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Pérez. I’d like to thank them for their help and accompany in both research and every-

day life. I’m also super thankful for my friends in Amherst: Xiang Li, Chenghao Lyu,

Han Li, Zhiqi Huang, Pengshan Cai, Dongxu Zhang, Tongyi Cao, Qingyao Ai, Yue Wang,

Dan Zhang, Keping Bi, Xiaoyi Wu, Yuxin Liu, Zhuojun Duan, Fuqian Sun, Yirou Luo,

Shuaimin Kang, Jun Wang, Li Wang, and a lot of others. They made my six years in

Amherst full of happiness and great memories and provided the best support especially

iv



during my first year in Amherst when I was away from my country the first time, and

during the hardest times in the Covid-19 pandemic.

Finally, I have my most sincere gratefulness for my dearest parents. They always sup-

port me to pursue my goal with no hesitation, believe in my capability and potential without

any doubt, fully accept my failure and are always there to provide comfort and encourage-

ment. It’s their unconditioned love that gives me the strength and courage to keep moving

forward.

v



ABSTRACT

UNDERSTANDING OF VISUAL DOMAINS VIA THE LENS OF 
NATURAL LANGUAGE

SEPTEMBER 2021

Chenyun Wu

B.Sc., PEKING UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Subhransu Maji

A joint understanding of vision and language can enable intelligent systems to perceive, 

act, and communicate with humans for a wide range of applications. For example, they 

can assist a human to navigate in an environment, edit the content of an image through 

natural language commands, or search through image collections using natural language 

queries. In this thesis, we aim to improve our understanding of visual domains through the 

lens of natural language. We specifically look into (1) images of categories within a fine-

grained taxonomy such as species of birds or variants of aircraft, (2) images of textures 

that describe local color, shape, and patterns, and (3) regions in images that correspond to 

objects, materials, and textures.

In one line of work, we investigate ways to discover a domain-specific l anguage by 

asking annotators to describe visual differences between instances within a fine-grained 

taxonomy. We show that a system trained to describe these differences leads to an accurate 

and interpretable basis for categorization. In another line of work, we investigate the effec-

tiveness of language and vision models for describing textures, a problem that, despite the

vi



ubiquity of textures, has not been sufficiently studied in the literature. Textures are diverse,

yet their local nature allows for the description of appearance of a wide range of visual

categories. The locality also allows us to systematically generate synthetic variations to

investigate how disentangled visual representations are for properties such as shape, color,

and figure-ground segmentation. Finally, instead of modeling an image as a whole, we de-

sign a system that allows descriptions of regions within an image. A challenge is to handle

the long-tail distribution of names and appearances of concepts within natural scenes. We

design a modular framework that integrates object detection, semantic segmentation, and

contextual reasoning with language that leads to better performance. In addition to meth-

ods and analysis, we contribute datasets and benchmarks to evaluate the performance of

models in each of these domains.

The availability of large-scale pre-trained models for vision (e.g., ResNet [47]) and

language (e.g., BERT [35]) have catalyzed improvements and novel applications in com-

puter vision and natural language processing, but until recently similar models that could

jointly reason about language and vision were not available. This has changed through the

availability of models such as CLIP [94], which have been trained on a massive number

of images with associated texts. Therefore, we analyze the effectiveness of CLIP-based

representations for tasks posed in our earlier work. By comparing and contrasting these

with domain-specific ones we presented in the earlier chapters, we shed some light on the

nature of the learned representations and the biases they encode.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Vision and language are the fundamental media of perception and communication re-

spectively, thus the joint understanding of the two is essential for an intelligent system to

perceive, act, and communicate with humans in various scenarios. For example, a robot

can interact and assist a human to navigate in a scene using language, or an automatic sys-

tem can edit the visual content of images or videos through natural language commands.

Thanks to the development of deep neural networks and large-scale datasets, both fields

of computer vision and natural language processing have achieved great progress in recent

years, making it possible to bring them together and benefit realistic applications.

The goal of this thesis is to achieve a better understanding of visual domains leveraging

large-scale and detailed supervision from natural language descriptions. We specifically

look into three visual domains: (1) images of categories within a fine-grained taxonomy,

(2) images of texture which describes local patterns, (3) objects and stuff regions in natural

images. Furthermore, we apply general-domain pre-trained models to specialized domains

in a zero-shot manner and compare the performance against smaller models trained on

each domain. We demonstrate that by aligning visual representations with language, one

can enable several applications such as image retrieval and editing, as well as fine-grained

classification with naturally interpretable models.

While the representations vary across domains, we address common benefits and chal-

lenges when combing vision and language. Firstly, using natural language makes it possible

to collect datasets through crowd-sourcing and require less expertise in specific domains

from the annotators. This enables us to collect larger-scale datasets but also results in po-
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tentially more noisy annotations. The tasks must be carefully designed such that the joint

understanding is required and cannot be circumvented by only one modality or guessing

based on statistical bias in datasets. Automatic pre-process and post-process mechanisms

also play an important role to guarantee the data quality. Secondly, natural language de-

scriptions can capture detailed attributes of images and objects that are not covered in

manually designed set of category labels or binary attributes. Such natural language su-

pervision can improve the modeling of visual details and benefits fine-grained recognition.

However, the language vocabulary often follows a long-tail distribution, and it is not mu-

tual exclusive(e.g., an instance can be both a “skier” and a “girl”) with complicated associ-

ations between words, which are challenging to model. Lastly, vision and language differ

in structure. Vision is high-dimensional with hierarchical semantics from color, texture to

objects, and relationships between objects. Language descriptions on different visual se-

mantic levels possess different vocabularies. Language is discrete and compositional (e.g.,

an entity can be modified by various attributes). It is challenging to align the composition

and relationships in language to visual signals.

In Chapter 2, we present a framework for learning to describe fine-grained visual differ-

ences between instances using attribute phrases. Attribute phrases capture distinguishing

aspects of an object (e.g., “propeller on the nose” or “door near the wing” for airplanes)

in a compositional manner. Instances within a category can be described by a set of these

phrases and collectively they span the space of semantic attributes for a category. We

collect a large dataset of such phrases by asking annotators to describe several visual dif-

ferences between a pair of instances within a category. We then learn to describe and

ground these phrases to images in the context of a reference game between a speaker and

a listener. The goal of a speaker is to describe the attributes of an image that allows the

listener to correctly identify it within a pair. We also show that embedding an image into

the semantic space of attribute phrases improves fine-grained classification accuracy over
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existing attribute-based representations. This work was published as “Reasoning about

Fine-grained Attribute Phrases using Reference Games” at ICCV 2017 [106].

For image classification, especially in fine-grained domains, deep neural networks are

known to rely largely on recognizing textures. In Chapter 3, we focus on natural language

for describing textures, which allows us to exclude the effects of shape, object category,

or other high-level cues. Textures in natural images can be characterized by color, pattern,

periodicity of elements within them, and other attributes that can be described using natural

language. We propose a novel dataset containing rich descriptions of textures and conduct

a systematic study of current generative and discriminative models for grounding language

to images on this dataset. We find that while these models capture some properties of

texture, they fail to capture several compositional properties (e.g., “colors of dots”). Our

dataset also allows us to train interpretable models and generate language-based explana-

tions of what discriminative features are learned by deep networks for fine-grained catego-

rization where texture plays a key role. We present visualizations of several fine-grained

domains and show that texture attributes learned on our dataset offer improvements over

expert-designed attributes. This work was published as “Describing Textures using Natural

Language” at ECCV 2020 [121].

In Chapter 4, we extend the referring task to a more realistic setting: instead of selecting

one image out of a pair, we consider segmenting image regions given a natural language

phrase. Phrases in our proposed dataset correspond to multiple regions and describe a

large number of object (i.e., categories such as cars and humans with well defined extent

and characteristic shape) and stuff (i.e., categories such as sky and grass with less well

defined shape and extent) categories as well as their attributes such as color, shape, parts,

and relationships with other entities in the image. Our experiments show that the scale and

diversity of concepts in our dataset poses significant challenges to the existing state-of-the-

art. We systematically handle the long-tail nature of these concepts and present a modular

approach to combine category, attribute, and relationship cues that outperforms existing
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approaches. This work was published as “PhraseCut: Language-based Image Segmentation

in the Wild” at CVPR 2020 [120].

In Chapters 2, 3 and 4, we have adopted large-scale pre-trained models for vision (e.g.,

VGG [105] and ResNet [47]) and language (e.g., FastText [20] and BERT [35]) and fine-

tune them on specific domains for vision and language tasks. However, this requires data

collection and training on each domain, which can be expensive. Recently this has been

changed through the availability of models such as CLIP [94] trained on a massive number

of images with associated texts across various domains which can serve as a pre-trained

benchmark for joint reasoning of vision and language. In Chapter 5, we apply CLIP in a

zero-shot manner to fine-grained tasks that have been studied in other chapters, and show

that it can reach competitive performance compared against fully supervised models. Ben-

efiting from large-scale training data, it can overcome challenges of understanding lan-

guage compositionality and domain transfer which are difficult for domain-specific models

trained on limited data. It can also perform fine-grained classification where only the cate-

gory names and attribute are required.

In the remainder of this Chapter, we summarize the related works on attribute repre-

sentations, as well as vision and language datasets and methods with an emphasis on the

referring task.

1.1 Attribute-based Representations in Computer Vision

Attributes have been widely used in computer vision as an intermediate, interpretable

representation for high-level recognition. They often represent properties that can be shared

across categories, e.g., both a car and a bicycle have wheels, or within a subordinate cate-

gory, e.g., birds can be described by the shape of their beak. Due to their semantic nature,

they have been used for learning interpretable classifiers [41, 40], attribute-based retrieval

systems [24], as high-level priors for unseen categories for zero-shot learning [67, 57], and

as a means for communication in an interactive recognition system [64].
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A different line of work has explored the question of discovering task-specific attributes.

Berg et al. [18] discover attributes by mining frequent n-grams in captions. Parikh and

Grauman [89] ask annotators to name directions that maximally separate the data according

to some underlying features. Other approaches [98, 56, 6] have mined phrases from online

text repositories to discover commonsense knowledge about the properties of categories

(e.g., cars have doors). For a detailed description of the above methods see this recent

survey [79].

Attributes have also been used to describe textures. Early works [8, 107, 15] showed

that textures can be categorized along a few semantic axes such as “coarseness”, “contrast”,

“complexity” and “stochasticity”. Bhusan et al. [19] systematically identified words in

English that correspond to visual textures and analyzed their relationship to perceptual

attributes of textures. This was the basis of the Describable Texture Dataset (DTD) [28]

which consolidated a list of 47 texture attributes along with images downloaded from the

Internet. The dataset captures attributes such as “dotted”, “chequered”, “honeycombed”

and “lined”. However, it does not capture detailed properties, such as the color of the

structural elements (“red and green dots”), or the attributes that describe the background

color, etc.

In Chapter 2, we extend the prior work [78] of collecting attribute phrases in a pair-

wise manner and propose methods for generating and interpreting attribute phrases. In

Chapter 3, we model the rich space of texture attributes in a compositional manner beyond

existing binary attributes. We also show that attribute phrases collected from via crowd-

sourcing in natural language format describe useful features not included in handicraft

binary attributes for fine-grained categorization. In Chapter 5, we use attribute phrases to

expand the descriptions of categories beyond their names, and improve the performance of

zero-shot fine-grained classification. In Chapter 4, we study the combination of attributes

with categories and relationships and the handling of long-tail distribution.
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1.2 Datasets for Vision and Language

The vision and language community has put significant efforts into building large-scale

datasets. Image captioning datasets such as MS-COCO [70], Flickr30K [127] and Con-

ceptual Captions [103] contain sentences describing the general content of images. The

Visual Question Answering dataset [12] provides language question and answer pairs for

each image, which requires more detailed understanding of the image content. In visual

grounding datasets such as RefClef [60], RefCOCO [81, 129] and Flickr30K Entities [92],

detailed descriptions of the target object instances are annotated to distinguish them from

other objects.

Besides the datasets collected through crowd-sourcing, there is vast amount of data on

the Internet of images paired with tags, captions and descriptions. Recent works [94, 54,

22, 58, 27] leverage internet data through gathering image search results to train large-scale

models. In Chapter 5 we provide detailed analysis of [94] in fine-grained domains.

The existing vision-and-language datasets focus on recognizing object categories and

descriptions of pose, viewpoint, and their relationships to other objects, and have a limited

treatment of attributes related to texture. In Chapter 3, we introduce a novel dataset focused

on language descriptions of textures to fill in the gap.

1.2.1 Visual referring datasets

Tasks where annotators are asked to describe an object in an image such that another

can correctly identify it provides a way to collect context-sensitive captions [60]. These

tasks have been widely studied in the linguistics community in an area called pragmatics

(see Grice’s maxims [45]). Our work in Chapter 2 aims to collect and generate referring

expressions for fine-grained discrimination between image instances. Referring expression

generation has also been extended to interactive dialogue systems [30, 32]. Much prior

work in computer vision has focused on generating referring expressions to distinguish an

object within an image, as discussed below.
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Dataset ReferIt [60] Google RefExp [81] RefCOCO [129] Flickr30K Entities [93] Visual Genome [65] VGPHRASECUT
# images 19,894 26,711 19,994 31,783 108,077 77,262

# instances 96,654 54,822 50,000 275,775 1,366,673 345,486
# categories - 80 80 44,518 80,138 3103

multi-instance No No No No No Yes
segmentation Yes Yes Yes No No Yes

referring phrase short phrases long descriptions short phrases entities in captions region descriptions templated phrases

Table 1.1: Comparison of visual referring datasets. The proposed VGPHRASECUT

dataset has a significantly higher number of categories than RefCOCO and Google RefExp,
while also containing multiple instances.

Table 1.1 shows a comparison of datasets related to grounding referring expressions

to regions in images. The ReferIt dataset [60] was collected on images from ImageCLEF

using a ReferItGame between two players. Mao et al. [81] used the same strategy to col-

lect a significantly larger dataset called Google RefExp, on images from the MS COCO

dataset [70]. The referring phrases describe objects and refer to boxes inside the image

across 80 categories, but the descriptions are long and perhaps redundant. Yu et al. [129]

instead collect referring expressions using a pragmatic setting where there is limited inter-

action time between the players to generate and infer the referring object. They collected

two versions of the data: RefCOCO that allows location descriptions such as “man on the

left”, and RefCOCO+ which forbids location cues forcing a focus on other visual clues.

One drawback is that Google RefExp, RefCOCO and RefCOCO+ are all collected on MS-

COCO objects, limiting their referring targets to 80 object categories. Moreover, the target

is always one single instance, and there is no treatment of stuff categories.

Another related dataset is the Flickr30K Entities [93]. Firstly entities are mined and

grouped (co-reference resolution) from captions by linking phrases that describe the same

entity and then the corresponding bounding-boxes are collected. Sentence context is often

needed to ground the entity phrases to image regions. While there are a large number

of categories (44,518), most of them have very few examples (average 6.2 examples per

category) with a significant bias towards human-related categories (their top 7 categories

are “man”,“woman”, “people”, “shirt”, “girl”, “boy”, “men”). The dataset also does not

contain segmentation masks. nor phrases that describe multiple instances.
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The Visual Genome (VG) dataset [65]. annotates each image as a “scene graph” linking

descriptions of individual objects, attributes, and their relationships to other objects in the

image. The dataset is diverse, capturing various object and stuff categories, as well as

attribute and relationship types. However, most descriptions do not distinguish one object

from other objects in the scene, i.e., they are not referring expressions. Also, VG object

boxes are very noisy.

In Chapter 4, we introduce our VGPhraseCut dataset which pushes the grounding task

to a larger scale, covers more concepts and allows more flexible target regions.

1.3 Methods for Vision and Language

There is a significant literature on techniques for various language and vision tasks, with

image captioning and visual question answering(VQA) being two of the most studied tasks.

Modern captioning systems [63, 38, 115] produce descriptions by using encoder-decoder

architectures, typically consisting of a convolutional network for encoding an image and

a recurrent network for decoding a sentence. Techniques for VQA are based on a joint

encoding of the image and the question to retrieve or generate an answer [108, 130, 61].

A criticism of the captioning task is that captions in existing datasets (e.g., MS COCO

dataset [70]) can be generated by identifying the dominant categories and relying on a

language model. State-of-the-art systems are often matched by simple nearest-neighbor

retrieval approaches [36, 133]. Visual question-answering systems [12] face a similar issue

that most questions can be answered by relying on common-sense knowledge (e.g., the

sky is often blue). Some recent attempts have been made to address these issues [59].

The basic architectures for these tasks have been improved in a number of ways such as

by incorporating attention mechanisms [76, 9, 119, 130, 43, 61] and improved language

models [35, 102].
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1.3.1 Approaches for grounding language to image regions

Techniques for localizing regions in an image given a natural language phrase can be

broadly categorized into two groups: single-stage segmentation-based techniques and two-

stage detection-and-ranking based techniques.

Single-stage methods [52, 73, 68, 104, 82, 126, 23, 125] predict a segmentation mask

given a natural language phrase by leveraging techniques used in semantic segmenta-

tion. These methods condition a feed-forward segmentation network, such as a fully-

convolutional network or U-Net, on the encoding of the natural language (e.g., LSTM over

words). The advantage is that these methods can be directly optimized for the segmentation

performance and can easily handle stuff categories as well as different numbers of target

regions. However, they are not as competitive on small-sized objects. We compare a strong

baseline of RMI [73] on our dataset.

More state-of-the-art methods are based on a two-stage framework of region proposal

and ranking. Significant innovations in techniques have been due to the improved tech-

niques for object detection (e.g., Mask R-CNN [46]) as well as language comprehension.

Some earlier works [81, 129, 83, 53, 77, 97, 118, 75, 25, 91] adopt a joint image-language

embedding model to rank object proposals according to their matching scores to the input

expressions. More recent works improve the proposal generation [131, 25], introduce at-

tention mechanisms [33, 126, 7] for accurate grounding, or leverage week supervision from

captions [122, 31].

The two-stage framework has also been further extended to modular comprehension

inspired by neural module networks [11]. For example, Hu et al. [51] introduce a compo-

sitional modular network for better handling of attributes and relationships. Yu et al. [128]

propose a modular attention network (MattNet) to factorize the referring task into separate

ones for the noun phrase, location, and relationships. Liu et al. [76] improves MattNet

by removing easy and dominant words and regions to learn more challenging alignments.

Several recent works [132, 119, 124, 74, 13, 37, 14] also apply reasoning on graphs or trees
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for more complicated phrases. These approaches have several appealing properties such

as more detailed modeling of different aspects of language descriptions. However, these

techniques have been primarily evaluated on datasets with a closed set of categories, and

often with ground-truth instances provided.

Sadhu et al. [100] proposes zero-shot grounding to handle phrases with unseen nouns.

Our work in Chapter 4 emphasizes further on the large number of categories, attributes and

relationships, providing supervision over these long-tailed concepts and more detailed and

straightforward evaluation.

1.3.2 Large-scale pre-training of image and text representations

With the availability of vast numbers of paired image and text data on the Internet,

the development of image and text encoders, and the growth of computing resources, it

now becomes possible to train large-scale representation learning models for jointly under-

standing images and text. These models can be applied to various cross-modal tasks such as

zero-shot classification, image-text retrieval, visual question answering, action recognition

in videos, geo-localization and so forth.

CLIP [94] trains an image encoder and a text encoder jointly on 400 million image-text

pairs from the Internet: given an image, the task is to predict, among a sampled set of

text descriptions, which one is paired with the input image in the training data. Radford et

al. demonstrate the quality of image representations through training linear classifiers on

top of image embeddings. They have also applied the encoders in downstream tasks such

as geo-localization, optical character recognition, facial emotion recognition, and action

recognition. [42] applies CLIP as a guidance for image and caption generation models. In

Chapter 5 we select CLIP as an example to analyze the effectiveness of pre-trained models.

While the analysis in [94] is more focused on image categorization based on the category

name alone, we look further into CLIP’s capability of understanding adjectives or attribute

phrases in fine-grained domains.
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ALIGN [58] leverages a noisy dataset of over one billion image-text pairs, obtained

without expensive filtering or post-processing steps in the Conceptual Captions dataset. It

shows that the scale of data can make up its noise and reach state-of-the-art performance

on various tasks.

UNITIER [27] applies a transformer on top of image and text encoders to better align

image regions with words. They leverage image-text pairs from four image captioning

datasets COCO, Visual Genome, Conceptual Captions [103], and SBU Captions [86], and

train the model on four pre-training tasks: masked language modeling conditioned on im-

age, masked region modeling conditioned on text, image-text matching, and word-region

alignment.

WenLan [54] constructs a Chinese image-text paired dataset containing 30 million pairs

and applies a two-tower structure on top of the image and text encoders for better con-

trastive learning. It was shown to outperform [94] and [27] on various downstream tasks.
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CHAPTER 2

DESCRIBING FINE-GRAINED CATEGORIES

Attribute-based representations have been used for describing instances within a basic-

level category as they often share a set of high-level properties. These attributes serve as

basis for human-centric tasks such as retrieval and categorization [117, 64, 88], and for

generalization to new categories based on a description of their attributes [40, 41, 99, 67].

However, most prior work has relied on a fixed set of attributes designed by experts. This

limits their scalability to new domains since collecting expert annotations are expensive,

and results in models that are less robust to noisy open-ended descriptions provided by a

non-expert user.

Instead of discrete attributes, we investigate the use of attribute phrases for describing

instances. Attribute phrases are short sentences that describe a unique semantic visual

property of an object (e.g., “red and white color”, “wing near the top”). Like captions,

they can describe properties in a compositional manner, but are typically shorter and only

capture a single aspect. Like attributes, they are modular, and can be combined in different

ways to describe instances within a category. Their compositionality allows the expression

of large number of properties in a compact manner. For example, colors of objects, or their

parts, can be expressed by combining color terms (e.g., “red and white”, “green and blue”,

etc.). A collection of these phrases constitutes the semantic space of describable attributes

and can be used as a basis for communication between a human and computer for various

tasks.

We begin by collecting a dataset of attribute phrases by asking annotators to describe

five visual differences between random pairs of airplanes from the OID airplane dataset [112].
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Propeller
Red and white body

Flat nose
In flight

Pilot visible

Jet engine
Two-tone gray body

Pointed nose
Grounded

No pilot visible

vs.
vs.
vs.
vs.
vs.

Facing right
In the air

Closed cockpit
White and green

Propeller spinning

Facing left
On the ground
Open cockpit

White and blue color
Propeller stopped

vs.
vs.
vs.
vs.
vs.

Red plane

Speaker

Listener

Figure 2.1: Reference games with attribute phrases. Left: Each annotation in our dataset
consists of five pairs of attribute phrases. Right: A reference game played between a
speaker who describes an attribute of an image within a pair and a listener whose goal
is to pick the right one.

Each difference is of the form “P1 vs. P2” with phrases P1 and P2 corresponding to the prop-

erties of the left and right image respectively (Figure 2.1). By collecting multiple properties

at a time we obtain a diverse set of describable attributes. Moreover, phrases collected in

a contrastive manner reveal attributes that are better suited for fine-grained discrimination.

The two phrases in a comparison describe the same underlying attribute (e.g., round nose

and pointy nose both describe the shape), and reflect an axis of comparison in the under-

lying semantic space. We then analyze the ability of automatic methods to generate these

attribute phrases using the collected dataset. In particular we learn to generate descriptions

and ground them in images in the context of a reference game (RG) between a speaker S

and a listener L (Figure 2.1). S is provided with a pair of images {I1, I2} and produces a

visual difference of the form P1 (or “P1 vs. P2”). L’s goal is to identify which of the two

images corresponds to P1. Reference games have been widely used to collect datasets de-

scribing objects within a scene. This work employs the framework to generate and reason

about compositional language-based attributes for fine-grained visual categorization.

Our experiments show that a speaker trained to describe visual differences displays

remarkable pragmatic behavior allowing a neural listener to rank the correct image with

91.4% top-5 accuracy in the RG compared with 80.6% of a speaker trained to generate
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captions non-contrastively. We also investigate a family of pragmatic speakers who gen-

erate descriptions by jointly reasoning about the listener’s ability to interpret them, based

on the work of Andreas and Klein [10]. Contrastively trained pragmatic speakers offer sig-

nificant benefits (on average 7% higher top-5 accuracy in RG across listeners) over simple

pragmatic speakers. The resulting speakers can be used to generate attribute-based expla-

nations for differences between two categories. Moreover, given a set of attribute phrases,

the score of an image with respect to each phrase according to a listener provides a nat-

ural embedding of the image into the space of semantic attributes. On the task of image

classification on the FGVC aircraft dataset [80] this representation outperforms existing

attribute-based representations by 20% accuracy.

For the task of fine-grained recognition, the work of Reed et al. [96] is the most related

to ours. They ask annotators on Amazon Mechanical Turk to describe properties of birds

and flowers, and use the data to train models of images and text. They show the utility of

such models for zero-shot recognition where a description of a novel category is provided

as supervision, and for text-based image retrieval. Another recent work [113] showed that

referring expressions for images within a set can be generated simply by enforcing sepa-

ration of image probabilities during decoding using beam search. However, their model

was trained on context agnostic captions. Our work takes a different approach. First, we

collect attribute phrases in a contrastive manner that encourages pragmatic behavior among

annotators. Second, we ask annotators to provide multiple attribute descriptions, which as

we described earlier, allows modular reuse across instances, and serves as an intermediate

representation for various tasks. Attribute phrases capture the spectrum between basic at-

tributes and detailed captions. Like “visual phrases” [99] they capture frequently occurring

relations between basic attributes.
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2.1 A Dataset of Attribute Phrases

We rely on human annotators to discover the space of descriptive attributes. Our an-

notations are collected on images from the OID aircraft dataset [112]. The annotations are

organized into 4700 image pairs (1851 images) in training set, 2350 pairs (1730 images) in

validation set, and 2350 pairs (2705 images) in test set. Each pair is chosen by picking two

different images uniformly at random within the provided split in the OID aircraft dataset.

Annotators from Amazon Mechanical Turk are asked to describe five properties in the

form “P1 vs. P2”, each corresponding to a different aspect of the objects in the left and the

right image respectively. We also provide some examples as guidance to the annotators.

The interface shown in Figure 2.2 is lightweight and allows rapid deployment compared to

existing approaches for collecting attribute annotations where an expert decides the set and

semantics of attributes ahead of time. However, the resulting annotations are noisier and

reflect the diversity of open-ended language-based descriptions. A second pass over the

data is done to check for consistency, after which about 15% of the description pairs were

discarded.

Figure 2.1 shows an example of our dataset. Annotations describe the shapes of parts

(nose, wings and tail), relative sizes, orientation, colors, types of engines, etc. Most de-

scriptions are short with an average length of 2.4 words on each side, although about 4.3%

of them have more than 4 words. These are qualitatively different from image captions

which are typically longer and more grammatical. However, each annotation provides five

different attribute pairs.

The OID dataset also comes with a set of expert-designed attributes. A comparison

with OID attributes shows that attribute phrases capture novel properties that describe the

relative arrangement of parts (e.g., “door above the wing”, “wing on top”), color combina-

tions, relative sizes, shape, and number of parts (e.g., “big nose”, “more windows”, etc.)

Section 2.3.4 shows a visualization of the space of attribute phrases. Section 2.3.3 pro-
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Describe differences between the two aeroplane images

Instructions: 

Annotate each one of the three tasks
Press Next to move to the next pair and Submit once done.
If the images do not display, your browser may not support this interface.
Try the latest Chrome, Safari or Firefox browsers.

Click here to see example answers before you start.

   VS   

 

List 5 differences between the two images
1.    VS   

2.    VS   

3.    VS   

4.    VS   

5.    VS   

 
 pair 1 of 3

Previous Next

Figure 2.2: The interface used to collect five different attribute phrase pairs adapted
from [78]. Amazon Mechanical Turkers were paid $0.12 for annotating three pairs.

vides a direct comparison of OID attributes and those derived from our data on the task of

FGVC-aircraft variant classification [80].

2.2 Models

2.2.1 Speaker models

A speaker maps visual inputs to attribute phrases. We consider two speakers; a simple

speaker (SS) that takes a single image as input and produces a description, and a discerning

speaker (DS) that takes two images as input and produces a single (or a pair of) descrip-

tion(s).

Both our speaker models are based on the show-and-tell model [115] developed for

image captioning. Images are encoded using a convolutional network and decoded into a

sentence using a recurrent network over words. We use one-hot encoding for 730 words

with frequency greater than 5 in the training set. We consider fc7 layer outputs of the
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VGG-16 network [105] plus two fully-connected layers with ReLU units [84] on top as the

image feature, and a LSTM model [48] with 2048 hidden units to generate the sentences.

The image feature is fed into the LSTM not only as the initial input, but also in each state

input together with word embeddings. This led to an improved speaker in our experiments.

For the discerning speaker, we concatenate two image features as input to the LSTM. At

test time we apply beam search with beam size 10 and get 10 output descriptions from each

image (pair). Although the discerning speaker is trained to generate phrase pairs, we can

simply take the first (or second) half of the pair and evaluate it in the same way as a simple

speaker.

We also consider a pragmatic speaker that generates contrastive captions by reasoning

about the listener’s ability to pick the correct image based on the description. Andreas and

Klein [10] proposed a simple strategy to do so by reranking descriptions of an image based

on a weighted combination of (a) fluency – the score assigned by the speaker, and (b) accu-

racy – the score assigned by the listener on the referred image. Various pragmatic speakers

are possible based on the choice of speakers and listeners. The details are described in

Section 2.3.2.

Optimization details: Our implementation is based on Tensorflow [5]. The descriptions

are truncated at length 14 when training the LSTM. The VGG-16 network is initialized

with weights pre-trained on ImageNet dataset [66]. We first fix the VGG-16 weights and

train the rest of the network, using Adam optimizer [62] with initial learning rate 0.001,

β1 = 0.7, β2 = 0.999 and ε = 1.0 × 10−8. We have batch normalization [55] in fully

connected layers after VGG-16, and drop out with rate 0.7 in LSTM. We use batch size 64

for 40000 steps (∼28 epochs). Second, we fine tune the whole network with initial learning

rate modified to 5× 10−6, batch size 32 for another 40000 steps.
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2.2.2 Listener models

A listener interprets a single (or a pair of) attribute phrase(s), and picks an image within

a pair by measuring the similarity between the phrase(s) and images in a common embed-

ded space. Once again we consider two listeners: a simple listener (SL) that interprets

a single phrase, and a discerning listener (DL) that interprets a phrase pair. The simple

listener models the score of the image I1 within a pair (I1, I2) for a phrase P as:

p(I1|P ) = σ(φ(I1)T θ(P), φ(I2)T θ(P)).

Here φ and θ are embeddings of the image and the phrase respectively, and σ is the

softmax function σ(x, y) = exp(x)/(exp(x) + exp(y)). Similarly, a discerning lis-

tener models the score of an image by comparing it with an embedding of the phrase

pair θ([P1 vs. P2]). A simple way to construct a discerning listener from a simple lis-

tener is by averaging the predictions from the left and right phrases, i.e., p(I|[P1 vs. P2]) =

(p(I|P1) + p(I|P2)) /2.

We follow the setup of the speaker to embed phrases and use the final state of a LSTM

with 1024 hidden nodes as the phrase embedding. The vocabulary of words is kept identi-

cal. For image features, once again we use the fc7 layer of the VGG-16 network and add

a fully-connected layer with 1024 units and ReLU activation. The parameters are learned

by minimizing the cross-entropy loss.

We also evaluate two variants of the simple listener, SLr and SL, based on whether it is

trained on non-contrastive data (I1, I2, P1) where I2 is a random image within the training

set, or the contrastive data where I2 is the other image in the annotation pair.

Optimization details: We first fix the VGG-16 network and use Adam optimizer with

initial learning rate = 0.001, β1 = 0.7, batch size = 32 for 2000 steps (4000 steps for SLr

model), then fine-tune the entire model with a learning rate 1×10−5 for another 7000-10000

steps.
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Human listener. We also consider human annotators to perform the task of the listener

in the RG. For each generated phrase that describes one image out of an image pair, we

let three users to pick which image out of the pair the phrase is referring to. However,

unlike (most) human speakers, neural speakers can produce irrelevant descriptions. Thus,

in addition to the choice of left and right image, users have the option to say “not sure”

when the description is ambiguous. If two or more users out of three picked the same

image, we say the human listener is certain about the choice, otherwise we say the human

listener is uncertain.

2.3 Results

We evaluate various listeners and speakers on the dataset we collected in terms of their

accuracy in the RG in Section 2.3.1 and Section 2.3.2 respectively. We then evaluate their

effectiveness on a fine-grained classification task in Section 2.3.3, visualize the space of

attribute phrases discovered from the data in Section 2.3.4, for text-based image retrieval

in Section 2.3.5, and for generating visual explanations for differences between categories

in Section 2.3.6.

2.3.1 Evaluating listeners

We first evaluate various listeners on human-generated phrases. For simple listeners,

each annotation provides ten different reference tasks (I1, I2, P) → {0,1} corresponding

to five different left and right attribute phrases. Each task is evaluated independently and

accuracy is measured as the fraction of correct references made by the listener. Similarly,

discerning listeners are evaluated by replacing P with “P1 vs. P2” or “P2 vs. P1”.

Accuracy using human speakers. The results are shown in Table 2.1. Training on con-

trastive data improves the accuracy of the simple listener slightly from 84.2% (SLr) to

86.3% (SL) on the test set. Discerning listeners see both phrases at once and naturally

perform better. There is almost no difference between a discerning listener that combines
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Input Speaker Listener Val Test

P1 Human
SLr 82.7 84.2
SL 85.3 86.3

P1 vs. P2 Human
DL 88.7 88.9

2×SL 89.6 89.3

Table 2.1: Accuracy (%) of various listeners in the RG using attribute phrases pro-
vided by a human speaker.

1 2 3 4 5
Val 91.3 86.6 84.1 82.5 82.3
Test 92.3 87.4 85.9 84.0 81.6

Table 2.2: Accuracy (%) of the simple listener (SL) on RG using human-generated
attribute phrases at positions one through five across the validation and test set. The
accuracy decreases monotonically from one to five suggesting that the top attribute phrases
are easier to discriminate.

two simple listeners by averaging their predictions (2×SL), and one that interprets the two

phrases at once (DL). The results indicate that on our dataset the listener’s task is rela-

tively easy and contrastive data does not provide any significant benefits. As a reference

the accuracy of a human listener is close to 100% on human-generated phrases.

Are the top attributes more salient? As annotators are asked to describe five different

attributes they might pick ones that are more salient first. We evaluate this hypothesis by

measuring the accuracy of the listener (SL) on phrases as a function of the position of the

annotation in the interface ranging from one for the top attribute to five for the last one.

The results are shown in Table 2.2. The accuracy decreases monotonically from one to five

suggesting that the first attribute phrase is easier for the listener to discriminate. We are

uncertain if this is because the attributes near the top are more discriminative, or because

the listener is better at interpreting these as they are likely to be more frequent in the training

data. Nevertheless, attribute saliency is a signal we did not model explicitly and may be

used to train better speakers and listeners (e.g., see Turakhia and Parikh [109]).
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2.3.2 Evaluating speakers

We use simple listeners, SL and SLr, and the human listener to evaluate speakers. As

described in Section 2.2.1 we use beam search to generate 10 descriptions for each image

pair and evaluate them individually using various listeners. The discerning speaker gener-

ates phrase pairs but we simply take the first and second half separated by “vs.”, a special

word in the vocabulary, and evaluate it using a simple listener (that sees only one phrase).

If the word “vs.” is missing in the generated output we simply consider the entire sentence

as the P1. Only 1 out of 23500 phrase pairs did not contain the “vs.” token.

For evaluation with humans we collect three independent annotations on a subset of 100

image pairs (with 10 descriptions each) out of the full test set. The listeners are considered

to be correct when the probability of the correct image is greater than half. For human

listener, we report the accuracy of when there is a majority agreement on the correct image,

i.e., when two or more users picked the correct image. For direct comparison with the

simple speaker models, we also report the human listener accuracy when they are allowed

to guess. This is the sum of earlier accuracy, and half of the cases when there is no majority

agreement. Human annotators are uncertain when the generated descriptions are not fluent

or when they are not discriminative. Therefore, a better human accuracy reflects speaker

quality both in terms of fluency and discriminativeness. Some examples of the generated

attribute phrases using various speakers are shown in Figure 2.3.

Accuracy of various speakers and listeners. Results on the full test set (Test) and the

human-evaluated subset (Test*) are shown in Table 2.3. The accuracy of discerning speaker

exceeds that of simple speaker by more than 10% no matter which listener to use. This

result suggests that data collected contrastively using our annotation task allows direct

training of speaker models that show remarkable context-sensitive behavior. Somewhat

surprisingly we also see that the simple listeners are more accurate than the human listener

when evaluated on descriptions generated by our speaker models. This is because humans

tend to be more cautious in the reference game. For example, simple listeners will accept
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Ground Truth:
1) small size VS large size
2) single seat VS more seated
3) facing left VS facing right
4) private VS commercial
5) wings at the top VS wings at the bottom

DS:
1) private plane VS commercial plane (p=0.3338)
2) private VS commercial (p=0.1648)
3) small plane VS large plane (p=0.0701)
4) facing left VS facing right (p=0.0355)
5) short VS long (p=0.0250)
6) white VS red (p=0.0228)
7) high wing VS low wing (p=0.0184)
8) small VS large (p=0.01775)
9) glider VS jetliner (p=0.0170)
10) white and blue color VS white red and 
      blue color (p=0.0159)

SS:
1) no engine (p=0.2963)
2) small (p=0.1800)
3) private plane (p=0.0650)
4) on the ground (p=0.0519)
5) propellor engine (p=0.0322)
6) on ground (p=0.0250)
7) glider (p=0.0228)
8) white color (p=0.0163)
9) small plane (p=0.0151)
10) no propeller (p=0.0124)

Figure 2.3: Example output of simple speaker SS and discerning speaker DS. Simple
speaker takes the left image in the green box as input, while the discerning speaker takes
both images as input. In brackets are the probabilities according to the speaker.

yellowish grass being referred to as “concrete” compared to green grass, but humans tend

to view it as an unclear reference.

Does pragmatics help? Given that our discerning speaker can generate highly accurate

contrastive descriptions, we investigate if additional benefits can be achieved if the speaker

jointly reasons about the listener’s ability to interpret the descriptions. We employ the

pragmatic speaker model of Andreas and Klein [10] where a simple speaker generates

descriptions that are reranked by a simple listener using a weighted combination of speaker

and listener scores. In particular, we rerank the output 10 sentences from speakers by the

probabilities from simple listeners. We combine the listener probability pl and speaker

beam-search probability ps as p = pλs · p
(1−λ)
l , and pick the optimal λ on a validation set

annotated by a human listener. We found that the optimal λ is close to 0, so we decided to

use pl only for reranking on test set.

In Table 2.4, we report the accuracy of top k sentences (k = 1, 5, 7) of the human

listener and the results after reranking on the Test* set. When using the listener score from
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Accuracy (%)
SLr SL Human

Top Test∗ Test Test∗ Test Test∗

SS
1 84.0 79.8 83.0 81.7 68.0 (77.0)
5 80.0 79.2 78.0 80.6 64.2 (74.1)

10 78.0 78.9 76.6 80.0 61.6 (72.4)

DS
1 94.0 92.8 92.0 92.8 82.0 (88.5)
5 91.2 90.3 91.2 91.4 80.2 (86.7)

10 88.6 88.8 90.0 90.5 77.9 (85.0)

Table 2.3: Accuracy in the RG using different speakers and listeners. Test represents
the full test set consisting of 2350 image pairs. Test∗ represents a subset of 100 test set
image pairs for which we collected human listener results. For the human listener, we
report the accuracy when there is a majority agreement, and accuracy with guessing (in
brackets). DS is significantly better at generating discriminative attribute phrases than SS.

SLr the average accuracy of the top five generated descriptions after reranking improves

dramatically from 64.2% to 82.6% for the simple speaker. The accuracy of the discerning

speaker also improves to 90%. This suggests that better pragmatics can be achieved if both

the speaker and listener are trained in a contrastive manner. Surprisingly the contrastively-

trained simple listener SL is less effective at reranking than SLr. We believe this is because

the SL overfits on the human speaker descriptions and is less effective when used with

neural speakers.

Figure 2.4 shows an example pair and the output of different speakers. Simple speaker

suffers from generating descriptions that are true to the target image, but fail to differentiate

two images. Discerning speaker can mostly avoid this mistake. Reranking by listeners can

move better sentences to the top and improves the quality of top sentences.

2.3.3 Fine-grained classification with attributes

We compare the effectiveness of attribute phrases to existing attributes in the OID

dataset on the task of fine-grained classification on the FGVC aircraft dataset [80]. The

OID dataset is designed with attributes in mind and has long-tail distribution over aircraft

variants with 2728 models, while the FGVC dataset is designed for fine-grained classifica-
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Human listener accuracy (%)
Reranker listener

Top None SLr SL

SS
1 68.0 (77.0) 94.0 (96.0) 87.0 (92.0)
5 64.2 (74.1) 82.6 (88.3) 80.8 (87.1)
7 63.1 (72.8) 74.3 (82.0) 74.3 (82.4)

DS
1 82.0 (88.5) 95.0 (96.5) 95.0 (97.0)
5 80.2 (86.7) 90.0 (93.3) 88.6 (92.8)
7 79.1 (85.6) 86.7 (91.5) 86.1 (91.1)

Table 2.4: Accuracy of pragmatic speakers with human listeners on the Test* set. After
generating the descriptions by the speaker model (either SS or DS), we use the listener
model (SLr or SL) to rerank them. We report the accuracy based on human listener from
the user study. We report both the accuracy when there is majority agreement, and accuracy
with guessing (in brackets). Pragmatic speakers are strictly better than non-pragmatic ones.

tion task with 100 variants each with 100 images. Both datasets are based on the images

from the airliners.net website and have a few overlapping images. We exclude the

169 images from the FGVC test set that appear in the OID training+validation set in our

evaluation.

There are 49 attributes in the OID dataset organized into 14 categories. We exclude

three attributes – two referring to the airline label and model, most of which have only one

training examples per category, and another that is rare. We then trained linear classifiers to

predict each attribute using the fc7 layer feature of the VGG-16 network. Using the same

features and trained classifiers, we construct a 46 dimensional embedding of the FGVC

images into the space of OID attributes. The attribute classifiers based on the VGG-16

network features are fairly accurate (66% mean AP across attributes) and outperforms the

Fisher vector baseline included in the OID dataset paper.

For the attribute phrase embeddings, we first obtain the K most frequent ones in our

training set. Given an image I, we compute the score φ(I)T θ(P) for each phrase P from a

listener as the embedding. For a fair comparison the image features are kept identical to

the OID attribute classifiers. We also explore an opponent attribute space, where instead of

top phrases we consider the top phrase pairs. Phrase pairs represent an axis of comparison,
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SS: 
✔ passenger plane 
?  white 
✔ jet engine 
?  facing right 
✔ commercial plane 
?  _UNK 
?  on the ground 
✔ large 
✔ large size 
✔ on runway

DS:
✔ commercial plane 
?  facing right 
✔ turbofan engine 
✔ on concrete 
✔ t tail 
✔ jet engine 
✔ twin engine 
✔ multi seater 
✔ white and red 
✔ white colour with red stripes

SS + SLr:
✔ commercial plane 
✔ large 
✔ large size 
✔ jet engine 
✔ on runway 
✔ passenger plane 
?  on the ground 
?  _UNK 
?  white 
?  facing right

DS + SLr:
✔ commercial plane 
✔ jet engine 
✔ turbofan engine 
✔ twin engine 
✔ on concrete 
✔ multi seater 
✔ t tail 
✔ white and red 
?  facing right 
✔ white colour with red stripes

Figure 2.4: An example output of various speakers. Given the image pair, we use SS
and DS to generate descriptions of the top left image. Outputs from SS and DS are listed
in the order of probabilities from speaker beam search. Outputs of SS+SLr and DS+SLr
are reranked by SLr. Green checks mean human listener picks correct image with certain,
while question marks mean human listener is uncertain which image is referred to. The
results indicate that DS is better than SS, and reranking using listeners improves the quality
of top sentences.

e.g., “small vs. medium”, or “red and blue vs. red and white”, and are better suited for

describing relative attributes. We use the discerning listener for the embedding on the

opponent attribute space.

Figure 2.5 shows a comparison of OID attributes and attribute phrases for various lis-

teners and number of attributes. For the same number of attributes as the OID dataset,

attribute phrases are 12% better. With 300 attributes the accuracy improves to 32%, about

20% better than OID. These results indicate that attribute phrases provide a better coverage

of the space of discriminative directions. The two simple listeners perform equally well and

the opponent attribute space does not offer any additional benefits.

2.3.4 Visualizing the space of descriptive attributes

We visualize the space of the 500 most frequent phrases in the training set using the

embedding of the simple listener model projected from 1024 dimensions to 2 using t-

SNE [110] in Figure 2.6. Various semantically related phrases are clustered into groups.

The cluster on the top right reflects color combinations; Phrases such as “less windows”

and “small plane” are nearby (bottom right).
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Figure 2.6: Visualization of the 500 most frequent descriptions. Each attribute is em-
bedded into a 1024 dimensional space using the simple listener SL and projected into two
dimensions using t-SNE [110].
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SS: 
✔ passenger plane 
?  white 
✔ jet engine 
?  facing right 
✔ commercial plane 
?  _UNK 
?  on the ground 
✔ large 
✔ large size 
✔ on runway

DS:
✔ commercial plane 
?  facing right 
✔ turbofan engine 
✔ on concrete 
✔ t tail 
✔ jet engine 
✔ twin engine 
✔ multi seater 
✔ white and red 
✔ white colour with red stripes

SS + SLr:
✔ commercial plane 
✔ large 
✔ large size 
✔ jet engine 
✔ on runway 
✔ passenger plane 
?  on the ground 
?  _UNK 
?  white 
?  facing right

DS + SLr:
✔ commercial plane 
✔ jet engine 
✔ turbofan engine 
✔ twin engine 
✔ on concrete 
✔ multi seater 
✔ t tail 
✔ white and red 
?  facing right 
✔ white colour with red stripes

Figure 4. An example for comparing various speakers. Given the image pair in the left as input, we use SS and DS to generate descriptions
of the top left image. Outputs from SS and DS are listed in the order of probabilities from speaker beam search. Outputs of SS+SLr and
DS+SLr are reranked by SLr . Green checks mean human listener picks correct image with certain, while question marks mean human
listener is uncertain which image is referred to. We show that DS is better than SS, and reranking improves the quality of top sentences.

red and blue pointy nose; on the runway red plane; many windows; facing right

Figure 7. Top 18 images ranked by the listener for various attribute phrases as queries (shown on top). We rank the images by the scores
from the simple listener on the concatenation of the attribute phrases. The images are ordered from top to bottom, left to right.

small plane
military plane

grey
single engine
pointed nose

fighter jet
grey color

gray
no windows on body

gray color

commercial plane
big plane

twin engine
rounded nose
commercial

turbofan engine
passenger jet
commercial jet

white
white color

F/A-18 Yak-42

large plane
more windows

commercial plane
more windows on body

big plane
commercial
jet engine

turbofan engine
engines under wings

on ground

private plane
less windows
medium plane

propellor engine
fewer windows on body

small plane
private

propeller engine
stabilizer on top of tail

british airways

747-400 ATR-42

Figure 8. Top 10 discriminative attribute phrases for pairs of categories from FGVC aircraft dataset. Descriptions are generated by the
discerning speaker for each pair of images in the first and second category. The phrases sorted by the occurrence frequency provides an
attribute-based explanation of the visual difference between two categories.

Figure 2.7: Top 18 images ranked by the listener for various attribute phrases as
queries (shown on top). We rank the images by the scores from the simple listener on
the concatenation of the attribute phrases. The images are ordered from top to bottom, left
to right.
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Figure 2.8: Top 10 discriminative attribute phrases for pairs of categories from FGVC
aircraft dataset. Descriptions are generated by the discerning speaker for each pair of
images in the first and second category. The phrases sorted by the occurrence frequency
provides an attribute-based explanation of the visual difference between two categories.

27



2.3.5 Image retrieval with descriptive attributes

The listeners also allows us to retrieve an image given one or more attribute phrases.

Given a phrase P we rank the images in the test set by the listener scores φ(I)T θ(P). Fig-

ure 2.7 shows some query phrases and the 18 most similar images retrieved from the test

set. These results were obtained by simply concatenating all the query phrases to obtain

a single phrase. More sophisticated schemes for combining scores from individual phrase

predictions are likely to improve results [101]. Our model can retrieve images with mul-

tiple attribute phrases well even though the composition of phrases does not appear in the

training set. For example, “red and blue” only shows five times in total of 47, 000 phrases

in the training set, “pointy nose” and “on the runway” are never seen in a single phrase

together.

2.3.6 Generating attribute explanations

The pairwise reasoning of a speaker can be extended to analyze an instance within a

set by aggregating speaker utterances across all pairs that include the target. Similarly

one can describe differences between two sets by considering all pairs of instances across

the two sets. We use this to generate attribute-based explanations for visual differences

between two categories. We select two categories A,B from FGVC aircraft dataset and

randomly choose ten images from each category. For each image pair (I1 ∈ A, I2 ∈ B),

we generate ten phrase pairs using our discerning speaker. We then sort unique phrases

primarily by their image frequency (number of images from target category described by

the given description minus that from the opposite category), and when tied secondarily by

their phrase frequency (number of occurrences of the phrase in target category minus that in

the opposite category.) The top ten attribute phrases for the two categories for an example

pair of categories are shown in Figure 2.8. The algorithm reveals several discriminative

attributes between two such as “engine under wings” for 747-400, and “stabilizer on top of

tail” for ATR-42.
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2.4 Summary

We analyzed attribute phrases that emerge when annotators describe visual differences

between instances within a subordinate category (airplanes), and showed that speakers and

listeners trained on this data can be used for various human-centric tasks such as text-based

retrieval and attribute-based explanations of visual differences between unseen categories.

Our experiments indicate that pragmatic speakers that combine listeners and speakers are

effective on the reference game [10], and speakers trained on contrastive data offers sig-

nificant additional benefits. We also showed that attribute phrases are modular and can be

used to embed images into an interpretable semantic space. The resulting attribute phrases

are highly discriminative and outperform existing attributes on FGVC aircraft dataset on

the fine-grained classification task.
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CHAPTER 3

DESCRIBING TEXTURES

Texture is ubiquitous and provides useful cues for a wide range of visual recognition

tasks. We rely on texture for estimating material properties of surfaces, for fine-grained

discrimination of objects with a similar shape, for generating realistic imagery in computer

graphics applications, etc. Texture is localized and more easily modeled than shapes that

are affected by pose, viewpoint, or occlusion. The effectiveness of texture for perceptual

tasks is also mimicked by deep networks trained on current computer vision datasets that

have been shown to rely significantly on texture for discrimination (e.g., [44, 29, 21, 50]).

While there has been significant work in the last few decades on visual representations

of texture, limited work has been done on describing detailed properties of textures using

natural language. The ability to describe texture in rich detail can enable applications on

domains such as fashion and graphics, as well as to interpret discriminative attributes of

visual categories within a fine-grained taxonomy (e.g., species of birds or flowers) where

texture cues play a key role. However, existing datasets of texture (e.g., [28, 17]) are limited

to a few binary attributes that describe patterns or materials, and do not describe detailed

properties using the compositional nature of language (e.g., descriptions of the color and

shape of texture elements). At the same time, existing datasets of language and vision [12,

70, 103, 92, 60, 81, 129] primarily focus on objects and their relations with very limited

treatment of textures. Addressing this gap in the literature, we introduce a new dataset

containing rich natural language descriptions of textures called the Describable Textures in

Detail Dataset (DTD2). It contains several descriptions of each image from the Describable

Texture Dataset (DTD) [28] that are manually annotated. As seen in Figure 3.1, these
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[1] circular overlapping red yellow green twisted
[2] spiral, round, patches, rings, multi-colored
[3] multi colour design with circle in shape
[4] swirled, green, red, blue, round, circular

[1] white color, background lavender, bubbly,
circular shape, water surface

[2] light crystal clear round and circular elements
[3] bubble, round, water, blue, white
[4] bubbly, fizzy, light, airy, clear

[1] animal print, zebra, white and black stripes with blue body
[2] black stripes on blue, yellow, and green background
[3] spiral, blue and yellow with black stripes, zebralike, 

spherical, smooth
[4] striped, blue, yellow, lined, black

[1] spiralled, rounded, thick, light colour, rope type
[2] white coloured spiral design, semi soft texture
[3] white, spiralled, rough, grooved, hard
[4] soft, malleable, brown, heavy, circular

[1] pink, soft, girly, pretty, sweet
[2] pink, wrinkles, smooth, silky, soft
[3] rumpled, crumpled, crushed, crimped, cockled
[4] pink, soft, delicate, yielding, shiny
[5] pink soft texture like smooth

[1] purple lines, green shaped diamond, streaks, stalk and flappy
[2] bright purple, protruding, vein-like, irregular patterns on light 

green surface
[3] fibrous, pulpy, stalky leaf, variegated, marbled
[4] leaf, green, blue, veins, plant

Figure 3.1: We introduce the Describable Textures in Detail Dataset (DTD2) consisting
of texture images from DTD [28] with natural language descriptions, which provide rich
and fine-grained supervision for various aspects of texture such as color compositions,
shapes, and materials.

contain descriptions of colors of the structural elements (e.g., “dots” and “lines”), their

shape, and other high-level perceptual properties of texture (e.g., “soft” or “protruding”).

The resulting vocabulary vastly extends the 47 attributes present in the original DTD dataset

(Section 3.1).

We argue that the domain of texture is rich and poses many challenges for compositional

language modeling that are present in existing language and vision datasets describing ob-

jects and scenes. For example, to estimate the color of dots in a dotted texture the model

must learn to associate the color to the dots and not to the background. Yet the domain

of texture is simple enough that it allows us to analyze the robustness and generalization

of existing vision and language models by synthetically generating variations of a texture.

We conduct a systematic study of existing visual representations of texture, models of lan-

guage, and methods for matching the two domains on this dataset (Sections 3.2, 3.3 and

3.3.3). We find that adopting pre-trained language models significantly improve general-

ization. However, they fail to capture detailed properties of texture which we critically

analyze with synthetically generated variations of each texture by varying one attribute at

a time (e.g., foreground color and shape).
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We also present two novel applications of our dataset (Section 3.4). First, we visual-

ize what discriminative texture properties are learned by existing deep networks for fine-

grained classification on natural domains such as birds, flowers, and butterflies. To this end,

we generate “maximal images” for each category by “inverting” a state-of-the-art texture-

based classifier [72] and describe these images using captioning models trained on DTD2.

We find that the resulting explanations are well aligned with the discriminative attributes

of each category (e.g., “Tiger Lily” flower is “black, red, white, and dotted” as seen in

Figure 3.6-middle). We also show that models trained on DTD2 offer improvements over

expert-designed binary attributes on the Caltech-UCSD Birds dataset [116]. This comple-

ments the capabilities of existing datasets for explainable AI on these domains that focus

on shapes, parts, and their attributes such as color. Texture provides a domain-independent,

albeit incomplete way of describing interpretable discriminative properties.

In summary, our contributions are:

• A novel dataset of texture descriptions (Section 3.1).

• Evaluation of existing models of grounding natural language to texture (Section 3.2

and 3.3).

• Critical analysis of these models using synthetic, but realistic variations of textures

with their descriptions (Section 3.3.3).

• Application of our models for describing discriminative texture attributes and build-

ing interpretable models on fine-grained domains (Section 3.4).

3.1 Dataset and Tasks

We begin by describing how we collected DTD2 in Section 3.1.1, followed by the

tasks and evaluation metrics in Section 3.1.2. DTD2 contains multiple descriptions an-

notated by humans for each image in DTD. Each image I contains k descriptions S =
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{S1, S2, . . . , Sk} from k different annotators who are asked to describe the texture pre-

sented in the image. Instead of a grammatically coherent sentence, we found it more ef-

fective and easier for them to list a set of properties separated by commas. Thus each de-

scription S can be interpreted as a set of phrases {P1, P2, . . . , Pn}. As seen in Figure 3.1,

the ordering among phrases for a given description is somewhat arbitrary and in an initial

experiment we found it hard to tell apart the description with original order of phrases from

one with a random order, which motivates this annotation structure.

Figure 3.2 shows the statistics of the collected dataset. DTD2 contains 5,369 images,

24,697 descriptions, and 22,435 unique phrases. We split the images into 60% training,

15% validation, and 25% test. Below we describe the details of the dataset collection

pipeline and tasks. We will release the dataset publicly upon acceptance of the paper.

3.1.1 Dataset collection

Annotation We present each DTD image and its corresponding DTD texture category

to 5 different Amazon Mechanical Turk workers, asking them to describe the texture using

natural language with at least 5 words. Describable aspects of each image include tex-

ture, color, shape, pattern, style, and material (we provided examples of several texture

categories in the annotation guidelines).

Verification After collecting the raw annotations, we manually verified all of them and

removed annotations that were not appropriate or relevant for the image. For example, a

breakfast waffle may have descriptions about the related food items such as strawberries

instead of the description of texture which is our main goal. We also removed all images

from “freckled” and “potholed” categories because they are primarily of human faces or

scenes of roads. The resulting descriptions had few texture-related terms. We also excluded

images with fewer than 3 valid descriptions.
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Statistics overall frequent
#images 5369 -
#phrases 22,435 655
#words 7681 1673
#descriptions per image 4.60 -
#phrases per image 16.64 11.61
#words per description 7.13 6.69
#words per phrase 3.93 1.19
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Figure 3.2: Statistics of DTD2. The “overall” column in the table shows the statistics of
all data, while the “frequent” column only considers the phrases (or words) that occur at
least 10 (or 5) times in the training split which forms our evaluation benchmark. The cloud
of phrases has the font sizes proportional to square-root of frequencies in the dataset. The
vocabulary significantly expands the 47 attributes of DTD.

Post-processing We found that the annotations (as seen in Figure 3.1) describing aspects

of texture are often expressed as a set of phrases separated by commas, instead of a fully

grammatical sentence. We did find some users who provided long unbroken sentences,

but these were few and far between. Therefore, we represent each description as a set of

phrases indicated by commas (“,”) or semicolons (“;”). For the purpose of evaluation, we

consider words that appear at least 5 times and phrases that appear at least 10 times in the

training split of the dataset. This results in 655 unique phrases in the dataset. Although

some long descriptions are lost in the process, the collection of phrases captures a rich set

of describable attributes for each image. As seen in Figure 3.2, most of the phrases are

short (e.g., “red dots”, “black and white stripes”). However, we find that modeling the

space of phrases pose significant challenges to existing techniques for language and vision

(Section 3.3.3).

3.1.2 Tasks and evaluation metrics

The annotation for each image is in the form of a set of descriptions, with each descrip-

tion in the form of a set of phrases. A phrase is an ordered list of words. We consider

several tasks and evaluation metrics on this dataset described next.
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Phrase retrieval Given an image, the goal is to rank phrases p ∈ P that are relevant to

the image. Here P is the set of all possible phrases, restricted to 655 frequent ones. For

each image, the set of “true” relevant phrases are obtained by taking the union of phrases

from all descriptions of the image. We can evaluate the ranked list according to several

metrics:

• Mean Average Precision (MAP): area under the precision-recall curve;

• Mean Reciprocal Rank (MRR): One over the ranking of the first correct phrase;

• Precision at K (P@K): precision of the top K ranked phrases (K ∈ {5, 20});

• Recall at K (R@K): recall of the top K ranked phrases (K ∈ {5, 20}).

Image retrieval from a phrase The task is to retrieve images given a query phrase.

When taking phrases as the query, we consider all phrases p ∈ P as before and ask the

retrieval model to rank all images in the test or validation set. The “true” list is all images

that contain the phrase (in any of its descriptions). We consider the same metrics as the

phrase retrieval task.

Image retrieval from a description When using descriptions the query, we consider all

description s ∈ S as the input. Here S is the set of all descriptions in the test or validation

set. We ask the retrieval model to rank all images in the corresponding set. We evaluate

the rank of the image from which the description was collected (MRR metric). This metric

allows us to evaluate the compositional properties of texture over phrases (e.g., “red dots”

+ “white background”). While we only quantitatively evaluate phrases and descriptions in

the dataset, the ranking models can potentially generalize to novel descriptions or phrases

over the seen words. We present qualitative results and a detailed study of the models in

Section 3.3 and 3.3.3.
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Description generation The task is to generate a description for an input image. Given

each image I , we compare the generated description against the set of its collected de-

scriptions {S1, S2, . . . , Sk} using standard metrics for image captioning including BLEU-

1,2,3,4 [87], METEOR [16], Rouge-L [69] and CIDEr [114]. However, we note that the

task is open-ended and qualitative visualizations are just as important as these metrics.

3.2 Methods

We investigate three techniques learn the mapping between visual texture and natural

languages on our dataset — a discriminative classification approach, a metric learning ap-

proach, and a language generation approach. They are explained in detail in the next three

sections.

3.2.1 A discriminative classification approach

A simple baseline is to treat each phrase p ∈ P as a binary attribute and train a multi-

label classifier to map the images to phrase labels. Given a texture image I , let ψ(I) be

an embedding computed using a deep network. We investigate activations from different

layers of a ResNet101 [?] using mean-pooling over spatial locations as choices for the

image embedding. For the classification task, we attach a classifier head h to map the

embeddings to a 655-dimensional space corresponding to each phrase in our frequent set

P . The function h is modeled as a two-layer network – the first is fully-connected layer

with 512 units with BatchNorm and ReLU activation; the second is a linear layer with

655 units followed by sigmoid activation. Given a training set of {(Ii, Yi)}Ni=1 where Yi

is the ground-truth binary labels across 655 classes for image Ii, the model is trained to

minimize the binary cross-entropy loss: LBCE =
∑

i `bce(h ◦ψ(Ii), Yi), where `bce(y, z) =∑
i (zi log(yi)− (1− zi) log(1− yi)).

Training details The ResNet101 is initialized with weights pre-trained on ImageNet [34]

and fine-tuned on our dataset. We consider features from layer-block 1 to 4 in the network
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in our experiments. Each model is trained on the training split of our dataset for 75 epochs

using the Adam optimizer [62] with an initial learning rate at 0.0001. We use 224×224

images for all our experiments. The hyper-parameters are set on the validation set.

Evaluation setup The classification scores over each phrase for each image are directly

used to rank images or phrases for phrase retrieval or image retrieval with phrase input.

Retrieving images given a description is more challenging since we need to aggregate

the scores corresponding to different phrases, and the phrases in input descriptions may

not be in P . We found the following strategy works well: Given a description S =

{P1, P2, . . . , Pn} and an image I , obtain the scores for each phrase s(Pi) = σ(h ◦ ψ(I))k

where k is the index of the phrase Pi ∈ P . If the phrase is not in the set, we consider all its

sub-sequences that are present in P and average the scores of them instead. For example,

if the phrase “red maroon dot” is not present in P , we consider all sub-sequences {red

maroon, maroon dot, red, maroon, dot}, score each that is present in P separately and then

average the scores. By concatenating the top 5 phrases for an image we can also use the

classifier to generate a description for an image. The key disadvantage of the classification

baseline is that it treats each phrase independently, and does not have a natural way to score

novel phrases (our baseline using sub-sequences is an attempt to handle this).

3.2.2 A metric learning approach

The metric learning approach aims to learn a common embedding over the images

and phrases such that nearby image and phrase pairs in the embedding space are related.

We adopt the standard metric learning approach based on triplet-loss [49]. Consider an

embedding of an image φ(I) and of a phrase φ(P ) in Rd. Denote ||φ(I) − φ(P )||22 as

the squared Euclidean distance between the two embeddings. Given an annotation (I, P )

consisting of a positive (image, phrase) pair, we sample from the training set a negative

image I ′ for P , and a negative phrase P ′ for I . We consider two losses; one from the

negative phrase:
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Lp(I, P, P
′) = max(0, 1 + ||ψ(I)− φ(P )||22 − ||ψ(I)− φ(P ′)||22)

and another from the negative image:

Li(P, I, I
′) = max(0, 1 + ||ψ(I)− φ(P )||22 − ||ψ(I ′)− φ(P )||22)

The metric learning objective is to learn embeddings ψ and φ that minimize the loss L =

E(I,P ),(I′,P ′) (Lp + Li) over the training set.

For embedding images we consider the same encoder as the classification approach

with features from layer 2 and 4 from ResNet101. However, we add an additional linear

layer with 256 units resulting in the embedding dimension ψ(I) ∈ R256. One advantage of

the metric learning approach is that it allows us to consider richer embedding models for

phrases. Specially we consider the following encoders:

• Mean-pooling: φmean(P ) = 1
Nw

∑
w∈tokenize(P ) embed(w), where tokenize(·)

splits the phrase into a list of words, embed(·) encodes each token into R300.

• LSTM [102]: φlstm(P ) = biLSTM[embed(w) for w in tokenize(P )], with the

same tokenize(·) and embed(·) as above. biLSTM(·) is a bi-directional LSTM

with a single layer and hidden dimension 256 that returns the concatenation of the

outputs on the last token from both directions.

• ELMo [90]: φelmo(P ) = ELMo(P ), where ELMo(·) uses pre-trained ELMo model [4]

with its own tokenizer, and outputs the average embedding of all tokens in the phrase

P .

• BERT [35]: φbert(P ) = BERT(P ), where BERT(·) uses pre-trained BERT mode [3]

with its own tokenizer, and outputs the average of last hidden states of all tokens in

the phrase P .

To compute the final embedding of the phrase φ(P ), we add a linear layer to the em-

beddings to a 256-dimensional space compatible with the image embeddings.
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Training details We train this model on our training split using the Adam optimizer [62]

with an initial learning rate at 0.0001. We find this model more prune to over-fitting than the

classifier, therefore we apply an early stop mechanism when the image retrieval and phrase

retrieval MAP on the validation set stops improving. Same as the classifier, ResNet101

is initialized with ImageNet [34] weights and fine-tuned on our data. embed(·) in φmean

and φlstm is initialized with FastText embeddings [20, 1] and tuned end-to-end. Pre-traind

φelmo and φbert are fixed in our training.

Evaluation setup Given the joint embedding space, one can retrieve phrases for each

image and images for each phrase based on the Euclidean distance. Similar to the classifier

we concatenate the top 5 retrieved phrases as a baseline description generation model. We

also investigate a metric learning approach over descriptions rather than phrases where the

positive and negative triplets are computed over (image, description) pairs. The language

embedding models are the same since they can handle descriptions of arbitrary length.

3.2.3 A generative language approach

We adopt the Show-Attend-Tell model [123], a widely used model for image caption-

ing. It combines a convolutional neural network to encode input images with an attention-

based LSTM decoder to generate descriptions. Following the default setup, we encode

images into the spatial features from the 4-th layer of ResNet101 (initialized with Ima-

geNet [34] weights). The word embeddings are initialized from FastText [20, 1]. The

entire model is then trained end-to-end on the training set, using the Adam optimizer [62]

with initial learning rate 0.0001 for the image encoder and 0.0004 for the language decoder.

We early stopping based on BLEU-4 score of generated descriptions on validation images.

This model is primarily used for the description generation task. In evaluation, we

apply beam search of beam-size 5 and take the best description as the output.
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Task: Phrase Retrieval Image Retrieval
Data Split Model MAP MRR P@5 P@20 R@5 R@20 MAP MRR P@5 P@20 R@5 R@20

Validation

Classifier: Feat 1 13.10 37.20 16.05 10.68 4.94 13.04 10.64 25.06 11.57 9.37 6.13 17.78
Classifier: Feat 2 17.65 44.91 22.41 14.59 6.85 17.60 13.00 29.24 14.60 11.08 8.52 22.54
Classifier: Feat 3 26.43 60.52 32.47 20.71 9.93 25.00 15.62 31.79 17.28 13.34 9.42 28.52
Classifier: Feat 4 26.51 59.24 33.07 20.84 10.07 25.16 15.85 33.06 17.83 13.02 9.94 27.28
Classifier: Feat 1,4 25.78 58.28 31.58 20.31 9.55 24.44 15.85 32.35 18.35 13.51 10.24 28.03
Classifier: Feat 2,4 26.57 59.19 32.65 21.11 9.99 25.50 16.19 32.53 17.47 13.56 10.63 28.69
Classifier: Feat 3,4 26.66 60.38 32.20 21.22 9.81 25.68 16.04 31.18 17.59 13.50 10.33 28.32

Validation

Triplet: MeanPool 18.80 48.66 23.13 16.20 11.52 31.54 7.19 16.18 7.60 6.56 3.36 11.44
Triplet: biLSTM 23.53 58.78 31.85 18.73 15.83 36.31 8.31 17.46 8.15 7.06 4.21 13.40
Triplet: ELMo 28.13 68.46 37.02 21.11 18.44 41.12 11.25 24.05 12.79 10.27 5.85 18.57
Triplet: BERT 31.68 72.59 40.67 22.96 20.23 44.50 15.22 31.39 16.27 12.56 9.07 25.69

Test
Classifier: Feat 2,4 27.12 61.28 33.50 21.71 16.07 41.48 14.75 33.94 18.75 16.02 6.47 19.32
Triplet: BERT 31.77 74.12 41.70 23.60 20.17 45.04 13.50 31.12 16.52 14.57 5.24 17.32

Table 3.1: Performance on phrase retrieval and image retrieval on DTD2. “Classi-
fier: Feat x” stands for the classifier with image features from ResNet layer block x (or a
concatenation of two layers.) All triplet models in this table are trained with phrase input.
Among the language models BERT works the best.

Model MRR
Classifier 12.40
Triplet - phrase 12.92
Triplet - description 13.95

Table 3.2: Retrieving
textures from descrip-
tions.

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR Rouge-L CIDEr
Classifier: top 5 68.07 46.17 28.39 14.44 19.89 48.13 44.73
Triplet: top 5 72.99 53.69 34.97 19.39 21.81 49.70 47.34
Show-Attend-Tell 59.90 40.41 26.52 16.35 19.92 46.64 37.47

Table 3.3: Description generation on textures. Synthesizing
descriptions from phrases retrieved by the metric-learning based
approach outperforms other baselines.

3.3 Experiments and Analysis

We present an analysis of the above models on the proposed tasks on DTD2.

3.3.1 Phrase and image retrieval

Table 3.1 and 3.2 compare the classifier and the triplet model on phrase and image

retrieval tasks as described in Section 3.1.2. Figure 3.3 and 3.4 show examples of the top 5

retrieved images and phrases.

We first compare the image features from different layers of ResNet with the classifier

on the validation split, as shown in Table 3.1. Higher layer features perform better for

phrase retrieval. For image retrieval, better performance is achieved with the combination
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blue background patterned, swirled, pink, purple, floral

multi-colored pill shaped sprinkles randomly placed

INPUT:

Classifier

Triplet -
phrase

Triplet -
description

INPUT:

Classifier

Triplet -
phrase

Triplet -
description

uneven lines orange and black

yellow bubbles

Figure 3.3: Retrieve DTD2 test images with language input. We show top 5 retrieved
images from the classifier, the triplet model with phrase input and with description input.
From left to right we show example inputs of (1) phrases the classifier has been trained on,
(2) novel phrases beyond the frequent phrase classes, and (3) full descriptions.

of features from different layers. We select to use the features from layer 2 and 4 for all

classifiers and triplet models in subsequent experiments. Table 3.1 also compares language

encoders on the triplet model. The performance of both phrase and image retrieval depends

largely on the language encoder, and BERT performs the best. On the test set the trends

are similar where the triplet model is better at phrase retrieval while the classifier is slightly

better at image retrieval.

Table 3.2 shows results of image retrieval from descriptions and here too the triplet

model outperforms the other two models. As shown in Figure 3.3-right, although the mod-

els trained on phrases work reasonably well, the triplet model trained on descriptions is

able to model contextual information better.

3.3.2 Description generation

We compare the Show-Attend-Tell model [123] with a retrieval based approach. From

the classifier or the triplet model we retrieve the top k phrases and concatenate them in the

order of their score to form a description. As shown in Table 3.3, the triplet model reaches
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Classifier top 5:
colored, brown background, circular 
shape, multi color, multi numbers
Triplet top 5: soft, green, red, white, smooth
Show-attend-tell:
brown background with pink, green, yellow, and blue 
polkadotted material

[1] brown background, dotted, spotted, closely arranged, design on cloth
[2] circles on black, smooth, uncreased, shiny
[3] polka dot, multicolored dots, bubbly, studded, stippled, spotted
[4] dotted, spotted, polka dot, brown, pink, green, white

Classifier top 5:
smeared, painted, splattered, blurred, painting
Triplet top 5:
smeared, abstract, stained, painted, painting
Show-attend-tell:
smeared, abstract, green, blue, white

[1] blue, gold, brown, textured, smooth, paint
[2] smeared, dragged, blue, white, orange
[3] blue, beige, white multi colored smeared paint
[4] multi color, decor item, paint, paper, smooth

Classifier top 5:
wrinkled, crinkled, crumpled, creased, paper
Triplet top 5:
wrinkled, crinkled, creased, folded, white
Show-attend-tell:
white wrinkled surface, rough texture

[1] white surface wrinkled all over, semi soft texture
[2] wrinkled, crinkled, white, crumpled, furled
[3] soft, crinkled, white, irregular, lightweight
[4] rugged, white surface, hard, rigid, clean, modern style

Classifier top 5:
stratified, rock, rocky, brown, layered
Triplet top 5:
brown, hard, rough, dry, stratified
Show-attend-tell:
rocky, uneven, hard, rocky, opaque, dull, brown surface

[1] the stratified high brownish surface are filled with green surface somewhere 
contain enormous quantities of coal
[2] layered brown and rust colored hard non porous surface
[3] hard substance, rocky, stratified, having plants on the rock, brownish in colour
[4] brown, stratified, hard, rough, red
[5] red and brown rocky hard scratchy

Figure 3.4: Phrase retrieval and description generation on DTD2 test images. For each
input image, we list ground-truth descriptions beneath, and generated descriptions on the
right. For the classifier and the triplet model, we concatenate the top 5 retrieved phrases as
the description. Bold words are the ones included in ground-truth descriptions.

Model Foreground Background Color+Pattern Two-colors
Classifier 45.45±20.34 59.82±9.63 35.95±21.48 26.82±14.17
Triplet - phrase 46.55±20.65 52.00±6.32 41.73±22.77 27.45±15.13
Triplet - description 47.64±18.97 53.64±4.66 35.77±21.12 21.59±13.77
Random guess 50.00 50.00 7.40 5.26

Table 3.4: Image retrieval performance of R-Precision on synthetic tasks.

higher scores on the metrics. However, notice that in Figure 3.4 the generative model’s

descriptions are more fluent and covers both the color and pattern of the images, while the

retrieval baselines (especially the classifier) repeat phrases with similar meanings.

3.3.3 A critical analysis of language modeling

In this section, we evaluate the proposed models on tasks where we systematically vary

the distribution of underlying texture attributes. This is relatively easy to do for textures

than natural images (e.g., changing the color of dots) and allows us to understand the de-
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pink dots blue and greenINPUT:

Classifier

Triplet -
phrase

Triplet -
description

red background

Classifier top 5:
blue, orange, yellow, multi color, red
Triplet top 5:
grid, blue, red, geometric, squares
Show-attend-tell:
bright, blue, orange, squares, hard

Classifier top 5: red, green, hexagonal 
shape, honeycombed, lined
Triplet top 5: hexagonal shape, red, green, 
geometric, honeycombed
Show-attend-tell: green, red, black, 
honeycombed, < unk >

red and green hexagon blue and orange squaresblue swirls, white background
Classifier top 5:
swirly, swirls, swirled, paisley, random
Triplet top 5:
blue, white, circular, swirly, swirl
Show-attend-tell: blue swirly design 
on white background, soft texture

Figure 3.5: Retrieval on synthetic images. Positive images are in dashed blue borders,
hard negative ones are in dotted red borders.

gree to which the models learn disentangled representations. We describe four tasks with

varying degrees of difficulty to highlight the strengths and weaknesses of these models.

Automatically generating textures and their descriptions To systematically generate

textures with descriptions, we follow this procedure:

• Take the 11 most frequent colors in DTD2 (white, black, brown, green, blue, red,

yellow, pink, orange, gray, purple) and set their RGB values manually.

• Take 10 common two-color images from ten different categories. We choose:

– Type A: 5 images with “foreground on background”: [‘dots’, ‘polka-dots’,

‘swirls’,‘web’, ‘lines’ (thin lines on piece of paper)], and

– Type B: 5 images with no clear distinction between the foreground and back-

ground: [‘squares’ (checkered), ‘hexagon’, ‘stripes’ (zebra-like), ‘zigzagged’,

‘banded’ (bands with similar width)].

• For each of these 10 images, we manually extract masks for the foreground and

background(Type A), or two foreground colors(Type B).

• For each of the 10 images, generate a new image by picking 2 different colors from

the 11 and modify pixel values of the two regions using the corresponding RGB

value. This results in 10×11×10=1,100 images.
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• For each synthetic image, we construct the ground-truth description as “[color1] [pat-

tern], [color2] background”(such as “pink dots, white background”) for Type A, and

“[color1] and [color2] [pattern]”(such as “yellow and gray squares”) for Type B.

Experiment 1: Foreground. On Type A set we construct:

• Query: A query of the form “[color=c] [pattern=p]” (e.g. “pink dots”).

• Positive set: [color=c] [pattern=p] on randomly colored background (e.g. “pink dots,

white background”).

• Negative set: Randomly colored (6= c) [pattern=p] on [color=c] background (e.g.

“blue dots, pink background”).

• Result: Input the query description, we use the models to rank images from both the

positive and negative set, and report R-Precision: the precision of top R predictions,

where R is the number of positive images. The results are listed in Table 3.4 first

column. Since half the images have the right attribute the chance performance is 50%

and the various models are nearly at the chance level. Figure 3.5 shows that the model

is unable to distinguish between “pink dots” and “dots on a pink background”. This

illustrates that the models are unable to associate color correctly with the foreground

shapes.

Experiment 2: Background. This is similar to Experiment 1 but we focus on the back-

ground instead. On Type A set we construct: we know the name of its pattern (such as

“dots”, “squares”, selected from the more frequent phrases that matches the category) and

names of two colors (color1 and color2).

• Query: A query “[color=c] background” (e.g. “pink background”).

• Positive set: Randomly colored pattern on [color=c] background (e.g. “red dots on

pink background”).
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• Negative set: Random pattern of [color=c] on any [color 6=c] background (e.g. “pink

dots on white background”).

• Result: R-precision is shown in Table 3.4 second column. Once again the chance

performance is 50% and the various models are nearly at the chance level. Figure 3.5-

middle shows that the model is unable to distinguish between “red background” and

“red dots on random background”.

Experiment 3: Color+Pattern. On both Type A and B images we construct:

• Query: A query “[color=c] [pattern=p]” (e.g. “pink dots”).

• Positive set: [color=c] [pattern=p] on random colored background, or with another

color (e.g. “pink dots, white background”, “pink and blue squares”).

• Negative set: [color=c] [pattern6=p] or [color 6=c] [pattern=p]. In other words the

negative set contains images with the correct pattern but wrong color or the wrong

pattern with the right color (e.g., “red dots” or “pink stripes”). Similar patterns (e.g.,

“lines” vs. “banded”) are not considered negative.

• Result: The positive and negative set is unbalanced which results in a chance per-

formance of 7.4%. The models presented in the earlier section are able to rank the

correct color and pattern combinations ahead of the negative set and achieve a con-

siderably higher performance.

Experiment 4: Two Colors. On both Type A and B images we construct:

• Query: A query “[color=c1] and [color=c2]” (e.g. “pink and green”).

• Positive set: [color=c1] of random pattern on [color=c2] background (e.g. “pink dots

on green background”), or [color=c1] and [color=c2] of random pattern (e.g. “pink

and green squares”).
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Caltech UCSD Birds Oxford Flowers FGVC Butterflies & Moths

Figure 1: some caption

1

Figure 3.6: Fine-grained categories visualized as their training images (top row), max-
imal texture images (middle row), and texture attributes (bottom row). The size of
each phrase in the cloud is inversely decided by its Euclidean distance to the input maximal
texture image calculated by the triplet model.

• Negative set: pattern with one color from {c1, c2} and another color 6={c1,c2} (e.g.,

“pink dots on yellow background”, “green and blue stripes”).

• Result: The positive and negative set are unbalanced which results in a chance per-

formance of 5.26%. The models once again are able to rank the two color com-

binations ahead of the negative set and achieve a considerably higher performance.

Figure 3.5-right shows an example.

Summary These experiments reveal that these models have some high-level discrimina-

tive abilities (Exp. 3, 4), but they fail to disentangle properties such as the color of the

foreground elements from background (Exp. 1, 2). This leaves much room for improve-

ment, motivating future work, such as those that enforces spatial agreement between the

different attributes.

3.4 Applications

3.4.1 Describing textures of fine-grained categories

We analyze how the categories in fine-grained domains can be described by their tex-

ture. We consider categories from Caltech-UCSD Birds [116], Oxford flowers [85], and
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Figure 3.7: Classification on CUB dataset with DTD2 texture attributes. Left: clas-
sification accuracy vs. number of input features. Orange and green markers with the same
shape are comparable with the same set of CUB attributes with or without the DTD2 at-
tributes. Right: The phrase clouds display important phrases for a few bird categories. Red
phrases correspond to positive weights and blue are negative for a linear classifier for the
category. Font sizes represent the absolute value of the coefficient.

FGVC butterflies and moths [2] datasets. For each category, we follow the visualizing

deep texture representations following [71] to generate the “maximal textures” — inputs

that maximize the class probability using multi-layer bilinear CNN classifier [72]. These

are provided as input to our triplet model (with BERT encoder and phrase input) trained

on DTD2 to retrieve the top phrases. Figure 3.6 shows several categories with their max-

imal textures together with a “phrase cloud” of the top retrieved phrases. These provide a

qualitative description of each category.

3.4.2 Fine-grained classification with texture attributes

Here we apply models trained on our DTD2 on the Caltech-UCSD birds dataset to show

that embedding images into the space of texture attributes allows interpretable models for

discriminative classification. Specifically, we input each image from the dataset to our

phrase classifier (trained on DTD2 and fixed) and obtain the log-likelihood over the 655

texture phrases as an embedding. We train a logistic regression model for the 200-way

classification task. The dataset also comes with 312 binary attributes that describe the
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shape, pattern and color of specific parts of a bird, such as “has tail shape squared tail”,

“has breast pattern spotted”, “has wing color yellow”. There are 42 attributes for “shape”,

31 for “pattern” and 239 for “color”. We also train a logistic regression classifier on top of

these attributes.

Figure 3.7 shows the performance by varying the number of texture phrases based on

their frequency on DTD2 as the blue curve. It also shows a comparison of bird-specific

attributes with generic texture attributes learned on the DTD2. Results using individual

types of attributes are shown in green, while those using combinations are shown in orange.

Texture attributes are able to distinguish bird species with a reasonable accuracy of 28.5%,

outperforming CUB shape and pattern attributes. However, they do not outperform the

part-based color attributes that are highly effective. Yet, combining class-specific attributes

with texture lead to consistent improvements. On the right is visualization of discriminative

texture attributes for some categories — we display phrases with the most positive weights

in red, and those with the most negative weights in blue. These models provide a basis for

interpretable explanations of discriminative features without requiring a category-specific

vocabulary.

3.5 Summary

In conclusion, we presented a novel dataset of textures with natural language descrip-

tions and analyzed the performance of several language and vision models. The domain of

texture is challenging and existing models fail to learn a sufficiently disentangled represen-

tation leading to poor generalization on synthetic tasks. Yet, the learned models show some

generalization capability to novel domains and enable us to provide interpretable models

for describing the discriminative texture attributes in fine-grained domains. In particular

they are complementary to existing domain-specific attributes on the CUB dataset.
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CHAPTER 4

DESCRIBING REGIONS IN IMAGES

Existing efforts on grounding language descriptions to images have achieved promising

results on datasets such as Flickr30Entities [93] and Google Referring Expressions [81].

These datasets, however, lack the scale and diversity of concepts that appear in real-world

applications.

To bridge this gap we present the VGPHRASECUT dataset and an associated task of

grounding natural language phrases to image regions called PhraseCut (Figure 4.1 and 4.2).

Our dataset leverages the annotations in the Visual Genome (VG) dataset [65] to generate a

large set of referring phrases for each image. For each phrase, we annotate the regions and

instance-level bounding boxes that correspond to the phrase. Our dataset contains 77,262

images and 345,486 phrase-region pairs, with some examples shown in Figure 4.2. VG-

PHRASECUT contains a significantly longer tail of concepts, which means there are more

categories and attributes, and following an extremely imbalanced distribution. Unlike prior

datasets that only focus on foreground objects, VGPHRASECUT has a unified treatment

of not only object categories, which have well defined shapes such as people and cars,

but also stuff, which are background regions with flexible shapes such as sky and grass.

The phrases are structured into words that describe categories, attributes, and relationships,

providing a systematic way of understanding the performance on individual cues as well as

their combinations.

The PhraseCut task is to segment regions of an image given a templated phrase. As

seen in Figure 4.1, this requires connecting natural language concepts to image regions.

Our experiments shows that the task is challenging for state-of-the-art referring approaches
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Figure 4.1: PhraseCut task and our approach. PhraseCut is the task of segmenting image
regions given a natural language phrase. Each phrase is templated into words corresponding
to categories, attributes, and relationships. Our approach combines these cues in a modular
manner to estimate the final output.

hatchback car mark on chicken glass bottles

black shirtzebra lying on savannawalking peopleshort deer wipers on trains

pedestrian crosswalkblonde hair

Figure 4.2: Example annotations from the VGPHRASECUT dataset. Colors (blue, red,
green) of the input phrases correspond to words that indicate attributes, categories, and
relationships respectively.

50



such as MattNet [128] and RMI [73]. We find that the overall performance is limited by

the performance on rare categories and attributes. To address these challenges we present

(i) a modular approach for combining visual cues related to categories, attributes, and rela-

tionships, and (ii) a systematic approach to improving the performance on rare categories

and attributes by leveraging predictions on more frequent ones. Our category and attribute

modules are based on detection models, whose instance-level scores are projected back to

the image and further processed using an attention-based model driven by the query phrase.

Finally, these are combined with relationship scores to estimate the segmentation mask (see

Figure 4.1). Unlike existing two-stage methods (such as MattNet [128]) that outperform

one-stage methods (such as RMI [73]) but fail to handle background stuff, our method

processes objects and stuff categories in a unified manner. Our modular design, after the

treatment of rare categories, outperforms existing end-to-end models trained on the same

dataset.

Using the dataset we present a systematic analysis of the performance of the models

on different subsets of the data. The main conclusions are: (i) object and attribute detec-

tion remains poor on rare and small-sized categories, (ii) for the task of image grounding,

rare concepts benefit from related but frequent ones (e.g., the concept “policeman” could

be replaced by “man” if there were other distinguishing attributes such as the color of the

shirt), and (iii) attributes and relationship models provide the most improvements on rare

and small-sized categories. The performance on this dataset is far from perfect and should

encourage better models of object detection and semantic segmentation in the computer vi-

sion community. The dataset and code is available at: https://people.cs.umass.

edu/˜chenyun/phrasecut.

4.1 The VGPHRASECUT Dataset

In this section, we describe how the VGPHRASECUT dataset was collected, the statis-

tics of the final annotations, and the evaluation metrics. Our annotations are based on
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blue | colored car on road
à "blue car"

"license plate on car "
"red vehicle"
"white building" … 

(There are many “car” boxes,
but only one of them is “blue”)

Step 1: Box Sampling Step 2: Phrase Generation Step 3: Region Annotation Step 4: Worker Verification Step 5: Instance Labeling

59 à 16 boxes

Trusted Workers

Excluded Workers

Figure 4.3: Illustrations of our VGPHRASECUT dataset collection pipeline. Step 1:
blue boxes are the sampling result; red boxes are ignored. Step 2: Phrase generation
example in the previous image. Step 3: User interface for collecting region masks. Step
4: Example annotations from trusted and excluded annotators. Step 5: Instance label
refinement examples. Blue boxes are final instance boxes, and red boxes are corresponding
ones from Visual Genome annotations.

images and scene-graph annotations from the Visual Genome (VG) dataset. We briefly

describe each step in the data-collection pipeline illustrated in Figure 4.3.

4.1.1 Data collection pipeline

Step 1: Box sampling Each image in VG dataset contains 35 boxes on average, but they

are highly redundant. We sample an average of 5 boxes from each image in a stratified

manner by avoiding boxes that are highly overlapping or are from a category that already

has a high number of selected boxes. We also remove boxes that are less than 2% or greater

than 90% of the image size.

Step 2: Phrase generation Each sampled box has several annotations of category names

(e.g., “man” and “person”), attributes (e.g., “tall” and “standing”) and relationships with

other entities in the image (e.g., “next to a tree” and “wearing a red shirt”). We generate

one phrase for one box at a time, by adding categories, attributes and relationships that

allow discrimination with respect to other VG boxes by the following set of heuristics:

1. We first examine if one of the provided categories of the selected box is unique. If so

we add this to the phrase and tack on to it a randomly sampled attribute or relationship

description of the box. The category name uniquely identifies the box in this image.
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2. If the box is not unique in terms of any of its category names, we look for a unique

attribute of the box that distinguishes it from boxes of the same category. If such an

attribute exists we combine it with the category name as the generated phrase.

3. If no such an attribute exists, we look for a distinguishing relationship description

(a relationship predicate plus a category name for the supporting object). If such a

relationship exists we combine it with the category name as the generated phrase.

4. If all of the above fail, we combine all attributes and relationships on the target box

and randomly choose a category from the provided list of categories for the box to

formulate the phrase. In this case, the generated phrase is more likely to correspond

to more than one instance within the image.

The attribute and relationship information may be missing if the original box does not

have any, but there is always a category name for each box. Phrases generated in this

manner tend to be concise but do not always refer to a unique instance in the image.

Step 3: Region annotation We present the images and generated phrases from the pre-

vious steps to human annotators on Amazon Mechanical Turk, and ask them to draw poly-

gons around the regions that correspond to provided phrases. Around 10% of phrases are

skipped by workers when the phrases are ambiguous.

Step 4: Automatic annotator verification Based on manual inspection over a subset of

annotators, we design an automatic mechanism to identify trusted annotators based on the

overall agreement of their annotations with the VG boxes. Only annotations from trusted

annotators are included in our dataset. 9.27% phrase-region pairs are removed in this step.

Step 5: Automatic instance labeling As a final step we generate instance-level boxes

and masks. In most cases, each polygon drawn by the annotators is considered an instance.

It is further improved by a set of heuristics to merge multiple polygons into one instance

and to split one polygon into several instances leveraging the phrase and VG boxes.

53



top100, 
55.0%

101~500, 
32.1%

500+, 
12.9%

Categories ranked by frequency

large 
(20%+), 
24.64%

medium (2% ~ 20%), 
55.14%

small 
(<2%), 
20.22%

Target region size

1 (single):82.4%

2 ~ 5 
(multi):16.4%

>5 (many):1.2%

# referred instances

object, 
64.9%

stuff, 
35.1%

Types of categories

cat+

att+

+

0 0.2 0.4 0.6 0.8 1

cat

att

rel

Content in Phrases

12.5%

44.9%

2.7%

11.8%

68.2%

Figure 4.4: Statistics of the VGPHRASECUT dataset. Top row: Word clouds of cate-
gories (left), attributes (center), and relationship descriptions (right) in the dataset. The
size of each phrase is proportional to the square root of its frequency in the dataset. Bottom
row: breakdowns of the dataset into different subsets including contents in phrases (first),
category frequency (second), size of target region relative to the image size (third), number
of target instances per query phrase (fourth), and types of category (last). The leftmost
bar chart shows the breakdown of phrases into those that have category annotation (cat)
and those that can be distinguished by category information alone (cat+), and similarly for
attributes and relationships.

4.1.2 Dataset statistics

Our final dataset consists of 345,486 phrases across 77,262 images. This roughly cov-

ers 70% of the images in Visual Genome. We split the dataset into 310,816 phrases (71,746

images) for training, 20,316 (2,971 images) for validation, and 14,354 (2,545 images) for

testing. There is no overlap of COCO trainval images with our test split so that models pre-

trained on COCO can be fairly used and evaluated. Figure 4.4 illustrates several statistics

of the dataset. Our dataset contains 1,272 unique category phrases, 593 unique attribute

phrases, and 126 relationship phrases with frequency over 20, as seen by the word clouds.

Among the distribution of phrases (bottom left bar plot), one can see that 68.2% of the

instances can be distinguished by category alone (category+), while 11.8% of phrases re-

quire some treatment of attributes to distinguish instances (attributes+). Object sizes and

their frequency vary widely. While most annotations refer to a single instance, 17.6% of

phrases refer to two or more instances. These aspects of the dataset make the PhraseCut

task challenging.
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4.1.3 Evaluation metrics

The PhraseCut task is to generate a binary segmentation of the input image given a

referring phrase. We assume that the input phrase is parsed into attribute, category, and re-

lationship descriptions. For evaluation we use the following intersection-over-union (IoU)

metrics:

• cumulative IoU: cum-IoU = (
∑

t It) / (
∑

t Ut), and

• mean IoU: mean-IoU = 1
N

∑
t It/Ut.

Here t indexes over the phrase-region pairs in the evaluation set, It and Ut are the intersec-

tion and union area between predicted and ground-truth regions, and N is the size of the

evaluation set. Notice that, unlike cum-IoU, mean-IoU averages the performance across

all image-region pairs and thus balances the performance on small and large objects.

We also report the precision when each phrase-region task is considered correct if the

IoU is above a threshold. We report results with IoU thresholds at 0.5, 0.7, 0.9 as Pr@0.5,

Pr@0.7, Pr@0.9 respectively.

All these metrics can be computed on different subsets of the data to obtain a better

understanding of the strengths and failure modes of the model.

4.2 A Modular Approach to PhraseCut

We propose Hierarchical Modular Attention Network (HULANet) for the PhraseCut

task, as illustrated in Figure 4.5. The approach is based on two design principles. First,

we design individual modules for category, attribute and relationship sub-phrases. Each

module handles the long-tail distribution of concepts by learning to aggregate information

across concepts using a module-specific attention mechanism. Second, instance-specific

predictions are projected onto the image space and combined using an attention mechanism

driven by the input phrase. This allows the model to handle stuff and object categories, as

well as multiple instances in a unified manner. Details of each module are described next.
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Figure 4.5: Architecture of HULANet. The architecture consists of modules to obtain
attribute, category, and relation predictions given a phrase and an image. The attribute and
category scores are obtained from Mask-RCNN detections and projected back to the image.
The scores across categories and attributes are combined using a module-specific attention
model. The relationship module is a convolutional network that takes as input the prediction
mask of the related category and outputs a spatial mask given the relationship predicate.
The modules are activated based on their presence in the query phrase and combined using
an attention mechanism guided by the phrase.
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Backbone encoders We use the Mask-RCNN [46] detector and bi-directional LSTMs [48]

as our backbone encoders for images and phrases respectively. The Mask-RCNN (with

ResNet101 [47] backbone) is trained to detect instances and predict category scores for

the 1,272 categories that have a frequency over 20 on our dataset. Different from instance

detection tasks on standard benchmarks, we allow relatively noisy instance detections by

setting a low threshold on objectness scores and by allowing at most 100 detections per

image to obtain a high recall. For phrase encoding, we train three separate bi-directional

LSTMs to generate embeddings for categories, attributes and relationship phrases. They

share the same word embeddings initialized from FastText [20] as the input to the LSTM,

and have mean pooling applied on the LSTM output of the corresponding words as the

encoded output.

Category module The category module takes as input the phrase embedding of the cat-

egory and detected instance boxes (with masks) from Mask-RCNN, and outputs a score-

map of corresponding regions in the image. We first construct the category channels C ∈

RN×H×W by projecting the Mask-RCNN predictions back to the image. Here N = 1272

is the number of categories and H ×W is set to 1/4× the input image size. Concretely,

for each instance i detected by Mask R-CNN as category ci with score si, we project its

predicted segmentation mask to image as a binary mask mi,H×W , and update the category

channel score at the corresponding location as C[ci,mi] := max(si, C[ci,mi]). Finally,

each category channel is passed though a “layer-norm” which scales the mean and variance

of each channel.

To compute the attention over the category channels, the phrase embedding ecat is

passed through a few linear layers f with sigmoid activation at the end to predict the atten-

tion weights over the category channels A = σ(f(ecat)). We calculate the weighted sum

of the category channels guided by the attention weights SH×W =
∑

cAc ·Cc, and apply a

learned affine transformation plus sigmoid to obtain the category module prediction heat-

map PH×W = σ(a · SH×W + b). This attention scheme enables the category module to
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leverage predictions from good category detectors to improve performance on more diffi-

cult categories. We present other baselines for combining category scores in the ablation

studies in Section 4.3.

Attribute module The attribute module is similar to the category module except for an

extra attribute classifier. On top of the pooled ResNet instance features from Mask-RCNN,

we train a two-layer multi-label attribute classifier. To account for significant label im-

balance we weigh the positive instances more when training attribute classifiers with the

binary cross-entropy loss. To obtain attribute score channels we take the top 100 detections

and project their top 20 predicted attributes back to the image. Identical with the category

module, we use the instance masks from the Mask-RCNN, update the corresponding chan-

nels with the predicted attribute scores, and finally apply the attention scheme guided by the

attribute embedding from the phrase to obtain the final attribute prediction score heat-map.

Relationship module Our simple relationship module uses the category module to pre-

dict the locations of the supporting object. The down-scaled (32 × 32) score of the sup-

porting object is concatenated with the embedding of the relationship predicate. This is

followed by two dilated convolutional layers with kernel size 7 applied on top, achiev-

ing a large receptive field without requiring many parameters. Finally, we apply an affine

transformation followed by sigmoid to obtain the relationship prediction scores. The con-

volutional network can model coarse spatial relationships by learning filters corresponding

to each spatial relation. For example, by dilating the mask one can model the relationship

“near”, and by moving the mask above one can model the relationship “on”.

Combining the modules The category, attribute, and relation scores Pc, Pa, Pr obtained

from individual modules are each represented as a H × W image, 1/4 the image size.

To this we append channels of quadratic interactions Pi ◦ Pj for every pair of channels

(including i = j), obtained using elementwise product and normalization, and a bias chan-

nel of all ones, to obtain a 10-channel scoremap F (3+6+1 channels). Phrase embeddings
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of category, attribute and relationship are concatenated together and then encoded into 10-

dimensional “attention” weightsw through linear layers with LeakyReLU and DropOut fol-

lowed by normalization. When there is no attribute or relationship in the input phrase, the

corresponding attention weights are set to zero and the attention weights are re-normalized

to sum up to one. The overall prediction is the attention-weighted sum of the linear and

quadratic feature interactions: O =
∑

t Ftwt. Our experiments show a slight improvement

of 0.05% on validation mean-IoU with the quadratic features.

Training details The Mask-RCNN is initialized with weights pre-trained on the MS-

COCO dataset [70] and fine-tuned on our dataset. It is then fixed for all the experiments.

The attribute classifier is trained on ground-truth instances and their box features pooled

from Mask-RCNN with a binary cross-entropy loss specially weighted according to at-

tribute frequency. These are also fixed during the training of the referring modules. On

top of the fixed Mask-RCNN and the attribute classifier, we separately train the individual

category and attribute modules. When combining the modules we initialize the weights

from individual ones and fine-tune the whole model end-to-end. We apply a pixel-wise

binary cross-entropy loss on the prediction score heat-map from each module and also on

the final prediction heat-map. To account for the evaluation metric (mean-IoU), we in-

crease the weights on the positive pixels and average the loss over referring phrase-image

pairs instead of over pixels. All our models are trained on the training set. For evaluation,

we require a binary segmentation mask which is obtained by thresholding on prediction

scores. These thresholds are set based on mean-IoU scores on the validation set. In the

next section, we report results on the test set.
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Model mean-IoU cum-IoU Pr@0.5 Pr@0.7 Pr@0.9
HULANet
cat 39.9 48.8 40.8 25.9 5.5
cat+att 41.3 50.8 42.9 27.8 5.9
cat+rel 41.1 49.9 42.3 26.6 5.6
cat+att+rel 41.3 50.2 42.4 27.0 5.7

Mask-RCNN self 36.2 45.9 37.2 22.9 4.1
Mask-RCNN top 39.4 47.4 40.9 25.8 4.8
RMI 21.1 42.5 22.0 11.6 1.5
MattNet 20.2 22.7 19.7 13.5 3.0

Table 4.1: Comparison of various approaches on the entire test set of VGPHRASE-
CUT. We compare different combinations of modules in our approach (HULANet) against
baseline approaches: Mask-RCNN, RMI and MattNet.

Model all coco 1-100 101-500 500+
HULANet
cat 39.9 46.5 46.8 31.8 25.2
cat+att 41.3 48.3 48.2 33.6 26.6
cat+rel 41.1 47.9 47.8 33.6 26.6
cat+att+rel 41.3 47.8 47.8 33.8 27.1

Mask-RCNN self 36.2 44.9 45.5 27.9 10.1
Mask-RCNN top 39.4 46.1 46.4 31.6 23.2
RMI 21.1 23.7 28.4 12.7 5.5
MattNet 20.2 19.3 24.9 14.8 10.6

Table 4.2: The mean-IoU on VGPHRASECUT test set for various category subsets.
The column coco refers to the subset of data corresponding to the 80 coco categories, while
the remaining columns show the performance on the top 100, 101-500 and 500+ categories
in the dataset sorted by frequency.
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Model all att att+ rel rel+ stuff obj
HULANet
cat 39.9 37.6 37.4 32.3 33.0 47.2 33.9
cat+att 41.3 39.1 38.8 33.7 33.8 48.4 35.5
cat+rel 41.1 38.8 38.4 33.8 34.0 48.1 35.4
cat+att+rel 41.3 39.0 38.5 34.1 33.9 48.3 35.6

Mask-RCNN self 36.2 34.5 34.7 29.0 30.8 44.4 29.5
Mask-RCNN top 39.4 37.3 36.6 31.9 32.6 46.4 33.6
RMI 21.1 19.0 21.0 11.6 12.2 31.1 13.0
MattNet 20.2 19.0 18.9 15.6 15.1 25.5 16.0
Model all single multi many small mid large
HULANet
cat 39.9 41.2 37.0 34.3 15.1 40.3 67.6
cat+att 41.3 42.6 38.6 35.9 17.1 42.0 68.0
cat+rel 41.1 42.5 38.2 35.5 17.1 41.5 68.2
cat+att+rel 41.3 42.6 38.4 35.7 17.3 41.7 68.2

Mask-RCNN self 36.2 37.2 34.1 29.9 17.0 35.7 59.4
Mask-RCNN top 39.4 40.6 36.8 33.4 18.5 39.3 63.6
RMI 21.1 23.1 16.9 12.7 1.2 18.6 49.5
MattNet 20.2 22.2 15.9 12.6 6.1 18.9 39.5

Table 4.3: The mean-IoU on VGPHRASECUT test set for additional subsets. att/rel:
the subset with attributes/relationship annotations; att+/rel+: the subset which requires at-
tributes or relationships to distinguish the target from other instances of the same category;
single/multi/many: subsets that contain different number of instances referred by a phrase;
small/mid/large: subsets with different sizes of the target region.
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4.3 Results and Analysis

4.3.1 Comparison to baselines

Table 4.1 shows the overall performance of our model and its ablated versions with two

baselines: RMI [73] and MattNet [128]. They yield near state-of-the-art performance on

datasets such as RefCOCO [60].

RMI is a single-stage visual grounding method. It extracts spatial image features

through a convolutional encoder, introduces convolutional multi-modal LSTM for jointly

modeling of visual and language clues in the bottleneck, and predicts the segmentation

through an upsampling decoder. We use the RMI model with ResNet101 [47] as the im-

age encoder. We initialized the ResNet with weights pre-trained on COCO [70], trained the

whole RMI model on our training data of image region and referring phrase pairs following

the default setting as in their public repository, and finally evaluated it on our test set.

RMI obtains high cum-IoU but low mean-IoU scores because it handles large tar-

gets well but fails on small ones (see Table 4.3 “small/mid/large” subsets). cum-IoU is

dominated by large targets while our dataset many small targets: 20.2% of our data has the

target region smaller than 2% of the image area, while the smallest target in RefCOCO is

2.4% of the image. Figure 4.6 also shows that RMI predicts empty masks on challenging

phrases and small targets.

MattNet focuses on ranking the referred box among candidate boxes. Given a box and

a phrase, it calculates the subject, location, and relationship matching scores with three

separate modules, and predicts attention weights over the three modules based on the input

phrase. Finally, the three scores are combined with weights to produce an overall matching

score, and the box with the highest score is picked as the referred box.

We follow the training and evaluation setup described in their paper. We train the Mask-

RCNN detector on our dataset, and also train MattNet to pick the target instance box among

ground-truth instance boxes in the image. Note that MattNet training relies on complete

annotations of object instances in an image, which are used not only as the candidate boxes
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but also as the context for further reasoning. The objects in our dataset are only sparsely

annotated, hence we leverage the Visual Genome boxes instead as context boxes. At test

time the top 50 Mask-RCNN detections from all categories are used as input to the MattNet

model.

While this setup works well on RefCOCO, it is problematic on VGPHRASECUT be-

cause detection is more challenging in the presence of thousands of object categories. Mat-

tNet is able to achieve mean-IoU = 42.4% when the ground-truth instance boxes are

provided in evaluation, but its performance drops to mean-IoU = 20.2% when Mask-

RCNN detections are provided instead. If we only input the detections of the referred cat-

egory to MattNet, mean-IoU improves to 34.7%, approaching the performance of Mask-

RCNN self, but it still performs poorly on rare categories.

Our modular approach for computing robust category scores from noisy detections

alone (HULANet cat) outperforms both baselines by a significant margin. Example results

using various approaches are shown in Figure 4.6.

4.3.2 Ablation studies and analysis

Table 4.2 shows that the performance is lower for rare categories. Detection of thou-

sands of categories is challenging, but required to support open-vocabulary natural lan-

guage descriptions. However, natural language is also redundant. In this section we ex-

plore if a category can leverage scores from related categories to improve performance,

especially when it is rare.

First we evaluate Mask-RCNN as a detector, by using the mask of the top-1 detected

instance from the referred category as the predicted region. The result is shown as the

row “Mask-RCNN self” in Table 4.2. The row below “Mask-RCNN top” shows the per-

formance of the model where each category is matched to a single other category based

on the best mean-IoU on the training set. For example, a category “pedestrian” may be

matched to “person” if the person detector is more reliable. As one can see in Table 4.2,
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Figure 4.6: Prediction results on VGPHRASECUT dataset. Rows from top to down are:
(1) input image; (2) ground-truth segmentation and instance boxes; (3) MattNet baseline;
(4) RMI baseline; (5) HULANet (cat + att + rel).

the performance on the tail categories jumps significantly (10.1% → 23.2% on the 500+

subset.) In general the tail category detectors are poor and rarely used. This also points to a

curious phenomenon in referring expression tasks where even though the named category

is specific, one can get away with a coarse category detector. For example, if different

animal species never appear together in an image, one can get away with a generic animal

detector to resolve any animal species.

This also explains the performance of the category module with the category-level

attention mechanism. Compared to the single category picked by the Mask-RCNN top

model, the ability of aggregating multiple category scores using the attention model pro-

vides further improvements for the tail categories. Although not included here, we find

a similar phenomenon with attributes, where a small number of base attributes can sup-

port a larger, heavy-tailed distribution over the attribute phrases. It is reassuring that the

number of visual concepts to be learned grows sub-linearly with the number of language
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concepts. However, the problem is far from solved as the performance on tail categories is

still significantly lower.

Table 4.3 shows the results on additional subsets of the test data. Some high-level

observations are that: (i) Object categories are more difficult than stuff categories. (ii)

Small objects are extremely difficult. (iii) Attributes and relationships provide consistent

improvements across different subsets. Remarkably, the improvements from attributes and

relationships are more significant on rare categories and small target regions where the

category module is less accurate.

4.3.3 Modular heatmap visualization

In Figure 4.7 and Figure 4.8, we show HULANet predictions and modular heatmaps.

Figure 4.7 demonstrates that our attribute module is able to capture color (“black”,

“brown”), state (“closed”), material (“metal”) and long and rare attributes (“pink and white”).

In the first (“black jacket”) example, the category module detects two jackets, while the at-

tribute module is able to select out the “black” one against the white one.

Figure 4.8 shows how our relationship module modifies the heatmaps of supporting

objects depending on different relationship predicates. With the predicate “wearing”, the

relationship module predicts expanded regions of the detected “jacket” especially vertically.

The relational prediction of “parked on” includes regions of the “street” itself as well as

regions directly above the “street”, while the predicate “on” leads to the identical region

prediction as the supporting object. In the last example of “sitting at”, a broader region

around the detected “table” is predicted, covering almost the whole image area.

4.3.4 Failure case analysis

Figure 4.9 displays typical failure cases from our proposed HULANet. Heatmaps from

internal modules provide more insights where and why the model fails.

In the first example, our backbone Mask-RCNN fails to detect the ground-truth “traf-

fic cones”, which are extremely small and from rare categories. Similarly, in the second
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black jacket closed shutter pink and white shirt metal railing brown roof

cat: jacket

att: black

cat: shutter

att: closed

cat: shirt

att: pink and white

cat: railing cat: roof

att: metal att: brown

Ground-truth Ground-truth Ground-truth Ground-truth Ground-truth

Binary prediction Binary prediction Binary prediction Binary prediction Binary prediction

Figure 4.7: HULANet prediction results and heatmaps on phrases with attributes.
Rows from top to down are: (1) input image; (2) ground-truth segmentation and instance
boxes; (3) predicted binary mask from HULANet (cat+att+rel); (4) heatmap prediction
from the category module; (5) heatmap prediction from the attribute module.
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man wearing jacket cars parked on street wipers on trains he sitting at table

cat: man

rel-pred: wearing

Ground-truth

Binary prediction

rel-obj: jacket

Ground-truth

Binary prediction

cat: cars

rel-pred: parked on

rel-obj: street

Ground-truth

Binary prediction

cat: wipers

rel-pred: on

rel-obj: trains

Ground-truth

Binary prediction

cat: he

rel-pred: sitting at

rel-obj: table

Figure 4.8: HULANet prediction results and heatmaps on phrases with relationships.
Rows from top to down are: (1) input image; (2) ground-truth segmentation and in-
stance boxes; (3) predicted binary mask from HULANet (cat+att+rel); (4) heatmap pre-
diction from the category module; (5) heatmap prediction from the relationship module;
(6) heatmap prediction of the supporting object (in the relationship description) from the
category module.
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Figure 4.9: Negative results from HULANet on VGPHRASECUT test set. Rows from
top to down are: (1) input image; (2) ground-truth segmentation and instance boxes; (3)
predicted binary mask from HULANet (cat+att+rel); (4) heatmap prediction from the cate-
gory module; (5-6) heatmap predictions from additional (attribute or relationship) modules.
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“dark grey pants” example, the “pants” is not detected as a separate instance in the back-

bone Mask-RCNN, therefore the category module can only predict the whole mask of the

skateboarder.

The third “window” example shows when the category module (and the backbone

Mask-RCNN) fails to distinguish mirrors from windows. In the fourth example, our at-

tribute module fails to recognize which cat is “darker” than the other.

We then display two failure cases for the relationship module. It fails on the first one

because the supporting object (“suitcase”) is not detected by the category module, and fails

on the second one for unable to accurately model the relation predicate “on side of”.

In the last example, although our attribute module figures out which sofa is “plaid”, the

final prediction is dominated by the category module and fails to exclude non-plaid sofas.

4.4 Summary

We presented a new dataset, VGPHRASECUT, to study the problem of grounding natu-

ral language phrases to image regions. By scaling the number of categories, attributes, and

relations we found that existing approaches that rely on high-quality object detection show

a dramatic reduction in performance. Our proposed HULANet performs significantly bet-

ter, suggesting that dealing with long-tail object categories via modeling their relationship

to other categories, attributes, and spatial relations is a promising direction of research. An-

other take away is that decoupling representation learning and modeling long-tails might

allow us to scale object detectors to rare categories, without requiring significant amount

of labelled visual data. Nevertheless, the performance of the proposed approach is still sig-

nificantly below human performance which should encourage better modeling of language

and vision.
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CHAPTER 5

EVALUATING LARGE-SCALE LANGUAGE-VISION MODELS

There has significant progress on training large-scale models such as ResNet [47] on

ImageNet [34] for vision, and BERT [35], GPT-3 [26] trained on WebText [95] for natu-

ral language understanding. However, large-scale models that jointly understand multiple

modalities, such as language and vision, have been lacking in comparison. Therefore the

common strategy for language and vision tasks, including the ones we used in prior chap-

ters, was to align pre-trained models for each modality using domain-specific aligned data.

This allows the benefit of transfer learning on each modality but requires collecting training

data and fine-tuning for each cross-modal task.

Recently, this has changed with the publication of models that can have a common un-

derstanding of language and vision such as CLIP [94]. CLIP is a model trained on a massive

dataset of images paired with text that learns to embed language and vision data into a com-

mon embedding space. It has been applied to downstream tasks such as geo-localization,

optical character recognition, facial emotion recognition, and action recognition as intro-

duced in [94].

We investigate how well the CLIP representations generalize to novel vision-language

tasks especially in fine-grained domains such as those we have considered in Chapter 2

and 3. While the analysis in [94] is more focused on image categorization based on the

category names alone, we look further into CLIP’s capability of understanding adjectives

or attribute phrases in fine-grained domains. We expect to see similar benefits of trans-

fer learning in these cross-modal tasks as one has observed in language and vision tasks

individually.
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Specifically, we analyze the capability of CLIP on:

1. Recognizing fine-grained differences between two images. As shown in Figure 2.1,

given two phrases “P1 vs. P2” describing the difference between two images, the

goal is to figure out which image is described by “P1” and the other image by “P2”.

2. Image and phrase retrieval in specific domains. Given an attribute phrase, the task is

to retrieve images from a domain-specific dataset that match with the input phrase,

and vice versa for phrase retrieval.

3. Understanding how well CLIP handles compositionality of natural language. We an-

alyze the image retrieval performance with compositional phrase queries describing

the combination of two colors, color plus pattern, as well as foreground/background

colors on the synthetic texture dataset introduced in Chapter 3 Section 3.3.3

4. Leveraging attributes to improve fine-grained classification accuracy in a zero-shot

setting. While CLIP was demonstrated to be able to construct zero-shot classifiers

based on the name of the class alone, we investigate if the image and class level

describable attributes can be incorporated to boost the performance further.

5.1 Models and Datasets

We compare CLIP with models with the best performance from Chapter 2 and 3. Each

of the three models include an image encoder and a text encoder to encode images/texts

into a shared embedding space, and provides a distance/similarity function such that rela-

tive/paired images and texts have smaller distances in the embedding space than irrelevant

images and texts.
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Figure 5.1: Summary of CLIP model. Figure is from [94] Figure 1: “CLIP jointly trains
an image encoder and a text encoder to predict the correct pairings of a batch of (image,
text) training examples. At test time the learned text encoder synthesizes a zero-shot linear
classifier by embedding the names or descriptions of the target dataset’s classes.”

5.1.1 Overview of CLIP

CLIP is introduced in [94]. As shown in Figure 5.1, an image encoder and a text encoder

are jointly trained on 400 million image-text pairs collected from the Internet 1 Given an

image, the training objective task is to score the image and text pairs to be higher than

other text and other images in the sampled batch. They experimented with various image

and text encoding architectures to concluded that Transformer [111] text encoder and vision

Transformer [39] as the image encoder yield the best performance. Our experiments in this

Chapter is on the model with Transformer text encoder and “ViT-B/32” vision transformer.

CLIP can be used as a zero-shot classifier as introduced in [94]. In zero-shot learning

the goal is to learn an image classifier given a description of the categories. For example,

each category can be encoded by the name and the text encoder of CLIP can map an input

in the format of “A photo of a [Category]” to an embedding that is compatible with the

image embeddings. For a given image, one can therefore search for its nearest category

embedding to predict its predicted category. The authors experimented on 27 datasets to

1The dataset is not yet publicly available
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demonstrate that CLIP is competitive with fully supervised baselines, suggesting that CLIP

has a strong understanding of good understanding of common categories. In Section 5.2.5,

we investigate if the performance can be further improved using detailed description of

categories.

5.1.2 Baselines

From Chapter 2 we choose the “Simple Listener” with LSTM [102] text encoder and

VGG-16 [105] image encoder (noted as “OID-SL”). The text encoder is trained from

scratch. The VGG-16 image encoder is pre-trained on ImageNet [66] and then fine-tuned

on the OID Attribute Phrases Dataset.

From Chapter 3 we choose the metric learning model with BERT [35] text encoder and

ResNet101 [47] image encoder (noted as “DTD2-ML”). The BERT model is pre-trained on

“BookCorpus” [134] and “English Wikipedia” and does not get updated when training on

DTD2. Only a linear layer on top of BERT is trained on DTD2 Dataset. The ResNet-101

model is pre-trained on ImageNet and fine-tuned on DTD2.

Table 5.1 compares the size of the selected models and their training data sets. CLIP

has a comparable size of training data to the size of ImageNet and BERT but it sees much

more paired data than either OID-SL or DTD2-ML has seen. It allows CLIP to train more

complicated encoding models from scratch.

In addition to the domains of aircraft and textures, we also conduct analysis on the

Caltech-UCSD Birds (CUB) [116] which contains 11,788 images across 200 bird species

with 312 binary attributes on each image.

5.2 Experiments and Analysis

5.2.1 Recognizing fine-grained differences between aircraft images

CLIP can be used to discriminate between a pair of images given a natural language de-

scription (i.e., a listener model as described in OID Attribute Phrases Dataset as introduced
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Model CLIP OID-SL DTD2-ML

Training Set Size

Vocabulary 49152 730∗ 1673∗

Images ≤400M 1851 3222
Text-img pairs 400M 4700 14797

Trainable parameters
Image encoder 86M 138M∗∗ 45M∗∗

Text encoder 63M 4M 0.2M
∗Only words with frequency of at least 5 are counted.
∗∗ Fine-tuning on top of ImageNet pre-trained models.

Table 5.1: Comparison of model and training data size. Note that the image encoders of
OID-SL and DTD2-ML are pre-trained on ImageNet with 14M images. The text encoder
of DTD2-ML contains BERT with 110M parameters which is not updated during training,
and we only train a linear layer on top of it.

in Chapter 2.) Given two images (I1 and I2) and text input in the format of “Phrase 1 (P1)

vs. Phrase 2 (P2)”, the task is to figure out which image between I1 and I2 is described by

P1 (and the other image is described by P2).

We construct the text input from templates such as “An image of an aircraft with [P ]”

where [P ] is the phrase of interest. We compute the cosine similarity S(I, P ) between the

embedding of image I and the embedding of the sentence constructed from phrase P :

S(I, P ) =
φ(I) · θ(P ∗)

||φ(I)||2 ||θ(P ∗)||2

Where φ(·) is the image encoder, θ(·) is the text encoder, and P ∗ is the sentence con-

structed from P using the aforementioned template. With input images I1, I2 and phrases

P1, P2, we predict “I1 is described by P1, I2 is described by P2” if:

S(I1, P1) + S(I2, P2)− S(I2, P1)− S(I1, P2) > 0

and predict “I2 is described by P1, I1 is described by P2” otherwise.

The effect of the choice of the template on the task performance in the validation set

is shown in Table 5.2. The best template was found to be “An image of an aircraft with

[Phrase]”. CLIP reaches an accuracy of 72.43% on the test set of OID Attribute Phrases.
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Template Accuracy
[Phrase] 71.87
An [Phrase] airplane 71.74
An airplane with [Phrase] 72.17
An airplane that is [Phrase] 72.12
An airplane that has [Phrase] 72.11
An image of an [Phrase] airplane 73.10
An image of an airplane with [Phrase] 73.31
An image of an airplane that is [Phrase] 73.21
An image of an airplane that has [Phrase] 73.12
A photo of an airplane with [Phrase] 72.86
An image of a plane with [Phrase] 73.44
An image of an aircraft with [Phrase] 73.45
An image of a flight with [Phrase] 72.12
An image of a jet with [Phrase] 72.52

Table 5.2: Referring accuracy of CLIP on OID Attribute Phrases validation set with
different input text templates. According to the text templates we have evaluated, the
templates have a small impact of 1.7% on referring accuracy. “An image of an aircraft with
[Phrase]” is the best template we have found.

The Simple Listener trained on OID Attribute Phrases has an accuracy 89.3% for a com-

parison (See Table 2.1). This is remarkable as the CLIP models have not been fine-tuned

with the domain-specific data.

Figure 5.2 shows the easiest and most difficult phrases for CLIP based on the referring

accuracy when having each phrase in the input. Figure 5.3 displays failure cases for CLIP.

While CLIP is good at understanding colors (“military plane” is mostly gray in color) and

the scene (e.g., “on tarmac”, “on grass”). It has a poorer understanding of parts, their re-

lations, and pose (e.g., “open cockpit”, “fewer windows”) and spatial/location descriptions

(“facing right”, “wings on top”).

5.2.2 Phrase and Image Retrieval on DTD2

We apply CLIP to phrase and image retrieval on DTD2 the same as in Chapter 3 Section

5.1. CLIP takes input in the format of “An image of [P ] texture”, where [P ] is the input

attribute phrase. The template is selected based on the retrieval performance on DTD2
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Figure 5.2: Phrases with best and worst referring accuracy for CLIP on OID Attribute
Phrases referring task. For each phrase P , we calculate the referring accuracy on data
when P is one of the two input phrases. Left: 50 phrases with highest accuracy (≥ 95%);
Right: 50 phrases with lowest accuracy (≤ 51%). Font size is proportional to the phrase
frequency in OID Attribute Phrases Dataset.

validation set as shown in Table 5.3. It outperforms directly using the phrase by a large

margin.

We use CLIP encoders to calculate embeddings for every image in DTD2 test set and

text inputs constructed from each of the 655 attribute phrases from DTD2. For image

retrieval, we search for the nearest images from each input phrase; For phrase retrieval, we

search for nearest phrases from each input image embedding.

In Table 5.4 we compare the retrieval metrics between CLIP and DTD2-ML. Compared

with DTD2-ML, CLIP gets similar performance on image retrieval but performs worse on

phrase retrieval. In Figure 5.4 we display image retrieval examples. Both models retrieve

reasonable images. “Zigzagged” is a very specific pattern that CLIP makes mistakes on but

DTD2-ML is able to understand accurately. “Equally spaced” is a failure case for CLIP

that it looks for galaxy space.

In Figure 5.5 we show phrase retrieval examples. Although the retrival metrics for

CLIP are low in Table 5.4, its retrieved phrases look reasonable. In the first example,

both CLIP and DTD2-ML retrieve “striped”. DTD2-ML also retrieves “lined” and “lines”,
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facing left vs. facing right

low-wing vs. bi-wing

single engine vs. twin engine

fewer windows on body vs. more windows on body

Figure 5.3: Failure cases of CLIP on OID Attribute Phrases referring task. For each
example, the ground-truth in the Attribute Phrases Dataset indicates that the first phrase
(before “vs/”) describes the image on the left, but CLIP predicts the opposite.

Template Image Retrieval Phrase Retrieval
[Phrase] 13.53 9.34
A [Phrase] image 13.54 9.93
[Phrase] texture 14.15 11.57

A photo of [Phrase] texture 13.82 11.98
An image of [Phrase] texture 13.93 12.31
An image with [Phrase] texture 12.88 10.65

Table 5.3: Image and phrase retrieval mean average precision of CLIP on DTD2 val-
idation split. Considering both image and phrase retrieval performance, we select “An
image of [Phrase] texture” as our template for further experiments.

while CLIP retrieves “striated” and “strips”, which are all synonyms to “striped”. However,

“striated” and “strips” are rare in DTD2 and DTD2-ML learns from the statistic bias in

DTD2 vocabulary to not predict “striated” and “strips” but to predict more frequent words

such as “lined” and “lines”. It’s a common issue for vision and language datasets that we

can only collect partial annotations with a lot of attributes and descriptions that are actually

true to a given image but not collected/labeled as correct. Since CLIP cannot leverage the

dataset statistic bias, it is more often for CLIP to predict attributes that are reasonable but

considered incorrect during evaluation. This explains the performance gap between CLIP

and DTD2-ML on phrase retrieval.
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Query: “orange” Query: “zigzagged”

Query: “equally spaced” Query: “twirly”

Ground-truth

CLIP

DTD2-ML

Ground-truth

CLIP

DTD2-ML

Ground-truth

CLIP

DTD2-ML

Ground-truth

CLIP

DTD2-ML

Figure 5.4: Image retrieval examples on DTD2 test set from CLIP and DTD2-ML.
For each query attribute phrase, we display 5 random ground-truth images labeled with the
given attribute, and the top 5 retrieved images from CLIP and DTD2-ML.

Figure 5.6 shows the phrases that each model is best or worst at. We calculate the

image retrieval average precision for each phrase, plot the 80 phrases with the highest

average precision as “positive” and the worst 80 phrases as “negative”. We also visualize

phrases with the largest difference of average precision between CLIP and DTD2-ML.

The two models share very similar easiest phrases that describe colors and most obvious

textures, but their negative phrases are quite different. CLIP is better than DTD2-ML on

colors such as “orange”, “pink”, “purple” that are basic but less frequent in DTD2. CLIP

also works better on attributes related to materials or certain types of objects (e.g., “wood”,

“marble”, “glass”). However, CLIP performs worse on vocabulary specifically used to

describe patterns and textures (e.g., “rough”, “lined”, “grooved”).

5.2.3 Phrase and Image retrieval of texture phrases on CUB Dataset

We further compare CLIP and DTD2-ML on CUB[116] Dataset which DTD2-ML

hasn’t been trained on. We selected 17 attributes that both occur in DTD2 and CUB as

listed in 5.8. For example, images from CUB with attributes “has wing color: blue”, “has
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Ground-truth phrases:
white, black, soft, smooth, grey, lined, striped, lines, black and white, 
horizontal, furry, large, animal print, fur
CLIP Retrieved top 20 (5 in ground-truth):
zebra, zebra print, animal print, stripe, striped, animal, stripes, striated, white 
and black, strips, fur, black and white, black & white color, barred, scratched, 
streaked, furry, silky, stripped, fuzzy
DTD2-ML Retrieved top 20 (10 in ground-truth):
black, white, black and white, white and black, striped, lined, soft, black & 
white color, animal print, furry, zebra, lines, banded, soft texture, smooth, 
zebra print, fuzzy, opaque, white background, grey

Ground-truth phrases:
white, black, brown, blue, spotted, dotted, circles, polka dotted, spots, on a cloth
CLIP Retrieved top 20 (5 in ground-truth):
polka dots, spots, white dots, polka dotted, dots, spotted, polka-dotted, spotty, 
bubbles, holes, circles, repeating pattern, dotted, pattern, geometric pattern, 
unpatterned, same design pattern, patterned surface, droplets, bubbly
DTD2-ML Retrieved top 20 (6 in ground-truth):
white, circles, round, circular, dotted, white background, small, spotted, polka-
dotted, perforated, black, circular shape, multiple numbers, polka dotted, holey, 
dots, smooth, circle, holes, equally spaced

Figure 5.5: Phrase retrieval examples on DTD2 test set from CLIP and DTD2-ML.
For each image, we display its ground-truth phrases labeled in DTD2 and top 20 retrieved
phrases from CLIP and DTD2-ML. The bolded retrieved phrases are the ones included in
the ground truth.

upperparts color: blue”, “has back color: blue”, etc. are all counted as positive samples for

“blue”.

In Table 5.5 we show retrieval metrics of two models. CLIP performs better than DTD2-

ML on image retrieval and they have similar performance on phrase retrieval. In Figure 5.7

we show image retrieval examples. CLIP is able to focus on the main object while DTD2-

ML recognizes attributes from the background. For example, CLIP can retrieve “blue”

birds, while DTD2-ML retrieved images with a “blue” background. On the other hand,

DTD2-ML can retrieve from different categories but CLIP tends to return images of the

same category, which implies that CLIP image features are highly related to categories

such that images of the same category are close to each other in the embedding space. In

Figure 5.8 we compare on each attribute in terms of image retrieval average precision. CLIP

outperforms DTD2-ML on almost all attributes, especially “blue”, “yellow” and “red”.
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CLIP: best

CLIP: worst

DTD2-ML: best

DTD2-ML : worst

CLIP better than DTD2-ML 

DTD2-ML better than CLIP

Figure 5.6: Cloud of phrases with the best and worst performance of image retrieval
on DTD2 test set for CLIP and DTD2-ML. The blue (red) cloud is sampled from the
top 80 phrases with the highest(lowest) average precision. On the right, we also display 80
phrases with the maximum difference in average precision between CLIP and DTD2-ML.
Font sizes are proportional to phrase frequencies in DTD2.
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Task Model MAP MRR P@5 P@20 R@5 R@20

Phrase Retrieval
DTD2-ML 31.68 72.59 40.67 22.96 20.23 44.50
CLIP 12.06 31.41 15.82 12.63 5.63 16.28

Image Retrieval
DTD2-ML 13.50 31.12 16.52 14.57 5.24 17.32
CLIP 12.21 39.96 17.73 11.44 8.45 21.61

Table 5.4: Compare the phrase retrieval and image retrieval performance of DTD2-
ML and CLIP on DTD2 test set.

Task Model MAP MRR P@5 P@20 R@5 R@20

Phrase Retrieval
DTD2-ML 52.58 68.65 46.36 - 45.80 -
CLIP 53.36 74.54 42.40 - 42.46 -

Image Retrieval
DTD2-ML 35.33 53.71 44.71 43.82 0.17 0.75
CLIP 50.10 94.12 74.12 71.76 0.48 1.57

Table 5.5: Compare the performance of phrase retrieval and image retrieval with
DTD2-ML and CLIP on CUB test set. We experiment with 17 attributes that are included
in both CUB and DTD2 as input queries.

It is challenging to apply DTD2-ML to a novel domain of bird images because there is

very limited overlapping of attributes and “bird” is an unseen concept for DTD2-ML. CLIP

can perform reasonably on both DTD2 and CUB datasets without any extra training. This

demonstrates the strength of CLIP in generalizing to novel domains.

5.2.4 Understanding compositional phrases on synthetic texture images

We conduct the compositionality modeling analysis on synthetic texture images as de-

scribed in Chapter 3 Section 5.3. Results are shown in Table 5.6.

We see a slight improvement for CLIP on “Background” compared against DTD2-

ML but it performs lower than random guess on “Foreground”. Our interpretation is that

background usually takes more area than the foreground. CLIP tends to recognize more of

the majority color and fails to distinguish the foreground and background.

CLIP also achieves a slight improvement on “Color+Pattern” and a huge improvement

on “Two-colors”. CLIP is trained on much more language data, therefore during training it

may have seen plenty of examples of the combinations that are rare or novel in the DTD2
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Query: “blue” Query: “striped”

Query: “multi-colored”Query: “red”

Ground-truth

CLIP

DTD2-ML

Ground-truth

CLIP

DTD2-ML

Ground-truth

CLIP

DTD2-ML

Ground-truth

CLIP

DTD2-ML

Figure 5.7: Image retrieval examples on CUB test set from CLIP and DTD2-ML. For
each query attribute phrase, we display 5 random ground-truth images labeled with the
given attribute, and the top 5 retrieved images from CLIP and DTD2-ML.
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Figure 5.8: Image retrieval average precision of each query attribute on CUB test set
from CLIP and DTD2-ML. The gray line shows the accuracy difference between CLIP
and DTD2-ML. CLIP outperforms DTD2-ML on all attributes except “plain”.
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Model Foreground Background Color+Pattern Two-colors
DTD2-ML 46.55±20.65 52.00±6.32 41.73±22.77 27.45±15.13
CLIP 38.00±14.94 60.18±5.49 45.23±23.51 55.18±16.18
Random guess 50.00 50.00 7.40 5.26

Table 5.6: Compare the R-Precision of image retrieval on texture compositional tasks
with DTD2-ML and CLIP.

§ “A duck-like shape Rhinoceros Auklet bird with 
buff leg, orange bill.”

§ “A Parakeet Auklet bird with white eye, specialized 
bill, white belly, black nape, white underparts.”

§ “A Crested Auklet bird with white eye, crested head, 
specialized bill, solid wing, black nape.”

Figure 5.9: Examples of constructed category descriptions containing attributes. The
category names are in bold. Although The three categories have similar names, the at-
tributes can reflect their subtle differences between species, e.g., “Rhinoceros Auklet” is
more “duck-like” with “buff leg”, “Parakeet Auklet” has “white eye” and “white belly”,
“Crested Auklet” has “crested head” and “black nape”.

dataset. While the DTD2-ML model needs to interpret the language composition, CLIP

can simply learn the exact bi-gram or tri-gram phrases from training.

5.2.5 Zero-Shot Classification with Attribute Phrases

As introduced in [94], CLIP can work as a zero-shot classifier on novel categories.

Each category C is converted to a sentence “A photo of a [C]” and encoded by the text

encoder. Given an image, one can encode it with the image encoder and search for the

nearest category as its prediction.

One concern of such a zero-shot classification mechanism is that the category names

can be special proper nouns or rare words especially in fine-grained domains, which may

lead to compromised classification performance. We have demonstrated the effectiveness
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of attribute phrases for fine-grained classification in both Chapter 2 and 3. Here we extend

the idea to improve fine-grained classification in the introduced zero-shot setting through

leveraging attribute phrases to construct more informative category descriptions.

On CUB Dataset, we first count the percentage of images within a given category C

in CUB that are positive for attribute A and compare it with the positive percentage of

A across all categories. Based on such statistics, we gather a sorted list of attributes for

each category that distinguishes it from other categories and add these attributes into the

category description. The attributes from CUB contain adjectives describing a part of the

bird, e.g. “has wing color::brown”, and we construct the category description in the format

of “A [P0] [C] (bird) with [P1] [N1], [P2] [N2], ...” where C is the category name, P0

contains adjectives describing the whole bird, Ni are nouns of bird body parts and Pi are

adjectives modifying Ni. The word “bird” is added only when the category name does not

end with “bird”.

Figure 5.9 shows examples of generated descriptions with very similar category names.

By using our constructed descriptions instead of only the category name (“A [C] (bird)”),

we improve the classification accuracy slightly from 50.53% to 51.28%.

We conduct the same experiment to classify 45 texture types in DTD2. We count the

most frequent attributes for each category in the training set, choose the top 20 attributes

for each category that have a higher frequency than the average overall categories, and con-

struct the phrases as “An image of [xxx] texture”, where [xxx] are the 20 phrases. For ex-

ample, the “gauzy” class is described as “An image of gauzy, sheer, transparent, light, thin,

white, translucent, soft, see through, delicate, netted, meshy, airy, silky, fabric, see-through,

folded, wavy, curtains, cloth texture.” On DTD2 test set, we achieve a classification accu-

racy of 54.84%, compared to 41.06% when only including the category names.

The above experiments verify the effectiveness of CLIP for zero-shot classification as

claimed in their paper. One can add a novel category to the CLIP classifier and achieve rea-
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sonable performance with only a description of the category name and most distinguishing

attributes, which is much easier to collect than a set of images for this novel category.

5.3 Summary

In this chapter, we analyze CLIP, a contrastive learning model with vision and language

encoders trained on 400 million image-text pairs from the Internet, on specialized domains

including aircraft, textures, and birds. Without any fine-tuning, CLIP achieves good per-

formance on a wide range of language-vision tasks including image retrieval, text retrieval,

and zero-shot classification. A detailed analysis of CLIP shows that the model is good

at understanding coarse concepts, such as color and category names, but has worse per-

formance on understanding fine-grained attributes such as parts, their relations, and pose.

However, this can be alleviated by fine-tuning on domain-specific data.
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CHAPTER 6

CONCLUSION

In this thesis, we leverage large-scale and detailed supervision from natural language

to improve the understanding and modeling of visual domains. In Chapter 2, we propose

to use attribute phrases to describe fine-grained visual differences between instances and

learn to describe and ground these phrases to images in the context of a reference game. In

Chapter 3, we focus on natural language that describes textures and address the challenge

of capturing compositional properties(e.g., the combination of “color” and “pattern”). We

train interpretable models on our proposed dataset and provide language-based explana-

tions of texture features that are discriminative in fine-grained classification. In Chapter 5

we look into CLIP and demonstrate that a large-scale pre-trained model can achieve com-

petitive performance in specialized domains. In the above three lines of work, we show

that attribute phrases can capture detailed features and improve fine-grained classification.

Lastly, in Chapter 4, we segment image regions based on referring phrases containing cate-

gory names, attributes, and relationship descriptions between instances. We learn to model

the associations between concepts to improve the handling of long-tail concepts. We intro-

duce three datasets in Chapter 2, 3 and 4 which are all publicly available for the community.
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