8.11

(58,581 genes/sample) ssGSEA 1296.12± 53.3 293.59± 13.85

SingScore 13.93± 0.49 7.04± 0.35

DeconRNASeq 21.65± 0.54 18.86± 0.55

PBMC CIBERSORT 354.68± 16.29 109.9± 5.67

(34,694 genes/sample) ssGSEA 115.7± 4.72 73.81± 2.91

SingScore 6.36± 0.24 1.66± 0.11

DeconRNASeq 12.87± 0.14 11.97± 0.09

Simulation CIBERSORT 158.79± 9.09 80.73± 4.66

(11,845 genes/sample) ssGSEA 64.24± 1.33 39.91± 0.66

SingScore 1.39± 0.02 1.27± 0.01

Therefore it would not be a fair comparison to include this method in Table 2.4.

While the original CIBERSORT also has a web portal to run the method, we

used the CIBERSORT R source code to record time-to-compute, while making

sure that the results from the R code are identical to those from the web portal.

We note that CIBERSORTx takes longer than CIBERSORT, since the method

runs batch correction before applying CIBERSORT. SingScore is the fastest of

the five methods, followed by DeconRNASeq, while ssGSEA and CIBERSORT

are significantly slower. Unsurprisingly, all methods run faster with the smaller
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LM6 signature matrix than with LM22. In general, the run time per sample also

decreases for data sets with a smaller number of genes per sample.

As discussed in the Results section, rank-based methods tend to estimate very

similar scores across samples, while linear models are able to capture some vari-

ations in fractions among samples (Figure 2.3E,J and Figure 2.4E,J). Since rank-

based methods use the rank of the genes instead of the actual expression value in

the calculation of output score, as long as the genes have the same ranks across

samples, ssGSEA DM and SingScore DM will output the same scores across sam-

ples (even when these genes have very different expression values across samples).

Thus, rank-based methods can still successfully estimate the ranks of frequencies

between cell types, but might fail to estimate the relative frequencies of a given cell

type in samples. This is, in fact, the main disadvantage of rank-based methods,

as mentioned in Table 2.4 where we discuss the advantages and disadvantages of

each digital cytometry method. There has been a novel attempt, introduced by

Aran D. et al [108], to transform enrichment scores to make them more comparable

with cell fractions. These transformed enrichment scores are intended to be more

on the same range with cell fractions, but are not designed to be used in place of

cell fractions. Converting enrichment scores to cell fractions is generally a hard

problem, since enrichment scores are derived using only ranks of the genes instead

of gene expression values themselves.

Table 2.2: Advantages and disadvantages of methods

Methods Advantages Disadvantages
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DeconRNASeq • Outputs are cell fractions

• Open source implementations

available in Python and R

• Quick run-time

• Requires a signature matrix

as an input

• Performance is highly de-

pendent on the compatibil-

ity between signature ma-

trix and mixture data

CIBERSORT • Outputs are cell fractions

• Open source implementations

available in Python and R

• Web portal available for run-

ning method

• Good performance on digital

cytometry task

• Requires a signature matrix

as an input

• Slow run-time

CIBERSORTx

B-mode

• Outputs are cell fractions

• Web portal available for run-

ning method

• Good performance on digital

cytometry task

• Eliminates the batch effect be-

tween signature matrix and

mixture data by adjusting

mixture data

• Requires a signature matrix

as an input
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CIBERSORTx

S-mode

• Outputs are cell fractions

• Web portal available for run-

ning method

• Eliminates the batch effect be-

tween signature matrix and

mixture data by adjusting sig-

nature matrix

• Requires a signature matrix

as an input

• Does not perform as well as

CIBERSORTx B-mode

ssGSEA DM • Does not require a signature

matrix; it only uses the up-

regulated gene sets of each cell

type

• Open source implementations

available in Python and R

• Outputs are scores for each

cell type rather than cell

fractions

• Produces similar scores for

samples with varying distri-

butions of cell types

• Slow run-time

SingScore DM • Does not require a signature

matrix; it can use both up-

regulated and down-regulated

gene sets of each cell type

• Open source implementations

available in Python and R

• Quick run-time

• Outputs are scores for each

cell type rather than cell

fractions

• Produces similar scores for

samples with varying distri-

butions of cell types
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The rank-based methods generally perform better in terms of all four corre-

lation metrics when the up-regulated gene sets came from the same platform as

the mixture data. In particular, for the microarray PBMC and simulation data,

ssGSEA DM and SingScore DM results have higher correlations with the ground

truth when using LM22 (derived from microarray data) compared to LM6 (derived

from RNA-Seq data). Similarly, for the RNASeq whole blood data, ssGSEA DM

and SingScore DM results are more correlated with ground truth fractions when

using LM6 compared to LM22.

We further note that the rank-based methods analyzed in this study were orig-

inally introduced for the task of analyzing the enrichment of a gene set in a single

sample, and have recently been adopted for the digital cytometry task. Enrich-

ment analysis refers to a group of methods for determining a set of enriched genes

either in a sample or between two groups of samples. There are three generations

of enrichment analysis methods: over-representation analysis, functional class sort-

ing techniques, and pathway topology-based techniques [96]. Both ssGSEA and

SingScore belong to the second generation, functional class sorting techniques. To

the best of our knowledge, among all enrichment analysis methods, only these two

single sample enrichment methods have been used for digital cytometry. It would

be worth exploring whether adopting other single sample enrichment methods for

digital cytometry would lead to better results.

In terms of linear methods, throughout this study, we have seen good perfor-

mance from both CIBERSORT and CIBERSORTx B-mode. Since CIBERSORTx

uses batch correction to account for cross-platform variation between the signature

matrix and mixture data, we should expect CIBERSORTx to perform at least as

well as CIBERSORT when signature matrix and mixture data come from differ-

ent platforms. Indeed, we see marginal improvements of CIBERSORTx B-mode
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over CIBERSORT in both PBMC and simulation data with LM6 (Figure 2.1E-H,

2.4F-I) where mixture data comes from microarray data and signature matrix comes

from RNA-Seq data, and qualitatively similar performance between CIBERSORTx

B-mode and CIBERSORT in whole blood data with LM22 (Figure 2.3A-D) where

mixture data comes from RNA-Seq data and signature matrix comes from microar-

ray data. In fact, CIBERSORTx B-mode slightly outperforms CIBERSORT in

both PBMC and whole blood experimental data sets regardless of signature matrix

used. However, CIBERSORTx B-mode underperforms CIBERSORT by a small

margin in the simulation data with LM22, raising the possibility that batch cor-

rection may negatively affect the performance of CIBERSORT if signature matrix

and mixture data come from the exact same platform.

Newman et al. [89] mention that CIBERSORTx B-mode should be used when

signature matrix is derived from bulk sorted reference profile or when the technical

variation between signature matrix and mixture data is moderate, while CIBER-

SORTx S-mode should be used when this variation is high. Figure 2.3A-D and

Figure 2.4A-D show that CIBERSORTx S-mode performs worse than both origi-

nal CIBERSORT and CIBERSORTx B-mode in both experimental data sets, sug-

gesting that the technical variation between LM22 and these data sets is not high.

These results also suggest that it is better to use CIBERSORTx B-mode than

CIBERSORTx S-mode when the technical variation between signature matrix and

mixture data is low. We would like to mention that many studies on tumor mi-

croenvironment have recently utilized digital cytometry methods, most commonly

CIBERSORT [109, 110, 111, 112, 113] and ssGSEA [114, 115, 116, 117], and two

separate studies on blood leukocyte and tumor infiltrating leukocytes enumera-

tion indicate that iSort, a transcriptome deconvolution method based on CIBER-

SORTx, achieves highly accurate and robust results for both blood and tumor
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samples [118, 119].

2.5 Data Availability

The PBMC data set and its flow cytometry fractions are available on the

CIBERSORT website at https://cibersort.stanford.edu under the name “Fig

3a PBMCs Gene Expression” and “Fig 3a PBMCs Flow Cytometry”, respectively.

The whole blood data set is available on Gene Expression Omnibus with identifier

GSE 127813, and its flow cytometry fractions are available on the CIBERSORTx

website at https://cibersortx.stanford.edu under the name “Ground truth

whole blood (txt)”. The simulation data created for this study, as well as the

up-regulated gene sets we derived from LM22 and LM6, can be found on our

github page. The data portion of our github repository is located at https://

github.com/ShahriyariLab/TumorDecon/tree/master/TumorDecon/data. The

simulation data and gene sets can be found under the names “Simulation data”,

“LM22 up genes.csv”, and “LM6 up genes.csv”, respectively.
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C H A P T E R 3

IMMUNE CLASSIFICATION OF OSTEOSARCOMA

As indicated in chapter 2, CIBERSORTx B-mode performs the best among

popular digital cytometry methods, especially when the mixture data and signature

matrix come from different platforms. In this chapter, we use CIBERSORTx B-

mode to investigate the immune patterns of osteosarcoma tumors and analyze the

relationship between immune composition and clinical features of osteosarcoma

patients [91].

There have been many other studies that utilize a deconvolution method to

study the tumor microenvironment of osteosarcoma. A number of them use the es-

timated immune infiltrations calculated using CIBERSORT and/or immune scores

calculated using ESTIMATE to find immune-related genes that can predict the

prognosis of osteosarcoma [85, 120, 121, 122]. Another set of studies find genes

with prognostic values by applying Cox model on survival data or performing dif-

ferentially expressed genes analysis between two groups of interest, and then in-

vestigate the relationship between these genes and estimated immune infiltrates

[80, 86, 123, 124, 125]. Others study the association of immune abundance with

clinical information directly [79, 121, 126, 127, 128]. Our work falls somewhat into

the third category.

Among the studies that directly investigate the relationship between immune
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infiltrations and clinical information, three of them use TARGET data set [79, 121,

127], one uses data from GSE21257 [126], and one uses data from GSE39058 [128].

Most of these studies use CIBERSORT [121, 127, 126, 128], while the other uses

ssGSEA and ImmuCellAI along with expression of immune marker genes to get es-

timated abundance of immune cells [79]. Our study, on the other hand, utilizes the

latest and best performing version of deconvolution methods called CIBERSORTx

B-mode, and conducts our analyses on both TARGET data set and GSE21257 data

set. We also perform K-means clustering using the estimated immune abundance

to study the clinical characteristics of different immune patterns in osteosarcoma.

Another study has used hierarchical clustering on immune abundance, but they es-

timate immune abundance using ssGSEA and do not focus on the clinical difference

between clusters [129].

3.1 Materials and methods

3.1.1 Data collection and processing

The gene expression data sets in this study are obtained from 2 cohorts: TAR-

GET (cohort 1) and GSE21257 (cohort 2). Cohort 1 includes FPKM normalized

RNA-seq data of 88 osetosarcoma patients downloaded from the UCSC Xena web

portal and their corresponding clinical data downloaded from the GDC data por-

tal. Cohort 2 includes microarray data and corresponding clinical features of 53

osteosarcoma samples, downloaded from GEO website. Cohort 2’s gene expres-

sion data were previously normalized with robust spline normalization before being

downloaded.
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3.1.2 Relative abundance of immune cells

We calculate the relative frequencies of 22 immune cell types by applying

CIBERSORTx [89] B-mode algorithm with immune signature matrix LM22 on

gene expression data from both cohort 1 and 2. The results in chapter 2 have

shown that CIBERSORTx B-mode gives good estimates of immune abundance in

both RNA-Seq and microarray data with the use of LM22, and in fact outperforms

CIBERSORT and other tumor deconvolution methods. We obtain estimated im-

mune fractions by running the algorithm on their website with 100 permutations.

Similar to CIBERSORT, CIBERSORTx outputs a p-value for each deconvolved

sample as an indicator of confidence of the results. We use samples with p-value

less than 0.05 for analyses in this chapter.

3.1.3 Identification of immune patterns in osteosarcoma

To calculate the abundance of each cell type, which has several subtypes with a

small abundance, we sum the proportions of their subtypes obtained from CIBER-

SORTx. The abundance of B cells is the summation of naive and memory B cells;

NK cell is the summation of resting and activated NK cells; Mast cells is the sum-

mation of resting and activated Mast cells; Dendritic cells is the summation of

resting and activated Dendritic cells; and CD4 T cells is the summation of follic-

ular helper T cells, regulatory T cells, naive CD4 T cells, resting and activated

memory CD4 T cells. We do not combine subtypes of Macrophages because M1

and M2 Macrophages have very different functions and Macrophages make up the

majority of immune cells in osteosarcoma.

We then use K-means clustering to identify various immune patterns of osteosar-

coma based on the estimated immune cells’ abundance. The number of clusters in
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K-means is determined using elbow method. A t-SNE visualization of the clusters

is also included to see how well K-means algorithm distinguishes between samples

with different immune patterns.

3.1.4 Immune scores of osteosarcoma tumors

Immune scores of all samples in cohort 1 and 2 are computed from ESTIMATE

algorithm [130]. In order to do so, we run estimate package locally from R. We also

divide all patients from both cohorts into low immune score and high immune score

group using the median immune score as cut-off to study the relationship between

immune score and survival outcome.

3.1.5 Statistical analysis

Chi-square test is used to analyze the relationship between categorical variables

in this study. We employ Mann-Whitney-Wilcoxon test to detect any significant

difference between groups of continuous variables, such as immune fractions, gene

expression, age and immune score. Pearson correlation and corresponding p-value

are used to study the correlation between different immune infiltrates.

To investigate the impact of immune infiltrates on survival, for each immune

cell, we split all patients into high and low abundance group using the median

value as cut-off and perform log-rank test to find significant difference in survival

between groups. Kaplan-Meier curves are also plotted to visualize the differences

between these groups.

All analyses in this study are conducted on all samples in both cohorts 1 and

2, except for metastasis-free survival analysis which is applied only on cohort 2

since cohort 1 does not include data on the time of metastasis development. All

statistical analyses and visualizations are carried out in Python.
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3.2 Results

3.2.1 The most abundant immune cells in osteosarcoma are Macrophages

and CD4 T cells

Results of CIBERSORTx B-mode on gene expression profiles of 141 osteosar-

coma patients (cohorts 1 and 2) demonstrates that M0 Macrophages is the most

frequent immune cell in osteosarcoma tumors with an average of 40% of total im-

mune cells, followed by M2 Macrophages and CD4 T cells (Figure 3.1B, C). Unsu-

pervised hierarchical clustering of immune cell fractions shows that most abundant

cells tend to be clustered together, as is shown in Figure 3.1A, where M0 and M2

Macrophages are clustered together and then grouped with CD4 T cells and other

immune cells. In addition, the most frequent cells also have the highest variation

in abundance across osteosarcoma tumors (Figure 3.1B).

3.2.2 Correlation between immune infiltrates in osteosarcoma

According to the CIBERSORTx B-mode results, abundance of CD8 T cells

is negatively correlated with M0 Macrophages and positively correlated with M1

Macrophages with Pearson correlation coefficients of −0.62 and 0.55, with p-values

of 4.8e−16 and 1.1e−12, respectively (Figure 3.1E). The proportion of γδ T cells

is also significantly negatively correlated with CD4 T cells and NK cells (Pearson

coefficients of −0.6 and −0.62, with p-values of 4.3e-15 and 1.8e-16). Interestingly,

frequencies of M0 and M1 Macrophages exhibit a negative correlation of −0.61 with

p-value 1e−15.
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Figure 3.1. Immune pattern of osteosarcoma. Sub-figure A shows the hi-
erarchical clustering of estimated immune cells’ infiltration. Sub-
figure B and C display the boxplot and stacked barchart of these
immune cells’ fractions. Sub-figures D shows the average frequen-
cies of immune cells in 3 clusters obtained from K-means cluster-
ing. Sub-figure E indicates the correlation map of immune cell
frequencies. Sub-figure F displays the boxplot of ESTIMATE im-
mune scores in 3 clusters, with asterisks indicating significant dif-
ference from Mann-Whitney-Wilcoxon test (ns: no significance, *:
0.01 < p ≤ 0.05, **: 0.001 < p ≤ 0.01, ***: 0.0001 < p ≤ 0.001,
****: p ≤ 0.0001). Sub-figure G shows t-SNE plot of estimated
immune abundance, color coded by cluster.
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3.2.3 There are 3 immune patterns of osteosarcoma

K-means clustering of immune cell proportions in osteosarcoma tumors indi-

cates the existence of three distinct immune classes (Figure 3.1D), namely: Cluster

1, which has the highest proportions of CD8 T cells, γδ T cells, M1 Macrophages,

Mast cells and Plasma cells and the lowest proportion of M0 Macrophages; Clus-

ter 2, in which the percentage of M0 Macrophages is the highest; and Cluster 3,

which has the highest percentage of M2 Macrophages. A t-SNE plot of immune

cell proportions suggests that K-means clustering algorithm successfully separates

osteosarcoma patients with different immune patterns (Figure 3.1G).

3.2.4 Cluster 2 has the worst survival outcome among all clusters

While there is no significant difference in gender, age and proportion of metas-

tasis at diagnosis between clusters (Figure 3.2A, B, F), we observe some differences

in survival outcomes among clusters.

Kaplan-Meier curves indicate that cluster 2 has the worst survival probability

throughout time out of all clusters (Figure 3.2G). In addition, cluster 2, along with

cluster 1, has higher percentage of dead patients at the last time of follow up than

cluster 3 (Figure 3.2C). Interestingly, cluster 2 also has the lowest immune scores

compared to other clusters (Figure 3.1F).

Cluster 3 appears to have the best outcome among clusters. It has the lowest

percentage of dead patients at the last time of follow up among all clusters (Figure

3.2C), and better survival rate than cluster 2 over time (Figure 3.2G) with p-value

0.07 from the log-rank test.

Cluster 1, which has the highest amount of CD8 T cells, γδ T cells, M1

Macrophages and Mast cells, has slightly better overall survival time than clus-
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Figure 3.2. Clinical characteristics of clusters and relationship be-
tween clinical features of osteosarcoma. Sub-figure A-E show
percentage of patients by gender (A), metastasis at diagnosis (B),
vital status at the last time of follow-up (C), Huvos grade (D), pri-
mary tumor location (E), in the 3 clusters. Sub-figure F shows a
boxplot of patients’ age at diagnosis in each cluster. Sub-figure G
displays Kaplan-Meier curves of overall survival across 3 clusters.
Sub-figures H-K shows the association between clinical features, H:
percentage of alive and dead patients by metastasis at diagnosis, I:
percentage of alive and dead patients by Huvos grade, J: percent-
age of low and high Huvos grade by tumor location, K: boxplot
of age at diagnosis by gender, with asterisks indicating significant
difference from Mann-Whitney-Wilcoxon test (ns: no significance,
*: 0.01 < p ≤ 0.05, **: 0.001 < p ≤ 0.01, ***: 0.0001 < p ≤ 0.001,
****: p ≤ 0.0001).
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ter 2 (p = 0.16, Figure 3.2G). However, cluster 1 seems to have worse outcome

than cluster 3 due to its higher percentage of dead patients at the last time of

follow up (Figure 3.2C). It is worth noting that there is no significant difference in

the survival rate between cluster 1 and 3 according to the log-rank test (p = 0.5,

Figure 3.2G).

3.2.5 There is a relationship between certain clinical features of os-

teosarcoma

The Chi-square test and Mann-Whitney-Wilcoxon test show a relationship be-

tween vital status and metastasis at diagnosis (p = 0.001, Figure 3.2H), vital status

and Huvos grade (p = 0.036, Figure 3.2I), which is a grading system to evaluate

a patient’s response to chemotherapy based on the percentage of necrosis in the

tumor after treatment, and between gender and age (p = 2.3e−4, Figure 3.2K)

where male patients are older on average. We observe that patients with metas-

tasis at diagnosis have much higher percentage of being dead at the last time of

follow up than patients without metastasis (Figure 3.2H). This makes perfect sense

since metastases have been known to associate with late stages of tumor and poor

prognosis in many cancers. The other clinical feature with a relation to vital sta-

tus is Huvos grade. Higher percentage of patients with high Huvos grade (3-4)

are alive at the last time of follow up than patients with low Huvos grade (1-2)

(Figure 3.2I), which is reasonable since a high Huvos grade means good response

to chemotherapy. Figure 3.2J suggests that primary osteosarcoma tumors in the

arm respond more poorly to chemotherapy than leg tumors, as illustrated by the

high proportion of Huvos grade 1-2 in arm tumors. However, it is important to

note that primary osteosarcoma tumors happen more often in the leg than in the

arm (Figure 3.2E), and the observation in Figure 3.2J is based on a small number
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of arm tumor samples (n = 8), thus the relationship between tumor location and

Huvos grade is not considered significant by the Chi-square test (p = 0.18).

3.2.6 Immune score does not relate to vital status directly, but does

relate to survival probability over time

Figure 3.3D indicates no clear difference in immune score between alive and dead

patients at the last time of follow up. However, Kaplan-Meier curves of high and

low immune score with a median cut-off reveal that the high immune score group

has a better outcome (Figure 3.3E). The log rank test supports this observation

with a p-value of 0.03. Thus, higher immune score is associated with better survival

probability throughout time. This is consistent with the observation of outcome

in the clusters. Cluster 2 has significantly lower immune score than cluster 1 and

3 (Figure 3.1F), with p-values of 5e−9 and 2.1e−5 from Mann-Whitney-Wilcoxon

test, and accordingly worse overall survival probability over time than cluster 1 and

3 (Figure 3.2G). Cluster 1, with the highest average immune score among clusters

(Figure 3.1F), even though has about the same proportion of dead patients at the

last time of follow up as cluster 2 (Figure 3.2C), shows better survival time than

cluster 2 (Figure 3.2G).

3.2.7 Relationship between immune infiltrates and survival outcome in

osteosarcoma

The Mann-Whitney-Wilcoxon test shows that there is a significant difference

in the level of γδ T cells and Mast cells between alive and dead patients at the

last time of follow up, with p-values of 0.045 and 0.022, where dead patients are

associated with higher percentages of γδ T cells and Mast cells than alive patients

(Figure 3.3A). Dendritic cells, NK cells and CD8 T cells also seem to associate with
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Figure 3.3. Relationship of immune infiltrations with survival in os-
teosarcoma. Sub-figure A displays violin plots of fractions of γδ
T cells, Mast cells, Dendritic cells, NK cells, CD8 T cells between
alive and dead patients. Sub-figures B, C, E, F show Kaplan-Meier
curves of overall survival between 2 groups, B: high vs low Dendritic
cells, C: high vs low M0 Macrophages, E: high vs low ESTIMATE
immune score, F: high vs low CD8 T cells. Sub-figure D shows
a boxplot of ESTIMATE immune scores between alive and dead
patients. Note: asterisks indicate significant difference from Mann-
Whitney-Wilcoxon test (ns: no significance, *: 0.01 < p ≤ 0.05,
**: 0.001 < p ≤ 0.01, ***: 0.0001 < p ≤ 0.001, ****: p ≤ 0.0001).
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survival status in osteosarcoma. We observe higher level of NK cells (p = 0.063),

CD8 T cells (p = 0.1) and lower level of Dendritic cells (p = 0.052) in alive patients

than in dead patients (Figure 3.3A).

Kaplan-Meier curves (Figure 3.3B, C, F) and the log rank test indicate an as-

sociation between survival outcomes and levels of Dendritic cells, M0 Macrophages

and CD8 T cells, with a p-value of 0.01, 0.04 and 0.04, respectively. Low Dendritic

cells, low M0 Macrophages and high CD8 T cells are associated with better survival

probability over time in osteosarcoma patients. This is again consistent with the

outcome of the clusters where cluster 2, with the highest level of M0 Macrophages

and lowest CD8 T cells, has the worst overall survival.

Overall, we found that γδ T cells, Mast cells, Dendritic cells, M0 Macrophages,

NK cells and CD8 T cells have a relationship with the survival of osteosarcoma

patients.

3.2.8 Association of immune infiltrates with other clinical features

We see no significant relationship between age or metastasis at diagnosis and the

frequencies of immune cells. However, we notice an association of M1 Macrophages

and CD8 T cells’ frequencies to metastasis-free survival. High levels of M1 Macrophages

and CD8 T cells are associated with better metastasis-free survival probability

across time in osteosarcoma (Figure 3.4A, B), with p-values of 0.05 and 0.08

from the log-rank test, respectively. This means that patients with more M1

Macrophages and CD8 T cells are less likely to develop metastasis or die at any

given time than patients with low percentage of these cells.

A relationship between some immune infiltrates and other clinical features of

osteosarcoma has also been observed. Higher level of NK cells is associated with

good response to chemotherapy (p = 0.035, Figure 3.4C). Patients with arm tumors
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Figure 3.4. Association of immune infiltrations and other clinical
features. Sub-figures A and B show Kaplan-Meier curves of
metastasis-free-survival in cohort 1 between 2 groups, A: high vs
low M1 Macrophages, B: high vs low CD8 T cells. Sub-figures C-
F are boxplots to indicate relationship of immune infiltrates with
Huvos grade (C), primary tumor location (D and E), and gen-
der (F). Note: asterisks indicate significant difference from Mann-
Whitney-Wilcoxon test (ns: no significance, *: 0.01 < p ≤ 0.05,
**: 0.001 < p ≤ 0.01, ***: 0.0001 < p ≤ 0.001, ****: p ≤ 0.0001).
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have higher percentage of Plasma cells and Dendritic cells than patients with leg

tumors (Figure 3.4D, E), with p-values of 0.046 and 0.033. Lastly, female patients

are shown to have higher frequency of Neutrophils (Figure 3.4F), with p-value

0.0016.

3.2.9 Expression level of genes encoding PD-1, INF-γ, CTLA4, TNF,

IL1-β, IGF1, IL-6 and RUNX2 are significantly different for some

clusters

We use the gene expression values for some important proteins, and we analyze

gene expression value of the proteins separately for cohort 1 and 2 because they

have different data types: RNA-Seq and microarray, respectively.

Programmed cell death protein 1 (PD-1) is a type of protein on T cells and

cancer cells use it to bind with PD-1 ligand (PD-L1) and PD-2 ligand (PD-L2) to

escape cell death by immune cells. There is a high correlation between PDCD1

gene, which encodes PD-1 protein, and CD8 T cells in both data sets with corre-

lation coefficient of 0.70 and 0.77, respectively, and p-values less than 0.05 (Figure

3.6). As a result of this correlation, PDCD1 is the highest in cluster 1 (Figure

3.5A1, B1). Cluster 1 also has the highest expression of CTLA4 gene (Figure

3.5A3, B3) that encodes Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4),

which is a member of immunoglobulin superfamily and has been found to signif-

icantly associate with the risk of osteosarcoma [131, 132]. Moreover, we see that

gene expression value of CTLA4 is significantly correlated with CD8 T cells in

osteosarcoma tumors (Figure 3.6).

Interferon γ (INF-γ), encoded by IFNG gene, has antiviral, immunoregulatory,

and anti-tumor properties in the immune system and is secreted by mostly T cells
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Figure 3.5. Gene expression values of important proteins in the clus-
ters. Sub-figures (A1–A7) and (B1–B7) show the gene expression
values that come from cohort 1 and cohort 2 data sets, respectively.

51



! !"#"$%&' " !"#"$%&'

Figure 3.6. Correlation and distribution of important proteins in the
clusters. Sub-figures A and B represent the cohort 1 and cohort
2 data sets respectively.

and NK cells [133]. Importantly, CD8 T cells frequency and PDCD1 gene expres-

sion are significantly correlated with IFNG gene expression so that cluster 1 has

the highest level of IFNG compared the other clusters (Figure 3.5A2, B2). Be-

side these, we do not see any significant correlation between expression levels of

CD274 and PDCD1LG2 genes, that encodes PD-L1 and PD-L2 respectively, with

the expression levels of PDCD1 and IFNG, and the percentage of CD8 T cells in

osteosarcoma tumors (Figure 3.6).

Tumor necrosis factor (TNF) is a cytokine that is mainly produced by Macrophages

and has crucial roles in tumor development and tumor progression inducing apop-

tosis, necrosis, angiogenesis, immune cell activation, differentiation, and cell migra-

tion [134]. We notice that cluster 2 has the lowest TNF gene expression among

clusters, while cluster 1 and 3 have roughly similar average expression of this gene
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(Figure 3.5 A4, B4). In addition, we analyze gene IL1B that encodes cytokin pro-

tein Interleukin-1 beta (IL-1β), which is produced by activated Macrophages [135],

and see that IL1B gene expression is the lowest in cluster 2 and the highest in

cluster 3 (Figure 3.5 A6, B6).

Beside these, Insulin-like growth factor 1 (IGF-1) is a hormone that has impor-

tant function in the development and function of many tissues and it has been used

as a diagnostic marker for osteosarcoma [136, 137]. Similar to TNF and IL1B genes

expression, cluster 2 has the lowest amount of IGF1 among other clusters (Figure

3.5 A5, B5). Furthermore, we examine RUNX2 oncogene that is associated with

amplifications and it has been found to correlate to poor response to chemotherapy

in osteosarcoma [138, 139]. In our analysis, cluster 1 has the lowest amount of

RUNX2 gene and cluster 2 and 3 show almost similar expression of RUNX2 gene

(Figure 3.5 A7, B7).

3.3 Discussion

The findings from analyses using estimated immune infiltrations in osteosar-

coma have varied among studies, perhaps due to the small number of osteosarcoma

tumors with available gene expression data in the literature. In this study, we find

that infiltration of CD8 T cells, NK cells and M1 Macrophages have a positive asso-

ciation with prognosis, while infiltration of γδ T cells, Mast cells, M0 Macrophages

and Dendritic cells have a negative association with prognosis. Yu et al [121] also

illustrates that high level of CD8 T cells is a good prognosis in their survival anal-

ysis, and results from [86] and [80] indirectly suggest the positive prognostic value

of CD8 T cells. Tang et al [86] reports that CD8 T cells infiltration has a positive

correlation with CXCR3 expression which is related to good prognosis. Khader et
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al [80] shows that low-risk patients have high level of CD8 T cells and NK cells,

which supports with our conclusion on these cells. In agreement with our findings

on prognostic value of M1 Macrophages, Song et al [79] demonstrates that high

level of M1 Macrophages is associated with good prognosis, while Zhang et al [85]

and Tang et al [86] imply the same from their results. Our conclusion about M0

Macrophages aligns with the results from [85] and [86], but contradicts with the

finding from [128] that abundance level of M0 Macrophages is positively correlated

with survival.

The observable difference in outcomes between clusters are likely due to the

relationship between immune infiltrates and prognosis in osteosarcoma, because we

cluster the patients based on their immune composition. Our results indicate that

cluster 2 has the worst outcome, while cluster 3 seems to have the best outcome

among clusters. The main difference in immune composition between these two

clusters is that cluster 2 has much higher percentage of M0 Macrophages, and

lower percentage of CD8 T cells and M1 Macrophages than cluster 3. In general,

we found that high levels of CD8 T cells and M1 Macrophages are associated

with good prognosis, while a high level of M0 Macrophages correlates with poor

prognosis in osteosarcoma. These results make sense because CD8 T cells are known

to kill cancer cells directly [9, 12] and M1 Macrophages exhibit anti-tumor effects

by producing cytokines that inhibit osteosarcoma growth [140]. These facts could

also explain the observed differences between the outcomes of patients in clusters

2 and 3.

Meanwhile, cluster 1 has worse outcome than cluster 3, but better outcome than

cluster 2. This could be due to the fact that cluster 1 has both high level of immune

cells associated with good prognosis such as CD8 T cells and M1 Macrophages, and

high level of immune cells associated with poor prognosis according to our results
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such as γδ T cells and Mast cells. High infiltration of mast cells have been associated

with poor prognosis, low survival and increased metastasis in many cancers [141],

while γδ T cells show dual effects on cancer growth [142]. Both mast cells and γδ

T cells promote tumor development by supporting angiogenesis through angiogenic

factors production [141, 142]. Mast cells also produce proteases, which lead to

extracellular matrix degradation and tissue remodeling, and thus promote tumor

growth [141]. γδ T cells have been reported to secrete TGF-β [142], which is a

pro-tumor cytokine in osteosarcoma [17, 20, 143]. Overall, the clinical outcomes of

the clusters are consistent with our findings and biological knowledge on prognostic

values of immune cells in osteosarcoma.

On the other hand, we did not observe any difference in age or metastasis at

diagnosis between clusters. This can be explained by the lack of correlation between

immune infiltrates and these clinical variables, which suggests that the immune

composition of the primary tumor has no effect on age or metastasis status at

diagnosis.

Our results indicate that cluster 2 has the worst outcome, while cluster 3 seems

to have the best outcome among clusters. It is interesting to note that the immune

patterns in cluster 2 and 3 are fairly similar (Figure 3.1D), with the main differ-

ence being cluster 2 has much higher percentage of M0 Macrophages and lower

percentage of M2 Macrophages than cluster 3. Since we found that a high level

of M0 Macrophages correlates with poor prognosis, this could be an explanation

for the difference in outcome between clusters 2 and 3. Cluster 1, which has very

different immune patterns from clusters 2 and 3, has worse outcome than cluster 3

but better outcome than cluster 2. This could be due to the fact that cluster 1 has

both high level of immune cells with good prognosis such as CD8 T cells and M1

Macrophages, and high level of immune cells with poor prognosis such as γδ T cells
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and Mast cells. Overall, the clinical characteristics of the clusters are consistent

with our findings about prognostic values of immune cells in osteosarcoma.

Immune checkpoints have an important role in the immune system to prevent

autoimmune diseases, but unfortunately they can allow immune tolerance against

tumors. PD-1 and CTLA-4 are the main checkpoints that tumor cells use to block

immune system [144, 145, 146]. Blocking PD-1 pathway has improved oncological

survival of several patients with metastatic cancers, including melanoma, renal cell

carcinoma, and colon cancer [147, 148]. Also, targeting CTLA-4 in patients with

metastatic melanomas demonstrates significant development about overall survival

[149].

It has been reported that osteosarcoma patients treated with an anti PD-1 drug,

Pembrolizumab, show some improvement in disease progression [150]. Combination

of PD-1 and CTLA-4 blockade therapy in bone sarcoma have shown better response

compared to single checkpoint inhibitor therapy [151]. Note, patients in cluster 1

have the highest expression levels of IFNG, PDCD1 and CTLA-4 that are signif-

icantly correlated with CD8 T cells (Figures 3.5 and 3.6), and it has been shown

that INF-γ increases the CD8 T cells expansion [152]. Thus, patients in cluster 1

might respond well to combination of PD-1 and CTLA-4 blockade therapies.

It has been suggested in several studies that bacteria are able to activate anti-

tumor immune responses [153, 154]. In a study with combination of Bacillus

Calmette-Guerin(BCG) injection and tumor vaccine, 18% of the patients remained

alive and disease-free and it has been reported that bacterial vaccine caused in-

creased level of immunoregulatory cytokines such as TNF-α, IFN-γ, and IL1-β

that might be involved in inducing tumor regression [155]. As a result, bacterial

vaccine and inactivated tumor cells injection can be thought of as a treatment that

activates anti-tumor immune responses [9]. In our results, cluster 2 has the lowest
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amount of gene expression level of immunoregulatory cytokines TNF-α, IFN-γ, and

IL1-β (Figure 3.5) so that tumors in this cluster might be treated with bacterial

vaccine. Otherwise, targeting RUNX2 oncogene with chemotherapy is suggested as

a new therapeutic approach to osteosarcoma patients in recent studies [156, 139]

and cluster 2 has the highest amount of RUNX2 gene expression values compared

to other clusters (Figure 3.5A7-B7) so with the help of further studies, tumors

similar to those in cluster 2 also might be good candidates to treat with targeting

RUNX2 in conjunction to standard chemotherapy.

Targeting tumor associated macrophages (TAM) is another alternative treat-

ment method for osteosarcoma tumors and treatments that suppress M2 Macrophages

phenotype or block the polarization of M1 Macrophages to M2 Macrophages have

shown positive results in several studies [10, 157, 158, 159]. Thus, tumors in cluster

3, which has the highest amount of M2 macrophages (Figure 3.1D) might respond

well to treatments that target TAMs.
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C H A P T E R 4

DATA-DRIVEN MATHEMATICAL MODEL OF

OSTEOSARCOMA

As mentioned in chapter 1, even though several mathematical models have been

developed to study the initiation and progression of many cancer types, there are

currently no mathematical models for the progression of osteosarcoma, to the best

of our knowledge. In chapter 3, we found that there were three distinct groups of

immune patterns of osteosarcoma primary tumors. In this chapter, we develop a

data-driven mathematical model of osteosarcoma based on the interactions between

various components of the tumor microenvironment such as cancer cells, necrotic

cells and immune cells, and use a system of ordinary differential equations (ODEs)

to represent these interactions [92].

We then investigate the differences in the tumor growth of patients belonging

in three distinct groups of immune patterns, which are obtained from chapter 3.

We calculate the group-specific parameters from data in each group and use the

previously estimated immune abundances as inputs in the mathematical model.

Lastly, we analyze the dynamics of tumors in each group to find relationships

that could potentially explain the effects of the tumor microenvironment on the

progression of osteosarcoma tumors.
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4.1 Materials and Methods

We built a kinetic model based on the key interactions between the immune

system and osteosarcoma cells. In particular, we utilized a system of ordinary

differential equations to study the changes in population of the various components

of tumor microenvironment throughout time in units of days. For biochemical

processes A + B → C, we apply the mass action law dC
dt

= λAB, where λ is the

production rate of C from A and B. For all the equations in our model, the symbol

λ denotes proliferation, activation, or production rates, and the symbol δ denotes

inhibition, decay, or death rates. The variables in the model are given in Table 4.1

and their interactions are illustrated in Figure 4.1.

4.1.1 Cytokines

We modeled the dynamics of cytokines through the rate at which they are

produced and their natural decay. We assumed that cytokine production rates are

proportional to the population of cells that produce them, similar to [160], and that

cytokine decay rates are proportional to their own population, which is a common

approach [55, 56, 57, 160, 161]. In order to simplify the system of equations,

we combine some cytokines with similar functions and use the quasi-steady state

assumption on other cytokines.

We combine TGF-β, IL-4, IL-10, and IL-13 as µ1. TGF-β and IL-10 are secreted

by helper T cells, M2 macrophages, and cancer cells [15, 16, 18, 140, 162, 163]. IL-4

and IL-13 are secreted by helper T cells and M2 macrophages [15, 140, 164]. Thus,

we model the dynamics of µ1 as:

d[µ1]

dt
= λµ1Th [Th] + λµ1M [M ] + λµ1C [C]− δµ1 [µ1] (4.1)

µ2 consists of IL-6 and IL-17, where IL-6 is produced by M1 macrophages,
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Figure 4.1. Interaction network of the tumor microenvironment in os-
teosarcoma. Activations and proliferations are shown by blue
arrows, and inhibitions are indicated by red arrows.
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Table 4.1: Model Variables. Names and descriptions of

the variables used in the model.

Variable Name Description

TN Naive T-cells

Th Helper T-cells

TC Cytotoxic cells includes CD8+ T-cells and NK cells

Tr Regulatory T-cells

DN Naive dendritic cells

D Activated dendritic cells antigen presenting cells

MN Naive macrophages includes naive macrophages and monocytes

M Macrophages includes M1 macrophages and M2 macrophages

C Cancer cells

N Nectrotic cells

H HMGB1

µ1 Cytokines group µ1 includes effects of TGF-β, IL-4, IL-10 and IL-13

µ2 Cytokines group µ2 includes effects of IL-6 and IL-17

Iγ IFN-γ

helper T cells, and cancer cells [16, 19, 140, 163, 165], and IL-17 is produced by

helper T cells [15]. The corresponding equation for µ2 is:

d[µ2]

dt
= λµ2Th [Th] + λµ2M [M ] + λµ2C [C]− δµ2 [µ2] (4.2)

IFN-γ is secreted by helper T cells, cytotoxic T cells, and natural killer cells [12,

15, 166]. As a result, the equation for IFN-γ is written as:

d[Iγ]

dt
= λIγTh [Th] + λIγTc [Tc]− δIγ [Iγ] (4.3)

HMGB1 is passively released by necrotic cells [8, 30, 167, 168] and actively
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released by macrophages and dendritic cells [29, 30, 31, 32, 167, 169], leading to

the following equation:

d[H]

dt
= λHM [M ] + λHD[D] + λHN [N ]− δH [H] (4.4)

We use the quasi-equilibrium state assumption on the other cytokines and es-

timate them to be proportional to the number of cells that produce them. IL-12

and IL-23 are both secreted by M1 macrophages and dendritic cells [12, 15, 140,

162, 163, 170]; therefore, we model the concentration of these cytokines as:

[IL-12] ≈ c1 × [M ] + c2 × [D] (4.5)

[IL-23] ≈ c3 × [M ] + c4 × [D] (4.6)

where c1, c2, c3, and c4 are constants.

4.1.2 Cells in the Tumor Microenvironment

Since mature immune cells are differentiated from naive immune cells, we model

the population of each mature immune cell to be proportional to its respective

naive immune cell, where the proportion is determined by the cells/cytokines that

activate the naive cells. Similar to the cytokine equations, for each mature immune

cell, we also include a natural death rate δcell.

Macrophages

Since macrophages have many phenotypes and are constantly changing their

phenotype, we model all macrophages together as one variable to avoid overly great

complexity. M1 and M2 macrophages are differentiated from naive macrophages

or monocytes. M1 macrophages are activated by IFN-γ [18, 162, 163], while M2

macrophages are activated by IL-4, IL-10, and IL-13 [16, 162, 163, 171], where
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IL-4, IL-10, and IL-13 belong to µ1. Therefore, we can write the dynamics of

macrophages as:

d[M ]

dt
=
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δM [M ] (4.7)

By taking into account the activations from Equation (4.7) and introducing the

independent naive macrophage/monocyte production parameter AMN
, we have the

equation for naive macrophages/monocytes:

d[MN ]

dt
= AMN

−
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN

[MN ] (4.8)

T Cells and NK Cells

We model the following subtypes of T cells: helper T cells, regulatory T cells,

and cytotoxic cells, where cytotoxic cells include cytotoxic T cells and natural killer

cells.

Helper T cells are activated by dendritic cells, IL-12, and IL-23 [9, 12, 15,

172], and are inhibited by regulatory T cells, IL-10, and TGF-β [12, 14, 173, 174],

resulting in the equation:

d[Th]

dt
= (λThM [M ] + λThD[D]) [TN ]− (δThTr [Tr] + δThµ1 [µ1] + δTh) [Th] (4.9)

Regulatory T cells are activated by IL-10 and TGF-β [12, 175], hence their

dynamics are modeled by:

d[Tr]

dt
= λTrµ1 [µ1][TN ]− δTr [Tr] (4.10)

Cytotoxic cells (cytotoxic T cells and NK cells) are activated by helper T cells,

dendritic cells and IL-12 [8, 9, 10, 12, 16, 176, 177] and are inhibited by regulatory

T cells, IL-10, and TGF-β [9, 13, 163, 175]. The corresponding equation is:

d[Tc]

dt
= (λTcTh [Th] + λTcM [M ] + λTcD[D]) [TN ]− (δTcTr [Tr] + δTcµ1 [µ1] + δTc) [Tc]

(4.11)
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Combining all the activations from Equations (4.9)–(4.11) as well as adding

parameter ATN for the independent production rate of naive T cells, we obtain the

equation for naive T cells:

d[TN ]

dt
=ATN − (λThM [M ] + λThD[D]) [TN ]− λTrµ1 [µ1][TN ]

− (λTcTh [Th] + λTcM [M ] + λTcD[D]) [TN ]− δTN [TN ]

(4.12)

Dendritic Cells

Dendritic cells are activated by cancer cells and HMGB1 [9, 29, 30, 31, 32].

However, cancer cells can also promote apoptosis in dendritic cells through many

tumor-derived factors, such as gangliosides, neuropeptides, etc. [170]. By introduc-

ing the independent production rate of naive dendritic cells ADN , we can describe

the dynamics of naive and mature dendritic cells with the following system:

d[D]

dt
= (λDC [C] + λDH [H]) [DN ]− (δDC [C] + δD) [D] (4.13)

d[DN ]

dt
= ADN − (λDC [C] + λDH [H]) [DN ]− δDN [DN ] (4.14)

Cancer Cells

Osteosarcoma cells are typically of osteoblastic origin and are characterized by

abnormally high proliferation and low apoptosis. We denote the high proliferation

rate of cancer cells as λC .

Osteosarcoma growth is promoted by IL-6, IL-17, and TGF-β [12, 17, 18, 19,

20, 143, 165, 178]. Tumor cells are killed by cytotoxic cells [9, 179, 180], while their

growth is inhibited by IFN-γ [9, 10, 166]. In the mathematical modeling of cancer,

it is common to estimate the growth to be proportional to [C]
(

1− [C]
C0

)
, where C0

is the carrying capacity [181, 182]. As a result, we have the following equation for
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cancer cells:

d[C]

dt
= (λC + λCµ1 [µ1] + λCµ2 [µ2]) [C]

(
1− [C]

C0

)
−
(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C]

(4.15)

Necrotic Cells

Necrotic cells, which are cells that go through the process of necrotic cell death,

are promoted by cancer cells since, when cancer cells are killed by cytotoxic cells,

a proportion of them become necrotic cells. In particular, the “production” rate

of necrotic cells can be modeled as a fraction of the dying cancer cells, resulting in

the following dynamics:

d[N ]

dt
= αNC

(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C]− δN [N ] (4.16)

4.1.3 Data of the Model

In the last chapter, we applied CIBERSORTx B-mode on the gene expression

data sets from two cohorts, TARGET and GSE21257, to estimate the immune cell

abundances within osteosarcoma tumors. Then, K-means clustering was applied

on the estimated immune cell fractions. As a result, we found that there were

three distinct immune patterns of osteosarcoma tumors. In this chapter, we use

the same cluster assignment for the TARGET data with 88 samples and use our

mathematical model to study the dynamics of the tumor microenvironment of each

cluster from the initial time of diagnosis until reaching their steady state. The

general workflow of this study is described in Figure 4.2, and the average immune

fractions of various cell types in each cluster are shown in Figure 4.3, where the

vertical bars denote the 95% confidence intervals.
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Figure 4.2. The general workflow of this study. Given the gene expres-
sion data of tumors, immune cell fractions were estimated using
CIBERSORTx B-mode. Then, K-means clustering was applied to
find three clusters with distinct immune compositions. For each
cluster, the populations of immune, cancer, and necrotic cells were
derived from immune fractions and clinical information. These cell
populations and cytokine expression levels were used as input (ei-
ther as the initial conditions or steady states) in the system of
ODEs to find the dynamics of the components of the tumor mi-
croenvironment in each cluster.
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Figure 4.3. The immune cell fractions used in the model. Clusters were
derived based on differences in 22 immune cell types of osteosar-
coma tumors.

The outputs of CIBERSORTx only provide the fractions of each immune cell

within the tumor tissue; however, we need the number of immune cells along with

the number of cancer and necrotic cells as inputs to our model. Thus, we download

the supplementary data of the TARGET project, which has information on the

percentage of normal, stroma, tumor, and necrotic cells of each sample. We use

the percentage of normal cells to represent the percentage of total immune cells in

the sample.

First, we convert the immune cell fractions to the immune cell population by

multiplying the fractions with a scaling factor αdim. Then, knowing the percentage

of total immune cells, cancer cells, and necrotic cells, we derive the population of

cancer and necrotic cells from the population of total immune cells. For example,

given the total immune population I, the cancer and necrotic cell abundance can

be calculated as

C = I × % of cancer cells

% of total immune cells
(4.17)

N = I × % of necrotic cells

% of total immune cells
(4.18)

where C and N are the cancer and necrotic cell population, respectively.
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To choose a reasonable value for αdim, we first estimate the average osteosarcoma

tumor volume. We find the mean volume of Ewing sarcomas to be 275 mL based on

the tumor volumes given in [183], and Ewing sarcoma has been reported to have a

similar volume to osteosarcoma [184]. Thus, we estimate the average osteosarcoma’s

volume to be 275 mL.

Osteoblasts, which are the cells of origin of osteosarcoma, have a diameter of

20–50 m [185]; therefore, we approximate osteosarcoma cells to have an average

diameter of 35 m, resulting in an average of 6.4 × 109 osteosarcoma cells in os-

teosarcoma tumors. We then choose αdim = 1.765 × 108 to match the average

number of cancer cells among all patients in our data to 6.4× 109 cells. However,

it is important to note that αdim is simply a scaling factor and does not have any

effects on the dynamics of cells or on the relative cell abundance between clusters.

4.1.4 Parameter Estimation

Some parameters of our model, such as the decay/death rates of immune cells

and cytokines, are taken from available research (more details in Appendix A.2.1),

while others are estimated. We follow the common approach from mathematical

biological models to use assumptions on the steady state values of the system to

derive those unknown parameters [186, 187]. In particular, we make the assumption

that after a tumor reaches a very large size, the immune variation within the tumor

microenvironment is minuscule, and we denote this state as the steady state of our

system.

Different immune patterns of tumors, such as high or low levels of helper and

cytotoxic T cells in one group versus another group, indicate that the activation

rates of different T cell sub-types from naive T cells vary from one group of tumors

to another group. Hence, many parameters of the model, such as the activation
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rates of T cell sub-types, depend on the tumor immune profile, and therefore we

estimate the parameters separately for each cluster.

We assume the samples with a large number of cancer cells are at the steady

state. For each cluster, we use the 85th percentile of cancer abundance as the

cutoff, and calculate the steady state values for the cluster by averaging the values

from samples that have more cancer cells than this cutoff. Table 4.2 shows the

steady state values of every cluster.

Table 4.2: Steady-state abundance of cells and cytokines.

Cluster M∞N M∞ T∞N T∞h T∞r

1 6.236× 106 1.977× 107 4.926× 106 7.092× 106 3.675× 106

2 3.248× 107 1.842× 107 1.047× 107 1.973× 106 8.673× 105

3 1.944× 107 2.698× 107 1.368× 107 1.205× 106 1.405× 106

T∞c D∞N D∞ C∞ N∞

1 2.292× 107 4.826× 105 9.865× 105 1.343× 1010 3.764× 108

2 3.155× 105 8.927× 105 7.135× 105 1.604× 1010 4.257× 108

3 1.802× 106 4.591× 105 3.732× 105 1.340× 1010 1.544× 109

I∞γ µ∞1 µ∞2 H∞

1 0.868 21.510 2.067 5.076

2 0.049 20.714 1.611 4.948

3 0.263 23.663 1.371 4.453

Our assumption above asserts that the rate of change of our model’s variables

is 0 at the steady state, or equivalently dX
dt

= 0 at the steady state. With the

additional assumptions in Appendix A.2.1, as well as knowing the steady state

values of our model’s variables, we can derive parameter values for each cluster

using the fsolve function from the SciPy package in Python. The parameter values
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for each cluster are given in Table A.1.

4.1.5 Non-Dimensionalization

To remove the scale dependence and obtain additional numerical stability, we

apply non-dimensionalization on all equations of our system. For a model variable

X converging to the steady state value X∞, we create a non-dimensional variable

X such that X = X
X∞

. Then, X satisfies the equation dX
dt

= F (X, θ, t), where θ is

the vector of non-dimensional parameters. The full system of non-dimensionalized

equations are given in Appendix A.3.

To solve the non-dimensional dynamical system for each cluster, we apply the

odeint function from the SciPy package [188], with the initial conditions from a

data point of interest from the TARGET data set.

4.1.6 Sensitivity Analysis

To evaluate the quality of our parameters through how they affect the dynam-

ics of the system, we perform a global gradient-based sensitivity analysis on all

parameters of our system.

For the non-dimensional system dX
dt

= F (X, θ, t) withN parameters θ = θ1, . . . , θN ,

the (first order) sensitivity si of parameter θi was defined as the gradient of the

model output with respect to the parameter [189]:

si =
∂X

∂θi
(4.19)

We calculate the sensitivity si for each parameter at the steady state of the

equation for two quantities of interest: cancer cell abundance and total cell abun-

dance. Consider the general steady state system as F (X∗, θ) = 0, with X∗ being

the equilibrium values of our model’s variables. The sensitivity vector s can be
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obtained analytically by differentiating the steady-state equation with respect to

parameter vector θ, that is,

∇F (X∗, θ)
∂X∗

∂θ
+
∂F (X∗, θ)

∂θ
= 0 (4.20)

where ∇F (X∗, θ) is the Jacobian matrix of F (X∗, θ) with respect to X. Then, to

compute sensitivity vector s at equilibrium, or equivalently ∂X∗

∂θ
, we simply need to

numerically invert ∇F (X∗, θ).

Generally, si varies for different values of the parameter set; thus, we define the

local sensitivity Si of parameter θi for a chosen neighborhood Ω(θ) of the given

parameter set as

Si =

∫
Ω

si(θ)dθ (4.21)

where the integral is evaluated numerically using sparse grid points [190, 191].

Since we made many assumptions to derive the parameter values for our model

and different assumptions can lead to different parameter values, we vary these

assumptions by a scaling factor of 0.01 to 100 for K times and obtain the local

sensitivity Ski , with k = 1, . . . , K, for parameter θi derived from the kth set of new

assumptions. Then, the global sensitivity Si of parameter θi is a weighted average

of the local sensitivities Ski for k = 1, . . . , K:

Si =
K∑
k=1

wkS
k
i (4.22)

where wk is chosen so that the parameter values that are closer to the original

parameter set have larger weights and the parameter values that are very different

from the original parameter set have smaller weights. This method of choosing wk

is based on the idea of the weighted average of local sensitivities in [189].
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4.2 Results

We obtain the dynamics of the components in the tumor microenvironment

by solving the above mentioned system of ODEs with parameters derived from the

cancer patient data using the steady state assumption as mentioned in Section 4.1.4.

Given non-negative initial conditions and non-negative parameters, the solution of

the systems remains non-negative and globally bounded (Appendices A.1.2 and

A.1.3).

4.2.1 Dynamics of the Tumor Microenvironment

We are interested in exploring the dynamics of different components of the

osteosarcoma microenvironment as well as the difference in cancer progression be-

tween clusters. Hence, we want to model the dynamics with similar initial cancer

populations among clusters. We first choose the sample with the smallest cancer

population in cluster 1, and then choose a sample from cluster 2 and 3 that has

the most similar cancer population to the chosen sample in cluster 1. We use these

samples as the initial conditions for their corresponding cluster. Table 4.3 shows

the dimensionless initial condition values of each cluster.

We observe that, as the cancer population grows, helper T cells, dendritic cells,

cytotoxic cells, and IFN-γ populations first increase and then decrease over time.

This makes sense biologically since, in the early stage of cancer, naive dendritic

cells come in contact with tumor antigens, inducing the activation and increase in

the number of dendritic cells [7, 9]. Dendritic cells present tumor antigens to helper

T cells and cytotoxic cells and activate them [192], resulting in an increase of these

cells. Helper T cells and cytotoxic cells then produce IFN-γ [12, 15, 166], leading

to this cytokine’s increased abundance.
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Table 4.3: The non-dimensional initial conditions for each

cluster.

Cluster MN/M
∞
N M/M∞ TN/T

∞
N Th/T

∞
h Tr/T

∞
r Tc/T

∞
c DN/D

∞
N

1 2.367 1.005 0.019 0.794 0.764 0.828 1.122

2 0.954 0.753 1.299 1.451 2.313 0.062 0.071

3 0.866 1.104 0.572 0.340 0.484 0 1.643

D/D∞ C/C∞ N/N∞ Iγ/I
∞
γ µ1/µ

∞
1 µ2/µ

∞
2 H/H∞

1 0 0.020 0.160 2.394 1.104 1.806 1.059

2 0.693 0.005 0.018 0.859 1.307 3.259 0.988

3 0 0.014 0.0008 0.276 1.030 1.296 1.284

The switch in dynamics from increasing to decreasing in dendritic cells, helper T

cells, cytotoxic cells, and IFN-γ occurs around the same time that cancer cells start

growing fast. Contrastingly, the number of regulatory T cells decreases when these

cells increase and increases when these cells decrease. Hence, regulatory T cells start

increasing in density when the tumor is at its peak of growing. Regulatory T cells

have the role of modulating the immune system and consequently promote tumor

growth; therefore, we can expect the opposite dynamics to anti-tumor immune cells

and cytokines, such as dendritic cells, helper T cells, cytotoxic cells, and IFN-γ. In

general, it is important to study this switch in the dynamics since it can be used

as the predictor of the highest growth of cancer cells during tumor development.

On the other hand, the macrophage population first decreases and then in-

creases during osteosarcoma progression, while necrotic cells, HMGB1, along with

the cytokine groups µ1 and µ2 increase in population as cancer cells grow. As

both µ1 and µ2 support tumor growth, their population growth over time could
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contribute to the fast progression of osteosarcoma. Necrotic cells are mainly cancer

cells that were killed by cytotoxic cells or IFN-γ; thus, it is reasonable to see their

population grow over time. As a result, HMGB1, which is largely produced by

necrotic cells, increases in abundance as the tumor progresses.

Cluster 2’s cancer cells begin by growing more slowly than cluster 1; however, at

around 500 days, they start growing very fast and end up having the highest cancer

population at the steady state out of all clusters. The results of chapter 3 based

on the clinical information of the TARGET dataset also indicate that patients in

cluster 2 have the worst survival outcomes among the three clusters.

Figure 4.4 shows that cluster 2 has the lowest number of cytotoxic cells, macrophages,

and IFN-γ and the highest number of naive macrophages during tumor progres-

sion. A high population of cytotoxic cells and IFN-γ are generally associated with

a good prognosis because they directly kill cancer cells, while a high level of naive

macrophages have been found in chapter 3 to associate with poor prognosis. Clus-

ter 2 also has the slowest growth rate of necrotic cells. A high number of necrotic

cells means many cancer cells have been killed by the immune system and is an

indication of a good prognosis. Thus, cluster 2, with a slow growth rate of necrotic

cells, high growth rate of cancer, and the highest cancer population at the steady

state, has a poor prognosis based on our model’s dynamics.

Cluster 3 has the slowest cancer growth rate among all clusters and a smaller

cancer population at the steady state compared with cluster 2. Cluster 3’s necrotic

cells have the fastest growth rate and the highest population at the steady state out

of the 3 clusters. Hence, the dynamics of cluster 3 appear to be the most favorable.

This is in agreement with the findings on the survival outcomes of cluster 3 in the

previous chapter.

Cluster 3 has the smallest amount and the slowest growth rate of the cytokine
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Figure 4.4. Dynamics of cells and cytokines in osteosarcoma tumors.
Evolution of the cells and cytokine population in the model is plot-
ted over the time in units of days. This figure shows the dynamics
of the variables of the model starting from the time of the first di-
agnosis of small tumors in each cluster until reaching their steady
state values, i.e., the average values of the largest tumors in the
same cluster. The different color lines describe the dynamics of
different clusters.
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group µ2, which has tumor-promoting effects, both initially and at the steady state

(Figure 4.4). Interestingly, cluster 3 also has the lowest population of helper T

cells and dendritic cells over time. These two cells are known to correlate with

good prognoses. If we were to simply look at the immune composition of the

patients in cluster 3, we might make the wrong prediction on their prognosis due to

the low abundance of certain immune cells with good prognostic values. Therefore,

it is important to take into consideration the interaction between immune cells and

cancer cells, and investigate the dynamics of cancer in addition to studying the

immune composition.

Cluster 1 has a high cancer growth rate from the beginning and thus its cancer

population reaches the steady state faster than the other clusters. However, its

cancer cells do not reach as high population at the steady state as the cancer cells

in cluster 2. Cluster 1 has the highest levels of both immune cells and cytokines

with good prognoses, including cytotoxic cells, helper T cells, dendritic cells, and

IFN-γ, and those with poor prognoses, such as regulatory T cells and µ2 during

tumor progression. Thus, it is again necessary to look at the interactions within

the tumor microenvironment for such clusters.

We observe that µ1 and µ2 grow fast and reach the steady states very quickly

in cluster 1. Since both µ1 and µ2 promote tumor proliferation, this could be the

reason why cancer cells quickly reach the steady state in cluster 1. Overall, since

cluster 1 has a lower cancer population at the steady state compared with cluster 2

but a higher cancer growth rate than cluster 3, its cancer dynamics are worse than

cluster 3 but better than cluster 2, which aligns with the results of chapter 3.
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Most sensitive immune parametersMost sensitive parametersA B

Figure 4.5. Sensitivity analysis. (A) The sensitivity level of the most sensi-
tive parameters for cancer and total cell population at the steady
state. (B) The most sensitive parameters associated with immune
cells. The most sensitive parameters for each cluster are shown in
each row of plots.
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4.2.2 Sensitivity Analysis

We perform global sensitivity analysis with parameters derived from patient

data with the steady state assumption in each cluster. The sensitivity analysis is

performed on the dimensionless system, and evaluated at the steady states. We are

interested in finding which parameters in our system strongly affect the growth of

tumors, and thus we use the cancer population and total cell population as variables

of interest in the sensitivity analysis.

Figure 5.3A presents the six most sensitive parameters in every cluster. Since

we also want to study the effects of the immune system on cancer progression, we

look at the five most sensitive parameters from the immune cells equations as well.

Therefore, we plot the top five most sensitive parameters excluding the parameters

from the cancer cell Equation (4.15) and necrotic cell Equation (4.16) (Figure 5.3B).

The most sensitive parameters across the three clusters are the cancer prolif-

eration and inhibition parameters in the cancer Equation (4.15). As expected, an

increase in any of the cancer proliferation parameters (λC , λCµ1 , λCµ2) results in an

increase in the number of cancer cells, and an increase in any cancer inhibition

parameters (δCTc , δCIγ , δC) results in a decrease in the number of cancer cells. It

is worth noting that all sensitive parameters presented in Figure 5.3 have similar

effects on cancer populations as on total cell populations.

The most sensitive immune parameters are activation and the decay rates of

macrophages and regulatory T cells for all clusters. An increase in any activation

rates of macrophages and regulatory T cells leads to higher cancer and total cell

numbers, while an increase in their decay rates causes a decrease in these quantities

of interest. This implies that both macrophages and regulatory T cells have tumor-

promoting effects.
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Since regulatory T cells inhibit helper T cells and cytotoxic cells, they hinder

IFN-γ production and, thus, down-regulate cytotoxic cells and IFN-γ’s ability to

kill cancer cells. Macrophages, on the other hand, have both anti-tumor phenotype

(M1 macrophages) and pro-tumor phenotype (M2 macrophages). However, the

predominant portion of macrophages in the patient data across all three clusters is

M2 macrophages (Figure 4.3), which can cause the main effect of macrophages in

our model to be pro-tumor.

4.2.3 Dynamics with Varying Assumptions

Since we made some assumptions in order to derive the parameter values for

each cluster, we want to see how the dynamics of cancer population would change

when we vary these assumptions. Based on the results of the global sensitiv-

ity analysis, we determine that the parameters in the equations of cancer cells,

macrophages, and regulatory T cells are the most sensitive parameters. We vary

each assumption relating to these sensitive parameters (Equations (A.15)–(A.19))

by five times in both directions (scale five-times bigger or five-times smaller) and

observe how the progression of cancer changes with the new assumptions (Figure

4.6). For example, since λC and λCµ1 are sensitive parameters, we vary the assump-

tion λC = 40λCµ1µ
mean
1 (Equation (A.16)) by five times, resulting in the following

new assumptions:

λC = 200λCµ1µ
mean
1 , λC = 8λCµ1µ

mean
1 , (4.23)

where the cancer dynamics with the original assumption (Equation (A.16)) is the

left plot in Figure 4.6A (scale = 1), and the cancer dynamics with the new assump-

tions (Equation (4.23)) are the middle and right plots in Figure 4.6A (scale = 1/5

and scale = 5).
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Figure 4.6. The dynamics of cancer when the assumptions of the sen-
sitive parameters are varied. (A-E) The cancer growth of all
three clusters for each assumption of sensitive parameters. The left
plot in every sub-figure is the original cancer dynamics, the middle
and right plots are the cancer dynamics obtained when the given
assumption is scaled by 1/5 and by 5, respectively.
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We notice that when we vary the assumptions of the most sensitive parameters,

the time for the cancer population to reach the steady state changes by a relatively

small amount; however, the overall observation of the cancer dynamics between

clusters does not change (Figure 4.6). That is, these different assumptions lead

to the same observations: cluster 1’s cancer population reaches a steady state the

fastest among all clusters, cluster 2’s tumors grow slower than cluster 1’s at first

but then begin growing fast and result in the highest steady state population, and

cluster 3 has the most favorable cancer progression with the slowest growth of

cancer cells and one of the lowest steady state cancer populations.

The largest changes in the dynamics of cancer are due to the assumptions for

the activation rates of macrophages (Figure 4.6E):

λMIγI
mean
γ

λMµ1µ
mean
1

=
Mmean

1

Mmean
2

.

This assumption is based on the fact that M1 and M2 macrophages are activated

by IFN-γ and µ1, respectively, and thus the ratio of macrophages activated by IFN-

γ to macrophages activated by µ1 should be approximately equal to the ratio of

M1 to M2 macrophages. This is a reasonable assumption that uses patient data to

derive the activation rates of macrophages. We expect to see the ground truth ratio

of macrophages activated by IFN-γ to macrophages activated by µ1 to be close to

our assumption, rather than to differ by five times. Therefore, it is very unlikely

to observe cancer dynamics, such as in the middle and right plots in Figure 4.6E

with our data. On the other hand, the assumptions for the death rate of cancer

by IFN-γ and the apoptosis rate of cancer, δCIγI
mean
γ = 10δC , appear to have a

negligible to no impact on cancer progression (Figure 4.6D).

The shaded regions in Figure 4.6 denote the changes in dynamics when we varied

the most sensitive parameters (λC , λCµ1 , λCµ2 , δCTc , δCIγ , δC , λMIγ , λMµ1 , δM , λTrµ1 ,
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and δTr) by 10% in negative and positive directions. We observe that varying

the most sensitive parameters by 10% does not create large changes to the cancer

dynamics. Overall, Figure 4.6 shows that, when we change the assumptions of

the most sensitive parameters or vary the sensitive parameters themselves, the

observations we made about cancer development between clusters in Section 4.2.1

are not affected. Furthermore, even though several assumptions were made to

estimate the parameters, the dynamics of cancer do not greatly depend on these

assumptions.

4.2.4 Dynamics with Different Initial Conditions

For each cluster, we also look at the dynamics with different initial conditions

from the different samples within that cluster (Figure 4.7). We observe that differ-

ent initial conditions in a cluster lead to similar growth patterns of cancer. This

makes sense since the dynamics are determined by the parameters of the ODE sys-

tem, which are derived from the patient data through the steady state assumption

in each cluster. As a result, the cancer growth rates and patterns are similar among

patients within the same cluster but different among patients in different clusters.

Thus, if we know which cluster a patient belongs to, we can predict their cancer

growth more accurately than by using the same cancer progression model for all

patients.

To verify that the parameters in each cluster are what drives the dynamics of

the cluster, we examine the dynamics of each cluster with the initial conditions

from other clusters (Figure 4.8). In particular, we plot dynamics of cluster 1 with

the initial conditions in Table 4.3 from clusters 2 and 3. These cross-cluster initial

conditions quickly converge to the same dynamics, confirming that the dynamics

in each cluster are more influenced by the parameters rather than by the initial
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A

Figure 4.7. The dynamics with varying initial conditions. (A-C) The
dynamics of cells and cytokines with initial conditions from differ-
ent patients in clusters 1, 2, and 3, respectively.
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Figure 4.8. Dynamics with cross-cluster initial conditions. (A) The dy-
namics of cells and cytokines with parameters from cluster 1 and
initial conditions from clusters 2 and 3. (B) The dynamics of cells
and cytokines with parameters from cluster 2 and initial conditions
from clusters 1 and 3. (C) The dynamics of cells and cytokines with
parameters from cluster 3 and initial conditions from clusters 1 and
2.
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conditions.

4.3 Discussion

Our results show that, as cancer cells grow in number, the helper T cell, den-

dritic cell, cytotoxic cell, and IFN-γ populations increase at first and then decrease

with time, while regulatory T cells first decrease in population and then increase.

This switch in the dynamics of immune cells happens around the time that cancer

cells have the fastest growth. Notably, we also find that, in order to make reason-

able predictions regarding the prognosis of cancer patients, it is necessary to study

the interactions between immune cells rather than to simply look at the abundance

of a certain immune cell type. This observation can be supported by [194], which

states that the immune response following from activation of T cells is dependent

on the presence of other immune protagonists, such as macrophages, implying that

the interactions between immune cells can affect the immune response.

Our results indicate that cluster 3 has the slowest cancer growth and a relatively

low population of cancer cells at the steady state. Meanwhile, cluster 2 has one

of the fastest cancer growth rates and, more importantly, the highest number of

cancer cells at the steady state. Thus, cluster 3 has the most favorable cancer

progression, and cluster 2 has the least favorable cancer progression. These results

are in agreement with the findings from clinical data in chapter 3 that cluster 3 has

the best outcomes and cluster 2 has the worst outcomes.

Our global sensitivity analysis shows that the rate at which cytotoxic cells kill

cancer cells has a large impact on the growth of osteosarcoma. Therefore, it is prob-

able that treatments that attempt to increase this rate of cytotoxic cells attacking

tumor cells, such as PD-1 or CTLA-4 inhibitors, would work well for osteosarcoma.
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In fact, a phase 2 trial reported that some improvement in cancer progression

was observed in osteosarcoma patients treated with the anti PD-1 drug, Pem-

brolizumab [195]. The combined treatment of PD-1 and CTLA-4 blockade therapy

has shown even better responses compared with single checkpoint inhibitors in bone

sarcoma [196].

In the mathematical modeling of cancers, one of the main challenges is the large

number of unknown parameters and a limited availability of data sets to derive

parameters from. To combat this challenge, many mathematical models adopt one

or a couple of the following approaches: assuming biologically feasible values for

some parameters, using estimated parameters from other diseases or rodent studies,

calibrating parameters to fit the biological behaviors from an experimental data set,

and varying the parameter values within a reasonable range to study the impact

of those parameters on the results. In our work, we acquire parameter values from

experimental studies in the literature and estimate the others using the steady

state assumption with the steady state values derived from patient gene expression

data. Importantly, we also perform global sensitivity analysis on the estimated

parameters.

All mathematical models thus far use the same parameters for all patients,

while our model estimates parameters separately for each cluster of patients with

distinctive immune compositions. Since patients with different immune composi-

tions have shown different prognoses and different responses to treatment [197, 198,

199, 200, 201], estimating the parameters for each cluster separately helps us model

the effects of immune cells on cancer growth and their responses to treatment more

accurately.

To avoid adding complexity to an already complex network, our study does

not model the healthy cells in the tumor microenvironment. While several math-
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ematical models for tumor growth study the competition between healthy cells

and cancerous cells [160, 202, 203, 204], these models typically only investigate a

small subset of immune cells, unlike our model, which focuses on many important

components of the immune system. Moreover, as the cancer self-proliferation rate

(λC) in our model is taken from osteosarcoma growth data in humans, which is

naturally the growth of tumors with the presence of healthy cells, this parameter

already encodes the inhibition of cancer growth due to competition with healthy

cells. Therefore, even though we do not explicitly model healthy cells, the impact

of healthy cells on cancer growth is incorporated implicitly through λC .

While it would be ideal to use time course data to derive the parameters in

each cluster, the availability of such data is currently limited, and so instead we

use the large tumors in each cluster as the steady state values to estimate these

parameters. Despite this limitation due to the lack of time course data, our model

still provides valuable insights on the progression of osteosarcoma and the impact

of the immune system on its growth, and many studies can build upon this one.

Ways to improve this model include utilizing partial differential equations to study

the growth of osteosarcoma tumors, both in space and in time, or applying different

parameter fitting algorithms [205, 206, 207, 208] to better match the dynamics of

the system to real patient data.
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C H A P T E R 5

INVESTIGATING OPTIMAL CHEMOTHERAPY

OPTIONS FOR OSTEOSARCOMA PATIENTS

THROUGH A MATHEMATICAL MODEL

In the last chapter, we have developed a data driven mathematical model for

the interaction network between key immune cells and cancer cells to investigate

tumors’ growth behaviors of three distinct groups of osteosarcoma tumors, grouped

based on their immune compositions, and group-specific parameters have been cal-

culated to discover differences in tumor growth between groups. In this chapter,

we extend our previous model by adding the interactions between the most com-

mon chemotherapy drugs for osteosarcoma and important cell types in the tumor

microenvironment in order to examine the effects of these drugs on osteosarcoma

tumors in each group.

Most chemotherapy treatments for osteosarcoma include one or a combination

of the following drugs: high dose Methotrexate (MTX), Doxorubicin (DOX) and

Cisplatin (CDDP). The most popular treatment regimen for adolescents is the

MAP regimen, consisting of all those three drugs [209, 210], and a widely used

treatment for older adults is a two-drug regimen of Doxorubicin and Cisplatin

[210]. This study investigates the response to these regimens through a data driven
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mathematical model, suggests optimal chemotherapy dosages, as well as compares

the behaviors of immune and cancer cells under various conditions such as resistance

to chemotherapy and different treatment start times.

5.1 Materials and Methods

5.1.1 Mathematical Model

We build upon the model in the previous chapter by adding the interactions of

the variables in that model with the following chemotherapy drugs: Methotrexate,

Doxorubicin and Cisplatin. The interaction network of these drugs with cells and

cytokines of osteosarcoma tumor microenvironment is shown in Figure 5.1. We

use exponential kill model, as introduced in [211], to describe how chemotherapy

affects the cancer microenvironment and model the change in population of the

new model’s variables throughout time in unit of day. The details of the effects of

chemotherapy drugs on immune cells and cancer cells are explained below (changes

to equations (A.1)-(A.14) are in bold).

Cancer cells

All chemotherapy drugs in our model aim to kill tumor cells, though they have

different mechanisms of action. Methotrexate hinders DNA synthesis in fast divid-

ing cancer cells by inhibiting folate dependent pathways [212]. Doxorubicin can kill

cancer cells by binding to DNA-associated enzymes, intercalating the base pair of

DNA’s double helix, and targeting many molecular targets such as topoisomerase

enzymes I and II, which results in DNA damage [213]. Cisplatin binds platinum to

DNA by forming inter-stranded and intra-stranded crosslinks, thus induces DNA
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Figure 5.1. Interaction network with chemotherapy drugs. Activations,
proliferations or stimulations are indicated by blue arrows, and
inhibitions are indicated by red arrows. Chemotherapy drugs also
inhibit all immune cells (red arrows from drugs to immune cells
not shown).

90



Table 5.1: Model Variables. Names and descriptions of

the variables used in the model.

Variable Name Description

TN Naive T-cells

Th Helper T-cells

TC Cytotoxic cells includes CD8+ T-cells and NK cells

Tr Regulatory T-cells

Dn Naive dendritic cells

D Activated dendritic cells antigen presenting cells

MN Naive macrophages includes naive macrophages and monocytes

M Macrophages includes M1 macrophages and M2 macrophages

C Cancer cells

N Nectrotic cells

H HMGB1

µ1 Cytokines group µ1 includes effects of TGF-β, IL-4, IL-10 and IL-13

µ2 Cytokines group µ2 includes effects of IL-6 and IL-17

Iγ IFN-γ

A1 Methotrexate Methotrexate concentration at tumor site

A2 Doxorubicin Doxorubicin concentration at tumor site

A3 Cisplatin Cisplatin concentration at tumor site

damage which leads to cell death in rapidly proliferating cells [214, 215].

Similar to [211, 216], we use saturation kill term (1− eβA) to model the direct

cytotoxic effects of chemotherapy drugs on cancer cells, where β is the drug efficacy

parameter, and A is the drug concentration at the tumor site. This is based on the

observation that at low concentration, the cancer killing effect of these drugs are
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almost linear, but at very high concentration the cancer killing effect plateaus. Un-

like Doxorubicin and Cisplatin, Methotrexate can only eliminate cancer cells during

certain phases of the cell cycle, so we add the term (f − τ
a

+ 1
24a

) to Methotrexate’s

cytotoxic effect to account for this phenomenon, as modeled in [211]. Here, f de-

notes the fraction of cells in the vulnerable phase of the cell cycle for Methotrexate,

a denotes cell cycle time in days, and τ is defined to be minimum(T, fa) with T

being drug exposure time in days.

Besides its direct role in targeting tumor cells, Cisplatin has also been reported

to increase cytotoxic cells’ cancer killing capability up regulating MHC-1 expression

of cancer cells [81, 214, 217, 218]. We also use saturation term to describe this effect,

as it is very likely that high concentration of Cisplatin can also plauteau at up-

regulating MHC-1 in cancer cells. We make the assumption that the concentration

of Cisplatin at which this effect slows down is about the same concentration at

which the cancer killing effect of Cisplatin slows down, so we use the same drug

efficacy parameter β3 in both terms, resulting in the following equation for cancer

cells:

d [C]

dt
= (λC + λCµ1 [µ1] + λCµ2 [µ2]) [C]

(
1− [C]

C0

)
−

(
δCIγ [Iγ] + δC + δCTc

(
1 + δCTcA3(1 − e−β3A3)

)
[Tc]

)
[C]

−
(
KC

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KC(1 − e−β2A2)

+KC(1 − e−β3A3)

)
[C] (5.1)

where δCTcA3 represents the effect of Cisplatin to promote cytotoxic cell’s cancer

killing ability; KC is rate of chemotherapy-induced tumor death; and β1, β2, β3 are
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medicine efficacy coefficients of Methotrexate, Doxorubicin, Cisplatin, respectively.

A description of every chemotherapy-related parameter in our model is given in

Table A.1.

Necrotic cells

As a proportion of cancer cells killed by chemotherapy drugs become necrotic

cells, we describe the change in population of necrotic cells with the presence of

chemotherapy as follows:

d [N ]

dt
= αNC

(
δCIγ [Iγ] + δC + δCTc

(
1 + δCTcA3(1 − e−β3A3)

)
[Tc]

)
[C]

+αNCA

(
KC

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KC(1 − e−β2A2)

+KC(1 − e−β3A3)

)
[C]− δN [N ] (5.2)

where αNCA is the fraction of dying cancer cells induced by chemotherapy that turn

into necrotic cells.

Immune cells

Since chemotherapy does not only eliminate tumor cells but also kills immune

cells, we include the effects of chemotherapy in the equations of immune cells as

well. Similar to [216], we assume that the same amount of chemotherapy drugs

is required to affect cancer cells and immune cells, even when the rate at which

chemotherapy kills cancer cells is different than when it kills immune cells. Hence,

we use the same drug efficacy coefficients for cancer and immune cells, but different

rates of drug-induced cell death between them, leading to the following modified

immune cells’ equations:
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d [MN ]

dt
= AMN

−
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN

[MN ]

−
(
KMN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KMN

(1 − e−β2A2)

+KMN
(1 − e−β3A3)

)
[MN ] (5.3)

d [M ]

dt
=
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δM [M ] −

(
KM

(
f −

τ

a
+

1

24a

)

(1 − e−β1A1) +KM(1 − e−β2A2) +KM(1 − e−β3A3)

)
[M ] (5.4)

d [TN ]

dt
= ATN − (λThM [M ] + λThD [D]) [TN ]− λTrµ1 [µ1] [TN ]

− (λTcTh [Th] + λTcM [M ] + λTcD [D]) [TN ]− δTN [TN ]

−
(
KTN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTN

(1 − e−β2A2)

+KTN
(1 − e−β3A3)

)
[TN ] (5.5)

d [Th]

dt
= (λThM [M ] + λThD [D]) [TN ]− (δThTr [Tr] + δThµ1 [µ1] + δTh) [Th]

−
(
KTh

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTh

(1 − e−β2A2)

+KTh
(1 − e−β3A3)

)
[Th] (5.6)

d [Tr]

dt
= (λTrµ1 [µ1]) [TN ]− δTr [Tr] −

(
KTr

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1)

+KTr(1 − e−β2A2) +KTr(1 − e−β3A3)

)
[Tr] (5.7)

d [Tc]

dt
= (λTcTh [Th] + λTcM [M ] + λTcD [D]) [TN ]− (δTcTr [Tr] + δTcµ1 [µ1] + δTc) [Tc]

−
(
KTc

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTc(1 − e−β2A2)
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+KTc(1 − e−β3A3)

)
[Tc] (5.8)

d [DN ]

dt
= ADN − (λDC [C] + λDH [H]) [DN ]− δDN [DN ]

−
(
KDN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KDN

(1 − e−β2A2)

+KDN
(1 − e−β3A3)

)
[DN ] (5.9)

d [D]

dt
= (λDC [C] + λDH [H]) [DN ]− (δDC [C] + δD) [D]

−
(
KD

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KD(1 − e−β2A2)

+KD(1 − e−β3A3)

)
[D] (5.10)

whereKMN
, KM , KTN , KTh , KTr , KTc , KDN andKD are the rate of chemotherapy-

induced cell death of naive macrophages, macrophages, naive T cells, helper T cells,

regulatory T cells, cytotoxic cells, naive dendritic cells and dendritic cells, respec-

tively.

Chemotherapy drugs

Chemotherapy drugs are given through IV infusion in osteosarcoma treatments,

so their bioavailability is 100%. Thus, we use the following equations to model the

change in concentration of each chemotherapy drug at the tumor site over time:

d[A1]

dt
= vA1(t)− δA1 [A1] (5.11)

d[A2]

dt
= vA2(t)− δA2 [A2] (5.12)

d[A3]

dt
= vA3(t)− δA3 [A3] (5.13)

Here, vA1(t), vA2(t) and vA3(t) are the amount of Methotrexate, Doxorubicin and

Cisplatin injected per day per liter of body volume, with the unit of mg/l per day;
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while δA1 , δA2 and δA3 are respectively the decay rate of Methotrexate, Doxorubicin

and Cisplatin.

5.1.2 Data of the Model

The populations of cancer cells, necrotic cells, immune cells and cytokines are

obtained from the previous chapter. Then, given a treatment regimen of interest,

we apply its standard dosage to our model. Most doses of chemotherapy drugs

for osteosarcoma are measured in mg/m2, but we model the drug concentration at

tumor site in mg per liter of body volume. We therefore need to convert drug doses

from mg/m2 to mg/l. We use an average body surface area of a human male of 1.9

m2 [219] and an average male body volume of 59.7 liters [220] for conversion. That

is, for example, 75 mg/m2 would be equivalent to:

75 mg/m2 =
75 mg

m2
× 1.9 m2

59.7 l
= 2.3869 mg/l (5.14)

5.1.3 Parameter values

The drug efficacy coefficients, as well as cell cycle time and fraction of cells in the

vulnerable phase of the cell cycle are taken from [211]. Using the molecular mass of

chemotherapy drugs [216, 221, 223, 222], we convert the drug efficacy coefficients

given in [211] to units of (mg/l)−1:

β1 =

(
1.126 l

µmol

)(
106 µmol

1 mol

)(
1 mol

454.4 g MTX

)(
1 g

1000 mg

)
= 2.4780 l/mg

β2 =

(
1.063 l

µmol

)(
106 µmol

1 mol

)(
1 mol

580 g DOX

)(
1 g

1000 mg

)
= 1.8328 l/mg

β3 =

(
0.044 l

µmol

)(
106 µmol

1 mol

)(
1 mol

300 g CDDP

)(
1 g

1000 mg

)
= 0.1467 l/mg

Drug efficacy coefficients for Doxorubicin-resistant and Cisplatin-resistant cells

are also included in [211], and can be converted in a similar way. The values for
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all chemotherapy-related parameters in our model and their sources are given in

Table A.1.

The fractional cancer cell killed by chemotherapy, KC , is taken from [216, 224]

to be 0.9, based on the notion that chemotherapy strength is one log kill [225].

Since chemotherapy is more effective at eliminating fast proliferating cells, it is

safe to assume that the rates of chemotherapy-induced death of immune cells are

smaller than that of cancer cells. Hence, KMN
, KM , KTN , KTh , KTr , KTc , KDN and

KD are assumed to be smaller than but on the same order of magnitude as KC ,

and we use a value of 0.6 for them, similar to [224].

Decay rates of chemotherapy drugs are derived from their elimination half lives

in the following way:

δA =
ln2

half life of A in days
(5.15)

where δA is the decay rate of A. On average, the elimination half lives of Doxoru-

bicin, Cisplatin and high dose Methotrexate are 2 hours, 25 minutes and 11.5 hours

respectively [226, 227, 228], resulting in the corresponding decay rates of 8.3178,

39.9253 and 1.4466.

As no values for αNCA and δCTcA3 can be found in literature, we assume biolog-

ically reasonable values for these parameters. αNCA is the fraction of dying cancer

cells induced by chemotherapy that become necrotic cells, so it is bounded between

0 and 1. We make the assumption that a large proportion of dying cancer cells from

treatment turn into necrotic cells, and set αNCA = 0.8. For δCTcA3 , we assume that

Cisplatin at maximum effect can double the cancer killing ability of cytotoxic cells,

or equivalently δCTcA3 = 1. In order to investigate whether our assumptions on

these parameters have a large impact on the cancer population, in the later section

we perform sensitivity analysis, as well as study the change in cancer population
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after treatment while varying these two parameters.

Table 5.2: Chemotherapy Parameters. Name, unit, de-

scription, value and source of chemotherapy-related pa-

rameters used in the model.

Parameter Unit Description Value Source

f none
Initial fraction of cells in vulnerable

phase of the cell cycle
0.5 [211]

a day Cell cycle time 0.6667 [211]

T day Duration of drug exposure

τ day min(T, fa) [211]

β1 mg/l−1 Methotrexate efficacy coefficient 2.4780 [211]

β2 mg/l−1 Doxorubicin efficacy coefficient 1.8328 [211]

β3 mg/l−1 Cisplatin efficacy coefficient 0.1467 [211]

KC day−1
Rate of chemo-induced tumor death 0.9 [216, 224]

KMN
day−1

Rate of chemo-induced death

of naive macrophages
0.6 [224]

KM day−1
Rate of chemo-induced death

of macrophages
0.6 [224]

KTN day−1
Rate of chemo-induced death

of naive T-cells
0.6 [224]

KTh day−1
Rate of chemo-induced death

of helper T-cells
0.6 [224]

KTr day−1
Rate of chemo-induced death

of regulatory T-cells
0.6 [224]

KTc day−1
Rate of chemo-induced death

of cytotoxic cells
0.6 [224]
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KDN day−1
Rate of chemo-induced death

of naive dendritic cells
0.6 [224]

KD day−1
Rate of chemo-induced death

of dendritic cells
0.6 [224]

δCTcA3 none
Effect of Cisplatin to promote cancer

killing ability of cytotoxic cells
1 Assumed

αNCA none
Fraction of chemo-induced dying tumor

cells that become necrotic cells
0.8 Assumed

δA1 day−1 Decay rate of Methotrexate 1.4466 [228]

δA2 day−1 Decay rate of Doxorubicin 8.3178 [226]

δA3 day−1 Decay rate of Cisplatin 39.9253 [227]

5.1.4 Non-Dimensionalization

To achieve additional numerical stability, non-dimensionalization of the whole

system is carried out. For each variable X of the original system in chapter 4, its

dimensionless form can be written similar to chapter 4:

X =
X

X∞
, (5.16)

where X∞ is the steady state value of X given in Table 4.2. For the newly

added variables, which are the chemotherapy drugs, we introduce the following

non-dimensional variables:

A =
A δA
v∗A

, (5.17)

where A is the dimensional variable, δA is the decay rate of A, and v∗A is the amount

of drug A injected on its first injection day of the treatment. Further details on

non-dimensionalization are given in Appendix B.2.
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To solve the non-dimensional system of ordinary differential equations, we use

solve ivp function from Scipy package in python [188], with initial conditions from

a chosen data point of interest in each cluster.

5.1.5 Sensitivity Analysis

We perform local gradient-based sensitivity analysis on all chemotherapy-related

parameters to study their impacts on the outputs of the system. For the non-

dimensional system dX
dt

= F (X, θ, t) with model parameters θ = θ1, ..., θN , the local

(first order) sensitivity of parameter θi with respect to the variable X is defined as

[189]:

si =
∂X

∂θi
(5.18)

As we are mainly interested in how drug-related parameters affect the number

of cancer cells, we calculate sensitivity of treatment parameters with respect to

cancer and total cell population. Since the effects of the treatment does not reach

the steady state, we consider time-dependent sensitivity. That is, we measure

sensitivity of parameters in every time step throughout the treatment and some

time after. The change in sensitivity of θi over time can be derived as follows:

∂si
∂t

=
∂

∂t

(
∂X

∂θi

)
=

∂

∂θi

(
∂X

∂t

)
=
∂F (X, θi, t)

∂θi
(5.19)

By applying the chain rule, we have:

∂si
∂t

=
∂F

∂θi
+
∂F

∂X
si (5.20)

In addition, we also look at the relative sensitivity, which is commonly used in

metabollic control analysis of biological networks [189]:

si(t) = si(t)
θi

X(t)
(5.21)
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Then, we compute the average sensitivity of each type over a period of time T:

Si =
1

T

∫ T

0

si(t)dt, Si =
1

T

∫ T

0

si(t)dt (5.22)

The sensitivity varies for different values of the parameters, so we consider a

small neighborhood Ω(θ) of the given parameter set and calculate:

Si =

∫
Ω

Si(θ)dθ, Si =

∫
Ω

Si(θ)dθ (5.23)

where the integrals are computed using a numerical technique called sparse grid

points [190, 191].

5.1.6 Optimization of drug dosage

We introduce a framework to find the appropriate dose of a given treatment

regimen for each patient. To find the optimal dosage to achieve a target cancer

population after treatment, we minimize the following loss function:

L(v, t) =
(
Ĉ(v, t)− Ctarget

)2

+ κ
M∑
i=1

|vi| (5.24)

subject to 0 ≤ vi ≤ Ui, i = 1, ...,M

Here, v is a vector of length M , denoting the doses of the M drugs in the given

treatment, t is the time of interest at which cancer population is evaluated for

optimization, typically right after treatment or at the time of surgery. Ĉ(v, t) is

the cancer population with drug doses v at time t of interest, and is computed via

our ODE solver. Ctarget is the target cancer population at time t, and is chosen by

the user. As very high doses of chemotherapy are known to induce high toxicity to

the patient, we put an upper bound constraint Ui on the dosage of each drug.

We utilize the least square error to describe the difference between Ĉ(v, t) and

the target cancer population Ctarget. The regularization term κ
∑M

i=1 |vi| is added
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so that we can reach the approximate target cancer population with the smallest

possible drug doses. The higher the regularizaztion parameter κ is, the more the

optimizer focuses on achieving small doses and less on achieving small error between

Ĉ(v, t) and Ctarget.

The optimize.minimize function from Scipy package in python is used to solve

this optimization problem, with the outputs being the optimal doses.

5.2 Results

5.2.1 Dynamics of cancer microenvironment with MAP treatment

Typical treatments for osteosarcoma include neoadjuvant chemotherapy, usually

for 10 weeks, then surgery, and adjuvant chemotherapy after the surgery for up to a

year [210]. The most common chemotherapy regimen for osteosarcoma in children

and young adults is the MAP regimen, which is a combination of Doxorubicin,

Cisplatin and high dose Methotrexate [209]. This regimen consists of six 35-day

cycles, where two cycles are applied before surgery and the remaining four are

applied after surgery. In each cycle, 37.5 mg/m2 of Doxorubicin and 60 mg/m2 of

Cisplatin are administered through IV per day on day 1 and 2, and 12000 mg/m2

of Metrotrexate is administered through IV over 4 hours per day on day 22 and

29 [229, 230]. Different infusion schedules have been used for Doxorubicin and

Cisplatin: Doxorubicin can be injected as a bolus or a 4-hour infusion each day, or

a continuous infusion over 48 hours, while Cisplatin can be injected over 2 or 4 hours

each day, or continuously over 72 hours [230]. Here, we study the dynamics of cells

and cytokines populations in large osteosarcoma tumors during neoadjuvant MAP

treatment, which includes two 35-day cycles. In particular, we use the steady state
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values of cells and cytokines in chapter 4 as initial conditions, the typical dosage of

the MAP regimen as the drug inputs, and 4-hour infusions on previously specified

days as the injection schedule for each drug. We set the start of chemotherapy

treatment to be 7 days after biopsy, as it usually takes a few days to receive the

results of the biopsy.

Figure 5.2 shows that for all clusters, cancer populations are reduced signifi-

cantly after two cycles of MAP treatment. It is important to note that the cancer

populations do not reach zero after chemotherapy so cancer cells will start grow-

ing again after chemotherapy. However, the goal of neoadjuvant therapy is not to

eradicate cancer cells completely, but only to reduce the boundaries of the tumor

and to remove any small metastases that have not been detected [231].

Cluster 2 has the highest cancer population at the start of treatment, so natu-

rally cluster 2 also has the highest cancer population left after neoadjuvant therapy.

Interestingly, cluster 1 has approximately the same number of cancer cells as clus-

ter 3 at the start of treatment, but ends up with higher cancer population than

cluster 3 after treatment. This is because in each chemotherapy cycle, there are

a few weeks where no chemotherapy drugs are administered in order to allow the

patient to recover from the drugs’ toxicity, and thus during these few weeks, cancer

cells can start growing again. Cluster 1’s cancer population, which is reported in

chapter 4 to have the highest growth rate in the three clusters, grow more during

the weeks with no drugs given, resulting in higher number of cancer cells after

treatment compared to cluster 3. This observation suggests that we should take

the patient’s cancer growth rate into account when choosing their chemotherapy

dosage.

During the MAP treatment, necrotic cells, dendritic cells and HMGB1 oscillate

between increasing and decreasing in abundance. Since chemotherapy drugs aim
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Figure 5.2. Dynamics with MAP treatment. Behaviors of cells and cy-
tokines in osteosarcoma tumors during the MAP treatment and a
few months after treatment. Initial conditions are large tumors in
each cluster, i.e. the without-treatment steady state values of each
cluster. Drug doses are the typical doses of the MAP regimen. The
different color lines indicate the dynamics of different clusters.
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to kill cancer cells, and a fraction of dying cancer cells become necrotic cells, the

population of necrotic cells increases on the days the drugs are injected and there

are many drug-induced dying cancer cells. However, during the weeks where no

chemotherapy drugs are administered, only drug-free dying cancer cells can become

necrotic cells, and with cancer population being already reduced by the previously

given drugs, the number of drug-free dying cancer cells is small, leading to a decrease

in necrotic cell population.

HMGB1 is mainly produced by necrotic cells, so HMGB1 abundance increases

when necrotic population increases and decreases when necrotic population de-

creases. Meanwhile, dendritic cells are activated largely by HMGB1, so the dy-

namics of dendritic cells share the same trend with the dynamics of HMGB1. That

means both HMGB1 and dendritic cells increase on the days chemotherapy drugs

are administered and decrease on the weeks with no drugs given. An increase in

dendritic cell population right after Doxorubicin [232, 233, 234, 235] and Cisplatin

[81, 82, 214] introduction, as well as a rise in HMGB1 production following Dox-

orubicin [234, 235, 236], has been shown in several studies, which aligns with our

results.

We observe that in general, helper T cells, cytotoxic cells and IFN-γ increase

in population during chemotherapy. There are many studies that report an in-

crease in helper T cells and/or cytotoxic T cells’ abundance due to Doxorubicin

[235, 236, 237, 238, 239, 240], Cisplatin [81, 214, 217, 241] and Methotrexate [242],

and thus support our findings. Especially, Doxorubicin has been known to induce

immunogenic cell death, which leads to the maturation of dendritic cells and ac-

cordingly the activation of helper and cytotoxic T cells [232, 238, 243]. IFN-γ is

produced by helper T cells and cytotoxic cells, thus IFN-γ abundance also increases

as these two cells increase in population during MAP treatment. The increase in
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IFN-γ level after administration of Doxorubicin and Cisplatin has also been ob-

served in multiple studies [214, 234, 235, 244].

On the other hand, population of macrophages, regulatory T cells, cytokines

groups µ1 and µ2 mainly decrease during MAP treatment. These immune cells

are not affected by the necrotic cell death process caused by chemotherapy, so they

decrease in population during chemotherapy as they are also killed by the drugs. µ1

and µ2 are produced by helper T cells, macrophages and cancer cells. Even though

helper T cell population increases during treatment, macrophages and cancer cell

populations decrease at a greater magnitude, which leads to an overall decrease in

µ1 and µ2 throughout MAP treatment. Several other studies have also reported a

reduction in regulatory T cell number due to Cisplatin [81, 214, 217] and a decrease

in the level of IL-6, which is the main component of µ2, due to Methotrexate and

Doxorubicin [242, 244, 245, 246].

5.2.2 Sensitivity analysis

To study the impact of the newly introduced parameters on the outputs of the

model, we perform local sensitivity analysis on the chemotherapy-related parame-

ters using the non-dimensional system. The initial conditions for sensitivity analysis

are the large tumors in each cluster, which we use without-treatment steady state

values to represent. It is worth noting that the cell cycle time, a, is not included

in this sensitivity analysis, because it is a simple measurement rather than a pa-

rameter that needs to be estimated or fitted to the experimental data. The most

sensitive time-averaged parameters in terms of sensitivity and relative sensitivity

are presented in Figure 5.3.

In all clusters, the initial fraction of cells in the vulnerable phase of the cell

cycle f has the largest impact on cancer population among treatment-related pa-
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SensitivityA Relative sensitivityB C

D

Figure 5.3. Sensitivity of chemotherapy-related parameters. Sub-figure
A shows the local sensitivity of 5 most sensitive treatment-related
parameters with respect to cancer population and total cell popu-
lation. Sub-figure B shows the local relative sensitivity of 5 most
sensitive treatment-related parameters with respect to cancer pop-
ulation and total cell population. Sub-figures C and D display the
cancer population after treatment with different values of αNCA
and δCTcA3 , respectively.
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rameters according to both the sensitivity and relative sensitivity analyses. The

rate of chemotherapy-induced cancer cell death, KC , and the drug efficacy coef-

ficients of Doxorubicin and Cisplatin, β2 and β3, are also sensitive to cancer and

total cell population during treatment. Meanwhile, the drug efficacy coefficient of

Methotrexate, β1, does not seem as sensitive, but the decay rate of Methotrexate

is.

We notice that the parameters whose values are assumed, αNCA and δCTcA3 , do

not have a large effect on the cancer population or total cell population based on the

results of the sensitivity analysis. To further confirm this, we also plot the cancer

population after treatment with different values of these parameters. We choose

αNCA ranging from 0.2 to 1, because it is a fraction and thus is bounded between 0

and 1, and δCTcA3 ranging from 0.2 to 5 times its original value. Figure 5.3C and D

show that varying either of these parameters results in negligible changes to cancer

population after treatment.

5.2.3 Dynamics of cancer microenvironment in chemo-resistant tumors

with MAP treatment

The effectiveness of chemotherapy is highly dependent on the existence of resis-

tant cancer cells. We are interested in studying the change in population of cells and

cytokines when osteosarcoma cells are resistant to one or multiple drugs within the

MAP regimen. As mentioned in section 2, we obtain drug efficacy coefficients from

[211], where these values were estimated to fit the survival data of cancer cells under

different chemotherapy drugs. The same study [211] also includes the estimated

drug efficacy coefficients of Doxorubicin and Cisplatin in Doxorubicin-resistant and

Cisplatin-resistant cancer cells, respectively. Using these parameter values, we plot

the dynamics in osteosarcoma microenvironment during MAP treatment when can-
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cer cells are resistant to either Doxorubicin or Cisplatin, or to both drugs. Since

Methotrexate-resistant cells were not used in [211], and hence no parameter values

are available for them, we do not model the dynamics with Methotrexate-resistant

cells.

Figure 5.4A shows that MAP treatment is not as effective in shrinking the tu-

mor, when cancer cells are resistant to Doxorubicin, with the cancer population

after treatment about 60% to 70% higher in Doxorubicin-resistant cells than in

non-Doxorubicin-resistant cells (Table 5.3). The smaller reduction in cancer popu-

lation of Doxorubicin-resistant cells during Doxorubicin administration means fewer

necrotic cells are produced in the process, and accordingly lower level of dendritic

cells (Figure 5.4A), as necrotic cells indirectly promote dendritic cell maturation

through the release of HMGB1. We notice no clear difference in the dynamics of

T cells and macrophages compared to the microenvironment of non-Doxorubicin-

resistant cells. It is worth noting that we model only cancer cells to be resistant to

chemotherapy drugs, so immune cells are by design not resistant to these drugs.

Table 5.3: Cancer population after MAP treatment with

chemotherapy-resistant cells.

Cluster Initial cancer Cancer population after treatment

population Chemotherapy Resistant to Resistant to Resistant to

sensitive DOX CDDP DOX + CDDP

1 1.34× 1010 2.44× 109 3.82× 109 2.49× 109 3.89× 109

2 1.6× 1010 2.6× 109 4.32× 109 2.66× 109 4.41× 109

3 1.34× 1010 1.87× 109 3.23× 109 1.92× 109 3.29× 109

On the other hand, with Cisplatin-resistant cells, we observe little difference in
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Resistant to CDDP

A

B

C

Resistant to DOX

Resistant to DOX and CDDP

Figure 5.4. Dynamics in chemotherapy-resistant cells with MAP
treatment. Sub-figures A-C show the dynamics of immune, can-
cer and necrotic cells in osteosarcoma during the MAP treatment
and a few months after treatment when cancer cells are resistant
to Doxorubicin, Cisplatin, and both Doxorubicin and Cisplatin,
respectively.
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the reduction of cancer population compared to non-Cisplatin-resistant cells (Figure

5.4B, Table 5.3). This is due to the fact that Cisplatin’s drug efficacy parameter,

β3, is small compared to Methotrexate and Doxorubicin’s drug efficacy parameters,

resulting in Cisplatin having a rather minor effect on cancer reduction in the MAP

treatment. Hence, the resistance to Doxorubicin matters more than the resistance

to Cisplatin. Since the Cisplatin-resistance does not have a large impact on the

effectiveness of MAP treatment, cancer cells that are resistant to both Doxorubicin

and Cisplatin have similar dynamics to Doxorubicin-resistant cancer cells (Figure

5.4A, C).

5.2.4 Varying treatment start time

We study the effect of delays in the starting time of treatments on the tumors’

responses to the treatments. Since the tumor growth rate depends on tumor size,

we investigate the effects of delaying the chemotherapy treatment in small, medium

and large tumors, separately. Small tumors are chosen as follows: we first choose

the tumor with the smallest cancer population in cluster 1, then find the tumors in

cluster 2 and 3 that have cancer population closest to the chosen tumor in cluster

1. Medium tumors are taken to be the mean values of all patients in each cluster.

For large tumors, we take the without-treatment steady state values. We plot the

dynamics of cancer population in each cluster when chemotherapy is started 1 week,

which we assume is the earliest start time as it takes a few days to obtain biopsy

results, 1 month, 3 months, and 6 months after the initial diagnosis.

Figure 5.5 and Table 5.4 show that in small and medium tumors, the cancer

population after treatment is higher the longer we wait to start the chemotherapy.

Thus, the earlier start of the chemotherapy leads to the better outcomes in these

tumors. On the contrary, cancer population stays the same after treatment in
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Start at 1 week Start at 1 month Start at 3 months Start at 6 months

B

C

A

Figure 5.5. Dynamics with different start times of MAP treatment.
Sub-figures A-C show the dynamics of cancer population for dif-
ferent MAP treatment’s start times in small, medium, and large
tumors, respectively. In each sub-figure, from left to right: the
treatment starts at 1 week, 1 month, 3 months, and 6 months after
initial diagnosis.
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large tumors regardless of treatment start time. This is because these large tumors

are at their steady states and do not grow more while the patient waits for the

treatment. Then theoretically the treatment start time does not matter as much

for tumors at the steady state or close to reaching the steady state. However, in

reality, when tumors are large, the functionality of the cancerous body part is likely

compromised, and the quality of the patient’s life is affected, which makes us want

to start the chemotherapy promptly for large tumors.

Table 5.4: Cancer population after MAP treatment with

different treatment start times.

Tumor Cluster Initial cancer Cancer population after treatment

size population Start at Start at Start at Start at

1 week 1 month 3 months 6 months

1 2.7× 108 7.64× 107 9.81× 107 1.82× 108 4.04× 108

Small 2 3.07× 108 6.73× 107 7.76× 107 1.05× 108 1.52× 108

3 1.93× 108 4.29× 107 5.26× 107 8.13× 107 1.31× 108

1 6.9× 109 1.41× 109 1.53× 109 1.81× 109 2.12× 109

Medium 2 6.96× 109 1.27× 109 1.37× 109 1.6× 109 1.9× 109

3 5.05× 109 7.55× 108 8.02× 108 9.19× 108 1.09× 109

1 1.34× 1010 2.44× 109 2.44× 109 2.44× 109 2.44× 109

Large 2 1.6× 1010 2.6× 109 2.6× 109 2.6× 109 2.6× 109

3 1.34× 1010 1.87× 109 1.87× 109 1.87× 109 1.87× 109

It was previously observed in chapter 4 that tumors in cluster 1 grow fast even

when the tumor is small, while tumors in clusters 2 and 3 start growing fast when

the tumor is a bit bigger. Hence, when we delay the treatment for a long time,

the small tumor in cluster 1 grows quickly and ends up with much higher cancer
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population after the treatment than in other clusters, as seen in the treatments

starting at 3 months and 6 months (Figure 5.5A, Table 5.4). For small tumors

in clusters 2 and 3, even though they do grow while waiting for treatment, their

growths are not as fast and their cancer populations after the treatment are still

relatively small with the treatment delay. Therefore, it is important to start the

treatment early for small tumors of cluster 1, and it would be ideal but not as

urgent to start the treatment early for small tumors in clusters 2 and 3.

Figure 5.5B indicates that medium tumors in all three clusters grow comparably

fast, and since their cancer populations after treatment are not very small, we

should start chemotherapy for them as early as possible. We also notice that for

small and medium tumors in all clusters, the difference in cancer population after

the treatment is not significant between starting the treatment after 1 week or 1

month from the diagnosis. However, treatments starting at 3 months or 6 months

result in much bigger cancer population after the treatment. Based on our model,

it is thus not recommended to start the chemotherapy several months after the

diagnosis, but rather to start within a month of the initial diagnosis.

5.2.5 Dynamics of cancer microenvironment with different treatment

regimens

We investigate the effects of two other chemotherapy regimens on the osteosar-

coma microenvironment. A combination of Doxorubicin and Cisplatin (AP) is a

very common treatment of osteosarcoma tumors in older adults, as they are less

likely to be able to tolerate high dose Methotrexate. This regimen consists of three

preoperative 21-day cycles, where 25 mg/m2 of Doxorubicin is given as a bolus

once per day from day 1 to 3, and 100 mg/m2 of Cisplatin is given as a continuous

infusion over 24 hours on day 1 in each cycle [247, 248]. High dose Methotrexate
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A Treatment with DOX and CDDP

Treatment with MTX as single agentB

Figure 5.6. Dynamics with different treatment regimens. Sub-figure A
shows the dynamics of cells and cytokines in osteosarcoma mi-
croenvironment in response to the combination of Doxorubicin and
Cisplatin. Sub-figure B shows the dynamics of cells and cytokines
in osteosarcoma microenvironment in response to a high dose of
Methotrexate as a single agent.
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(MTX) has also been used as a single agent to treat osteosarcoma, with 4 courses of

8 to 12 mg/m2 given weekly before surgery [249]. In this study, we use the average

dose which is 10 mg/m2 of Methotrexate injected over 4 hours on day 1 every week

for this regimen.

Figure 5.6 shows that MTX and AP regimens both have higher cancer popula-

tion after treatment than MAP. This agrees with the finding from [250] that AP

regimen is less effective but safer than MAP regimen. Meanwhile, MTX as a single

agent is reported to be insufficient as a neoadjuvant therapy for osteosarcoma in

[249], which uses the same MTX dosages and schedules as this study. Overall, ac-

cording to our model, MAP is the superior treatment to MTX and AP in terms of

cancer-killing ability. In fact, a recent study reports that MAP is still the favorable

option for osteosarcoma among various combinations of chemotherapy drugs [251].

The AP regimen has relatively similar dynamics of cells and cytokines as the

MAP regimen. That is, the populations of HMGB1, necrotic and dendritic cells

increase when drugs are given and decrease when no drugs are given; while popu-

lations of helper T cells, cytotoxic cells and IFN-γ decrease at a smaller magnitude

than their increase, so in general they increase during treatment; and regulatory

T cells, macrophages, cytokines groups µ1 and µ2 generally decrease in abundance

during treatment. The MTX treatment is given at closer intervals than AP and

MAP treatments, so there is always some drug at the tumor site during MTX

treatment. Therefore, the change in population of cells and cytokines over time

for MTX regimen is smoother and does not fluctuate as much as the other two

treatments, even though the dynamics of MTX regimen follow the same trend as

them.
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5.2.6 Optimal dosage for MAP treatment

Since neoadjuvant chemotherapy tries to reduce the boundaries of the tumor

before surgery, we can choose the desired size of tumor for surgery and run our

optimization framework to find the optimal dosage of chemotherapy drugs for the

tumor to reach this size at a specific time. Osteosarcoma sizes vary greatly be-

tween patients at first diagnosis, and large tumors cannot reduce to the same size

as small tumors after neoadjuvant treatment without exceeding the safe dosage of

chemotherapy drugs. Thus, we choose different desired cancer population to opti-

mize for depending on the size of tumor at first diagnosis. With MAP being the

preferable treatment for osteosarcoma as mentioned in the previous section, here

we present the optimal dosage of the MAP regimen for a large and a small tumor

in each cluster, where the desired cancer population is 2.916× 109 for large tumors

and 1.36 × 108 for small tumors, which is equivalent to about 5cm per dimension

(length, width, depth) for large tumors and 1.8cm per dimension for small tumors.

We use 20000 mg/m2 of Methotrexate, 45 mg/m2 of Doxorubicin, and 75 mg/m2

of Cisplatin per infusion day as maximum potential dosage, or equivalently 40000

mg/m2 of Methotrexate, 90 mg/m2 of Doxorubicin, and 150 mg/m2 of Cisplatin

per 35-day cycle.

Table 5.5: Optimal MAP dosages for large tumors.

Cluster Initial Cancer population MTX DOX CDDP

cancer population after treatment (mg/m2) (mg/m2) (mg/m2)

1 1.34× 1010 2.916× 109 8993 28 45

2 1.6× 1010 2.916× 109 10134 32 51

3 1.34× 1010 2.916× 109 6176 19 31
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Table 5.6: Optimal MAP dosages for small tumors.

Cluster Initial Cancer population MTX DOX CDDP

cancer population after treatment (mg/m2) (mg/m2) (mg/m2)

1 2.7× 108 1.36× 108 4926 15 25

2 3.07× 108 1.36× 108 4196 13 21

3 1.93× 108 1.36× 108 1305 3 6

The optimal dosages for large tumors are given in Table 5.5. Large tumors are

taken to be the steady state values of each cluster. As cluster 2 has the highest

cancer population at the steady state, it has the highest optimal dosage for each

drug of the MAP treatment among all clusters. Interestingly, cluster 1 and 3 have

the same cancer population before treatment, but cluster 1 needs higher dosage to

achieve the same cancer population after treatment as cluster 3. This is due to the

fact that cluster 1’s cancer cells grow faster during treatment, so the same dosage

of drugs would result in higher cancer population in cluster 1 than in cluster 3 after

treatment, as seen in section 3.1. Thus, it is important to take tumor growth rate

of the patient into account while finding the optimal dosage of chemotherapy.

Figure 5.7A shows that cancer cells in cluster 1 also grow fast after treatment,

so it would be ideal to perform surgery quickly after neoadjuvant therapy. If it is

impossible to start surgery promptly, we can choose a later time point to optimize

for, so that at the time of surgery we still have the desired tumor size for resection.

For example, if we cannot perform surgery until a month after chemotherapy, in-

stead of using cancer population at day 80 for optimization, which is 3 days after

the second cycle of chemotherapy, we can use cancer population at day 107 for

optimization to find optimal dosage, which is 30 days after the second cycle of
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A B

Figure 5.7. Dynamics with optimal dosages for MAP treatment. Sub-
figure A shows the dynamics of cancer population in a large tu-
mor in each cluster, where MAP dosages were optimized to obtain
2.916 × 109 cancer cells after treatment. Sub-figure B shows the
dynamics of cancer population in a small tumor in each cluster,
where MAP dosages were optimized to obtain 1.36 × 108 cancer
cells after treatment.

chemotherapy. Then with the estimated optimal dosage, we will have the desired

cancer population at day 107, which is the time of surgery.

The optimal dosages for a small tumor in each cluster are given in Table 5.6.

Small tumors are chosen in the same method as described in section 5.2.4. The

cancer populations in these small tumors are not much bigger than the desired

cancer population after treatment, so in all clusters the optimal dosages for small

tumors are much smaller than the optimal dosages for large tumors. Especially

cluster 3, with cancer population before treatment very close to desired cancer

population, has very small optimal dosages.

In many cases, even though the tumor is small enough for resection, neoadju-

vant chemotherapy is still given to remove any potential metastases that are too

small to be yet detected. Another reason for neoadjuvant chemotherapy in small

tumors is to allow evaluation of the tumor response [209]. Figure 5.7B suggests

that although chemotherapy does not reduce cancer populations significantly as
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the cancer populations are already small to begin with, it helps prevent the cancer

populations from growing bigger before surgery. Therefore, chemotherapy can also

be used to control the growth of tumor while the patient waits for surgery.

Overall, with our optimization framework, we can find the optimal chemother-

apy dosage to obtain the desired cancer population on the day of surgery. Our re-

sults show that it is important to consider each individual patient’s cancer growth

rate while computing optimal dosage, as patients with faster growth rate would

need a higher dose.

5.3 Discussion

Our results indicate that besides reducing the number of cancer cells, chemother-

apy induces specific behaviors in certain immune cells and cytokines by causing

necrosis of cancer cells. In particular, the population of HMGB1 and dendritic

cells increase when chemotherapy drugs are administered and decrease when these

drugs are not given. In addition, helper T cells, cytotoxic cells and IFN-γ gener-

ally increase in population during treatment, which aligns with the findings from

[81, 82, 214, 217, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 244]. Mean-

while, cells and cytokines that are not affected by this necrotic cell death, decrease

in abundance due to being killed by chemotherapy drugs.

We note that it would be good to start chemotherapy early, unless the tumor is

close to its steady state, as tumors of small and medium size will grow more while

the patient waits for treatment. It is especially important to start chemotherapy

promptly for tumors that grow fast such as those in cluster 1. Interestingly, we also

notice that with the same initial cancer population and the same dosage, the cancer

population after treatment is higher in cluster 1 than in cluster 3, where cluster
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3 has slower cancer growth rate than cluster 1. All of these observations suggest

that it is necessary to take the unique growth rate of the tumor into consideration

when choosing the dosage and treatment start time for the patient, inferring the

importance of personalized medicine.

In this study, we introduced a simple optimization framework to find the appro-

priate drug dosages to achieve a desired cancer population on a chosen day, such

as the day of surgery. The results of our optimization also agrees with the above

observation that the individual’s cancer growth rate is essential for calculating op-

timal chemotherapy dosages. Since high doses of chemotherapy are known to have

high toxicity and to induce many serious health problems [252, 253], it could be

useful to use a mathematical model such as ours to estimate the appropriate dose

rather than to give the standard dose to all tumor sizes, especially when small tu-

mors are likely to need much smaller doses than the standard ones. Moreover, our

model divides patients into groups based on their immune compositions, and thus

can estimate their cancer growth more accurately than having one model for all

patients, resulting in a more customized dosage recommendation for each patient.

Finding the right parameter values is a big challenge in mathematical modelling

of cancers. While it would be ideal to acquire parameters by performing in vivo and

in vitro experiments, these experiments are often expensive and time-consuming.

Here, we use most chemotherapy-related parameters from a study that fitted these

values to experimental data [211]. Therefore, our treatment parameters should be

close to parameter values obtained by performing experiments, and more accurate

than values chosen based on biological rationality or derived from assumptions. For

the two parameters that we have to assume appropriate values for, we study their

impact on the results through sensitivity analysis as well as by varying them, and

find that different values of these parameters result in fairly similar outputs of our
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model.

There are still some factors that our model does not account for. For instance,

there are multiple levels of sensitivity of cancer cells to chemotherapy, which means

two different patients can both be resistant to a chemotherapy drug, but one pa-

tient might be more sensitive than the other. Thus, the drug efficacy coefficient

of Doxorubicin-/Cisplatin-resistant cells used in our model do not represent all

Doxorubicin-/Cisplatin-resistant drug efficacies, as these parameters vary based

on the level of resistance of the cells. However, our model is still useful for dose

recommendations or for physicians to take into consideration while choosing be-

tween treatment options. Based on our model, a physician can monitor the tumor

reduction throughout the treatment and adjust parameters such as drug efficacy

coefficients according to how the tumor responds to treatment.

Another factor that our model did not consider is the different rates of drug-

induced immune cell death. Since chemotherapy target cells with a faster metabolic

rate more successfully [216], it is reasonable to expect that the death rates by

chemotherapy differ between types of immune cells. Therefore, one idea to better

our model is to update the rates of chemotherapy-induced death of immune cells

in proportion to their metabolic rates. Other ways to improve upon this work

include adding other chemotherapy drugs like Ifosfamide, which is also a commonly

used drug for osteosarcoma [209, 210]; extending to a different treatment option

besides chemotherapy such as radiotherapy and immunotherapy; or using partial

differential equations to take into account the spatial distribution of the tumors as

well.
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C H A P T E R 6

CONCLUSION

Due to the high cost of flow and mass cytometry, there has been a recent surge in

the development of computational methods for estimating the relative distributions

of cell types from the gene expression profile of a bulk of cells. These computational

methods are referred to as digital cytometry methods. In chapter 2, we compare

five common digital cytometry methods, including three linear models and two

rank-based methods, on simulation data, whole blood RNA-Seq data, and PBMC

microarray data.

Rank-based methods ssGSEA DM and SingScore DM give conflicting results

between sample-level and cell-level correlation with ground truth fractions, and

overall perform worse than linear methods. DeconRNASeq’s performance depends

heavily on how comparable the signature matrix and mixture data are. CIBER-

SORT and CIBERSORTx B-mode perform the best among all mentioned methods

based on sample-level and cell-level Pearson and Spearman correlation with ground

truth cell fractions for all three data sets, regardless of the signature matrix used.

CIBERSORTx B-mode, which uses batch correction on the mixture data, tends to

slightly outperform CIBERSORT, especially when signature matrix and mixture

data come from different platforms. However, CIBERSORTx S-mode, which uses

batch correction on the signature matrix, does not perform as well. This suggests
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further investigation into the way batch correction is used for adjusting the signa-

ture matrix in order to eliminate the technical variations between signature matrix

and mixture data.

As the tumor immune microenvironment has been shown to be important in

predicting the tumor progression and the outcome of treatments, in chapter 3,

we study different immune patterns in osteosarcoma and their clinical character-

istics. We use the best performing digital cytometry method reported in chapter

2, CIBERSORTx B-mode, to obtain the relative abundance of 22 immune cells in

osteosarcoma primary tumors. Then we cluster patients based on their estimated

immune abundance and analyze the characteristics of these clusters, along with the

relationship between immune infiltration and outcome of patients.

Three clusters of osteosarcoma patients with distinct immune compositions

are found. We observe that abundance of cytotoxic T cells, NK cells and M1

Macrophages have a positive association with prognosis, while abundance of γδ

T cells, Mast cells, M0 Macrophages and Dendritic cells have a negative associ-

ation with prognosis. Accordingly, cluster 2, with the highest proportion of M0

macrophages and the lowest proportion of cytotoxic T cells and M1 macrophages,

has the worst outcome among clusters. Cluster 3, with higher levels of cytotoxic T

cells, M1 macrophages and lower level of M0 macrophages than cluster 2, appears

to have the best outcome. Cluster 1, which has both high levels of immune cells

with good prognosis and of immune cells with poor prognosis, has better outcome

than cluster 2 but worse outcome than cluster 3.

Using the same cluster assignment as chapter 3, in chapter 4, we build a data-

driven mathematical model of osteosarcoma progression while taking into account

the interactions between immune cells and cancer cells. Based on our model, out of

the three clusters, cluster 3 appears to have the most favorable tumor growth, and
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cluster 2 has the least favorable growth. This observation agrees with the findings

from clinical information of these clusters in chapter 3, as mentioned above. We

also find that during osteosarcoma progression, the number of dendritic cells, helper

T cells, cytotoxic cells, and the amount of IFN-γ first increase and then decrease,

while the regulatory T cell population decreases and then increases. This switch in

the dynamics of immune cells and cytokines happens around the same time that

cancer cells have the fastest growth.

The global sensitivity analysis in chapter 4 indicates that the cancer death rates

by cytotoxic cells and IFN-γ, the cancer proliferation rates by cytokines groups µ1

and µ2, as well as the cancer self-proliferation and apoptosis rates are the most

impactful parameters on cancer growth. Additionally, among all immune param-

eters, the activation and decay rates of macrophages and regulatory T cells have

the most impact on cancer growth. The results of chapter 4 also suggest that it is

necessary to investigate the complex interactions between immune cells and cancer

cells instead of purely looking at the abundance of certain immune cells as a marker

for the disease’s progression.

In chapter 5, we extend the model in chapter 4 to include the interactions be-

tween the key components of osteosarcoma microenvironment and common chemother-

apy drugs: Methotrexate, Doxorubicin and Cisplatin. We find that during the

chemotherapy treatment, dendritic cells and HMGB1 increase in population when

drugs are given and decrease in population while the patient waits for the next dose

of drugs, while helper T cells, cytotoxic cells and IFN-γ have an overall increase in

abundance. Other cells and cytokines of the microenvironment, which are not un-

der the impact of necrotic cell death, have reduced populations after the treatment.

Overall, the MAP regimen, which consists of all three drugs above, is effective at

minimizing the number of cancer cells, and works better than Methotrexate alone
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or a combination of Doxorubicin and Cisplatin.

We observe that it is important to start chemotherapy treatment quickly after

diagnosis, unless the tumor is close to its steady state, as the tumor can grow while

the patient waits for treatments. Interestingly, with the same dosage and treatment

start time, tumors in cluster 1 have a higher cancer population after treatment than

those in cluster 3, because cluster 1’s tumors have a faster growth rate. Accordingly,

tumors in cluster 1 need higher dosages to achieve the same results as tumors in

cluster 3. These findings from chapter 5 highlight the importance of considering the

individual growth of the tumor when deciding on the dosage and treatment start

time for a patient, as fast growing tumors require higher dosages and an earlier

start to treatment than slow growing tumors.
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A P P E N D I X A

SUPPORTING INFORMATION FOR CHAPTER 4

A.1 System Analysis

A.1.1 Full dimensional system of ODEs

Combining Equations (4.1)–(4.16) we obtain the following system of ODEs:

d [MN ]

dt
= AMN

−
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN

[MN ] , (A.1)

d [M ]

dt
=
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δM [M ] , (A.2)

d [TN ]

dt
= ATN − (λThM [M ] + λThD [D]) [TN ]

− λTrµ1 [µ1] [TN ]

− (λTcTh [Th] + λTcM [M ] + λTcD [D]) [TN ]− δTN [TN ] , (A.3)

d [Th]

dt
= (λThM [M ] + λThD [D]) [TN ]− (δThTr [Tr] + δThµ1 [µ1] + δTh) [Th] , (A.4)

d [Tr]

dt
= (λTrµ1 [µ1]) [TN ]− δTr [Tr] , (A.5)

d [Tc]

dt
= (λTcTh [Th] + λTcM [M ] + λTcD [D]) [TN ]

− (δTcTr [Tr] + δTcµ1 [µ1] + δTc) [Tc] , (A.6)

d [DN ]

dt
= ADN − (λDC [C] + λDH [H]) [DN ]− δDN [DN ] , (A.7)

d [D]

dt
= (λDC [C] + λDH [H]) [DN ]− (δDC [C] + δD) [D] , (A.8)

127



d [C]

dt
= (λC + λCµ1 [µ1] + λCµ2 [µ2]) [C]

(
1− [C]

C0

)
−
(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C] , (A.9)

d [N ]

dt
= αNC

(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C]− δN [N ] , (A.10)

d [Iγ]

dt
= λIγTh [Th] + λIγTc [Tc]− δIγ [Iγ] , (A.11)

d [µ1]

dt
= λµ1Th [Th] + λµ1M [M ] + λµ1C [C]− δµ1 [µ1] , (A.12)

d [µ2]

dt
= λµ2Th [Th] + λµ2M [M ] + λµ2C [C]− δµ2 [µ2] , (A.13)

d [H]

dt
= λHM [M ] + λHD [D] + λHN [N ]− δH [H] . (A.14)

A.1.2 Proof of positivity

To prove that the system with positive coefficients and positive initial condi-

tions has a positive solution, let us consider the set of integrating factors, one for

each variable:

ηMN
(t) = exp

t∫
0

(
λMIγ [Iγ] + λMµ1 [µ1] + δMN

)
ds

ηTN (t) = exp

t∫
0

(λThM [M ] + λThD [D] + λTrµ1 [µ1]

+λTcTh [Th] + λTcM [M ] + λTcD [D] + δTN ) ds

ηTh (t) = exp

t∫
0

(δThTr [Tr] + δThµ1 [µ1] + δTh) ds

ηTC (t) = exp

t∫
0

(δTcTr [Tr] + δTcµ1 [µ1] + δTc) ds

ηDN (t) = exp

t∫
0

(λDC [C] + λDH [H] + δDN ) ds
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ηD (t) = exp

t∫
0

(δDC [C] + δD) ds

ηC (t) = exp

t∫
0

(
δCTc [Tc] + δCIγ [Iγ] + δC − (λC + λCµ1 [µ1] + λCµ2 [µ2])

(
1− [C]

C0

))
ds

ηM (t) = exp (δM t) , ηTr (t) = exp (δTrt) , ηN (t) = exp (δN t) , ηH (t) = exp (δHt) ,

ηIγ (t) = exp
(
δIγ t
)
, ηµ1 (t) = exp (δµ1t) , ηµ2 (t) = exp (δµ2t) .

These integrating factors will not allow us to derive explicit solution as some of

them are defined through the unknown variables. However, it is important to note

that the factors are strictly positive and allow us to rewrite the system as:

d ([MN ] ηMN
)

dt
= AMN

ηMN
,

d ([M ] ηM)

dt
=
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ] ηM ,

d ([TN ] ηTN )

dt
= ATNηTN ,

d ([Th] ηTh)

dt
= (λThM [M ] + λThD [D]) [TN ] ηTh ,

d ([Tr] ηTr)

dt
= (λTrµ1 [µ1]) [TN ] ηTr ,

d ([Tc] ηTc)

dt
= (λTcTh [Th] + λTcM [M ] + λTcD [D]) [TN ] ηTc ,

d ([DN ] ηDN )

dt
= ADNηDN ,

d ([D] ηD)

dt
= (λDC [C] + λDH [H]) [DN ] ηD,

d ([C] ηC)

dt
= 0,

d ([N ] ηN)

dt
= αNC

(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C] ηN ,

d
(
[Iγ] ηIγ

)
dt

=
(
λIγTh [Th] + λIγTc [Tc]

)
ηIγ ,

d ([µ1] ηµ1)

dt
= (λµ1Th [Th] + λµ1M [M ] + λµ1C [C]) ηµ1 ,

d ([µ2] ηµ2)

dt
= (λµ2Th [Th] + λµ2M [M ] + λµ2C [C]) ηµ2 ,
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d ([H] ηH)

dt
= (λHM [M ] + λHD [D] + λHN [N ]) ηH .

We see that the right-hand side of each equation in this system is non-negative,

which means that the variable-factor product ([X] ηX) is non-decreasing for each

variable [X], and thus, if positive, initially remains positive at all times. Since the

integrating factor is positive by design, the positivity of the variables follows.

A.1.3 Proof of boundedness

Macrophages

Adding Equations (A.1) and (A.2), we obtain

d ([MN ] + [M ])

dt
= AMN

−δMN
[MN ]−δM [M ] ≤ AMN

−min (δMN
, δM) ([MN ] + [M ]) .

Thus, integrating, we obtain

[MN ] + [M ] ≤ AMN

min (δMN
, δM)

(
1− e−min(δMN , δM)t

)
+ e−min(δMN , δM)t ([MN ] (0) + [M ] (0)) .

Since the right-hand side is bounded and each variable is positive, this proves

that each variable is bounded.

T-cells

Adding Equations (A.3)–(A.6) and using the positivity of all variables, we ob-

tain

d ([TN ] + [Th] + [Tr] + [Tc])

dt
=ATN − δTN [TN ]− δTr [Tr]

− (δThTr [Tr] + δThµ1 [µ1] + δTh) [Th]

− (δTcTr [Tr] + δTcµ1 [µ1] + δTc) [Tc]
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≤ATN −min (δTN , δTh , δTc , δTr) ([TN ] + [Th] + [Tr] + [Tc]) .

Then, integrating, we obtain

[TN ] + [Th] + [Tr] + [Tc] ≤
ATN

min (δTN , δTh , δTc , δTr)

(
1− e−min(δTN , δTh , δTc , δTr)t

)
+ e−min(δTN , δTh , δTc , δTr)t ([TN ] (0) + [Th] (0) + [Tr] (0) + [Tc] (0)) .

Since the right-hand side is bounded and each variable is positive, this proves

that each variable is bounded.

Dendritic cells

Adding Equations (A.7) and (A.8) and using the positivity of [C], we obtain

d ([DN ] + [D])

dt
=ADN − δDN [DN ]− (δDC [C] + δD) [D]

≤ADN −min (δDN , δD) ([DN ] + [D]) .

Similar to the previous cases, integrated bound

[DN ]+[D] ≤ ADN
min (δDN , δD)

(
1− e−min(δDN , δD)t

)
+emin(δDN , δD)t ([DN ] (0) + [D] (0))

proves the upper bound on [DN ] and [D].

Cancer cells

Let us rewrite Equation (A.9) as follows

d ([C]− C0)

dt
+

(λC + λCµ1 [µ1] + λCµ2 [µ2]) [C]

C0

([C]− C0)

= −
(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C] ≤ 0.

Integrating the inequality with implicit dependence on [C] , [µ1] , and [µ2], we

obtain

[C] ≤ C0− (C0 − [C] (0)) exp

(
−
∫ t

0

(λC + λCµ1 [µ1] (s) + λCµ2 [µ2] (s)) [C] (s)

C0

ds

)
.
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Since [C] , [µ1] , and [µ2] are proven to be positive, the right-hand side is

bounded and, thus, [C] is bounded.

Interferon-γ

We require the bound on interferon before proving the bound on necrotic cells.

Since [Th] and [Tc] are proven to be bounded, we could claim that

λIγTh [Th] + λIγTc [Tc] ≤ λmax
Iγ .

This, together with Equation (A.11), yields the following inequality:

d [Iγ]

dt
+ δIγ [Iγ] ≤ λmax

Iγ ,

which, when integrated, gives the upper bound on [Iγ] as follows:

[Iγ] ≤
λmax
Iγ

δIγ

(
1− e−δIγ t

)
+ e−δIγ t [Iγ] (0) .

Remaining variables

For each of the remaining variables, the bounds proven above result in the upper

bounds for the positive parts of the right-hand side in each equation as follows

αNC
(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C] ≤λmax

N ,

λµ1Th [Th] + λµ1M [M ] + λµ1C [C] ≤λmax
µ1

,

λµ2Th [Th] + λµ2M [M ] + λµ2C [C] ≤λmax
µ2

,

λHM [M ] + λHD [D] + λHN [N ] ≤λmax
H .

Then, Equations (A.10) and (A.12)–(A.14) result in the following differential

inequalities

d [N ]

dt
+ δN [N ] ≤λmax

N ,
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d [µ1]

dt
+ δµ1 [µ1] ≤λmax

µ1
,

d [µ2]

dt
+ δµ2 [µ2] ≤λmax

µ2
,

d [H]

dt
+ δH [H] ≤λmax

H .

Integrating, we obtain

[N ] ≤λ
max
N

δN

(
1− e−δN t

)
+ e−δN t [N ] (0) ,

[µ1] ≤
λmax
µ1

δµ1

(
1− e−δµ1 t

)
+ e−δµ1 t [µ1] (0) ,

[µ2] ≤
λmax
µ2

δµ2

(
1− e−δµ2 t

)
+ e−δµ2 t [µ2] (0) ,

[H] ≤λ
max
H

δH

(
1− e−δH t

)
+ e−δH t [H] (0) ,

thus, proving the upper bounds.

A.2 Derivation of the parameter set

A.2.1 Assumptions on parameters

We adopt natural degradation/decay rates of immune cells and cytokines based

on information about their half life from the literature (see Table A.1). For example,

the degradation/decay rate of X is calculated as:

δX =
ln2

half life of X in days

The decay rate of µ1 is estimated to be a weighted average of the decay rates of

cytokines within µ1, where the weights are proportional to the abundance of these

cytokines. A similar procedure is carried out for µ2. The obtained natural decay

rates are as follows:

δMN
= 0.693, δM = 0.015, δO = 1.219, δTN = 0.00042,
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δTh = 0.231, δTr = 0.063, δTc = 0.406, δDN = 1.664,

δD = 0.277, δIγ = 33.27, δµ1 = 487.48, δµ2 = 5.15,

δH = 58.7

For the proliferation rate of tumor cells, we gathered information on osteosar-

coma growth in humans. A study reported that the mean exponential growth

constant of primary osteosarcoma tumors was between 0.0054 and 0.02784 [254].

We took the average of these values and chose λC = 0.01662. Then, we made the

assumption that the proliferation rate of cancer cells themselves was 20 times larger

than the proliferation rate of cancer for the cytokines group µ2; that is,

λC = 20λCµ2µ
mean
2 (A.15)

µ2 consists of IL-6, which is a major pro-tumor cytokine; therefore, we assume

that µ2 is twice as effective at promoting tumor growth compared with µ1:

λCµ2µ
mean
2 = 2λCµ1µ

mean
1

or equivalently, λC = 40λCµ1µ
mean
1 (A.16)

We also assume that cytotoxic cells kill tumor cells twice as fast as IFN-γ, and

IFN-γ is 10-times more effective at killing cancer cells compared with the cancer

cell natural death rate:

δCIγI
mean
γ = 10δC (A.17)

δCTcT
mean
c = 2δCIγI

mean
γ or δCTcT

mean
c = 20δC (A.18)

Since M1 and M2 macrophages are activated solely by IFN-γ and µ1, respec-

tively, we assume that the ratio of macrophages activated by IFN-γ to macrophages

activated by µ1 equals to the ratio of M1 to M2 macrophages:

λMIγI
mean
γ

λMµ1µ
mean
1

=
Mmean

1

Mmean
2

(A.19)
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We make the assumption that helper T cells are predominantly activated by

antigen presenting dendritic cells and that the inhibition of helper T cells by regu-

latory T cells and by µ1 are more effective than natural decay:

λThDD
mean = 200λThMM

mean (A.20)

δThTrT
mean
r = δThµ1µ

mean
1 = 20δTh (A.21)

We also assume that the activation of cytotoxic cells by dendritic cells (both

through antigen presentation and IL-12) is twice as effective compared with acti-

vation by helper T cells, and four-times as effective compared with activation by

macrophages (through IL-12):

λTcDD
mean = 2λTcThT

mean
h = 4λTcMM

mean (A.22)

while the inhibition of cytotoxic cells by regulatory T cells and by µ1 are each

20-times larger than with natural decay:

δTcTrT
mean
r = δTcµ1µ

mean
1 = 20δTc (A.23)

For dendritic cells, we make the assumption that activation by HMGB1 is twice

as effective compared with activation by cancer cells and that the inhibition by

cancer cells is equivalent to the dendritic cells’ innate decay rate:

λDHH
mean = 2λDCC

mean (A.24)

δDCC
mean = δD (A.25)

Additionally, the following assumptions were used for the production rates of

cytokines:

λIγTcT
mean
c = 4λIγThT

mean
h (A.26)

λµ1ThT
mean
h = λµ1MM

mean = λµ1CC
mean (A.27)
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λµ2MM
mean = λµ2CC

mean = 2λµ2ThT
mean
h (A.28)

λHNN
mean = 10λHMM

mean = 20λHDD
mean (A.29)

Lastly, we assume that αNC = 3/4 and that carrying capacity of cancer is twice

the steady state value of cancer, that is C0 = 2C∞.

A.2.2 Parameter values and sources

Table A.1: Non-dimensional parameter values for each

cluster.

Parameter Cluster 1 Cluster 2 Cluster 3 Source

λMIγ 4.3649× 10−3 8.4234× 10−4 2.8083× 10−3 Estimated

λMµ1 1.0635× 10−2 1.4158× 10−2 1.2192× 10−2 Estimated

λThM 3.3434× 10−2 1.9270× 10−2 2.2194× 10−2 Estimated

λThD 1.0963× 10 7.3778 9.8325 Estimated

λTrµ1 6.3× 10−2 6.3× 10−2 6.3× 10−2 Estimated

λTcTh 6.1171 2.3846 2.8415 Estimated

λTcM 1.7478 1.2263 1.4683 Estimated

λTcD 1.1463× 10 9.3900 1.3011× 10 Estimated

λDC 4.0114× 10−1 4.8942× 10−1 5.9472× 10−1 Estimated

λDH 4.1518× 10−1 4.2621× 10−1 4.1729× 10−1 Estimated

λC 1.662× 10−2 1.662× 10−2 1.662× 10−2 [254]

λCµ1 3.7101× 10−4 3.5910× 10−4 4.0692× 10−4 Estimated

λCµ2 7.1405× 10−4 6.3207× 10−4 5.7910× 10−4 Estimated

λIγTh 6.3095 1.1946× 10 4.1848 Estimated

λIγTc 2.6961× 10 2.1324× 10 2.9085× 10 Estimated
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λµ1Th 1.8813× 102 1.1491× 102 1.0315× 102 Estimated

λµ1M 1.0751× 102 1.1818× 102 1.0661× 102 Estimated

λµ1C 1.9184× 102 2.5440× 102 2.7772× 102 Estimated

λµ2Th 1.2313 6.8806× 10−1 6.0936× 10−1 Estimated

λµ2M 1.4073 1.4153 1.2595 Estimated

λµ2C 2.5113 3.0467 3.2811 Estimated

λHM 4.4046 5.8355 1.8254 Estimated

λHD 3.6107 5.5856 2.0218 Estimated

λHN 5.0685× 10 4.7279× 10 5.4853× 10 Estimated

δMN
6.93× 10−1 6.93× 10−1 6.93× 10−1 [255, 256, 257]

δM 1.5× 10−2 1.5× 10−2 1.5× 10−2 [258, 259]

δTN 4.2× 10−4 4.2× 10−4 4.2× 10−4 [260]

δThTr 6.6404 3.1732 5.0991 Estimated

δThµ1 4.1253 3.9929 4.5246 Estimated

δTh 2.31× 10−1 2.31× 10−1 2.31× 10−1 [261]

δTr 6.3× 10−2 6.3× 10−2 6.3× 10−2 [262]

δTcTr 1.1671× 10 5.5771 8.9620 Estimated

δTcµ1 7.2505 7.0179 7.9524 Estimated

δTc 4.06× 10−1 4.06× 10−1 4.06× 10−1 [261]

δDN 1.664 1.664 1.664 [263]

δDC 5.3932× 10−1 6.3864× 10−1 7.3501× 10−1 Estimated

δD 2.77× 10−1 2.77× 10−1 2.77× 10−1 [264]

δCTc 1.2269× 10−2 9.6574× 10−3 8.4017× 10−3 Estimated

δCIγ 4.5923× 10−3 6.4192× 10−3 8.4660× 10−3 Estimated

δC 3.0078× 10−4 1.0390× 10−3 2.4530× 10−4 Estimated
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δN 4.5935× 10−1 4.8360× 10−1 1.1137× 10−1 Estimated

δIγ 3.327× 10 3.327× 10 3.327× 10 [265]

δµ1 4.8748× 102 4.8748× 102 4.8748× 102 [266, 267, 268, 269]

δµ2 5.15 5.15 5.15 [270, 271]

δH 5.87× 10 5.87× 10 5.87× 10 [272]

AMN
7.4055× 10−1 7.0151× 10−1 7.1382× 10−1 Estimated

ATN 1.0581× 102 1.7917 3.1561 Estimated

ADN 3.3325 2.3958 2.4867 Estimated

αMNM 3.1701 5.6721× 10−1 1.3878 Scaling factor

αTNTh 1.4396 1.8848× 10−1 8.8053× 10−2 Scaling factor

αTNTr 7.4588× 10−1 8.2864× 10−2 1.0267× 10−1 Scaling factor

αTNTc 4.6531 3.0144× 10−2 1.3172× 10−1 Scaling factor

αDND 2.0440 7.9922× 10−1 8.1299× 10−1 Scaling factor

A.3 Non-Dimensionalization

We obtain the following non-dimensional system:

d
[
MN

]
dt

= AMN
− αMNM

(
λMIγ

[
Iγ
]

+ λMµ1 [µ1]
) [
MN

]
− δMN

[MN ] (A.30)

d
[
M
]

dt
=
(
λMIγ

[
Iγ
]

+ λMµ1 [µ1]
)

[MN ]− δM
[
M
]

(A.31)

d
[
TN
]

dt
= ATN − αTNTh

(
λThM

[
M
]

+ λThD
[
D
]) [

TN
]
− αTNTrλTrµ1 [µ1]

[
TN
]

− αTNTc
(
λTcTh

[
T h
]

+ λTcM
[
M
]

+ λTcD
[
D
]) [

TN
]
− δTN

[
TN
]
(A.32)

d
[
T h
]

dt
=
(
λThM

[
M
]

+ λThD
[
D
]) [

TN
]
−
(
δThTr

[
T r
]

+ δThµ1 [µ1] + δTh
) [
T h
]

(A.33)
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d
[
T r
]

dt
=
(
λTrµ1 [µ1]

) [
TN
]
− δTr

[
T r
]

(A.34)

d
[
T c
]

dt
=
(
λTcTh

[
T h
]

+ λTcM
[
M
]

+ λTcD
[
D
]) [

TN
]

−
(
δTcTr

[
T r
]

+ δTcµ1 [µ1] + δTc
) [
T c
]

(A.35)

d
[
DN

]
dt

= ADN − αDND
(
λDC

[
C
]

+ λDH
[
H
]) [

DN

]
− δDN

[
DN

]
(A.36)

d
[
D
]

dt
=
(
λDC

[
C
]

+ λDH
[
H
]) [

DN

]
−
(
δDC

[
C
]

+ δD
) [
D
]

(A.37)

d
[
C
]

dt
=
(
λC + λCµ1 [µ1] + λCµ2 [µ2]

) [
C
](

1−
[
C
]

C0

)

−
(
δCTc

[
T c
]

+ δCIγ
[
Iγ
]

+ δC
) [
C
]

(A.38)

d
[
N
]

dt
= αNC

(
δCTc

[
T c
]

+ δCIγ
[
Iγ
]

+ δC
) [
C
]
− δN

[
N
]

(A.39)

d
[
Iγ
]

dt
= λIγTh

[
T h
]

+ λIγTc
[
T c
]
− δIγ

[
Iγ
]

(A.40)

d [µ1]

dt
= λµ1Th

[
T h
]

+ λµ1M
[
M
]

+ λµ1C
[
C
]
− δµ1 [µ1] (A.41)

d [µ2]

dt
= λµ2Th

[
T h
]

+ λµ2M
[
M
]

+ λµ2C
[
C
]
− δµ2 [µ2] (A.42)

d
[
H
]

dt
= λHM

[
M
]

+ λHD
[
D
]

+ λHN
[
N
]
− δH

[
H
]

(A.43)

The non-dimensional parameters are defined as:

AMN
=

AMN

M∞
N

, ATN =
ATN
T∞N

, ADN =
ADN
D∞N

,

αMNM =
M∞

M∞
N

, αTNTh =
T∞h
T∞N

, αTNTr =
T∞r
T∞N

,

αTNTc =
T∞c
T∞N

, αDND =
D∞

D∞N
, αNC = αNC

C∞

N∞
,

C0 =
C0

C∞
, λMIγ =

λMIγI
∞
γ M

∞
N

M∞ , λMµ1 =
λMµ1µ

∞
1 M

∞
N

M∞ ,

λThM =
λThMM

∞T∞N
T∞h

, λThD =
λThDD

∞T∞N
T∞h

, λTrµ1 =
λTrµ1µ

∞
1 T

∞
N

T∞r
,

λTcTh =
λTcThT

∞
h T

∞
N

T∞c
, λTcM =

λTcMM
∞T∞N

T∞c
, λTcD =

λTcDD
∞T∞N

T∞c
,

λDC =
λDCC

∞D∞N
D∞

, λDH =
λDHH

∞D∞N
D∞

, λCµ1 = λCµ1µ
∞
1 ,
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λCµ2 = λCµ2µ
∞
2 , λIγTh =

λIγThT
∞
h

I∞γ
, λIγTc =

λIγTcT
∞
c

I∞γ
,

λµ1Th =
λµ1ThT

∞
h

µ∞1
, λµ1M =

λµ1MM
∞

µ∞1
, λµ1C =

λµ1CC
∞

µ∞1
,

λµ2Th =
λµ2ThT

∞
h

µ∞2
, λµ2M =

λµ2MM
∞

µ∞2
, λµ2C =

λµ2CC
∞

µ∞2
,

λHM =
λHMM

∞

H∞
, λHD =

λHDD
∞

H∞
, λHN =

λHNN
∞

H∞
,

δThTr = δThTrT
∞
r , δThµ1 = δThµ1µ

∞
1 , δTcTr = δTcTrT

∞
r ,

δTcµ1 = δTcµ1µ
∞
1 , δDC = δDCC

∞, δCTc = δCTcT
∞
c ,

δCIγ = δCIγI
∞
γ .

The assumptions (Equations (A.15)–(A.29)) in non-dimensional form are:

λC = 20λCµ2
µmean

2

µ∞2
= 40λCµ1

µmean
1

µ∞1
,

δCTc
Tmean
c

T∞c
= 2δCIγ

Imean
γ

I∞γ
= 20δC ,

λMIγ
Imean
γ

I∞γ

λMµ1
µmean
1

µ∞1

=
Mmean

1

Mmean
2

,

λThD
Dmean

D∞
= 200λThM

Mmean

M∞ ,

δThTr
Tmean
r

T∞r
= δThµ1

µmean
1

µ∞1
= 20δTh ,

λTcD
Dmean

D∞
= 2λTcTh

Tmean
h

T∞h
= 4λTcM

Mmean

M∞ ,

δTcTr
Tmean
r

T∞r
= δTcµ1

µmean
1

µ∞1
= 20δTc ,

λDH
Hmean

H∞
= 2λDC

Cmean

C∞
,

δDC
Cmean

C∞
= δD,

λIγTc
Tmean
c

T∞c
= 4λIγTh

Tmean
h

T∞h
,

λµ1Th
Tmean
h

T∞h
= λµ1M

Mmean

M∞ = λµ1C
Cmean

C∞
,

λµ2M
Mmean

M∞ = λµ2C
Cmean

C∞
= 2λµ2Th

Tmean
h

T∞h
,

140



λHN
Nmean

N∞
= 10λHM

Mmean

M∞ = 20λHD
Dmean

D∞
.
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A P P E N D I X B

SUPPORTING INFORMATION FOR CHAPTER 5

B.1 Full dimensional system of ODEs

Combining Equations (4.1)-(4.4) and (5.1)-(5.13) we obtain the following system

of ODEs:

d [MN ]

dt
= AMN

−
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN

[MN ]

−
(
KMN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KMN

(1 − e−β2A2)

+KMN
(1 − e−β3A3)

)
[MN ] (B.1)

d [M ]

dt
=
(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δM [M ] −

(
KM

(
f −

τ

a
+

1

24a

)

(1 − e−β1A1) +KM(1 − e−β2A2) +KM(1 − e−β3A3)

)
[M ] (B.2)

d [TN ]

dt
= ATN − (λThM [M ] + λThD [D]) [TN ]− λTrµ1 [µ1] [TN ]

− (λTcTh [Th] + λTcM [M ] + λTcD [D]) [TN ]− δTN [TN ]

−
(
KTN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTN

(1 − e−β2A2)

+KTN
(1 − e−β3A3)

)
[TN ] (B.3)
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d [Th]

dt
= (λThM [M ] + λThD [D]) [TN ]− (δThTr [Tr] + δThµ1 [µ1] + δTh) [Th]

−
(
KTh

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTh

(1 − e−β2A2)

+KTh
(1 − e−β3A3)

)
[Th] (B.4)

d [Tr]

dt
= (λTrµ1 [µ1]) [TN ]− δTr [Tr] −

(
KTr

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1)

+KTr(1 − e−β2A2) +KTr(1 − e−β3A3)

)
[Tr] (B.5)

d [Tc]

dt
= (λTcTh [Th] + λTcM [M ] + λTcD [D]) [TN ]− (δTcTr [Tr] + δTcµ1 [µ1] + δTc) [Tc]

−
(
KTc

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTc(1 − e−β2A2)

+KTc(1 − e−β3A3)

)
[Tc] (B.6)

d [DN ]

dt
= ADN − (λDC [C] + λDH [H]) [DN ]− δDN [DN ]

−
(
KDN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KDN

(1 − e−β2A2)

+KDN
(1 − e−β3A3)

)
[DN ] (B.7)

d [D]

dt
= (λDC [C] + λDH [H]) [DN ]− (δDC [C] + δD) [D]

−
(
KD

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KD(1 − e−β2A2)

+KD(1 − e−β3A3)

)
[D] (B.8)

d [C]

dt
= (λC + λCµ1 [µ1] + λCµ2 [µ2]) [C]

(
1− [C]

C0

)
−

(
δCIγ [Iγ] + δC + δCTc

(
1 + δCTcA3(1 − e−β3A3)

)
[Tc]

)
[C]

−
(
KC

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KC(1 − e−β2A2)
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+KC(1 − e−β3A3)

)
[C] (B.9)

d [N ]

dt
= αNC

(
δCIγ [Iγ] + δC + δCTc

(
1 + δCTcA3(1 − e−β3A3)

)
[Tc]

)
[C]

+αNCA

(
KC

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KC(1 − e−β2A2)

+KC(1 − e−β3A3)

)
[C]− δN [N ] (B.10)

d [Iγ]

dt
= λIγTh [Th] + λIγTc [Tc]− δIγ [Iγ] (B.11)

d [µ1]

dt
= λµ1Th [Th] + λµ1M [M ] + λµ1C [C]− δµ1 [µ1] (B.12)

d [µ2]

dt
= λµ2Th [Th] + λµ2M [M ] + λµ2C [C]− δµ2 [µ2] (B.13)

d [H]

dt
= λHM [M ] + λHD [D] + λHN [N ]− δH [H] (B.14)

d[A1]

dt
= vA1(t) − δA1[A1] (B.15)

d[A2]

dt
= vA2(t) − δA2[A2] (B.16)

d[A3]

dt
= vA3(t) − δA3[A3] (B.17)

B.2 Non-Dimensionalization

We introduce the non-dimensional drug variables as follows:

A1 =
A1δA1

v∗A1

, A2 =
A2δA2

v∗A2

, A3 =
A3δA3

v∗A3

Non-dimensional system (only equations with changes):

d
[
MN

]
dt

= AMN
− αMNM

(
λMIγ

[
Iγ
]

+ λMµ1 [µ1]
) [
MN

]
− δMN

[MN ]

−
(
KMN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KMN

(1 − e−β2A2)
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+KMN
(1 − e−β3A3)

)[
MN

]
(B.18)

d
[
M
]

dt
=
(
λMIγ

[
Iγ
]

+ λMµ1 [µ1]
)

[MN ]− δM
[
M
]
−
(
KM

(
f −

τ

a
+

1

24a

)

(1 − e−β1A1) +KM(1 − e−β2A2) +KM(1 − e−β3A3)

)[
M
]

(B.19)

d
[
TN
]

dt
= ATN − αTNTh

(
λThM

[
M
]

+ λThD
[
D
]) [

TN
]
− αTNTrλTrµ1 [µ1]

[
TN
]

− αTNTc
(
λTcTh

[
T h
]

+ λTcM
[
M
]

+ λTcD
[
D
]) [

TN
]
− δTN

[
TN
]

−
(
KTN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTN

(1 − e−β2A2)

+KTN
(1 − e−β3A3)

)[
TN
]

(B.20)

d
[
T h
]

dt
=
(
λThM

[
M
]

+ λThD
[
D
]) [

TN
]
−
(
δThTr

[
T r
]

+ δThµ1 [µ1] + δTh
) [
T h
]

−
(
KTh

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTh

(1 − e−β2A2)

+KTh
(1 − e−β3A3)

)[
T h
]

(B.21)

d
[
T r
]

dt
=
(
λTrµ1 [µ1]

) [
TN
]
− δTr

[
T r
]
−
(
KTr

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1)

+KTr(1 − e−β2A2) +KTr(1 − e−β3A3)

)[
T r
]

(B.22)

d
[
T c
]

dt
=
(
λTcTh

[
T h
]

+ λTcM
[
M
]

+ λTcD
[
D
]) [

TN
]
− (δTcTr

[
T r
]

+ δTcµ1 [µ1]

+ δTc)
[
T c
]
−
(
KTc

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KTc(1 − e−β2A2)

+KTc(1 − e−β3A3)

)[
T c
]

(B.23)

d
[
DN

]
dt

= ADN − αDND
(
λDC

[
C
]

+ λDH
[
H
]) [

DN

]
− δDN

[
DN

]
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−
(
KDN

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KDN

(1 − e−β2A2)

+KDN
(1 − e−β3A3)

)[
DN

]
(B.24)

d
[
D
]

dt
=
(
λDC

[
C
]

+ λDH
[
H
]) [

DN

]
−
(
δDC

[
C
]

+ δD
) [
D
]

−
(
KD

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KD(1 − e−β2A2)

+KD(1 − e−β3A3)

)[
D
]

(B.25)

d
[
C
]

dt
=
(
λC + λCµ1 [µ1] + λCµ2 [µ2]

) [
C
](

1−
[
C
]

C0

)

−

(
δCIγ

[
Iγ
]

+ δC + δCTc

(
1 + δCTcA3(1 − e−β3A3)

)
[T c]

)[
C
]

−
(
KC

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KC(1 − e−β2A2)

+KC(1 − e−β3A3)

)[
C
]

(B.26)

d
[
N
]

dt
= αNC

(
δCIγ

[
Iγ
]

+ δC + δCTc

(
1 + δCTcA3(1 − e−β3A3)

)
[T c]

)[
C
]

+αNCA

(
KC

(
f −

τ

a
+

1

24a

)
(1 − e−β1A1) +KC(1 − e−β2A2)

+KC(1 − e−β3A3)

)[
C
]
− δN

[
N
]

(B.27)

d[A1]

dt
= vA1(t) − δA1[A1] (B.28)

d[A2]

dt
= vA2(t) − δA2[A2] (B.29)

d[A3]

dt
= vA3(t) − δA3[A3] (B.30)

where the new non-dimensional parameters are:

β1 =
β1v

∗
A1

δA1

, β2 =
β2v

∗
A2

δA2

, β3 =
β3v

∗
A3

δA3

,
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δCTcA3 = δCTcA3T
∞
c , αNCA = αNCA

C∞

N∞
, vA1(t) =

vA1(t)δA1

v∗A1

,

vA2(t) =
vA2(t)δA2

v∗A2

, vA3(t) =
vA3(t)δA3

v∗A3

,
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[11] Castro, F., Cardoso, A., Gonçalves, R., Serre, K. & Oliveira, M. Interferon-
gamma at the crossroads of tumor immune surveillance or evasion. Frontiers
In Immunology. 9 pp. 847 (2018).

148



[12] Wang, K. & Vella, A. Regulatory T Cells and Cancer: A Two-Sided Story.
Immunological Investigations. 45, 797-812 (2016).

[13] Wang, Z., Li, B., Ren, Y. & Ye, Z. T-cell-based immunotherapy for osteosar-
coma: Challenges and opportunities. Frontiers In Immunology. 7, 1-13 (2016).

[14] Corthay, A. How do regulatory t cells work?. Scandinavian Journal Of Im-
munology. 70, 326-336 (2009).

[15] Kansara, M., Teng, M., Smyth, M. & Thomas, D. Translational biology of
osteosarcoma. Nature Reviews Cancer. 14, 722-735 (2014).

[16] Lewis, C. & Pollard, J. Distinct role of macrophages in different tumor mi-
croenvironments. Cancer Research. 66, 605-612 (2006).
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[97] Şenbabaoğlu, Y., Gejman, R., Winer, A., Liu, M., Van Allen, E., Velasco,
G., Miao, D., Ostrovnaya, I., Drill, E., Luna, A., Weinhold, N., Lee, W.,
Manley, B., Khalil, D., Kaffenberger, S., Chen, Y., Danilova, L., Voss, M.,
Coleman, J., Russo, P., Reuter, V., Chan, T., Cheng, E., Scheinberg, D.,
Li, M., Choueiri, T., Hsieh, J., Sander, C. & Hakimi, A. Tumor immune
microenvironment characterization in clear cell renal cell carcinoma identifies
prognostic and immunotherapeutically relevant messenger RNA signatures..
Genome Biology. 17, 231 (2016).

[98] Foroutan, M., Bhuva, D., Lyu, R., Horan, K., Cursons, J. & Davis, M. Single
sample scoring of molecular phenotypes. BMC Bioinformatics. 19, 404 (2018).

[99] Lawson, C. & Hanson, R. Solving Least Squares Problems. (Society for Indus-
trial, 1995).

[100] Bertsekas, D. Nonlinear Programming. (Athena Scientific, 1999).

[101] Mackey, M., Mackey, D., Higgins, H. & Wright, S. CHEMTAX - A program
for estimating class abundances from chemical markers: Application to HPLC
measurements of phytoplankton. Marine Ecology Progress Series. 144, 265-283
(1996).

[102] Gustafsson, J., Held, F., Robinson, J., Björnson, E., Jörnsten, R. & Nielsen,
J. Sources of variation in cell-type RNA-Seq profiles. PloS One. 15, e0239495
(2020).

156



[103] Johnson, W., Li, C. & Rabinovic, A. Adjusting batch effects in microar-
ray expression data using empirical Bayes methods. Biostatistics. 8, 118-127
(2007).

[104] Barbie, D., Tamayo, P., Boehm, J., Kim, S., Moody, S., Dunn, I., Schinzel,
A., Sandy, P., Meylan, E., Scholl, C., Fröhling, S., Chan, E., Sos, M., Michel,
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[183] Kasalak, Ö., Overbosch, J., Glaudemans, A., Boellaard, R., Jutte, P. & Kwee,
T. Primary tumor volume measurements in Ewing sarcoma: MRI inter-and
intraobserver variability and comparison with FDG-PET. Acta Oncologica. 57,
534-540 (2018).

[184] Grimer, R. Size matters for sarcomas!. The Annals Of The Royal College Of
Surgeons Of England. 88, 519-524 (2006).

[185] Qiu, Z., Cui, Y. & Wang, X. Natural bone tissue and its biomimetic. Miner-
alized Collagen Bone Graft Substitutes. pp. 1-22 (2019).

164



[186] Hao, W., Crouser, E. & Friedman, A. Mathematical model of sarcoidosis.
Proceedings Of The National Academy Of Sciences. 111, 16065-16070 (2014).

[187] Hao, W. & Friedman, A. Mathematical model on Alzheimer’s disease. BMC
Systems Biology. 10, 108 (2016).

[188] Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cour-
napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J. & Others
SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature
Methods. 17, 261-272 (2020).

[189] Zi, Z. Sensitivity analysis approaches applied to systems biology models. IET
Systems Biology. 5, 336-346 (2011).

[190] Heiss, F. & Winschel, V. Likelihood approximation by numerical integration
on sparse grids. Journal Of Econometrics. 144, 62-80 (2008).

[191] Gerstner, T. & Griebel, M. Numerical integration using sparse grids. Numer-
ical Algorithms. 18, 209-232 (1998).

[192] Fu, C. & Jiang, A. Dendritic cells and CD8 T cell immunity in tumor mi-
croenvironment. Frontiers In Immunology. 9 pp. 3059 (2018).

[193] Kim, R. Cancer immunoediting: from immune surveillance to immune escape.
Cancer Immunotherapy. pp. 9-27 (2007).

[194] Heymann, M. & Heymann, D. Immune environment and osteosarcoma.
Osteosarcoma-Biology, Behavior And Mechanisms; InTech: London, UK. pp.
105-120 (2017).

[195] Tawbi, H., Burgess, M., Bolejack, V., Van Tine, B., Schuetze, S., Hu, J.,
D’Angelo, S., Attia, S., Riedel, R., Priebat, D. & Others Pembrolizumab in
advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre,
two-cohort, single-arm, open-label, phase 2 trial. The Lancet Oncology. 18,
1493-1501 (2017).

[196] Thanindratarn, P., Dean, D., Nelson, S., Hornicek, F. & Duan, Z. Advances
in immune checkpoint inhibitors for bone sarcoma therapy. Journal Of Bone
Oncology. 15 pp. 100221 (2019).

[197] Fritzsching, B., Fellenberg, J., Moskovszky, L., Sápi, Z., Krenacs, T.,
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[240] Hannesdóttir, L., Tymoszuk, P., Parajuli, N., Wasmer, M., Philipp, S.,
Daschil, N., Datta, S., Koller, J., Tripp, C., Stoitzner, P. & Others Lapatinib
and doxorubicin enhance the S tat1-dependent antitumor immune response.
European Journal Of Immunology. 43, 2718-2729 (2013).

[241] Wakita, D., Iwai, T., Harada, S., Suzuki, M., Yamamoto, K. & Sugimoto, M.
Cisplatin augments antitumor T-cell responses leading to a potent therapeutic
effect in combination with PD-L1 blockade. Anticancer Research. 39, 1749-
1760 (2019).

[242] Cronstein, B. The mechanism of action of methotrexate. Rheumatic Disease
Clinics Of North America. 23, 739-755 (1997).

[243] Casares, N., Pequignot, M., Tesniere, A., Ghiringhelli, F., Roux, S., Chaput,
N., Schmitt, E., Hamai, A., Hervas-Stubbs, S., Obeid, M. & Others Caspase-
dependent immunogenicity of doxorubicin-induced tumor cell death. The Jour-
nal Of Experimental Medicine. 202, 1691-1701 (2005).

[244] Ujhazy, P., Zaleskis, G., Mihich, E., Ehrke, M. & Berleth, E. Doxorubicin
induces specific immune functions and cytokine expression in peritoneal cells.
Cancer Immunology, Immunotherapy. 52, 463-472 (2003).

[245] Safavi, F. & Nath, A. Silencing of immune activation with methotrexate in
patients with COVID-19. Journal Of The Neurological Sciences. 415 (2020).

[246] Cutolo, M., Sulli, A., Pizzorni, C., Seriolo, B. & Straub, R. Anti-
inflammatory mechanisms of methotrexate in rheumatoid arthritis. Annals Of
The Rheumatic Diseases. 60, 729-735 (2001).

[247] Souhami, R., Craft, A., Eijken, J., Nooij, M., Spooner, D., Bramwell, V.,
Wierzbicki, R., Malcolm, A., Kirkpatrick, A., Uscinska, B. & Others Ran-
domised trial of two regimens of chemotherapy in operable osteosarcoma: a
study of the European Osteosarcoma Intergroup. The Lancet. 350, 911-917
(1997).

[248] Cancer Therapy Advisor, Bone Cancer Treatment Regimens, 2021. Available
from: https://www.cancertherapyadvisor.com/home/cancer-topics/bone-
cancer/bone-cancer-treatment-regimens/bone-cancer-treatment-regimens.

[249] Saeter, G., Alveg, T., Elomaa, I., Stenwig, A., Holmström, T. & Solheim,
O. Treatment of osteosarcoma of the extremities with the T-10 protocol, with
emphasis on the effects of preoperative chemotherapy with single-agent high-
dose methotrexate: a Scandinavian Sarcoma Group study.. Journal Of Clinical
Oncology. 9, 1766-1775 (1991).

170



[250] Zhang, B., Zhang, Y., Li, R., Li, J., Lu, X. & Zhang, Y. The efficacy and
safety comparison of first-line chemotherapeutic agents (high-dose methotrex-
ate, doxorubicin, cisplatin, and ifosfamide) for osteosarcoma: A network meta-
analysis. Journal Of Orthopaedic Surgery And Research. 15, 1-10 (2020).

[251] Yu, D., Zhang, S., Feng, A., Xu, D., Zhu, Q., Mao, Y., Zhao, Y., Lv, Y., Han,
C., Liu, R. & Tian, Y. Methotrexate, doxorubicin, and cisplatinum regimen
is still the preferred option for osteosarcoma chemotherapy: A meta-analysis
and clinical observation. Medicine (United States). 98, 1-8 (2019).

[252] Cardinale, D., Colombo, A., Sandri, M., Lamantia, G., Colombo, N., Civ-
elli, M., Martinelli, G., Veglia, F., Fiorentini, C. & Cipolla, C. Prevention
of High-Dose Chemotherapy–Induced Cardiotoxicity in High-Risk Patients
by Angiotensin-Converting Enzyme Inhibition. Circulation. 114, 2474-2481
(2006).

[253] Blijham, G. Prevention and treatment of organ toxicity during high-dose
chemotherapy: an overview.. Anti-cancer Drugs. 4, 527-533 (1993).

[254] Spratt JR, J. The rates of growth of skeletal sarcomas. Cancer. 18, 14-24
(1965).

[255] Patel, A., Zhang, Y., Fullerton, J., Boelen, L., Rongvaux, A., Maini, A.,
Bigley, V., Flavell, R., Gilroy, D., Asquith, B. & Others The fate and lifespan
of human monocyte subsets in steady state and systemic inflammation. Journal
Of Experimental Medicine. 214, 1913-1923 (2017).

[256] Italiani, P. & Boraschi, D. From monocytes to M1/M2 macrophages: phe-
notypical vs. functional differentiation. Frontiers In Immunology. 5 pp. 514
(2014).

[257] He, Z., Allers, C., Sugimoto, C., Ahmed, N., Fujioka, H., Kim, W., Didier,
E. & Kuroda, M. Rapid turnover and high production rate of myeloid cells
in adult rhesus macaques with compensations during aging. The Journal Of
Immunology. 200, 4059-4067 (2018).

[258] Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and
homeostasis. Immunity. 44, 439-449 (2016).

[259] Hao, W. & Friedman, A. Serum upar as biomarker in breast cancer recur-
rence: A mathematical model. PLoS One. 11, e0153508 (2016).

[260] Farber, D., Yudanin, N. & Restifo, N. Human memory T cells: generation,
compartmentalization and homeostasis. Nature Reviews Immunology. 14, 24-
35 (2014).

171



[261] De Boer, R., Homann, D. & Perelson, A. Different dynamics of CD4+ and
CD8+ T cell responses during and after acute lymphocytic choriomeningitis
virus infection. The Journal Of Immunology. 171, 3928-3935 (2003).

[262] Vukmanovic-Stejic, M., Zhang, Y., Cook, J., Fletcher, J., McQuaid, A., Mas-
ters, J., Rustin, M., Taams, L., Beverley, P., Macallan, D. & Others Human
CD4+ CD25 hi Foxp3+ regulatory T cells are derived by rapid turnover of
memory populations in vivo. The Journal Of Clinical Investigation. 116, 2423-
2433 (2006).

[263] Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflamma-
tory stimuli induce accumulation of MHC class II complexes on dendritic cells.
Nature. 388, 782-787 (1997).

[264] Diao, J., Winter, E., Cantin, C., Chen, W., Xu, L., Kelvin, D., Phillips, J.
& Cattral, M. In situ replication of immediate dendritic cell (DC) precursors
contributes to conventional DC homeostasis in lymphoid tissue. The Journal
Of Immunology. 176, 7196-7206 (2006).

[265] Foon, K., Sherwin, S., Abrams, P., Stevenson, H., Holmes, P., Maluish, A.,
Oldham, R. & Herberman, R. A phase I trial of recombinant gamma interferon
in patients with cancer. Cancer Immunology, Immunotherapy. 20, 193-197
(1985).

[266] Fuentes-Calvo, I. & Martınez-Salgado, C. TGFB1 (transforming growth fac-
tor, beta 1). Atlas Of Genetics And Cytogenetics In Oncology And Haematol-
ogy. (2013).

[267] Saxena, A., Khosraviani, S., Noel, S., Mohan, D., Donner, T. & Hamad, A.
Interleukin-10 paradox: A potent immunoregulatory cytokine that has been
difficult to harness for immunotherapy. Cytokine. 74, 27-34 (2015).

[268] Conlon, P., Tyler, S., Grabstein, K. & Morrissey, P. Interleukin-4 (B-cell
stimulatory factor-1) augments the in vivo generation of cytotoxic cells in
immunosuppressed animals.. Biotechnology Therapeutics. 1, 31-41 (1989).

[269] Khodoun, M., Lewis, C., Yang, J., Orekov, T., Potter, C., Wynn, T.,
Mentink-Kane, M., Hershey, G., Wills-Karp, M. & Finkelman, F. Differences
in expression, affinity, and function of soluble (s) IL-4R and sIL-13R2 sug-
gest opposite effects on allergic responses. The Journal Of Immunology. 179,
6429-6438 (2007).

[270] Mehra, R., Storfer-Isser, A., Kirchner, H., Johnson, N., Jenny, N., Tracy, R.
& Redline, S. Soluble interleukin 6 receptor: a novel marker of moderate to
severe sleep-related breathing disorder. Archives Of Internal Medicine. 166,
1725-1731 (2006).

172



[271] Balestrino, M. Cytokine imbalances in multiple sclerosis: a computer simu-
lation. (2009).

[272] Zandarashvili, L., Sahu, D., Lee, K., Lee, Y., Singh, P., Rajarathnam, K.
& Iwahara, J. Real-time kinetics of high-mobility group box 1 (HMGB1) ox-
idation in extracellular fluids studied by in situ protein NMR spectroscopy.
Journal Of Biological Chemistry. 288, 11621-11627 (2013).

173


	Mathematical model for osteosarcoma progression and treatments
	Recommended Citation

	tmp.1629304164.pdf.QYDqi

