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ABSTRACT 

 
 ROLE OF PREFRONTAL CORTEX IN REWARD SEEKING BEHAVIORS  

 
 

SEPTEMBER 2021 
 

JESSICA P. CABALLERO-FELICIANO, BA, UNIVERSITY OF PUERTO RICO 
MAYAGÜEZ 

 
PhD, UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor David E. Moorman 

 
Disorders associated with compulsive seeking of rewards, like binge-eating, are 

associated with abnormalities of the prefrontal cortex in humans, which is analogous to 

the prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex 

(mPFC) in rodents. Although studies have examined the role of the mPFC in drug 

seeking behaviors, studies examining natural reward seeking behaviors (i.e. food and 

sucrose) are often unclear and contradictory. This dissertation aims to characterize the 

role of the PL and IL mPFC in operant sucrose seeking behaviors. We used 

pharmacological and chemogenetic tools to selectively inactivate the PL, IL and PL-

nucleus accumbens (NAc) NAc during Fixed Ratio 1 (FR1), extinction, and cue-induced 

reinstatement. Furthermore, we describe the role of PL projections to the NAc in both 

highly-motivated rats (food restricted) and low-motivated rats (free fed) in operant 

sucrose seeking behaviors. Our results demonstrate that the IL subregion of the mPFC 

plays a role in the execution of reward seeking behaviors during extinction (i.e. well 

entries) and cue-induced reinstatement (i.e. nose poking). Additionally, our results 

demonstrate that the PL plays a role in inhibiting reward seeking during FR1 (i.e. nose 

pokes and rewarded well entries). However, the PL seems to play a role in promoting 
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reward seeking during extinction (i.e. nose poking and well entries). We also observed 

that inactivating PL-NAc in food restricted rats during extinction and cue-induced 

reinstatement suppresses behaviors that do not result in reward delivery (i.e., inactive 

lever presses). In free fed rats, PL-NAc inhibits reward seeking behaviors (i.e. initiated 

trials) during cue-induced reinstatement. Our findings support our claim that the mPFC 

and its projections differentially control reward seeking behaviors depending on the 

behavioral (e.g., FR1, extinction, or cue-induced reinstatement) and motivational context 

(e.g., level of satiety) of animals. Understanding the function of the mPFC will give 

insight to understand and develop specialized therapies to treat and cure disorders like 

binge-eating, as well as other diseases associated with the mPFC, like substance use 

disorders. 
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CHAPTER 1 

GENERAL INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

Our ability to perform complex behaviors is due to the activity of billions of 

interconnected neurons in the brain. The frontal lobe of the brain is the area that 

encompasses the highest cognitive capabilities for humans. Specifically, the prefrontal 

cortex (PFC) is in charge of controlling the appropriate cognitive processes in order to 

carry out the behavioral response to a stimulus, including attention, working memory, 

task switching, planning, decision making, and behavioral inhibition (Brown & Bowman, 

2002; Dalley et al., 2004; Fuster, 2000; Miller, 2000; Miller & Cohen, 2001; Ongur & 

Price, 2000; Robbins, 2000). The PFC also plays an important role in mediating goal-

directed behaviors. In order to reach a goal, information from the environment needs to 

be interpreted to implement the appropriate attentional and decision-making processes, 

and to execute or inhibit the appropriate behavioral response for a given stimulus (de 

Haan et al., 2018; Miller & Cohen, 2001). Hence, abnormal control of execution and 

inhibition of behaviors is a major contributor to problems like substance-use disorders,  

eating disorders, and gambling (Gut-Fayand et al., 2001; Jentsch & Taylor, 1999; Nigg, 

2000). There is vast evidence that the rodent PFC, similar to primate PFC, is in charge of 

cognitive and executive processes regulating execution and inhibition of reward seeking 

behavior (Brown & Bowman, 2002; Dalley et al., 2004; Kesner & Churchwell, 2011; 

Sharpe & Killcross, 2018). Therefore, rodent studies are imperative in the advancement 
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of the field because they allow us to conduct more invasive experiments that can lead to 

discoveries that are difficult to perform on humans and/or non-human primates. 

There is vast evidence demonstrating that there are homologies between the 

primate and rodent PFC (Seamans et al., 2008; Uylings et al., 2003; Uylings & van Eden, 

1991). Additionally, connections between the rodent mPFC and the thalamus have been 

studied in detail providing further evidence of homologies between the primate and 

rodent neural circuits (Gabbott et al., 2005; Ko, 2017; Leonard, 1969, 2016; Mailly et al., 

2013; Riga et al., 2014; Vertes, 2004). The first paper to confirm afferent projections to 

the frontal pole from the thalamus and use the terms “prefrontal cortex” and “rat” was 

published in 1969 (Leonard, 1969). In 1973, a second paper using “prefrontal cortex” and 

“rat” was published, where stimulation of neurons in the nucleus accumbens led to 

activation of neurons in the PFC in rats (Rolls & Cooper, 1973). These studies opened the 

possibility to use rodent models to research the PFC and there are currently over 12,000 

papers that use these terms to date. Subdivisions of the medial PFC include a dorsal 

region composed of a precentral and anterior cingulate cortex (ACC), and a ventral 

region that includes prelimbic (PL), infralimbic (IL), and medial orbital cortices (Dalley 

et al., 2004; Groenewegen et al., 1997). A retrograde tracer injection study showed that in 

rat brain the mediodorsal thalamus (MD) received 9% afferents from PL; 7% afferents 

from IL; and 8% afferents from ACC (Gabbott et al., 2005). The field has currently 

shifted the rodent PFC nomenclature to medial prefrontal cortex (mPFC) when referring 

to studies that include these three subareas: medial agranular or ACC, PL, and IL 

(Krettek & Price, 1977; Laubach et al., 2018; Perez-Cruz et al., 2007; Vertes, 2004). For 
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the purpose of this dissertation, we will place special focus on the rodent mPFC and its 

role in mediating reward seeking behaviors.  

1.2 Role of PL, IL and accumbens subregions in natural reward seeking behaviors 

 The PL and IL mPFC, and PL projections to the nucleus accumbens core (NAcC) 

have been strongly implicated in the behavioral execution/inhibition balance (Bari et al., 

2011; Bari & Robbins, 2013; Hardung et al., 2017; Roitman & Loriaux, 2014; Sharpe & 

Killcross, 2015). Previous work has shown that the PL promotes the expression of 

conditioned fear and drug-seeking behavior, i.e., “going,” and the IL promotes the 

inhibition of these behaviors, i.e., “stopping,” often demonstrated through extinction 

learning (Peters et al., 2009). However, a number of studies question this strict PL/IL 

functional dichotomy and suggest that even though PL and IL may have opposing roles in 

some behaviors, the contributions of each region are more complex than previously 

thought (Burgos-Robles et al., 2013; McGlinchey et al., 2016; Meyer & Bucci, 2014; 

Moorman & Aston-Jones, 2015). In particular, the specific behavioral paradigms and 

reward employed play a critical role in understanding contributions of each brain region 

to execution or inhibition. Therefore, if we disregard the numerous variables in play, 

generalizing the roles of PL and IL in execution and inhibition may be counterproductive.  

When assessing reward seeking behaviors, it is important to clearly establish if 

the behavior was guided by motivation to seek/obtain a reward, or as an automatic 

response to a cue. A goal directed action is proposed to meet two criteria: 1) a 

situation/state of being must precede the behavior that leads to the goal/reward, and 2) 

there is an instrumental contingency between the behavior and the goal/reward 
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(Dickinson & Balleine, 1993). If a behavior leads to a goal/reward, but does not meet 

both criteria, the behavior cannot be considered goal directed and can be defined as a 

response (Dickinson & Balleine, 1993). For example, if an animal learns to receive a 

food pellet every time they press a lever, it is only considered goal directed if the animal 

is hungry and if the animal has previously learned that a food pellet will be dispensed 

when pressing the lever. If the animal is not hungry but presses the lever to receive the 

food pellet, or if the animal is hungry but presses the lever without previous knowledge 

that the lever will deliver food, it is not considered a goal directed behavior. Accordingly, 

a habit is defined as an instrumental behavior performed to reach a goal/reward (action-

outcome contingency) which with repeated practice over time becomes a response 

triggered by the stimuli, independent of the value of the reward (stimulus-response 

habits) (Barker et al., 2014; Dickinson, 1985).  

 As mentioned before, the PFC has been demonstrated to play a critical role in 

cognitive control of reward seeking behaviors and PL/IL have been theorized to play 

different and opposing roles in terms of “going” and “stopping”. However, IL has also 

been shown to control inflexible reward seeking, also defined as habitual reward seeking 

(Barker et al., 2014). An IL lesion study using sucrose and food pellet rewards 

demonstrated that rats with an IL lesion were able to acquire action-outcome 

contingencies and were also sensitive to outcome devaluation even after extensive 

training (Killcross & Coutureau, 2003). This same study also found that lesioning the PL 

blocked the sensitivity to reward devaluation, compared to control rats (Killcross & 

Coutureau, 2003). In a study using sucrose and chocolate milk as a reward, 

optogenetically inhibiting the IL blocked expression of habitual reward seeking 
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behaviors. Moreover, if enough time had passed in order to develop a new habitual 

behavior, IL inactivation blocked the new habitual behavior and the previously acquired 

habitual behavior was rescued (Smith et al., 2012). One explanation is that the IL controls 

reflexive responding and inhibits the goal-directed behaviors mediated by the PL 

(Killcross & Coutureau, 2003). In a PL inactivation study using Baclofen/Muscimol via 

cannulae and food pellets as reward, inactivating the PL decreased goal directed reward 

seeking in minimally trained animals (Shipman et al., 2018). These findings support the 

theory that PL is important to mediate goal-directed behaviors before they become 

habitual.  

The role the PL and the IL play in regulating acquisition and recall of reward seeking 

behaviors of food and sucrose is not as clearly established in the field as it is in the drug 

seeking literature. In a fixed interval food seeking task, inactivation of the PL with 

GABAA and GABAB receptor agonists muscimol and baclofen increased lever pressing 

in food restricted rats (Jonkman et al., 2009). Inactivation of ventromedial PFC neuronal 

ensembles (mostly IL) during a food self-administration task decreased food seeking 

behaviors (Warren et al., 2016). In a variable interval schedule of reinforcement study 

(VI-60), neural activity in the PL correlated with delivery of sucrose pellets, but 

inactivation of these neurons had no effect on behavior (Burgos-Robles et al., 2013). In 

this same study, neural activity in the IL correlated with collection of the sucrose pellets 

and inactivation of the IL let to a longer latency to collect the reward (Burgos-Robles et 

al., 2013). These contradicting results highlight the importance of further elucidating the 

specific roles PL and IL play under various contexts.  
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Another important area that has been demonstrated to play an important role in 

instrumental conditioning is the NAc, which is thought to play an important role in 

relating reward to action-outcome association (Corbit et al., 2001; Dickinson & Balleine, 

1994). The NAc receives glutamatergic inputs from limbic structures, including the PFC 

(Powell & Leman, 1976). It is also a major component of the mesolimbic dopamine 

system, which plays an important role in regulating reward and desire of food (Aitken et 

al., 2016; Biesdorf et al., 2015; Powell & Leman, 1976). Further characterization of PL to 

NAc circuitry is needed to understand the link between PL and NAc in mediating reward 

seeking behaviors. It has been shown that NAc neurons fire during both acquisition and 

maintenance of goal-directed sucrose seeking behaviors in food restricted rats (Gillis & 

Morrison, 2019). In an instrumental conditioning task using sucrose and food pellets as 

reward, inactivating PL projections to NAc did not have any effect on goal-directed 

learning (Hart et al., 2018). However, a study using a Fixed-Ratio-1 discriminative 

stimulus task found that NAc Core neurons fired when the reward cue was presented 

(Ishikawa et al., 2008a). By the time of the recordings, these food restricted rats had 

already learned to associate cue (lever and tone) with reward delivery (10% sucrose) 

(Ishikawa et al., 2008a). Additionally, inactivating dorsomedial PFC in those same 

animals decreased NAc Core firing and also decreased lever pressing (Ishikawa et al., 

2008a). An important detail to note is that for both of the previously mentioned studies, 

the rats were food restricted. This detail is important because it allows for a better 

comparison of palatable food reward seeking behaviors, especially because it has been 

shown that neurons in the NAc are associated with palatable food or sucrose cues when 

rats are hungry (Ahn & Phillips, 1999; Aitken et al., 2016).  
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1.3 PL/IL/NAc and extinction 

 Extinction is defined as a new memory, where a previously learned action-

outcome association is inhibited in response to the newly formed memory (Barker et al., 

2014). In terms of instrumental conditioning, when a response-contingent reward or 

reinforcer is omitted, expression of operant behavior decreases (Skinner, 1938). The IL 

has been shown to mediate extinction learning, specifically for inhibition of cocaine 

seeking behaviors and inhibition of conditioned fear expression (Augur et al., 2016; 

Barker et al., 2014; Peters, LaLumiere, et al., 2008; Peters et al., 2009; Sierra-Mercado et 

al., 2011). In terms of cocaine, the NAc, as well as IL projections to the NAc shell are 

implicated in extinction and withdrawal (Millan et al., 2011; Warren et al., 2019). A 

microdialysis study found that levels of DA in the NAc shell decrease during extinction, 

when food-contingent cue was not followed by a food reward (Biesdorf et al., 2015).  

However, the role the mPFC plays in extinction of natural rewards is unclear. The IL has 

been shown to play an important role in Pavlovian conditioning, but not in instrumental 

conditioning (Mendoza et al., 2015). Inactivation of NMDA receptors in the IL using a 

sucrose self-administration task where rats were fed ad libitum disrupted extinction 

consolidation, but not performance during extinction training (Peters & De Vries, 2013).  

1.4 PL/IL/NAc and reinstatement 

Campbell and Jaynes were the first to introduce the term reinstatement into the 

scientific literature, and defined it as partial practice or repetition of an experience that 

maintains its effects over time (Campbell & Jaynes, 1966). They specifically described 

context induced reinstatement using footshock, introducing rats into a double chamber 
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where one side was paired with footshock and the other side was “safe” (Campbell & 

Jaynes, 1966). Rats that had previously experienced footshock in the footshock context 

spent more time in the “safe” side when re-introduced to the environment (Campbell & 

Jaynes, 1966). However, rats that had not been previously trained to associate the “non-

safe” side with footshock, did not spend as much time in the “safe” side (Campbell & 

Jaynes, 1966). We can describe these findings as a strengthening between a conditioned 

stimulus and a conditioned response in previously exposed rats. The stimulus remains 

neutral for rats that have not learned to associate a context to a conditioned response. 

Stimuli can be context (an environment paired with a footshock) or cue (tone, lever, etc.) 

which, depending on the conditioned stimulus, can trigger freezing behavior as a fear 

response or reward seeking behavior in response to foodor drug cues.  

Several brain regions have been associated with reinstatement of drug-seeking 

behavior, including the PL, the NAc core, the ventral tegmental area (VTA), and the 

ventral pallidum (VP) (Fuchs et al., 2004; McFarland & Kalivas, 2001). In a 

baclofen/muscimol inactivation study, it was shown that VTA-PL-NAc core- VP are 

important for reinstatement of cocaine seeking behaviors, however, inactivation of PL-

NAc core did not have any effect on food reinstatement using non-contingent food 

delivery (McFarland & Kalivas, 2001). In this study, rats were food restricted to maintain 

90% free feeding weight, which is typically considered mild food restriction and not 

enough to induce hunger (D’Cunha et al., 2013). It has also been shown that contralateral 

projections of PL to NAc core neurons play a role in cocaine cue-induced reinstatement, 

but not sucrose or food (McFarland et al., 2003). However, PL neurons showed an 

increase in Fos for both sucrose and cocaine reinstatement in free fed rats (James et al., 
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2018). Another study that looked at Fos levels in PL to NAc core during cocaine and 

sucrose cue-induced reinstatement found that there was an increase in Fos for cocaine, 

but not sucrose cues (McGlinchey et al., 2016). This study also maintained rats in ad 

libitum feeding schedule, which raises the question as to how qualitatively comparable 

cocaine and sucrose reward are in terms of motivation when using sucrose or food as a 

reward in satiated rats.  

1.5 Summary 

It is clear that PL/IL have a “going” vs “stopping” role in terms of fear and cocaine 

seeking behaviors (Alvarez-Jaimes et al., 2008; Bossert et al., 2012; Carelli & West, 

2014; Jaramillo et al., 2018; Moorman & Aston-Jones, 2015; Peters et al., 2009; Sierra-

Mercado et al., 2011; Stefanik et al., 2016; Warren et al., 2019). However, in terms of 

food and sucrose reward, results are varied and often reveal contradicting evidence (Chen 

et al., 2013; Eddy et al., 2015; Gutman et al., 2017; Ishikawa et al., 2008a, 2008b; 

McFarland & Kalivas, 2001; McGlinchey et al., 2016; Moorman & Aston-Jones, 2015; 

Rhodes & Killcross, 2007; Rhodes & Killcross, 2004; Sangha et al., 2014; Trask et al., 

2017). When comparing sucrose and cocaine rewards, it has been shown that free fed 

rats, housed in groups of two or three, prefer sugar over cocaine (Lenoir et al., 2007). 

This data suggests that sucrose should be more motivating than cocaine. But, in the 

previously mentioned study, sucrose was more pleasurable than cocaine in animals that 

were pair housed and free fed; this is not the case in animals that are single housed 

(Nicolas et al., 2016). These findings highlight the complexity that encompasses the role 

of the mPFC in controlling reward seeking behaviors. It also highlights the importance to 
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define and assess the hedonic value of the reward that is being used and to specify 

emotional/satiation state of the animal when taking into consideration the results of the 

findings.  

Therefore, the purpose of this dissertation is to characterize the role of the PL, IL, and 

PL projections to NAc in controlling execution and inhibition of sucrose reward seeking 

behaviors. I hypothesize that the role that PL, IL, and PL-NAc play in controlling 

sucrose seeking behaviors is dependent on the hedonic value of the reward and cue. 

In order to test my hypothesis, I developed two projects: 1) Examine the role of PL and 

IL in sucrose seeking FR1, extinction, cue-induced reinstatement, and progressive ratio 

using pharmacological inactivation, and 2) Examine whether PL-NAc plays a different 

role in sucrose FR1, extinction, cue-induced reinstatement, and Fixed-Ratio-5 (FR5) 

depending on levels of satiation using chemogenetic inactivation. We use 15% and 12% 

sucrose, respectively, as a reward because of its highly palatable properties to rats 

(Nissenbaum & Sclafani, 1987).  Our findings support our claim that the mPFC and its 

projections differentially control reward seeking behaviors depending on the task and 

motivational value of the reward. This dissertation bridges the gap in the reward seeking 

literature by providing evidence that the complexity of the mPFC needs to be taken into 

consideration when creating targeted therapies towards substance abuse disorders and 

binge eating disorders.   
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CHAPTER 2 
 

DIFFERENTIAL EFFECTS OF DORSAL AND VENTRAL MEDIAL 

PREFRONTAL CORTEX INACTIVATION DURING NATURAL REWARD 

SEEKING, EXTINCTION, AND CUE-INDUCED REINSTATEMENT 

Caballero, J. P., Scarpa, G. B., Remage-Healey, L., & Moorman, D. E. (2019). 
Differential Effects of Dorsal and Ventral Medial Prefrontal Cortex Inactivation during 
Natural Reward Seeking, Extinction, and Cue-Induced Reinstatement. Eneuro, 6(5), 
ENEURO.0296-19.2019. https://doi.org/10.1523/ENEURO.0296-19.2019 

 

2.1 Abstract 

Rodent dorsal medial prefrontal cortex (mPFC), typically prelimbic cortex, is 

often described as promoting actions such as reward seeking, whereas ventral mPFC, 

typically infralimbic cortex, is thought to promote response inhibition. However, both 

dorsal and ventral mPFC are necessary for both expression and suppression of different 

behaviors, and each region may contribute to different functions depending on the 

specifics of the behavior tested. To better understand the roles of dorsal and ventral 

mPFC in motivated behavior we pharmacologically inactivated each area during operant 

fixed ratio 1 (FR1) seeking for a natural reward (sucrose), extinction, cue-induced 

reinstatement, and progressive ratio sucrose seeking in male Long-Evans rats. Bilateral 

inactivation of dorsal mPFC, but not ventral mPFC increased reward seeking during FR1.  

Inactivation of both dorsal and ventral mPFC decreased seeking during extinction. 

Bilateral inactivation of ventral mPFC, but not dorsal mPFC decreased reward seeking 

during cue-induced reinstatement. No effect of inactivation was found during progressive 
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ratio. Our data contrast sharply with observations seen during drug seeking and fear 

conditioning, indicating that previously established roles of dorsal mPFC = going vs. 

ventral mPFC = stopping are not applicable to all motivated behaviors and/or outcomes. 

Our results indicate that dichotomous functions of dorsal vs. ventral mPFC, if they exist, 

may align better with other models, or may require the development of a new framework 

in which these multifaceted brain areas play different roles in action control depending on 

the behavioral context in which they are engaged. 

2.2 Introduction 

The rodent medial prefrontal cortex (mPFC) plays a key role in numerous 

behaviors and cognitive functions, including action control, emotional regulation, 

attention, memory, and decision-making, among others (Barker et al., 2014; Cassaday et 

al., 2014; Dalley et al., 2004; Eichenbaum, 2017; Euston et al., 2012; Ko, 2017; 

Moorman & Aston-Jones, 2015; Vertes, 2006). Multiple studies have demonstrated that 

dorsal mPFC (typically prelimbic cortex) and ventral mPFC (typically infralimbic cortex) 

have opposing roles that facilitate the execution and inhibition, respectively, of behaviors 

(Gass & Chandler, 2013; Gourley & Taylor, 2016; Peters et al., 2009). These differences 

have been observed during drug seeking, fear-associated behaviors, and certain studies of 

natural reward seeking. For example, dorsal mPFC inactivation reduces reinstatement of 

drugs of abuse such as cocaine or heroin (Fuchs et al., 2005; LaLumiere & Kalivas, 2008; 

McFarland & Kalivas, 2001; McLaughlin & See, 2003). In contrast, ventral mPFC 

inactivation increases cocaine seeking during extinction, and activation of ventral mPFC 

decreases reinstatement of cocaine and other drugs of abuse (LaLumiere & Kalivas, 
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2008; Muller Ewald & LaLumiere, 2018; Peters, Vallone, et al., 2008). In studies of 

auditory fear conditioning and extinction, dorsal mPFC inactivation decreases fear 

expression and ventral mPFC inactivation impairs extinction learning and recall (Maren 

& Quirk, 2004; Peters et al., 2009; Sierra-Mercado et al., 2011). Dorsal and ventral 

mPFC may also have opposing roles with respect to natural reward seeking: inactivation 

of dorsal and ventral mPFC decreases and increases in reward seeking, respectively, in 

certain behavioral paradigms (Eddy et al., 2015; Ishikawa et al., 2008a, 2008b; Rhodes & 

Killcross, 2007, 2004; Sangha et al., 2014; Trask et al., 2017). However, these dorsal vs. 

ventral dichotomies are not always observed, and in some cases opposing functions have 

been described (Moorman et al., 2015). For example, inhibition of dorsal mPFC in 

models of cocaine dependence result in increased punishment-resistant drug seeking 

(Chen et al., 2013). Some studies have found an effect of mPFC manipulation on cocaine, 

but not natural reward seeking (Gutman, Nett, et al., 2017; McFarland & Kalivas, 2001; 

McGlinchey et al., 2016). In a discriminative stimulus-driven reward seeking task, both 

dorsal and ventral mPFC neurons fired during reward seeking and extinction, and 

inactivation of dorsal or ventral mPFC did not result in specific deficits in execution and 

extinction of reward seeking (Moorman & Aston-Jones, 2015). In a variable interval 

sucrose seeking task, dorsal mPFC neurons fired during reward delivery and inactivating 

this region did not alter reward seeking, whereas ventral mPFC neurons fired during 

reward collection and inactivating the ventral mPFC delayed the collection of reward 

(Burgos-Robles et al., 2013). Dorsal mPFC has also been associated with goal directed 

behaviors, attention, or spatial location representation, and ventral mPFC has been 

associated with habitual behaviors and emotional regulation, among multiple other 



 

27 

functions (Cassaday et al., 2014; Dalley et al., 2004; Euston et al., 2012; Gourley & 

Taylor, 2016; Killcross & Coutureau, 2003; K. S. Smith et al., 2012; K. S. Smith & 

Graybiel, 2013). This diversity of results indicates not only that these areas play complex 

roles in shaping behavior, but also that there may be differences depending on the tasks 

used to probe mPFC function. Surprisingly, there has been limited characterization of 

dorsal vs. ventral mPFC contributions to self-initiated instrumental reward seeking and, 

analogous to described models of drug seeking, extinction and reinstatement. Here we 

used pharmacological inactivation to characterize the roles of mPFC subregions during 

these tasks and during a progressive ratio task to assess motivation. We also performed a 

preliminary assessment of whether or not individual mPFC hemispheres differentially 

regulate reward seeking, as seen in other behaviors (Sullivan & Gratton, 2002a, 2002b) 

and we performed physiological and behavioral controls to verify the effects of our 

pharmacological manipulations. Despite observing differential effects of dorsal vs. 

ventral mPFC inactivation on reward seeking, our findings do not align with previous 

observations of go/stop dichotomies.  Instead they indicate that these brain areas likely 

perform multiple functions, befitting their complex integrative nature, and that behavioral 

context, such as the task employed, dictates the contributions of these regions to the 

behaviors studied. 
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2.3 Materials and Methods 

2.3.1 Animals 

Male Long-Evans rats (~9 weeks old and 275-300g upon arrival; Charles River; N 

= 80) were used in behavioral studies (sucrose self-administration N = 40; extinction N = 

16; cue-induced reinstatement progressive ratio N = 16; spontaneous locomotion, N = 8).  

Two additional male Long Evans rats were used for in vitro electrophysiology studies 

(see below for details).  All rats were single-housed on a reversed light cycle (7:00am on 

and 7:00pm off) and allowed free access to food and water. Experiments were conducted 

during active cycle (lights off).  All animal procedures were performed in accordance 

with the University of Massachusetts Amherst animal care committee’s regulations. 

2.3.2 Surgery 

Rats were anesthetized with isoflurane in a closed container (5%) and transferred 

to a stereotaxic frame where they received isoflurane through a nosecone (1.5%-2%).  

Rats were given systemic antibiotic (0.1 mL cefazolin) and analgesic (1mg/kg 

meloxicam), and incisions were treated with local anesthetic (0.3mL, 2% lidocane). 

Bilateral craniotomies were made above the mPFC, and double guide cannulae (26 

gauge, Plastics One, Roanoke, VA) were implanted in either dorsal mPFC (+3.0 mm AP; 

+/- 0.6 mm ML; -2.5 mm DV) or ventral mPFC (+3.0 mm AP; +/-0.6 mm ML; -4.0 mm 

DV). Three screws were implanted to secure cannulae with dental cement. Rats were 

allowed 1 week to recover following surgery.  Rats tested in the spontaneous locomotor 

assay (see below) received comparable surgeries, but bilateral guide cannulae were 
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implanted in the shell/core border of the nucleus accumbens (NAc; +1.5 mm AP; +/-1.2 

mm ML; -5.4 mm DV).  

2.3.3 Baclofen/Muscimol Infusions  

Rats were bilaterally injected with 0.3 µL of either artificial cerebrospinal fluid 

(aCSF) or a 1.0 nmol/0.1 nmol mixture of the GABA-A and -B receptor agonists 

baclofen and muscimol (BM; Tocris Bioscience, Avonmouth, Bristol, UK) dissolved in 

aCSF. Injection cannulae (33 gauge, Plastics One) were inserted bilaterally and protruded 

1mm below the guide cannulae. Solutions were delivered over the course of 1 minute 

using a microinfusion pump (UMP3/Micro 4, World Precision Instruments, Sarasota, 

FL), and the injection cannulae were maintained in place for an extra minute to allow 

diffusion of the fluid. For the NAc locomotion task, injection cannulae extended 2mm 

beyond guide cannulae. Rats were tested at least 5 minutes after the injection cannulae 

were removed.  

2.3.4 Apparatus 

All operant testing was conducted in Med Associates chambers housed in sound 

attenuation cubicles (Med Associates, Fairfax, VT). Nose pokes were located on the left 

and right walls of the operant chambers. Beneath the right nose poke was a well where 

reward (0.1 ml of 15% sucrose solution) was dispensed. Each chamber was illuminated 

by a house light, and a fan provided approximately 60 dBA background noise. The same 

boxes were used for extinction, cue-induced reinstatement, and PR experiments, although 

the inactive nose poke was inaccessible during extinction sessions. For the NAc 
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locomotion experiments, rats were placed in a plexiglass chamber (39.4x 39.4 x 52.1 cm) 

with black colored walls and a stainless-steel grid floor. A digital camcorder (Canon 

VIXIA HF R52) was mounted above the box to record locomotor activity. 

2.3.5 Behavioral test groups 

Three operant test groups were used in these studies.  The first group received 

inactivation during FR1 sucrose seeking.  The second group received inactivation during 

early and late extinction.  The third group received inactivation during cue-induced 

reinstatement and progressive ratio sessions.  The FR1 group received bilateral and 

unilateral inactivation.  Because no major effects were found with unilateral inactivation, 

the extinction and cue-induced reinstatement/progressive ratio groups received only 

bilateral inactivation.  The FR1 group also received inactivation during extinction, cue-

induced reinstatement, and progressive ratio.  In this group, we observed no significant 

effects of manipulation in any of these tests, leading us to consider the possibility that 

multiple infusions during self-administration resulted in long-lasting damage occluding 

any potential effects of regional inactivation.  Thus, separate groups were run for 

extinction and cue-induced reinstatement/progressive ratio sessions.  Details on testing 

are below. 

2.3.6 Sucrose self-administration 

Before surgery, rats were trained to self-administer sucrose on a fixed-ratio 1 

(FR1) schedule. A 10-15 sec house light illumination signaled the time-out, during which 

nose poking in the left (inactive) and right (active) nose pokes were recorded but did not 



 

31 

elicit any consequences. Upon house light offset, nose poking in the right nose poke 

elicited a tone (15 kHz, 74 dBA, 1 sec) and delivery of 0.1 ml 15% sucrose in the well 

beneath the nose poke. The first active poke after the time-out was counted as a “trial 

initiation” to distinguish these pokes from other (e.g., time-out) active nose pokes.  Trials 

in which the rat exited the nose poke and entered the well in less than 1 sec after sucrose 

was dispensed were counted as “rewarded well-entries”. Surgeries were performed after 

rats reached at least 100 rewarded well-entries and met criteria of 80% rewards collected 

within 1 sec of delivery. After recovery, rats were retrained for 3 to 10 days (Figure 

2.1C).  After re-training, rats received a sham infusion in which the injector cannula was 

inserted and left in place for one minute, but nothing was infused. Testing started the 

following day.  Rats were tested on an FR1 schedule for eight days in total after sham 

infusion test day. Sessions lasted one hour or until the rat performed 160 trials. During 

testing, each rat received four separate infusions in counterbalanced order across days: 1) 

bilateral BM, 2) bilateral aCSF, 3) BM in left hemisphere and 4) aCSF in the right 

hemisphere, and aCSF in the right hemisphere and BM in the left hemisphere (Figure 

2.1C). In between infusion days, rats were run on FR1 with no infusion in order to avoid 

potential rebound effects and to maintain task performance.  

2.3.7 Extinction 

A second cohort of rats was trained to reliably respond for sucrose under the FR1 

schedule described above (Figure 2.2A).  After stable FR1 performance (100 rewarded 

well-entries and 80% rewards collected within 1 sec), rats received inactivation tests 

during early and late extinction sessions (Figure 2.2B).  Rats received one of two 
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conditions on the first day of early extinction BM or aCSF). They were then retrained on 

FR1 for two days, and received a second day of early extinction during infusion with the 

opposite drug or vehicle combination. We included two days of FR1 retraining in 

between each early extinction day in order to allow paired analysis of early extinction 

within rats. Rats were then extinguished until they responded with fewer than 20 nose 

pokes per session for two continuous sessions.  On the last two days of extinction (late 

extinction) rats received counterbalanced BM/aCSF treatments as in early extinction.  

2.3.8 Cue-Induced Reinstatement 

A third cohort of rats was trained to reliably respond for sucrose under the FR1 

schedule described above and then extinguished to the point of responding with fewer 

than 20 nose pokes per session for two continuous sessions (Figure 2.3B).  Rats were 

then tested in cue-induced reinstatement sessions. During reinstatement, nose pokes on an 

FR1 schedule elicited a tone but no sucrose delivery. Rats were bilaterally infused with 

either BM or aCSF on two separate reinstatement days in a counterbalanced fashion. 

Reinstatement tests were separated by extinction sessions until rats reached criteria of 

two sessions with fewer than 20 nose pokes.    

2.3.9 Progressive ratio  

After cue-induced reinstatement, the same rats that were tested on reinstatement 

were tested on a progressive ratio (PR) sucrose seeking task. The PR test environment 

was the same as for FR1, but the number of nose pokes required to receive reward 

increased on each trial based on the equation: Response ratio (rounded to the nearest 



 

33 

integer) = [5e (injection number x 0.2)] – 5 (Richardson & Roberts, 1996). The highest reward 

number acquired was considered the breakpoint and was analyzed, along with nose pokes 

and well entries, as a measure of motivation.  Rats were bilaterally infused with BM and 

aCSF prior to testing on separate PR testing days. PR testing lasted either six hours or 

until 60 minutes of no nose pokes occurred. PR test days were separated by two 

consecutive days of FR1 training.  

2.3.10 Spontaneous Locomotion 

In order to verify the behavioral effects of BM, we tested the effect of NAc inactivation 

during a spontaneous locomotor assay.  Methods were based on those described 

previously (Fuchs et al., 2004). A new cohort of rats was infused with either BM or aCSF 

in NAc and placed into a novel box 10 minutes after the infusion (Figure 2.6). Behavior 

was video recorded for one hour and later analyzed using ANY-maze software (ANY-

maze, Wood Dale, IL), in which we divided the chamber in 8 zones and counted numbers 

of line crosses into each zone.  

2.3.11 Whole-Cell Patch-Clamp 

To verify the physiological effects of BM, we recorded the activity of mPFC 

neurons in vitro during bath application of BM.  Seven neurons from two male Long-

Evans rats, approximately 25 days old, were included in this analysis. Rats were deeply 

anesthetized with isoflurane and sacrificed using rapid decapitation, and brains were 

removed and immersed in ice-cold cutting solution (in mM: 250 Glycerol, 26 NaHCO3, 

2.5 KCl, 1.2 NaH2PO4, 11 Glucose, 2.4 CaCl2, and 1.2 MgCl2; 310 mOsms; pH = 7.4 
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when saturated with 95% O2/5% CO2). 300 µm coronal sections were obtained using a 

vibrating blade microtome (VT1000S, Leica Biosystems Inc., Buffalo Grove, IL), and 

were immediately transferred to artificial cerebral spinal fluid (aCSF; 37°C; in mM: 250 

Glycerol, 26 NaHCO3, 2.5 KCl, 1.2 NaH2PO4, 11 Glucose, 2.4 CaCl2, and 1.2 MgCl2; 

310 mOsms; pH = 7.4 when saturated with 95% O2/5% CO2). After 30 minutes under 

these conditions, slices were kept in bubbled aCSF at room temperature for the remainder 

of the experiment.  Glass pipettes were pulled from borosilicate glass tubes (1B150F-4, 

World Precision Instruments, Sarasota, FL) using a two-stage, vertical puller (PC-10, 

Narishige International USA, East Meadow, NY), and were backfilled with internal 

solution (in mM: 110 K-Gluconate, 8 NaCl, 30 KCl, 1 MgCl2, 10 HEPES, 0.2 EGTA, 2 

Mg-ATP, 0.5 GTP; 298 mOsms; pH = 7.4). When filled, pipettes had a tip resistance of 

5-8 MΩ. Once whole-cell configuration was achieved, cells were allowed to stabilize for 

at least 5 minutes before recordings proceeded. Spontaneous post-synaptic currents 

(sPSCs) were recorded in voltage clamp mode from pyramidal neurons held at -70 mV in 

the medial wall of the prefrontal cortex. Recordings were taken before (range: 3-11 min), 

during (range: 3-13 min), and after (range: 4-30 min) application of BM. Series resistance 

was monitored throughout the recordings. Recordings were concatenated offline in Igor 

Pro (Wavemetrics, Lake Oswego, OR) to create one contiguous file, which was then 

exported to Spike2 (Cambridge Electronic Design Limited, Science Park, Cambridge, 

UK) where it was low-pass filtered above 100 Hz. Timestamps were obtained in Spike2 

through waveform-based template matching. For both the pre-treatment and treatment 

segments, the length of each recording was standardized to that of the shortest recording 
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by exclusively including the last 3 minutes, and PSC frequency was tabulated for three 

minute periods before, during, and after BM treatment. 

2.3.12 Histology 

After final test sessions, rats were deeply anesthetized with Ketamine/Xylazine 

(80 mg/kg: 10 mg/kg i.p.), and brains were extracted, stored in 4% paraformaldehyde 

overnight, and transferred to 20% (wt/vol) solution of sucrose/0.1% sodium azide in 

phosphate buffer at 4 °C. Coronal sections 40 µm thick were cut using a cryostat, 

mounted on slides, stained with neutral red and cover slipped. Cannula placements were 

verified by comparing cannula damage to a rat brain atlas (Paxinos & Watson, 2007). 

Two ventral mPFC rats in the FR1 group, one ventral mPFC rat in the extinction group, 

and one dorsal and one ventral mPFC rat in the reinstatement group were excluded from 

analysis due to blocked cannulae or excessive tissue damage. Two rats were excluded 

from the locomotion task because of cannula misplacements. Cannula placements are 

shown in Figures 1-3 for rats in operant testing groups and in Figure 2.6 for rats in 

spontaneous locomotor tests. 

2.3.13 Analysis  

Data were analyzed using Prism (GraphPad Software, La Jolla, CA). Total 

numbers and rates (total number divided by the time taken to complete the task) of active 

and inactive nose pokes and well entries for the FR1 task were calculated and differences 

were assessed using one-way repeated measure (RM) ANOVA followed by planned 

Dunnett’s test for multiple comparisons to compare each treatment to bilateral aCSF. In 
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addition to number of responses, we also measured response rate during FR1 as some rats 

finished the task before the one hour of duration of the task. Total numbers of nose pokes 

and well entries for extinction, cue-induced reinstatement, and progressive ratio data 

were analyzed using one-way ANOVA and paired t-tests. Number of nose pokes during 

FR1, early extinction, late extinction, and cue-induced reinstatement were divided into 

quartiles and data were analyzed using paired two-way ANOVA (treatment x quartile). 

Locomotion was analyzed using a two-way ANOVA comparing an interaction between 

10-minute bins of time and infusion condition. Simple effects for locomotion data, as 

well as patch clamp data were analyzed using a one-way RM ANOVA. Means and 

standard error of the mean were presented as (mean ± SEM). 

2.4 Results 

2.4.1 Dorsal, but not ventral mPFC inactivation increased reward seeking during 

FR1 sucrose self-administration 

All rats were highly motivated to perform the FR1 sucrose seeking task (Figure 2. 

1).  Bilateral inactivation of dorsal mPFC significantly increased nose poking and well 

entry activity (Figure 2.1D, E).  RM ANOVA did not reveal significant differences 

among groups for number of nose pokes (F(3,19) = 2.37, p=0.08). However, planned 

Dunnet’s tests revealed an increase in total number of nose pokes when dorsal mPFC was 

bilaterally inactivated (Figure 2A; p<0.05, Dunnett’s). Bilateral inactivation also 

increased overall rate of nose pokes (F(3,19=2.76, p= 0.050, RM ANOVA across all 

manipulations; p<0.05, Dunnett’s for bilateral BM vs bilateral aCSF ), and in rate of time 
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out nose pokes (F(3,19)=2.31, p=0.086, RM ANOVA; p<0.05 Dunnett’s). Bilateral 

dorsal mPFC inactivation increased number of rewarded well entries, defined as entering 

the well in less than 1 second after sucrose was dispensed, compared to aCSF (Figure 

2.1E; F(3,19)=2.40, p=0.077, RM ANOVA; p<0.05 Dunnett’s). We also observed a 

significant increase in the number of initiated trials (F(3,19=3.13, p=0.033), but 

Dunnett’s tests did not reveal any significant differences compared to bilateral aCSF ( 

p>0.05). Unilateral inactivation of dorsal mPFC had no significant effect on numbers or 

rate of nose pokes or well entries (all p>0.05, Dunnett’s). Ventral mPFC inactivation, 

bilateral or unilateral, had no significant effects on number or rate of nose pokes or well 

entries (Figure 2.1F, G; all p>0.05, RM ANOVA and Dunnett’s). There were also no 

effects of inactivation on latency to initiate trials or collect reward after dorsal or ventral 

mPFC inactivation (all p>0.05, RM ANOVA and Dunnett’s). Inactive nose poke 

responses were low and there were no effects of manipulation on inactive responses 

(range means 1.6 to 5.3, all p>0.05, RM ANOVA and Dunnett’s) 

2.4.2 Dorsal and ventral mPFC inactivation decreased reward seeking during 

extinction 

Fifteen rats received bilateral inactivation of dorsal (n = 8) or ventral (n = 7) 

mPFC during early (days 1 and 2) and late (2 days of <20 nose pokes) extinction sessions 

(Figure 2.2).  There were no effects of inactivation of dorsal or ventral mPFC during 

early extinction.  However, inactivation of dorsal mPFC significantly reduced both nose 

pokes (t(7) = 4.00, p=0.0052) and well entries (t(7) = 2.38, p=0.049) (Figure 2.2E, F).  

Inactivation of ventral mPFC significantly decreased well entries (t(6) = 2.86, p=0.029) 
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(Figure 2.2J) and, although it appeared that nose pokes were reduced (Figure 2.2I), this 

effect was not significant (t(6) = 1.01, p=0.35). 

2.4.3 Ventral, but not dorsal mPFC inactivation decreased reward seeking during 

cue-induced reinstatement 

After aCSF treatment on cue-induced reinstatement tests, rats exhibited a 

significantly increased number of nose pokes compared to the last day of extinction 

(dorsal mPFC: Figure 2.3D; t(6)=3.44, p=0.014; ventral mPFC: Figure 2.3I; t(6)=3.88, 

p=0.008, paired t-test). Bilateral inactivation of ventral mPFC significantly decreased 

total number of reinstatement nose pokes (Figure 2.3I; t(6)=3.05, p=0.023, paired t-test) 

relative to aCSF treatment. There was also a decrease in number of time-out nose pokes 

(Figure 2.3J; t(6)=2.57, p=0.042; paired t-test) and number of initiated trials (Figure 

2.3K; t(6)=3.71, p=0.010). There were no significant effects of bilateral inactivation of 

dorsal mPFC on nose pokes or well entries (Figure 2.3D-G; all p>0.05, paired t-test). 

There were also no significant effects of either dorsal or ventral mPFC inactivation on 

inactive nose pokes (all p>0.05, paired t-test).  Of note the effects on ventral mPFC 

inactivation observed here were directionally consistent with those observed during 

reinstatement in our first test group (see Methods).  Although the effects in that group 

were milder and not significant (likely due to 8 prior cannula infusions), the directional 

consistency across study groups combined with the significant effects observed here 

strongly supports the reliability of these findings.   
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2.4.4 Neither dorsal or ventral mPFC inactivation affected reward seeking during 

progressive ratio sucrose self-administration 

Rats demonstrated reliably high levels of sucrose seeking during progressive ratio 

as measured by nose pokes, well entries, and breakpoints (Figure 2.4).  There was no 

effect of either dorsal or ventral mPFC inactivation on numbers of total active nose 

pokes, initiated trials, time-out nose pokes, well entries, breakpoint values, or inactive 

nose pokes (all p>0.05, paired t-tests). 

2.4.5 Within-session analysis of inactivation effects 

One possible outcome of inactivation may have been a transient effect during part 

of the session that was not overall apparent by comparing total numbers of nose pokes 

(e.g., effects only early or late during a session).  To address this, we divided sessions 

into four quartiles and compared nose poking during BM vs. aCSF sessions using a 

repeated measures two-factor ANOVA (treatment x quartile).  The results of these 

analyses are shown in Figure 2.5 for FR1, early and late extinction, and cue-induced 

reinstatement.  Analyses were performed for progressive ratio as well, but there were no 

significant effects either overall or within sessions.  As expected there were overall 

significant main effects of treatment for dorsal mPFC inactivation during FR1 (F(1, 

76)=7.71, p=0.007) and late extinction (F(1, 28)=9.27, p=0.005).  Post-hoc multiple 

comparisons (Sidak’s MCT) revealed significant differences during the second quartile 

during FR1 (t=3.11, p=0.011) and during the first quartile during late extinction (t=2.97, 

p=0.024).  Despite a significant main effect of treatment after ventral mPFC inactivation 

during cue-induced reinstatement (F(1, 24)=5.22, p=0.03), there were no significant 
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treatment effects in any quartile, indicating consistent small reductions throughout the 

entire session.  There were no effects of treatment on nose poking behavior in any of the 

other analyzed sessions and no interaction effects. 

2.4.6 Baclofen/muscimol infusions into the NAc disrupted spontaneous locomotion 

Because mPFC inactivation results were unexpected compared to previous 

studies, we verified the effect of our BM infusions by inactivating NAc during 

spontaneous locomotion - a reliable behavioral assay that is sensitive to BM inactivation 

of NAc (Fuchs et al., 2004; Stopper and Floresco, 2011). We infused BM or aCSF 

bilaterally in NAc (Figure 2.6A) and measured locomotor activity in 10 minute bins 

(Figure 2.6B). As expected, there was a statistically significant interaction between the 

effects of drug and time on locomotion, (Figure 2.6B; F (5, 24) = 3.35, p =0.020; two-

way ANOVA). Locomotion was initially elevated and decreased over time in aCSF-

infused rats (F(5,2)=6.99, p=0.005; one-way ANOVA). BM-infused rats showed 

decreased locomotion during the initial stages of testing relative to aCSF and did not 

show a significant difference in locomotion over time (F(5,2)=0.22, p=0.947; one-way 

ANOVA).  These results are consistent with previous findings (Fuchs et al., 2004; 

Stopper & Floresco, 2011), and confirmed that differences observed between our mPFC 

inactivation effects and those described in previous studies were not due to lack of 

efficacy of our BM infusions. 
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2.4.7 Baclofen/Muscimol decreased sPSCs in rat prefrontal neurons 

To further validate the inhibitory influence of our BM infusions at the specific 

concentrations given, we measured the effects of BM application on mPFC neuronal 

activity in vitro. BM bath application significantly decreased spontaneous activity in 

prefrontal neurons (Figure 2.6C, n = 7 neurons from 2 rats), as demonstrated by a 

statistically significant suppressive effect of BM on sPSCs (5b; F(2,6)=5.6, p=0.0189; 

one-way ANOVA). Post hoc analyses revealed a significant decrease in number of sPSCs 

during BM and during washout (Figure 2.6D; p<0.05; Tukey’s Multiple Comparison 

Test).  These results confirm the reliably inhibitory effect on mPFC neurons of the BM 

cocktail concentration used in our behavioral studies.  

2.5 Discussion 

Previous work has led to the hypothesis that dorsal and ventral mPFC play 

opposing roles in driving behavior, particularly in the context of action execution vs. 

suppression (Barker et al., 2014; Gass & Chandler, 2013; Gourley & Taylor, 2016; 

Muller Ewald & LaLumiere, 2018; Peters et al., 2009). The reasons for this distinction 

are relatively clear, as described in multiple studies referenced in detail in (Gourley & 

Taylor, 2016; Moorman et al., 2015; Muller Ewald & LaLumiere, 2018; Peters et al., 

2009).  For example, manipulation of dorsal mPFC frequently disrupts behavioral 

execution such as drug/reward seeking or expression of conditioned fear (Eddy et al., 

2015; Ishikawa et al., 2008b; McFarland et al., 2004; Sierra-Mercado et al., 2011; Trask 

et al., 2017). In contrast, ventral mPFC manipulation has been shown to regulate 

behavioral inhibition in certain circumstances, such as during extinction (Augur et al., 
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2016; Ishikawa et al., 2008b; Muller Ewald & LaLumiere, 2018; Peters, Vallone, et al., 

2008; Peters & De Vries, 2013; Sierra-Mercado et al., 2011). However, a number of 

studies have called the ubiquity of this dichotomy into question (Bossert et al., 2011; 

Chen et al., 2013; Gutman, Ewald, et al., 2017; Jonkman et al., 2009; Martín-García et 

al., 2014; McFarland et al., 2003; McGlinchey et al., 2016; Moorman et al., 2015; 

Moorman & Aston-Jones, 2015; Willcocks & McNally, 2013), prompting us to perform 

the experiments described here. 

Our results do not support a clear dichotomy for dorsal vs. ventral mPFC during 

natural reward seeking.  Based on the studies described above, we expected that 

inactivation of dorsal mPFC would decrease sucrose seeking and have no effect on 

extinction, and that ventral mPFC inactivation would increase sucrose seeking and induce 

cue-induced reinstatement during extinction.  Instead, dorsal mPFC inactivation 

increased sucrose seeking during FR1 self-administration and had no effect during cue-

induced reinstatement. Ventral mPFC inactivation decreased sucrose seeking during cue-

induced reinstatement and had no effect during FR1.  Inactivation of both subregions 

decreased responding during late extinction, as shown by significantly reduced nose 

pokes and well-entries after dorsal mPFC inactivation and significantly reduced well 

entries after ventral mPFC inactivation. Inhibition of neither region influenced reward 

seeking under a progressive ratio schedule, again in line with a lack of general regulation 

of action execution or suppression.  Together these results make a strong case against a 

universal dichotomous role for dorsal vs. ventral mPFC in action execution vs. inhibition. 

Because our results were somewhat surprising, we performed controls to verify 

that our inactivations were effective.  NAc inactivation with BM decreased spontaneous 
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locomotion, in line with previous work (Fuchs et al., 2004; Stopper & Floresco, 2011), 

and bath application of BM inhibited spontaneous activity in rat mPFC neurons.  Both 

findings support the efficacy of our BM treatments.  We conclude that the effects 

observed did in fact result from mPFC inactivation during behavior. 

The absence of absolute differences is in line with some previous work examining 

dorsal vs. ventral mPFC in execution vs. suppression of reward seeking, as described 

above.  However, in many of these studies, the tasks employed used slightly more 

complex rules to guide behavior such as the use of a discriminative stimulus (Gutman, 

Ewald, et al., 2017; Ishikawa et al., 2008b; Moorman & Aston-Jones, 2015). The goal of 

this study was to attempt to isolate self-initiated action execution or inhibition to identify 

mPFC subregion contributions, in line with those seen in studies of drug seeking.  If, in 

fact, dorsal and ventral mPFC play opposing roles in the regulation of action execution 

and inhibition, this should have been clearly demonstrable under the behavioral 

conditions in the current study.  Instead, our data argue for an influence of context, in this 

case the behavioral task performed, on mPFC regulation of behavior, as reported 

previously (McGlinchey et al., 2016; Moorman & Aston-Jones, 2015). Similarly complex 

results have been observed in Pavlovian contexts (Mendoza et al., 2015; Sangha et al., 

2014). 

An additional finding was an overall lack of effect of unilateral inactivation on 

sucrose seeking.  Previous studies have shown differential contributions of left vs. right 

mPFC in stress-related paradigms (Sullivan & Gratton, 2002b), leading us to consider the 

possibility that left or right mPFC may play a disproportionate role in reward seeking.  

Although the only significant effect during FR1 was seen after bilateral dorsal mPFC 
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inactivation, right hemisphere dorsal mPFC inhibition produced qualitatively similar 

results in some cases, though the effects were not significant in planned comparisons.  

Accordingly, we did not pursue unilateral inactivations in cue-induced reinstatement or 

progressive ratio.  Despite our overall lack of lateralization findings, a study more 

directly designed to explore this question may be worth undertaking in future work. 

One possible distinction between our results and some previous studies is the type 

of behavior used to evaluate mPFC control.  It might not be surprising that studies using 

different behaviors may result in different effects of mPFC inactivation.  This is most 

obvious for fear conditioning studies, where the behavioral readout is actually freezing – 

a combination of both an emitted behavior (based on a decision to freeze) and a lack of 

action (freezing), in some cases combined with a suppression of food self-administration 

(Giustino & Maren, 2015; Sierra-Mercado et al., 2011). A more subtle distinction is 

between the use of nose poke operanda, as employed here and in some studies (Willcocks 

& McNally, 2013), and the use of lever presses in other previous studies (Ishikawa et al., 

2008b; Peters, Vallone, et al., 2008). Although this may not be a critical determinant, 

there are differential learning rates between nose poke and lever presses (Schindler et al., 

1993), and different neural substrates underlying the two behaviors (Bassareo et al., 

2015). This influence of action type on mPFC contributions to behavior is currently under 

investigation in our laboratory. 

The most salient differences exist between our findings and previous studies of 

cocaine self-administration, extinction, and reinstatement.  Multiple studies have shown a 

prominent role for dorsal mPFC in driving cue-induced reinstatement of cocaine seeking 

as well as a critical role for ventral mPFC suppressing cocaine seeking after extinction 
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learning (Fuchs et al., 2005; Gass & Chandler, 2013; Gourley & Taylor, 2016; 

LaLumiere & Kalivas, 2008; McFarland & Kalivas, 2001; McLaughlin & See, 2003; 

Moorman et al., 2015; Muller Ewald & LaLumiere, 2018; Peters et al., 2009; Peters, 

Vallone, et al., 2008), though see counterexamples such as (Chen et al., 2013) and others 

described in (Moorman et al., 2015). A fundamental and yet-unanswered question is why 

these reliable roles for dorsal and ventral mPFC in regulation of cocaine-associated 

actions are not observed in sucrose seeking, as described here, or in other types of reward 

seeking (Gutman, Ewald, et al., 2017; McFarland & Kalivas, 2001; McGlinchey et al., 

2016). One possibility might be the nature of the reinforcer.  Cocaine may be a more 

salient reinforcer than sucrose, thereby differentially engaging mPFC subregions based 

on some motivational intensity gradient, though see (Lenoir et al., 2007). Another 

possible explanation is that repeated cocaine induces neuroplastic changes in the mPFC 

that results in differential regulation of seeking behavior relative to natural rewards 

(McFarland et al., 2003; Muñoz-Cuevas et al., 2013; Radley et al., 2015; Robinson et al., 

2001; Robinson & Kolb, 1999; Siemsen et al., 2019). Cocaine also induces both 

appetitive and aversive behaviors (Ettenberg, 2004), whereas there are fewer aversive 

components to sucrose.  mPFC subregions may regulate behaviors associated with a 

mixed-valence pharmacological stimulus differently than a purely appetitive reinforcer.  

Another potential explanation may be the way that reward is delivered: cocaine is 

typically self-administered intravenously whereas sucrose must be collected following a 

correct operant response.  These and other potential explanations are currently under 

investigation in our laboratory, motivated by the very clear differences in mPFC 

contributions to ostensibly the same behavior related to different outcomes. 
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Rodent mPFC subregions play a host of functions instead of or in addition to 

action expression vs. inhibition (Cassaday et al., 2014; Dalley et al., 2004; Euston et al., 

2012; Kesner & Churchwell, 2011).  In some cases, dorsal and ventral mPFC functions 

have been shown to be dichotomous.  For example, when comparing goal-directed 

(outcome sensitive) vs. habitual (outcome insensitive) reward seeking, there appear to be 

differences whereby dorsal mPFC preferentially regulates goal-directed and ventral 

mPFC controls habitual behaviors (Barker et al., 2014, 2015; Killcross & Coutureau, 

2003; K. S. Smith et al., 2012; R. J. Smith & Laiks, 2018). Because we did not explicitly 

test goal-directed vs. habitual behavior using, e.g., reward devaluation, we cannot make 

strong claims about our effects in this framework, though this might be a useful avenue 

for future studies integrating mPFC functions across behavioral paradigms.   

Despite not observing clear dichotomous dorsal and ventral mPFC functions, we 

did see selective effects of inactivation.  Bilateral dorsal mPFC inactivation increased 

FR1 sucrose seeking.  This finding is aligned with those demonstrating a response-

suppression role for dorsal mPFC, such as is observed during punishment-associated 

cocaine seeking (Chen et al., 2013).  It is also in line with previous work demonstrating 

increased operant behavior following dorsal mPFC inactivation (Jonkman et al., 2009) 

and other studies showing dorsal mPFC involvement in response inhibition in other tasks  

(Bari & Robbins, 2013; Hardung et al., 2017; MacLeod & Bucci, 2010; Meyer & Bucci, 

2014; Narayanan et al., 2006; Ragozzino, 2007). Although in our study there was no need 

for dorsal mPFC to suppress behavior, reward-associated decisions, even without 

challenges such as punishment, may require balance between response inhibition driven 

by the effort associated with reward seeking vs. the excitatory drive to acquire a reward.  
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Here dorsal mPFC inactivation increased both rewarded and non-rewarded nose pokes.  

On the one hand, this suggests that dorsal mPFC inactivation resulted in a general release 

on any inhibition of behavior, or “taking the brakes off.”  However, it is worth noting that 

these increases were not seen for inactive nose pokes, during other non-rewarded tasks 

(extinction, reinstatement), or even during progressive ratio testing, in which rewards 

were available.  In fact, dorsal mPFC inactivation decreased nose pokes in late extinction, 

when reward was not available.  These results underscore the fact that behavioral context 

and task details influence contributions of mPFC to behavior – in some cases dorsal 

mPFC plays a response-invigorating role whereas in others it is suppressive. 

Similarly, ventral mPFC is frequently associated with behavior suppression, 

particularly during extinction (Gourley & Taylor, 2016; Maren & Quirk, 2004; Muller 

Ewald & LaLumiere, 2018; Peters et al., 2009, 2009; Sierra-Mercado et al., 2011). In our 

study, ventral mPFC inactivation decreased cue-induced reinstatement, in line with 

previous studies of reinstatement for heroin (Bossert et al., 2011, 2012; Rogers et al., 

2008) and methamphetamine (Rocha & Kalivas, 2010) seeking, but in contrast with 

previous studies of cocaine seeking and fear conditioning  (LaLumiere & Kalivas, 2008; 

Muller & LaLumiere, 2018; Peters et al., 2008). Ventral mPFC inactivation also had little 

inhibitory effect on alcohol seeking and did not counteract extinction (Willcocks & 

McNally, 2013). It is unclear what differentiates ventral mPFC contributions to sucrose, 

alcohol, methamphetamine, and heroin reinstatement vs. extinction of cocaine and fear 

conditioning, though there are obviously substantial differences in neural encoding of 

different drugs/rewards/punishment, type of reinstatement (e.g., cue vs. context), or other 

as-yet undefined factors (Badiani et al., 2011; Peters et al., 2013). 
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In summary, our results make it clear that dorsal and ventral mPFC do not 

universally exhibit opposing control over behavior.  Instead our findings should be 

integrated with previous work in which dichotomies were observed, along with other 

studies involving, e.g., response inhibition, in order to identify how different behavioral 

tasks differentially engage mPFC subregions. We also note that an emphasis on neuronal 

ensembles and networks should be emphasized in future work (Bossert et al., 2011; 

Gabbott et al., 2005; George & Hope, 2017; Kim et al., 2017; Moorman et al., 2015; 

Pfarr et al., 2015; Warren et al., 2016). It is possible that different findings across studies 

may result from differentially targeting subregional circuits (e.g., mPFC projections to 

NAc or amygdala).  The use of circuit specific techniques and other precision-enhancing 

technologies, combined with a rigorous assessment of behavioral details, has the potential 

to significantly advance our understanding of mPFC function, including its contributions 

to complex behavior and mental diseases. 
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2.6 Figures 

 
Figure 2.1. Cannula placements, test design, and FR1 data.  

(A) Cannula placements for FR1 cohort. Dorsal mPFC cannula placements (triangles) 
and ventral mPFC cannula placements (circles). Numbers are A/P distance from bregma. 
(B) Histology of coronal slices stained with neutral red showing cannula tracks for dorsal 
(top) and ventral (bottom) mPFC.  (C) Timeline for FR1 testing. Rats were retrained for 3 
to 10 days after surgery.  They then received sham infusions followed by 8 days of FR1 
tests. Rats received one of four infusions every other day of testing: bilateral inactivation, 
bilateral aCSF, unilateral left, or right inactivation, counterbalanced across rats. All rats 
received all four conditions. aCSF (stripes) = control infusion, BI (solid) = bilateral 
inactivation, LI (dots) = inactivation of left hemisphere, RI (checkers) = inactivation of 
right hemisphere. (D, F) total number of nose pokes, time-out nose pokes, and initiated 
trials.  (E, G) total number of well entries, non-rewarded well entries, and rewarded well 
entries. (D, E) There was a significant increase in total number of nose pokes and total 
number of rewarded well entries when the dorsal mPFC was bilaterally inactivated (*). 
(F, G) Ventral mPFC inactivation did not affect nose poking or well entries. *p<0.05, 
Dunnett’s test for planned multiple comparison.  
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Figure 2.2 Cannula placements, test design, and extinction data for extinction 

cohort.  
(A) Dorsal mPFC cannula placements (triangles) and ventral mPFC cannula placements 
(circles). (B) Timeline for extinction task. Extinction rats were trained on FR1 but only 
received bilateral infusions during early and late extinction. (C, G) There was a 
significant decrease in number of nose pokes between last day of FR1 and aCSF 
treatment during extinction (#). (C, D; G, H) Bilateral inactivation of dorsal or ventral 
mPFC did not significantly affect nose pokes or well entries during early extinction. (E, 
F) Inactivation of dorsal mPFC during late extinction decreased nose pokes and well 
entries (*). (I) There was no effect of ventral mPFC inactivation for number of nose 
pokes during late extinction. (J) However, there was a decrease in number of well entries 
during ventral mPFC inactivation during late extinction (*). # and *p<0.05, paired t-test.   
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Figure 2.3. Cannula placements, test design, and reinstatement data for 

reinstatement cohort.  
(A) Dorsal mPFC cannula placements (triangles) and ventral mPFC cannula placements 
(circles). (B) Timeline for reinstatement task. Reinstatement rats were trained on FR1 and 
extinction but only received bilateral infusion during reinstatement. (C, H) Number of 
nose pokes during FR1 session the day before extinction training. (D, I) There was a 
significant increase in nose pokes on aCSF reinstatement infusion day compared to last 
day of extinction (#). (D-G) Bilateral inactivation of dorsal mPFC did not significantly 
affect nose pokes, time-out nose pokes, initiated trials, or well entries. (I-L) Bilateral 
ventral mPFC inactivation significantly decreased total number of nose pokes, time out 
nose pokes, and initiated trials (*), but not rewarded well entries. # and *p<0.05, paired t-
test.   
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Figure 2.4. Progressive ratio data.  

No significant effects of dorsal mPFC (A-C) or ventral mPFC (D-F) inactivation on nose 
pokes, well entries, or break point.   
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Figure 2.5. Average number of nose pokes per quartile for FR1, early extinction, 

late extinction, cue-induced reinstatement, and progressive ratio.   
Dorsal mPFC inactivation increased FR1 nose pokes, notably in the first half of the 
session.  Dorsal mPFC inactivation decreased late extinction nose pokes, primarily early 
in the session.   Ventral mPFC inactivation decreased cue-induced reinstatement nose 
pokes, but the effect was distributed across the session.  *p<0.05, **p<0.01, two factor 
ANOVA (treatment x quartile); #=p<0.05, Sidak’s MCT. 
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Figure 2.6. Behavioral and physiological verification of BM efficacy.   

BM infusion in NAc disrupted spontaneous locomotion, and in vitro BM infusion 
decreased sPSCs in mPFC neurons. (A) Cannula placements for locomotion study. (B) 
aCSF-infused rats decreased locomotion over time, but this effect was not observed for 
rats receiving BM infusions *p<0.05, RM ANOVA. (C) sPSCs of one representative 
neuron. (D) Mean sPSC frequency before BM, after BM, and after washout. *p<0.05, 
Tukey’s Multiple Comparison Test. (E) Example recorded rat mPFC neuron stained with 
Alexa Fluor 488. 
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CHAPTER 3 

EFFECTS OF INACTIVATION OF PRELIMBIC EFFERENT PROJECTIONS 

TO ACCUMBENS DIFFER ON MOTIVATED SUCROSE SEEKING 

BEHAVIORS IN FOOD RESTRICTED AND FREE FED RATS  

 

3.1 Abstract 

The prelimbic (PL) subregion of the medial prefrontal cortex in the rodent is 

involved in highly-motivated behaviors such as reward-seeking for drugs. However, the 

role of PL in mediating the seeking behavior to natural rewards, like sucrose, is unclear. 

Similarly, the nucleus accumbens (NAc), mediates reward-seeking behaviors of drugs, 

but little is known about its role in sucrose reward seeking. Thus, it is likely that PL and 

NAc interact to mediate highly-motivated behaviors. For this reason, we hypothesized 

that PL-NAc circuit controls motivated behaviors to sucrose rewards.  Furthermore, we 

hypothesized that the level of motivation is dependent on state of satiation. To test this 

hypothesis, we used chemogentic inactivation of PL-NAc neurons during two hunger 

states: 1) low-motivation (free fed animals); 2) high motivation (food-restricted animals). 

We trained and tested them using sucrose seeking operant fixed ratio 1 (FR1), extinction, 

cue-induced reinstatement, and fixed ratio 5 (FR5). Consistent with previous findings, we 

found that food restricted rats performed more reward seeking behaviors compared to 

free fed rats. We saw an increase in extinction and cue-induced reinstatement inactive 

lever presses when inactivating PL-NAc in hungry rats. When inactivating PL-NAc in 

free fed rats, we found an increase in number of trials for cue-induced reinstatement. Our 
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data reveals that hunger or satiation impacts the role that the PL-NAc circuit plays in 

motivated behaviors. Our findings suggest that PL-NAc mediate the ability to carry out 

goal-directed reward seeking behaviors when rats are hungry, specifically by suppressing 

behaviors that are non-conducive to reward. In free fed rats, our data suggest that PL-

NAc facilitates cue-induced reinstatement learning.  

3.2 Introduction 

Previous research has demonstrated that the prelimbic (PL) medial prefrontal 

cortex (mPFC) drives reward seeking, as observed during cocaine and heroin seeking 

(Euston et al., 2012; Peters, LaLumiere, et al., 2008). Prior studies have shown that the 

nucleus accumbens (NAc) mediates the appropriate behavioral responses to reward 

predictive cues and plays an important role in mediating drug seeking reinstatement 

behaviors (Augur et al., 2016; Mogenson et al., 1980; Stefanik et al., 2016). It is 

important to note that the PL projects to several areas throughout the brain, heavily 

projecting to nucleus accumbens core (NAcC) (Vertes, 2004). 

However, the role PL and NAc plays in natural reward seeking behaviors is not as 

clearly described and often reveals contradicting evidence. PL inactivation decreases 

sucrose reward seeking during FR1 and facilitates extinction recall (Caballero et al., 

2019). In a PL-NAcC pharmacological disconnection study, blocking dopamine signaling 

in the PL and glutamate signaling in the contralateral NAcC in free-fed rats reduced cue-

induced reinstatement of cocaine, but not sucrose (McGlinchey et al., 2016). Both the PL 

and the NAc play a critical role in the acquisition of response-outcome associations for 

instrumental learning and goal-directed action (Hart et al., 2014). The NAcC is an 
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important area regarding goal-directed behaviors, and is often framed as the ‘limbic-

motor interface’ because it receives projections from limbic structures and projects 

heavily to motor structures (Hart et al., 2014). When NAcC lesioned rats were trained on 

a devaluation task using levers, they reduced overall responding (i.e. both active and 

inactive levers), instead of only to the active lever which delivered food or sucrose 

reward (Corbit et al., 2001). Additionally, ablating PL to NAcC projecting neurons 

prevented cue-induced reinstatement of alcohol (Keistler et al., 2017).  

One possible explanation for the differential function of PL and PL-NAcC in 

guiding reward seeking behaviors for drug and natural reward could be the motivational 

and/or hedonic value of the reward. In a Pavlovian-to-instrumental transfer task, rats that 

had been food restricted for 18 hours lever pressed more, approached a food port more, 

and had a higher concentration of dopamine in the NAcC in response to a sucrose cue, 

compared to rats that were not food restricted (Aitken et al., 2016). To date, little is 

known about how PL-NAc regulates sucrose reward seeking behaviors in food restricted, 

highly motivated rats. The present study aims to test if PL-NAc controls reward seeking 

behaviors differently in food restricted versus free fed rats. We hypothesize that PL-NAc 

drives motivated sucrose seeking behaviors differently, depending on the state of hunger 

or satiation. Therefore, we predicted that if we silence PL-NAc in food restricted rats, we 

would see a decrease in sucrose seeking behaviors, similar to the effects seen in the drug 

seeking literature. However, an alternative hypothesis is that silencing the PL-NAc in 

both food restricted and free fed rats would increase sucrose seeking behaviors by 

potentially blocking the action-outcome association during cue-induced reinstatement. To 

test our hypothesis, we used retrograde Gi-DREADDs to target and silence PL 
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projections to NAc while rats were trained and tested on a sucrose seeking fixed ratio 1 

(FR1) task, extinction, cue-induced reinstatement, and fixed ratio 5 (FR5). As expected, 

we found that food restricted rats sought the reward more, and faster compared to free fed 

rats. We also found that our alternate hypothesis was true; when inactivating PL-NAc 

there was an increase in inactive lever presses for both extinction and cue-induced 

reinstatement testing in food restricted rats; which is a seeking behavior. However, on the 

first day of cue-induced reinstatement testing, we observed that there was an increase in 

number of trials for free fed rats, and not food restricted rats. Additionally, we found that 

DREADD viral spread positively correlated with extinction, cue-induced reinstatement, 

and FR5 reward seeking behaviors. Our findings suggest that PL-NAc is on-line when 

rats are hungry and the sucrose reward is uncertain, allowing the rats to inhibit the 

behavior that least results in the reward. The PL-NAc also seems to play a role in making 

the new association between the previously learned sucrose-cue and the new outcome of 

not receiving a reward. Specifically, in rats that are motivated to obtain a reward because 

of its appetitive nature and not motivated by the need associated with hunger.  

3.3 Methods 

3.3.1 Animals 

58 male Long-Evans rats (~9 weeks old and 275-300g upon arrival; Charles 

River) were used in behavioral studies.  Of these 58, 16 were used as food restricted PL-

NAcC inactivation studies, 8 were used as food restricted td-Tomato viral controls, and 

14 were used in free fed PL-NAcC inactivation studies. The remaining 20 rats were used 
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in food restricted vs free fed behavioral studies. All rats were single-housed on a reversed 

light cycle (7:00 am on and 7:00pm off). Free fed rats were allowed free access to food 

and water and food restricted rats were fed for one hour a day. Experiments were 

conducted during active cycle (lights off). All animal procedures were performed in 

accordance with the University of Massachusetts Amherst local ethics committee 

(IACUC) and National Institute of Health guidelines.  

3.3.2 Surgery 

Rats were anesthetized with isoflurane in a closed container (5%) and transferred 

to a stereotaxic frame where they received isoflurane through a nose cone (1.5%-

2%).  Rats were given systemic antibiotic (0.1 mL cefazolin) and analgesic (1mg/kg 

meloxicam), and incisions were treated with local anesthetic (0.3mL, 2% lidocane). 

Coordinates for bilateral craniotomies in PL were +3.0 mm AP; +/- 0.6 mm ML; -3.5 mm 

DV and for NAc were +1.4 AP, +-1.4 ML, -7.5 DV. For experimental surgeries, .3 µL of 

AAV8-hSyn-DIO-hM4Di(Gi)-mCherry was infused into the PL and .5 µL of retrograde 

AAV-pm-Syn1-EBFP-Cre or pENN.AAV.hSyn.Cre.WPRE.hGH was infused into the 

NAc. For control surgeries, .3 µL of AAV9-CAG-FLEX-tdTomato-WPRE or AAV9-

FLEX-tdTomato was infused into the PL.  Both viruses were infused at a rate of .1 

µL/min and allowed an extra 5 minutes for the virus to diffuse. Rats were allowed 1 week 

to recover following surgery and waited 4 weeks in order for the virus to express in the 

targeted neurons, which will allow us to later infuse a Clozapine-N-Oxide (CNO) ligand 

that binds to the receptors the virus expressed. The DREADD viruses we infused express 
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mCherry or tdTomatoe, which are red fluorescent proteins that we later amplified with 

immunohistochemistry to confirm virus expression.  

3.3. 3 Apparatus 

All operant testing was conducted in Med Associates chambers housed in sound 

attenuation cubicles (Med Associates, Fairfax, VT). Two levers were placed on one wall 

of the operant chamber (one on the left side and one on the right side) with lights above 

each lever. In between the two levers was a receptacle where reward (0.12 ml of 12% 

sucrose solution) was dispensed. Each chamber was illuminated by a house light, and a 

fan provided approximately 60 dBA background noise. The same boxes were used for 

extinction, cue-induced reinstatement, and FR-5 experiments. 

3.3.4 Food restriction 

Half of the rats were freely fed water and food. The other half had free access to 

water and were food restricted for 18 hours before the behavioral tasks. Rats were fed 

two hours after completing the behavioral tasks and had one hour to eat. Left-over food 

was removed after the hour was done (Aitken, 2016). 

3.3. 5 Fixed-ratio 1: reward seeking requiring low motivation 

Rats were trained to seek sucrose reward that requires low motivation. To achieve 

this, rats were trained to self-administer sucrose on a fixed-ratio 1 schedule 4 weeks after 

the surgery was performed. A 20 sec house light illumination signaled the time-out, 

during which pressing the left or right lever (one active and one inactive) were recorded 
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but did not result in any consequence. Upon house light offset, pressing the active lever 

elicited a tone (15 kHz, 74 dBA), a yellow light above the active lever, and the delivery 

of .12mL of 12% sucrose in a receptacle between the active and inactive lever. Rats were 

randomly assigned to a box where either the left or right lever was assigned as active and 

the opposite lever (right or left) was assigned as inactive. Rats were trained and tested in 

the same box with the same active lever throughout the paradigm. The first active lever 

press after the time-out (when the house light turned turned off) was counted as a “trial 

initiation”. Trials in which the rat entered the receptacle in less than 1 sec after sucrose 

was dispensed were counted as “rewarded well-entries”. In order to compare our results 

more closely to the cocaine literature, we followed a commonly used operant 

conditioning training and testing parading (McGlinchey et al., 2016). Rats were trained 

for 10 days of meeting criteria of over 100 trials in two hours (Figure 3.1). Once criteria 

were met, rats were tested 20 minutes after intraperitoneal injections of 1 ml/kg of body 

weight with either CNO (3mg/ml) or vehicle (DMSO in saline). There was one day of 

washout in between testing days, as well as after their last testing day, where rats did not 

receive any infusion in order to avoid potential rebound effects from CNO or vehicle 

infusion (Figure 3.1).   

3.3.6 Extinction of lever presses as an index of motivation levels 

After FR1 testing, rats were placed in the same context as FR1, but now lever 

pressing the active or inactive lever did not elicit any cue. Rats were tested once criteria 

of two consecutive days of less than 25 lever presses in two hours was met (Figure 3.1). 

Seven rats (four food restricted, three free fed) did not meet criteria and were tested after 
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four to 19 days of training. Training was halted for those rats in order to complete the 

remaining experiments before UMass COVID lockdown and data for those rats was 

excluded from extinction training analysis. Rats were injected with CNO or vehicle on 

their first day of testing, then they had another washout day where rats did not receive 

any injection, and then another day of testing where they were injected with the opposite 

Vehicle or CNO from the first day (Figure 3.1). Then rats were run on an extra extinction 

session as a washout, before advancing to cue-induced reinstatement testing (Figure 3.1). 

3.3.7 Cue-Induced Reinstatement by the cue to assess motivation levels 

After extinction, rats were placed in the same context as in both FR1 and 

extinction. However, lever pressing on the active lever elicited a tone cue and a light 

above the well for 2 sec but no reward was delivered into the well. Rats were tested on 

cue-induced reinstatement with two days of washout in between (Figure 3.1). Rats 

received either CNO or vehicle on their first day of testing, then they received two days 

of extinction and then followed by a second day of cue-induced reinstatement testing 

with the opposite injection they received on the first day of testing (Figure 3.1). 

3.3.8 Fixed-ratio 5: reward seeking requiring high motivation 

Rats were trained to seek sucrose reward that requires high motivation. Once rats 

were done with cue-induced reinstatement testing, rats were re-trained on FR1. Once 

meeting criteria of at least 100 trials in 2 hours, they were trained on FR2 on the 

following day, once they met criteria for FR2, they were trained on FR3 and so on until 

reaching FR5 (Figure 3.1). Rats were run on FR5 for two days of meeting criteria and 
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then received CNO or vehicle on their first day of testing, then were run on a day of FR5 

with no infusion, and then tested on the opposite injection on the next day of FR5 testing 

(Figure 3.1).  

3.3.9 Immunohistochemistry to confirm chemogenetic control and evaluate activity 

levels in brain regions involved in motivation.  

On their second and final day of FR5 testing, rats were deeply anesthetized with 

Ketamine/Xylazine (80 mg/kg: 10 mg/kg i.p.), and perfused transcardially with 0.9% 

saline and 10% formalin. Brains were extracted, stored in 10% formalin overnight, and 

transferred to 20% (wt/vol) solution of sucrose/0.1% sodium azide in phosphate buffer at 

4 °C. Brains were frozen with isopentane and sliced into 40 micron sections with a 

cryostat (Leica CM3050 S) and kept in PBS azide. Slices were washed in PBS three 

times for five minutes and then blocked in immuno buffer: 3% Normal Donkey Serum 

(Jackson ImmunoResearch, West Grove, PA) in PBS for 60 minutes. Sections were then 

incubated overnight in primary antibodies for two nights at 4ºC: rabbit anti c-fos (1:1000; 

Synaptic Systems, Goettingen, Germany) and chicken anti red fluorescent protein (1:500; 

Rockland, Limerick, PA) diluted in immuno buffer. Sections were re-washed in PBST 

three times for five minutes and then incubated in the dark for two hours in secondary 

antibody: biotinylated donkey anti rabbit (1:500; Jackson ImmunoResearch, West Grove, 

PA) and donkey anti chicken 594 (1:250; Jackson ImmunoResearch, West Grove, PA) 

diluted in immuno buffer. Sections were re-washed in PBST three times for five minutes 

and incubated in tertiary antibody: streptavidin 488 (1:500; Jackson ImmunoResearch, 

West Grove, PA) diluted in PBST. Sections are then washed once in PBST, once in PBS, 
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once in PB and then mounted and cover slipped onto microscope slides (Fisherbrand 

Superfrost Plus). 13 of the 37 brains that were immunohistochemically analyzed were 

stained only for RFP which followed the same protocol but excluded c-fos antibodies.  

3.3.10 Analysis 

Data were analyzed using Prism 9 (GraphPad Software, La Jolla, CA). Using a 

counterbalanced and within-subject design, rats were first delivered vehicle (or CNO) on 

Day 1 of testing, and subsequently delivered CNO (or vehicle) on Day 2 of testing.  

Differences between the total numbers of trials, active and inactive lever presses, 

rewarded well entries and total number of well entries were assessed using a paired t-test 

for within-subject analysis. Latency to collect reward and latency to initiate trial were 

calculated by using a paired t-test on the mean latency per condition for individual rats. 

Paired t-test was also used to assess differences between last extinction session and 

vehicle condition for cue-induced reinstatement. Unpaired t-test was used to assess 

differences between food restricted and free fed rats, days to meet criteria for FR1 and 

extinction training, and to assess differences between vehicle and CNO conditions using 

only the first day of cue-induced reinstatement testing. 2-way ANOVA were used to 

analyze differences between food restricted and free fed rats and Sidak’s MCT was used 

to assess main effect of vehicle and CNO for each group. Sidak’s MCT was also used to 

analyze main effect of day of extinction training. Pearson correlation analysis was used to 

analyze relationship between DREADD viral spread and total numbers of trials, active 

and inactive lever presses, rewarded well entries and total number of well entries. 

Imaging and cell counting were performed using NIS Elements software (Nikon, 
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Melville, NY) and virus area spread was quantified using FIJI. Two rats from the free fed 

group were excluded from inactivation analysis because there was no virus expression. 

3.4 Results 

3.4.1 Food restricted rats performed more trials compared to free fed rats 

In order to assess differences in reward seeking behaviors while learning, food 

restricted and free fed rats were trained for 10 days on FR1 after meeting criteria of over 

100 trials in 2 hours. Food restricted rats lever pressed more compared to free fed rats 

(t(18)=5.064, p<0.0001, unpaired t-test; Fig. 3.2). 

3.4.2 No effect of PL-NAc inactivation on FR1 or FR5 reward seeking behaviors 

We observed no effect of PL-NAc inactivation in either food restricted or free fed 

rats during FR1 on number of trials, active or inactive lever presses, well entries, or 

rewarded well entries (all p’s>0.05, paired t-test; Fig. 3.3A-F). There was also no effect 

on latency to initiate trial or latency to collect reward for both food restricted or free fed 

rats for FR1 inactivation (all p’s >0.5, paired t-test, Fig. 3.3F-G). A subset of rats was 

trained and tested on FR5 sucrose seeking in addition to FR1, extinction, and cue-induced 

reinstatement. Inactivation of PL-NAc had no effect on trials, active lever presses, 

inactive lever presses, rewarded well entries, total number of well entries, or latency to 

collect reward for both food restricted (N=5) or free fed rats (N=4) (all p’s 0.5, paired t-

test; Figure 3.4 A-F).  
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3.4.3 Food restricted rats were more motivated to seek reward compared to free fed, 

regardless of treatment for both FR1 and FR5.  

In order to assess differences in motivation between food restricted and free fed 

rats, we performed a 2-way ANOVA to assess main effect of food restricted and free fed 

rats for FR1 reward seeking behaviors. 2-way ANOVA revealed a significant main effect 

of food restricted vs free fed in number of trials (F (1, 52) = 81.96, p<0.0001; Figure 

3.3A), active lever presses (F (1, 26) = 12.73, p=0.0014; Figure 3.3B), rewarded well 

entries (F (1, 26) = 25.65, p<0.0001; Figure 3.3D). 2-way ANOVA also revealed main 

effect of food restricted vs free fed for latency to initiate trials (F (1, 25) = 27.44, 

p<0.0001; Figure 3.3G-H). Post-hoc multiple comparisons test (Sidak’s MCT) revealed 

that food restricted rats performed more trials than free fed rats in both vehicle (t=6.814, 

p<0.0001) and CNO (t=5.989, p<0.0001) conditions. Food restricted rats also pressed the 

active lever more in both vehicle (t=3.301, p=0.0035; Figure 3.3B) and CNO (t=3.7, 

p=0.0010; Figure 3.3B) conditions compared to free fed rats. Food restricted rats also had 

a higher number of rewarded well entries in both vehicle (t=4.973, p<0.0001; Figure 

3.3D) and CNO (t=4.907, p<0.0001; Figure 3.3D) conditions. Post-hoc analysis also 

revealed that free fed rats have a shorter latency to initiate trials in both vehicle (t=4.585, 

p<0.0001; Figure 3.3H) and CNO (t=2.905, p=0.0109 Figure 3.3H) conditions. 2-way 

ANOVA did not reveal main effect of satiety status in number of inactive lever presses, 

well entries, or latency to collect reward (all p’s > 0.5; Figure 3.3 C, E-F). 

We also analyzed FR5 reward seeking behaviors between food restricted and free 

fed rats. 2-way ANOVA revealed significant main effect of trials (F(1,7)=25.74, 

p=0.0014; Figure 3.4A); active lever presses (F (1, 7) = 45.15, p=0.003; Figure 3.4B); 
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and rewarded well entries (F (1, 7) = 22.93, p=0.002; Figure 3.4D) for food restricted vs 

free fed rats. Post-hoc multiple comparisons test (Sidak’s MCT) revealed that food 

restricted rats performed more trials than free fed for both vehicle (t=5.055, p= 0.0004; 

Figure 3.4A) and CNO (t=4.760, p=0.0006; Figure 3.4A) infusions. Food restricted rats 

also performed more active lever presses than free fed in both vehicle (t=5.179, 

p=0.0003; Figure 3.4B) and CNO (t=5.621, p=0.0001; Figure 3.4B) conditions. And food 

restricted rats also performed more rewarded well entries compared to free fed rats for 

both vehicle (t=4.737, p=0.0006; Figure 3.4D) and CNO (t=4.513, p=0.001; Figure 3.4D) 

conditions. 2-way ANOVA did not reveal any significant main effects or interactions for 

total number of well entries or inactive nose pokes (all p’s > 0.05; Figure 3.4C, E-F). A 

possible explanation for the differences in inactivation effects on number of well entries 

or inactive nose pokes we see in this chapter, compared to the previous chapter could be 

because in the previous chapter, we were inactivating the PL as a whole. Versus in this 

chapter, where we selectively inactivated PL projections to NAc. When inactivating PL 

as a whole, we are also silencing the vast number of neurons PL is projecting to, which 

can include areas that are responsible for vast behaviors ranging from emotion to motor 

movements (Dalley et al., 2004; Vertes, 2004, 2006). In turn, by selectively inactivating 

PL-NAc neurons, we are targeting a circuit that is thought to control the execution and 

inhibition of motivated behaviors, specifically. Here, we see that hunger drives more 

reward seeking behavior, regardless of the involvement of PL-NAc, suggesting that it is 

the PL projections to another area which drives this behavior. A circuit that could 

possibly be involved in mediating these hunger driven behaviors is the PL-IL. There is 
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evidence that shows that the IL controls food seeking behaviors related to hunger 

(Riveros et al., 2014, 2019).  

3.4.4. Food restricted rats pressed the lever more compared to free fed rats during 

the first 3 days of extinction training.  

After FR1 testing, rats were trained on extinction until meeting criteria of two 

consecutive days of less than 20 lever presses. Four food restricted rats and three free fed 

rats did not meet criteria and were excluded from extinction training analysis (Figure 

3.5A, bars outlined in yellow). These rats were excluded from training analysis because 

the reasons they were advanced to the testing stage was not random and could affect the 

analysis and interpretation of the extinction testing results (see methods section). Rats 

that met criteria took between 3 to 19 days to reach criteria. We compared number of 

lever presses between food restricted and free fed throughout extinction training and did 

not find significant differences in number of lever presses throughout the 19 days of 

training (p>0.05, unpaired t-test; Figure 3.5B). We also did not find any significant 

differences in number of days to reach criteria between food restricted and free fed rats 

(t(48)=1.255, p=0.2157, unpaired t-test; Figure 3.5D). Therefore, we decided to use a 2-

way Mixed effects ANOVA to compare number of lever presses for food restricted and 

free fed for the first three days of extinction training. 2-way Mixed effects ANOVA 

revealed significant main effects of food restricted vs free fed (F (1, 56) = 23.77, 

p<0.0001; Figure 3.5B-C). Sidak’s multiple comparisons revealed food restricted rats 

pressed the lever more during the first (t=5.999, p<0.000; Figure 3.5B-C), second 
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(t=3.4.71, p=0.0032; Figure 3.5B-C), and third (t=2.999, p=0.00128; Figure 3.5B-C) day 

of extinction training.   

3.4.5 PL-NAc inactivation during extinction testing increased inactive lever pressing 

in food restricted rats, but had no effect on free fed rats.  

After extinction training, all of the experimental rats regardless of meeting criteria 

of two consecutive days of <20 trials were tested during extinction. One food restricted 

and one free fed rat did not meet criteria but their data was included in the analysis 

because their data did not affect the outcome of the results (data not shown). Inactivation 

of PL-NAc did not affect active lever presses or total number of well entries for both food 

restricted and free fed rats during extinction testing (all p’s>0.05, paired t-test; Figure 

3.6A-B). PL-NAc inactivation resulted in an increase in inactive lever presses in food 

restricted rats (t(13)=2.164, p=0.0496, paired t-test; Figure 3.6C, black dots) but not in 

food restricted tdTomatoe rats or free fed rats (all p’s>0.05, paired t-test; Figure 3.6 C, 

gray and maroon dots). We also performed 2-way ANOVA analysis to assess differences 

between food restricted and free fed rats for extinction behaviors. However, our analysis 

did not reveal any significant differences among each group (all p’s>0.05, 2-

wayANOVA; Figure 3.6A-C). 

3.4.6 PL-NAc Inactivation in food restricted rats increased inactive lever pressing 

during cue-induced reinstatement. 

In order to assess if rats reinstated, we performed a paired t-test comparing the 

extinction session preceding cue-induced reinstatement testing and the cue-induced 
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reinstatement vehicle condition (Figure 3.7.A). All three groups had higher number of 

lever presses during vehicle cue-induced reinstatement compared to the last extinction 

session before cue-induced reinstatement testing: food restricted (t(14)=4.385, p<0.0006, 

paired t-test), food restricted tdTomatoe DREADD (t(7)=3.941, p=0.0056, paired t-test), 

free fed (t(11)=2.310, p=0.0413, paired t-test) (Figure 3.7A). Paired t-test did not reveal 

any effect of inactivation for number of trials, active lever presses, rewarded well entries, 

well entries, or latencies to collect reward or initiate trial (all p’s >0.05, paired t-test; 

Figure 3.7B, D-I). However, we decided to use unpaired t-test to analyze effects of 

inactivation using data from their first day of cue-induced reinstatement testing (Figure 

3.7B). We did not find any significant effects of inactivation for number of active or 

inactive lever presses, rewarded well entries, well entries, or latency to collect reward 

(data not shown). But we did find that PL-NAc inactivated rats had higher number of 

trials compared to vehicle infused rats (t(10)=2.731, p=0.0212, unpaired t-test; Figure 

3.7C).  

We were interested in assessing the differences between food restricted and free 

fed rats for number of trials, active and inactive lever presses, rewarded well entries, well 

entries, and latencies to collect reward and initiate trial (Figure 3.7B, D-I). We found a 

main effect of food restricted vs free fed for number of trials (F(1,52)=8.94, p=0.0043; 2-

way ANOVA; Figure 3.7B). Food restricted rats had higher number of trials compared to 

free fed for the vehicle condition (t=2.432, p=0.0368; Sidak’s MCT), but not CNO 

condition (t=1.798, p=0.1499; Sidak’s MCT).  We also found a main effect of food 

restricted vs free fed for number of lever presses (F(1,52)=7.163, p=0.0099; 2-way 

ANOVA; Figure 3.7D). However, we did not find any significant differences for vehicle 
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or CNO conditions (all p’s >0.05; Sidak’s MCT; Figure 3.7D). We also did not find any 

significant effects for active and inactive lever presses, rewarded well entries, well 

entries, and latencies to collect reward and initiate trial (all p’s >0.05; 2-way ANOVA; 

Figure 3.7D-I).  

2.4.6 Larger viral spread correlated with increase in extinction, reinstatement, and 

reward seeking behaviors. 

 In order to assess if there was a correlation between DREADD viral spread and 

reward seeking behavior during the CNO condition (inhibition of neurons), we performed 

individual Pearson Correlations between DREADD viral spread and number of trials, 

active lever presses, inactive lever presses, well entries, rewarded well entries, and 

latency to collect reward and to initiate trials for FR1, extinction, cue-induced 

reinstatement, and FR5. See Figure 3.1 for representation of viral spread. Our analysis 

revealed positive correlations for only food restricted rats, and not free fed rats (Figure 

3.9). For extinction reward seeking behaviors, our analysis revealed a positive correlation 

between DREADD viral spread and active lever presses (r(12)=0.6574, p=0.0106, 

Pearson correlation; Figure 3.9A). Pearson correlation also revealed a positive correlation 

between DREADD viral spread and number of well entries (r(12)=0.6730, p=0.0083; 

Figure 3.9C) during extinction. For cue-induced reinstatement, we found a positive 

correlation between DREADD viral spread and rewarded well entries (r(15)=0.5268, 

p=0.0436, Pearson correlation; Figure 3.9E), and also a positive correlation between 

DREADD viral spread and overall number of well entries (r(13)=0.5285, p=0.0428; 

Pearson correlation; Figure 3.9G). For FR5 reward seeking behaviors, we found a 
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positive correlation between DREADD viral spread and number of trials (r(3)=0.9335, 

p=0.0204, Pearson correlation; Figure 3.9I), and a positive correlation between DREADD 

viral spread and rewarded well entries (r(3)=0.9830, p=0.0026, Pearson correlation; 

Figure 3.9K). 

 We performed further Pearson Correlation analysis between DREADD viral 

spread and behavior after vehicle infusion in order to assess if the correlation effects we 

found were specific to PL-NAc inactivation from CNO infusion. For extinction reward 

seeking behaviors, our analysis did not reveal correlation between DREADD viral spread 

and active lever presses (p>0.05, Pearson correlation; Figure 3.9B). Pearson correlation 

did reveal a positive correlation between DREADD viral spread and number of well 

entries (r(12)=0.7433, p=0.0015; Figure 3.9D) during extinction. For cue-induced 

reinstatement, we did not find a correlation between DREADD viral spread and rewarded 

well entries (p>0.05, Pearson correlation; Figure 3.9F). We did find a positive correlation 

between DREADD viral spread and overall number of well entries (r(13)=0.7376, 

p=0.0017; Pearson correlation; Figure 3.9H). For FR5 reward seeking behaviors, we 

found a positive correlation between DREADD viral spread and number of trials 

(r(3)=0.8924, p=0.0417, Pearson correlation; Figure 3.9J), and a positive correlation 

between DREADD viral spread and rewarded well entries (r(3)=0.9238, p=0.0250, 

Pearson correlation; Figure 3.9L). 

 

We did not find correlations between viral DREADD spread and FR1 reward 

seeking behaviors (all p’s >0.05, Pearson correlation, data not shown). We also did not 

find any correlation between viral DREADD spread and number of inactive lever presses 
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during extinction testing (p>0.05, Pearson correlation, data not shown). There was also 

no correlation between viral DREADD spread and trials, active or inactive lever presses, 

or latencies to collect reward or initiate trial (all p’s >0.05, Pearson correlation, data not 

shown). For FR5, we did not find correlations between viral DREADD spread and 

number of active or inactive lever presses, or latency to collect reward (all p’s >0.05, 

Pearson correlation, data not shown).  

3.5 Discussion 

The objective of this study was to test if PL projections to NAc control motivated 

goal-directed behaviors differently depending on satiety state (i.e. food restricted or 

satiated rats). This research is important because although the role the PL and the NAc 

play in regulating drug seeking behaviors has been extensively studied, results are still 

unclear in terms of natural reward seeking behaviors, and often contradict the cocaine 

literature (Augur et al., 2016; Caballero et al., 2019; Corbit et al., 2001; Euston et al., 

2012; McGlinchey et al., 2016; Mogenson et al., 1980; Peters, LaLumiere, et al., 2008; 

Stefanik et al., 2016). In order to fill this gap in the literature, we used retrograde 

inhibitory DREADDs to inactivate PL projections to NAc in food restricted and free fed 

male Long-Evans rats. We also included a third group of food restricted rats with a 

retrograde td-Tomato DREAD to label projections from PL to NAc. This group serves as 

a measure that the inactivation effects we see in the food restricted retrograde inhibitory 

DREADDs group was a result of PL-NAc inactivation and not due to extraneous factors 

(K. S. Smith et al., 2016). We trained and tested rats on a sucrose seeking FR1, 

extinction, cue-induced reinstatement, and FR5. We chose these behavioral paradigms 
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and food restriction protocol because they are classic behavioral tests commonly used in 

the cocaine seeking literature (Aitken et al., 2016; McGlinchey et al., 2016). Our findings 

have implications for further understanding the complex and dynamic role the prefrontal 

to accumbens projections play in guiding reward seeking behaviors. 

As expected, we found that food restricted rats were more motivated to seek the 

sucrose reward (Figure 3.2 & Figure 3.5). In line with our alternate hypothesis and 

contrary to effects seen in cocaine literature, both food restricted and free fed rats 

demonstrated an increase in seeking behavior when inactivating PL-NAc. However, not 

specifically sucrose seeking behaviors. Food restricted rats only demonstrated an increase 

in inactive lever presses during extinction and cue-induced reinstatement. These results 

suggest that the PL-NAc plays a different role depending on hunger state. For food 

restricted rats, PL-NAc seems to play a role in negative reinforcement by suppressing 

behaviors that are not conducive to obtaining a reward. Free fed rats demonstrated an 

increase in initiated trials when inactivating PL-NAc during cue-induced reinstatement. 

Because we only saw an increase in initiated trials, but not well entries, this potentially 

suggests that for free fed rats, PL-NAc plays a role in inhibiting the reward seeking 

behaviors when they are not as motivated to obtain the sucrose outcome. 

A possible explanation for these results is that because these rats have a limited 

availability of food, and therefore calories, this shifts their motivation to a state of “need” 

(i.e. wanted and needed the sucrose). Contrary to free fed rats which are less motivated, 

but still desire and seek the sucrose (i.e. wanted but did not need the sucrose) (Figure 

3.7A). By inactivating the PL-NAc in food restricted rats, this “need” motivation 

potentially influences their reward seeking behaviors and leads them to press the inactive 
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lever more. Perhaps, because it increases their exploratory behavior to find an alternate 

route and inactivating the PL-NAc liberates the inhibitory effect this circuit was exerting 

towards pressing the inactive lever. We demonstrated that the PL-NAc inactivation 

effects we see in food restricted rats are indeed a result of Gi DREADD inhibition 

because we do not see these effects in the td-Tomato food restricted group (Figure 3.6C 

& 3.7E). However, another approach that would strengthen our claims is to perform a c-

fos analysis in both food restricted Gi DREADD rats and food restricted td-Tomato rats 

in the tissues we collected when perfusing the rats 90 minutes after their last cue-induced 

reinstatement testing day. C-Fos is an immediately early gene present commonly used as 

a marker for neuronal activity (Cruz et al., 2015). By performing a c-fos quantification 

and localization analysis we could assess if there was neuronal activation in the PL-NAc 

in rats perfused after vehicle session, demonstrating that indeed this circuit was being 

employed during this task. Additionally, by quantifying c-Fos in the food restricted Gi 

DREADD PL-NAc rats that received CNO before perfusion, we could confirm that we 

inhibited this circuit. A further step that would strengthen our extinction results is to train, 

test and perfuse additional cohort of food restricted rats: half receiving Gi DREADD in 

the PL-NAc and the other half receiving td-Tomato in the PL-NAc. But, instead of 

perfusing and analyzing c-fos in these rats after cue-induced reinstatement testing, we 

would perfuse them after extinction testing in order to assess that indeed the PL-NAc was 

active during extinction.  

As mentioned before, we also saw an increase in reward seeking behaviors for 

free fed rats during cue-induced reinstatement. Specifically, we saw an increase in 

number of trials when we inactivated the PL-NAc in free fed rats. In our cue-induced 
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reinstatement task, trials are self-initiated, and rats can initiate a trial after the house light 

that signals a “time-out” is turned off. Interestingly, we only saw this inactivation effect 

of increase in trials in free fed rats when analyzing the data from their first cue-induced 

reinstatement testing (i.e. first day they were re-exposed to the house light and tone cue). 

A possible explanation is that for free fed rats, PL-NAc inhibits the behaviors that are not 

conducive to a reward by facilitating the cue-outcome association. In this case, it is 

possible that re-introducing the house-light and tone cues learned during FR1 triggered 

that previously formed memory, but because PL-NAc was offline, rats were unable to 

override that previously established memory with a new memory that initiating a trial 

will not trigger a reward delivery. Also, because the free fed rats were satiated, and 

therefore did not “need” the reward, motivation was manifested differently. Free fed rats 

were probably were not motivated enough to find alternate ways of seeking the reward, 

as we saw with food restricted rats, but were indeed more motivated to continue pressing 

the lever to obtain the sucrose reward. This is important because we can observe a 

difference between the “need” and the “want” a natural reward can exert over behavior. 

One limitation to our study is that we did not have a free fed group of rats with the 

control td-Tomato virus. This control group would allow us to compare if the inactivation 

effects we see were a product of the inhibitory Gi DREADDs silencing the PL-NAc, or if 

it was due to extraneous factors. An alternate approach would be to analyze c-fos 

expression levels between vehicle and CNO conditions in the PL-NAc for free fed rats 

that were perfused 90 minutes after the start of cue-induced reinstatement testing.  

The fact that we did not see any effect of PL-NAc inactivation for FR1 and FR5 

provides more evidence towards the claim that PL-NAc is important for the formation of 
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action-outcome associations (Hart et al., 2014). Testing for FR1 and FR5 was performed 

after substantial training, and because it was a fixed-ratio schedule of reward delivery, 

there was no ambiguity towards the delivery of the reward after the reward seeking 

behavior. Probably, the behavior we were testing was a goal directed behavior, but it was 

also habitual, which could mean that another circuit was in charge of mediating this 

behavior, and not the PL-NAc.  

There are two outstanding limitations that our study needs to address. The first is 

the finding that higher DREADD viral spread for both CNO and vehicle infusions 

positively correlates with sucrose reward seeking behaviors in food restricted rats during 

extinction, cue-induced reinstatement, and FR5 CNO infusions (Figure 3.9). This raises 

the question as to why we are seeing these positive correlations in both CNO and vehicle 

infusions, instead of just CNO or vehicle. One possible explanation is that because our 

study was not specifically designed to answer the question of the effects that DREADD 

viral spread has on reward seeking behaviors, we did not specifically target different 

areas or layers within the prefrontal cortex which could mean our results are an artifact. 

In other words, our virus did not only stay within the layers of the PL. Some rats had 

DREADD viral spread into the anterior cingulate cortex (ACC), the rats had DREADD 

viral spread into the infralimbic (IL), and some rats had DREADD viral spread into ACC 

and IL. Therefore, we did not control the specific regions where the DREADD viral 

spread into, which means that with our design, we are not considering the function of 

each area and instead are grouping areas that have different functions. For instance, it has 

been shown that layers within the PL and IL differentially control reward seeking 

behaviors (Hardung et al., 2017). Specifically, when using a liquid reward, more ventral 
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layers of the PL and the IL are responsible for inhibiting reward seeking behaviors 

(Hardung et al., 2017). Furthermore, studies in both rodents and humans have found that 

the ACC assesses and integrates different dimensions of motivational values in order to 

mediate goal-directed behaviors (Devinsky et al., 1995; Yee et al., 2021). These are all 

different functions and behaviors that we are not considering with our analysis. An 

approach that we could take in order to uncover if these results are an artifact, is to 

include more rats in the study and further divide the analysis into 3 groups: 1) rats that 

received DREADD viral spread in exclusively the PL; 2) rats that received DREADD 

viral spread in the ACC and PL; and 3) rats that received DREADD viral spread in PL 

and IL. This way, we can how DREADD viral spread into the various layers of PL, and 

also layers of ACC, and layers of IL, differentially control reward seeking behaviors.  

Another limitation to our study that we need to address is the lack of analysis of 

axons in the NAc. Because our tissue was collected at 20x, we could clearly identify 

neuronal cell bodies, but we were not confident that all axons were visible which made 

quantification difficult. Additionally, because of reasons outside of our control which led 

to malfunction of 4oC refrigerator, some of the tissue presented difficulties to confidently 

quantify. As a next step, the NAc tissue should be quantified at a higher resolution (i.e. 

40x) and perform the necessary analysis.  

Our study identifies differences in prefrontal to accumbens behavioral control of 

goal-directed actions depending on if the animal is hungry or satiated which will give 

further insight needed to develop specialized treatments for disorders like binge-eating. 

Our project also allows us to compare and contrast our results with previous literature 
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that generally describes the PL as an area solely responsible for the execution of reward 

seeking behaviors.  
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3.6 Figures 

 
Figure 3.1. Timeline for behavioral training and experiments.  

Rats were first trained on FR1 for 10 days of meeting criteria and then tested on CNO 
and Vehicle (Veh) with one day an FR1 washout day in between. Then they were trained 
on extinction until meeting criteria of less than 25 trials for 2 days straight and then tested 
on CNO and Vehicle (Veh) with one day an extinction washout day in between. Then 
they were tested on cue-induced reinstatement with 2 days of extinction in between. A 
subset of rats was perfused on their second day of testing, 90 minutes after testing started. 
Another subset of rats was trained and tested on FR5 with a washout FR5 in between 
testing days. Rats that were tested on FR5 were perfused 90 minutes after the start of 
their last testing day.  
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Figure 3.2. Lever pressing during FR1 training.  

Food restricted rats pressed the active lever more during training, compared to free fed 
rats ****= p<0.0001, unpaired t-test. 
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Figure 3.3. FR1 reward seeking behavior for food restricted and free fed rats.  
Food restricted rats are represented in black ( ) and free fed rats are represented in 
maroon ( ). (A-G) There was no effects of PL-Nac inactivation on number of trials, 
active or inactive lever presses, rewarded or overall number of well entries, and latencies 
to collect reward or initiate trial. (A-B, D) Food restricted rats has a higher number of 
trials, active lever presses, and rewarded well entries. (G-H) Food restricted rats also has 
shorter latency to initiate trials compared to free fed rats. (H) Pairwise comparison for 
latency to initiate trial #=p<0.05, Sidak’s MCT. 
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Figure 3.4. FR 5 reward seeking behaviors for food restricted and free fed rats. 
Food restricted rats are represented in black ( ) and free fed rats are represented in 
maroon ( ). (A-F) There was no effect of PL-Nac inactivation for number of trials, 
active or inactive lever presses, rewarded and overall number of well entries, and latency 
to collect reward. (A-B, D) Food restricted rats has a higher number of trials, active lever 
presses, and rewarded well entries compared to free fed. #=p<0.05, Sidak’s MCT.  
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Figure 3.5. Extinction training.  

Food restricted rats are represented in black ( ) and black bars. Free fed rats are 
represented in maroon ( ) and maroon bars. (A) Number of days each rat took to reach 
criteria for extinction testing. Bars with yellow outline are rats that did not meet criteria 
for extinction and the numbers included at the top of each yellow outlined bar are the 
number of lever presses for the two days that preceded testing. (B) Number of lever 
presses across the extinction training days. (C) Individual values per rat for first three 
days of extinction training. (B-C) Food restricted rats pressed more compared to free fed 
rats during the first three days of extinction training #=p<0.05, Sidak’s MCT. (D) Days to 
meet extinction criteria for food restricted and free fed rats.  
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Figure 3.6. Extinction reward seeking behavior for food restricted and free fed rats.  
Food restricted rats are represented in black ( ), food restricted rats with tdTomatoe 
DREADD are represented in gray ( ) and free fed rats are represented in maroon ( ).  
(A-B) No effect of PL-NAc inactivation on total number of active lever presses or well 
entries. (C) Inactivation of PL-NAc increased inactive lever presses in food restricted rats 
*p=0.0496, paired t-test. 
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Figure 3.7. Cue-induced reinstatement reward seeking behavior for food restricted 
and free fed rats.  

Food restricted rats are represented in black ( ), food restricted rats with tdTomatoe 
DREADD are represented in gray ( ), and free fed rats are represented in maroon ( ). 
(A) Number of lever presses was significantly higher during the vehicle reinstatement 
condition compared to the last extinction session before reinstatement testing for all three 
groups ***, **, *p’s <0.05, paired t-test. (B, D-I) No effect of inactivation on number of 
trials, active and inactive lever presses, rewarded and overall number of well entries, or 
latency to collect reward and initiate trial. (B) Food restricted rats had higher number of 
trials compared to free fed for vehicle condition #p=0.0368, Sidak’s multiple comparison. 
(C) Number of trials only including data for first day of reinstatement testing for free fed 
rats. Inactivation of PL-NAc increased number of trials. *p=0.0212, unpaired t-test. (E) 
Number of inactive lever presses. Inactivation of PL-NAc increased number of inactive 
lever presses in food restricted rats *p=0.0182, paired t-test.  
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Figure 3.8. DREADD viral spread.  
Food restricted hM4Di rats (left black shading), food restricted td-Tomato rats (middle 
gray shading), and free fed rats (right maroon shading). Bottom images are example of Gi 
DREADD expressing PFC slices taken at 20x resolution. 
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Figure 3.9. Correlation graphs for food restricted rats during extinction, cue induced reinstatement, and FR5 testing.  
(A,C,E,G,I,K) Black dots = correlations between DREADD viral spread and CNO behaviors; (B,D,F,H,J,L) Gold dots = correlations 
between DREADD viral spread and vehicle behaviors. 
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CHAPTER 4 

DISCUSSION 

4.1 Main Findings 

 This dissertation consisted of two main aims. Refer to Figure 4.1 for a schematic 

summarizing the main findings. In chapter 2, we describe our first aim where our goal 

was to understand the role of prelimbic (PL) and infralimbic (IL) medial prefrontal cortex 

(mPFC) in sucrose seeking behaviors. In chapter 3 we describe our second aim, which 

consisted of assessing differences in PL-NAc control of reward seeking behaviors for: 1) 

low-motivated/freed fed animals; 2) high motivated/food restricted animals. Results in 

chapter 3 show that PL-NAc differentially control sucrose seeking behaviors depending 

on how motivated they are to obtain the reward (i.e. level of satiety). We found that by 

controlling level of satiety, sucrose was a different type of reinforcer for free fed and food 

restricted rats. In free fed rats, sucrose was reward is pleasurable but not needed. In food 

restricted rats, sucrose turned into a need, because they had limited calories in the home-

cage diet, rats needed the calories they could obtain from sucrose. With this in mind, the 

following is a summary of our main findings: 

4.1.1 Infralimbic mPFC control of sucrose seeking behaviors 

Results in chapter 2 showed that the IL plays a role in executing sucrose seeking 

behaviors during extinction (i.e. well entries) and cue-induced reinstatement (i.e. nose 

pokes, time-out nose pokes, and initiated trials). As described in detail in chapter 2, these 

rats were free fed and no sucrose was delivered during extinction and cue-induced 
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reinstatement. Extinction and cue-induced reinstatement testing was performed two to 

three weeks after their final Fixed-Ratio 1 (FR1) session, which is enough time to 

consider sucrose to have an effect of “craving” or “wanting” because of its palatable 

properties (Darling et al., 2016; Grimm, 2020). Thus, IL seems to play a role in mediating 

goal-directed behaviors of pleasurable rewards, which is why inactivating the IL 

decreased their motivation to continue seeking the sucrose.  

4.1.2 Prelimbic mPFC control of sucrose seeking behaviors 

Results in chapter 2 showed that the PL plays an important role in inhibiting 

sucrose seeking behaviors (i.e. nose pokes and rewarded well entries) during FR1 and 

executing sucrose seeking behaviors during extinction (i.e. nose pokes and well entries). 

These results show that the differential role the PL plays in sucrose seeking is dependent 

of the context where the reward is present (i.e. FR1) or not present (i.e. extinction). 

Specifically, when the animal is free fed, the PL seems to inhibit getting too much of a 

reward when the sucrose is available (i.e. FR1) and promotes sucrose seeking when the 

sucrose is not available (i.e. extinction). This could be because PL is in charge of 

“remembering the rules”, or mediating the appropriate response to stimuli, given the 

internal state of the animal. Because they were free fed, the appropriate response during 

FR1 is to seek for sucrose until the desire is satiated, however, by inactivating the PL, the 

animals continued to seek the sucrose. Moreover, the free fed animals decreased sucrose 

seeking during extinction when PL was inactivated, facilitating extinction. Potentially, 

this context, the role of the PL was to seek the sucrose reward, but because there was no 

sucrose present and the PL was inactivated, they gave into their lack of motivation.  
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Because we only see this effect during FR1 and extinction recall, but not during cue-

induced reinstatement, this suggests that PL might play a role in mediating the recall of 

sucrose seeking behaviors, but not the acquisition portion of cue-association.  

4.1.3 PL-NAc control of sucrose seeking in low-motivated/ free fed rats 

 In low motivated/free fed rats, we saw an increase in sucrose seeking behaviors 

(i.e. initiated trials) when inactivating the PL-NAc during cue-induced reinstatement. 

Interestingly, we only see this effect on the first day of cue-induced reinstatement, which 

is the first day that rats are re-exposed to the cue after extinction training and testing. This 

finding provides more evidence that PL-NAc plays a role in establishing cue-outcome 

associations. Additionally, it seems to provide evidence towards the role PL-NAc plays in 

motivated behaviors. Sucrose is a reward for free fed rats since they do not have a calorie 

deficit, although sucrose is a highly pleasurable reward, it is not needed. When silencing 

the PL-NAc, these low-motivated/free fed rats seemed to have an increase in motivation 

to seek the sucrose which was triggered by the cue.  

4.1.4 PL-NAc control of sucrose seeking in high-motivated/ food restricted rats 

In highly motivated/ food restricted rats, PL-NAc inhibits sucrose seeking 

behavior that is not conducive to the reward during extinction and cue-induced 

reinstatement (i.e. inactive lever presses). A possible explanation for the inactivation 

effects we see could be driven by the fact that for food restricted rats, sucrose is a “need” 

in order to survive. Because they “needed” to find alternate ways of reaching their goal of 

obtaining the sucrose, they potentially engage in exploratory or alternate forms of the 
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previously learned behavior. And because we know that PL-NAc is important for 

forming cue-outcome associations, inactivating the PL-NAc potentially impaired the 

ability to form the association that inactive lever pressing does not result in sucrose 

delivery.  

4.2 Proposed mPFC function for natural reward seeking 

Based on the results of the studies mentioned above, in combination with the 

previous literature, I propose this model: the PL, IL, and PL-NAc circuit, work in 

combination to decide what the appropriate behavioral response is to the reward that the 

body needs or wants at that moment. The mPFC considers need vs want and also makes 

the cue-outcome association that inhibits reward seeking behavior in contexts where the 

reward is no longer present.  

 We can categorize rewards based on need vs want. For hungry rats, sucrose is a 

reward needed for survival, and for free fed rats, sucrose is a reward they find 

pleasurable, but not needed for survival.  Under this classification of reward, cocaine and 

sucrose reward are both pleasurable, but when comparing cocaine and sucrose directly, 

we see that they have different properties in terms of biological mechanisms and value. 

Although we see craving and reinstatement of both cocaine and sucrose, cocaine is a 

reward often described as thought to relieve the negative state of withdrawal upon 

consumption (Koob, 2017). To date we do not have evidence that relief of negative state 

is also true when using sucrose reward in satiated rats. Therefore, it is imperative that we 

take into consideration the complexity of the mPFC and the vast neuroanatomical 

projections which contribute to the flexibility and dynamic function the mPFC plays. The 
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literature describes IL as an area that initiates behavioral and biological (i.e. body 

temperature) in response to appetitive stimuli (Lay et al., 2019; Quintana-Feliciano et al., 

2021; Riveros et al., 2014; Valdés et al., 2006). These findings contribute to a better 

understanding of how and why we see differences between cocaine and sucrose reward 

literature. When looking into the specific roles PL and IL play in terms of sucrose 

seeking in satiated animals, PL seems to play a role in executing the previously 

established or “prepotent” behaviors in order to gain the sucrose reward and also 

regulating the intake (Capuzzo & Floresco, 2020), possibly in combination with the IL 

(Riaz et al., 2019). Hence, when inactivating PL we saw an increase in sucrose seeking 

during FR1, but a decrease in sucrose seeking during extinction. This is evidence towards 

the effects sucrose and sucrose cues exert over PL control of behavior. Potentially, the 

presence of sucrose and sucrose cues led the IL to increase sucrose seeking, and the role 

of the PL was supposed to stop the overconsumption of sucrose. But when PL was 

inactivated and there was no sucrose or cue to trigger this overconsumption response, 

neither PL or IL mediated a sucrose seeking role and therefore we see this decrease in 

sucrose seeking behaviors. Furthermore, when assessing the role PL-NAc play mediating 

food seeking behaviors, we see that sucrose cues trigger different responses depending on 

level of satiation. These findings provide further evidence that mPFC plays a dynamic 

role in assessing what the body needs at that moment, and responds differently according 

to the presence of the cue (Capuzzo & Floresco, 2020; Riaz et al., 2019; Stopper & 

Floresco, 2011; Valdés et al., 2006). A limitation that, if addressed, would further 

characterize the mPFC control of sucrose behavior would be to replicate the study 
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performed in chapter 3 by targeting IL-NAc projections. This way, we could understand 

the role of PL-NAc in sucrose cue-association.  

 Our findings can also give insight into other fields, like substance-use disorders. 

The behavioral control PL, IL and PL-NAc exert over reward seeking behaviors adapts 

depending on the internal needs of the animal and the contextual cues it receives from the 

environment. Although cocaine and sucrose are rewards that differ greatly in their 

chemical composition and biological effects, one could speculate that after repeated 

exposure of cocaine consumption- this reward could shift to a “need”. Therefore, the 

mPFC could play a similar role for cocaine dependence such as what we see in food 

restricted rats seeking sucrose reward in order to fulfill their calorie deficit. This could 

potentially explain the various differences and discrepancies we see in studies using 

drugs of addiction vs food as rewards. It is possible that the mPFC plays different roles 

depending on the stage of drug use/abuse. 

4.3 Concluding Remarks 

This dissertation supports the idea that the simplistic PL “going” vs IL “stopping” 

model is not applicable to sucrose reward, instead, that the PL/IL mediates rewards 

differently depending on the reward and context being employed.  Additionally, this 

dissertation supports an approach where we need to stop looking at whole mPFC sub 

regions, specifically at the PL and IL as separate, and instead further investigate cortical 

layers within the PL/IL and their concomitant projections to investigate their specific 

function. Specifically, because we provided further evidence that mPFC is a dynamic 

area that both assesses the needs of the body, performs the cue-outcome associations 
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needed to mediate the goal-directed response, and consequently triggers the appropriate 

behavioral response.  	
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Figure 4.1 Summary of main findings. 
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