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ABSTRACT

PATTERN FORMATION AND PHASE TRANSITION OF
CONNECTIVITY IN TWO DIMENSIONS

SEPTEMBER 2021

ARMAN MOHSENI KABIR

B.Sc., IKIU, IRAN

M.Sc., SHARIF UNIVERSITY OF TECHNOLOGY, IRAN

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Donald Towsley

This dissertation is devoted to the study and analysis of different types of emer-

gent behavior in physical systems. Emergence is a phenomenon that has fascinated

researchers from various fields of science and engineering. From the emergence of

global pandemics to the formation of reaction-diffusion patterns, the main feature

that connects all these diverse systems is the appearance of a complex global struc-

ture as a result of collective interactions of simple underlying components. This

dissertation will focus on two types of emergence in physical systems: emergence of

long-range connectivity in networks and emergence and analysis of complex patterns.

The most prominent theory which deals with the emergence of long-range con-

nectivity is the percolation theory. This dissertation employs many concepts from

the percolation theory to study connectivity transitions in various systems. Ordi-

nary percolation theory is founded upon two main assumptions, namely locality and
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independence of the underlying components. In Chapters 2 and 3, we relax these

assumptions in different manners and show that relaxing these assumptions leads to

irregular behaviors such as appearance of different universality classes and, in some

instances, violation of universality. Chapter 2 deals with relaxing the assumption of

locality of interactions. In this Chapter, we define a hierarchy of various measures of

robust connectivity. We study the phase transition of these robustness metrics as a

function of site/bond occupation/removal probability on the square lattice. Further-

more, we perform extensive numerical analysis and extract these robustness metrics’

critical thresholds and critical behaviors. We show that some of these robustness

metrics do not fall under the regular percolation universality class. The extensive

numerical results in this work can serve as a foundation for any researcher who aims

to design/study various degrees of connectivity in networks.

In Chapter 3, we study the non-equilibrium phase transition of long-range connec-

tivity in a multi-particle interacting system on the square lattice. The interactions

between different particles translate to relaxing the assumption of independence in

the percolation theory. Using extensive numerical simulations, we show that the

phase transition observed in this system violates the regular concept of universality.

However, it conforms well with the concept of weak-universality recently introduced

in the literature. We observe that by varying inter-particle interaction strength in

our model, one can control the critical behavior of this phase transition. These ob-

servations could be pivotal in studying phase transitions and universality classes.

Chapter 4 focuses on the analysis of reaction-diffusion patterns. We utilize a

multitude of machine learning algorithms to analyze reaction-diffusion patterns. In

particular, we address two main problems using these techniques, namely, pattern

regression and pattern classification. Given an observed instance of a pattern with a

known generative function, in the pattern regression task, we aim to predict the spe-

cific set of reaction-diffusion parameters (i.e. diffusion constant) which can reproduce
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the observed pattern. We employ supervised learning techniques to successfully solve

this problem and show the performance of our model in some real-world instances.

We also address the task of pattern classification. In this task, we are interested in

grouping different instances of similar patterns together. This task is usually per-

formed visually by the researcher studying certain natural phenomena. However, this

method is tedious and can be inconsistent among different researchers. We utilize

supervised and unsupervised machine learning algorithms to classify patterns of the

Gray-Scott model. We show that our methods show outstanding performance both in

supervised and unsupervised settings. The methods introduced in this Chapter could

bridge the gaps between researchers studying patterns in different fields of science

and engineering.
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CHAPTER 1

INTRODUCTION

This dissertation is devoted to the study of pattern formation and phase transition

of connectivity in two-dimensional systems. One of the most fascinating fields of

research in physical systems is the study of emergent behavior. Emergent behavior

in complex systems is observed in diverse fields ranging from self-organization of

viral capsules from small protein components [8] to flocking of birds [9] to epidemic

spreading [10] and molecular self-assembly [11]. The main feature that connects all

these diverse sets of phenomena is the appearance of complex global structure and

dynamics resulting from collective interactions of simple underlying components. In

this dissertation, we will focus on two types of emergence in physical systems, namely

emergence of long-range connectivity in networks, and emergence and analysis of

complex patterns.

When the system under study can be modeled as a network, connectivity becomes

one of the system’s characteristics, which is of utmost importance. Long-range con-

nectivity is crucial (detrimental) in many engineered and naturally-formed networks.

For example, a deadly virus can create a pandemic and quickly reach the other side

of the globe as a result of small-scale interactions among people. On the contrary,

networks like the Internet require long-range connectivity in order to function prop-

erly. One of the most prominent theories that deal with the emergence of global

connectivity due to local interactions is percolation theory. This theory has been

extensively applied to the study of connectivity in complex networks. However, in its

original formulation, percolation theory deals with a simplistic notion of connectivity
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that is not adequate in capturing higher levels of complexity or higher degrees of

connectivity observed in real-world networks. In addition, percolation theory only

deals with static networks in which there is no correlation (interdependence) between

the components of the network. Hence, it is necessary to develop more generalized

notions of percolation to accommodate higher layers of complexity observed/required

in real-world networks. In Chapter two of this dissertation, we introduce new no-

tions of connectivity in networks. We study the emergence of long-range connectivity

based on these new notions on a square lattice graph, and we investigate the size

and statistics of connected components. In the third chapter of this dissertation, we

study the temporal transition of long-range connectivity in a multi-particle system

on the square lattice. Here we employ the simple notion of connectivity defined by

ordinary percolation but relax one of the main assumptions of percolation theory: the

lack of correlation between constituents of the network. We show that the temporal

evolution of connected components does not follow the universal behavior observed in

most problems studied in percolation theory. In addition to the emergence (loss) of

long-range connectivity, we observe the emergence of various types of patterns usually

observed in reaction-diffusion systems.

Complex patterns emerge in many real-world phenomena. From ecological systems

like brushlands and mussel beds, to filamentation patterns formed when a high power

laser beam passes through air. The study and analysis of these patterns have been the

focus of many fields of science and engineering. Although numerous studies focused

on the mathematical modeling of different pattern formation phenomena, analyzing

and quantifying the patterns observed remains scarce. Most of the existing literature

on pattern analysis uses a qualitative approach to explain patterns in various systems,

and this qualitative analysis is limited by our visual ability to distinguish patterns

such as the labyrinth, spots, mazes, filaments, etc.
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In the last chapter of this dissertation, we employ methods from machine learn-

ing to analyze, classify and predict relevant parameters of two-dimensional patterns

generated from any underlying dynamics. In particular, we test these methods on

patterns generated from a specific set of equations, called Gray-Scott equations [12].

We utilize supervised learning methods to predict the underlying parameters of a

given pattern-generating system of equations given an observed pattern. In addition,

we employ unsupervised learning techniques to cluster patterns into different groups

by mapping them to a low-dimensional space. This low-dimensional representation

can be the first step in creating a more universal quantitative definition for patterns

generated in different domains.

Figure 1.1: An example of a graph with nodes representing components and edges
representing interactions between them in the corresponding complex system. This
network has N = 8 nodes and L = 10 edges.
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1.1 Complex Networks
Complex networks provide a simple yet valuable mathematical framework to study

complex systems. Many real-world phenomena such as emergent collective behavior

of animals, disease spreading, the human brain, and the Internet are increasingly be-

ing modeled and studied in the form of complex networks. Networks capture the most

important characteristic of such systems, namely the agents and the interactions. In

the most simplistic approach, the complex system is mapped to a graph (??) where

the small constituents are represented as nodes (sites, vertices) and the interactions

are represented as edges (bonds, links). For example, a social network is a set of indi-

vidual accounts (nodes) linked through their friendship connections (edges). Another

example is the power grid. Power-plants and electricity-consuming units can be mod-

eled as nodes, and wires connecting these components are modeled as edges. Similar

mappings apply to transportation networks, supply chains, ecological interactions,

protein interaction networks, and economic networks.

This simple representation of networks as simple graphs can be further enhanced to

become more realistic and account for more diverse interactions and interacting com-

ponents. Nodes may have weights to model different levels of importance or intensity.

Similarly, edges can be weighted to show the relative importance of interactions [13].

In many real-world networks like transportation networks, connections have a spe-

cific orientation, so edges can be directed to account for these types of interactions.

Almost all real-world networks evolve in time. This evolution can be captured by ei-

ther transformation of the network’s backbone, like the addition/removal of nodes or

edges, or by dynamics on the network, like epidemics in social networks. The spatial

structure of the underlying system can be included in the graph representation [14].

Proper functionality of many real-world networks depends on the connectivity of

the underlying graph. To give a few examples, an accident on one road might cause a

traffic jam which spans across a city; a breakdown of power-grid and a total blackout
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might be caused by damage to a few power stations as what occured in Italy in

2003 [15]. On the other hand, global connectivity can also be unfavorable in many

cases; pandemics spread the fastest when the underlying network is well-connected,

as we observed in the COVID-19 pandemic [16]; global connectivity in a forest will

have devastating effects in the case of a forest fire [17]. The study of connectivity

in complex networks thus is imperative in predicting, controlling, and designing such

systems.

In this thesis, we approach the problem of connectivity from the perspective of

percolation theory. Percolation theory is a classic research topic in statistical physics

that deals with connectivity in graphs subject to removal or insertion nodes or edges.

In Chapters 2 and 3 of this dissertation, we focus on new types of percolation tran-

sitions in two-dimensional lattices.

1.2 Percolation
The percolation model was suggested by Broadbent and Hammersley in 1957

[18, 19]. Percolation theory studies the statistical properties of connected clusters in

different random and disordered systems. Since its introduction, percolation theory

has been found effective in modeling many real-world complex systems. Examples

of such systems include forest wildfires, polymer gels, porous media, galaxies, and

epidemics.

A simple realization of percolation phenomena can be depicted on a square lat-

tice. A square lattice is a graph where each site represents a node in the graph,

and each bond represents an edge. Each site on the square lattice has four nearest

neighbors. Assume that each site on the lattice can have two states, namely occu-

pied or empty. Each site on the lattice is declared occupied with probability p and

empty with probability 1 − p. Two occupied sites belong to the same cluster if a

path of nearest neighbor-occupied sites connects them. This connected system of
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occupied-empty sites can model many disordered physical systems like the percola-

tion of through porous media. As the probability of a site being occupied increases,

the average size of the connected clusters increase. For an infinite system, there exists

a critical probability pc above which there exists an infinite-sized cluster. Below this

critical probability, only finite-size clusters exist. Bond percolation is defined simi-

larly; instead of declaring sites occupied/empty with a certain probability, bonds are

occupied in this manner. The value of pc in which global connectivity occurs depends

on the type of percolation (site or bond) as well as dimensionality of the problem. In

addition, if we change the lattice structure to another type of lattice-like triangular

lattice or a more general graph, pc changes.

Fig. 1.2 shows site percolation on a square lattice of size 32 by 32 for different

values of p. The underlying lattice structure is shown in blue. Red denotes the sites

and bonds that belong to the largest connected cluster (LCC), and black shows the

sites and bonds that belong to clusters other than the LCC. The site percolation

threshold for square lattice is found to be approximately pc = 0.5928. For systems of

infinite size, above this threshold, there exists an infinite-sized LCC.
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Figure 1.2: Site percolation on square lattice for different values of site occupation
probability p. Blue shows an underlying lattice structure. Red denotes the sites and
bonds that belong to the largest connected cluster (LCC), and black shows the sites
and bonds that belong to clusters other than the LCC. At pc = 0.5928, we see the
emergence of the incipient largest connected component.

Table 1.1 shows the percolation threshold for site and bond percolation for various

lattices [19].
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Lattice Site Percolation Threshold Bond Percolation Threshold
Square 0.5927 1/2(exact)

Triangular 1/2(exact) 2 sin (π/18)(exact)

Honeycomb 0.6962 1− 2 sin (π/18)(exact)

Diamond 0.43 0.388
Cubic 0.31161 0.2488

Hypercubic (d = 4) 0.197 0.160

Table 1.1: Percolation thresholds for various types of lattices.

Although percolation is a simple problem to formulate, understanding the statis-

tical properties of connected components and determining the exact critical point is

a tough problem to solve theoretically. It is evident from Table 1.1 that exact critical

points are known only for a small number of special lattices [20, 21]. The results for

other lattices are found using various techniques such as Monte Carlo simulations,

and series expansion [22, 23]. For example, for d = 1, we can easily see that in order

to have an infinite cluster that connects two sides of the lattice, all the sites should

be occupied, which means pc = 1. Broadbent and Hammersley [18, 19] showed that

0 < pc < 1 for d ≥ 2. In addition, Grimmet showed that the probability of existence

of an infinite cluster is 0 for p < pc(d) and 1 for p < pc(d) for all d.

A natural extension of percolation on a lattice is continuous percolation. In this

model, sites are not bound to be on specific locations as defined by the lattice struc-

ture. Examples include porous media in which pores play the role of unoccupied sites.

Similarly, many technological problems can be mapped to continuous percolation on

a plane or in 2 dimensions. For example, the area covered by a set of Uber drivers in

a city or connectivity of wireless antennas spread throughout an area.

1.3 Phase Transitions and Universality
In the physical sciences, phase transitions are usually attributed to phenomena in

which there is a transition between different states of media. as exemplified by solid
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to liquid transition. During a phase transition, some macroscopic characteristics of

matter (i.e., density or magnetization) experience a sharp change due to a change

in one of the system’s external parameters (i.e., pressure or temperature). As an

example, a system of spin 1
2 particles that possess no macroscopic magnetization

at high temperature due to disorder spontaneously transition into an ordered state,

which has measurable macroscopic magnetization. The most important property in

this transition is the development of long-range order. At high temperatures, the

spins are pointing in random directions. As we decrease the temperature, there is

a specific temperature at which the spins develop long-range correlations, and the

system jumps to an ordered phase in which the majority of spins are in the same

direction. In this example, temperature is our control parameter and magnetization

is what we call an order parameter. As evident from its name, the order parameter

is one of the system variables that characterize long-range correlations (order). In

the case of percolation transitions, the probability that a site belongs to the infinite

cluster (LCC in finite systems) is the order parameter. Similar to the phase transition

in an Ising system of spins, there is a critical p (site occupation probability) at which

the system jumps from no long-range correlations to a system with an infinite-sized

cluster that encompasses the lattice. The critical threshold at which the transition

occurs is called critical point or critical threshold. As mentioned earlier in the chapter,

pc is the critical point in a given percolation problem. Similarly, for an Ising system

of spins, the critical temperature Tc in which long-range order appears is the critical

point.

A class of phase transitions known as continuous phase transitions (second-order

transitions) exhibit another notable property, namely universality. Universality is

the observation that many macroscopic properties of a large class of systems are

independent of the dynamical details of the system. The concept of universality was

first clearly formulated by Kadanoff [24]. The universality hypothesis reduces various

9



phase transitions observed in various systems to a small number of equivalence classes.

These classes are called universality classes and depend only on a few fundamental

parameters of the system under study.

In continuous transitions, macroscopic observables of the system behave as power

laws near the critical point. The exponents for these power laws are known as crit-

ical exponents. The universality principle claims that in systems with short-range

interactions, these exponents are independent of the details of the system and only

depend on the dimensionality and symmetries of the system [25]. In short, the criti-

cal power-law behavior and scaling functions are the same for all systems that belong

to a given universality class. As an illustrative example, the exponent describing

the magnetization transition in all three-dimensional magnetic materials is the same,

regardless of the crystalline structure and the type of short-range interactions.

Percolation can be viewed as a purely geometrical critical phenomenon. Similar

to what is observed in thermodynamic critical phenomena, percolation quantities

behave as powers of the control parameter. The exponents that characterize these

power law behaviors are called critical exponents. For example, in thermodynamic

phase transitions, macroscopic thermodynamic quantities scale as powers of (T − Tc)

where T is the temperature of the system and Tc is the critical temperature in which

the transition happens. For percolation, macroscopic quantities of the system scale as

powers of p−pc near the critical point. One of the quantities of interest in percolation

is P∞, the probability that a site belongs to the infinite cluster. For an infinite system,

P∞ = 0 below pc. Above pc, P∞ behaves as a function of p as follows:

P∞ = (p− pc)β. (1.1)

The average distance between two sites belonging to the same finite cluster (also

known as correlation length) is characterized by ξ. When p approaches pc, ξ diverges

as:
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ξ = (p− pc)−ν . (1.2)

Similarly, average cluster size S, scales with p− pc as follows:

S = (p− pc)−γ (1.3)

Although the value of the percolation threshold strongly depends on the structure

and connectivity of the graph, the near-critical behavior of macroscopic parameters

like P∞, ξ, and S is known to be invariant to microscopic details of the lattice struc-

ture (i.e., triangular lattice vs. square lattice), and even type of percolation (site,

bond, continuum). For example, two-dimensional percolation problems on lattices

and continuum space with short-range interactions (short-range neighborhood and

connectivity) all belong to the percolation universality class. This means that a set

of fixed critical exponents explain the near-critical behavior of connected components

in all different types of lattices and percolation problems.

1.4 One Dimensional Percolation
To illustrate the behavior of different variables in percolation theory, here we

consider the simple example of one-dimensional percolation. Let us assume that we

have an infinite 1-dimensional chain of connected sites. Similar to the 2-dimensional

model introduced earlier, we randomly occupy sites with probability p and form

connected components based on nearest neighbor proximity of occupied sites. To

have a finite size-cluster, we need to have a chain of connected occupied sites with

two empty sites at both ends. Therefore, the number of clusters of size s per lattice

site (ns) is
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ns = ps(1− p)2. (1.4)

In the above equation, we need to have s occupied sites each with probability p, and

two empty sites at two ends of the cluster, each with probability (1 − p). Equation

(1.4) could be regarded as the probability of a site belonging to the left-most side of

a connected chain. Knowing ns, the probability of a site belonging to a cluster of size

s can be calculated as nss. It is easy to show the following equality:

∑
s

sns = p (1.5)

As mentioned earlier, we can easily deduce the percolation threshold for a 1-d chain.

For any p < 1, there exist at least a single unoccupied site in an infinite lattice.

Therefore all the sites should be occupied in order to have a connected chain that

connects two ends of the lattice. For this reason,

pc = 1. (1.6)

As discussed above, one particular variable of interest near the critical point is average

cluster size, defined as: ∑
s

( nss∑
s nss

)s. (1.7)

Simplifying the above equation, we get:

S(p) = 1 + p

1− p. (1.8)

S(p) is equivalent to susceptibility in thermodynamic phase transitions. In con-

tinuous phase transitions, it is known that susceptibility diverges at the critical point

as we observe it happens for this one-dimensional lattice percolation problem.

12



1.5 New Types of Percolation
The emergence of global connectivity from random local interactions has been

successfully captured by ordinary percolation. This simple notion of percolation has

particularly been helpful in fields like materials research. In systems which this as-

sumption holds, the interactions are simply bound to the underlying graph structure,

and most of the time, higher orders of interactions can be ignored. However, intro-

ducing more layers of complexity is essential to gain a better quantitative explanation

of connectivity and robustness in complex systems [26]. Classical percolation theory

is based on two fundamental assumptions: interactions are independent and local.

Relaxing any of the aforementioned assumptions has been the focus of the study of

many recent works on percolation theory. Goltsev et al. [27] and Baxter et al. [28]

expanded the condition of simple connectivity and added extra conditions for a struc-

ture to be considered connected. As an example, k-core percolation was introduced.

Aside from the ordinary condition of connectivity, each node in the graph must have

at least k neighbors, which are part of the k-core component. The addition of such

a condition drastically alters the near-critical behavior of "connected" clusters. The

concepts of dense subgraphs and k-core components were first introduced in the con-

text of social networks [29]. Later it was also used in other fields like modeling protein

interaction networks [30]. Of significance to our work are studies that look at more

fault-tolerant percolation problems by introducing stricter conditions for connectivity.

Newman et al. [31] looked at percolation of sub-graphs that satisfy the condition of

bi-connectivity. A bi-connected component is a component in which there are at least

two distinct paths between elements in the component. This stricter level of robust-

ness is essential in designing engineered networks that are robust to random failure of

specific nodes. It has also been observed that many naturally formed networks such

as biological networks [32] employ this notion of multi-path connectivity to avoid

catastrophic failures when some components malfunction. Newman et al. [31] showed

13



that in most networks of interest, the critical point for the appearance of a giant con-

nected component coincides with the emergence of a giant bi-connected component.

The co-appearance of a giant connected component and a giant bi-connected compo-

nent is an exciting finding since it allows researchers to utilize the existing literature

on ordinary percolation in designing systems that are also fault-tolerant by standards

of bi-connectivity. All of the previously mentioned research works focused on static

networks; however, most networks change over time in the real-world. Many recent

works focused on percolation problems on temporal networks [33, 34]. Others have

focused on percolation on growing networks [35]. In these problems, the number of

elements dynamically increases while forming random connections. Introducing non-

local interactions in the percolation process has also become a center of focus. In his

attempt to delay the emergence of connected clusters and to create a sharper tran-

sition, Achlioptas et al. [36] suggested a variant of bond percolation called explosive

percolation in which adding each new bond is based on global knowledge of the net-

work. For each new bond, two non-occupied bonds are randomly selected, then one

of them is selected based on the size of the clusters that the bond is joining. Adding

this global information breaks the locality assumption and significantly changes the

critical behavior of the transition. These non-local effects often lead to delayed phase

transitions, which are sharper in nature.

Another approach in expanding percolation to real-world scenarios is to relax the

independence of interactions assumption. In fact, in most real-world applications

like social phenomena, cooperative effects between components play a critical role in

the emergence of global connectivity in the system. Reaction-diffusion systems are

abundant in nature ranging from predator-prey dynamics in an ecological region or

chemical reactions among multiple species; all these systems have some degree of cor-

relation between their components. Similarly, in epidemic processes like the spread

of a rumor, the number of contacts a given person following a rumor affects the per-
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son’s probability of re-sharing the rumor. In disease spreading, each contact with an

infected individual may weaken the susceptible person’s immune system and change

the infection rate. Although relaxation of the independence assumption in percola-

tion studies is much less prevalent, many researchers studied percolation transitions

in such systems [2–4,37,38].

As stated earlier, connectivity is a central property of many complex systems.

In many systems, global connectivity is needed to ensure proper performance (i.e.,

communication networks, biological networks). However, in many real-world complex

systems, global connectivity is a property to avoided (i.e., epidemic processes, rumor

propagation). For this reason, studying new types of percolation in more real-world

scenarios is pivotal in modeling, designing, and controlling functional networks.

In the following two chapters of this thesis, we investigate new types of percola-

tion transitions and study how changing the local interactions of percolating agents

or changing the underlying definitions for connectivity in a network alters the critical

behavior of the system. In the second chapter, we introduce a hierarchy of robust-

ness metrics for connectivity. We then investigate the thresholds, critical behavior,

and universality classes of each measure of connectivity on the square lattice. We

show that although the critical threshold remains unchanged for stricter robustness

measures such as bi-connectivity, the critical exponents and universality classes are

different.

In the third chapter, we introduce a multi-particle interacting system and study

pattern formation and phase transition of connectivity in such a system as a function

time. We show that our multi-particle system undergoes a percolation transition;

however, our system breaks the ordinary notion of universality. As mentioned earlier

in this chapter, the concept of universality stems from the observation that micro-

scopic details of the graph structure and interactions between components become

irrelevant when studying macroscopic quantities near a phase transition. Our model
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breaks this paradigm since slight changes in our interaction model change the scaling

relations and critical exponents characterizing the phase transition.

1.6 Reaction Diffusion Patterns
The first quantitative formulation of pattern formation was presented in a seminal

paper by Turing [39] approximately 70 years ago. His findings were experimentally

verified four decades later by a remarkable experiment designed by Castets et al. [40].

Utilizing the reaction-diffusion principles formulated by Turing, computer scientists

started to investigate pattern formation in computer graphics. Turk [41], Witkin et

al. [42] used reaction-diffusion equations to generate a variety of patterns observed

in nature including animal skin patterns. Fig. 1.5 shows an example set of patterns

observed in reaction-diffusion systems.

Figure 1.3: Some examples of reaction-diffusion patterns.

The system Turing studied took the following form:

∂u
∂t

= DO2u + f(u), (1.9)

where D is the matrix of constant diffusion coefficients, u is a vector of chemical

concentrations and f(u) is a non-linear function. Here u is an n dimensional vector

characterizing different chemical reactants. In this case D will be an n-dimensional
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matrix of constant coefficients that characterize the rates of diffusion for each chem-

ical.

1.7 Predicting Reaction-Diffusion Parameters from Observed

Patterns
Assume that, based on extensive experimentation and observations, we know that

a particular natural pattern (i.e., leopard skin patterns) is generated from a Turing

reaction-diffusion system as explained above with a known functional form of f(u).

Different values of D in this equation will give rise to patterns with different char-

acteristics. Fig. 1.4 shows an example of such patterns generated from the same

underlying function with different values of coefficients.

Figure 1.4: Different patterns generate from the same underlying function, with dif-
ferent parameters.

Now, consider the following inverse problem. Given a specific sample (image

of a pattern observed in an experimental setting) of the pattern space from this

reaction-diffusion equation, find the underlying parameters that created this specific

realization. This is an extremely hard problem to address in an ongoing chemical

reaction or a living leopard in an experimental manner. Another approach would

be to run numerous simulations and do a hyper-parameter search in the space of all

patterns that can be generated by this set of equations. Both of the above approaches
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are extremely costly and do not create repeatable solutions. Some works focused on

extracting geometric features [43] and using these features to predict the underlying

parameters; however, these approaches need to be specifically designed for various

types of patterns and underlying dynamics. This dissertation (Chapter 4) will utilize

supervised learning methods to address this inverse problem as a more robust and

repeatable solution.

1.8 Quantitative Definitions for Reaction Diffusion Patterns
Despite remarkable progress in understanding various mechanisms leading to the

formation of patterns in diverse systems, some key elements are still surprisingly

missing in the scientific literature. For example, what do physicists, biologists, or

ecologists precisely mean by reaction-diffusion patterns, how do they identify and

classify them, or characterize their properties? In the reaction-diffusion literature,

one comes across visual characterization of various patterns as "spots", "mazes", or

"stripes". However, these terms are extremely general characterizations of patterns

and are limited by our visual ability to distinguish certain patterns. More impor-

tantly, "spot" patterns observed in a specific biological phenomenon may have very

different geometrical characteristics than "spots" observed in the formation of stars

in a galaxy. If we aim to have a more universal understanding of pattern formation

and analysis, there is an urgent need to have a more robust quantification of patterns

so that researchers from different fields can map their findings into a more coherent

framework. One of the most common ways of approaching this problem could be to

study Fourier transformation or auto-correlation functions [44] of the pattern images.

While these methods can provide insightful information about the orientational order

or characteristic length scales of the patterns, they fail to capture more subtle nuances

and differences in complex patterns [1]. Therefore, if two patterns have the same av-

erage periodicity and length scales but visually differ significantly, these methods will
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still classify them in a single class. As an example, Fig. 1.5 shows three very different

patterns to the human eye, but their general length-scale and periodic structure are

similar and indistinguishable using simple auto-correlation and Fourier analysis. The

main differences between these images are more subtle changes in the connectivity of

the structures, curvatures of the stripes, and more nuanced features.

Figure 1.5: Three images (taken from [1]) of patterns which have similar length-scales
and Fourier transform but appear different to human visual system.

Mecke [1] introduced more detailed morphological and geometrical characteristics

of patterns that are very useful in distinguishing patterns. In this case, a pattern is

considered to be a two-dimensional image. In order to find the geometrical properties

of this image, he chooses a threshold ρ to turn this grey-scale image into a black and

white image. After transforming the pattern into a two-dimensional black and white

image, the following characteristics, called Minkowski measures, are calculated for

the image.

• The area fraction v(ρ) defined as the fraction of black pixels.

• The length of the boundary line s(ρ) between black and white regions measured

as the number of pairs of neighbored black and white pixels normalized by the

total number of pixels.
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• The so-called Euler characteristic χ(ρ) defined as the difference between the

number of white connected components and black connected components nor-

malized by the total number of pixels.

All these quantities are functions of ρ, the threshold to transform a grey-scale im-

age to a black and white image. Therefore, Mecke postulated that plotting simple

combinations of these quantities as a function of ρ should give a different plot for dif-

ferent types of patterns with different morphological characteristics. Fig. 1.6 shows

an example of plots gained by varying the threshold taken from [1]. Mecke showed

Figure 1.6: area fraction v, Euler characteristic χ, and length of the boundary line s
as a function of ρ for some typical patterns, taken from [1]

that if we approximate the aforementioned curves (for more details please see Chap-

ter 4) with polynomials, one can distinguish different patterns by coefficients of the

polynomials. While this method has made significant progress in mapping patterns

to a lower-dimensional space, it has some shortcomings. First and foremost, it is

computationally expensive. For any given pattern, one needs to sweep over a large

number of thresholds and find detailed measures of connectivity and boundary length

information, which becomes very costly as the size of the image increases or if we need

to sweep over a large number of thresholds to get a fine-grained curve. Another short-

coming of this analysis comes from the fact that it cannot deal with black and white

patterns since a black and white image will only give a single point in the space of

curves discussed above. Many patterns observed in cellular automata literature or
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materials science are, in essence black and white patterns. There were other attempts

to overcome the latter shortcoming [45, 46]; however, they were designed for specific

problems rather than being a holistic approach. This shortcoming limits the ability

of this method to categorize these types of patterns into other known patterns. For

the above mentioned reasons, there is a need for methods that are more computa-

tionally tractable and at the same time are more widely applicable to various types

of patterns.

1.9 Machine Learning and Analysis of Patterns
Machine learning has seen dramatic progress in the past decade. This has been

mainly driven by advancements in artificial neural networks and an exponential

growth in computation power. Commonly referred to as deep learning, these al-

gorithms enable a computer to discover complicated patterns in very large data sets.

Nowadays, these models are considered state-of-the-art in many tasks ranging from

computer vision to robotics and natural language understanding. The sudden surge

of interest in these areas began when a number of research works showed that these

algorithms can outperform humans in many tasks, including visual classification and

analysis tasks. The first and most prominent example was ImageNet [47]. In the Vi-

sual Recognition Challenge in 2012, ImageNet drastically decreased the error rate in

image classification tasks. Deep convolutional neural networks used in such tasks now

easily outperform humans in visual classification and recognition tasks. Aside from

image analysis and visual pattern recognition, deep learning algorithms are being used

for various tasks such as speech recognition and synthesis [48], and natural language

processing [49]. Deep learning methods, specially deep convolutional neural networks

(CNNs), are now being used in areas that were believed to be human-only task a

decade ago. As an example, some research in medical image classification has shown

performances surpassing human experts. A deep convolutional neural network model
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called CheXNet [50] was able to outperform radiologists in detecting pneumonia from

chest X-rays in a data-set with 100,000 chest X-rays images. There have been numer-

ous other recent uses of machine learning approaches in medical sciences [51–54]. As a

result of these drastic achievements in the past few years, deep learning methods have

become a de facto standard for any tasks that needs to extract patterns from a large

set of experiments or data points. Convolutional neural networks even entered the

field of assisting in physical simulations of complex partial differential equations [55].

Despite all the progress in deep learning and computer vision in different domains, re-

search that utilize these techniques for analysis and classification patterns generated

from reaction-diffusion systems is sparse and almost non-existent. For this reason

and the reasons outlined in this introduction, in Chapter 4 of this dissertation, we

employ many algorithms from the machine learning domain to analyze and classify

patterns generate in reaction-diffusion systems. We show that these algorithms prove

to be very successful in many tasks that an ecologist or an experimental physicist

encounters in the course of his/her research on pattern formation, classification, and

analysis.

1.10 Dissertation Outline
The rest of the dissertation is organized as follows.

Chapter 2 introduces a set of hierarchical measures of robustness in networks to

ensure various levels of stability against random loss of sites or bonds. We extensively

investigate the critical point, critical behavior, and universality classes for these new

measures of connectivity on the square lattice for both site and bond percolation.

We show that some of these connectivity measures do not belong to the general

percolation universality class in two dimensions.

Chapter 3 introduces a simple interacting multi-particle system, and we study the

phase transition of connectivity and pattern formation of this system as a function
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of time. We show that a continuous phase transition occurs in the dynamics of our

model, and the critical exponents characterizing this transition are dependent on the

parameters and initial conditions of the multi-particle system. We argue that this

observation breaks the general observation of universality since universal behavior

predicts that the critical exponents describing the critical behavior of such systems

are independent of short-range interactions and even lattice structures.

In Chapter 4, we will investigate the use of various machine learning algorithms in

classifying and quantifying patterns generated from reaction-diffusion systems. For

this purpose, we utilize the Gray-Scott system of equations to generate various types

of patterns since this system of equations can generate various types of patterns in

different parameter regimes. We show that these algorithms can successfully classify

reaction-diffusion patterns even in the settings where no prior information is given to

them. We also formulate and solve the inverse problem of deducing reaction-diffusion

constants given sample patterns and show that these algorithms are very effective

and efficient in this task.

Chapter 5 focuses on future directions for each of the problems discussed in this

dissertation. In this Chapter, I will try to delineate a number of open questions that

can serve as the starting point for future research projects.
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CHAPTER 2

PERCOLATION THRESHOLD FOR ROBUST NETWORK
CONNECTIVITY

2.1 Introduction
In recent years, there has been impressive progress in our understanding of struc-

tural and dynamical properties of complex systems. Network science has emerged as

a prominent field that provides us novel perspectives to better understand complex-

ity [56,57]. This is because many complex systems can be described with networks in

which the entities are represented by nodes and the relationship between these enti-

ties are represented as bonds connecting these nodes. The dynamics of these complex

systems can be modeled through the structural dynamics of the network as well as

the dynamics on the network [58–60]. Structural transitions in networks have been

the focus of numerous research studies in the past decades due to their importance in

characterizing the performance of natural and man-made networks. These structural

transitions affect many important network properties of networks, e.g. robustness

to breakdowns [61, 62], cascading failures in networks [15], and epidemic spreading

on social and technological networks. [63–65]. One of the most important properties

of these networks is their functional and structural robustness to unexpected inter-

ruptions caused due to node and edge failures. At the hallmark of these studies,

percolation theory [66] quantifies the robustness of networks by looking at the size of

the largest connected component (LCC), i.e., the largest set of nodes of which each

pair is connected by at least one path, as a function of a probability or a rate pa-

rameter that controls either random [62], localized [67, 68], or targeted [69, 70] node
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and/or edge removals. A percolation threshold refers to the value of that parameter

that separates a phase transition between two regimes of network connectedness—a

set of small disconnected islands of connectivity on one side (the subcritical regime),

and the existence of a giant connected component (GCC), a connected component

of size proportional to the size of the network, on the other side (the supercritical

regime). The sudden appearance of the GCC at this threshold is referred to as perco-

lation. As the network goes deeper into the supercritical regime, the GCC becomes

progressively more richly connected. Theoretical and numerical computation of per-

colation thresholds have been an ongoing challenge in the scientific community [71].

Due to the high complexity of the problem, analytical results exist only for very few

lattice structures. On the other hand, numerical simulations have been shown very

effective in determining the threshold for a range of regular and disordered lattices as

well as random networks. The exponential increase in computational resources has

paved the way for more precise calculations of percolation thresholds [72–75].

In many real-world applications, barely meeting the percolation threshold may not

suffice to ensure robust network operation, since the GCC may be fragile and prone

to disconnection with the failure of only a small fraction of nodes or edges. Further,

even in the absence of actual failures, in certain networks, for example communication

networks and biological networks [32], it is often desirable not only to be long-range

connected but to have multiple paths connecting pairs of nodes in order to help

control network congestion and support higher data throughputs. Therefore, there is

a need to introduce more advanced measures of network robustness, which not only

capture spanning connectivity but are also able to accommodate additional measure

of robustness. Clearly, to meet any such additional robustness-driven constraint, the

network must be pushed deeper into the supercritical regime of standard percolation

theory. Expanding on ideas from percolation theory, researchers have studied other

variants of percolation on different networks including k-core percolation [76–78],
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k-clique percolation [79, 80], restricted valence percolation [81], and k-connectivity

[31,32].

In this chapter, we define and perform a comparative analysis of four intuitive

measures of network robustness. We explain their inter-relationships, and also nu-

merically evaluate the respective robust percolation thresholds for the square lattice.

We leave connecting our robustness measures to application-specific robustness mea-

sures in real-life networks, for future work.

2.2 Robustness measures
The four robustness measures that we investigate in this chapter are depicted in

Figure 2.1: (1) k-strong-connectivity, (2) k-connectivity [31], (3) k-core connectivity

[76] and (4) k-stub connectivity [82]. The arrows in Figure 2.1 depict going from

stronger to weaker measures of robustness. In other words, if a network is in the

supercritical regime with respect to the stronger of two robustness models, it will

also be so for the weaker one, but not necessarily vice versa. In each of the robust

connectivity models, k ∈ {1, 2, . . .} denotes the strength of the robustness setting,

and each model is defined in a way such that k = 1 reduces each to the standard

bond (or, respectively site) percolation model. Next to each measure of robustness

in Figure 2.1, we write the condition that a robust k-connected component must

satisfy under that measure of robustness. The network is said to percolate within any

given robustness measure, when the size of the respective largest robust k-connected

component is proportional to the size of the network itself.

In this Section, we formally define and explain the intuition behind each of these

robustness measures. In Section 2.3, we define bond-percolation and site-percolation

thresholds with respect to each of the measures, for the 2D square lattice, and inter-

pret our results.
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Figure 2.1: Models of robustness in connectivity. The arrows depict going from
stronger to progressively weaker measures of robustness. In other words, if a network
is in the supercritical regime with respect to the stronger of two robustness models,
it will be so for the weaker one, but not necessarily vice versa.

1. k-strong connectivity: This is the strongest notion of robustness that we

study. In this model, a k-connected component is a set of nodes such that

every pair has at least k node-disjoint paths connecting them. The nodes in the

paths must also satisfy this conditions and be a part of the k-strong component.

This means that removal of k−1 nodes from a k-connected component will not

disconnect the rest of the nodes in that component.

2. k-connectivity: In this model, a k-connected component is a set of nodes in

which each pair is connected via at least k node-disjoint paths. However those

paths need not belong to the k-connected component. Newman et. al [31]

showed that the percolation threshold for a configuration model random graph

(any node degree distribution) is the same as that of standard percolation,

although the absolute size of the GCC in the supercritical regime varies with k

for k > 1.
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3. k-core connectivity: In this model, a k-connected component is a set of

nodes such that each node has at least k nearest neighbors each of which is

also in the k-connected component. The concept of k-core connectivity and

decomposing a complex network into its k-core components has been applied

to several real-world networks, e.g., the Internet, the World Wide Web, and

cellular networks [83].

4. k-stub connectivity: In this model, a k-stub connected component is a set of

nodes such that each has at least k nearest neighbors (that need not belong to

the k-component).

For any k > 1, there is a hierarchical relation between these four measures of

robustness—k-strong-connectivity being the strongest of all, and regular percolation

being the weakest. Connected components under these measures of robustness are

nested per the hierarchies shown in Figure 2.1. For example, a 2-core connected

component under the k-core model is always a subgraph of a 2-stub connected com-

ponent under the k-stub model, which in turn is a subgraph of a regular connected

component. There is no established hierarchical relationship between k-connectivity,

and either the k-core or k-stub models.

2.3 Robust percolation thresholds
2.3.1 k-connectivity

k-connectivity is the best-known robustness measure studied in the literature. We

call a subset of network nodes k-connected if each pair of nodes in that subset has at

least k edge-disjoint paths connecting them. These paths can contain nodes that act

as conduits to connect two nodes in the k-connected component while themselves not

being part of the component. There are several algorithms for finding k-connected

components for different values of k for a given graph. However, linear-time algo-
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rithms are only known for the cases k = 2 and k = 3 [84]. For k > 3, polynomial-time

algorithms exist to find the k-connected components of a graph [85]. To gain a better

understanding of the behavior of k-connected components, we restrict ourselves to

site and bond percolation on the 2D square lattice. Despite percolation on 2D square

lattice being a widely studied problem, to the best of our knowledge there is no lit-

erature on k-connectivity properties of percolation clusters (in the sub-critical and

super-critical regime). Grimmett [86] showed that the bond percolation threshold of

the square lattice is given by pc = 1
2 and stated the following theorem:

Suppose Bn is an n by n square grid centered at the origin. Let Mn denote the

maximal number of (pairwise) edge-disjoint left to right paths crossings Bn. Then,

for any p > pc there exist positive constants η = η(p) and λ = λ(p) such that:

Pp(Mn ≤ ηn) ≤ exp(−λn)

where Pp(Mn ≤ ηn) denotes the probability of occurrence of eventMn ≤ ηn. This

means that there exists order n disjoint left-right crossings of box Bn when p > 1
2 .

Using the rotation invariance of the square lattice under π
2 rotations, we see that

the theorem is true for up-down disjoint crossings of the box with sides of length n.

This means that above the percolation threshold there exists order n disjoint left-

right and order n disjoint up-down crossings of a box Bn. Also, using translational

invariance of the square lattice, we know that this is true for any square box with sides

of length n. Using this result, we now can superimpose a renormalized square grid

Figure 2.2 using the left-right and up-down disjoint crossings of the square lattice.

This ensures that we can have a renormalized square grid of order Θ(N) sites above

the percolation threshold in a bond percolation model. Since all of the intersections

of the disjoints crossings on the square grid have at least degree 3, the renormalized

grid ensures the existence of giant 2-connected and 3-connected components with

sizes of order Θ(N). However, it does not necessarily guarantee the existence of a

giant 4-connected component since we need order Θ(N) degree 4 disjoint crossing
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intersections in the infinite connected component to guarantee the existence of a

giant 4-connected component. Our numerical results illustrate that the percolation

threshold for 4-connectivity is above the regular threshold for global connectivity.

Figure 2.2: The renormalized grid made by joining the disjoint crossings

We verified our theoretical results with numerical simulations [84]. Figure 2.3

shows the percolation threshold for k-connectivity for k = 1, 2, 3 for site and bond

percolation on square lattice. As observed from the figure, bond percolation thresh-

olds for k = 1 to k = 3 are the same and equal pc = 1
2 .

The algorithm for determining the percolation behavior of our model is similar

in spirit to the fast percolation algorithm of Newman and Ziff [87] in which we start

with an empty graph and randomly occupy bonds one by one until we occupy all

the bonds in the square grid. Our simulation results are based on implementations

of algorithms developed by Hopcroft et al. [84] and Gutwenger et al. [88] to find the

2-components and 3-components of a given instance of the network.
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Figure 2.3: (a) k-connectivity for bond percolation on square lattice. The critical
threshold is pc = 0.5. (b) k-connectivity for site percolation on square lattice. The
critical threshold is qc = 0.5927.

2.3.2 k-strong-connectivity and k-core

k-strong-connectivity, which is less prevalent in the literature and is our strongest

robustness measure, demands that every pair of connected nodes in the subset have

at least k disjoint paths between them and that nodes on these paths belong to the

k-strong-component. The k-core of a network is obtained by recursively removing

nodes with degree less than k until no such nodes exist in the network. k-core decom-

position has been applied to many real-world networks (the Internet, the World Wide

Web,cellular networks, etc.) [89, 90] and has become an important tool for visualiza-

tion of complex networks and interpretation of cooperative processes in them. The

critical behavior of k-core in the site percolation setting has been studied before for

various types of lattices, including cubic and triangular lattices [91,92]. Here we study

the critical behavior of k-core and numerically show that for square lattice, the perco-

lation threshold for k-core is the same as for k-strong-connectivity for all k and is the
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same as k-connectivity for k = 2. It is evident that for k = 2, a k-strong-component

is the same as a k-component. This is because the nodes that act as conduits in

the case of 2-connectivity are parts of cycles in the network and all the nodes in a

cycle have 2 disjoint paths between them and so are k-strongly connected. We also

argue that for k = 3 on the square lattice with non-periodic boundary conditions, the

percolation threshold for k-strong connectivity is the same as k-core and is equal to

one. In order to have a k-core, all the nodes in the component need to have degree k

or higher than k. The simple square lattice without periodic boundary conditions has

four degree 2 nodes on its corners, in order to have a 3-core, we need to remove those

nodes and continue the process until there are no nodes with degree smaller than

three. This results in the deletion of all of the nodes in the square lattice. Therefore,

the threshold for k = 3 for k-core and k-strong-connectivity is one in a square lattice

with no periodic boundary conditions. However, for a square lattice with periodic

boundary conditions, the only configuration in which we can have a non-zero 3-core

is a configuration that has a wrap around. The reason is that any configuration that

has not wrapped around the torus has a corner that has degree smaller than three

which results in the deletion of all of the nodes in the graph during the k-core pruning

process. Our numerical results indicate that the 3-core component and the 3-strong

connected components are exactly the same with the same participating nodes. This

is an interesting observation, since one can come up with counter-examples in which

a 3-core component is not 3-strongly connected on the square lattice with periodic

boundary conditions, however, the occurrence of such configurations is unlikely be-

cause of being extremely ordered. Fig. 2.4 shows an example of such a configuration.

There are only 2 node-disjoint paths from node A to D, one of which passes through

B and the other passes through node C. Nodes B and C are the only connection

points between the left and the right part of this component. However, in order for

this configuration to exist, all the edges inside the left and right sides of the compo-
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nent should exist. As argued above, the configuration must have wrap-around edges

that connect two sides of the square lattice to avoid having nodes with less than 3 con-

nections. Other similar counter-examples could exist but they must satisfy the same

requirements to maintain being a 3-core. As the lattice size grows, the probability of

observing such structures diminishes, a fact that is confirmed by non-appearance of

such configurations in our numerical simulations.

Figure 2.4: Counter-example showing possibility of non-equivalnece of 3-core and
3-strong component on square lattice with periodic boundary conditions.

We further numerically investigated the nature of k-core transition and the exact

point of criticality using finite size scaling. It is worth noting that, in general graphs

the critical behavior for k-core percolation can be different from that of k-strong-

connectivity.
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Figure 2.5: (a) k-stub of square lattice for bond percolation. The critical threshold
for 4-stub is smaller than 1; (b) k-core of square lattice. Note that the curve for
2-core, 2-connectivity and 2-strong-connectivity are exactly overlapping.

2.3.3 k-stub

The k-stub of a graph is obtained by executing only one iteration of the algorithm

for finding the k-core of the graph. We propose an efficient online algorithm similar

to one described in [87] to find the percolation properties of k-stubs of graphs using

dynamic updates after the addition of each node. In this algorithm, which is based

on the union-find data structure, we store extra information on the degrees of nodes.

After each node addition, we update the degrees of neighboring nodes and check

if they exceed k. If the degree of any of the neighboring nodes exceeds k after an

addition, we add it to the union-find structures that store the k-stub components of

the graph. This algorithm cannot find the k-core of the graph since the addition of

each node could result in non-local changes to the k-core components and tracking

these non-local changes will increase the computational cost of these dynamic updates.
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As can be observed in Fig. 4(a), the percolation threshold for 4-stub is strictly below

1.

2.4 Finite Size Scaling
In order to better characterize the nature of robustness measures in this chapter,

we make use of finite size scaling [93, 94], a well-known technique developed for nu-

merical analysis of phase transitions. In second-order (continuous) phase transitions,

every variable X near the critical threshold pc is scale-invariant. This phenomenon

appears due to the divergence of correlation length at pc. Therefore, X has the

following power-law form.

X ∼ |p− pc|ω (2.1)

where ω is the critical exponent for variable X. On a finite system of size N and

length L, the variable X has the following scaling form near the threshold

X = L−
ω
ν F

[
(p− pc)L

1
ν

]
(2.2)

where ν is the correlation length critical exponent and F a universal function. At

p = pc, the scaling function F converges to a constant and variable X follows a simple

scaling relation,

X ∼ |L|−
ω
ν . (2.3)

Using Monte Carlo simulations of different size systems at p = pc, one can deduce

the critical exponent ratio ω
ν
of the variable using the scaling relation in (2.3). In

this work, following an approach similar to [94], we adopt the two main variables

commonly used to characterize percolation transitions, i.e. the percolation strength

P and the average cluster size S. The percolation strength P∞ is defined as the
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relative size of the largest cluster with respect to the total system size N . The scaling

relation of P is

P∞ = L−
β
ν F (1)

[
(p− pc)L

1
ν

]
(2.4)

where the critical exponent is β. Here P is the order parameter of the transition. The

second variable we use in our numerical simulations is the truncated average cluster

size S defined as

S =
∑
s nss

2∑
s nss

(2.5)

In the above equation, ns stands for the number of clusters of size s per node. Since

the percolating cluster diverges above pc, the sum in (2.5) runs over all cluster sizes

except that of the largest cluster. The scaling relation of S is

S = L
γ
νF (2)

[
(p− pc)L

1
ν

]
(2.6)

Where γ is the critical exponent related to average cluster size. In lattice percolation,

the exponents βL, νL and γL (where subscript L stands for lattice) are linked by the

so-called hyper-scaling relation [95],

γ

ν
+ 2β

ν
= d (2.7)

where d is the dimension of the lattice.
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Figure 2.6: Exponents β
ν

and γ
ν

for regular percolation, 2-connectivity, and 3-
connectivity (a),(b) pc = 0.5927 and (c),(d) qc = 0.5. The linear nature of these
scaling exponents verifies the fact that we are at the percolation threshold.

2.5 Numerical Results
It is known from percolation theory that in regular percolation, the order param-

eter changes continuously across the transition. This critical behavior is known as

continuous or second-order phase transition. On the other hand, first-order or con-

tinuous phase transitions are characterized by a discontinuity in the order parameter

of transitions [96]. There is also a class of transition known as hybrid transition that

combines a first-order discontinuity with a second-order transition [97].

We examined the critical exponents for all the defined robustness measures. Based on

our numerical analysis, the critical behavior of k-stub for all k as well as k-core and
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k-strong-connectivity for k = 2 is similar to 2-connectivity with similar corresponding

exponents. Besides, as shown in the literature [97], our results confirm the fact that

k-core for k > 2 exhibits a hybrid phase transition combining a discontinuity and a

critical singularity that breaks the usual scenario of ordinary percolation. The critical

behavior of k-connectivity was found to be different from the percolation universality

class. Hence, we report results corresponding to this robustness measure.

Figure 2.6 shows plots for finding critical exponents for bi-connectivity and tri-

connectivity, the linear behavior of the curves verifies our theoretical results about

the percolation thresholds of these robustness measures on the square lattice. As

expected the exponents follow the hyper-scaling relation in (2.7) with a small mar-

gin of error that ensures that we indeed observe a second-order phase transition in

two dimensions. The values corresponding to β
ν
and γ

ν
are different from the regular

percolation universality class and to the best of our knowledge, do not belong to any

known universality class. Shlifer et al. [98] showed that the correlation length expo-

nent ν for bi-connectivity is the same as ν in percolation universality class. Given

ν = 4
3 , we obtain β = 0.48, which is consistent but slightly lower than previous results,

Shlifer [98], β = 0.50 and Sahimi [99], β = 0.542. It is also worth noting that the

critical behavior of tri-connectivity and bi-connectivity are similar in both bond and

site percolation, which is expected since the underlying transition in two dimensions

should belong to the same universality class.

Tables 2.1 and 2.2 show the percolation thresholds for all our robustness measures.

We were not able to find the exact percolation threshold for 4-connectivity due to

its computational complexity; however, our results confirm the fact that that the

percolation threshold for this robustness measure is above the regular percolation

threshold.
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Table 2.1: Bond percolation thresholds

k-connectivity k-stub k-core k-strong-connectivity
k=1 0.5
k=2 0.5
k=3 0.5 0.6603(4) 0.9692(1) 0.9692(1)
k=4 0.8655(3) 1 1

Table 2.2: Site percolation thresholds

k-connectivity k-stub k-core k-strong-connectivity
k=1 0.5927
k=2 0.5927
k=3 0.5927 0.7356(3) 0.9747(1) 0.9747(1)
k=4 0.8846(4) 1 1

All simulations reported in the Chapter were performed using a Linux based com-

pute cluster. For all robustness measures, systems with sizes L = 100, 200, 400, 1000

were simulated. For k-stub for all values of k and L, 106 realizations were generated

using the modified Newman-Ziff algorithm introduced in Section 2.3.3. For the other

three robustness measures, 106 realizations were simulated for the smallest lattice

(L = 100), and for all other lattices including the largest lattice (L = 1000), this

number was always > 105.

2.6 Conclusion and Future Work
We numerically evaluated various percolation phenomena for several robustness

measures for the square grid. We showed that k-stub for all k, and k-strong-connectivity

and k-core fr k = 2 belong to the percolation universality class in two dimensions.

We showed that critical exponents for k-connectivity belong to different universality

classes for different k and calculated the corresponding exponents for k = 2, 3. In ad-

dition, we report percolation thresholds for all the robustness measures and show that

on the square lattice, the percolation threshold for k-connectivity for k = 2, 3, and
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k-core, k-stub, and k-strong-connectivity for k = 2 are equal to the ordinary perco-

lation threshold. In ongoing work, we are applying these connectivity-based network

robustness measures to the design and control of software-defined wireless networks to

realize distributed analytics that is robust to network dynamics [100]. Furthermore,

one of the main future directions of this work is to investigate the critical behavior of

these connectivity measures in other network configurations and lattice structures.
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CHAPTER 3

PHASE TRANSITION, PATTERN FORMATION AND
VIOLATION OF UNIVERSALITY IN A

NONEQUILIBRIUM PERCOLATION MODEL

Classical percolation theory mainly deals with statistical properties of connected

components in systems with independent components. The probability of occupying

a site or bond on the square lattice percolation does not depend on the number of

occupied sites in the lattice or the neighborhood of the site or bond. However, when

system under study is a system of interacting particles and the phase transition occurs

as the dynamics of the system unfold, this assumption no longer holds and behaviors

aberrant from ordinary percolation are expected.

In this chapter, we introduce an interacting multi-particle system. We study the

dynamics of this system on the square lattice. In particular, we study the phase

transition of connectivity as a function of time. We show that there is a sharp loss

of long-range connectivity resembling a continuous phase critical phenomena in the

time-evolution of the system. We utilize the finite-size scaling techniques introduced

in chapter 2 to investigate its critical behavior. Our numerical studies show that

this varying parameters of the interaction as well as initial conditions, continuously

changes the critical exponents of the transition. As introduced in the first chapter,

the concept of universality revolves around the observation that critical exponents ex-

plaining continuous phase transitions do not depend on the microscopic details of the

system and only depend on few parameters like dimensionality or symmetries of the

system. For this reason, our observation violates the general notion of universality.

However, we show that it can still be categorized under weak universality which was

41



recently introduced to explain certain rarely observed critical phenomena. During

the time-evolution, our system also undergoes different stages of pattern formation.

Multiple filamentation patterns, resembling the ones formed in laser filamentation, oc-

curs when the system is undergoing phase transition of connectivity. We qualitatively

show that the types of these patterns change as we vary the interaction parameter.

3.1 Introduction
Interacting-diffusing systems of particles or agents have recently been the focus

of many research fields ranging from statistical physics [101] to ecology [102]. These

systems exhibit interesting phenomena and can give rise to complex collective be-

haviors such as non-equilibrium critical phenomena [103], pattern formation, self-

organization [102], and collective motion [104]. Complex collective behaviors can arise

when the particles or agents follow very simple rules that only depend on their local

neighborhoods. Aside from physical sciences, these systems have attracted much at-

tention from engineering fields like materials engineering [105–107] and robotic swarm

engineering [108, 109]. The goal of these researches is to design simple agents that

can be engineered to exhibit robust collective behaviors at different scales [110,111].

Non-equilibrium critical phenomena have recently been extensively studied. Sim-

ilar to equilibrium critical phenomena, the notion of universality is the major tool to

study and categorize phase transitions in these systems. Prominent examples that

exhibit non-equilibrium phase transitions include kinetic Ising models [112], non-

equilibrium growth models [113] diffusion-limited reactions [114], absorbing phase

transitions [115, 116], sandpile models [117], and generally lattice models or cellular

automata. Many of these systems belong to the general schema of the Directed Per-

colation (DP) universality class. Janssen and Grassberger hypothesized that models

which exhibit a continuous phase transition to a single absorbing state belong to the

DP universality class [115, 116]. Other universality classes occur when we add new
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symmetries or other constraints such as particle conservation to the model. In partic-

ular, the effect of particle conservation on universality has been extensively studied in

the literature [118], and it has been shown that these systems belong to a universality

class other than Directed Percolation class [119]. Examples include the conserved

threshold transfer process (CTTP) [118], the conserved lattice gas (CLG) [118], the

well known Manna sandpile model [120].

These simple lattice models of interacting particles have shed a great deal of light

on the behavior of non-equilibrium critical phenomena. However, most of these works

focus on critical behavior in terms of steady state density fluctuations and rarely

investigate dynamic transitions in the time domain as particles interact and reach

steady-state distribution. More importantly, there are rare instances [2–4,121] in the

reaction-diffusion literature in which the order parameter of the critical phenomena

under study is the connectivity of the system as defined in percolation theory [2–4,

121].

This chapter introduces an interacting driven diffusive system on a lattice with

finite-range interactions. It is worth noting that this model could be implemented and

studied on any general graph structure. We empirically study the phase transition of

global connectivity in this lattice system. In addition, to the observation of a phase

transition in connectivity in our proposed system, we show that our model shows

a continuous variation of exponents as we change specific parameters of the model

and, therefore, breaks the usual universality paradigm. We will show that our results

conform with the literature on weak universality, rarely observed in other physical

systems [122]. We further connect our work to the existing literature on interacting

self-propelled agents in continuous space. We implement the model introduced in

Mijalkov et al’s work [5] and study the evolution of connectivity as the dynamics of

their model unfold. We show that the phase transition of connectivity is also present

in this continuous density-driven multi-agent system. These observation open up new
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opportunities for further research in multi-agent or multi-particle systems in which the

global connectivity of the system as a function of time is of importance, i.e. software

defined networks [123, 124]. In addition, to the observation of a phase transition in

connectivity in our proposed system, we show that our model shows a continuous

variation of exponents as we change specific parameters of the model and, therefore,

breaks the usual universality paradigm. We will show that our results conform with

the literature on weak universality (see Related Work section), rarely observed in

other physical systems [122].

During the dynamics of the transition, our model goes through a series of pat-

tern formation phenomena, namely, from a disordered state to filamentation patterns

and eventually to patterns of distributed spots. The occurrence of a dynamic phase

transition in connectivity and regimes of pattern formation resembles the dynamics

of a high power laser passing through a nonlinear Kerr medium [4,125]. Pattern for-

mation in driven-diffusive systems is usually described by Turing’s activator-inhibitor

dynamics [126]; however, there is an alternative approach developed by Cahn and

Hillard in 1958 [127]. They studied pattern formation in mixed fluids and observed

that density-dependent rates of dispersal can lead to the separation of fluids into dis-

tinct spatial regions. Many studies have since shown that the occurrence of patterns

in many natural systems such as bacterial colonies [128] or mussel beds [102] can

be explained using Cahn-Hillard’s density-driven interactions [129]. Similarly, the

patterns observed in our model are in principal density-driven patterns.

3.2 Related Work
3.2.1 Non-equilibrium Phase Transitions

Continuous phase transitions are abundant in nature and less understood com-

pared to equilibrium phase transitions. Systems that demonstrate non-equilibrium

transitions range from surface growth [113], traffic jam [130], epidemic spreading [131],
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laser propagation [4], to ecological phenomena and forest fires [132]. Experimental

studies have shown that the concept of universality that is mostly applied to equi-

librium systems can be successfully applied to non-equilibrium transitions. However,

the critical behavior and the universality classes of non-equilibrium systems are an-

ticipated to be more diverse since these systems have new degrees of symmetry in the

time domain and are governed by evolution dynamics. One of the most prominent

examples of non-equilibrium phase transitions is Directed Percolation (DP) [133].

Directed percolation belongs to the more general class of absorbing-state phase tran-

sitions. These systems show a phase transition to a dynamically active/inactive state

as a control parameter is varied. A multi-particle system with absorbing transition

may fall into an absorbing state where all particles cease to move, and there are no

density fluctuations. On the other hand, the system can transition to a regime where

there are active density fluctuations when the system is in the steady state. These

systems are usually studied by continuously varying a control parameter (i.e., initial

particle density in percolation transitions, temperature in Ising systems, etc.) and

observing a sudden transition in the order parameter in the infinite time limit. How-

ever, in some works in the literature, the control parameter is time, therefore they

study spontaneous transition of the control parameter as the dynamics of the system

unfolds [134].

3.2.1.1 Percolation Transitions in Reaction-Diffusion Systems

Gimel et al. [2] studied the gelation of the diffusion-limited cluster aggregation

(DLCA) process [37, 38] on a cubic lattice. The initial stage of their simulation

consists of randomly distributing N0 particles on the lattice sites. The evolution of

the particles is defined by the following rules. If two particles are near neighbors, they

link up irreversibly and become part of the same cluster. The mass m of a cluster is

defined as the number of particles forming the cluster. A Brownian motion is assumed
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(a) (b)

Figure 3.1: (a) Initial random configuration of particles on the lattice. (b) Configu-
ration after running the dynamics and reaching the termination criteria. The single
large cluster has spanning connectivity through the lattice. Images taken from [2]

for each cluster in the system, and the diffusion coefficient of a cluster is related to its

mass as D(m) = m−α, where α is a positive exponent. They assume excluded volume

interactions meaning that only a single particle can occupy each site. The simulation

ends if there is only one cluster in the system or if there is spanning connectivity in

the lattice. (Note that the initial configuration is below the site percolation threshold

of the lattice). Fig. 3.1 shows how the DLCA process evolves from an initial state

of randomly dispersed particles to a final state of a single large cluster that spans

the lattice. The final state of the DLCA process shows interesting pattern formation

behavior resembling filamentation patterns observed in activator-inhibitor systems.

They extensively study the probability of ending up with a spanning cluster as a

function of the initial particle density and show a percolation-like phase transition.

In similar work, Bruschi et al. [3] studied the percolation properties of thin metal

film growth. They modeled thin metal growth by considering adsorption, diffusion,

and re-evaporation of single atoms on a triangular lattice. Similar to the previous
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work, they assume that each lattice site can at most accommodate a single particle.

We will briefly explain atoms aspects of the dynamics of their model since the laws

governing their model have interesting analogies to our work. Of most importance to

us are the laws governing the diffusion rate of the atoms on the lattice. The following

equation defines the diffusion rate between neighboring lattice sites i and j:

rij = r0 exp(−Eij
kT

.) (3.1)

In the above equation, r0 is a constant, and Eij is the activation energy of the tran-

sition. The activation energy is determined by taking into account the cumulative

occupancy of the nearest neighbors of the diffusing particle. They simulate this sys-

tem at different temperatures and study the phase transition of connectivity as a

function of filling factor p, which measures the fraction of sites containing a particle

divided the lattice size. In Fig. 3.2 we see that as we change the temperature, the

percolation threshold of the system is shifted to a new location. This is interesting

behavior that we also observe in the dynamics of our model.

Figure 3.2: First two images show the clusters formed in the lattice at two different
filling factors (points in time) and at a fixed temperature. The last image shows the
behavior of the phase transition of connectivity at different temperatures and different
filling factors. Images taken from [3]
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In more recent work, Etoumi et al. [4] studied the phase transition of connectivity

in high density regions of a laser beam passing through air. They showed that during

the evolution of the dynamics, high-density regions of the laser beam undergo a

phase transition in connectivity (Fig. 3.3), meaning that after a certain point in

space (time), the filaments formed by the laser beam lose global connectivity and

form large number of small clusters. Their experimental and simulation results show

that the phase transition does not belong to any previously known universality class.

Figure 3.3: Evolution of the fluence profile of a high power laser beam propagating
in air [4]. The laser beam forms a large cluster of connected sites at the beginning
(dark red cluster in (f)). As it propagates, it forms filamentation patterns and the
connectivity of the beam is lost (scattered connected clusters in (j)).

Apart from the related work cited above there are some recent works in the field

of temporal percolation in diffusion-based processes or in activity-driven networks;

Kantor and Kardar [135] studied the temporal percolation of sites not removed by t

steps of a random walk. Starnini et al. [121] studied temporal percolation in activity-

driven networks. Valdez et al. [136] studied the temporal percolation of a susceptible

adaptive network.

3.2.2 Continuous Varying Exponents and Violation of Universality

The concept of universality is at the center point of the study of critical phenom-

ena. Universality in critical phenomena revolves around the main experimental and

theoretical observations: Critical exponents and scaling functions are universal up

to symmetries and dimensionality of the system. Although the concept of universal-
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ity has been confirmed countless times, there are rare reports of systems in which

the critical exponents vary continuously [137]. Some examples include the work of

Baxter, who solved the eight vertex model [138]. Later, Kadanoff and Wegner [139]

provided a mapping of eight vertex model to a two-layer Ising model with four-body

interaction between the layers [140]. This four-body interaction drives the continuous

variation of exponents. In 1974, Suzuki [122] proposed a weak universality paradigm

in which the critical exponents (like β, ν, γ) can continuously vary while their ratios

(β
ν
, γ
ν
) remain constant. The underlying feature that separates these systems from

systems showing regular universality is yet to be known. Since its introduction, weak

universality has been observed in some systems including non-equilibrium absorbing

phase transitions [137], frustrated spin systems [141], quantum critical points [142],

interacting dimers [143], Fortuin–Kasteleyn random-cluster model [144], etc.

Newman [145] studied a three-species reaction diffusion system and showed that

the critical exponents describing the power-law behavior of the density-field vary

continuously with reaction-diffusion parameters. Janssen et al. [146] reported that

Levy-type long-range flights lead to a continuous variation of critical exponents in

the context of absorbing phase transitions. Noh et al. [147] studied a variant of pair

contact process with diffusion (PCDP). In their model, they introduce a parameter

that controls the strength of long-term memory (long-term correlation with previous

positions.). They showed that by varying this parameter, they can continuously tune

the critical exponents of the phase transition. Andrade et al. studied a percolation

model on a diamond hierarchical lattice where the percolation transition is retarded by

the inclusion of a probability of erasing specific connected structures. They show that

critical exponents ν and β of the investigated model vary continuously as the erasing

probability changes. Interestingly, tuning the erasing probability can lead to ν = ∞

in their model. Cho et al. [148] observe a continuous change in critical exponents in

a model of network growth. In their network growth model, they randomly select
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two nodes to connect with the constraint that one of these nodes must be selected

from a set of smallest clusters. The number of clusters which belong to this set is

defined by parameter g. This correlated growth model increases the sharpness of the

transition observed in regular percolation models. They further show that by varying

g, they can vary the phase transition critical exponents. Here, similar to explosive

percolation [36], their network growth process assumes global information about all

the clusters present in the percolating system.

Long-range interactions, global information, and long-term memory effects are

characteristics observed in many systems that violate the general concept of univer-

sality. The model introduced in this chapter shows a continuous variation of critical

exponents as depicted in the weak universality paradigm. To the best of our knowl-

edge, our model is the first example of such behavior observed in single-type driven

diffusive systems that lack long-range interactions like levy flights.

3.2.3 Pattern Formation

Although different regimes of pattern formation have been abundantly reported

in various areas of physics, we would like to focus our attention on a specific class of

such pattern formation phenomena, namely single-type particle systems with density-

driven motility. Originally Turing [39] introduced the activator-inhibitor principle,

which provides a potential theoretical explanation for the formation of many of regu-

lar patterns in nature [40,149,150]. The underlying principle is based on the diffusive

interaction of a local positive activating feedback with a large-scale inhibitory feed-

back. This activator inhibitor principle can account for many naturally occurring

phenomena like growth, birth, mortality, decay, respiration, etc. Theoretical studies

by Cahn and Hilialrd in 1958 [127] offer another mechanism for pattern formation.

They discovered that density-dependent rates of diffusion can separate mixed fluids

into two phases in spatially distinct regions. Switching between aggregation and diffu-
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sion when the local density changes explain many pattern formation phenomena [151]

like multi-phase fluid flow [152] , mineral growth [153], population dynamics in eco-

logical systems and flocking [102]. Spineanu et al. [154] showed that the multiple

filamentation patterns observed in Fig. 3.3 can be explained using the Cahn-Hiliard

density-driven model. In another work inspired by density-driven motility in bacterial

colonies, Mijalkov et al. [5] studied the collective behavior of interacting autonomous

robots in a continuous plane. The interaction rule and the velocity of the robots

depend on the density of the fields generated by other neighboring robots. They

observe pattern formation behavior typical to previously mentioned single species

systems (Fig. 3.22). The local density-driven motility introduced in our model is

inspired by the aforementioned works and shows various stages of pattern formation.

We also investigate the percolation behavior of Mijalkov et al.’s model [5] and show

that there occurs a phase transition in connectivity as the robots evolve from an

initial state of random positions to a state of isolated clusters.

3.3 The model
Inspired by the notion of single specie density dependant dynamics observed in

many physical systems ranging from bacterial population dynamics to high energy

laser propagation in Kerr media, we propose a simple model of interacting-diffusing

particles.

Our proposed model is based on a simple local density-dependent interaction

model between diffusing particles on a discrete lattice or a graph. In this model, at

each simulation time step, a particle observes the number of particles on the site it

resides on and the total number of particles on the neighboring sites. The following

set of rules determines the probability of a hop. Let ni denote the number of particles

co-populating a lattice site i. Each site on the lattice has 4 nearest neighbors. We

define mi as follows:
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mi =
∑

j∈nearest neighbors
nj (3.2)

The above sum runs over all the nearest neighbors of site i. If ni > mi, the chosen

particle hops to one of the randomly chosen neighboring sites. If ni ≤ mi, the particle

hops to one of the randomly chosen neighbors with probability e−(ni−mi)α and stays

on the same site with probability 1−e−(ni−mi)α . Each time-step consists of going over

all the particles in the lattice in parallel and updating the location of all the sites.

The dynamics of the interacting particle model depend on the initial distribution of

the particles as well as the connectivity structure of the Lattice (In this case square

lattice).

Fig. 3.4 shows the dynamics of the model on a square lattice of size 128 with

uniform initial conditions. At t = 0,one particle is placed on each site. In order

to better visualize the dynamics, the per site particle density is shown using the

color-bar. At t = 0, the system starts from a uniform density profile across the

lattice. As time passes, the particles form random high-density points, which act as

an aggregation point for any incoming free particle. This results in the formation of

sparsely scattered spots of high-density clusters as we reach the steady state. As time

goes by in the simulation, the system becomes more and more frustrated because each

particle is trapped in a region with a large number of particles on the neighboring

sites. As the simulation progresses, we observe that the system converges to a pattern

of scattered spots containing a large number of particles, similar to Fig. 3.4 at

t = 199. However, the true infinite limit behavior of the model is unknown. Since the

clusters formed have a finite number of particles in a finite system, the probability

of a particle leaving a cluster and joining another cluster with a larger number of

particles (therefore more significant interaction strength) is non-zero. Hence, in the

limit as time (t) goes to infinity particles will converge and form a single dense cluster.
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Figure 3.4: Time evolution of particles on a square lattice of size 128. At t = 0, all
lattice sites are occupied by a single particle. Colors denote number of walkers on
each lattice site.

In this chapter, we study the connectivity properties of this multi-particle system.

For this reason, we use a repertoire of tools from computational studies of percolation

theory, namely finite size scaling which was introduced in chapter two. The first step

is to transform each observation in this lattice system to a binary format similar to

site percolation. For this purpose, we choose a threshold (in terms of the number of

particles) to declare a site on/off. Note that any threshold can be chosen, and the

threshold choice has a significant impact on the connectivity patterns observed. In

this work, we choose the site activation threshold as a single particle, meaning that

a site with one or more particles is declared active/on, and a site with no particles is

declared inactive/off. Fig. 3.5 shows the result when we ignore particle density and
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transform the lattice to regular binary form in percolation problems. In this figure,

it is more observable that the long-time dynamics of the system result in a pattern of

scattered spots. Note that, in continuous systems with continuous density field [4],

the density threshold to declare a site active/inactive can itself play a role as a control

parameter for studying the phase transition of connectivity.

Figure 3.5: Time evolution of lattice occupancy. Each site is declared active (black)
if there is one or more particles on it. Otherwise, it is declared inactive (white).

After reformulating the problem as binary percolation, we can now study the dy-

namics and behavior of connected components formed by the interacting particles.

In regular percolation, with the random addition of sites to the lattice, percolation

theory predicts that there is a threshold in which the system suddenly gains global

connectivity. As discussed in the literature review, many previous studies have ob-

served phase transitions in reaction diffusion systems [4, 145, 147, 155]. However,
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considering the size of connected components as the order parameter of the phase

transition is not well-studied among these works. Fig. 3.6 shows the evolution of the

connected components of the lattice as the dynamics of the particles unfold. Colors

in the figure denote the size of the largest connected component (LCC) divided by

the total number of lattice sites. As the dynamics unfold and the walkers hop to

neighboring sites, the initial encompassing LCC shrinks in size. At t = 14, we can

see that the lighter blue connected component is the largest component, and that it

has clearly lost global spanning connectivity across the lattice.

Figure 3.6: Evolution of connected component size. Colors denote component size
divided by the size of the lattice.

3.3.1 Time-evolution of Connected Components

Non-interacting Particles

The percolation properties of the stationary state of M non-interacting walkers

on a square lattice can be derived analytically. Given M walkers on a square grid
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with N sites, the probability of a single walker being on a specific site is given by

1/N . Then the probability that a site has no walker, P0, is given by:

P0 = (1− 1
N

)M (3.3)

In site percolation [156], global connectivity of a network is characterized by parame-

ter p denoting the site occupation probability. If p exceeds a certain value pc, a phase

transition in the global connectivity of the network is observed. For site percolation

on a square grid [157,158], pc = 0.5927. We utilize this value to derive the number of

walkers needed to have steady-state global connectivity in a system of non-interacting

walkers. (3.3) is equivalent to 1 − p; therefore, if M = αN in the infinite limit we

have:

lim
N→∞

(1− 1
N

)M = lim
N→∞

(1− 1
N

)αN = e−α = 1− p (3.4)

Phase transition occurs at p = pc = 0.5927. Plugging pc in and solving for α We

find αc = 0.8982. This implies that if we are above this threshold and initialize the

walkers uniformly at random, we will not lose global connectivity as the dynamics

of the system unfolds. In this case, the particles quickly converge to their final

distribution, and similarly, the size of the largest connected component in the lattice

evolves to its steady state size. Fig. 3.7 shows the scaled size of GCC as a function

of time for both interacting and interacting walkers.
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Figure 3.7: Scaled size of GCC as a function time for interacting and non-interacting
particles. The plots are averaged over 2000 simulations for a lattice with L = 128.

Following [159], we define percolation when a connected component spans the

lattice in both directions. Using this definition, we ensure that there exists at most

one percolating cluster in each simulation snapshot. Similarly, we define percolation

probability (Π(t)) at time-step t, as to be the fraction of times we have a percolat-

ing cluster among the total number of runs. Fig. 3.8 shows the time evolution of

percolation probability as defined above. The interacting system sharply loses its

percolating cluster. However, as we expected, the non-interacting system remains

above the percolation threshold.
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Figure 3.8: Percolation probability as a function time for interacting and non-
interacting particles. The plots are averaged over 2000 simulations for a lattice with
L = 128. The system is considered percolated if there exists a spanning cluster which
connects two side of the lattice both horizontally and vertically.

3.3.2 Phase Transition of Global Connectivity and Finite Size Scaling in

time Domain

As shown in the previous section, a sharp transition in global connectivity is

observed in the dynamics of our model. In this section, we will study the critical

behavior of this transition and understand what class of phase transitions it belongs

to. For this reason, aside from percolation probability (Π) and percolation strength

(P∞, size of LCC normalized by the lattice size, see chapter 1), we also investigate

other parameters regularly studied in the study of phase transitions in connectivity.

Namely, filling factor p, truncated average cluster size S as well as the second largest

cluster size smax. S and p are respectively defined as:
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S =
∑
s nss

2∑
s nss

(3.5)

p =
∑
s

nss (3.6)

Here, ns stands for the number of clusters of size s per site. In other words,

ns denotes the number of clusters of size s, divided by the lattice size. Since the

percolating cluster diverges above pc, the sum in (3.5) runs over all cluster sizes except

that of the largest cluster. In 3.6, p is called filling factor (total number of occupied

sites normalized by the lattice size). In Fig. 3.10, we plot these four parameters as a

function of time for different system sizes. Fig. 3.10 (a) and 3.10 (b) show how the

phase transition sharpens as we increase the system size, which is a typical feature of

continuous phase transitions.

Figure 3.9: Filling factor p as a function of time. Filling factor is a monotonically
decreasing function of time.
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As mentioned earlier, the dynamics of our interaction model largely depend on the

initial conditions and the strength of parameter α. In Fig. 3.10, the phase transition

occurs at around t = 12. However, changing the parameter α, results in a different

critical point as well as different critical behavior.

(a) (b)

(c) (d)

Figure 3.10: Scaled GCC size (a), percolation probability (b), truncated average
cluster size (c), and largest non-percolating cluster (d) as a function of time for
different lattice sizes. The phase transition in connectivity becomes sharper as the
size of lattice increases.
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(a) (b)

Figure 3.11: Scaled GCC size (a) and percolation probability (b) as a function of
time for system sizes and different αs. Here, as in all of the figures, we show curves
for L = 50, L = 60, L = 70, L = 80, L = 90, and L = 100. Colors denote different α
values. As we increase α, the transition happens later in time. Also, the near-critical
behavior of Π and P∞ changes as we change the interaction strength by changing α.

Fig. 3.11 shows how that behavior of phase transition varies as we change the

interaction strength controlled by the parameter α. The change in critical point is

expected since increasing the interaction strength slows the dynamics of the multi-

particle system. However, variation in the near-critical behavior of the systems is not

trivial. The difference in sharpness of the transition between different system sizes is

accentuated as α increases.

In order to further investigate the type of the phase transition and understand its

infinite limit behavior, thresholds, and critical exponents, we use the finite-size scaling

analysis introduced in section (1.4) of this dissertation, for different α parameters.

According to the scaling ansatz discussed in section (1.4), for percolation probability

Π, the scaling hypothesis allows us to write:
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Π(t ∼ tc, L) = Fπ
[
L

1
ν (tc − t)

]
(3.7)

Where Fπ is a scaling function. We should note that Π becomes a step function as

L → ∞. In Fig. 3.10 (a), we plot Π for different lengths. The crossing point of

all the plots indicates the point of the phase transition. Similarly, plotting Π with

respect to L
1
ν (tc − t) for different lattice sizes and searching for the ν value that

gives the best overlap between the plots provides us with a first estimate for ν. Fig.

3.12 shows the collapsed plots for Π as a function of (t − tc). The plots have nicely

collapsed to a master plot, however because of lack of fine-grained data-points (we

have discrete time dynamics) near the critical point, we have large error margins

for exponent ν. In order to estimate errors, we perform large independent sets of

simulations and perform finite-size scaling on them separately. Scaling functions and

exponents are the most accurate near the critical point. They become incapable of

approximating the finite-size effects for different system sizes as we get away from

the critical region. In this case, we have a discrete time phase transition which leaves

us with a very small number of data-points above and below the critical point to

estimate the critical exponents. We observe an error margin of 0.26 for exponent ν

which is a significant margin of error.

3.4 Mapping to p space
In previous sections, we showed that the time-domain behavior of our interacting

particle model results in a phase transition in time. As we observed, the parameters

of the phase transition changes with change in the interaction strength α. However,

finite size scaling theory performs best near the critical point, and in the case of our

model, since we have a discrete-time phenomenon, we have a very limited number of

data points in the vicinity of the critical point. This makes it difficult to calculate

with small error margins. In addition, in order for us to compare our newly discov-
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Figure 3.12: Finite size scaling for Π as a function t− tc. ν = 1.6± 0.26 gives us the
best curve collapse for different length scales.

ered phase transition with the current percolation-related universality classes in the

literature, we need to approach the problem in a similar way that we would approach

an ordinary percolation problem where the control parameter is the percolation prob-

ability. For this reason, we map the phase transition observed in our model to the p

(filling factor) space and, in the rest of this chapter, we investigate the critical behav-

ior of our model’s phase transition in p space. If we assume no interaction between

the particles, the problem reduces to regular site percolation. Therefore, for a system

of non-interacting particles, the phase transition occurs at p = 0.5927. However, as

observed earlier in this chapter, the dynamics of the particles result in filamentation

patterns as the system goes through the phase transition. For this reason, we expect

to see different behavior in terms of the critical point and critical behavior. First, let
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us see how p varies as a function of time. Fig. 3.9 shows the time-evolution of p. Fill-

ing factor is a monotonically decreasing function of time which means that there is a

one-to-one mapping between time-steps and values of p. This allows to safely perform

our conversion from the time-domain to the filling factor domain, making sure that

we are not averaging over statistics from pre-critical and post-critical configurations.

In order to map our simulation results to this new paradigm, at each instance of

the simulation, we record all parameters of the phase transition along with the value

of filling factor. When saving these values, we round each filling factor value to the

third decimal place and store it as a key to a dictionary. The values of the dictionary

for this specific key correspond to all the other parameters of the simulation (Π, P∞,

S, and smax) observed at that specific rounded filling factor. We execute 5× 106 runs

for each lattice size and average all results for all values of p at the end. After running

this large number of simulations, at each filling factor value p, we have the ensemble

average of all our desired parameters observed in our simulations. (The choice of

rounding p to the third decimal place was made to keep computation and number of

samples needed manageable).

Fig. 3.13 shows the result of transforming our simulation results into p space.

It is evident from the figure that there is a clear phase transition in terms of the

filling factor. However, it is also clearly visible that the threshold for the transition

is different from the regular site percolation threshold, which is p = 0.5927. This is

expected since the dynamics of the multi-particle system force the particles to form

more spatially structured patterns. The shape of these structured patterns dictates

how connectivity in the lattice corresponds to the number of occupied sites. As

observed in our simulations, there are multiple stages of pattern formation as the

dynamics unfold. First, the filamentous patterns emerge, which then continuously

transform into patterns of isolated spots that are effectively static. Fig. 3.14 provides

a better view of the limiting behavior of dynamics of the connected components
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(a) (b)

Figure 3.13: P∞ and Π as function of filling factor.

in our model. Early in the simulation, we have a large number of free particles,

belonging to connected components of size 1 (3.14 (c)). As the simulation evolves

and we lose global connectivity, filamentation patterns start to separate into multiple

smaller clusters. In the limit of large simulation time, we observe the formation of

very small clusters, resembling spot patterns, which are effectively do not change size.

The particles inside these clusters move internally but the chance of them leaving the

cluster is very slim because of the large number of neighbors residing in the cluster.

3.5 Critical exponents and violation of universality
Following the methodology defined in Chapter 2, we use finite size scaling to find

the critical exponents for the phase transition observed in the previous section. The

following equations characterize the behavior of our parameters near criticality [4].

Π = F (0)
[
(p− pc)L

1
ν

]
, (3.8)
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(a) (b)

(c)

Figure 3.14: (a) and (b) show long-time behavior of S and smax. (c) shows the long-
time behavior of connected components. In early stages (t = 15 and t = 25), there are
many small connected components. As time elapses, these small components (mainly
free particles) coagulate and form components with higher density. These aggregated
particles form the pattern of spots observable at t = 400.
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P∞ = L−
β
ν F (1)

[
(p− pc)L

1
ν

]
, (3.9)

S = L
γ
νF (2)

[
(p− pc)L

1
ν

]
, (3.10)

smax = L
1
σνF (3)

[
(p− pc)L

1
ν

]
. (3.11)

Functions F 0, F 1, F 2, F 3 are generic scaling functions that explain the near

critical behavior of these parameters in the vicinity of the phase transition. Note

that, in the following plots, we are showing the scaling results for α = 1, and uniform

initial conditions, which we have been working with since the beginning of chapter.

Later in this chapter, we will also discuss the effect of varying the initial conditions

or the parameter α (which denotes the strength of interactions) on these exponents.

First we use the percolation probability Π to find the critical point of the transition

in p space since the point of the transition as a function of Π does not depend on

system size. Therefore, the point at which all the plots meet determines the critical

point. Fig. 3.15 (a) shows the meeting point of these plots at pc = 0.616. Therefore

pc = 0.616 is the critical point of this transition. This threshold is much higher than

threshold for regular percolation at pc = 0.5927. This result significantly differs from

the critical point found in Etoumi et al.’s work [4], in which they find that the critical

point occurs at p = 0.48, much lower than the regular site percolation threshold.

This intuitively means that the filamentation patterns we observe, cause a decrease

correlation length as a function of site occupation probability or equivalently filling

factor. Utilizing the critical point found above, we can search for parameter ν, which

makes all the curves to collapse to the same master curve when plotted against the

rescaled filling factor. Fig. 3.15 (b) shows the perfect collapse of the curves in Fig.

3.15 (a) using ν = 1.3 ± 0.01. The first important observation is that the value

of exponent ν differs from the regular percolation critical exponent ν = 4/3, which

means it belongs to a different universality class.

Similarly, we can use the curve collapse method for percolation strength P∞, and

smax to find values of parameters β and σ from (3.9) and (3.11). Given that we know
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(a) (b)

Figure 3.15: (a) Percolation probability Π with respect to the filling factor p. The
expected unique crossing point defines pc = 0.616± 0.001. All the curves result from
the average of 5× 106 independent runs. (b) Percolation probability Π as a function
of the re-scaled variable (pc − p)L

1
ν , yielding ν = 1.30 by curve collapse.

the value of pc, we search for the parameters β and ν that minimize the distance

between plots of P∞L
β
ν vs (pc − p)L 1

ν . In Fig. 3.16, we find the same value for

pc when βν = 0.11. This value is similar to the percolation universality class on a

2-dimensional lattice, which signals that we are in the weak universality paradigm

introduced in [122]. As mentioned earlier in the introduction Chapter,the notion of

universality predicts that the values of β, ν, and βν in the site/bond percolation on

all regular 2-dimensional lattices are the same. The value β/ν ≈ 0.11 for ordinary

percolation and for our model, however, values of β and ν are different between the

two.

Last, exponent σ characterizes the mass divergence of the largest non-percolating

component when approaching criticality. Fig. 3.17 shows how curve collapse deter-

mines σ = 0.34.
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(a) (b)

Figure 3.16: (a) Percolation strength Π∞ dependence on the filling factor p.(b)
Rescaled cluster strength P∞ as a function of the rescaled parameter (pc − p)L 1

ν .
The ratio β/ν = 0.11± 0.01 yields the same value of pc found using Π.

3.5.1 Weak Universality

The concept of universality has been verified theoretically and experimentally

in many different systems. However, since the early 20th century, there have been

observations of violation of universality [139,140,145,147,160,161]. In these systems,

a continuous change in critical exponents is observed as one changes a certain control

parameter in the underlying model. Suzuki [122] proposed weak universality, in which

critical exponents like β, ν, and γ vary continuously, however, their ratios β/ν and

γ/ν remain constant.

3.5.1.1 Continuous variation of exponents as a function of α

Earlier in this chapter we observed that the time-evolution of particles, pattern

formation and the threshold of the studied phase transition, all depend on the strength

of the inter-particle interaction, controlled by parameter α, and the initial conditions.
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(a) (b)

Figure 3.17: Rescaled largest non-percolating cluster as a function of rescaled param-
eter (pc − p)L

1
ν . Seeking a curve collapse leads to the determination of σ =?±.

In this section, we study the effect of varying α on the critical exponents of the

transition. We also compare the critical exponents with known universality classes,

especially, the percolation and directed percolation universality class. Fig. 3.19 shows

the plot of Π vs p for various system sizes (L = 50,...,L = 100) and two different inter-

action strengths, namely = 0.6 and = 1.1. Note that increasing α makes the particles

less prone to change configuration and delays the onset of thee phase transition in

time, therefore, we are computationally bound to explore certain values of α. Ob-

serving Fig. 3.19, it is evident that the near-critical behavior of these systems are

different.
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(a) (b)

Figure 3.18: (a) Average cluster size S with respect to p. The percolating cluster has
been excluded in calculating the average cluster size. (b) ln (S with respect to the
lnL, allowing us to find γ

ν
=?± 0.05

Table 3.1: Critical exponents as a function of α

pc ν β σ β/ν γ/ν
α = 0.6 0.620± 0.001 1.49± 0.01 0.16± 0.01 0.35± 0.02 0.11± 0.01 1.78± 0.01
α = 0.8 0.619± 0.001 1.45± 0.01 0.15± 0.01 0.35± 0.02 0.11± 0.01 1.78± 0.01
α = 1 0.616± 0.001 1.30± 0.01 0.14± 0.01 0.34± 0.01 0.11± 0.01 1.79± 0.01
α = 1.1 0.612± 0.001 1.28± 0.01 0.14± 0.01 0.36± 0.02 0.11± 0.01 1.78± 0.01
α = 1.5 0.533± 0.001 1.21± 0.01 0.13± 0.01 0.39± 0.02 0.11± 0.01 1.78± 0.01

regular percolation 0.5927 1.33 0.14 0.43 0.11 1.79

In Table 3.1 we show the result of applying finite-size scaling and extracting the

critical exponents for different values of α. Exponents ν and β change continuously

as interaction strength changes. However, their ratios β/ν and γ/ν remain constant.

This is in line with Suzuki’s weak universality introduced in [122]. The ratios β/ν

and γ/ν are also known to satisfy the following universal scaling relation in lattice

systems:
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Figure 3.19: Percolation probability Π as a function of filling factor p for α = 1.1 and
α = 0.6 with the same uniform initial conditions.

β

ν
+ γ

ν
= d (3.12)

where d is the dimension of the lattice which in our case is 2. Substituting values

β/ν = 0.11 and γ/ν = 1.78 in the above equation yields 2 with a small margin of

error which again confirms the reliability of our results.

For all values of α except α = 1.5, the value of pc is higher than the regular per-

colation threshold which means that the occupied lattice sites are correlated in a way

that they decrease global connectivity in the lattice compared to random placement of

occupied sites in ordinary percolation. However, as we increase α to 1.5, pc suddenly

has a sharp decrease to 0.533, which is a fascinating observation. This means that

changing the interaction strength (α) changes the structure of connected components
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in a way that their long-range correlation in accentuated in lower p values. We con-

jecture that the factor that contributes to pc, is the interplay between the strength

of inter-particle interaction and the diffusion of free particles. As α increases, the

increased strength of inter-particle interactions slows the dynamics of particles with

a large number of particles in their neighborhood. On the other hand, particles with

a small number of or no particles in their neighborhood, diffuse freely and attach

themselves to existing formed filaments. This effect enhances the filamentation effect

in the system and therefore increases the correlation length of the system. When

α is small, since the dynamics of the particles with neighbors are faster, filamenta-

tion patterns form more quickly, and many free particles remain un-attached to giant

components in the lattice system (see Fig . 3.14 (c) at t = 15). Since these free

particles or small clusters all contribute to the filling factor (p) of the system, global

connectivity is occurs at higher values of p.

Fig. 3.20 shows the component size distribution of our model for two different

values of α at p = pc along with that for ordinary site percolation at p = 0.5927.

This empirical plot confirms our hypothesis about the effect of the interplay between

diffusion and interaction strength on the value of pc. There is a large variation be-

tween the number of components of size one between the three distributions. The

model with α = 1 has almost an order of magnitude more single-particle components

compared to the model with α = 1.5. Note that for α = 1, the transition happens at

tc = 12, however, for α = 1.5, the transition happens at tc = 110. This longer time-

frame allows these free particles to diffuse and attach themselves to other components,

changing the overall shape of the component size distribution. This explanation is

valid for other small components. On the other hand, a comparison of both distri-

butions generated from our model with that for ordinary site percolation points out

many qualitative differences between the distributions. We observe a significantly

larger number of free particles in the low-α regime for our model. On the other hand,
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Figure 3.20: Cluster size distribution at p = pc for systems simulated with two
different α parameters. along with regular site percolation on square lattice at p =
0.5927. System size is L = 300.

small components which occupy more than one site are more abundant in regular site

percolation (green crosses). It is again worth noting that here we are fixing the initial

conditions and varying the interaction strength. Changing the initial conditions will

change the initial distribution of the component site in the lattice and hence, change

the component size distribution at the point of transition.

3.5.1.2 Effect of Initial Conditions on the Critical Exponents

In the previous section we discussed the effect of interaction strength (α on critical

exponents. As mentioned earlier, the initial distribution of particles plays an impor-

tant role in the dynamics and the critical behavior of the system. In all simulations

shown up until now, we have used uniform initial conditions as a natural compari-
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son to regular site percolation. In uniform initial conditions we fill each lattice site

with a single particle before starting the simulation. In this section, we change this

initial condition to random initial distribution of particles on the lattice. At t = 0

we disperse N particles over a square lattice of side L uniformly at random. Here we

assume N = L2, however we should note that changing the initial particle density is

also a tunable parameter which can significantly impact the dynamics [2]. We assume

N = L2, which produces and initial condition that is above percolation threshold

when randomly dispersed, and is a natural choice from the perspective of percolation

theory. Investigating higher or lower initial particle densities is outside the scope of

this dissertation. Similar to the previous section, we map the time-evolution of our

particle system into p space and investigate its critical behavior. Fig. 3.21 shows the

percolation probability Π and and the scaled GCC size P∞ as a function of filling

factor p for a system with random initial conditions (α = 1). While the shape of the

near-critical region differs from that of regular site percolation and shows higher levels

of non-linearity, the figures show that the transition becomes sharper as system size is

increased. Therefore, we are still observing a continuous phase transition. Similar to

the previous section, these results are averaged over 5× 106 independent simulations

for each system size.
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(a) (b)

Figure 3.21: P∞ and Π as function of filling factor for a system with random initial
condition and α = 0.

In Table 3.2 we study the effect of varying parameter α on critical exponents. It

is worth noting that these results are based on random initial conditions as opposed

to the results shown in Table 3.1 which were based on uniform initial conditions. Our

first observation is that changing the initial conditions has a significant effect on the

value of critical exponents. For example, parameter ν is almost half of its value for

the same α but with uniform initial conditions. Our second observation is that the

exponents vary as a function of interaction strength. Comparing to the error margins

based on uniform initial conditions (Table 3.1), error margins are higher for random

initial conditions (Table 3.2). This is because, as we observed in Fig. 3.21, the critical

region shows higher degrees of non-linearity.
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Table 3.2: Critical exponents as a function of α for random initial condition

pc ν β σ β/ν γ/ν
α = 0.6 0.610± 0.001 0.61± 0.03 0.069± 0.004 0.76± 0.05 0.11± 0.01 1.79± 0.01
α = 0.8 0.612± 0.001 0.67± 0.03 0.076± 0.005 0.82± 0.04 0.11± 0.01 1.79± 0.01
α = 1 0.614± 0.001 0.74± 0.03 0.083± 0.004 0.77± 0.05 0.11± 0.01 1.79± 0.01
α = 1.2 0.615± 0.001 0.81± 0.04 0.089± 0.005 0.80± 0.05 0.11± 0.01 1.79± 0.01
α = 1.4 0.615± 0.001 0.94± 0.03 0.099± 0.005 0.78± 0.04 0.10± 0.01 1.79± 0.01

3.6 Phase transition in similar systems
3.6.1 Global Connectivity of Photoactic Robotic Swarms

In this section, we investigate the phase transition of connectivity in a similar

multi-agent model developed by Mijalkov et al. [5]. This is an initial investigation

of whether percolation transitions occur in dynamic multi-agent interacting systems.

Their model is inspired by the motion of chemotactic cells, which use their molecular

concentration receptors to climb a chemical gradient by adjusting their tumbling

rate. In their work [5], they study the collective behavior of interacting autonomous

photoactic robots in a continuous plane.

Agents in their model are subject to rotational Brownian motion and are in the

presence of an external intensity field. Each agent emits a spatially decaying intensity

field. Each agent also measures the total intensity field at its present location and

adjusts its propulsion speed as a function of this measured intensity. They further

introduce a sensorial delay between sensing time and speed adjustment time, resulting

in collective aggregation and segregation patterns in the system.

The system of differential equations governing the dynamics of each agent’s motion

is depicted in (3.13)
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dxt
dt

= v
(
I(t−δ)

)
cosϕt

dyt
dt

= v
(
I(t−δ)

)
sinϕt

dϕt
dt

=
√

2
τ
ηt

(3.13)

v (I) = (v0 − v∞)e−
I
Ic + v∞ (3.14)

where (xt, yt) is the position of the agent in plane at time t, ϕt is its orientation, v

is its speed, τ is the reorientation characteristic time (i.e., the time after which the

standard deviation of the agent’s rotation is 1 rad), δ is the delay in reacting to the

change in intensity field, and ηt is a white noise driving the agent’s reorientation.

Eq. (3.14) shows the speed of each agent as a function of sensed intensity field.

In this equation, v(0) is the maximum speed, v(∞) is the residual speed at infinite

intensity, and I(c) is the characteristic intensity scale. As evident from the differential

equations system, having a different function for v(I) results in different aggregation

and segregation patterns. For our work, we use the standard decaying function in

(3.14).

This model of interacting agents in the continuous plane shares many similarities

with our discrete interacting walker model. First and foremost, agents react to the

sum of locally received intensity field, a direction-invariant function. In addition, the

hopping rate of walkers in our model directly translates to speed in the photoactic

robots model, which is a decaying function of intensity, meaning that agents prefer to

move towards higher intensity regions and remain there. We showed that our discrete

interacting walker model results in a phase transition in the global connectivity in

the lattice system. In order to understand if such phase transitions in connectiv-

ity also appear in other systems, we investigate their model as another example of

single-particle density dependant systems. Examining the critical exponents of this

transition is out of the scope of this work, so we limit our investigation to the ques-

tion of existence of such phase transition in connectivity and postpone any further

analysis to the future work.
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Fig. 3.22 shows the dynamic behavior of multiple agents in a positive delay regime.

As is evident from the figure, agents move from a randomly distributed phase to a

phase in which clusters of agents form. The size of these clusters at time-step t

depends on the parameters of the system of equations. Tuning the parameters can

result in a single cluster moving around collectively.

Figure 3.22: Collective aggregation patterns forming in positive delay regime. Image
taken from [5]

In order to study the percolation properties of this model in a continuous plane,

we run numerous multi-agent simulations on a continuous square region with peri-

odic boundary conditions (agents which exit the plane from one side of the square

re-enter from the opposite side). In each simulation, we fix the number of agents to

N and randomly distribute all the agents in the beginning of the simulation. We

then translate each snapshot of the dynamics to a random geometric graph. Agents

that are within the connectivity radius R of one another are considered connected.

We consider the system percolated if there is a connected component connecting two

sides of the square region. Connectivity radius R is chosen in a way that the system

is above the percolation threshold of random geometric graph [162] at the beginning

of the simulation. Similar to our discrete multi-particle model, the number of simula-

tions in which the system has percolated at time t is used to calculate the percolation

probability of the system at each time-step. Fig. 3.23 shows percolation probability

as a function of time for different system sizes. Like our discrete interacting walker
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model, we observe the sharpening of transition in global connectivity as we increase

the system size, which signals the existence of a phase transition in the time domain.

The transition point can similarly be characterized by the crossing point of different

system sizes. It is interesting to observe the occurrence of connectivity phase transi-

tions in systems with very different underlying dynamics in continuous and discrete

space. It is an exciting research direction to characterize the universality class of this

phase transition, but it is out of the scope of the current study.

Figure 3.23: Percolation probability as a function of time for photoactic swarm of
robots defined by Eq. (3.13).

In the next chapter, after introducing some tools for analyzing reaction-diffusion

patterns, we will study the time-evolution of the patterns observed in our model in a

more detailed and quantitative manner.
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3.7 Conclusion and Future Work
In this chapter, we introduced a simple single-specie interacting particle model

on a lattice or a general graph. We studied the phase transition of connectivity

during the time-evolution of the system and showed that our proposed model breaks

the general paradigm of universality and shows a continuous variation of critical

exponents as a function of a control parameter. Contrary to regular universality

classes, which are independent of the underlying lattice or initial configurations, the

critical exponents in our model also vary as we change the underlying lattice or the

initial conditions of the multi-particle system. During the time-evolution, our model

goes through different stages of pattern formation. We argued that these patterns’

formation affects the cluster size distribution and hence the correlation length in

the lattice. Thus, the critical point of our system shifts to values lower/higher than

the un-correlated site percolation threshold as we vary the interaction strength. To

expand our study of connectivity transitions in density-driven models, we further

studied the global connectivity of a system of interacting robots interacting based

on an emitted density field. We empirically showed that similar to our model, this

continuous system of agents also goes through a phase transition of connectivity as the

dynamics of the system evolve. Dynamic percolation transitions in non-equilibrium

systems have been rarely studied in the literature, and to the best of our knowledge,

we are the first to report continuous variation of exponents in single species systems

with local interactions. Future work includes extending this study to other reaction-

diffusion and pattern formation systems.
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CHAPTER 4

MACHINE LEARNING PATTERNS OF NATURE

4.1 Introduction
Complex patterns emerge in many real-world phenomena. From ecological systems

such as brushlands and mussel beds to filamentation of a high-power laser beam

passing through a non-linear Kerr media. The study and analysis of these patterns

and the underlying non-linear dynamics governing them have been a focus of many

fields of science and engineering.

Originally introduced by Turing in 1952 [39], the activator-inhibitor principle pro-

vides a potential theoretical explanation for formation of many regular patterns in

nature [40,149,150]. The underlying principle is based on the diffusive interaction of

a local positive activating feedback with a large-scale inhibitory feedback. This ac-

tivator inhibitor principle can account for many naturally occurring phenomena like

growth, birth, mortality, decay, respiration, etc. Similar pattern formation mecha-

nisms such as the Cahn-Hiliard [127] and the Gray-Scott model [12] were later intro-

duced to explain various natural phenomena ranging from spatial ecology to chemical

reactions. In this work, we use the Gray-Scott model as a reference model to gener-

ate various patterns. The Gray-Scott model generates a large set of different stable

and dynamic patterns with small changes in its parameter space. This characteristic

makes it an ideal candidate for any study that aims to deduce or predict parameters

of a model given an instance of a pattern.

Although numerous studies focused on the mathematical modeling of different

pattern formation phenomena, analyzing and quantifying generated patterns from
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different phenomena remains scarce. Most of the existing literature on pattern forma-

tion and analysis uses a qualitative approach to explain patterns in various systems,

and this qualitative analysis is limited by our visual ability to distinguish patterns

such as stripes, dots, filaments, etc. Some researchers [1, 45] showed that certain ge-

ometric characteristics of patterns can be used to map to a lower-dimensional space

and differentiate them. Others used methods from persistent homology, and topo-

logical data analysis [43, 163] to classify spatial patterns based on their topological

characteristics. Many of these methods are computationally complex and need careful

design to be applicable to specific patterns observed in various domains.

Machine learning methods have seen incredible performance boosts in the past

decade due to data availability and the growth of processing power. Specifically,

deep learning methods in the field of image recognition and analysis have produced

incredible results in terms of accuracy and scalability. In recent years, many re-

searchers in the physics community have started using machine learning algorithms

to derive insights from the wealth of real-world and simulation data available to them.

Carrasquilla et al. [164] used supervised learning to classify phases of Ising models

based on simulated data of the Ising configurations in different temperatures. Wang

et al. [165] used unsupervised learning techniques to discover phase transitions in

various physical systems. There have been numerous other recent uses of machine

learning approaches in physical sciences [166–175]. In this Chapter, we use supervised

and unsupervised learning methods to analyze patterns generated by the Gray-Scott

model. Specifically, we use unsupervised and supervised classification algorithms to

classify patterns generated by the Gray-Scott model. Similarly, we apply supervised

regression models to find the underlying differential equation parameters of the Gray-

Scott model given a set of images. In order to show the effectiveness of our approach,

we generate synthetic patterns from these models and use various machine learning

methods for classification and regression. The pre-trained neural network models
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can be used in various branches of science to classify or obtain the parameters of

experimentally observed patterns. This way, one can use a database of previously

observed patterns and see how a specific new observation falls into other categories of

patterns. This can further help researchers from various fields of science to categorize

and analyze their observed patterns in a more unified manner.

The outline of the Chapter is as follows. In Section we will introduce the pattern

generating models that serve as a data generator for training our machine learning

algorithms. Sections 4.3 and 4.4 will introduce different machine learning algorithms

utilized in our analysis. In Section 4.5, we introduce various classification and regres-

sion tasks and analyze the performance of applying various machine learning algo-

rithms applied to these tasks. For the unsupervised learning task, we also implement

Mecke’s [1] work on geometrical properties of patterns and use that to compare our

results with the existing literature in the field. Section 4.6 concludes and summarizes

our findings.

4.2 Gray-Scott Model
The Gray-Scott model is one of the important models for studying pattern for-

mation in reaction-diffusion systems. It models the chemical reaction between two

species, U and V [12]. The governing chemical reaction is:

U + 2V → 3V, V → P. (4.1)

In this reaction, V is converted to an inert product P , which does not interact

with the reaction of the system. Species V catalyzes its own creation and therefore

appears on both sides of the equation. Gray and Scott developed the following set of

partial differential equations to model this chemical reaction.

∂u

∂t
= duO

2u− uv2 + F (1− u) (4.2)
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∂v

∂t
= dvO

2v + uv2 − (F +K)v (4.3)

Here u and v represent the local density of chemicals U and V , respectively. We

assume that the boundary conditions are periodic and that F and K are constants.

The first term in each equation is a diffusion term, similar to the diffusion of heat in

the heat equation. du and dv are diffusion coefficients, determining the rate of diffusion

for the two chemicals. The term ±uv2 represent the reaction term, which accounts

for conversion of U into V . Increasing v results in a decrease in u. The term F (1−u)

is the replenishment term that reintroduces chemical U to the system. Similarly, the

term (F +K)v removes V from the system and serves as the diminishment term.

One naturally occurring example of this system of equations is the development

of an embryo. In this case, the bloodstream might serve as the supply of chemicals

and the rates by which chemicals permeate through the cell determine parameters F

and K for replenishment and diminishment.

The Gray-Scott model, produces a wide range of irregular patterns. Pearson [6],

identified 12 different pattern types, all of which correspond to different values of F

and K when du and dv are fixed. Figure 4.1 shows the 12 different patterns classified

by Pearson using standard methods of nonlinear analysis [176]. The figure shows the

chemical concentration of U in the simulated region. Figure 4.1 provides a mapping

between the F and K parameter space and the patterns classified by Pearson. Many

of the patterns generated by Gray-Scott equations are dynamic patterns showing

patterns of turbulence and many others have a more static character resembling

natural patterns like corals or the growth of bacterial colonies.
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Figure 4.1: Set of 12 distinct Gray-Scott patterns taken from ref. [6]. Colors represent
concentration of chemical U where red represents U = 1 and red represents U = 0.2.
Yellow is intermediate to red and blue.

4.3 Supervised Learning Methods
Convolutional Neural Networks

In recent years, deep learning has found many useful applications in various fields

of science. Convolutional neural networks (CNNs) [177] are a class of deep learning

methods primarily used for image classification, recognition and analysis. CNNs are

regularized versions of multi-layer perceptrons, which were inspired by the structure

of the visual cortex, the part of the brain which processes visual sensory inputs. The

use of convolution filters significantly reduces the parameter space of the data and

hence increases the learning performance. Fig 4.2 shows a schematic representation

of a CNN. In this example, the input of the CNN is a 2-dimensional image. The

training procedure consists of iteratively changing the weights of the network based

on known values in the output layer of the network. The input data to the network

can be represented by matrix XN×(L×L), which consists of N training images of size

L× L.
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The first layer applies a number of different convolution filters to the image. In

the training stage, these filters are trained to capture the distinctive features of the

data. The convolution layer is followed by a non-linear function and the output is

passed to a sub-sampling layer. The sub-sampling layer further reduces the parameter

space and increases the feasibility of learning. In modern CNNs, many successive

convolution-subsampling layers are applied to the data in order to capture features at

different length scales. The output of the convolution and sub-sampling operations

are connected to a fully connected neural network layer and the fully connected layer is

connected to the output layer. The number of neurons in the final layer is determined

by the task. For example, for a multi class classification task with M classes, the

final layer has M neurons and for a regression task with scalar output, the final layer

has a single neuron that is used to predict a scalar value. The model is trained

by minimizing a predefined loss function that captures the difference between the

prediction and the known output. For our regression tasks we use Root Mean Squared

Error (RMSE) loss and for classification problems we use Cross-entropy loss,

RMSE Loss =
√

1
N

ΣN
i=1

(
yipredicted − yi

)2
, (4.4)

Cross-entropy Loss = ΣN
i=1

(
ΣM
c=1yi,c log(pi,c)

)
. (4.5)

In (4.4), yipredicted is the scalar value predicted by the neural network and yi is the true

value of the output. In (4.5), the first sum runs over the different data-points and

the second sum runs over the different classes. Here pi,c is the probability predicted

by the model that data-point i belongs to class c and yi,c is a binary indicator if class

label c is the correct classification for data-point i.

For a given task, at each iteration, the loss is backpropagated in the network and the

weights of the neural network along with the CNN filter are re-tuned. The learned
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convolutional filters at different layers of the network are known to capture the pat-

terns present in the image data at different scales.

Figure 4.2: Schematic overview of a CNN architecture used in this work. An image
is passed through the network. Network weights are iteratively updated by back-
propagating the error from the output layer.

4.4 Unsupervised Learning Methods
In this Chapter, the goal of our unsupervised analysis is to cluster a given dataset

into groups of similar points without any prior known labels. Clustering techniques

usually use distance metrics to group data-points together. However, most often, the

data resides in an extremely high-dimensional space. This is particularly true with

image data. High dimensionality, makes the use of distance metrics noisy and com-

putationally infeasible. Therefore, unsupervised segmentation is usually performed

in two successive steps, namely Dimensionality Reduction, and Clustering. In this

section, we briefly describe the dimensionality reduction and clustering techniques

utilized in our analysis.
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4.4.1 Dimensionality Reduction

Principal Component Analysis

Principal Component Analysis (PCA) [178] is a linear dimensionality reduction

technique that projects the data into a lower dimensional space. PCA is typically

used for image compression and dimensionality reduction for high-dimensional data.

The principal components of the data are a set of mutually orthogonal vectors. The

first principal component points in the direction of the space for which the data has

the highest variance. The next principal components are the subsequent mutually or-

thogonal vectors ranked based on the variance of the data points. The components in

PCA are found by diagonalizing the empirical covariance matrix of the data. Similar

to the CNN setting, suppose that our data is represented by tensor XN×(L×L), where

N is the number of observations in the data-set and L is the length of our square

image.

We can flatten this matrix into a 2-dimensional matrix of the form XN×D, where

D = L×L. We start by setting the mean of every row in matrix X to zero. Applying

an orthogonal transformation to the result XTX and performing an eigendecomposi-

tion yields:

(XTX)Wl = λlWl (4.6)

where {Wl}Dl=1 is the set of eigenvectors, sorted by their corresponding eigenvalues.

All of the eigenvalues λl are larger than zero because the covariance matrix is posi-

tive semidefinite. Intuitively, the eigevectors with the largest eigenvalues, correspond

to directions in the D-dimensional space for which the data-points have the largest

variance. For this reason, we can use the top K eigenvectors as a linear dimen-

sionality reduction method. One can build a columnwise orthogonal T such that

T = (W1,W2,W3, . . . ,WK). When applied as a dimensionality reduction technique,

we can select the K ≤ D elements. Then the optimal K-dimensional representation

of data XN×D is given by:
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ZN×K = XN×DTD×K (4.7)

The above equation, projects the original data matrix into a K dimensional space

spanned by the top K eigenvectors found by PCA. In other words, PCA finds a lower

dimensional space in which the data has the highest variance and projects the data

into that space so as to capture the most variability in the data.

Autoencoders

Neural networks, unlike PCA, which applies a linear transformation to the in-

put data, apply nonlinear transformations to the data in order to build the low-

dimensional representation of the data.

For this reason, we have also examined the use of autoencoders. Autoencoders

[177,179] are artificial neural networks that are used for unsupervised learning of effi-

cient low-dimensional representations of data. The main idea behind autoencoders is

to pass the data through an intermediate layer whose number of learnable parameters

is considerably smaller than the original information content of the data. The goal is

to reconstruct the original data after passing through this bottleneck of information.

This way, the neural network is forced to discover a nonlinear transformation that

preserves the most important "patterns" or "structures" in the data to reconstruct the

original data.

Fig 4.3 shows a schematic autoencoder with three hidden layers. Since we intend

to apply autoencoders to image data for better clustering of naturally occurring pat-

terns, we use Convolutional Neural Networks (CNNs) as our encoder and our decoder.

Since CNNs use a method called parameter sharing to minimize the number of learn-

able parameters, using convolutional autoencoders significantly reduces the number

of parameters needed to learn the most important features of the data. The latent

variables are learned by passing training examples through the network and calcu-

lating the reconstruction-loss associated with reconstructing the original data-points
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after passing through the bottleneck. Equation (4.8) below shows the loss function

used in training the network,

Reconstruction Loss = 1
N

ΣN
i=1

(
Xi

predicted −Xi

)2
. (4.8)

In the above equation, Xi is the i-th image in the dataset. Reconstruction loss is

then backpropagated to re-tune the weights of the network. The number of latent

variables in the center of an autoencoder, determines the number of dimensions of

our learned representation. For example, in Fig. 4.3, there are three neurons in the

central layer which means any given image is transformed into a 3-dimensional vector

representation. Similar to PCA, the application of an autoencoder for dimensionality

reduction can be formulated as follows:

ZN×K = f(XN×D) (4.9)

Here, function f() represents the nonlinear transformation applied by the trained

neural network and K is the number of neurons (latent variables) in the center of

autoencoder.

Figure 4.3: Convolutional autoencoder is built by stacking a convolutional neural
network with a mirror version of itself. The latent variables in the middle layer are
forced to capture the most important features of the image to recreate it in the output.

Variational autoencoders (VAE) [180] are a modern version of autoencoders. Com-

pared to autoencoders, VAEs impose additional constraints on the encoded represen-

tations. Regular autoencoders learn an arbitrary function to encode and decode the
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data, however, VAEs learn the parameters of a probability distribution modelling

the data. In simple words, a variational autoencoder (VAE) provides a probabilistic

approach for describing an observation in latent space. VAEs model latent variables

as probability distributions rather than fixed values.

In VAEs the weights of the neural network are simultaneously optimized using

two loss functions, reconstruction loss, which captures the difference between the

generated data and the original data, and the KL divergence between the learned

latent latent distribution and a prior unit Gaussian probability distribution. The

second loss function enforces the learned representation of similar images to be close

in the latent space by penalizing the network when the learned probability distribution

is far from a prior unit Gaussian distribution. VAEs are especially more effective than

regular autoencoders when the goal is to learn the latent parameters of a stochastic

process. This is because they tend to learn the generative process that generates the

data rather than trying to reconstruct a specific instance.

4.4.2 Clustering

k-means Clustering

k-means is a clustering algorithm that clusters N points into k cluster [181]. It

operates by minimizing the sum of squared distances between the points and their

respective cluster centroids. The goal is to assign each point to its nearest cluster

center and to have the cluster centers as distant from each other as possible. k-means

takes the number of clusters k as an input to the algorithm. The algorithm starts

with a random assignment of points to clusters and finds cluster centroids. In the

next step, the algorithm re-assigns points to clusters based on current coordinates of

the cluster centroids and recalculate new centeroid based on new assignments. The

algorithm then repeats this process until some convergence criteria is satisfied. This

also allows for new points to be classified based on their nearest cluster centroid.
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Gaussian Mixture Clustering

Gaussian Mixture Models (GMMs) [182] is another algorithm used for segmenting

a data-set into a number of clusters. GMM assumes that the data are characterized

by a number of multivariate Gaussian distributions in the data, and each of these dis-

tributions represent a cluster. GMM is considered a soft clustering algorithm because

cluster assignments are probabilistic. Given a data-set and a given number of clusters

k, the GMM tries to find the parameters of k multivariate Gaussian distributions that

best fit the data.

4.5 Results and Analysis
4.5.1 Supervised Classification of Patterns Generated by Gray-Scott Model

Supervised classification assumes there is a pre-classified training set. These data

points, in our application, are manually classified by a human or another pre-existing

algorithm. The network learns to predict the labels of the samples in the training

set by iteratively readjusting its weights based on the error corresponding to its

predictions in the latest iteration. The neural network is then tested by feeding

it a test set that is unseen by the model. The neural network used in this section

is a convolutional neural network with two convolution layers, each having 32 filters,

followed by a dense layer with 100 neurons and an output layer with number of

neurons equal to the number of classes, in this case 7. Here we generate a series

of patterns by simulating the system of equations in the the Gray-Scott model with

certain values for F and K. Since we manually generate the images with specific

parameters, we know the general class that each image belongs to. We use these

labels to train and evaluate the model. Figure 4.4 shows the patterns used for the

supervised classification model. In this experiment, we generated 2000 images for each

of the 7 patterns. We used 80 percent of the data in the training set and evaluated

the data using the remaining 20 percent.
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Figure 4.4: Collection of 7 patterns from Gray-Scott equations chosen for this work.

Figure 4.5 shows the accuracy of the model as a function of number of training

iterations. As we observe, the accuracy of the model quickly goes up and reaches a

plateau. Further training the model might result in over-fitting to the training data

and hence decrease its performance on the test set. In the final training iteration, the

accuracy of the pattern classifier is approximately 99%.

Figure 4.5: Classification accuracy as a function of training iterations. The model
reaches the maximum accuracy of around 99% in early stages of training.

The performance of the model is impressive. Among the 2800 images which were

unseen by the model, it only miss-classified 6 images. It is worth noting that there are
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many hyper-parameters involved in defining a convolutional neural network model.

For this reason, in order to obtain the maximum achievable performance on a data-

set, one should perform a hyper-parameter search in the space of possible hyper-

parameters and use the set of hyper-parameters with the highest accuracy results on

test data.

4.5.2 Supervised Regression of Patterns of Gray-Scott Model

Finding the underlying generative process that gives rise to a specific pattern

is a central problem in fields ranging from ecology to materials science. In this

section, we use supervised learning techniques to map a given pattern to a set of F

and K parameters in the Gray-Scott system of equations. The task of predicting a

continuous dependant variable given a number of independent variables or features is

called regression analysis. In order to predict F and K parameters given an observed

spatial pattern we train a convolutional neural network. The data-set for training this

model is created by simulating the set of Gray-Scott equations with random F and

K parameters and random initial conditions. In the training phase, the images are

fed to the convolutional neural network. The output layer of the network consists of

two neurons with linear activation functions that serve as predictors of our F and K

parameters. The network is trained by backpropagating the loss associated with the

learning process. The loss function in this case is root mean squared error (RMSE)

between model predictions and actual values of the F and K parameters.

Figure 4.6 shows the result of applying our trained regression model on Gray-Scott

patterns. The first row is the test images generated by simulating the Gray-Scott

equations by picking a set of random F and K parameters. The images in the first

row are fed into the trained neural network and the corresponding predicted F and

K are extracted. In order to visually compare the results, we use the predicted F and
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Original 
Parameter

𝐹 = 0.080
𝐾 = 0.019

𝐹 = 0.014
𝐾 = 0.054

𝐹 = 0.058
𝐾 = 0.065

𝐹 = 0.082
𝐾 = 0.059

𝐹 = 0.063
𝐾 = 0.051

𝐹 = 0.063
𝐾 = 0.028

Original 
Image

Predicted 
Parameter

𝐹 = 0.081
𝐾 = 0.020

𝐹 = 0.017
𝐾 = 0.053

𝐹 = 0.063
𝐾 = 0.063

𝐹 = 0.085
𝐾 = 0.058

𝐹 = 0.069
𝐾 = 0.050

𝐹 = 0.068
𝐾 = 0.026

Predicted 
Image

Figure 4.6: First row shows images generated from simulating the Gray-Scott
equations with random set of F and K parameters. Images in the second row are
generated by feeding the first row images to our trained regression model, getting

model predictions for F and K, and simulating the Gray-Scott equations with these
F and K parameters with random initial conditions.

K parameters to generate the second row of images. F and K values corresponding

to original and predicted images are shown in the image. It is worth noting that the

initial condition for the set of differential equations in all of our experiments is set to

random Gaussian noise with a randomly changing seed.

In order to evaluate our model in a real-world scenario where a researcher observes

a new spatial pattern in a driven-diffusive system and is looking to find the appropriate

model that can generate a similar spatial distribution, we take three real images

from [7] that are examples of vegetation patterns formed in dry-lands and apply our

trained model to find the corresponding parameters in Gray-Scott equations that

produce a similar spatial patterns.
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Figure 4.7: The left column shows real vegetation patterns taken from [7]. The right
column shows the mapping of these patterns to the Gray-Scott patterns based on the
predictions of our trained model.

Figure 4.7 shows real images taken from [7] along with our model’s predictions.

For each image in the left column, our model predicts an F and K value, which we
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feed to the Gray-Scott equations with random initial conditions to create the images

on the right. In the first two examples, our model was able to successfully find very

close mappings of such patterns in the Gray-Scott system of equations. However, on

the third row, our model fails to find a comparable pattern. In this specific example

the vegetation pattern developed on slope, which induces an external field and direc-

tionality to the patterned system. However, such examples with non-homogeneous

directionality are absent in the training set created by Gray-Scott system of equa-

tions. This inability to detect similar patterns also carries some information about

the set of generatable patterns in the system under investigation.

4.5.3 Unsupervised Learning Patterns of Gray-Scott Model

As discussed earlier in Section 4.4, unsupervised learning techniques are used

in data segmentation and classification when there are no known labels or classes

associated with the data. In this section, we first apply dimensionality reduction

techniques on patterns of Gray-Scott model shown in Fig. 4.4. We then utilize

the k-means clustering and Gaussian mixture models to cluster the resulting data-

points into different classes. The data used in all future subsections is 14000 images

generated by simulating the Gray-Scott model with 7 sets of different parameters.

This means that for each pattern, there are 2000 data-points in the data-set.

PCA

Fig. 4.8 shows result of applying PCA on the data. The figure is colored using

our prior knowledge of the class the data-points belong to. The algorithm has no

information about these labelss we use them only to visualize how the model performs

in terms of creating visually differentiable clusters. After applying this dimensionality

reduction method, we need to apply a clustering algorithm to see how we perform on

segmenting these embedded points into correct clusters. For this purpose, we use both

k-means and GMM clustering. It is worth noting that, in the this Section and the
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following Section, the patterns are mapped into a 2-dimensional space for illustrative

purposes. The number of dimensions of the mapping space is a hyper-parameter of

these models and can have significant effects on performance. Therefore, in a real-

world scenario, a careful hyper-parameter search is required to find the size of the

latent space which yields the highest performance. In Section 4.5.3.2, we choose a

different latent space size to quantitatively compare the results of various algorithms.

Figure 4.8: PCA applied to 7 patterns of Fig 4.4. Each color refers to a specific type
of pattern generated from a specific set of F and K parameters. The figure is colored
based on our previous knowledge for visualization purposes and the algorithm does
not have access to these labels.

Fig 4.9 shows the result of using the GMM algorithm with a mixture of 7 Gaussian

distributions on the PCA-transformed data. Here, we show these results as an illus-

trative example for the reader. In Section 4.5.3.2, we compare different dimensionality

reduction and clustering algorithms using quantitative metrics.

99



Figure 4.9: GMM clustering applied to the results of PCA. Here the colors denote
the way GMM has separated different clusters. Compared to k-means, we see more
accurate differentiation between clusters.

Variational Autoencoder

Figure 4.10 shows the result of applying VAEs to the pattern images. Again,

points are colored based on our prior knowledge for the purpose of visualization.

Compared to PCA, VAE generates clusters that are more visually distinguishable.

Figure 4.10: VAE applied to 7 patterns of Fig 4.4. Each color refers to a specific type
of pattern generated from a specific set of F and K parameters. The figure is colored
based on our previous knowledge for visualization purposes and the algorithm does
not have access to these labels.
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This means that without any supervision, the algorithm has been able to separate

different patterns solely based on their visual features. In this figure, we have plotted

the patterns next to their corresponding clusters to show how spatial distance in this

transformed space matches the visual similarity/non-similarity of images. The upper

right region of the plot, belong to patterns that are dominantly red and are very

similar in composition. Colors ranging from red to blue correspond to dominance

and concentration of one of the two reactants in Gray-Scott system of equations. In

particular, patterns 3 and 4 from the bottom in the color-bar are very closely packed

together in the plot. This is interesting since the combination of worms and dots

are very close in the space of patterns of Gray-Scott equations and converge to one-

another in many scenarios depending on the initial conditions. It is also worth noting

that these two patterns are not well-separated in the 2-dimensional mapping shown

in the figure; however, if mapped to a higher dimensional space, they might become

better separable. The left bottom side of the figure belongs to mostly dominant

blue patterns which have some level of similarity. The yellow cluster that belongs

to bubble patterns is somewhat far from most of the clusters present in the figure.

This is also true in the actual F and K phase space of Gray-Scott patterns, since

bubble patterns form in regions with very large values of F and K compared to the

other patterns under study. The meaningfulness of this distance metric can have

far-reaching implications in a more quantitative study of patterned systems.

Fig 4.11 shows the result of using the GMM algorithm with 7 Gaussian distribu-

tions on the VAE-transformed data. Similar to what we mentioned above about PCA,

Fig 4.11 is only an illustrative example of how GMM works on the VAE-transformed

data. We will investigate these algorithms in a more quantitative manner in Section

4.5.3.2.
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Figure 4.11: GMM clustering applied to the result of VAE. Colors are specified by
the algorithm to separate different detected Gaussian distributions.

Minkowski Measures

As discussed in the Introduction Chapter, the literature on categorizing patterns

based on quantitative metrics is limited. The most prominent work in this area

is the work of Mecke [1] on morphological characterization of patterns in reaction-

diffusion systems. In this work, he introduced Minkowski measures along with some

thresholding techniques to map images of patterns into a lower-dimensional space. He

argues that this low-dimensional representation can serve as a quantitative measure to

distinguish and categorize reaction-diffusion patterns. A pattern is considered to be

an image with different values at each pixel. This can be represented by a gray-scale

image, in which different pixel values can be regarded as different values of a certain

quantity (i.e., density). According to [1], in order to extract geometric characteristics

of a pattern, we first need to convert it to a binary image. For this purpose, threshold

ρ is introduced. We sweep over the image pixel by pixel, and if the pixel value is

larger than ρ, the pixel is declared black; otherwise, the pixel is declared white. After

transforming the pattern into a two-dimensional black and white image, the following

characteristics, called Minkowski measures, are calculated for the image.

• The area fraction v(ρ) defined as the fraction of black pixels.
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• The length of the boundary line s(ρ) between black and white regions measured

as the number of pairs of neighboring black and white pixels normalized by the

total number of pixels.

• The so-called Euler characteristic χ(ρ) defined as the difference between the

number of white connected components and black connected components nor-

malized by the total number of pixels.

All these quantities are functions of ρ, the threshold to transform a grey-scale image to

a black and white image. Therefore, Mecke postulated that plotting these quantities

as a function of ρ should produce a different plot for different types of patterns with

different morphological characteristics. Fig. 4.12 illustrates an example set of plots

gained by varying the threshold and calculating the Minkowski measures introduced

earlier. The plots in Fig. 4.12 are averaged over a large number of realizations of the

pattern shown.

Figure 4.12: Minkowski measures as a function of threshold parameter ρ. All of the
plots are averaged over a large number of realizations of the pattern shown above.
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Mecke [1] argued that there are simple analytic combinations of the quantities

v(ρ), s(ρ), and χ(ρ) that can be accurately described by low-degree polynomials.

The coefficients of these low-degree polynomials can serve as a means to categorize

different patterns observed in reaction-diffusion systems. Quantities Pv, Ps, and Pχ

are defined as:

Pv(ρ) = tanh−1(2v(ρ)− 1)

Ps(ρ) = s(ρ)
v(ρ)(1− v(ρ))

Pχ(ρ) = χ(ρ)
s(ρ)

(4.10)

We will use these quantities and the coefficients of low-degree polynomials derived

from them to cluster and categorize Gray-Scott patterns in the future sections. We

will then compare these results with the clustering results obtained from the machine

learning algorithms introduced above.

4.5.3.1 Evaluation Metrics

In order to evaluate the performance of our dimensionality reduction and clus-

tering algorithms, we use a metric commonly used in the unsupervised clustering

literature, namely Adjusted Rand Index (ARI) [183, 184]. Given a set of n objects

S = {o1, ...., on}, assume U = {u1, ...., oR} and V = {v1, ...., vC} represent two parti-

tions of the objects in S. In other words, U divides the objects in S into R clusters

and V divides the objects in S into C clusters. Note that the following relations hold

for U and V : 
⋃i=R
i=1 ui = ⋃i=C

i=1 vi = S

ui ∩ ui′ = vi ∩ vi′ = ∅

We also assume that clustering U is our ground truth, meaning that we have prior

knowledge on the true partitioning of S. In order to define an accuracy metric which

compares partitioning V to the ground truth U , we define the following:

104



• a, the number of pairs of elements in S that are in the same subset in U and in

the same subset in V

• b, the number of pairs of elements in S that are in different subsets in U and in

different subsets in V

• c, the number of pairs of elements in S that are in the same subset in U and

different subsets in V

• d, the number of pairs of elements in S that are in different subsets in U and

in the same subset in V

The Rand Index [183], RI is defined as:

RI = a+ b

a+ b+ c+ d
= a+ b(

n
2

) (4.11)

Here the denominator counts the total number of pairs of objects that one can choose

from S. Equation 4.11 can be regarded as the number of correct decisions of clustering

V compared to the ground truth clustering U . One key shortcoming of the Rand

Index is that the expected Rand Index of two random partitions does not take a

constant value. In [184], Hubert et al. proposed an adjusted version of the Rand

Index which accounts for expected value of random partitions. Adjusted Rand Index

(ARI), which is one of the most prevalent cluster validation metrics in the literature,

takes the following form (for detailed derivation, please refer to [184,185]):

ARI =

(
n
2

)
(a+ b)− [(a+ c)(a+ d) + (b+ d)(b+ c)](
n
2

)2
− [(a+ c)(a+ d) + (b+ d)(b+ c)]

. (4.12)

ARI, takes the value of 1 when the two partitionings are identical (Fig. 4.13) and

takes the value of 0 when comparing two random partitioning.
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Figure 4.13: The two figures shown above represent two different clusterings of a set
of data points in a two-dimensional space. In this case, the clusterings of the points
are identical but are labeled (colored) differently. Therefore, in this case, ARI = 1.

ARI as defined above gives us the appropriate metric to compare different di-

mensionality reduction and clustering algorithms presented in the previous sections.

As mentioned earlier, research works on quantitative definitions for pattern analysis

are scarce in the literature. We presented Minkowski measures introduced in [1] as

the one most similar to our dimensionality reduction techniques. Mecke’s work is

also the most representative example of the literature on pattern analysis as it is a

general technique that can be applied to patterns formed in different fields of science.

Therefore, we utilize Minkowski measures as a baseline to compare our results with

the existing literature.

4.5.3.2 Clustering Results

In this section, we compare the clustering results using the ARI metric introduced

above. There are three Minkowski measures introduced in section 4.5.3. As discussed

earlier, the curves associated with simple analytic combinations of these measures
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can be approximated using a low-degree polynomial (4.10). Mecke [1] showed that

the combinations of these coefficients are different for different patterns. For this

dissertation, we choose to approximate the quantities mentioned above (4.10) by

degree 4 polynomials. Therefore, for a given pattern, each of the three quantities

in (4.10) gives us a four-dimensional vector. We concatenate these four-dimensional

vectors to create a 12-dimensional vector representation of an image. This can be

viewed as a pre-engineered dimensionality reduction algorithm, in which each pattern

image is mapped to a 12-dimensional space. Note that in all the dimensionality

reduction algorithms introduced in this dissertation, one can choose the number of

dimensions of the output space. In PCA, which applies a linear transformation to

the image, one can simply choose the number of output dimensions. Similarly, in

VAEs, one can choose the number of output dimensions by setting the number of

latent variables. To make the results of different algorithms comparable, we choose

the output dimensionality of all the algorithms to be 12. After applying various

dimensionality reduction techniques to all of the images in the data set, we have a

set of 14000, 12-dimensional vectors. We then apply k-means and GMM to cluster

these 12-dimensional points into 7 clusters. It is worth noting that in section 4.5.3,

we mapped all of the data points in the data-set into a two-dimensional space for

the sake of visualization. In a real-world problem, one should vary the number of

latent dimensions and observe the algorithms’ performance to select the most efficient

mapping. There is always a trade-off between mapping into a low-dimensional space

and a high-dimensional space. If the number of latent dimensions is low, we might

lose important information. On the other hand, increasing the number of latent

dimensions will result in the problem of the sparsity of data points in the mapped

space. Clustering algorithms will perform poorly on sparse high-dimensional data.

In Table 4.1, we compare various combinations of dimensionality reduction and

clustering algorithms and compare the obtained clusterings with the ground truth
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clustering to calculate the ARI value for each set of algorithms. In terms of clustering

algorithms, GMM consistently outperforms k-means clustering. The best performing

model which achieves ARI = 0.96 is the combination of VAE and GMM. Minkowski

measures achieve a decent performance but fall short comparing to VAE. We also

created a Combined model which outperforms all of the other single algorithms. We

built this Combined model by taking the 12-dimensional representations from all three

models (PCA, VAE, and Minkowski), projecting each 12-dimensional vector into a 4-

dimensional space using PCA (note that PCA is a linear method that can be applied

as many times to reduce the dimensionality of any given vector), and concatenating

the three, 4-dimensional vectors to obtain a new 12-dimensional representation. This

new 12-dimensional representation contains the most important information extracted

by all three algorithms. The ARI value for this Combined model is 0.99 which is an

outstanding result. This finding also proves that each of the three methods introduced

in this Chapter, extract different types of information from the pattern images and

can complement one another.

It is worth noting that the only input to the unsupervised learning algorithms such

as PCA and VAE is the pattern images. On the other hand, geometric characteristics

such as Mikowski measures are carefully hand-designed based on years of research

and observation of many patterns. In light of these notions, the performance of

unsupervised learning algorithms in clustering and classifying patterns is impressive

and needs more attention from the research community in this field.

PCA VAE Minkowski Combined
k-means 0.77 0.82 0.38 0.26
GMM 0.88 0.96 0.92 0.99

Table 4.1: ARI value of different combinations of dimensionality reduction and clus-
tering techniques. To calculate ARI, each clustering is compared to the ground. The
Combined model which achieves an outstanding performance is created by combining
the results of all three models.
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4.6 Conclusion and Future Work
To conclude, we show that machine learning algorithms can aid researchers in

different stages in life-cycle of the study of patterns. A class of problems arises when

there is a finite set of observable patterns in a given system, and researchers wish

to classify a new pattern instance in an efficient and accurate manner. One example

is to distinguish the vegetation patterns observed in a stream of satellite images.

We showed that classification algorithms are suitable for this task given a small set

of training data. Given 2800 samples from different patterns that were unseen by

the model, our model achieved an accuracy of 99%. The second class of problems

arises when a pattern is known to be generated by a specific generative model or

needs to be mapped to a specific system of equations, i.e., predicting the underlying

parameters of an observed instance of a chemical reaction-diffusion system. Using

an image convolutional neural network, we showed that a neural network can be

trained to predict the F and K parameters of the Gray-Scott model. Our model was

successful in predicting the F and K parameters with reasonable accuracy. Similarly,

this method can be used to map a given instance of a pattern into a set of candidate

generative models, which gives researchers an exploratory tool for analyzing newly

observed systems. One commonly overlooked shortcoming in the study of patterns

is that there is no quantitative approach in distinguishing patterns generated from

diverse systems. The literature usually refers to observed patterns by general terms

such as mazes, stripes, etc. However, this approach is bounded by our cognitive

limits and lacks a universal method to define the patterns. In the last section, we

use unsupervised learning techniques to learn the common discriminative features

that partition a set of patterns. We perform this by learning a transformation to

map a set of patterns into a lower-dimensional space. We observe that patterns

belonging to different classes are naturally separated into distinguishable clusters and

utilize unsupervised clustering algorithms to separate them. In addition, we compare
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our results with Mecke’s [1] work on using morphological and geometric features of

patterns to map them to a lower-dimensional space. Our extensive experiments using

various unsupervised learning and geometric techniques show that VAEs combined

with GMMs outperform all other methods in clustering our data-set of patterns. It

should be noted that one of the most important characteristics of this mapping is

the observation that proximity in the pattern space is preserved in the transformed

space, meaning that patterns that have visual similarities are more closely clustered

together, and patterns that look visually different are further apart in the transformed

space. This could be a significant finding since, given a sufficient amount of input

data, the distances in the transformed space can become a good quantitative measure

to find where a newly observed pattern belongs in the space of all patterns.

One important property of our unsupervised learning approach is that it can be

applied in a hierarchical manner. A model trained on all the variants of patterns

observed on leopards will be able to map a newly observed instance in a fine-grained

space of leopard patterns. Similarly, a large model can be trained using a zoo of

patterns generated from various generative models. This comprehensive model can

play the role of quantitatively determining where a pattern belongs in the space of

all the given patterns. This could also open up the possibility of having hybrid class

memberships, i.e., maze-spots for a pattern that lies halfway between mazes and spots

in the transformed space.

There are many open areas for future work in this area. Both supervised and

unsupervised classification models introduced in this work can be extended to combi-

nations of patterns generated from distinct underlying dynamics. Another interesting

future direction would be to use the dynamic behavior of these patterns instead of a

single image. This can be done by changing the structure of our neural network to a

convolutional-recurrent structure that can capture the spatial and temporal behavior

of the patterns simultaneously.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this Chapter, I pose some of the open questions relevant to each chapter of this

work based on the conclusions and findings of this dissertation. Each of the following

sections will focus on one of the chapters of this dissertation.

5.1 Robust Network Connectivity
In Chapter 2, we introduced a hierarchy of robustness measures for quantifying

various levels of connectivity in graphs. We studied the critical thresholds and critical

behavior of these robustness measure on the square lattice. Our theoretical and

numerical analysis showed that percolation thresholds do not necessarily change as

we increase the levels of robustness in the network. In fact, 2-stub, 2-core, 2 and

3-connectivity, and 2-strong connectivity all have the same threshold as ordinary

percolation on the square lattice. In addition, we numerically found the thresholds for

all other robustness measures for all k except for 4-connectivity. We left 4-connectivity

out due to the computational complexity of finding the 4-connected components.

However, numerical and theoretical study of 4-connectivity on the square lattice is

very important for the field and can have far-reaching implications in network design

and analysis.

5.1.1 Exploring Naturally Formed Networks

Many technological innovations have been inspired by the observation of precise

algorithmic behaviors in nature. One interesting future direction of this work is to
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investigate naturally formed networks and find the levels of robustness that these

networks maintain in order to avoid catastrophic failures. It has been shown that

many biological networks [32] ensure the existence of different pathways to ensure

robustness. Investigating degrees of robustness in various naturally formed networks

can help us understand how naturally formed networks maintain stability in complex

dynamic environments.

5.1.2 Robust Connectivity in Real-World Networks and Random Graphs

Although square lattice is a good simplified representation of many real-world net-

works such as molecular networks, it fails to capture many of the complex structures

present in real-world problems. One natural extension of our work is to study these

robustness measures on spatial networks such as road networks, random geometric

graphs, and power grids. Random geometric graphs are especially interesting since

as one increases the number of nodes per unit area, the network becomes denser

and denser; therefore, these measures of robustness can be studied for all possible

values of k up to infinity. Random geometric networks are formed in a continuous

plane. Introducing dynamics in a geometric graph formed in a plane can model many

real-world temporal phenomena. Mobile ad-hoc networks are an example of such

networks. These networks evolve in time as the components of the networks are

dynamically changing and moving in space. Robustness to random failures in the

aforementioned networks is crucial for their proper functionality, therefore studying

the robustness measures introduced in this dissertation on mobile ad-hoc networks

in an interesting future direction. A phenomenological study of emergence of robust

connectivity in the systems mentioned above always poses the question of design and

control. Therefore, the next meaningful question is how to design robust networks

or how to manipulate a given network to make it robust? For example, given a sub-

critical mobile ad-hoc network or a random geometric graph on a continuous plane,
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how can we manipulate a finite number of nodes/edges to make it robust based on

different definitions of robustness?

As mentioned in Chapter 2, Newman et al. [31] studied 2-connectivity on real-

world networks and showed that the thresholds for 2-connectivity are the same as the

threshold for ordinary percolation. However, a rigorous study of the critical behavior

of various robustness measures in real-world networks and random graphs is missing

in the literature. In this dissertation, we showed that we observe significant deviations

from ordinary percolation behavior for different values of k and different robustness

measures. Some robustness measures undergo discontinuous phase transitions, and

others belong to not previously observed universality classes. Understanding the

critical behavior of these transitions in real-world networks and random graphs is

of utmost importance for their design and analysis. The sharpness of the phase

transition, cluster size distribution at the different stages of criticality, and the nature

of transition (continuous vs. discontinuous) are essential in real-world scenarios such

as road traffic networks or communication networks.

5.1.3 Robustness in Heterogeneous Networks

Many real-world networks are not made of a single component type. For this

reason, studying the robustness of such networks due to the failure of components

needs more careful analysis. For example, a power grid consists of nodes of different

types, namely, power plants, substations, etc. The probability of failure of each

type of component is different since they are built using different standards. One

fascinating and practical question to ask is, how does the interplay between these

different probabilities impact the emergence of global connectivity in the system? How

does this multi-threshold phenomenon change the critical behavior of the percolation

transition?
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5.2 Connectivity Transitions in Non-equilibrium Systems
In Chapter 3, we studied the transition of connectivity in the time-evolution of an

interacting multi-particle system. We introduced a multi-particle interaction model,

that produced a continuous phase transition. We showed that by varying a param-

eter of this interaction model, we can continuously change this transition’s critical

exponents and thresholds. The phase transitions observed in our model belong to the

weak universality paradigm, in which critical exponents vary continuously, however,

their ratios remain constant. The aforementioned model undergoes different regimes

of pattern formation until it reaches a steady state. One straightforward future ex-

tension of this work is to study the same multi-particle model under different initial

conditions and with other types of lattice structures or general networks. Regular

lattices have a uniform degree distribution, meaning that all the nodes have the same

degree across the network; therefore, we expect to observe a similar behavior on other

regular lattices. On the other hand, the non-uniform degree distribution of general

networks ensures the existence of some high degree nodes. Depending on the initial

conditions of the multi-particle system, these high degree nodes (with a high number

of neighbors) can act as sink-hole of particles. Any particle that resides on one of

these high degree nodes has a high probability of staying on the same node in fu-

ture time-steps. The scenario above is an intuitive example of how particles might

evolve on general graphs. Detailed simulations and theoretical studies are needed to

understand the behavior of our model on general graph structures. In the following

sections, I will elaborate on other possible future directions of this work.

5.2.1 Cluster Analysis of Multi-Particle Model

A preliminary analysis of cluster size distribution at the critical point showed that

increasing the interaction strength delays the phase transition. For this reason, the

number of clusters with small numbers of particles decreases significantly at the crit-
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ical point. As the number of free particles or small clusters decreases, most of the

particles join the largest connected component. This enhanced correlation between

particles results in a decrease in the percolation threshold of this system. One impor-

tant question that remains unanswered in this dissertation is the functional behavior

of the percolation threshold and critical exponents as α increases to infinity. In this

work, we observed the appearance of filamentation patterns as the system approaches

the critical point. However, there are distinguishable visual differences (Fig. 5.1) be-

tween filamentation patterns as α is varied. At higher values of α, the clusters look

denser and with fewer holes in them. Studying the hole size distribution in this prob-

lem and similar problems could give us great insights into the phase transition shape

and point of occurrence.

Figure 5.1: Largest connected component (LCC) for different values of α at t = tc.
There are significant qualitative differences between the two patterns. One observable
difference between the two images is the hole size distribution in the LCC.
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5.2.2 Connectivity Transitions in Other Reaction-Diffusion Systems

In Section 3.6, we studied a model similar to our multi-particle system in a con-

tinuous plane. We showed that if we generate a network based on nearest neighbors

in the continuous plane and study the temporal evolution of connectivity, we ob-

serve a continuous phase transition. This interesting observation shows that our

multi-particle model is part of a class of models that undergo a phase transition of

connectivity. One interesting future direction of this work is to investigate the tem-

poral behavior of connectivity in various types of multi-particle and reaction-diffusion

systems. As an example, in Chapter 4, we introduced Gray-Scott equations. In this

system of equations, different parameter regimes lead to the formation of different

patterns. One can study the transition of connectivity in such systems and investi-

gate the effect of steady-state patterns on the existence of a phase transition. There

are numerous other multi-particle systems that can be the subject of such a study.

The study of connectivity in these systems can have a crucial impact on different

fields of science and engineering. For example, vegetation patterns in forests and

dry-lands are very important in ecological studies and in managing environmental

disasters such as forest fires. Many studies [186] focus on modelling the generative

processes behind the evolution of these patterns. Global connectivity of these systems

and their temporal dynamics through seasons and climates can play a central role in

preventing uncontrollable fires that spread quickly.

5.3 Machine Learning Analysis of Patterns
In Chapter 4, we used machine learning algorithms to analyze patterns generated

from reaction-diffusion systems. Although we tested these algorithms on a specific

set of patterns generated from the Gray-Scott model, these techniques can be used

to analyze any pattern that can be represented as a two-dimensional matrix. To

the best of our knowledge, this is the first comprehensive study of application of

116



machine learning algorithms in reaction-diffusion patterns analysis. We introduced

three different types of tasks in pattern analysis and addressed each task with a set

of algorithms from the field of machine learning:

1. Pattern Regression: Given an instance of a pattern with a known generative

function, predict specific parameters of the generative function that produces a

similar pattern.

2. Supervised Pattern Classification: Given an instance of a pattern and a catalog

of predefined patterns, detect which category the instance belongs to.

3. Unsupervised Pattern Classification: Given a large data-set of various types of

patterns, partition this data-set into groups of similar patterns.

In tasks 1 and 2, we used supervised convolutional neural networks. We showed that

this method achieves exceptionally high accuracy in both tasks. For task 3, we utilized

a combination of different dimensionality reduction techniques combined with differ-

ent clustering algorithms. In order to compare our work with pre-existing methods,

we implemented Mecke’s [1] pattern analysis method as a dimensionality reduction

algorithm. Our results showed that auto-encoder, which is a neural network-based

architecture, outperforms geometric measures introduced in [1]. Another significant

finding was that combining various types of dimensionality reduction methods to

capture various underlying features of the images performs significantly better than

any individual method. Using this combined method, we achieved an ARI (Adjusted

Rand Index, an accuracy measure introduced in Chapter 4) of 0.99. In the following

sections, I will go over some future directions of this work.

5.3.1 Classifying Patterns From Diverse Generating Functions

In this dissertation, we studied the problem of pattern classification on various

patterns generated from the same generative model (Gray-Scott model). One natural
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continuation of the current work is generating patterns from multiple generative mod-

els, labeling them, and training a convolutional neural network to classify them. This

also naturally plays the role of detecting the underlying generative model of a given

pattern. If successful, this will be a breakthrough in pattern analysis since finding

the appropriate generative model always puzzles researchers and requires extensive

amounts of effort to solve.

5.3.2 Embedding Pattern Dynamics

Many pattern generative models result in visually indistinguishable patterns. Pat-

terns of spots generated from the Gray-Scott and Cahn-Hiliard [187] models may look

visually and geometrically the same but are generated from entirely different dynam-

ics. The methods introduced in this dissertation are incapable of distinguishing such

similar patterns based on single snapshots. Therefore, there is a necessity for creating

algorithms that can take the temporal aspects of pattern formation into account.

One approach to this problem is to use the same techniques introduced in this

dissertation for the embedding of an image into a d-dimensional space and embed

temporal snapshots of the pattern dynamics into this space. This way, one creates a

path in a d-dimensional space. Fig. 5.2 shows an example of such temporal embed-

ding. In this figure, each data point is created by mapping the image of the pattern at

time t to a 2-dimensional space using PCA. In Fig. 5.2, colors denote time. One can

perform this embedding for various types of pattern formation dynamics and study

the difference between the low-dimensional representation of the paths.
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Figure 5.2: Path of a pattern in PCA space. Colors denote time. Dark red denotes
t = 0 and dark blue denotes t = 100. At the top, we see example snapshots of the
evolution of the pattern in time. The pattern is called Chaos in Gray-Scott category
of patterns.

Another interesting possible approach is to use a machine learning algorithm that

incorporates time into its embedding generation. For this purpose, recurrent neural

networks (RNNs) are a great candidate. One can build a recurrent-convolutional

neural network architecture and embed the temporal dynamics of a pattern into a

point in a low-dimensional space. When the embedding step is done, all the clustering
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methods introduced in this dissertation can be applied to cluster points into similar

groups in a supervised or unsupervised manner.
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