
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2021

Resource Allocation in Distributed Service Networks Resource Allocation in Distributed Service Networks

Nitish Kumar Panigrahy
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Digital Communications and Networking Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
Panigrahy, Nitish Kumar, "Resource Allocation in Distributed Service Networks" (2021). Doctoral
Dissertations. 2294.
https://doi.org/10.7275/24284112 https://scholarworks.umass.edu/dissertations_2/2294

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/24284112
https://scholarworks.umass.edu/dissertations_2/2294?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

RESOURCE ALLOCATION IN DISTRIBUTED SERVICE
NETWORKS

A Dissertation Presented

by

NITISH K. PANIGRAHY

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2021

College of Information and Computer Sciences

c© Copyright by Nitish K. Panigrahy 2021

All Rights Reserved

RESOURCE ALLOCATION IN DISTRIBUTED SERVICE
NETWORKS

A Dissertation Presented

by

NITISH K. PANIGRAHY

Approved as to style and content by:

Don Towsley, Chair

Ramesh K. Sitaraman, Member

Prashant Shenoy, Member

Prithwish Basu, Member

James Allan, Chair
College of Information and Computer Sciences

DEDICATION

To my grand mother, Jeji.

ACKNOWLEDGMENTS

This thesis would not have been possible without the support of many people.

Firstly, I would like to express sincere gratitude to my advisor, Don Towsley who has

been an exceptional support and constant source of inspiration throughout the years

of my PhD study. I can not thank him enough for continuously presenting me with

so many wonderful opportunities. Thank you Don for believing and guiding me.

I would also like to thank Prithwish Basu (Raytheon BBN) for being a wonderful

supervisor during my internship at BBN. It has been a great pleasure to collaborate

with him and take advice on a life in industry. I am very grateful to my other thesis

committee members: Ramesh Sitaraman (UMass) and Prashant Shenoy (UMass).

Their useful feedback and suggestions certainly improved this thesis.

I am thankful to everyone with whom I have had a chance to work with. My

early collaborators: Kris Hollot (UMass), Ananthram Swami (ARL), Kevin S. Chan

(ARL), Kin K. Leung (Imperial) and Faheem Zafari (Imperial). All past and current

members of the Computer Networks Research Group at UMass: Kun, James, Bo,

Jian, Gayane, Amir, Stefan, Arman, Albert, Janice, Thiru, Matheus, Mohammad and

Wenhan. My current collaborators: Philippe Nain (Inria) and Giovanni Neglia (Inria).

Staff members at UMass: Laurie Connors, Leeanne Leclerc, and Eileen Hamel.

I am very grateful to my parents Pratibha and Bipin for their constant support

and motivation which helped me believe I can successfully complete this thesis. I

would also like to thank my grandmother Jeji. Jeji! you have been in my thoughts,

and prayers, miss you. I am grateful to my brother Pritish, sister-in-law Sutapa,

mother-in-law Sandhya, father-in-law Puspendra and brother-in-law Soubhagya for

v

being such an awesome family. Thank you my nephew Neevu and niece Aadya for

being so cute and adorable.

Last but not least thanks to my wife Prachi for being there. Through thick and

thin. Thank you for being the wonderful life partner, friend and guide you are. Love

you.

vi

ABSTRACT

RESOURCE ALLOCATION IN DISTRIBUTED SERVICE
NETWORKS

SEPTEMBER 2021

NITISH K. PANIGRAHY

B.Tech., NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA

M.Tech., INDIAN STATISTICAL INSTITUTE, KOLKATA

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Don Towsley

The past few years have witnessed significant growth in the use of a large number

of smart devices, computational and storage resources. These devices and resources

distributed over a physical space are collectively called a distributed service network.

One of the new applications closely related to a distributed service network is the

internet of things (IoT) system. Efficient resource allocation for such high perfor-

mance IoT system remains one of the most critical problems. In this thesis, we model

and optimize the allocation of resources in a distributed service network. This thesis

contributes to two different types of service networks: caching, and spatial networks;

and develops new techniques that optimize the overall performance of these services.

First, we propose a new method to compute an upper bound on hit probability

for all non-anticipative caching policies in a distributed caching system. We order the

contents according to the ratio of their Hazard Rate (HR) function values to their

vii

sizes and place in the cache the contents with the largest ratios till the cache capacity

is exhausted. We find our bound to be tighter than the state-of-the-art upper bounds

for a variety of content request arrival processes.

We then develop a utility based framework for content placement in a network

of caches for efficient and fair allocation of caching resources through timer-based

(TTL) caching policies. We develop provably optimal distributed algorithms that

operate at each network cache to maximize the overall network utility. Our TTL-

based optimization model provides theoretical answers to how long each content must

be cached, and where it should be placed in the cache network.

Next, we develop and evaluate assignment policies that allocate resources to users

with a goal to minimize the expected distance traveled by a user request (request

distance), where both resources and users are located on a line. We consider uni-

directional assignment policies that allocate resources only to users located to their

left. We show that when user and resource locations are modeled by statistical point

processes, the spatial system under unidirectional policies can be mapped into bulk

service queueing systems, thus allowing the application of many queueing theory re-

sults that yield closed form expressions. We also consider bidirectional policies where

there are no directional restrictions on resource allocation and develop an algorithm

for computing the optimal assignment which is more efficient than known algorithms

in the literature when there are more resources than users.

Lastly, we design and evaluate resource proximity aware user-request allocation

policies with a goal to reduce the cost associated with moving a request/job to/from

its allocated resource or implementation cost and balance the number of requests

allocated to a resource or the load. We consider a class of proximity aware Power of

Two (POT) choice based assignment policies for allocating user-requests to resources,

where both users and resources are located on a two-dimensional Euclidean plane. In

this framework, we investigate the tradeoff between the implementation cost, and load

viii

balancing performance of different allocation policies. We propose two non-uniform

resource sampling based POT policies that achieve the best of both implementation

cost and load balancing performance. We then extend our analysis to the case where

resources are interconnected as an arbitrary graph. Depending on topology, our

proposed policies achieve a 8% − 99% decrease in implementation cost as compared

to the state-of-the-art.

ix

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

CHAPTER

1. INTRODUCTION . 1

1.1 Research Questions and Contributions . 2

1.1.1 Can we provide an upper bound on the cache hit probability
for non-anticipative caching policies? . 2

1.1.2 How do we build caching networks that provide differential
services? . 3

1.1.3 How do we allocate resources to users in a geographically
dispersed network? . 4

1.2 Thesis Outline . 6

2. A NEW UPPER BOUND ON CACHE HIT PROBABILITY
FOR NON-ANTICIPATIVE CACHING POLICIES 8

2.1 Background . 8

2.1.1 Offline upper bound . 9
2.1.2 Our Approach: Hazard Rate based upper bound 9

2.2 Equal Size Objects . 11

2.2.1 Number of Hits for General object Arrival Processes 11
2.2.2 Upper Bound on Stationary Hit Probability 14

x

2.3 Variable Size Objects . 15

2.3.1 Number of byte hits and fractional knapsack problem 16
2.3.2 Upper Bound on the Byte Hit Probability for Stationary and

Ergodic Object Arrival Processes . 17
2.3.3 Number of object hits and 0-1 knapsack problem 18
2.3.4 Upper Bound on Object Hit Probability for Stationary and

Ergodic Object Arrival Processes . 20

2.4 Specific Request Arrival Processes . 21

2.4.1 Poisson Process . 21
2.4.2 On-Off Request Process . 21
2.4.3 Markov Modulated Poisson Process . 24
2.4.4 Shot Noise Model . 27

2.5 Numerical Results . 28

2.5.1 Investigated online policies . 28
2.5.2 Upper bounds on object hit probability . 28
2.5.3 Arrival process of object requests . 29
2.5.4 Size of objects . 31
2.5.5 Renewal request processes and equal size objects 32
2.5.6 Renewal request processes and variable size objects 33
2.5.7 On-off request arrivals and equal/variable size objects 33
2.5.8 MMPP request arrivals and equal/variable size objects 34

2.5.8.1 Shot noise request arrivals and equal/variable size
objects . 36

2.5.9 Real-world trace . 36

2.6 Summary . 37

3. A TTL-BASED APPROACH FOR FAIR RESOURCE
ALLOCATION IN CACHE NETWORKS . 38

3.1 Background . 38

3.1.1 Network Model . 40
3.1.2 Content Request Process . 40
3.1.3 Time-To-Live Caches . 40
3.1.4 Cache Replication Strategy . 41
3.1.5 Utility based caching . 42

3.2 Special Case: Single Cache . 43

xi

3.2.1 Extension to Stationary Request Arrival Process 43
3.2.2 Cache Utility Maximization . 44
3.2.3 Effect of Hazard Rate . 44
3.2.4 Online Dual Algorithm . 45
3.2.5 Online Poisson Approximation . 46

3.3 Linear Cache Network . 47

3.3.1 Stationary Behavior . 47
3.3.2 From Timer to Hit Probability . 48
3.3.3 Maximizing Aggregate Utility . 49
3.3.4 Distributed Algorithm . 50

3.4 General Cache Network . 52

3.4.1 Non-common Requested Contents . 52
3.4.2 Common Requested Contents . 53

3.5 Results and Discussion . 57

3.5.1 Results for Single Cache . 57
3.5.2 Results for Linear Cache Network . 59
3.5.3 Results for General Cache Network (Non-Common Requested

Contents) . 61
3.5.4 Results for General Cache Network (Common Requested

Contents) . 62

3.6 Summary . 65

4. JOINTLY COMPRESSING AND CACHING DATA IN
WIRELESS SENSOR NETWORKS . 66

4.1 System Model . 67

4.1.1 TTL-Router . 67
4.1.2 Data Generation and Requests . 68
4.1.3 Utility Function . 69

4.2 Optimization Formulation . 69

4.2.1 Utilities . 70
4.2.2 Costs . 70

4.2.2.1 Forwarding Costs . 70
4.2.2.2 Search Costs . 71
4.2.2.3 Fetching Costs . 71

xii

4.2.3 Hit Probability and Timer-based Policies . 71
4.2.4 Optimization Formulation . 72

4.2.4.1 Convex Transformation . 73

4.3 Results and Discussion . 74
4.4 Summary . 76

5. A QUEUEING-THEORETIC MODEL FOR RESOURCE
ALLOCATION IN ONE-DIMENSIONAL DISTRIBUTED
SERVICE NETWORK . 77

5.1 Background . 77
5.2 System Model . 81

5.2.1 User and server spatial distributions . 81
5.2.2 Allocation policies . 82

5.3 Unidirectional Allocation Policies . 83
5.4 Unidirectional Poisson Matching . 84

5.4.1 MTR . 84

5.4.1.1 When server capacity is one (c = 1). 86

5.4.2 UGS . 86

5.5 Unidirectional General Matching . 86

5.5.1 Notion of exceptional service and accessible batches 87

5.5.1.1 Evaluation of the distribution function: FZ(x) 88

5.5.2 General requests and Poisson distributed servers (GRPS) 90
5.5.3 Poisson distributed requests and general distributed servers

(PRGS) . 91

5.5.3.1 Queue length distribution . 91
5.5.3.2 Expected request distance . 96

5.6 Discussion of Unidirectional Allocation Policies . 96

5.6.1 Heavy traffic limit for general request and server spatial
distributions . 97

5.6.2 Heterogeneous server capacities under PRGS 98

5.6.2.1 Distribution of H . 98

xiii

5.6.2.2 Expected Request Distance . 101

5.6.3 Uncapacitated request allocation . 101
5.6.4 Cost models . 101

5.6.4.1 GRPS with c = 1 . 102
5.6.4.2 PRGS with c = 1 . 102

5.6.5 Extension to two resources . 103

5.6.5.1 Identical service rates (µ1 = µ2 = µµ1 = µ2 = µµ1 = µ2 = µ and c = 1c = 1c = 1) 104

5.7 Bidirectional Allocation Policies . 104
5.8 Numerical Experiments . 108

5.8.1 Experimental setup . 108
5.8.2 Sensitivity analysis . 109

5.8.2.1 Expected request distance vs. load 109
5.8.2.2 Expected request distance vs. squared co-efficient of

variation . 109
5.8.2.3 Expected request distance vs. server capacity 111
5.8.2.4 Expected request distance vs. capacity moments 111
5.8.2.5 Variance vs. load . 112
5.8.2.6 Comparison of two resource and single resource

policies . 113

5.8.3 Comparison of different allocation policies 113

5.9 Conclusion . 115

6. PROXIMITY AWARE LOAD BALANCING POLICIES IN
TWO DIMENSIONAL SPATIAL NETWORKS 116

6.1 Background . 116

6.1.1 Spatial Load Balancing . 117

6.2 System Model . 118

6.2.1 Performance Metrics . 121

6.3 Spatial Power of Two policy on a plane . 122

6.3.1 sPOT with Grid based server placement . 122
6.3.2 sPOT with Uniform server placement . 123

xiv

6.3.2.1 Majorization Basics . 124
6.3.2.2 Loss of POT benefits under sPOT 125

6.3.3 Tradeoff between Load and Request Distance 126

6.4 Improving Performance of sPOT . 127

6.4.1 InvSq-POT(k) . 128
6.4.2 Unif-POT(k) . 129

6.5 Conclusion . 131

7. PROXIMITY AWARE LOAD BALANCING POLICIES ON
GRAPHS . 133

7.1 Background . 133
7.2 System Model . 136

7.2.1 Performance Metrics . 138

7.3 Proximity Aware POT policies on Graphs . 139

7.3.1 Maximum Load vs Request Distance Tradeoff 139
7.3.2 Performance Comparison for Deterministic Graphs 140
7.3.3 Performance Comparison for Random Graphs 143
7.3.4 Performance Comparison for Spatial Graphs 147

7.4 Summary . 150

8. SUMMARY AND FUTURE WORK . 151

8.1 Future Work . 151

APPENDICES

A. ADDITIONAL PROOFS FOR CHAPTER 2 . 153

A.1 Proof of Equation (2.6) . 153

A.1.1 Proof of Lemma 1 . 154

B. ADDITIONAL PROOFS FOR CHAPTER 3 . 155
C. ADDITIONAL PROOFS FOR CHAPTER 4 . 159
D. ADDITIONAL PROOFS FOR CHAPTER 5 . 160
E. ADDITIONAL PROOFS FOR CHAPTER 6 . 168

xv

BIBLIOGRAPHY . 171

xvi

LIST OF TABLES

Table Page

2.1 Inter-request time (IRT) distributions of the renewal request arrival
processes in Figures 2.2-2.3 and their properties (CHR =
Constant hazard rate, IHR = Increasing hazard rate, DHR =
Decreasing hazard rate). ?Once arrival rate 1

2νi
is known one finds

p1,i = (1−
√

(SCVi − 1)/(SCVi + 1))/2 under the constraints. 29

2.2 Parameters of the shot-noise models in Figure 2.6. 31

5.1 Properties of specific inter-server distance distributions. 88

7.1 Simulation parameters for random graph topologies. 143

7.2 Simulation parameters for spatial graph topologies. 147

xvii

LIST OF FIGURES

Figure Page

2.1 On-Off Request Process . 21

2.2 Simulation results for HR based upper bound and various caching
policies under different inter request arrival distributions
(n = 1000, all objects of size 1). 32

2.3 Simulation Results for HR based upper bound and various caching
policies under different inter request arrival distributions for
variable object sizes (n = 1000). 33

2.4 Performance comparison under on-off request process 34

2.5 Performance comparison under two-state MMPP request arrivals 35

2.6 Performance comparison under shot noise model (n = 143871). 35

2.7 Performance comparison under real world data trace (n = 5638). 37

3.1 An cache network with a server holding all contents and three layers
of caches. Each leaf/edge cache serves a set of users with different
requests. The blue line illustrates a unique path between the leaf
cache and the server. 39

3.2 A reset TTL cache . 41

3.3 Move Copy Down with Push cache replication policy 41

3.4 (a) Accuracy of Poisson online approximation for Generalized Pareto
inter-requests. (b) Trace-driven utility comparison for Poisson
online approximation and LRU caching policies. 58

3.5 (a) Hit probability for MCDP in a three-node path; (b) Convergence
of primal algorithm. 60

3.6 Normalized optimal aggregated utilities in a three-node path. 61

xviii

3.7 (a) Hit probability; (b) Cache size, of MCDP under three-layer edge
network where each path requests distinct contents. 62

3.8 Convergence of Primal-Dual algorithm. 63

3.9 Optimal aggregated utilities under common requested contents. 63

3.10 Optimal aggregate utilities under various network topologies. 63

4.1 An illustrative example for data generating, request and propagating
in a wireless sensor network. 67

4.2 Hit probability of MCDP under seven-node tree WSN. 75

4.3 Cache size of MCDP under seven-node tree WSN. 75

4.4 Compression ratio of MCDP under a seven-node tree WSN. 75

4.5 Storage vs. overall objective under a seven-node tree WSN. 76

5.1 Allocation of users to servers on the one-dimensional network. Top:
UGS, Bottom: MTR allocation policy. 83

5.2 Allocation of users to servers under MTR policy. 87

5.3 The plot shows the ratio E[D]/Ds for deterministic and uniform
inter-server distance distributions. 97

5.4 Two resource scenario with c = 1 (a) Depiction of request distances
and (b) Mapping to Fork-join queues. 103

5.5 Worst case scenario for Gale-Shapley. 107

5.6 Sensitivity analysis of MTR/UGS policy. (a) Effect of load on
expected request distance with c = 2c = 2c = 2. (b) Effect of squared
coefficient of variation on expected request distance with
λ = µ = 1λ = µ = 1λ = µ = 1 and c = 2c = 2c = 2. (c) Effect of server capacity on expected
request distance with ρ = 0.8ρ = 0.8ρ = 0.8. (d) Effect of variability in server
capacity on expected request distance for Deterministic
distribution with ρ = 0.8ρ = 0.8ρ = 0.8. 110

xix

5.7 (a) Effect of load on variance of request distance with c = 2c = 2c = 2 across
MTR and UGS. (b) Comparison of expected request distance
under Two Resource Non-homogeneous (TRN), Two Resource
Homogeneous (TRH), Single Resource Unit-service (SRU) and
Single Resource Bulk-service (SRB) scenario across various server
distributions with λ = 0.6, µ = 1λ = 0.6, µ = 1λ = 0.6, µ = 1. 112

5.8 Comparison of different allocation policies: (a) ρρρ vs E[D]E[D]E[D] with c = 1c = 1c = 1,
(b) ccc vs. E[D]E[D]E[D] with ρ = 0.4ρ = 0.4ρ = 0.4, (c) ρρρ vs TTT with β = 2, t0 = 1, c = 1β = 2, t0 = 1, c = 1β = 2, t0 = 1, c = 1
and (d) ccc vs. TTT with β = 2, t0 = 1, ρ = 0.4β = 2, t0 = 1, ρ = 0.4β = 2, t0 = 1, ρ = 0.4. 114

6.1 Second nearest region for user r . 120

6.2 Delaunay Graph associated with grid based server placement 120

6.3 Delaunay Graph associated with uniform server placement 120

6.4 Performance comparison of basic allocation policies wrt (a) maximum
load and (b) expected request distance for n = 10000 servers. 126

6.5 Performance comparison of allocation policies wrt InvSq-POT(n) for
n = 50000 servers. (a) and (b) plots are for InvSq-POT(n) while
(c) and (d) for POT. 127

6.6 Performance comparison of Unif-POT(k) and InvSq-POT(n) with
respect to (a) total variation distance to POT (b) average
maximum load and (c) average request distance when servers
placed uniformly at random on a plane. 130

7.1 Trade-off between average maximum load and average request
distance for servers on a Line graph with m = n = 1000 for
Unif-POT(k) policy under static load balancing system. 140

7.2 Simulation Results for Unif-POT(k) and InvSq-POT(k) for line and
ring graphs. 141

7.3 Simulation Results for Unif-POT(k) and InvSq-POT(k) with
n = 10000 and k = 2, log n, n for random graphs. 144

7.4 Simulation Results for Unif-POT(k) and InvSq-POT(k) with
n = 10000 and k = log n, n for spatial graphs. 148

D.1 Uncrossing an assignment either reduces request distance or keeps it
unchanged. 165

xx

CHAPTER 1

INTRODUCTION

The past few years have witnessed significant growth in the use of distributed

network analytics involving agile code, data and computational resources. In many

such networked systems, for example, Internet of Things (IoT) [10], a large num-

ber of smart devices, sensors, computational and storage resources are widely dis-

tributed in the physical world. These devices and resources are accessed by various

end users/applications that are also distributed across the physical space. Delivering

the content generated from the deployed smart devices to users efficiently and assign-

ing users or applications to various resources are critical to sustained high performance

operation of such a distributed system.

This thesis covers two main topics: the first concerns characterizing the funda-

mental limits and optimal content placement problem in a network of storage re-

sources/caches, and the second concerns optimal resource allocation and load balanc-

ing problem in distributed spatial networks. The main focus of this thesis will be on a

setting where resources or services are distributed across a physical space. We collec-

tively call such a set of resources/services a distributed service network. We develop

new analytical techniques and performance bounds for a caching network with the

goal to efficiently and fairly deliver content to the end user. We also design and eval-

uate techniques to optimize the allocation of storage and computational resources to

end users over a physical space with a goal to distribute these user requests as evenly

as possible among resources.

1

1.1 Research Questions and Contributions

This thesis addresses three research questions motivated by two types of dis-

tributed service networks. The first two questions concern with a service network

consisting of a network of caches while the third question deals with a network of

spatially distributed services.

1.1.1 Can we provide an upper bound on the cache hit probability for

non-anticipative caching policies?

This question is pertinent to a wide verity of distributed caching systems such

as Content Deliver Networks (CDNs), Information and Content-centric Networks

(ICNs/CCNs). In such caching systems, end-to-end application performance heavily

depends on the fraction of contents transferred from the cache, also known as the

cache hit probability. Many caching policies have been proposed and implemented to

improve the hit probability. Thus the following natural question arises. With limited

statistical knowledge of the content arrival process and no look ahead option, can we

provide an upper bound on the cache hit probability for any feasible non-anticipative

caching policy? To answer the above question, we propose a new method to compute

an upper bound on hit probability for all non-anticipative caching policies, i.e., for

policies that have no knowledge of future requests. Our key insight is to order the

contents according to the ratio of their Hazard Rate (HR) function values to their

sizes and place in the cache the contents with the largest ratios till the cache capacity

is exhausted. Here, the HR function is the conditional density of the occurrence of a

content request, given the realization of the request process [29]. Under fairly weak

statistical assumptions, we prove that our proposed HR to size ratio based order-

ing model computes the maximum achievable hit probability and serves as an upper

bound for all non-anticipative caching policies. We find our bound to be tighter than

state-of-the-art upper bounds for a variety of content request arrival processes.

2

1.1.2 How do we build caching networks that provide differential ser-

vices?

In modern caching systems, different content types have different quality of service

requirements. Service differentiation among different content classes provide economic

incentives along with technical gains. However, traditional caching policies are oblivi-

ous to these service requirements. This brings us to the following question. How do we

build caching networks that provide differential services? To answer this question, we

associate each content with a utility which is a function of the corresponding content

hit rate. We model the caching network as a general graph G = (V,E) where each

vertex v ∈ V represents a cache. We assume caches are timer-based, i.e., each cache

v ∈ V is a Time-To-Live (TTL) cache. Our main contributions can be summarized

as follows.

• We formulate a cache utility maximization framework for a single cache under

stationary request arrivals, where each content is associated with a utility and

content is managed with a timer whose duration is set to maximize the aggregate

utility for all contents. We propose computationally efficient online algorithms

that adapt to different stationary requests using limited information.

• We further consider a more general cache network where each local edge cache

can serve common contents, i.e., there are common contents among local edge

caches. This introduces non-convex constraints, resulting in a non-convex utility

maximization problem. We show that although the original problem is non-

convex, the duality gap is zero. Based on this, we design a distributed iterative

primal-dual algorithm for optimal content placement in the cache network.

• We apply the results obtained from our utility maximization framework to a

wireless sensor network setting with the goal to jointly compress and cache

requested content.

3

1.1.3 How do we allocate resources to users in a geographically dispersed

network?

Consider another variation of a service network where both resources and end

users are distributed across a physical space and the goal is to allocate user requests

to resources on servers. Not surprisingly, the spatial distribution of resources and

users in the network is an important factor in determining the overall performance

of the service. A key measure of performance in such networks is average request

distance, that is average distance between a user and its allocated resource/server

(where distance is measured on the network). This directly translates to latency

incurred by a user when accessing the service, which is arguably among the most

important metrics in distributed service applications. Furthermore, in wireless net-

works, signal attenuation is strongly coupled to request distance, therefore developing

allocation policies to minimize request distance can help reduce energy consumption,

an important concern in battery-operated wireless networks.

Another important practical constraint in distributed service networks is the num-

ber of users assigned to a resource, or the load. One of design goals in such a system is

to distribute users among distributed resources/servers as evenly as possible. While

the optimal resource selection problem can be solved centrally, due to scalability con-

cerns, it is often preferred to adopt randomized load balancing strategies to distribute

these users among servers. This interpretation leads to formulating a randomized load

balancing problem for the distributed systems with the goal to make the overall user-

to-resource assignment as fair as possible. In a non-geographic setting, one of the

widely used randomized load balancing policies is the Power of Two (POT) choices

policy. In POT, each user uniformly at random selects two resources and gets allo-

cated to the one with the least load. While POT can directly be used for user to

resource assignment in a geographic setting, it is oblivious to the spatial distribution

of resources and users.

4

Thus a fundamental research question that is pertinent to all geographically dis-

persed service network designs is : How to assign users to suitable resources so as

to minimize average request distance and the server load? To answer this question,

we consider three variations of the spatial network - (i) one dimensional service net-

work : where users and resources are distributed over a one dimensional line. (ii)

two dimensional service network : where users and resources are distributed over a

two dimensional euclidean plane. (iii) Generic Graph Network : where resources are

vertices of an arbitrary graph and user requests arrive on any of one of the vertices.

Our contributions are summarized as follows.

• We develop and analyze simple allocation policies in a one dimensional service

network with the goal of characterizing and minimizing average request distance.

1. We show that when user and resource locations are modeled by statistical

point processes, the spatial system under unidirectional policies (policies

that allocate resources only to users located to their left) can be mapped

into classical bulk service queueing systems. As we consider a case where

different resources can satisfy different numbers of users, we also generate

new results for bulk service queues.

2. We propose a novel dynamic programming based algorithm for optimal

bi-directional resource allocation that improves state-of-the-art time com-

plexity by O(n) with n being the number of resources.

• We study and develop spatial load balancing policies when resources are placed

on a two dimensional Euclidean plane.

1. We propose a spatially motivated POT policy: spatial POT (sPOT) in

which each user is allocated to the least loaded resource among its two geo-

graphically nearest resources. When both servers and users are placed uni-

formly at random in the Euclidean plane, we map sPOT to a classical balls

5

and bins allocation policy with bins corresponding to the Voronoi regions

associated with the second order Voronoi diagram of the set of servers. We

show that sPOT performs better than classical POT in terms of average

request distance. However, a lower bound analysis on the asymptotic ex-

pected maximum load for sPOT suggests that POT load balancing benefits

are not achieved by sPOT.

2. We propose two non-uniform resource sampling based POT policies to

improve load and request distance behavior.

(a) A candidate set based policy that samples k nearest servers from a

user and applies POT on the candidate set.

(b) A non-uniform distance decaying sampling based POT in which each

user samples two servers with probability inversely proportional to

square of the distance to the servers.

• We design proximity aware randomized load balancing policies when resources

are placed on the vertices of an arbitrary graph.

1. Our simulations demonstrate a total variation distance, a metric to de-

termine closeness of two probability distributions, as low as 0.002− 0.005

between load distributions of classical POT and proposed proximity based

policies across a wide range of network topologies.

2. We achieve a significant reduction in implementation cost on the order

of 20% − 99% for our proposed proximity based policies as compared to

classical POT.

1.2 Thesis Outline

The remainder of the thesis is outlined as follows.

6

• Chapter 2 of this thesis details our proposed model to compute the maximum

achievable cache hit probability for all non-anticipative caching policies. This

model has been published in [77], [78].

• In Chapter 3, we formulate a utility-driven caching framework for general cache

networks, which has also been developed in several papers [74], [76].

• Chapter 4 discusses an application of utility-driven caching framework in a

wireless sensor network that was published in [75].

• Chapter 5 proposes resource allocation in a one dimensional distributed service

network and has been published in [68], [72].

• Chapter 6 discusses resource allocation in a two dimensional distributed service

network, which has also been published in [73].

• Chapter 7 develops proximity aware randomized load balancing policies for the

case when resources are placed on the vertices of an arbitrary graph and has

been developed in [79].

• Chapter 8 concludes this thesis and provides a list of ongoing and future work.

7

CHAPTER 2

A NEW UPPER BOUND ON CACHE HIT PROBABILITY
FOR NON-ANTICIPATIVE CACHING POLICIES

2.1 Background

Caches are pervasive in computing systems, and their importance is reflected

in many networks and distributed environments including content delivery networks

(CDNs). In such networks, end user quality of experience primarily depends on

whether the requested object1 is cached near the user. Thus the cache hit probability,

i.e., the percentage of requests satisfied by the cache, plays an important role in

determining end-to-end application performance. In general, the number of objects

available in a system is much larger than the cache capacity. Hence, design of caching

algorithms typically focuses on maximizing the overall cache hit probability. Also,

maximizing the cache hit probability corresponds to minimizing the expected retrieval

time, the load on the server and on the network when object sizes are equal.

One possible way to improve cache hit probability is by increasing cache ca-

pacity. However, increasing cache capacity only logarithmically improves cache hit

probability[22, 8]. Thus improving caching policies seems to be more effective for

maximizing the overall cache hit probability. In practice, most caches employ least-

recently used (LRU) or its variants often coupled with call admission or prefetching

[19]. Apart from LRU, other well known eviction policies include LFU, FIFO, RAN-

DOM. There has been plethora of work [52, 65, 90, 9, 16, 25, 51] on improving cache

hit probabilities in the literature. In order to gauge the potential effectiveness of these

1We use object and content interchangeably.

8

eviction policies, an upper bound on maximum achievable cache hit probability for a

given cache capacity has been widely adopted [9].

2.1.1 Offline upper bound

For equal size objects, Bélády’s algorithm or MIN [6] has been widely used as an

upper bound for cache hit probability among all feasible on demand and online caching

policies, togetherly known as non-anticipative policies. However, Bélády’s algorithm

is an offline algorithm, i.e., it assumes exact knowledge of future requests. Offline

upper bounds on object hit probability have been proposed for variable (different)

size object [19]. Often system designers do not have access to the exact request

trace, but can estimate the statistical properties of the object request process such

as the inter-request time (irt) distribution. Also, caching studies typically include

model driven simulations. Thus the following natural question arises. With limited

knowledge of the object arrival process and no look ahead option, can we provide

an upper bound on the cache hit probability for any feasible non-anticipative caching

policy?

2.1.2 Our Approach: Hazard Rate based upper bound

When object requests follow the Independent Reference Model (IRM), i.e., when

objects are referenced independently with fixed probabilities, Least-Frequently Used

(LFU) caching policy is asymptotically optimal in terms of object hit probability.

However, general request processes are more complex and correlated.

In this chapter, we assume a larger class of statistical models for object reference

streams. We also assume that the hazard rate (HR) function (or conditional intensity)

associated with this point process is well defined and can be computed at all points

of time t. Here, the HR function is the conditional density of the occurrence of an

object request at time t, given the realization of the request process over the interval

[0, t) [29].

9

Note that, the hazard rate function may have different interpretations depending

on the context it is used. For example, in survival analysis, the hazard rate corre-

sponds to the propensity or the likelihood of an item to die or fail conditioned on

the fact that it has survived until a certain age. When the failure process of an item

is described by a Poisson process, due to its memoryless property, the hazard rate

is equivalent to the request rate for that item. In caching terminology, we can treat

failure/death of an item as an object being requested.

We now propose the HR based upper bound as follows. When objects have equal

size, at any time t we determine the HR values of each object and place in the cache

the B objects which have the largest HR values. When objects have different sizes,

we sort the objects according to the ratio of their HR values at time t to their sizes in

decreasing order. Note that, an ideal LFU policy keeps track of number of times an

object is referenced and order them accordingly in the cache. Similarly, in our upper

bound, we keep an ordered list but on the basis of ratio of HR values to object sizes.

We then place in the cache the objects with the largest ratios till the cache capacity

is exhausted.

Our contributions are summarized below:

1. We present a new upper bound for cache hit probability among all non-anticipative

caching policies that allow prefetching:

• When objects have equal sizes, a simple HR based ordering for the objects

provides an upper bound on cache hit probability.

• For variable size objects, we order the objects with respect to the ratio of

their HR function values to their objects sizes and provide upper bounds

on the byte and object hit probabilities.

2. We derive closed form expressions for the upper bound under some specific

object request arrival processes.

10

3. We evaluate and compare the HR based upper bound with different cache re-

placement policies for both synthetic and real world traces.

2.2 Equal Size Objects

We consider a cache of capacity B serving requests for n distinct equal size objects.

Without loss of generality we assume that all objects have size one. Later in Section

2.3, we also consider objects with different sizes. Let D = {1, . . . , n} be the set of

objects, with n > B.

2.2.1 Number of Hits for General object Arrival Processes

Let {0 < Ti,1 < Ti,2 < · · · } denote the successive time epochs when object i is

requested. Assume {Ti,k}k is a regular point process, that is it possesses an intensity

function [29, Definition 7.1.I., p. 213]. Define Xi,k = Ti,k − Ti,k−1 for k ≥ 2 and

Xi,1 = Ti,1. For t > 0, define Hi,t = {Ti,k, k ≥ 1 : Ti,k < t} the history of the point

process {Ti,k}k in [0, t).

Let {0 < T1 < T2 < · · · } be the point process resulting from the superposition of

the point processes {Ti,k}k, i = 1, . . . , n. Call Rk ∈ {1, . . . , n} the object requested

at time Tk. Define Ht = {(Tk, Rk), k ≥ 1 : Tk < t}, the history of point processes

{T1,k}k, . . . , {Tn,k}k in [0, t). Notice that Hi,t is right-continuous for all i and so is Ht.

In particular, Tk 6∈ HTk for all k.

Define ki(t) = max{k ≥ 1 : Ti,k−1 < t}, so that exactly ki(t)−1 requests for object

i have been made in [0, t).

Assume that the request object processes {T1,k}k, . . . , {Tn,k}k are conditionally

independent ∀t > 0, in the sense that

P(T1,k1(t) ≥ t1, · · · , Tn,kn(t) ≥ tn |Ht) =
n∏
i=1

P(Ti,ki(t) ≥ ti |Hi,t), (2.1)

for all t1 ≥ t, . . . , tn ≥ t.

11

Given Ti,k = ti,k for k ≥ 1, the hazard rate function of {Ti,k}k at time t is defined

by the piecewise function [29, Definition 7.2.II, p. 231]

λ∗i (t) =

d
dt
P (Xi,1<t)

P (Xi,1>t)
for 0 < t ≤ ti,1,

d
dt
P (Xi,k<t−ti,k−1 |Ti,j=ti,j ,j≤k−1)

P (Xi,k>t−ti,k−1 |Ti,j=ti,j ,j≤k−1)
for ti,k−1 < t ≤ ti,k, k ≥ 2.

(2.2)

In (2.2) the existence of d
dt
P (Xi,1 < t) and d

dt
P (Xi,k < t− ti,k−1 |Ti,j = ti,j, j ≤ k− 1)

for k ≥ 2, follows from the assumption that {Ti,k}k is a regular point process [29,

Definition 7.1.I., p. 213].

We assume that the cache is empty at time t = 0 to avoid unnecessary notational

complexity but all results in the chapter hold without this assumption as long as

the probability distribution of the state of the cache is known at time t = 0. A

caching policy π determines at any time t which B objects among the n available

objects are cached. Formally, π is a measurable deterministic mapping from R× (R×

{1, . . . , n})∞ → SB(n), where SB(n) is the set of subsets of {1, . . . , n} that contain B

elements. In this setting, π(t,Ht) gives the B objects that are cached at time t based

on the knowledge of the overall request process up to t. Let Π be the collection of all

such policies. Note that policies in Π are non-anticipative, in that they do not know

when future requests will occur.

We will only consider deterministic policies although the setting can easily be

extended to random policies (in this case π : R × (R × {1, . . . , n})∞ → Q(SB(n)),

where Q(SB(n)) is the set of probability distributions on SB(n)).

We introduce the hazard rate based rule for equal-size objects, abbreviated to

HR-E. At any time t and given Ht, HR-E (i) determines the hazard rate function

of each object and (ii) places in the cache the B documents which have the largest

hazard rates, i.e., if λ∗i1(t) ≥ · · · ≥ λ∗in(t) then objects i1, . . . , iB are cached at time t

(ties between equal rates are broken randomly). We call it a rule, not a policy and

12

will use it as a way to upper-bound various performance metrics (see next)—which

is the goal of this chapter—regardless of whether it can be implemented.

Let Bπ
k ∈ SB(n) be the state of the cache just before time Tk under π, and define

Hπ
k = 1(Rk ∈ Bπ

k), (2.3)

i.e., Hπ
k = 1 if the k-th requested object is in the cache under rule π, and Hπ

k = 0

otherwise. Denote by

Nπ
K =

K∑
k=1

Hπ
k , (2.4)

the number of hits during the first K requests for an object.

The following theorem holds,

Theorem 1 (Expected number of hits).

E
[
NHR−E
K

]
≥ E [Nπ

K] , ∀π ∈ Π, ∀K ≥ 1. (2.5)

Proof. Fix π ∈ Π. Given that a request for an object is made at time t and given

that the history Ht is known, this request is for object i with probability

pi(t) =
λ∗i (t)∑n
j=1 λ

∗
j(t)

. (2.6)

Proof of (2.6) is given in Appendix A.1. This result relies on the conditional inde-

pendence of point processes {T1,k}k, . . . , {T1,k}k, expressed in (2.1). By definition of

HR-E, ∑
i∈BHR−Ek

λ∗i (Tk) ≥
∑
i∈Bπk

λ∗i (Tk), ∀k ≥ 1. (2.7)

13

Therefore, for k ≥ 1,

E
[
HHR−E
k |HTk , Tk

]
= P

(
Rk ∈ BHR−E

k |HTk , Tk
)

=
n∑
i=1

P(Rk ∈ BHR−E
k |Rk = i)pi(Tk)

=
n∑
i=1

1(i ∈ BHR−E
k)

λ∗i (Tk)∑n
j=1 λ

∗
j(Tk)

from (2.6),

=
∑

i∈BHR−Ek

λ∗i (Tk)∑n
j=1 λ

∗
j(Tk)

≥
∑
i∈Bπk

λ∗i (Tk)∑n
j=1 λ

∗
j(Tk)

from (2.7),

= E [Hπ
k |HTk , Tk] . (2.8)

Taking expectation on both sides of (2.8) to remove the conditioning yields E
[
HHR−E
k

]
≤

E [Hπ
k]. Summing both sides of the latter inequality for k = 1, . . . , K gives (2.5) from

the definition of Nπ
K .

It is worth noting that Theorem 1 holds for any non-stationary request object

processes. We now study a more specific request arrival process and derive an upper

bound on the object hit probability.

2.2.2 Upper Bound on Stationary Hit Probability

We still assume that {T1,k}k, . . . , {Tn,k}k are regular processes and that the condi-

tional independence assumption (2.1) holds. We define the stationary hit probability

of any policy π ∈ Π as

hπ = lim
K→∞

1

K

K∑
k=1

Hπ
k a.s., (2.9)

whenever this limit exists, where Hπ
k is defined in (2.3).

We are now in position to state and prove the main result of the chapter.

Theorem 2 (Stationary hit probability).

For any π ∈ Π, assume that the limit in (2.9) exists and that hπ is a constant.

Then,

hHR−E ≥ max
π∈Π

hπ.

14

Proof. Let π ∈ Π. Taking the expectation on both sides of (2.9), using the fact that

hπ is a constant and then invoking Lebesgue’s dominated convergence theorem gives

hπ = E[hπ] = E

[
lim
K→∞

1

K

K∑
k=1

Hπ
k

]
= lim

K→∞

1

K

K∑
k=1

E[Hπ
k] = lim

K→∞

E[Nπ
K]

K
,

by using (2.4). The proof is concluded by using Theorem 1.

Let us now discuss the existence of the limit in (2.9). When the inter-request time

sequences {X1,k}k, . . . , {Xn,k}k are stationary, ergodic and mutually independent, the

sequence {(Xk, Rk)}k is stationary2 and ergodic (see e.g., [13, pp. 33-34]). The latter

result coupled with the fact that, for any π ∈ Π, there exists a measurable mapping

ϕπ : (R×{1, . . . , n})∞ → {0, 1} such that Hπ
k = ϕπ((Tj, Rj), j ≤ k−1) (Hπ

k is defined

in (2.3)), shows that the sequence {Hπ
k , k ∈ Z} is stationary and ergodic (e.g., see [82,

Thm p. 62]). The ergodic theorem then ensures the existence of the limit in (2.9)

and that (see e.g., [57, Thm 1])

hπ = P(Hπ
k), ∀π ∈ Π.

Other instances when the limit in (2.9) exists and is a constant are discussed in

Section 2.4.

2.3 Variable Size Objects

We now assume object i has size si ∈ R+ for all i ∈ D and the capacity of the

cache is B bytes.

2Let Xi be a random variable with the same distribution as that of the stationary inter-request
time for object i. The stationary version of the inter-request times for object i is the sequence
{Xi,k}k where P (X1,k < x) = 1/E[Xi]

∫ x
0
P(Xi > u)du and Xi,k =st Xi for k ≥ 2.

15

2.3.1 Number of byte hits and fractional knapsack problem

The setting and assumptions are that of Section 2.2.1 but Fractional Caching

(FC)3 is now allowed, i.e., we allow to store a fraction of an object in the cache

instead of the whole ones. We refer interested reader to [63], [80] for more details.

We denote by ΠFC the set of all FC policies.

For π ∈ ΠFC , let V π
k denote the number of bytes served from the cache at the

kth request for an object. Let xi,k denote the fraction of object i in the cache at

the time of the k-th request. Then V π
k = six

π
i,k if the request is for object i. Let

W π
K =

∑K
k=1 V

π
k denote the total number of bytes served from the cache during the

first K requests for an object.

Given a request for an object is made at time t and that the historyHt is known, we

have already observed (see (2.6)) that this request is for object i with the probability

λ∗i (t)/
∑n

j=1 λ
∗
j(t). Therefore,

E[V π
k |HTk] =

n∑
i=1

E[V π
k |HTk , object i is requested]× λ∗i (Tk)∑n

j=1 λ
∗
j(Tk)

=

∑n
i=1 six

π
i,kλ

∗
i (Tk)∑n

j=1 λ
∗
j(Tk)

.

(2.10)

Our goal is to find π ∈ ΠFC that maximizes E[V π
k |HTk] subject to the capacity

constraint on the size of the cache. This can be done by solving the optimization

problem,

max
n∑
i=1

sixiλ
∗
i (t)

subject to
n∑
i=1

sixi ≤ B

0 ≤ xi ≤ 1, i = 1, · · · , n,

3Fractional caching has its applications in large video object delivery systems where objects are
composed of chunks stored independently.

16

which is nothing but the Fractional Knapsack Problem (FKP) [44, Chapter 5.1]. It is

well known that its solution depends on the respective values of the ratios siλ
∗
i (t)/si =

λ∗i (t) for i = 1, . . . , n. More specifically, assume that

λ∗i1(t) ≥ λ∗i2(t) ≥ · · · ≥ λ∗in(t),

Then, the solution of (2.11) is given by xij = 1 for 1 ≤ j ≤ a := max {a : si1 + · · ·+ sia ≤ B},

xia+1 = (B − si1 − si2 − · · · − sia)/sia+1 , and xij = 0 for j = a+ 2, . . . , n.

Call HR-VB the rule which at any time t places entirely in the cache objects with

the highest hazard rates until an object cannot fit; if object k is the first one that

cannot entirely fit in the cache and objects i1, . . . , ij are already in the cache, then

B−∑j
l=1 sl bytes of object k are cached. All other objects are not cached. Then, by

(2.10), for any policy π ∈ ΠFC ,

E[V HR−V B
k |HTk] ≥

∑n
i=1 six

π
i,kλ

∗
i (Tk)∑n

j=1 λ
∗
j(Tk)

= E[V π
k |HTk].

Removing the conditioning on HTk yields

E[V HR−V B
k] ≥ E[V π

k] (2.12)

Summing both sides of this inequality for k = 1, . . . , K gives

E[WHR−V B
K] ≥ E[W π

K].

2.3.2 Upper Bound on the Byte Hit Probability for Stationary and Er-

godic Object Arrival Processes

Throughout this section π is fixed in ΠFC , the set of fractional caching policies. We

assume that object request arrival processes are stationary, ergodic, and independent

17

processes, so that the joint sequence of request arrival times and requested objects

{(Tk, Rk)}k is stationary and ergodic (setting of Section 2.2.2). Recall that V π
k is the

number of bytes served by the cache at the kth request for an object. We denote

by σk =
∑n

i=1 si1(Rk = i) the number of bytes requested from the cache at the kth

request.

Define the stationary byte hit probability as

ĥπ = lim
K→∞

∑K
k=1 V

π
k∑K

k=1 σk
, a.s.,

whenever this limit exists. ĥπ can be rewritten as

ĥπ = lim
K→∞

1

K

K∑
k=1

V π
k ×

1

limK→∞
1
K

∑K
k=1 σk

, a.s.

The sequence {Rk}k being stationary and ergodic the sequence {σk}k enjoys the same

properties, and limK→∞
1
K

∑K
k=1 σk = E[σ] a.s., where σ a rv with the same distribu-

tion as σk. On the other hand, there exists a mapping ψπ : (R×{1, . . . , n})∞ → [0,∞)

such that V π
k = ψπ((Tj, Rj), j ≤ k), which shows that the sequence {V π

k }k is station-

ary and ergodic [82, Thm p. 62]. Hence, limK→∞
1
K

∑K
k=1 V

π
k = E[V π] a.s., with V π

a rv with the same distribution as V π
k . Therefore,

ĥHR−V B =
E[V HR−V B]

E[σ]
≥ E[V π]

E[σ]
= ĥπ,

where the inequality follows from (2.12) since under the assumptions in Section 2.2.2

inequality (2.12) becomes E[V HR−V B] ≥ E[V π] since the sequence {V π
k }k is stationary

and ergodic for all π ∈ ΠFC .

2.3.3 Number of object hits and 0-1 knapsack problem

The setting and assumptions are still those of Section 2.2.1 but we now assume

that objects are indivisible (IC). In particular, every object hit counts the same (i.e.,

18

a hit for a large 1GB object and hit for a small 10B object both count as a “hit”).

Denote by ΠIC the set of all IC policies. Recall the definition of Hπ
k (1 if hit at Tk

and 0 otherwise) and Nπ
K (number of hits in the first K requests) under π ∈ ΠIC .

Fix π ∈ ΠIC . We have by using (2.6)

E[Hπ
k |HTk] =

n∑
i=1

E[Hπ
k |HTk , object i is requested at Tk]×

λ∗i (Tk)∑n
j=1 λ

∗
j(Tk)

=
1∑n

j=1 λ
∗
j(Tk)

n∑
i=1

1(i ∈ Bπ
k)λ∗i (Tk),

where we recall that Bπ
k is the set of objects in the cache just before Tk under π.

Hence, E[Hπ
k |HTk] can be maximized by solving the following 0-1 knapsack prob-

lem (KP),

max
n∑
i=1

xiλ
∗
i (t)

subject to
n∑
i=1

sixi ≤ B

xi ∈ {0, 1}, i = 1, · · · , n. (2.13a)

Solving KP is NP-hard. However, the solution to the corresponding relaxed problem

where the constraints in (2.13a) are replaced by xi ∈ [0, 1] for i = 1, . . . , n, serves

as an upper bound for
∑n

i=1 xiλ
∗
i (t). The latter is achieved if the ratios {λ∗i (t)/si}i

are arranged in decreasing order, say λ∗i1(t)/si1 ≥ · · · ≥ λ∗in(t)/sin and xij = 1 for

1 ≤ j ≤ a where a is defined in Section 2.3.1, xia+1 = (B − si1 − si2 − · · · − sia)/sia+1 ,

and xij = 0 for j > a+ 1 [44, Chapter 5.1].

Call HR-VC the rule which, at any time t, places in the cache the objects in

decreasing order of the ratios {λ∗i (t)/si}i until an object does not fit in the cache; if

object ia+1 is the first one that cannot entirely fit in the cache and objects i1, . . . , ia

are already in the cache, then with probability pia+1 = (B− si1 − si2 − · · ·− sia)/sia+1

19

object ia+1 is cached. All subsequent objects according to this decreasing ordering

are not cached. Note that HR-VC does not meet the cache size constraint as there is

not enough room in the cache to fit entirely object ia+1. However, as mentioned in

Section 2.2, our goal is to upper bound E[Hπ
k] and E[Nπ

k]. Let x∗ = (x∗1, . . . , x
∗
n) be

the solution of (2.13). We have

E[HHR−V C
k |HTk] =

1∑n
j=1 λ

∗
j(Tk)

[
ak∑
j=1

λ∗ij(Tk) + piak+1λ
∗
iak+1

(Tk)

]

≥ 1∑n
j=1 λ

∗
j(Tk)

n∑
i=1

x∗iλ
∗
i (t)

≥ 1∑n
j=1 λ

∗
j(Tk)

n∑
i=1

1(i ∈ Bπ
k)λ∗i (Tk) = E[Hπ

k |HTk],

where ak is the last job that can be entirely cached at time Tk− according to the

decreasing ordering of the ratios {λ∗i (Tk)/si}i. Removing the conditioning on HTk

yields E[HHR−V C
k] ≥ E[Hπ

k]. Summing both sides of this inequality for k = 1, . . . , K

gives

E[NHR−V C
K] ≥ E[Nπ

K]. (2.14)

2.3.4 Upper Bound on Object Hit Probability for Stationary and Ergodic

Object Arrival Processes

Using similar arguments as discussed in Section 2.2.2, one can define the object

hit probability under HR-VC (cf. Section 2.3.3) as

hHR−V C = lim
K→∞

1

K

K−1∑
k=0

E[HHR−V C
k] = lim

K→∞

E[NHR−V C
K]

K
, (2.15)

Now combining (2.14) and (2.15) we obtain

hπ = lim
K→∞

E[Nπ
K]

K
≤ lim

K→∞

E[NHR−V C
K]

K
= hHR−V C .

20

2.4 Specific Request Arrival Processes

Below we consider four specific request processes for equal size objects.

2.4.1 Poisson Process

We consider the case where successive requests to object i (i = 1, . . . , n) occur

according to a Poisson process with rate λi > 0 and these n Poisson processes are mu-

tually independent. This is the standard Independence Reference Model (see Section

2.1.2) where references to all objects are independent rvs. Without loss of generality

assume that λ1 ≥ · · · ≥ λn.

Under HR-E (see Section 2.2.1) objects 1, . . . , B are in the cache at all times.

Therefore, the hit probability hHR−Ei for object i is hHR-E
i = 1(i ≤ B) and the hit

rate rHR-E
i for object i is rHR-E

i = λi1(i ≤ B). The overall hit probability hHR-E and

hit rate rHR−E are given by

hHR-E =
1

Λ

B∑
i=1

λi, rHR-E =
B∑
i=1

λi,

where Λ :=
∑n

i=1 λi.

2.4.2 On-Off Request Process

Figure 2.1: On-Off Request Process

The object popularity dynamics in caching systems can often be captured by using

a stationary, on-off traffic model [41]. Specifically, we assume that successive requests

21

to object i occur according to a Poisson process with rate λi > 0 when the underlying

on-off process depicted in Figure 2.1 is in state 1 (Xi = 1) and that no request occurs

when this process is in state 0 (Xi = 0). The stationary distribution of this on-off

process is given by πi := [πi,0, πi,1] = [βi/(αi+βi), αi/(αi+βi)]. We assume that these

n on-off processes are mutually independent. Without loss of generality, assume that

λ1 ≥ λ2 ≥ . . . ≥ λn and define Λ =
∑n

i=1 λi. Below, we derive expressions for the hit

rate and hit probability under HR-E.

Due to the way HR-E behaves, we can assume without loss of generality that

object i is never in the cache when Xi = 0. With this, at any time at most B of

the most popular objects are in the cache among all objects whose associated on-off

process is in state 1. Therefore, if i > B the hit probability hHR-E
i for object i is given

by

hHR-E
i = P(at most B − 1 on-off processes are in state 1 among on-off processes 1, . . . , i− 1)

=
B−1∑
k=0

P(exactly k on-off processes are in state 1 among on-off processes 1, . . . , i− 1)

=
B−1∑
k=0

∑
i1,...,ik∈{1,2,...,i−1}

i1<i2<···<ik

k∏
l=1

πil,1
∏

m∈{1,...,i−1}\{i1,...,ik}

πim,0,

and hHR-E
i = 1 if i ≤ B. The hit rate rHR-E

i for object i is rHR-E
i = λiπi,1h

HR-E
i .

The overall hit probability hHR-E and the overall hit rate rHR-E are given by

hHR-E =
n∑
i=1

λiπi,1∑n
j=1 λjπj,1

hHR-E
i and rHR-E = hHR-E

n∑
i=1

λiπi,1. (2.16)

Assume that πi,1 = ρ for all i. This occurs, for instance, if all n on-off processes have

the same transition rates with αi = α and βi = β or if αi = αθi and βi = βθi for all

i. Then, for i > B,

22

hHR-E
i =

B−1∑
k=0

∑
i1,...,ik∈{1,2,...,i−1}

i1<i2<···<ik

ρk(1− ρ)i−1−k = (1− ρ)i−1

B−1∑
k=0

(
ρ

1− ρ

)k (
i− 1

k

)
,

so that

hHR-E =

∑B
i=1 λi
Λ

+
1

Λ

n∑
i=B+1

λi(1− ρ)i−1

B−1∑
k=0

(
ρ

1− ρ

)k (
i− 1

k

)
,

and rHR-E = ρ
∑B

i=1 λi + ρ
∑n

i=B+1 λi(1− ρ)i−1
∑B−1

k=0

(
ρ

1−ρ

)k (
i−1
k

)
.

We now propose a recursive approach for computing the hit probability and the

hit rate with a much lower computational complexity than the general formulas in

(2.16).

The recursions are based on available objects in the catalog, starting from the

situation where only object 1 is available, moving to the situation where objects 1

and 2 are available, etc. up to the final situation where all n objects are available.

Introduce the following variables,

pl,k = P[cache occupancy is k | catalog is composed of the l most popular objects],

rl,k = Hit rate when cache occupancy is k given catalog has the l most popular objects .

When l = 1 then p1,0 = π1,0, p1,1 = π1,1, r1,0 = 0, and r1,1 = λ1 from our convention

that object 1 is not in the cache when X1 = 0. It is easy to verify that under HR-E

the following recursions hold true for the occupancy probabilities,

pl,0 = pl−1,0πl,0, l = 2, · · · , n,

pk,k = pk−1,k−1πk,1, k = 1, . . . , B,

pl,k = pl−1,k−1πl,1 + pl−1,k,πl,0, 0 < k < min(l, B), l = 1, · · · , n,

pl,B = pl−1,B−1πl,1 + pl−1,B, l = B + 1, · · · , n.

23

Similarly, the following recursions hold true for the hit rates,

rl,0 = 0, l = 2, · · · , n,

rk,k = rk−1,k−1 + λk, k = 2, . . . B,

rl,k =
pl−1,k−1πl,1(rl−1,k−1 + λl) + pl−1,kπl,0rl−1,k

pl−1,k−1πl,1 + pl−1,kπl,0
, 0 < k < min(l, B), l = 1, · · · , n,

rl,B =
pl−1,B−1πl,1(rl−1,B−1 + λl) + pl−1,Brl−1,B

pl−1,B−1πl,1 + pl−1,B

, l = B + 1, · · · , n.

Once the above recursions have been solved, the overall hit rate rH and hit probability

hHR-E under HR-E are given by

rHR-E =
B∑
k=1

pn,krn,k and hHR-E =
rHR-E

n∑
l=1

λlπl,1

.

2.4.3 Markov Modulated Poisson Process

Recall that 0 < Ti,1 < Ti,2 < · · · < Ti,k < · · · are the successive times when

object i is requested. Let Z = {Z(t), t ≥ 0} be a stochastic process taking values in

a denumerable set E .

Throughout we assume that, given Z(t) = x, the object request processes {T1,k}k, . . . , {Tn,k}k
behave as independent Poisson processes with rate λ1(x), . . . , λn(x), respectively, un-

til the next jump of the process Z. Notice that this setting deviates from the setting

in Section 2.2 as requests to different objects are now no longer independent.

We consider cache eviction policies that may know the state of the environment

at any time. Under the HR-E rule, if Z(t) = x then the B objects with the largest

arrival rates {λi(x)}i are stored in the cache at time t. The following lemma is the

equivalent of Lemma 1 in Section 2.2.1.

Lemma 1. For any policy π ∈ Π,

E[NHR−E
K] ≥ E[Nπ

K], ∀K ≥ 1.

24

Proof. Proof is given in Appendix A.1.1.

We further assume that Z is an ergodic Markov process, so that the request

processes are correlated Poisson processes. Denote by (θ(x), x ∈ E) the stationary

distribution of Z.

From now on the rule HR-E will be denoted by HR-MMPP to reflect the nature

of the request processes.

The next result is the equivalent of Theorem 2 in Section 2.2.2. It shows that the

HR-MMPP rule gives an upper bound for the stationary hit probability under any

policy in Π.

Theorem 3. For any policy π ∈ Π,

hHR−MMPP ≥ hπ.

Proof. Under the assumptions made on the environment process (Markov process

Z) and the request processes (conditionally independent Poisson processes, modulated

by Z) the sequence {Hπ
k }k (see (2.3)) is a stationary and ergodic sequence. The proof

is then the same as that of Theorem 2 in Section 2.2.2.

Let us now calculate hHR−MMPP . To avoid unnecessary complications, we assume

from now we assume that the set E is finite.

Define the set I(x) by I(x) = {i1, . . . , iB} if λi1(x) ≥ . . . ≥ λin(x) where i1, . . . , in

is a permutation of 1, . . . , n (if two or more objects have the same rate ties are broken

randomly).

Define γ(x) = limk→∞ P(Z(Tk) = x), the stationary probability that the Markov

process Z is in state x when a request for an object is made; for the time being assume

that this limit exists.

25

We have (cf. Section 2.2.1),

hHR−MMPP = lim
k→∞

P(Rk ∈ BHR−MMPP
k)

= lim
k→∞

∑
x∈E

n∑
i=1

P(Rk ∈ BHR−MMPP
k |Rk = i, Z(Tk) = x)P(Rk = i |X(Tk) = x)P(Z(Tk) = x)

= lim
k→∞

∑
x∈E

P(Z(Tk) = x)
n∑
i=1

λi(x)∑n
j=1 λj(x)

P(Rk ∈ BHR−MMPP
k |Rk = i, Z(Tk) = x)

= lim
k→∞

∑
x∈E

P(Z(Tk) = x)
∑
i∈I(x)

λi(x)∑n
j=1 λj(x)

=
∑
x∈E

lim
k→∞

P(Z(Tk) = x)
∑
i∈I(x)

λi(x)∑n
j=1 λj(x)

=
∑
x∈E

γ(x)
∑
i∈I(x)

λi(x)∑n
j=1 λj(x)

, (2.17)

where the interchange of the limit and the summation in (2.17) is justified by the

finiteness of set E .

It remains to calculate γ(x). To this end, we use a standard Poisson uniformiza-

tion technique which takes advantage of the fact that requests arrive according to

a Poisson process with rate
∑n

j=1 λj(x) when the Markov process Z is in state x.

More specifically, let us sample Z according to a Poisson process with constant rate

µ := maxx∈E
∑n

j=1 λj(x). Whenever there is an occurrence of the Poisson process and

Z is in state x, this occurrence is selected with probability
∑n

j=1 λj(x)/µ and is not

selected with the complementary probability. Therefore,

γ(x) =
µ×∑n

i=1 λi(x)/µ× θ(x)∑
y∈E µ×

∑n
j=1 λj(y)/µ× θ(y)

=
θ(x)

∑n
j=1 λj(x)∑

y∈E θ(y)
∑n

j=1 λj(y)
,

obtained as the ratio of the rate at which an occurrence of the Poisson process is

selected when Z is in state x to the rate at which an occurrence of the Poisson

process is selected.

Therefore, by (2.17),

hHR−MMPP =
∑
x∈E

θ(x)
∑

i∈I(x) λi(x)∑
y∈E θ(y)

∑n
j=1 λj(y)

, ∀x ∈ E .

26

2.4.4 Shot Noise Model

Another traffic model, named Shot Noise Model (SNM) [92], has been proposed

to capture the temporal locality observed in real traffic in caching systems e.g. in

Video on Demand (VoD) systems. The primary idea of the SNM is to represent the

overall request process as the superposition of many independent time inhomogeneous

Poisson processes or shots, each referring to an individual object. In particular, the

request process for object i is described by an inhomogeneous Poisson process of

instantaneous rate

λinsti (t) = Viλi(t− τi),

where τi is the time instant at which object i is first requested, Vi denotes the expected

number of requests generated by object i and λi(x) is the popularity profile of object

i over time. It is easy to check that the instantaneous hazard rate associated with

object i can be calculated as

λ∗i (t) = λinsti (t),

Note that, in the shot-noise model, there can potentially be an infinite objects in the

catalog. However, at any time t, there is only a finite number of objects that are

actively requested. Indeed, the number of active objects at time t is upper bounded

by the number of occurrences in [0, t) of the Poisson process {τi}i, which is an almost

finite quantity.

Since object request processes are independent (as {τi}i is a Poisson process) and

inhomogeneous Poisson (and therefore regular) processes, Theorem 1 applies to the

SNM. We conjecture that the limit in (2.9) exists and is a constant. We then use

Theorem 2 and generate results for the SNM in the experimental Section 2.5.8.1.

27

2.5 Numerical Results

In this section we use simulations to compare the stationary object hit probabilities

of various online policies (Section 2.5.1) to that of our proposed upper bound (HR

upper bound), Bélády’s upper bound (BELADY) and to a third bound (FOO, see

Section 2.5.2).

The goals of this study are to (1) determine conditions under which HR pro-

vides tighter bound than other approaches, (2) to determine how close different non-

anticipative policies come to the HR bound, and (3) the effect of the request process

on these results. This study is done for a number of requests processes (Section 2.5.3),

for equal and different size objects (Section 2.5.4) and for several cache sizes. We first

present the experimental setup and then discuss the results.

2.5.1 Investigated online policies

Several caching policies have been used to generate Figures 2.2-2.7. The well-

known LRU, FIFO, and RANDOM cache replacement policies discard the least re-

cently used items first, evicts objects in the order they were added, and randomly

selects an object and discards it to make space when necessary, respectively. The

STATIC policy keeps forever in the cache the B objects that have the largest ar-

rival rates. Notice that the HR based bound and the hit probability under STATIC

are equal when successive requests for each object follow a Poisson process (Section

2.4.1). We also consider the Greedy-Dual-Size-Frequency (GDSF) policy [27] which

combines recency with frequency and size to improve upon LRU. Last, the AdaptSize

policy [20] uses an adaptive size threshold with admission control preferring admission

of small sized objects.

2.5.2 Upper bounds on object hit probability

Besides our proposed HR based upper bound which applies to both equal and

variable sized objects, two other upper bounds on the object hit probability proposed

28

in literature are used, Bélády’s offline upper bound (BELADY, Section 2.1.1) for

equal sized objects and a flow based offline optimal (FOO) [19] for different sized

objects. FOO upper bound is computed by representing caching as a min-cost flow

problem.

2.5.3 Arrival process of object requests

In each plot in Figures 2.2-2.3, request processes for objects i = 1, . . . , n are in-

dependent renewal processes with inter-request time (IRT) distributions shown in

Table 5.1. More specifically, in Figure 2.2(a) (resp. Figures 2.2(b)-2.2(f)) the request

process for object i = 1, . . . , n has an exponential IRT (resp. Generalized Pareto,

Uniform, Hyperexponential, Gamma, Erlang) with arrival rate λi drawn from a Zipf

distribution with parameter 0.8 (see last column of Table 5.1); similarly, in Fig-

ure 2.3(a) (resp. Figures 2.3(b)-(c)) the IRT has an exponential (resp. Generalized

Pareto, Uniform) distribution with arrival rate λi drawn from a Zipf distribution with

parameter 0.8.

Inter-request time Hazard Rate P(IRTi < t) Arr. rate λi (= 1/E[IRTi])
distribution (IRT) drawn from Zipf (0.8)

Exponential CHR 1− e−λit λi

Generalized Pareto DHR 1− (1 + kit
σi

)
− 1
ki , ki = 0.48 1−ki

σi

Hyperexponential? DHR 1−
2∑
j=1

pjie
−θj,it

p1,i + p2,i = 1 1
2νi

p1,i/θ1,i = p2,i/θ2,i := νi
SCVi = var(IRTi)/E[IRTi]

2 = 2
Uniform IHR t

bi

2
bi

Gamma DHR (ki < 1) 1
Γ(ki)

γ(ki,
t
θi

), ki = 0.5 2
θi

Erlang IHR γ(ki,µit)
(ki−1)!

, ki = 0.2 µi
2

Table 2.1: Inter-request time (IRT) distributions of the renewal request arrival pro-
cesses in Figures 2.2-2.3 and their properties (CHR = Constant hazard rate, IHR =
Increasing hazard rate, DHR = Decreasing hazard rate). ?Once arrival rate 1

2νi
is

known one finds p1,i = (1−
√

(SCVi − 1)/(SCVi + 1))/2 under the constraints.

In Figure 2.4(a)-(b) the arrival request process for object i (i = 1, . . . , n) is gen-

erated via an on-off process (see Section 2.4.2) and these n on-off processes are mu-

29

tually independent. The transition rates for on-off process i are αi = 1/TOFF and

βi = 1/TON , with TON = 7 (days) and TOFF = 9TON . The arrival rate λi in the

on-state is given by λi = V/TON , where V is drawn from a Pareto distribution with

pdf fV (v) = βV β
min/v

1+β, E[V] = 10, and β = 2 [41].

In Figure 2.5 requests for objects are generated according to a two-state MMPP

(see Section 2.4.3). Without loss of generality (W.l.o.g.), call 1 and 2 these two

states. Let α and β be the state transition rate from state 1 to 2 and from state

2 to 1, respectively. The stationary state probabilities are γ(1) = β/(α + β) and

γ(2) = α/(α + β). In the simulations, we took α = 2 × 10−3 and β = 1.6 × 10−3.

In state j, successive requests for object i are generated according to a Poisson pro-

cess with rate λi(j) for j = 1, 2. In state 1, we assume that object arrival rates

λi(1), . . . , λn(1) each follows a Zipf distribution with parameter 0.8; W.l.o.g assume

that λ1(1) > λ2(1) > · · · > λn(1). In state 2, we assume that object arrival rates are

given by λi(2) = λn+1−i(1) for i = 1, · · · , n.

In Figure 2.6 requests for objects are generated by n independent shot noise pro-

cesses (see Section 2.4.4). Objects belong to four different classes. Objects in class

c (c = 1, . . . , 4) become available in the system at times τ1(c) < · · · < τnc(c) of

a homogeneous Poisson process with rate γc = E[Vc]/E[Lc]. The SNM associated

with the ith object of class c, which becomes available at time τi(c), has intensity

λi(t) = (Vi/αc)e
−(t−τi(c))/αc , with αc = 0.5

0.8
E[Lc] and where Vi is chosen according to a

Poisson distribution with rate E[Vc]. Values of E[Vc] (expected number of requests for

a class c object) and E[Lc] (expected lifespan of a class c object) are given in Table

2.2. This model has been obtained by the authors of [91] from their Trace 1, which

contains n =
∑4

c=1 nc = 143871 objects (cf. 4th column of Table 2.2).

30

Class id (c) E[Lc] E[Vc] Catalog size (nc)
Class 1 1.14 86.4 29481
Class 2 3.36 41.9 45570
Class 3 6.40 59.5 27435
Class 4 10.53 36.9 41385

Table 2.2: Parameters of the shot-noise models in Figure 2.6.

In Figure 2.7 we use requests from a Web access trace collected from a gateway

router at IBM research lab [101]. We filter the trace such that each object has been

requested at least a hundred times. The filtered trace contains 3.5×106 requests with

an object catalog of size n = 5638. Various parametric and non-parametric estima-

tors have been developed in the literature to estimate the hazard rate [97, 87]. Here,

we adopt a parametric estimator model and assume that the inter-request times for

each object are independent and identically distributed non-negative random vari-

ables. Note that the Web and storage traffic inter-request times and access patterns

are well modeled by heavy-tailed distributions [33, 46]. Hence, we fit the density of

inter-request times of each object to a Generalized-Pareto distribution using the max-

imum likelihood estimation technique and estimate the hazard rate for each object

accordingly.

2.5.4 Size of objects

Both equal size and variable size objects are considered. In the former the size of

each object is equal to 1 and in the latter the size of each object is drawn indepen-

dently according to a bounded Pareto distribution with Pareto shape parameter 1.8,

minimum object size of 5MB and maximum object size of 15MB. When all objects

have same size the size of the cache is expressed in number of objects. It is expressed

in MB when objects have different sizes. As a general comment, we note from Figure

2.2-2.7 that, as expected, the HR based upper bound serves as an upper bound on

31

the hit probability among all online caching policies. Further comments are given

below on each figure.

2.5.5 Renewal request processes and equal size objects

0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

Belady

HR Based

Static

LRU

FIFO

Random

(a) Exponential (CHR)

0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

Belady

HR Based

Static

LRU

FIFO

Random

(b) Generalized-Pareto
(DHR)

0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

Belady

HR Based

Static

LRU

FIFO

Random

(c) Uniform (IHR)

0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

Belady

HR Based

Static

LRU

FIFO

Random

(d) Hyperexponential (DHR)

0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

Belady

HR Based

Static

LRU

FIFO

Random

(e) Gamma (DHR)

0 20 40 60 80 100

Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

Belady

HR Based

Static

LRU

FIFO

Random

(f) Erlang (IHR)

Figure 2.2: Simulation results for HR based upper bound and various caching policies
under different inter request arrival distributions (n = 1000, all objects of size 1).

Request processes used to generate plots in Figure 2.2 are presented in Section

2.5.3. These plots are obtained for 1000 objects where all objects have size 1. Observe

(see discussion in Section 2.4.1) from Figure 2.2(a) that the STATIC policy and the

HR based upper bound exhibit the same hit probabilities when IRTs are exponential

distributed. We observe that when IRTs are either CHR or DHR, the HR based

upper bound is much tighter than Bélády’s upper bound and both bounds are close

when IRTs are IHR. STATIC consistently yields the highest hit probability and is

32

always close to the HR upper bound. For exponential IRTs or, equivalently for the

independence reference model, the optimality of STATIC is well known [62].

2.5.6 Renewal request processes and variable size objects

0 200 400 600 800 1000

Cache Capacity (in Mb)

0

0.2

0.4

0.6

0.8

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

FOO

HR Based

LRU

GDSF

AdaptSize

(a) Exponential (CHR)

0 200 400 600 800 1000

Cache Capacity (in Mb)

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

FOO

HR Based

LRU

GDSF

AdaptSize

(b) Generalized Pareto
(DHR)

0 200 400 600 800 1000

Cache Capacity (in Mb)

0

0.2

0.4

0.6

0.8

O
b
je

ct
 H

it
 P

ro
b
ab

il
it

y

FOO

HR Based

LRU

GDSF

AdaptSize

(c) Uniform (IHR)

Figure 2.3: Simulation Results for HR based upper bound and various caching policies
under different inter request arrival distributions for variable object sizes (n = 1000).

The request processes used to generate plots in Figure 2.3 are described in Section

2.5.3. Objects are variable in size (see Section 2.5.4) and there are 1000 objects. We

observe that when IRTs have exponential or Generalized Pareto distributions the HR

based upper bound is much tighter than the FOO upper bound (Figure 2.3(a)-(b))

and that both bounds are close when IRTs are uniformly distributed rvs (Figure

2.3(c)). For exponential and Generalized Pareto IRT distributions the GDSF policy

performs well (close to HR); one way of interpreting the gap between HR (resp. FOO)

and GDSF in Figure 2.3(c) is to say that there is room for improvement in caching

policy performance when IRTs are uniformly distributed rvs.

2.5.7 On-off request arrivals and equal/variable size objects

The parameters of the on-off process used to generate arrival times of requests

of object i (i = 1, . . . , n) are given in Section 2.5.3. There are 1000 objects in the

catalog for equal sized objects and 100 objects for variable sized objects. The average

33

0 20 40 60 80 100
Cache Capacity

0

0.2

0.4

0.6

0.8

1

1.2
O

bj
ec

t H
it

Pr
ob

ab
ili

ty

Belady
HR Based
Static

LRU
FIFO
Random

(a) Equal Size (n = 1000)

0 20 40 60 80 100
Cache Capacity (in Mb)

0

0.5

1

1.5

O
bj

ec
t H

it
Pr

ob
ab

ili
ty

FOO
HR Based
LRU

GDSF
AdaptSize

(b) Variable Size (n = 100)

Figure 2.4: Performance comparison under on-off request process

arrival rate for object i is λiπi,1 with πi,1 = αi/(αi +βi) (Section 2.4.2). The STATIC

policy permanently stores in the cache the B objects in decreasing order of {λiπi,1}i.

For equal size objects (resp. variable size objects) the HR bound is tighter than

BELADY (resp. FOO) for small caches whereas BELADY (resp. FOO) becomes

tighter for large cache sizes. LRU performs the best for both equal size and variable

size objects and STATIC policy performs the worst for equal sized objects.

2.5.8 MMPP request arrivals and equal/variable size objects

The parameters of the two-state MMPP (states 1 and 2) used to generate arrival

times of requests are given in Section 2.5.3. There are 1000 objects in the catalog

for equal size objects and 100 objects for variable sized objects. The average arrival

rates for object i is λi(1)γ(1) + λi(2)γ(2) = (λi(1)β + λi(2)α)/(α+ β). The STATIC

caching policy permanently stores in the cache the B objects with the highest average

arrival rates.

34

0 20 40 60 80 100
Cache Capacity

0

0.2

0.4

0.6

0.8

1

O
bj

ec
t H

it
Pr

ob
ab

ili
ty

Belady
HR Based
Static

LRU
FIFO
Random

(a) Equal Size (n = 1000)

0 20 40 60 80 100
Cache Capacity (in Mb)

0

0.2

0.4

0.6

0.8

1

O
bj

ec
t H

it
Pr

ob
ab

ili
ty

FOO
HR Based
LRU

GDSF
AdaptSize

(b) Variable Size (n = 100)

Figure 2.5: Performance comparison under two-state MMPP request arrivals

0 2000 4000 6000 8000 10000
Cache Capacity

0

0.1

0.2

0.3

0.4

0.5

0.6

O
bj

ec
t H

it
Pr

ob
ab

ili
ty

Belady
HR Based
Static

LRU
FIFO
Random

(a) Equal Size

0 2 4 6 8 10
Cache Capacity (in Mb) 104

0

0.1

0.2

0.3

0.4

0.5

0.6

O
bj

ec
t H

it
Pr

ob
ab

ili
ty

HR Based
LRU

GDSF
AdaptSize

(b) Variable Size

Figure 2.6: Performance comparison under shot noise model (n = 143871).

35

Unlike Figures 2.2-2.4, BELADY is tighter than the HR based upper bound for

equal size objects (Figure 2.5(a)) but the latter upper bound is tighter than the FOO

upper bound for variable size objects (Figure 2.5(b)). STATIC performs the best

among all online caching policies. Note that, in our simulations, γ(1) = β/(α + β)

and γ(2) = α/(α+β) are comparable. We postulate that the performance of STATIC

will further improve when γ(1) � γ(2) or γ(1) � γ(2). For example, when γ(1) �

γ(2), λSTATICi ∼ λi(1)γ(1); in this case the STATIC policy will permanently store the

popular objects in state 1, thus always getting a hit when the MMPP is in state 1.

2.5.8.1 Shot noise request arrivals and equal/variable size objects

The parameters of the SNM used to generate Figure 2.6 are given in Section 2.5.3.

For equal size objects (Figure 2.6(a)) our proposed HR bound not only upper bounds

the hit probability for existing online caching policies but also provides a tighter bound

than the state-of-the-art BELADY. STATIC policy performs the worst while LRU

performs the best among all online policies. For variable size objects (Figure 2.6(b))

AdaptSize performs the best and GDSF and LRU have similar performance. The

difference in the object hit probability between the HR upper bound and AdaptSize

suggests that there is room for improvement in caching policy performance.

2.5.9 Real-world trace

Characteristics of the real-world trace and its application to the production of

Figure 2.7 are discussed in Section 2.5.3. Upper bounds on the object hit probability

obtained with HR and BELADY are almost identical. LRU performs the best and

STATIC the worst.

36

100 200 300 400 500 600
Cache Capacity

0.5

0.6

0.7

0.8

0.9

1

1.1

O
bj

ec
t H

it
Pr

ob
ab

ili
ty

Belady
HR Based
Static

LRU
FIFO
Random

Figure 2.7: Performance comparison under real world data trace (n = 5638).

2.6 Summary

We began this chapter by asking:Can we provide an upper bound on the cache

hit probability for any feasible non-anticipative caching policy? We have answered

this question by developing a HR based upper bound on the cache hit probability for

non-anticipative caching policies. We showed that for equal sized objects, hazard rate

associated with the object arrival process can be used to provide this upper bound.

Inspired by the results for equal size objects, we extended the HR based argument to

obtain an upper bound on the byte and object hit probability for variable size objects

solving a knapsack problem. We derived closed form expressions for the upper bound

under some specific object request arrival processes. We showed that HR based upper

bound is tighter for a variety of object arrival processes than those analyzed in the

literature.

37

CHAPTER 3

A TTL-BASED APPROACH FOR FAIR RESOURCE
ALLOCATION IN CACHE NETWORKS

In Chapter 2 we proposed an upper bound on overall cache hit probability for any

online caching policy that operates on a single cache. We assumed all contents had

the same quality of service requirements. In this chapter, we consider the problem of

providing differentiated service to different content classes in a cache network. This

chapter asks: How do we build cache networks that provide differential services?

3.1 Background

We consider a Time-To-Live (TTL) based cache network, where a set of network

caches host a library of unique contents, and serve a set of users. We define each

component of the TTL based cache network in greater detail in Sections 3.1.3 and

3.1.4. Figure 3.1 illustrates an example of such a network, which is consistent with

the YouTube video delivery system [83, 86]. Each user can generate a request for a

content, which is forwarded along a fixed path from the edge cache towards the server.

Forwarding stops upon a cache hit, i.e., the requested content is found in a cache on

the path. When such a cache hit occurs, the content is sent over the reverse path to

the edge cache initializing the request. This raises the questions: where to cache the

requested content on the reverse path and what value should the timer take? In this

chapter our goal is to provide thorough and rigorous answers to these questions.

There is a rich literature on the design, modeling and analysis of cache networks,

including TTL caches [85, 36, 37, 18], optimal caching [49, 61] and routing policies

38

Figure 3.1: An cache network with a server holding all contents and three layers of
caches. Each leaf/edge cache serves a set of users with different requests. The blue
line illustrates a unique path between the leaf cache and the server.

[50]. In particular, Rodriguez et al. [85] analyzed the advantage of pushing content

upstream, Berger et al. [18] characterized the exactness of TTL policy in a hierar-

chical topology. A unified approach to study and compare different caching policies

is given in [40] and an optimal placement problem under a heavy-tailed demand has

been explored in [34]. Dehghan et al. [31] as well as Abedini and Shakkottai [2] stud-

ied joint routing and content placement with a focus on a bipartite, single-hop setting.

Both showed that minimizing single-hop routing cost can be reduced to solving a lin-

ear program. Ioannidis and Yeh [50] studied the same problem under a more general

setting for arbitrary topologies. An adaptive caching policy for a cache network was

proposed in [49], where each node makes a decision on which item to cache and evict.

An integer programming problem was formulated by characterizing the content trans-

fer costs. Both centralized and complex distributed algorithms were designed with

performance guarantees. This work complements the work proposed in this chapter,

as we consider TTL caches and use timer control settings to cache and maximize

the sum of utilities over all contents across the network. [49] proposed approximate

39

algorithms while our timer-based models enable us to design optimal solutions since

content occupancy can be modeled as a real variable (e.g. a probability).

3.1.1 Network Model

We represent a cache network by a graph G = (V,E). See Figure 3.1 for an

example. Let D = {d1, · · · , dn} denote the set of contents. Each network cache v ∈ V

can store up to Bv contents to serve requests from users. We assume that each user

first sends a request for the content to its local network cache, which may then route

the request to other caches for retrieving the content. Without loss of generality, we

assume that there is a fixed and unique path from the local cache towards a terminal

cache that is connected to a server that always contains the content.

3.1.2 Content Request Process

Denote a request (v, i, p) by the cache, v, that initially receives the user request,

the requested content, i, and the path, p, over which the request is routed. We denote

a path p of length |p| = L as a sequence {v1p, v2p, · · · , vLp} of nodes vlp ∈ V such that

(vlp, v(l+1)p) ∈ E for l ∈ {1, · · · , L}, where vLp = v. Unless specified, we assume path

p is loop-free and that terminal cache v1p is the only cache on path p that accesses

the server for content i. We assume that the request processes for distinct contents

are described by independent Poisson processes with arrival rate λi for content i ∈ D.

Denote Λ =
∑n

i=1 λi. Then the popularity (request probability) of content i satisfies

[12]

ρi =
λi
Λ
, i = 1, · · · , n.

3.1.3 Time-To-Live Caches

We consider reset based TTL caches in this thesis. In a reset based TTL cache,

each content is associated with a timer value (say T) as shown in Figure 3.2. When a

40

Figure 3.2: A reset TTL cache

content is requested, there are two cases: (i) if the content is not in the cache (miss),

then the content is inserted into the cache and its timer is set to T ; (ii) if the content

is in the cache (hit), then the timer associated with the content is reset to T . The

timer decreases at a constant rate and the content is evicted once its timer expires.

We control the hit rate of each content by adjusting its timer value.

3.1.4 Cache Replication Strategy

Figure 3.3: Move Copy Down with Push cache replication policy

Each content i is associated with a timer Tij at cache j. Suppose content i is

requested and routed along path p. There are two cases: (i) content i is not in any

cache along path p, in which case it is fetched from the server and inserted into the

41

terminal cache (denoted by cache 1)1 and its timer is set to Ti1; (ii) if content i is in

cache l along path p, content i is moved to cache l + 1 preceding cache l in which i

is found, and the timer at cache l + 1 is set to Ti(l+1). Whenever the timer for any

content i at any cache l expires, it is pushed back to cache l − 1 and the timer is set

to Ti(l−1) as shown in Figure 3.3. We call this policy Move Copy Down with Push

(MCDP) [85]. Denote the hit probability of content i as hi; then the corresponding

hit rate is λihi.

3.1.5 Utility based caching

We first formulate a utility-driven caching framework for cache networks, where

each content is associated with a utility and content is managed with a timer whose

duration is set to maximize the aggregate utility for all contents over the cache net-

work. In addition to the ability to represent costs and user satisfaction, utility based

content caching can account for fairness. Fairness is important in many scenarios.

For example, when content providers aggregate content from multiple sources, it is

important that the benefits are spread fairly across caches [98]. A utility based frame-

work allow a choice of utility functions to provide different notions of fairness, such

as proportional or max-min fairness [88].

Utility functions can also capture the satisfaction perceived by a user after being

served a content. We associate each content i ∈ D with a utility function Ui : R→ R

that is a function of hit rate λihi. Ui(·) is assumed to be increasing, continuously

differentiable, and strictly concave. In particular, for our numerical studies, we focus

on the widely used β-fair utility functions [88] given by

1Since we consider path p, for simplicity, we move the dependency on p and v, denote it as nodes
1, · · · , L directly.

42

Ui(x) =

wi

x1−β

1−β , β ≥ 0, β 6= 1;

wi log x, β = 1,

(3.1)

where wi > 0 denotes a weight associated with content i.

3.2 Special Case: Single Cache

We first begin our analysis by considering a single cache system. Note that, for a

single cache system we only have one timer associated with each content. We consider

a single cache of size B serving n distinct contents each of unit size.

3.2.1 Extension to Stationary Request Arrival Process

A Hit-probability Based utility driven caching framework under Poisson content

arrival process was studied in Dehghan et.al. [30]. The objective was to maximize

the sum of utilities under a cache capacity constraint when utilities are function of hit

probabilities. While characterization of hit probability under Poisson content arrival

process is valuable, real-world request processes exhibit changes in popularity and

temporal correlations in requests [102, 26]. To account for these changes, we consider

a very general traffic model where requests for distinct contents are described by

mutually independent stationary and ergodic point processes.

We consider the content arrival process to be a stationary point process with

cumulative inter-request time (irt) distribution function (c.d.f.) Fi(t) for i = 1, · · · , n.

Denote by F̂i(t) the c.d.f. of the age associated with the irt distribution for content

i, satisfying ([12])

F̂i(t) = µi

∫ t

0

(1− F (x))dx.

Denote by hi and hin
i as the hit probability and time-average probability that content i

is in the cache (i.e., occupancy probability) respectively. From the analysis of previous

43

work [35], the hit probability and occupancy probability for a reset TTL cache can

be computed as hi = Fi(ti) and hin
i = F̂i(ti) respectively. Observe that for Poisson

arrival process [30], Fi(ti) = 1 − e−λiti and hi = hin
i , based on the PASTA property

[66]. Note that, we can represent hin
i as a function of hi as follows.

hin
i = F̂i(F

−1
i (hi)) , gi(hi),

Here we define gi(x) to be a one-to-one function with gi(x) = F̂i(F
−1
i (x)).

3.2.2 Cache Utility Maximization

We are interested in optimizing the sum of utilities over all contents subject to

cache capacity constraint.

max
{h1,··· ,hn}

n∑
i=1

Ui(λihi)

s.t.
n∑
i=1

gi(hi) ≤ B, (3.2a)

0 ≤ hi ≤ 1 i = 1, · · · , n.

Again (3.2a) is a constraint on average cache occupancy. A related problem has

been formulated in [34], where the authors formulated the optimization problem as a

function of hin
i . However, such a formulation may not be suitable for designing online

algorithms since we need a closed form expression for F̂−1
i . Furthermore, [34] only

considers linear utilities while we aim to characterize the impact of different utility

functions on optimal TTL policies.

3.2.3 Effect of Hazard Rate

Now we consider the convexity of (3.2). Denote the density function associated

with the content arrival process as fi(t). Let ζi(t) = fi(t)/[1−Fi(t)], t ∈ [0, F−1
i (1)]

44

be the hazard rate function associated with Fi(t). The behavior of ζi(t) plays a promi-

nent role in solving (3.2). In particular, if ζi(t) is non-increasing (DHR), then it can

be shown that g′(hi) is non-decreasing in hi. Therefore, the feasible set in (3.2) is

convex. Since the objective function is strictly concave and continuous, (3.2) is a

convex optimization problem, and an optimal solution exists. In this chapter, we

mainly focus on the case that ζi(t) is DHR, and refer the interested reader to [34] for

discussions of other cases.

3.2.4 Online Dual Algorithm

In Section 3.2.2, we formulated an optimization problem with a fixed cache size

under the assumption of a static known workload. However, system parameters (e.g.

request processes) can change over time. Moreover, it is infeasible to solve the op-

timization problem offline and then implement the optimal strategy. Hence online

algorithms are needed to implement the optimal strategy to adapt to these changes

in the presence of limited information.

The Lagrange dual function for the optimization problem (3.2) is

D(η) = max
hi

{
n∑
i=1

Ui(λihi)− η
[

n∑
i=1

gi (hi)−B
]}

,

and the dual problem is minη≥0 D(η).

Following standard gradient descent algorithm by taking the derivative of D(η)

w.r.t. η, the dual variable η should be updated as

η(k+1) ← max

{
0, η(k) + γ

[
n∑
i=1

gi(hi)−B
]}

,

where k is the iteration number, γ > 0 is the step size at each iteration and η ≥ 0

due to KKT conditions. Also, in order to achieve optimality, we must have

45

η(k) =
λiU

′
i(λihi)

g′i(hi)
, yi(hi), i.e., hi = y−1

i (η(k)).

Since gi(hi) indicates the probability that content i is in the cache,
∑n

i=1 gi(hi) rep-

resents the number of contents currently in the cache, denoted as Bcurr. Therefore,

the dual algorithm for a reset TTL cache is

t
(k)
i = F−1

i (y−1
i (η(k))),

η(k+1) ← max
{

0, η(k) + γ(Bcurr −B)
}
,

which is executed every time a request is made.

3.2.5 Online Poisson Approximation

From Section 3.2.4, it is clear that the implementation of the online algorithm

involves solving y−1
i (x) = 0 for x. It can be shown that under generalized Pareto,

hyperexponential distributions and Markov modulated Poisson processes (MMPP),

y−1
i (x) involves solving non-linear fixed point equations, that are computationally in-

tensive. However, the Dual for the case of requests governed by Poisson processes is

simple. Thus we apply the Dual designed for Poisson request processes to a workload

where requests are described by a non-Poisson stationary request processes. Such

an algorithm does not require solving any non-linear equations and hence is compu-

tationally efficient. Moreover, we also use estimation techniques introduced in [30]

to approximate request rates, which allows the use of these algorithms in an online

fashion.

We consider the problem of estimating the arrival rate λi for content i adopting

techniques used in [30] described as follows. Denote the remaining TTL time for

content i as τi. This can be computed given ti and a time-stamp for the last request

time for content i. We approximate the mean inter-request time as ti − τi. Clearly

46

ti − τi is an unbiased estimator of 1/λi. Given this estimator and Dual (3.3), we

propose the following Poisson approximate online algorithm

t
(k)
i = − 1

λ̂iP
log

(
1− 1

λ̂iP
U ′−1
i

(
η(k+1)

λ̂iP

))
,

η(k+1) ← max{0, η(k) + γ(Bcurr −B)}.

3.3 Linear Cache Network

We now begin our analysis with a linear cache network, i.e., there is a single path

between the user and the server, composed of |p| = L caches labeled 1, · · · , L. A

content enters the edge network via cache 1, and is promoted to a higher index cache

whenever a cache hit occurs. In the following, we consider the MCDP replication

strategy when each cache operates with a TTL policy.

3.3.1 Stationary Behavior

Requests for content i arrive according to a Poisson process with rate λi. Under

TTL, content i spends a deterministic time in a cache if it is not requested, indepen-

dent of all other contents. We denote the timer as Til for content i in cache l on the

path p, where l ∈ {1, · · · , |p|}.

Denote by tik the k-th time that content i is either requested or the timer expires.

For simplicity, we assume that content is in cache 0 (i.e., server) when it is not in the

cache network. We then define a discrete time Markov chain (DTMC) {X i
k}k≥0 with

|p|+ 1 states, where X i
k is the index of the cache that content i is in at time tik. The

event that the time between two requests for content i exceeds Til occurs with prob-

ability e−λiTil ; consequently we obtain the transition probability matrix of {X i
k}k≥0

and compute the stationary distribution. Details can be found in Appendix B.1. The

timer-average probability that content i is in cache l ∈ {1, · · · , |p|} is

47

hi1 =
eλiTi1 − 1

1 +
∑|p|

j=1(eλiTi1 − 1) · · · (eλiTij − 1)
, (3.5a)

hil = hi(l−1)(e
λiTil − 1), l = 2, · · · , |p|, (3.5b)

where hil is also the hit probability for content i at cache l.

Remark 1. The stationary analysis of MCDP is similar to a different caching policy

LRU(m) considered in [43]. We refer interested readers to [43] for more detail.

3.3.2 From Timer to Hit Probability

We consider a TTL cache network where requests for different contents are inde-

pendent of each other and each content i is associated with a timer Til at each cache

l ∈ {1, · · · , |p|} on the path. Denote T i = (Ti1, · · · , Ti|p|) and T = (T 1, · · · ,T n).

From (3.5), the overall utility on path p is given as

∑
i∈D

|p|∑
l=1

ψ|p|−lUi(λihil(T)),

where the utility function Ui : [0,∞)→ R is assumed to be an increasing, continuously

differentiable, and strictly concave function of content hit rate, and 0 < ψ ≤ 1 is a

discount factor capturing the utility degradation along the request’s routing direction.

Since each cache is finite in size, we have the capacity constraint

∑
i∈D

hil(T) ≤ Bl, l ∈ {1, · · · , |p|}.

Therefore, the optimal TTL policy for content placement on path p is the solution of

the following optimization problem

max
T

∑
i∈D

|p|∑
l=1

ψ|p|−lUi(λihil(T)) (3.6)

s.t.
∑
i∈D

hil(T) ≤ Bl, l ∈ {1, · · · , |p|},

48

Til ≥ 0, ∀i ∈ D, l = 1, · · · , |p|,

where hil(T) is given in (3.5). However, (3.6) is a non-convex optimization with a

non-linear constraint. Our objective is to characterize the optimal timers for differ-

ent contents on path p.. To that end, it is helpful to express (3.6) in terms of hit

probabilities. In the following, we discuss how to change the variables from timer to

hit probability.

Since 0 ≤ Til ≤ ∞, it is easy to check that 0 ≤ hil ≤ 1 for l ∈ {1, · · · , |p|}

from (3.5a) and (3.5b). Furthermore, it is clear that there exists a mapping between

(hi1, · · · , hi|p|) and (Ti1, · · · , Ti|p|). By simple algebra, we obtain

Ti1 =
1

λi
log

(
1 +

hi1

1−
(
hi1 + hi2 + · · ·+ hi|p|

)),
Til =

1

λi
log

(
1 +

hil
hi(l−1)

)
, l = 2, · · · , |p|.

Note that hi1 + hi2 + . . .+ hi|p| ≤ 1 must hold during the operation, which is always

true for our caching policies.

3.3.3 Maximizing Aggregate Utility

With the change of variables discussed above, we can reformulate (3.6) as follows

max
∑
i∈D

|p|∑
l=1

ψ|p|−lUi(λihil)

s.t.
∑
i∈D

hil ≤ Bl, l = 1, · · · , |p|, (3.7a)

|p|∑
l=1

hil ≤ 1, ∀i ∈ D, (3.7b)

49

0 ≤ hil ≤ 1, ∀i ∈ D, l = 1, · · · , |p| (3.7c)

where (3.7a) is the cache capacity constraint and (3.7b) is due to the variable ex-

changes under MCDP as discussed above.

Proposition 1. The optimization problem defined in (3.7) under MCDP has a unique

global optimum.

3.3.4 Distributed Algorithm

In Section 3.3.3, we formulated convex utility maximization problems with a fixed

cache size. However, system parameters (e.g. cache size and request processes) can

change over time, so it is not feasible to solve the optimization offline and implement

the optimal strategy. Thus, we need to design distributed algorithms to implement

the optimal strategy and adapt to the changes in the presence of limited information.

Primal Algorithm: We aim to design an algorithm based on the optimization

problem in (3.7), which is the primal formulation. Denote hi = (hi1, · · · , hi|p|) and

h = (h1, · · · ,hn). We first define the following objective function.

Z(h) =
∑
i∈D

|p|∑
l=1

ψ|p|−lUi(λihil)−
|p|∑
l=1

Cl

(∑
i∈D

hil −Bl

)
(3.8)

−
∑
i∈D

C̃i

 |p|∑
l=1

hil − 1

−∑
i∈D

|p|∑
l=1

Ĉil(−hil),

where Cl(·), C̃i(·) and Ĉil(·) are convex and non-decreasing penalty functions denoting

the cost for violating constraints (3.7a) and (3.7b).

Note that constraint (3.7b) ensures hil ≤ 1 ∀i ∈ D, l = 1, · · · , |p|, provided

hil ≥ 0. One can assume that hil ≥ 0 holds in writing down (3.8). This would be

true, for example, if the utility function is a β-fair utility function with β > 0 (Section

2.5[88]). For other utility functions, it is challenging to incorporate constraint (3.7c)

50

since it introduces n|p| additional price functions. For all cases evaluated across

various system parameters we found hil ≥ 0 to hold true. Hence we ignore constraint

(3.7c) in the primal formulation and define the following objective function

Z(h) =
∑
i∈D

|p|∑
l=1

ψ|p|−lUi(λihil)−
|p|∑
l=1

Cl

(∑
i∈D

hil −Bl

)
−
∑
i∈D

C̃i

 |p|∑
l=1

hil − 1

 .

(3.9)

It is clear that Z(·) is strictly concave. Hence, a natural way to obtain the maximal

value of (3.9) is to use the standard gradient ascent algorithm to move the variable

hil for i ∈ D and l ∈ {1, · · · , |p|} in the direction of gradient,

∂Z(h)

∂hil
= λiψ

|p|−lU ′i(λihil)− C ′l

(∑
j∈D

hjl −Bl

)
− C̃ ′i

 |p|∑
m=1

him − 1

 ,

where U ′i(·), C ′l(·), C̃ ′i(·) denote partial derivatives w.r.t. hil.

Since hil indicates the probability that content i is in cache l,
∑

j∈D hjl is the

expected number of contents currently in cache l, denoted by Bcurr,l.

Therefore, the primal algorithm for MCDP is given by

Til[k]←

1
λi

log

(
1 + hil[k]

1−
(
hi1[k]+hi2[k]+···+hi|p|[k]

)), l = 1;

1
λi

log

(
1 + hil[k]

hi(l−1)[k]

)
, l = 2, · · · , |p|,

hil[k + 1]← max

{
0, hil[k] + ζil

[
λiψ

|p|−lU ′i(λihil[k])

− C ′l (Bcurr,l −Bl)− C̃ ′i

 |p|∑
m=1

him[k]− 1

]},
where ζil > 0 is the step-size parameter, and k is the iteration number incremented

upon each request arrival.

51

Theorem 4. The primal algorithm (3.10) is locally asymptotically stable given a

sufficiently small step-size parameter ζil.

Proof. See appendix B.2.

3.4 General Cache Network

Denote by P the set of all requests, and P i the set of requests for content i.

Suppose a network cache v (logically represented as vi in path pi for i = 1, 2) serves

two requests (v1, i1, p1) and (v2, i2, p2), then there are two cases: (i) non-common

requested content, i.e., i1 6= i2; and (ii) common requested content, i.e., i1 = i2.

In the following, we will focus on how to design optimal TTL policies for content

placement in an edge cache network under these two cases.

3.4.1 Non-common Requested Contents

In this section, we consider the case where different users do not share content.

Since there is no coupling between different requests (v, i, p), we can directly generalize

the results for a particular path p in Section 3.3 to a tree network. Hence, given the

utility maximization formulation in (3.7), we can directly formulate the optimization

problem for MCDP as

max
∑
i∈D

∑
p∈Pi

|p|∑
l=1

ψ|p|−lUip(λiph
(p)
il)

s.t.
∑
i∈D

∑
p:l∈{1,··· ,|p|}

h
(p)
il ≤ Bl, ∀l ∈ V, (3.11a)

|p|∑
l=1

h
(p)
il ≤ 1, ∀i ∈ D, p ∈ P i,

0 ≤ h
(p)
il ≤ 1, ∀i ∈ D, l ∈ {1, · · · , |p|}, p ∈ P i.

Proposition 2. The optimization problem defined in (3.11) under MCDP has a

unique global optimum.

52

3.4.2 Common Requested Contents

Now consider the case where different users share the same content, e.g., there are

two requests (v1, i, p1) and (v2, i, p2). Suppose that cache l is on both paths p1 and p2,

where v1 and v2 request the same content i. If we cache separate copies on each path,

results from the previous section apply. However, maintaining redundant copies in

the same cache decreases efficiency. A simple way to deal with that is to only cache

one copy of content i at l to serve both requests from v1 and v2. Though this reduces

redundancy, it complicates the optimization problem.

In the following, we formulate a utility maximization problem for MCDP with

TTL caches, where all users share the same requested contents D.

max
∑
i∈D

∑
p∈Pi

|p|∑
l=1

ψ|p|−lUip(λiph
(p)
il)

s.t.
∑
i∈D

(
1−

∏
p:j∈{1,··· ,|p|}

(1− h(p)
ij)

)
≤ Bj, ∀j ∈ V, (3.12a)

∑
j∈{1,··· ,|p|}

h
(p)
ij ≤ 1, ∀i ∈ D, p ∈ P i, (3.12b)

0 ≤ h
(p)
il ≤ 1, ∀i ∈ D, j ∈ {1, · · · , |p|}, p ∈ P i, (3.12c)

where (3.12a) ensures that only one copy of content i ∈ D is cached at node j for all

paths p that pass through node j. This is because the term 1−∏p:j∈{1,··· ,|p|}(1−h
(p)
ij)

is the overall hit probability of content i at node j over all paths. (3.12b) is the cache

capacity constraint and (3.12c) is the constraint from MCDP TTL cache policy as

discussed in Section 3.3.2.

Example 1. Consider two requests (v1, i, p1) and (v2, i, p2) with paths p1 and p2 in-

tersecting at j. Let the corresponding path perspective hit probability be h
(p1)
ij and h

(p2)
ij .

Then the term inside outer summation of (3.12a) is 1− (1−h(p1)
ij)(1−h(p2)

ij), i.e., the

hit probability of content i in j.

53

Remark 2. Note that we assume independence between different requests (v, i, p)

in (3.12), e.g., in Example 1, if the insertion of content i in node j is caused by

request (v1, i, p1), when request (v2, i, p2) comes, it is not counted as a cache hit from

its perspective. Our framework still holds if we follow the logical TTL MCDP on a

path. However, in that case, the utilities will be larger than the one we consider here.

Proposition 3. The optimization problem (3.12) under MCDP is a non-convex

optimization problem.

In the following, we develop an optimization framework that handles the non-

convexity issue in this optimization problem and provides a distributed solution. To

this end, we first introduce the Lagrangian function

L(h, ν, µ) =
∑
i∈D

∑
p∈Pi

|p|∑
l=1

ψ|p|−lUip(λiph
(p)
il)−

∑
j∈V

νj

(∑
i∈D

[
1−

∏
p:j∈{1,··· ,|p|}

(1− h(p)
ij)

]
−Bj

)

−
∑
i∈D

∑
p∈Pi

µip

(∑
j∈{1,··· ,|p|}

h
(p)
ij − 1

)
,

where the Lagrangian multipliers (price vector and price matrix) are ν = (νj)j∈V ,

and µ = (µip)i∈D,p∈P .

The dual function can be defined as

d(ν, µ) = sup
h
L(h, ν, µ),

and the dual problem is given as

min
ν,µ

d(ν, µ) = L(h∗(ν, µ),ν, µ), s.t. ν, µ ≥ 0,

54

where the constraint is defined pointwise for ν, µ, and h∗(ν, µ) is a function that

maximizes the Lagrangian function for given (ν, µ), i.e.,

h∗(ν, µ) = arg max
h

L(h, ν, µ). (3.13)

The dual function d(ν, µ) is always convex in (ν, µ) regardless of the convexity

of the optimization problem (3.12) [21]. Therefore, it is always possible to iteratively

solve the dual problem using

νl[k + 1] = νl[k]− γl
∂L(ν, µ)

∂νl
, (3.14)

µip[k + 1] = µip[k]− ηip
∂L(ν, µ)

∂µip
,

where γl and ηip are the step sizes, and ∂L(ν,µ)
∂νl

and ∂L(ν,µ)
∂µip

are the partial derivative

of L(ν, µ) w.r.t. νl and µip, respectively, satisfying

∂L(ν, µ)

∂νl
= −

(∑
i∈D

[
1−

∏
p:l∈{1,··· ,|p|}

(1− h(p)
il)

]
−Bl

)
, (3.15)

∂L(ν, µ)

∂µip
= −

(∑
j∈{1,··· ,|p|}

h
(p)
ij − 1

)
.

Sufficient and necessary conditions for the uniqueness of ν, µ are given in [59]. The

convergence of primal-dual algorithm consisting of (3.13) and (3.14) is guaranteed if

the original optimization problem is convex. However, our problem is not convex.

Nevertheless, we next show that the duality gap is zero, hence (3.13) and (3.14)

converge to the globally optimal solution. To begin with, we introduce the following

results

Theorem 5. [94] (Sufficient Condition). If the price based function h∗(ν, µ) is

continuous at one or more of the optimal lagrange multiplier vectors ν∗ and µ∗, then

55

the iterative algorithm consisting of (3.13) and (3.14) converges to the globally optimal

solution.

Theorem 6. [94] If at least one constraint of (3.12) is active at the optimal solution,

the condition in Theorem 5 is also a necessary condition.

Hence, if we can show the continuity of h∗(ν, µ) and that constraints (3.12) are

active, then given Theorems 5 and 6, the duality gap is zero, i.e., (3.13) and (3.14)

converge to the globally optimal solution.

Taking the derivative of L(h, ν, µ) w.r.t. h
(p)
il for i ∈ D, l ∈ {1, · · · , |p|} and

p ∈ P i, we have

∂L(h, ν, µ)

∂h
(p)
il

= ψ|p|−lλipU
′
ip(λiph

(p)
il)− µip − νl

(∏
q:q 6=p,

j∈{1,··· ,|q|}

(1− h(q)
ij)

)
. (3.16)

Setting (3.16) equal to zero, we obtain

U ′ip(λiph
(p)
il) =

1

ψ|p|−lλip

(
νl

(∏
q:q 6=p,

j∈{1,··· ,|q|}

(1− h(q)
ij)

)
+ µip

)
. (3.17)

Consider the utility function Uip(λiph
(p)
il) = wip log(1+λiph

(p)
il), then U ′ip(λiph

(p)
il) =

wip/(1 + λiph
(p)
il). Hence, from (3.17), we have

h
(p)
il =

wipψ
|p|−l

νl

(∏
q:q 6=p,

j∈{1,··· ,|q|}
(1− h(q)

ij)

)
+ µip

− 1

λip
. (3.18)

Lemma 2. Constraints (3.12a) and (3.12b) cannot be both non-active, i.e., at least

one of them is active.

Proof. We prove this lemma by contradiction. Suppose both constraints (3.12a)

and (3.12b) are non-active, i.e., ν = (0), and µ = (0). Then the optimization prob-

lem (3.11) achieves its maximum when h
(p)
il = 1 for all i ∈ D, l ∈ {1, · · · , |p|} and

56

p ∈ P i. If so, then the left hand size of (3.12a) equals |D| which is much greater than

Bl for l ∈ V, which is a contradiction. Hence, constraints (3.12a) and (3.12b) cannot

be both non-active.

From Lemma 2, we know that the feasible region for the Lagrangian multipliers

satisfies R = {νl ≥ 0, µip ≥ 0, νl + µip 6= 0,∀i ∈ D, l ∈ {1, · · · , |p|}, p ∈ P i}.

Theorem 7. The hit probability h
(p)
il given in (3.18) is continuous in νl and µip for

all i ∈ D, l ∈ {1, · · · , |p|} and p ∈ P i in the feasible region R.

Proof. See appendix B.3.

Remark 3. Note that similar arguments (by using Lemma 2) hold true for various

other choices of utility functions such as: β- fair utility functions (Section 2[88]).

Therefore, the primal-dual algorithm consisting of (3.13) and (3.14) converges to the

globally optimal solution for a wide range of utility functions.

Algorithm 1 Primal-Dual Algorithm

Input: ∀ν0, µ0 ∈ R and h0

Output: The optimal hit probabilities h
Step 0: t = 0, ν[t]← ν0, µ[t]← µ0, h[t]← h0

Step t ≥ 1
while Equation (3.15) 6= 0 do

First, compute h
(p)
il [t+ 1] for i ∈ D, l ∈ {1, · · · , |p|} and p ∈ P i through (3.18);

Second, update νl[t + 1] and µip[t + 1] through (3.14) given h[t + 1], ν[t] and
µ[t] for l ∈ V, i ∈ D and p ∈ P i

Algorithm 1 summarizes the details of this algorithm.

3.5 Results and Discussion

3.5.1 Results for Single Cache

In our studies, we consider a Zipf popularity distribution with α = 0.8, n = 1000

and B = 100.

57

10
0

10
1

10
2

10
3

Content Index

10
-4

10
-3

10
-2

O
p

ti
m

al
 H

it
 R

at
e

Online-Poisson

Centralized

(a) (b)

Figure 3.4: (a) Accuracy of Poisson online approximation for Generalized Pareto
inter-requests. (b) Trace-driven utility comparison for Poisson online approximation
and LRU caching policies.

Accuracy of Poisson Approximation: We first apply the online algorithm (3.4)

to a workload where requests are described by a stationary request process under a

generalized Pareto distribution with shape parameter ki = 0.48. The performance is

shown in Figure 3.4 (a) . It is clear that the approximation is accurate. Furthermore,

it has been theoretically characterized in [99] that for any given generalized Pareto

model with finite variance, the exponential approximation that minimizes the K-L

divergence between these two distributions has the same mean as that of the gener-

alized Pareto distribution, i.e. λi = (1 − ki)/σi. The estimator we use in our online

algorithm (3.4), i.e., 1/λ̂iP , is an unbiased estimator of mean inter-request time of

the generalized Pareto arrival process, thus explaining the better performance of our

Poisson approximation in accordance with the theoretical results provided in [99].

Moreover, we observe that as ki decreases, accuracy improves. However, this approx-

imation performs poorly when ki > 0.5 since the generalized Pareto distribution has

infinite variance for ki > 0.5. We also find the Poisson online algorithm to be accurate

for other IRT distributions such as Weibull and 2-state MMPP.

58

Trace Driven Simulation: We compare the performance of LRU to that of Poisson

approximate online algorithm through trace-driven simulation. We use requests from

a web access trace collected from a gateway router at IBM research lab [101]. The

trace contains 3.5×106 requests with a content catalog of size n = 5638. We consider

a cache size B = 1000. The utility function involves content weights, wi, associated

with each content i. Classical cache replacement policies such as LRU are oblivious

to content weights. However, the Poisson approximation based online algorithm up-

dates the TTL timer by considering the content weight at each time step. Thus the

Poisson approximation based online algorithm is more robust to variation in content

weights. Figure 3.4 (b) compares the performance of online Poisson algorithm to that

of LRU across different sets of content weights, i.e. we consider the following three

cases: (a) wi = λi (decreasing weights and decreasing request rates) (b) wi = 1/λi

(increasing weights and decreasing request rates) (c) wi = rand(0, 1) (random weights

and decreasing request rates). Let UP and UL denote the aggregate content utility

for online Poisson algorithm and for LRU policy, respectively. We normalize both

utilities w.r.t. LRU policy as UP/UL and UL/UL = 1, respectively. From Figure 3.4

(b), it is clear that in each case online Poisson algorithm performs better than LRU,

i.e. online Poisson algorithm achieves larger aggregate utility as compared to the

LRU policy.

3.5.2 Results for Linear Cache Network

We validate our analytical results with simulations for MCDP. We consider a

three-node path with cache capacities Bl = 10, l = 1, 2, 3. The total number of

unique contents considered in the system is n = 100. We consider a Zipf popularity

distribution with parameter α = 0.8. W.l.o.g., we consider log based utility function2

2One can also choose Ui(x) = λi log x. However, Ui(x) evaluated at x = 0 becomes negative
infinity, which may produce undesired results while comparing the performance of MCDP with
other caching policies.

59

10
0

10
1

10
2

Content Index (MCDP)

0

0.5

1

1.5

2

H
it

 p
ro

b
ab

il
it

y

node 1

node 2

node 3

(a)

0 0.5 1 1.5 2

Iterations 10
6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

O
b

je
ct

iv
e

F
u

n
ct

io
n

Primal

Centralized

(b)

Figure 3.5: (a) Hit probability for MCDP in a three-node path; (b) Convergence of
primal algorithm.

Ui(x) = λi log(1 + x) [95], and discount factor ψ = 0.1. We assume that requests

arrive according to a Poisson process with aggregate request rate Λ = 1.

We first solve optimization problem (3.7) using a Matlab routine fmincon. From

Figure 3.5 (a), we observe that popular contents are assigned higher hit probabilities

at cache node 3, i.e. at the edge cache closest to the user as compared to other caches.

The optimal hit probabilities assigned to popular contents at other caches are almost

negligible. However, the assignment is reversed for moderately popular contents. For

non-popular contents, the optimal hit probabilities at cache node 1 (closest to origin

server) are the highest.

We then implement the primal algorithm given in (3.10), where we take the

following penalty functions [88] Cl(x) = max{0, x − Bl log(Bl + x)} and C̃i(x) =

max{0, x− log(1 + x)}. Figure 3.5 (b) shows that the primal algorithm successfully

converges to the optimal solution.

We define an upper bound (UB) on optimal aggregate utility by removing (3.7b)

and solving the optimization problem (3.7). We also compare the performance of

MCDP to other policies such as K-LRU (K=3), K-LRU with big cache abstraction:

60

 = 0.4 = 0.6 = 0.8 = 1.0 = 1.2 = 1.4

Zipf Parameter

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 A

g
g
re

g
a
te

 U
ti
lit

y

UB

MCDP

K-LRU (B)

K-LRU

Figure 3.6: Normalized optimal aggregated utilities in a three-node path.

K-LRU(B) and the UB based bound. We plot the relative performance w.r.t. the

optimal aggregated utilities of all above policies, normalized to that under MCDP

shown in Figure 3.6. We observe that MCDP significantly outperforms K-LRU and

K-LRU(B) for small and moderate values of Zipf parameter. Furthermore, the per-

formance gap between UB and MCDP increases in the Zipf parameter.

3.5.3 Results for General Cache Network (Non-Common Requested Con-

tents)

We consider a three-layer cache network shown in Figure 3.1 with node set {1, · · · , 7},

which is consistent with the YouTube video delivery system [83, 86]. Nodes 1-4 are

edge caches, and node 7 is tertiary cache. There exist four paths p1 = {1, 5, 7},

p2 = {2, 5, 7}, p3 = {3, 6, 7} and p4 = {4, 6, 7}. Each edge cache serves requests for

100 distinct contents, and cache size is Bv = 10 for v ∈ {1, · · · , 7}. Assume that

content follows a Zipf distribution with parameter α1 = 0.2, α2 = 0.4, α3 = 0.6 and

61

0 20 40 60 80 100

Content Index

0

0.2

0.4

0.6

0.8

1

H
it

 p
ro

b
ab

il
it

y

node 4(Simulation)

node 4(Numerical)

node 6(Simulation)

node 6(Numerical)

node 7(Simulation)

node 7(Numerical)

(a)

0 10 20 30 40

Cache Size

0

0.1

0.2

0.3

0.4

P
ro

b
ab

il
it

y
 D

en
si

ty

node 4

node 6

node 7

(b)

Figure 3.7: (a) Hit probability; (b) Cache size, of MCDP under three-layer edge
network where each path requests distinct contents.

α4 = 0.8, respectively. We consider utility function Uip(x) = λip log(1 + x), where λip

is the request arrival rate for content i on path p, and requests are described by a

Poisson process with Λp = 1 for p = 1, 2, 3, 4. The discount factor ψ = 0.1.

Figure 3.7 shows results for path p4 = {4, 6, 7}. From Figure 3.7 (a), we observe

that our algorithm yields the exact optimal and empirical hit probabilities under

MCDP. Figure 3.7 (b) shows the distribution of the number of contents in the cache3

in the cache network. As expected, the density is concentrated around their corre-

sponding cache sizes. Similar trends exist for paths p1, p2 and p3, hence are omitted

here.

3.5.4 Results for General Cache Network (Common Requested Contents)

We evaluate the performance of primal-dual Algorithm 1 on a three-layer binary

tree cache network. We assume that there are 100 unique contents in the system

requested across four paths. The cache size is Bv = 10 for v = 1, · · · , 7. We consider

3The constraint (3.11a) in problem (3.11) is on average cache occupancy. However it can be
shown that if n → ∞ and Bl grows in sub-linear manner, the probability of violating the target
cache size Bl becomes negligible [30].

62

0 1 2 3 4

Iterations 10
5

0

0.02

0.04

0.06

0.08

0.1

O
b
je

ct
iv

e
F

u
n
ct

io
n

Primal-Dual

Centralized

Figure 3.8: Conver-
gence of Primal-Dual
algorithm.

 = 0.1 = 0.5 = 1.0

Discount Factor

0

0.5

1

1.5

2

2.5

3

3.5

4

N
o

rm
a

liz
e

d
 A

g
g

re
g

a
te

 U
ti
lit

y

UB

MCDP

K-LRU (B)

K-LRU

Figure 3.9: Optimal ag-
gregated utilities under
common requested con-
tents.

Topology α MCDP UB % Gap
Grid 0.8 0.0923 0.1043 11.50
Grid 1.2 0.3611 0.4016 10.08

Lollipop 0.8 0.0908 0.1002 9.38
Lollipop 1.2 0.3625 0.4024 9.91

Figure 3.10: Optimal
aggregate utilities under
various network topolo-
gies.

the utility function Uip(x) = λip log(1 +x), and the popularity distribution over these

contents is Zipf with parameter α = 0.8. W.l.o.g., the aggregate request arrival rate

is one. The discount factor ψ = 0.1.

Convergence of Primal-Dual Algorithm 1: We solve the optimization problem

in (3.12) using a Matlab routine fmincon. Then we implement our primal-dual al-

gorithm given in Algorithm 1. Results for aggregate optimal utility are presented in

Figure 3.8. It is clear that the primal-dual algorithm successfully converges to the

optimal solution.

Comparison with Other Caching Policies: While classical cache eviction policies

such as LRU provide good performance and are easy to implement, Garetto et al.

[40] showed that K-LRU4 provides significant improvement over LRU even for very

small value of K. Furthermore, Ramadan et al. [83] proposed K-LRU with big cache

abstraction (K-LRU(B)) to effectively utilize resources in a hierarchical network of

cache servers. We also define an upper bound (UB) on optimal aggregate utility

by removing (3.12b) and solving the optimization problem (3.12). We compare the

performance of MCDP to K-LRU, K-LRU(B) and UB in Figure 3.9. We plot the

relative performance w.r.t. the optimal aggregated utilities of all above policies,

4K-LRU adds K− 1 meta-caches ahead of the real cache. Only “popular” contents (requested at
least K − 1 times) are stored in real cache.

63

normalized to that under MCDP. We again observe a huge gain of MCDP w.r.t. K-

LRU and K-LRU(B) across all values of discount factor. However, the performance

gap between MCDP and UB increases with an increase in the value of discount factor.

Different Network Topologies: We consider two other network topologies: Grid

and lollipop. Grid is a two-dimensional square grid while a (a,b) lollipop network

is a complete graph of size a, connected to a path graph of length b. Denote the

network as G = (V,E). For grid, we consider |V | = 16, while we consider a (3, 4)

lollipop topology with |V | = 7 and clique size 3. The library contain |D| = 100

unique contents. Each node has access to a subset of contents in the library. We

assign a weight to each edge in E, selected uniformly from the interval [1, 20]. Next,

we generate a set of requests in G as described in [49]. To ensure that paths overlap,

we randomly select a subset Ṽ ⊂ V nodes to generate requests. Each node in Ṽ

can generate requests for contents in D following a Zipf distribution with parameter

α = 0.8. Requests are then routed over the shortest path between the requesting node

in Ṽ and the node in V that caches the content. Again, we assume that the aggregate

request rate at each node in Ṽ is one and the discount factor is ψ = 0.1.

We evaluate the performance of MCDP over the graphs across various Zipf pa-

rameter in Figure 3.10. It is clear that for both network topologies, aggregate utility

obtained from our TTL-based framework with MCDP policy is larger for large zipf

parameters as compared to small zipf parameters. With an increase in Zipf parameter,

the difference between request rates of popular and less popular contents increases.

The aggregate request rate over all contents is the same in both cases. Thus popular

contents get higher request rates which in turn yields higher aggregate utility. How-

ever, the performance gap between UB and MCDP is around one tenth in both cases

and is not affected much by the Zipf parameter.

64

3.6 Summary

We began this chapter by asking: How do we build caching networks that imple-

ment differential services? We have answered this question by developing optimal

timer-based TTL polices for content placement in cache networks through a unified

optimization approach. We formulated a general utility maximization framework,

which is non-convex in general. We identified the nonconvexity issue and proposed

efficient distributed algorithm to solve it. We proved that the distributed algorithms

converge to the globally optimal solutions. We showed the efficiency of these algo-

rithms through numerical studies.

65

CHAPTER 4

JOINTLY COMPRESSING AND CACHING DATA IN
WIRELESS SENSOR NETWORKS

The theory we developed in Chapter 3 for cache networks can easily be extended

to other settings such as a Wireless Sensor Network (WSN). We now consider a WSN

comprised of a large number of sensors and routers. The end sensors usually generate

data, and routers provide resources (such as caching and compression resources) on

the route from end sensors to the sink node (where end users request for data).

We represent the WSN as a directed graph G = (V,E). An illustrative example for

data generation and request propagation in a tree-structured WSN is depicted in

Figure 4.1. Each router has a cache to store data for compression. Let K ⊂ V be the

set of end sensor nodes generating data with |K| = K. Furthermore, we assume that

each node j that receives data i from an end node k can compress it with a reduction

ratio1 δ
(k)
ij , where 0 < δ

(k)
ij ≤ 1, ∀k, j. We assume that sensor k ∈ K continuously

generates data, which will be active for a time interval W and may be requested

by analysts (users). If there is no request for this data in that time interval, the

generated data becomes inactive and is discarded from the system. The generated

data is compressed and cached along the path between the end sensor and sink node

when a request is made for active data. We consider TTL-routers in the WSN G,

where each data has its own timer. We follow the MCDP cache replication strategy

1defined as the ratio of the volume of the output data to the volume of input data at any node. We
consider the compression that only reduces the quality of data (e.g. remove redundant information),
but the total number of distinct data in the system remains the same.

66

defined in Chapter 3 and also defined in Section 4.1.2. We associate each data with

a utility function, a function of cache hit probability.

Figure 4.1: An illustrative example for data generating, request and propagating in
a wireless sensor network.

4.1 System Model

We consider a WSN comprised a large number of sensors and routers. The end

sensors usually generate data, and routers provide resources (such as caching and

compression resources) on the route from end sensors to the sink node. We represent

the WSN as a directed graph G = (V,E). An illustrative example for data generation

and request propagation in a tree-structured WSN is depicted in Figure 4.1.

4.1.1 TTL-Router

Each router has a cache to store data for compression. Denote by Bv the cache

capacity at node v ∈ V. Let K ⊂ V be the set of end sensor nodes generating data

67

with |K| = K. Furthermore, we assume that each node j that receives data i from an

end node k can compress it with a reduction ratio2 δ
(k)
ij , where 0 < δ

(k)
ij ≤ 1, ∀k, j.

Consider the cache at router j. Each data i is associated with a timer Tij. When

we focus on router j, we omit the subscript j. Consider the event when data i is

requested. There are two cases: (i) if data i is not in the cache, data i is inserted

into the cache and its timer is set to Ti; (ii) if data i is in the cache, its timer is reset

to Ti. The timer decreases at a constant rate and the data is evicted once its timer

expires.

4.1.2 Data Generation and Requests

We assume that sensor k ∈ K continuously generates data, which will be active

for a time interval W and may be requested by analysts (users). If there is no

request for this data in that time interval, the generated data becomes inactive and is

discarded from the system. The generated data is compressed and cached along the

path between the end sensor and sink node when a request is made for active data.

Thus the total number of paths is |K| = K, hence, w.l.o.g., K is also used to denote

the set of all paths.

We consider TTL-routers in the WSN G, where each data has its own timer.

Suppose data i is requested and routed along path p. There are two cases: (i) data

i is not in any cache along path p, in which case data i is generated from the end

sensor and inserted into the first TTL-router (denoted by 1)3 on the path. Its timer

is set to Ti1; (ii) if data i is in TTL-router l along path p, we consider the following

simple strategy [85]

2defined as the ratio of the volume of the output data to the volume of input data at any node. We
consider the compression that only reduces the quality of data (e.g. remove redundant information),
but the total number of distinct data in the system remains the same.

3Since we consider path p, for simplicity, we move the dependency on p and v, denote it as
1, · · · , L directly.

68

• Move Copy Down with Push (MCDP): data i is moved to TTL-router

l + 1 preceding TTL-router l in which i is found, and the timer at TTL-router

l+ 1 is set to Ti(l+1). If timer Til expires, data i is pushed one TTL-router back

to TTL-router l − 1 and the timer is set to Ti(l−1).

4.1.3 Utility Function

We associate with each data i ∈ D a utility function Ui : [0, 1] → R that is

a function of hit probability hi. Ui(·) is assumed to be increasing, continuously

differentiable, and strictly concave. In particular, for our numerical studies, we focus

on the widely used β-fair utility functions [88] given by

Ui(h) =

wi

h1−β

1−β , β ≥ 0, β 6= 1;

wi log h, β = 1,

(4.1)

where wi > 0 denotes a weight associated with data i.

4.2 Optimization Formulation

In a WSN, each end sensor generates a sequence of data that analysts are interested

in. Different end sensors may generate different types of data, i.e., there is no common

data sharing between different end sensors.

W.l.o.g., we consider a particular end sensor k and denote the path from k to

the sink as p = (1, · · · , |p|), where TTL-router |p| is the sink node that serves the

requests and TTL-router 1 is the end sensor that generates the data. Let the set of

data generated by end sensor k be D(p), where requests for data i ∈ D(p) follow a

Poisson process with rate λi.

Let h
(p)
ij , T

(p)
ij denote the hit probability and TTL timer associated with data

i ∈ D(p) at node j ∈ {1, · · · , |p|}, respectively. Let h
(p)
i = (h

(p)
i1 , · · · , h(p)

i|p|), δ
(p)
i =

69

(δ
(p)
i1 , · · · , δ(p)

i|p|) and T
(p)
i = (T

(p)
i1 , · · · , T (p)

i|p|). Let h = (h
(p)
i), δ = (δ

(p)
i) and T = (T

(p)
i)

for i ∈ D(p) and p ∈ K.

4.2.1 Utilities

The overall utility for data i fetched over path p is

|p|∑
j=1

ψ|p|−jU
(p)
i

(
h

(p)
ij

j∏
l=1

δ
(p)
il

)
,

where 0 < ψ ≤ 1 is a discount factor capturing the data utility degradation along the

request route. Here utilities not only capture hit probabilities but also characterize

data quality degradation due to compression along the path.

4.2.2 Costs

We consider cost, for example the delay to retrieve the data to a user, of routing

the data along the path, which includes the cost to forward data to routers that

caches it, the cost to search for the data along the path, and the cost to fetch cached

data to analysts that sent the requests. Again, we assume that the per hop cost to

transfer (search) data along the path is a function cf (·) (cs(·)) of hit probabilities and

compression ratios.

4.2.2.1 Forwarding Costs

Suppose a hit for data i occurs on TTL-router j ∈ {1, · · · , |p|}, then the total

cost to forward data i along p is

|p|∑
j=1

λi · j · cf
(
h

(p)
ij

j∏
l=1

δ
(p)
il

)
.

70

4.2.2.2 Search Costs

Given a hit for data i on TTL-router j ∈ {1, · · · , |p|}, the total cost to search for

data i along p is

|p|∑
j=1

λi · (|p| − j + 1) · cs(h(p)
ij).

4.2.2.3 Fetching Costs

Upon a hit for data i on TTL-router j ∈ {1, · · · , |p|}, the total cost to fetch data

i along p is

|p|∑
j=1

λi · (|p| − j + 1) · cf
(
h

(p)
ij

j∏
l=1

δ
(p)
il

)
.

4.2.3 Hit Probability and Timer-based Policies

The mapping between hit probabilities and timers for different cache replication

strategies was established in Chapter 3. Using results from Chapter 3, we obtain the

following expressions for corresponding data timers at a sensor j along path p.

T
(p)
i1 =

1

λi
log

(
1 +

h
(p)
i1

1−∑j∈{1,··· ,|p|} h
(p)
ij

)
,

T
(p)
ij =

1

λi
log

(
1 +

h
(p)
ij

h
(p)
i(j−1)

)
, j = 2, · · · , |p|.

Note that

∑
j∈{1,··· ,|p|}

h
(p)
ij ≤ 1,

must hold during the mapping.

71

4.2.4 Optimization Formulation

Our objective is to determine a feasible TTL policy and compression ratio for data

management in a WSN to maximize the difference between utilities and costs, i.e.,

F (h, δ) =
∑
p∈K

∑
i∈D(p)

{ |p|∑
j=1

ψ|p|−jU
(p)
i

(
h

(p)
ij

j∏
l=1

δ
(p)
il

)

−
|p|∑
j=1

λi · j · cf
(
h

(p)
ij

j∏
l=1

δ
(p)
il

)
−
|p|∑
j=1

λi · (|p| − j + 1) · cs(h(p)
ij)

−
|p|∑
j=1

λi · (|p| − j + 1) · cf
(
h

(p)
ij

j∏
l=1

δ
(p)
il

)}

=
∑
p∈K

∑
i∈D(p)

{ |p|∑
j=1

ψ|p|−jU
(p)
i

(
h

(p)
ij

j∏
l=1

δ
(p)
il

)

−
[|p|∑
j=1

λi(|p|+ 1)cf

(
h

(p)
ij

j∏
l=1

δ
(p)
il

)

+

|p|∑
j=1

λi(|p| − j + 1)cs(h
(p)
ij)

]}
.

Hence, the optimal TTL policy and compression ratio for MCDP should solve the

following optimization problem:

max F (h, δ)

s.t.
∑
p:l∈p

∑
i∈D(p)

h
(p)
il

I(l,p)∏
j=1

δ
(p)
ij ≤ Bl, ∀l ∈ V,

cc

(∑
i∈D(p)

|p|∑
l=1

l∏
j=1

δ
(p)
ij

)
≤ O(p), ∀p ∈ K, (4.3a)

∑
j∈{1,··· ,|p|}

h
(p)
ij ≤ 1, ∀i ∈ D(p),∀p ∈ K, (4.3b)

0 ≤ h
(p)
ij ≤ 1, ∀i ∈ D(p),∀p ∈ K, j ∈ {1, · · · , |p|},

0 < δ
(p)
ij ≤ 1, ∀i ∈ D(p),∀p ∈ K, j ∈ {1, · · · , |p|},

72

where I(l, p) is the index of router j on path p and constraint (4.3a) is the energy

available on path p to transmit the compressed data, and cc(·) is the per unit energy

consumption function for data transmission. Constraint (4.3b) is included in the

formulation due to the mapping between hit probabilities and timers as discussed in

Section 4.2.3.

It is easy to check that (4.3) is a non-convex problem. In the following, we

transform (4.3) into a convex problem through Boyd’s method (Section 4.5 [21]).

4.2.4.1 Convex Transformation

First, we define two new sets of variables for i ∈ D(p), l ∈ {1, · · · , |p|} and p ∈ K

as follows:

log h
(p)
ij , σ

(p)
ij , i.e., h

(p)
ij = eσ

(p)
ij ,

log δ
(p)
ij , τ

(p)
ij , i.e., δ

(p)
ij = eτ

(p)
ij ,

and denote σ
(p)
i = (σ

(p)
i1 , · · · , σ(p)

ip), τ
(p)
i = (τ

(p)
i1 , · · · , τ (p)

ip) and σ = (σ
(p)
i), τ = (τ

(p)
i)

for i ∈ D(p) and p ∈ K.

Then the objective function F (h, δ) can be transformed into

F (σ, τ) =
∑
p∈K

∑
i∈D(p)

{ |p|∑
j=1

ψ|p|−jU
(p)
i

(
eσ

(p)
ij +

∑j
l=1 τ

(p)
il

)

−
[|p|∑
j=1

λi(|p|+ 1)cf

(
eσ

(p)
ij +

∑j
l=1 τ

(p)
il

)

+

|p|∑
j=1

λi(|p| − j + 1)cs

(
eσ

(p)
ij

)]}
.

We transform the constraints in a similar manner. Then we obtain the following

transformed optimization problem

max F (σ, τ)

73

s.t.
∑
p:l∈p

∑
i∈D(p)

eσ
(p)
il +

∑I(l,p)
j=1 τ

(p)
ij ≤ Bl, ∀l ∈ V,

cc

(∑
i∈D(p)

|p|∑
l=1

e
∑l
j=1 τ

(p)
ij

)
≤ O(p), ∀p ∈ K, (4.4a)

∑
j∈{1,··· ,|p|}

eσ
(p)
ij ≤ 1, ∀i ∈ D(p), ∀p ∈ K, (4.4b)

σ
(p)
ij ≤ 0, ∀i ∈ D(p),∀p ∈ K, j ∈ {1, · · · , |p|}, (4.4c)

τ
(p)
ij ≤ 0, ∀i ∈ D(p),∀p ∈ K, j ∈ {1, · · · , |p|}, (4.4d)

where I(l, p) is the index of router l on path p.

Lemma 3. Ui

(
e
∑n
k=1 xk

)
is a concave function for β ≥ 1 where Ui(·) is defined in

(D.3).

Proof. See appendix C.1.

Theorem 8. The transformed problem in (4.4) is convex σ and τ , when we consider

the β-utility function with β ≥ 1 and increasing convex cost functions cf (·), cs(·) and

cc(·).

Proof. It is easy to check that the objective function in (4.4) is subject to convex

inequality constraints. In particular, constraints (4.4c) and (4.4d) are affine con-

vex functions. Inequality in constraint (4.4b) is convex due to convex composition

under an affine mapping. Since the function cc(x) is convex and non-decreasing, by

composition property (Section 3.2.4 [21]), constraint (4.4a) is also convex. Thus the

feasible region in (4.4) is convex. A direct application of Lemma 3 yields the concavity

condition for the objective F (σ, τ).

4.3 Results and Discussion

First, we consider a binary tree network with seven nodes, where K = {1, 2, 3, 4}.

There are 4 leaf nodes, each is connected to 30 sensors. We assume that each sensor

74

0 10 20 30

Content Index

0

0.2

0.4

0.6

0.8

1

H
it

 p
ro

b
ab

il
it

y

node 4(Simulation)

node 4(Numerical)

node 6(Simulation)

node 6(Numerical)

node 7(Simulation)

node 7(Numerical)

Figure 4.2: Hit probabil-
ity of MCDP under seven-
node tree WSN.

0 10 20 30

Cache Size

0

0.1

0.2

0.3

0.4

P
ro

b
ab

il
it

y
 D

en
si

ty

node 4

node 6

node 7

Figure 4.3: Cache size of
MCDP under seven-node
tree WSN.

0 10 20 30

Content Index

0

0.5

1

1.5

D
e
lt

a

node 4(Numerical)

node 6(Numerical)

node 7(Numerical)

Figure 4.4: Compression
ratio of MCDP under a
seven-node tree WSN.

continuously generates content that are active for one time unit. Hence the paths

are p1 = {1, 5, 7}, p2 = {2, 5, 7}, p3 = {3, 6, 7} and p4 = {4, 6, 7}. Also let Bv = 6

for all leaf nodes v ∈ {1, · · · , 4}, and Bv = 10 for nodes v = 5, 6, 7. Furthermore, for

each leaf node, the content gathered from its sensors follows a Zipf distribution with

parameters α1 = 0.2, α2 = 0.4, α3 = 0.6 and α4 = 0.8, respectively. For simplicity,

we consider linear cost functions with coefficients 0.003 for cf (·) and cs(·), and 1 for

cc(·). The total energy constraint is set to O = 40 for all paths. We consider the log

utility function U
(k)
i (x) = λ

(k)
i log x, where λ

(k)
i is the request arrival rate for content i

from sensor k. W.l.o.g., we assume the total arrival rate at each leaf node is 1, hence

λ
(k)
i equals to the content popularity.

Results for path p4 are shown in Figures 4.2, 4.3 and 4.4. Again, we observe that

our algorithm yields the exact optimal and empirical hit probabilities under MCDP

for seven-node WSN. The density of number of content in the network concentrates

around their corresponding cache sizes. Furthermore, we notice that the compression

ratio δ at node 4 is much smaller than the ratios at nodes 6 and 7. Thus data compres-

sion occurs at routers near to sensors so as to transmit less data long distances. This

captures the trade-off between the costs of compression, communication and caching

in our optimization framework. Similar observations can be made for the other three

request paths and hence are omitted here.

75

0 5 10 15 20

Cache Size

-15

-14

-13

-12

-11

-10

-9

-8

-7

F
(

,
)

Overall Objective

Figure 4.5: Storage vs. overall objective under a seven-node tree WSN.

We now focus on how cache capacity affects the overall objective F (σ, τ) as shown

in Figure 4.5. With an increase in Bl, ∀l ∈ V, F (σ, τ) increases. Note that F (σ, τ)

gradually converge to a value as cache capacity increases. As Bl → |D|, F (σ, τ)

becomes insensitive to Bl.

4.4 Summary

In this chapter, we characterized the tradeoff among caching, compression and

communication through our optimization framework by incorporating utilities of hit

probability and costs of compression and communication. We identified the non-

convexity issue and proposed a transformation technique to convert it into a convex

problem. We showed the efficiency of our framework through numerical studies.

76

CHAPTER 5

A QUEUEING-THEORETIC MODEL FOR RESOURCE
ALLOCATION IN ONE-DIMENSIONAL DISTRIBUTED

SERVICE NETWORK

In Chapters 2-4 we characterized the fundamental limits and optimal content

placement problem in a cache network. We now move our focus to a different service

network where resources and users are located on a one-dimensional line.

5.1 Background

In many networked systems, for example, Internet of Things [10], a large num-

ber of computational and storage resources are widely distributed in the physical

world. These resources are accessed by various end users/applications that are also

distributed over the physical space. Assigning users or applications to resources effi-

ciently is key to the sustained high-performance operation of the system.

In some systems, requests are transferred over a network to a server that provides a

needed resource. In other systems, servers are mobile and physically move to the user

making a request. Examples of the former type of service include accessing storage

resources over a wireless network to store files and requesting computational resources

to run image processing tasks; whereas an example of the latter type of service is

the arrival of ride-sharing vehicles to the user’s location over a road transportation

network.

77

Not surprisingly, the spatial distribution of resources and users1 in the network

is an important factor in determining the overall performance of the service. A key

measure of performance is average request distance, that is average distance between

a user and its allocated resource/server (where distance is measured on the network).

This directly translates to latency incurred by a user when accessing the service,

which is arguably among the most important criteria in distributed service appli-

cations. Another important practical constraint in distributed service networks is

service capacity. For example, in network analytics applications, a networked storage

device can only support a finite number of concurrent users up to a fixed capacity;

similarly, a computational resource can only support a finite number of concurrent

processing tasks up to a fixed capacity. Likewise, in physical service applications like

ride-sharing, a vehicle has a maximum capacity for passengers.

Therefore, a primary problem in such distributed service networks is to efficiently

assign each user to a suitable resource so as to minimize average request distance

and ensure no resource serves more users than its capacity. If the entire system is

being managed by a single administrative entity such as a ride sharing service, or a

datacenter network where analytics tasks are being assigned to available CPUs, there

are economic benefits in minimizing the average request distance across all (user,

resource) pairs, which is tantamount to minimizing the average delay in the system.

The general version of this capacitated assignment problem can be solved by

modeling it as a minimum cost flow problem on graphs [7] and running the network

simplex algorithm [71]. However, if the network has a low-dimensional structure and

some assumptions about the spatial distributions of users and resources hold, more

efficient methods can be developed.

1We use the terms “users” and “requesters” interchangeably and same holds true for the terms
“resources” and “servers”.

78

In this chapter, we consider two one-dimensional network scenarios that motivate

the study of this special case of the user-to-resource assignment problem.

The first scenario is ride-hailing on a one-way street where vehicles move right to

left. If the vehicles of a ride-sharing company are distributed along the street at a

certain time, and users equipped with smartphone ride-hailing apps request service,

the system attempts to assign vehicles with spare capacity located towards the right

of the users so as to minimize average “pick up” distance. Abadi et al. [1] introduced

this problem and presented a policy known as Unidirectional Gale-Shapley2 matching

(UGS) to minimize average pick up distance. In this policy, all users concurrently emit

rays of light toward their right and each user is matched with the vehicle that first

receives the emitted ray. While the well-known Gale-Shapley matching algorithm [39]

matches user-resource pairs that are mutually nearest to each other, its unidirectional

variant, UGS, matches a user to the nearest available resource on its right. Note

that, this one-dimensional network setting also applies to vehicular wireless ad-hoc

networks on a one-lane roadway [48, 60]3, where users are in vehicles and servers are

attached to fixed infrastructure such as lamp posts. Users attempt to allocate their

computation tasks over the wireless network to servers located to their right so that

they can retrieve the results with little effort while driving by.

In this chapter, we propose another policy “Move to Right” policy (or MTR)

which has the same “expected distance traveled by a request” (request distance) as

UGS but has a lower variance. MTR sequentially allocates users to the geographically

nearest available vehicle located to his/her right. When user and resource locations

are modeled as statistical point processes the one-dimensional unidirectional space

behaves similar to time and notions from queueing theory can be applied. In partic-

2We rename queue matching defined in [1] as Unidirectional Gale-Shapley Matching to avoid
overloading the term queue.

3Furthermore, [48] confirms that vehicle location distribution on the streets in Central London
can be closely approximated by a Poisson distribution.

79

ular, when user and vehicle locations are modeled by independent Poisson processes,

average request distance can be characterized in closed form by considering inter-user

and inter-server distances as parameters of a bulk service M/M/1 queue where the

bulk service capacity denotes the maximum number of users that can be handled by

a server. We equate request distance in the spatial system to the expected sojourn

time in the corresponding queuing model4. This natural mapping allows us to use

well-known results from queueing theory and in some cases to propose new queue-

ing theoretic models to characterize request distances for a number of interesting

situations beyond M/M/1 queues.

A natural extension to our spatial framework is to consider more general com-

munication costs associated with each resource allocation. Assuming communication

cost for each allocation is a function of request distance, we provide closed form ex-

pressions for the expected communication cost for specific user-server distributions

and specific server capacities.

The second scenario involves a convoy of vehicles traveling on a one-dimensional

space, for example, trucks on a highway or boats on a river. Some vehicles have ex-

pensive camera sensors (image/video) but have inadequate computational storage or

processing power. On the other hand, cheap storage and processing is easily available

on several other vehicles. The cameras periodically take photos/videos as they move

through space and want them processed / stored. In such case, bidirectional assign-

ment schemes are more suitable. Since no directionality restrictions are imposed on

the allocation algorithms, computing the optimal assignment is not as simple as in

the unidirectional case.

We explore the special structure of the one-dimensional topology to develop an

optimal algorithm that assigns a set of requesters R to a set of resources S such that

4Sojourn time is the sum of waiting and service times in a queue.

80

the total assignment cost is minimized. This problem has been recently solved for

|R| = |S| [23]. However, we are interested in the case when |R| < |S|. We propose a

dynamic Programming based algorithm which solves this case with time complexity

O(|R|(|S|− |R|+1)). Note that other assignment algorithms in literature such as the

Hungarian primal-dual algorithm and Agarwal’s variant [5] have time complexities

O(|R|3) and O(|R|2+ε) respectively and assume |R| = |S| for general and Euclidean

distance measures.

5.2 System Model

Consider a set of users R and a set of servers S. Each user makes a request that

can be satisfied by any server. Assume that each server j ∈ S has capacity cj ∈ Z+

corresponding to the maximum number of requests that it can process. Suppose users

and servers are located on a line L. Formally, let r : R → L and s : S → L be the

location functions for users and servers, respectively, such that a distance dL(r, s) is

well defined for all pairs (r, s) ∈ R×S. Initially we assume that all servers have equal

capacities i.e. cj = c ∀j ∈ S. Later in Section 5.6.2 we extend our analysis to a case

in which server capacities are integer random variables.

5.2.1 User and server spatial distributions

Let 0 ≤ r1 ≤ r2 ≤ · · · represent user locations and 0 ≤ s1 ≤ s2 ≤ · · · be the

server locations. Let Xj = sj − sj−1, j ≥ 1, s0 = 0, denote the inter-server distances

and Yi = ri − ri−1, i ≥ 1, r0 = 0, the inter-user distances. We assume {Xj}j≥1 to be

a renewal process with cumulative distribution function (cdf)

P(Xj ≤ x) = FX(x).

We also assume {Yi}i≥1 to be a renewal process with cdf FY (x), i.e.,

81

P(Yi ≤ x) = FY (x).

We denote αX = 1/µ and σ2
X to be the mean and variance associated with FX .

Similarly let αY = 1/λ and σ2
Y be the mean and variance associated with FY . We let

ρ = λ/µ and assume that ρ < c. Denote by F ∗X(s) =
∫∞

0
e−sxdFX(x) and F ∗Y (s) the

Laplace-Stieltjes transform (LST) of FX and FY with s ≥ 0.

In this chapter, we consider various inter-server and inter-user distance distribu-

tions, including exponential, deterministic, uniform and hyperexponential.

5.2.2 Allocation policies

One of our goals is to analyze the performance of various request allocation policies

using expected request distance as a performance metric. We define various allocation

policies as follows.

• Unidirectional Gale-Shapley (UGS): In UGS, each user simultaneously

emits a ray to their right. Once the ray hits an unallocated server s, the user

is allocated to s.

• Move To Right (MTR): In MTR, starting from the left, each user is allocated

sequentially to the nearest available server to its right.

• Nearest Neighbor (NN) [89]: In this matching, starting from the left, each

user is allocated sequentially to the nearest available server. This policy can be

viewed as the bidirectional version of MTR policy.

• Gale-Shapley (GS) [39]: In this matching, each user selects the nearest server

and each server selects its nearest user. Remove reciprocating pairs, and con-

tinue.

• Optimal Matching: This matching minimizes average request distance among

all feasible allocation policies.

82

Figure 5.1: Allocation of users to servers on the one-dimensional network. Top: UGS,
Bottom: MTR allocation policy.

5.3 Unidirectional Allocation Policies

In this Section, we establish the equivalence of UGS and MTR w.r.t number of

requests that traverse a point and expected request distance. Define NP
x and DP

i

to be random variables for the number of requests that traverse point x ∈ L and

distance between user i and its allocated server under policy P , respectively. Thus

NU
x and NM

x denote the number of requests that traverse point x ∈ L under UGS

and MTR, respectively, as shown in Figure 5.1. Consider the following definition of

busy cycle in a service network.

Define 1. A busy cycle for a policy P is an interval I = [a, b] ⊂ L such that ∃ i, j

with ri = a, sj = b for which NP
x > 0,∀x ∈ I and NP

x = 0 for x = a− ε and x = b+ ε

with ε being an infinitesimal positive value.

We have the following theorem.

Theorem 9. NU
x = NM

x , x ≥ 0.

Proof. Due to the unidirectional nature of matching, both UGS and MTR have the

same set of busy cycles. Denote I as the set of all busy cycles in the service network.

In the case when x ∈ L \ ⋃
I∈I

I we already have NU
x = NM

x = 0. Let us now consider

a busy cycle IU = [aU , bU] under UGS. Let x ∈ IU . Let LUx,R = |{ri|aU ≤ ri ≤ x}|

and LUx,S = |{sj|aU ≤ sj ≤ x}|. NU
x = LUx,R − LUx,S. Similarly define LMx,R and LMx,S for

83

MTR policy. Clearly NM
x = LMx,R − LMx,S. As both policies have the same set of busy

cycles we have LUx,R = LMx,R and LUx,S = LMx,S. Thus we get

NU
x = NM

x , x ∈ R+,

Corollary 1. E[DU] = E[DM] i.e. the expected request distances are the same for

both UGS and MTR in steady state.

Proof. In steady state both NU
x and NM

x converge to random variables. Applying

Little’s law we have E[DU] = E[DM].

Remark 4. Note that Theorem 9 applies to any inter-server or inter-user distance

distribution. It also applies to the case where servers have capacity c > 1.

Remark 5. Although MTR and UGS are equivalent w.r.t. the expected request dis-

tance, MTR tends is fairer, i.e., has low variance5 w.r.t. request distance.

5.4 Unidirectional Poisson Matching

In this section, we characterize request distance statistics under unidirectional

policies when both users and servers are distributed according to two independent

Poisson processes. We first analyze MTR as follows.

5.4.1 MTR

Under this allocation policy, the service network can be modeled as a bulk service

M/M/1 queue. A bulk service M/M/1 queue provides service to a group of c or fewer

5It is well known in queueing theory that among all service disciplines the variance of the waiting
time is minimized under FCFS policy for Poisson arrivals and exponential service times [56]. In
Section 5.4 we show that MTR maps to a temporal FCFS queue.

84

customers. The server serves a batch of at most c customers whenever it becomes free.

Also customers can join an existing service if there is room which is an example of

accessible batch. In Section 5.5 we describe the notion of accessible batches in greater

detail. The service time for the group is exponentially distributed and customer

arrivals are described by a Poisson process. The distance between two consecutive

users in the service network can be thought of as inter-arrival time between customers

in the bulk service M/M/1 queue. The distance between two consecutive servers maps

to a bulk service time.

Having established an analogy between the service network and the bulk service

M/M/1 queue, we now define the state space for the service network. Consider the

definition of Nx as the number of requests6 that traverse point X ∈ L under MTR. In

steady state, Nx converges to a random variable N provided λ < cµ. Let πk denote

Pr[N = k] with k ≥ 0.

Following the procedure in Section 4.2.1 of [47], we obtain the steady state prob-

ability vector π = [πi, i ≥ 0]. In the service network, request distance corresponds to

the sojourn time in the bulk service M/M/1 queue. By applying Little’s formula, we

obtain the following expression for the expected request distance

E[D] =
r0

λ(1− r0)
, (5.1)

where r0 is the only root in the interval (0, 1) of the following equation (with r as the

variable)

µrc+1 − (λ+ µ)r + λ = 0. (5.2)

6We drop the superscript (M) for brevity.

85

5.4.1.1 When server capacity is one (c = 1)

When c = 1, r0 = ρ is a solution of (5.2). Thus we can evaluate the expected

request distance as

E[D] =
ρ

λ(1− ρ)
=

1

µ− λ. (5.3)

Note that, when server capacity is one, the service network can be modeled as an

M/M/1 queue. In such a case, (5.3) is the mean sojourn time for an M/M/1 queue.

5.4.2 UGS

When both users and servers are Poisson distributed and servers have unit capac-

ity, the request distance in UGS has the same distribution as the busy cycle in the

corresponding Last-Come-First-Served Preemptive-Resume (LCFS-PR) queue having

the density function [1]

fDU (x) =
1

x
√
ρ
e(λ+µ)xI1(2x

√
λµ), x > 0,

where ρ = λ/µ and I1 is the modified Bessel function of the first kind. Thus the

expected request distance is equivalent to the average busy cycle duration in a LCFS-

PR queue given by 1/(µ− λ) [1].

When servers have capacities c > 1 it is difficult to characterize the expected

request distance explicitly. However, by Theorem 9, the expected request distance

under UGS is the same as that of MTR given by (5.1).

5.5 Unidirectional General Matching

We now derive expressions for the expected request distance when either users

or servers are distributed according to a Poisson process and the other by renewal

process. In Section 5.5.1 we map the service network to an exceptional service with

86

sj ri ri+1 ri+2 sj+1 sj+2

Busy Cycle

Xj+1 Xj+2

Zj+1
Servers
Users

Figure 5.2: Allocation of users to servers under MTR policy.

accessible batches queueing model. In Section 5.5.2 we derive expression for expected

request distance when servers are distributed according to a Poisson process. In

Section 5.5.3 we consider the case when users are distributed according to a Poisson

process.

5.5.1 Notion of exceptional service and accessible batches

We discuss the notion of exceptional service and accessible batches applicable to

our service network as follows. Consider a service network with c = 2 as shown in

Figure 5.2. Consider a user ri. Let sj be the server immediately to the left of ri. We

assume all users prior to ri have already been allocated to servers {sk, 1 ≤ k ≤ j}.

MTR allocates both ri and ri+1 to sj+1 and allocates ri+2 to sj+2. We denote [ri, sj+2]

as a busy cycle of the service network. We have the following queueing theory analogy.

User ri can be thought of as the first customer in a queueing system that initiates

a busy period while ri+1 sees the system busy when it arrives. Because only ri is in

service at the arrival of ri+1, ri+1 enters service with ri and the two customers form

a batch of size 2. and depart at time sj+1. This is an example of an accessible batch

[45]. An accessible batch admits subsequent arrivals, while the service is on, until the

server capacity c is reached.

The service time for the batch, ri, ri+1, is described by the random variable Zj+1

which is different or exceptional when compared to service times of successive batches

such as the one consisting of ri+2. The service time for the second batch is Xj+2. Note

87

that, Zj+1 only depends on Xj+2 and Yi+2. Thus when either Xj+2 or Yi+2 is described

by a Poisson process and the other by renewal process, Zj+1 converges to a random

variable Z under steady state conditions. Denote FZ(x) and fZ(x) as the distribution

and density functions for the random variable Z. Thus the service network can be

mapped to an exceptional service with accessible batches queueing (ESABQ) model.

We formally define ESABQ as follows.

ESABQ: Consider a queueing system where customers are served in batches of max-

imum size c. A customer entering the queue and finding fewer than c customers in

the system joins the current batch and enters service at once, otherwise it joins a

queue. After a batch departs leaving k customers in the buffer, min(c, k) customers

form a batch and enter service immediately. There are two different service times

cdfs, FZ(x) (exceptional batch) with mean αZ = 1/µZ and FX(x) (ordinary batch)

with mean αX = 1/µ. A batch is exceptional if its oldest customer entered an empty

system, otherwise it is a regular batch. When the service time expires, all customers

in the server depart at once, regardless of the nature of the batch (exceptional or

regular).

5.5.1.1 Evaluation of the distribution function: FZ(x)

Distribution Parameters FX(x)FX(x)FX(x) B(x)B(x)B(x)

Exponential µ: rate 1− e−µx 1
λ

[
1− e−λx

]
− 1

λ+µ

[
1− e−(λ+µ)x

]
Uniform b : maximum value x/b, 0 ≤ x ≤ b 1

λ2b

[
1− e−λb

]
− e−λx

λ

Deterministic d0 : constant 1, x ≥ d0
e−λd0−e−λx

λ

Hyper l: order 1−
l∑

j=1

pje
−µjx 1

λ

[
1− e−λx

]
−

l∑
j=1

pj
λ+µj

[
1− e−(λ+µj)x

]
-exponential pj : phase probability

µj : phase rate

Table 5.1: Properties of specific inter-server distance distributions.

88

In this Section, we compute explicit expressions for the distribution function FZ(x)

applicable to our service network.

When FX(x) ∼FX(x) ∼FX(x) ∼ Expo(µ)(µ)(µ): In this case, we invoke the memoryless property of the

exponential distribution FX . Thus the exceptional distribution, FZ , is

FZ(x) = FX(x) = 1− e−µx, x ≥ 0.

When FY (x) ∼FY (x) ∼FY (x) ∼ Expo(λ)(λ)(λ): Using the memoryless property of FY , FZ can be computed
as

FZ(x) = Pr(X − Y < x|Y < X) = Pr(X − Y < x|X − Y > 0) =
Pr(X − Y < x)− Pr(X − Y < 0)

1− Pr(X − Y < 0)

=
DXY (x)−DXY (0)

1−DXY (0)
, x ≥ 0, (5.4)

where DXY (x) is the distribution of the random variable X − Y (also known as
difference distribution). DXY (x) can be expressed as

DXY (x) = Pr(X − Y ≤ x) =

∫ ∞
0

Pr(X − y ≤ x)Pr(Y = y)dy =

∫ ∞
0

FX(x+ y)λe−λydy

=

∫ ∞
x

FX(z)λe−λ(z−x)dz = λeλx
[∫ ∞

0
FX(z)e−λzdz −

∫ x

0
FX(z)e−λzdz

]
= λeλx [A(FX)− B(x)] ,

(5.5)

where A is the Laplace Transform operator on the function FX and B(x) is denoted

by

B(x) =

∫ x

0

FX(z)e−λzdz

Clearly B(0) = 0. Thus combining (5.4) and (5.5) yields

FZ(x) =
λeλx [A(FX)− B(x)]− λA(FX)

1− λA(FX)
,

fZ(x) =
λ2eλx [A(FX)− B(x)]− λFX(x)

1− λA(FX)
,

αZ =

∫ ∞
0

xfZ(x)dx, σ2
Z =

[∫ ∞
0

x2fZ(x)dx

]
− α2

Z .

Expressions for B(x) are presented in Table 5.1. We can evaluate A(FX) by setting

A(FX) = B(∞). Detailed derivations are relegated to Appendix D.1.

89

5.5.2 General requests and Poisson distributed servers (GRPS)

From our discussion in Section 5.5.1.1, it is clear that when servers are distributed

according to a Poisson process, the exceptional service time distribution equals the

regular batch service time distribution.Thus we have the following queueing model.

Under GRPS, inter-arrival times are arbitrarily distributed and batch service times

are exponentially distributed. Before initiating a service, a server finds the system

in either of the following settings: (i) 1 ≤ n ≤ c − 1 or (ii) n ≥ c. Here n is the

number of customers in the waiting buffer. For (i) the server provides service to all n

customers and admits subsequent arrivals until c is reached. For (ii) the server takes

c customers with no admission for subsequent customers arriving within its service

time.

ESABQ can directly be modeled as a special case of a renewal input bulk service

queue with accessible and non-accessible batches proposed in [45] with parameter

values a = 1 and d = b = c. Let Ns and Nq denote random variables for numbers

of customers in the system and in the waiting buffer respectively for ESABQ under

GRPS. We borrow the following definitions from [45].

Pn,0 = Pr[Ns = n]; 0 ≤ n ≤ c− 1, Pn,1 = Pr[Nq = n];n ≥ 0.

Using results from [45] we obtain the following expressions for equilibrium queue

length probabilities.

P0,1 =
C

µ

[
rc−1

0 − rc0
1− rc0

+
1

r0

− 1

]
, Pn,1 =

Crn−1
0 (1− r0)

µ(1− rc0)
;n ≥ 1,

90

where 0 < r0 < 1 is the real root of the equation r = F ∗Y (µ − µrc) and C is the
normalization constant7 given by

C = λ

[
1− ωc
1− ω +

1

1− r0
− ω(r0 − F ∗Y (µ))

rc0(1− r0ω)

(
1− rc0
1− r0

− rc−10

1− wc
1− w

)]−1
, (5.6)

with ω = 1/F ∗Y (µ). We then derive the expected queue length as

E[Nq] =
∞∑
n=0

nPn,1 =
∞∑
n=1

n
Crn−1

0 (1− r0)

µ(1− rc0)
=
C(1− r0)

µ(1− rc0)

∞∑
n=1

nrn−1
0 =

C

µ(1− rc0)(1− r0)
.

Applying Little’s law and considering the analogy between our service network

and ESABQ we obtain the following expression for the expected request distance.

E[D] =
C

λµ(1− rc0)(1− r0)
+

1

µ
.

5.5.3 Poisson distributed requests and general distributed servers (PRGS)

As discussed in Section 5.5.1.1, if servers are placed on a 1-d line according to a

renewal process with requests being Poisson distributed, the service time distribution

for the first batch in a busy period differs from those of subsequent batches. Below

we derive expressions for queue length distribution and expected request distance for

ESABQ under PRGS.

5.5.3.1 Queue length distribution

We use a supplementary variable technique to derive the queue length distribution

for ESABQ under PRGS as follows.

Let L(t) be the number of customers at time t ≥ 0, R(t) the residual service time

at time t ≥ 0 (with R(t) = 0 if L(t) = 0), and I(t) the type of service at time t ≥ 0

with I(t) = 1 (resp. I(t) = 2) if exceptional (resp. ordinary) service time.

7The normalization constant C derived in [45] is incorrect. The correct constant for our case is
given in (5.6).

91

Let us write the Chapman-Kolmorogov equations for the Markov chain {(L(t), R(t), I(t)), t ≥

0}.

For t ≥ 0, n ≥ 1, x > 0, i = 1, 2 define

pt(n, x; i) = P(L(t) = n,R(t) < x, I(t) = i) and pt(0) = P(L(t) = 0).

Also, define for x > 0, i = 1, 2,

p(n, x; i) = lim
t→∞

pt(n, x; i) and p(0) = lim
t→∞

pt(0).

By analogy with the analysis for the M/G/1 queue we get

∂

∂t
pt(0) = −λpt(0) +

c∑
k=1

∂

∂x
pt(k, 0; 1) +

c∑
k=1

∂

∂x
pt(k, 0; 2),

so that, by letting t→∞,

λp(0) =
c∑

k=1

(
∂

∂x
p(k, 0; 1) +

∂

∂x
p(k, 0; 2)

)
. (5.7)

With further simplification (See Appendix D.2.1), for n ≥ 1, x > 0 we get

∂

∂x
g(n, x)− λg(n, x)− ∂

∂x
g(n, 0)+λg(n− 1, x)1(n ≥ 2) + λp(0)FZ(x)1(n = 1)

+ FX(x)
∂

∂x
g(n+ c, 0) = 0, (5.8)

where g(n, x) = p(n, x; 1) + p(n, x; 2) for n ≥ 1, x > 0. Introduce

G(z, s) :=
∑
n≥1

zn
∫ ∞

0

e−sxg(n, x)dx ∀|z| ≤ 1, s ≥ 0.

92

Denote by F ∗Z(s) =
∫∞

0
e−sxdFZ(x) the LST of FZ for s ≥ 0. Note that

∫ ∞
0

e−sxFZorX(x)dx =
F ∗ZorX(s)

s
, ∀s > 0.

Multiplying both sides of (5.8) by zne−sx, integrating over x ∈ [0,∞) and summing

over all n ≥ 1, yields

s (λ(1− z)− s)G(z, s) =λzp(0)F ∗Z(s)−
∑
n≥1

zn
∂

∂x
g(n, 0) + F ∗X(s)

∑
n≥1

zn
∂

∂x
g(n+ c, 0))

(5.9)

where λp(0) =
∑c

k=1
∂
∂x
g(k, 0) from (5.7). We have

1

zc

∑
n≥1

zn+c ∂

∂x
g(n+ c, 0)) =

1

zc

∑
n≥1

zn
∂

∂x
g(n, 0)− 1

zc
H(z)

where H(z) =
∑c

k=1 z
kak with ak := ∂

∂x
g(k, 0), for k = 1, . . . , c. Introducing the

above into (5.9) gives

s (λ(1− z)− s)G(z, s) =

(
F ∗X(s)

zc
− 1

)
Ψ(z)− F ∗X(s)

H(z)

zc
+ λzp(0)F ∗Z(s) (5.10)

where Ψ(z) :=
∑

n≥1 z
n ∂
∂x
g(n, 0). Since G(z, s) is well-defined for |z| ≤ 1 and s ≥ 0,

the r.h.s. of (5.10) must vanish when s = λ(1− z). This gives the relation

Ψ(z) =
zc

zc − F ∗X(θ(z))

[
−F ∗X(θ(z))

H(z)

zc
+ λzp(0)F ∗Z(θ(z))

]

with θ(z) = λ(1− z) and |z| ≤ 1. Introducing the above in (5.10) gives

s (λ(1− z)− s)G(z, s) =− F ∗X(s)
H(z)

zc
+ λzp(0)F ∗Z(s)

+
F ∗X(s)− zc

zc − F ∗X(θ(z))

[
λzp(0)F ∗Z(θ(z))− F ∗X(θ(z))

H(z)

zc

]
.

(5.11)

93

Let N(z) be the z-transform of the stationary number of customers in the system.

Integrating by part, we get for n ≥ 1,

s

∫ ∞
0

e−sxg(n, x)dx =

∫ ∞
0

e−sxdg(n, x),

so that

lim
s→∞

s

∫ ∞
0

e−sxg(n, x)dx = lim
s→0

∫ ∞
0

e−sxdg(n, x) =

∫ ∞
0

dg(n, x) = g(n,∞), (5.12)

where the interchange between the limit and the integral sign is justified by the

bounded convergence theorem. Therefore,

N(z) =
∑
n≥1

zng(n,∞) + p(0) =
∑
n≥1

zn lim
s→∞

s

∫ ∞
0

e−sxg(n, x)dx from (5.12)

= lim
s→0

sG(z, s) + p(0), (5.13)

where the interchange between the summation over n and the integral sign is again

justified by the bounded convergence theorem. Letting now s→ 0 in (5.11) and using

(5.13), gives

θ(z)N(z) =
1− zc

zc − F ∗X(θ(z))

[
−F ∗X(θ(z))

H(z)

zc
+ λzp(0)F ∗Z(θ(z))

]
− H(z)

zc
+ λp(0).

(5.14)

By noting that λp(0) =
∑c

k=1 ak (cf. (5.7)), Eq. (5.14) can be rewritten as

N(z) =
1

θ(z)

(
z(1− zc)

zc − F ∗X(θ(z))

c∑
k=1

ak
[
F ∗Z(θ(z))− zk−c−1F ∗X(θ(z))

]
+

c∑
k=1

ak(1− zk−c)
)
.

(5.15)

The r.h.s. of (5.15) contains c unknown constants a1, . . . , ac yet to be determined.

Define A(z) = F ∗X(θ(z)). It can be shown that zc−A(z) has c−1 zeros inside and one

94

on the unit circle, |z| = 1 (See Appendix D.2.3). Denote by ξ1, . . . , ξq the 1 ≤ q ≤ c

distinct zeros of zc−A(z) in {|z| ≤ 1}, with multiplicity n1, . . . , nq, respectively, with

n1 + · · ·+ nq = c. Hence,

zc − F ∗X(k(z)) = γ

q∏
i=1

(z − ξi)ni .

Since zc − A(z) vanishes when z = 1 and that d
dz

(zc − A(z))|z=1 = c − ρ > 0, we

conclude that zc − A(z) has one zero of multiplicity one at z = 1.

Without loss of generality assume that ξq = 1 and let us now focus on the zeros

ξ1, . . . , ξq−1. When z = ξi, i = 1, . . . , q − 1, the term F ∗Z(θ(z)) − zk−c−1F ∗X(θ(z)) in

(5.15) must have a zero of multiplicity (at least) ni since N(ξi) is well defined. This

gives c−1 linear equations to be satisfied by ξ1, . . . , ξq. In the particular case where all

zeros have multiplicity one (see Appendix D.2.2), namely q = c, these c−1 equations

are
c∑

k=1

ak
[
F ∗Z(θ(ξi))− ξk−c−1

i F ∗X(θ(ξi))
]

= 0, i = 1, . . . , c− 1. (5.16)

With U(z) := F ∗Z(θ(z))/F ∗X(θ(z)) (5.16) is equivalent to

c∑
k=1

ak
[
U(ξi)− ξk−c−1

i)
]

= 0, i = 1, . . . , c− 1,

since F ∗X(θ(ξi)) 6= 0 for i = 1, . . . , c − 1 (F ∗X(θ(ξi)) = 0 implies that ξi=0 which

contradicts that ξi a zero of zc − F ∗X(θ(z)) since F ∗X(θ(0)) = F ∗X(λ) > 0). Eq. (5.15)

can be rewritten as

N(z) =

∑c
k=1 ak

[
zc − zk + z(1− zc)F ∗Z(θ(z))− (1− zk)F ∗X(θ(z))

]
θ(z)(zc − F ∗X(θ(z))

. (5.17)

A c-th equation is provided by the normalizing condition N(z) = 1. Since the

numerator and denominator in (5.17) have a zero of order 2 at z = 1, differentiating

twice the numerator and the denominator w.r.t z and letting z = 1 gives

95

c∑
k=1

ak(c(1 + ρz)− ρk) = λ(c− ρ), (5.18)

where ρz = λαZ . We consider few special cases of the model in Appendix D.2.4 and

verify with the expressions of queue length distribution available in the literature.

5.5.3.2 Expected request distance

From (5.17) the expected queue length is

N =
d

dz
N(z)

∣∣∣
z=1

=
1

2λ(c− ρ)2

c∑
k=1

ak

[
λ2σ

(2)
Z c(c− ρ) + λ2σ

(2)
X c(1 + ρz − k)

+ (ck(c− k) + k(k − 1)ρ− c(c− 1))ρ+ 2c2ρz − c(c+ 1)ρzρ

]
,

where σ
(2)
Z and σ

(2)
X are the second order moments of distributions FZ and FX re-

spectively. Again by applying Little’s law and considering the analogy between our

service network and ESABQ we get the following expression for the expected request

distance.

E[D] = N/λ.

5.6 Discussion of Unidirectional Allocation Policies

In this section we describe generalizations of models and results for unidirectional

allocation policies. We first consider the case when inter-user and inter-server dis-

tances both have general distributions.

96

0.97 0.975 0.98 0.985 0.99

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

E
x

p
ec

te
d

 R
eq

u
es

t
D

is
ta

n
ce

 r
at

io

Deterministic

Uniform

Figure 5.3: The plot shows the ratio E[D]/Ds for deterministic and uniform inter-
server distance distributions.

5.6.1 Heavy traffic limit for general request and server spatial distribu-

tions

Consider the case when the inter-user and inter-server distances each are described

by general distributions. We assume server capacity, c = 1. As ρ→ 1, we conjecture

that the behavior of MTR approaches that of the G/G/1 queue. One argument in

favor of our conjecture is the following. As ρ → 1, the busy cycle duration tends to

infinity. Consequently, the impact of the exceptional service for the first customer of

the busy period on all other customers diminishes to zero as there is an unbounded

increasing number of customers served in the busy period.

It is known that in heavy traffic waiting times in a G/G/1 queue are exponentially

distributed and the mean sojourn time is given by αX + [(σ2
X + σ2

Y)/2αY (1− ρ)] [47].

We expect the expected request distance to exhibit similar behavior. Thus we have

the following conjecture.

Conjecture 1. At heavy traffic i.e. as ρ → 1, the expected request distance for the

G/G/1 spatial system with c = 1 is given by

97

E[D] = αX +
σ2
X + σ2

Y

2αY (1− ρ)
.

Denote by Ds the average request distance as obtained from simulation. We plot

the ratio E[D]/Ds across various inter-request and inter-server distance distributions

in Figure 5.3. It is evident that as ρ → 1, the ratio E[D]/Ds converges to 1 across

different inter-server distance distributions.

5.6.2 Heterogeneous server capacities under PRGS

We now proceed to analyze a setting where server capacity is a random variable.

Assume server capacity C takes values from {1, 2, . . . , c} with distribution Pr(C =

j) = pj,∀j ∈ {1, 2, . . . , c}, s.t.
∑c

j=1 pj = 1 and pc > 0. We also assume the stability

condition ρ < C where C is the average server capacity. Denote H as the random

variable associated with number of requests that traverse through a point just after

a server location8.

5.6.2.1 Distribution of H

Let V denote the number of new requests generated during a service period with

kv = Pr(V = v),∀v ≥ 0. According to the law of total probability, it holds that

kv =

∞∫
0

Pr(V = v|X = ν)fX(ν) =
1

v!

∞∫
0

e−λν(λν)vdFX(ν).

Then the corresponding generating function K(z) is denoted by

K(z) =
∞∑
v=0

kvz
v = F ∗X(λ(1− z)).

8An analysis for the distribution of number of requests that traverse through any random location
would involve the notions of exceptional service and accessible batches.

98

We now consider an embedded Markov chain generated by H. Denote the corre-

sponding transition matrix as M. Then we have

Mm,l =

c−m∑
i=0

kiPi+m, 0 ≤ m ≤ c, l = 0;

c∑
i=0

ki+l−mpi, 0 ≤ m ≤ l, l 6= 0;

c∑
i=m−l

ki+l−mpi, l + 1 ≤ m ≤ c+ l, l 6= 0;

0, o.w.,

(5.19)

where Pi =
∑c

j=i pj and p0 = 0. Let π = [πj, j ≥ 0] and N(z) =
∑

j≥0 πjz
j denote

the steady state distribution and its z-transform respectively. π is obtained out by

solving

πl =
∞∑
m=0

πmMm,l, l = 0, 1,

Thus we have for l ∈ N,

π0 =
c∑

m=0

πm

c−m∑
i=0

kiPi+m, πl =
l∑

m=0

πm

c∑
i=0

ki+l−mpi +
c+l∑

m=l+1

πm

c∑
i=m−l

ki+l−mpi.

Multiplying by zl and summing over l gives

N(z) = Eπ + v1(z) + v2(z) (5.20)

Eπ = π0

c−1∑
i=0

kiPi+1 +

c−1∑
m=1

πm

c−1∑
i=m

ki−mPi+1

v1(z) =

∞∑
l=0

zl
l∑

m=0

πm

c∑
i=0

ki+l−mpi (5.21)

v2(z) =

∞∑
l=0

zl
c+l∑

m=l+1

πm

c∑
i=m−l

ki+l−mpi. (5.22)

The expressions for v1(z) and v2(z) can be further simplified (see Appendix D.3)
to

v1(z) = N(z)

{ c∑
i=0

piz
−i
[
K(z)−

i∑
j=0

kjz
j

]
+

c∑
i=0

kiz
i

}
(5.23)

v2(z) =

[c∑
m=0

z−m
c∑

i=m

ki−mpi

{
N(z)−

m−1∑
j=0

πjz
j

}]
−N(z)

c∑
i=0

kiz
i. (5.24)

99

Combining (5.20), (5.23) and (5.24) yields

N(z) = Eπ +N(z)

{
K(z)

c∑
i=0

piz
−i
}
−
c−1∑
j=0

πj

c−j∑
m=1

z−m
c∑

i=m+j

ki−(m+j)pi.

Thus we obtain

N(z) =

Eπ −
c−1∑
j=0

πj
c−j∑
m=1

z−m
c∑

i=m+j

ki−(m+j)pi

1−K(z)
c∑
i=0

piz−i
. (5.25)

Multipying numerator and denominator by zc yields

N(z) =

zcEπ −
c−1∑
j=0

πj
c−j∑
m=1

zc−m
c∑

i=m+j

ki−(m+j)pi

zc −K(z)
c∑
i=0

pc−izi
. (5.26)

To determine N(z), we need to obtain the probabilities πi, 0 ≤ i ≤ c − 1. It can be

shown that the denominator of (5.26) has c−1 zeros inside and one on the unit circle,

|z| = 1 (See Appendix D.3.2). As N(z) is analytic within and on the unit circle, the

numerator must vanish at these zeros, giving rise to c equations in c unknowns.

Let ξq : 1 ≤ q ≤ c be the zeros of zc −K(z)
∑c

i=0 pc−iz
i in {|z| ≤ 1}. W.l.o.g let

ξc = 1. We have the following c− 1 equations.

Eπ −
c−1∑
j=0

πj

c−j∑
m=1

ξ−mq

c∑
i=m+j

ki−(m+j)pi = 0, i = 1, . . . , c− 1,

A c-th equation is provided by the normalizing condition limz→1 N(z) = 1. In

the particular case where all zeros have multiplicity one, it can be shown that these

c equations are linearly independent9. Once the parameters {πi, 0 ≤ i ≤ c − 1} are

known, E[H] can be expressed as

E[H] = H = lim
z→1

N ′(z).

9For all cases evaluated across uniform, deterministic and hyperexponential distributions we
found the set of c equations to be linearly independent.

100

5.6.2.2 Expected Request Distance

To evaluate the expected request distance we adopt arguments from [14]. Consider

any interval of length ν between two consecutive servers. There are on average H

requests at the beginning of the interval , each of which must travel ν distance. New

users are spread randomly over the interval and there are on an average λν new users.

The request made by each new user must travel on average ν/2. Thus we have

E[D] =
1

ρ

∫ ∞
0

(Hν +
1

2
λν2)dFX(ν) =

1

ρ

[
H

µ
+
λ

2

(
σ2
X +

1

µ2

)]
. (5.27)

5.6.3 Uncapacitated request allocation

An interesting special case of the unidirectional general matching is the uncapaci-

tated scenario. Consider the case where servers do not have any capacity constraints,

i.e. c =∞. In such a case, all users are assigned to the nearest server to their right.

GRPS: When c → ∞ and given 0 < r0 < 1, r0 = F ∗Y (µ − µrc0) = F ∗Y (µ). Setting

ω = 1/F ∗Y (µ) = 1/r0 in (5.6) and simplifying yields

C → 0, as c→∞, =⇒ E[D]→ 1

µ
as c→∞.

PRGS: Under PRGS, when c → ∞ there exists no request allocated to a server

other than the nearest server to its right. Again using Bailey’s method as in [14] and

setting H = 0 in (5.27) we get

E[D]→ µ

2

(
σ2
X +

1

µ2

)
as c→∞.

5.6.4 Cost models

Consider the following generalization of the service network. We define cost of

an allocation as the communication cost associated with an allocated request-server

101

pair. Consider communication cost as a function T of the request distances. Then

the expected communication cost across the service network is given as

T = E[cost] =

∞∫
d=0

T (d)dW (d),

where W is the request distance distribution. One such cost model widely used in

wireless ad hoc networks is [32]

T (d) = t0d
β,

where β is the path loss exponent typically 2 ≤ β ≤ 4 and t0 is a constant. Below

we derive the expected communication cost for the scenario when c = 1.

5.6.4.1 GRPS with c = 1

In this case the service network directly maps to a temporal G/M/1 queue. Thus

W can be expressed as the sojourn time distribution of the corresponding G/M/1

queue. Hence W ∼ Expo(µ(1− r0)) with r0 as defined in Section 5.5.2. We have

T =

∞∫
d=0

t0d
βdW (d) =

t0
µβ(1− r0)β

Γ(β + 1),

where Γ(x) =
∫∞

0
yx−1e−ydy is the gamma function.

5.6.4.2 PRGS with c = 1

In this case, the service network can be modeled as a temporal M/G/1 queue with

first customer having exceptional service [100]. Denote W ∗(s) as the LS transform of

W. Using results from [100]

102

W ∗(s) =

(1− ρ)

{
λ

[
F ∗Z(s)− F ∗X(s)

]
− sF ∗Z(s)

}
(1− ρ+ ρZ)

[
λ− s− λF ∗X(s)

] .

When β is an integer,

T = t0(−1)β
d(β)

ds
W ∗(s)|s=0.

5.6.5 Extension to two resources

(a) (b)

Figure 5.4: Two resource scenario with c = 1 (a) Depiction of request distances and
(b) Mapping to Fork-join queues.

Now consider the following scenario where each user requests two resources which

reside on different servers as shown in Figure 5.4(a). Let the corresponding servers

be distributed according to a Poisson process with densities µ1 and µ2. Let the users

be distributed according to a Poisson process. The service network, in this case, can

be modeled as a fork-join queueing system as shown in Figure 5.4(b) [69]. In such

a queue, each incoming job is split into two sub-jobs each of which is served on one

of the two servers. After service, each sub-job waits until the other sub-job has been

processed. They then merge and leave the system. In the service network as well,

each request forks two sub-requests one for each resource type. A request is said to be

completed only if it has retrieved both the resources, thus mapping it to a fork-join

103

queue. We define the overall request distance to be the maximum value among the

request distances across all resource types and denote it as the random variable Dmax.

5.6.5.1 Identical service rates (µ1 = µ2 = µµ1 = µ2 = µµ1 = µ2 = µ and c = 1c = 1c = 1)

The approximated expected request distance for this scenario is obtained from

the expression for the expected sojourn time of a fork join queue with homogeneous

servers as [69]:

E[Dmax] =
12µ− λ

8µ(µ− λ)
,

Note that, the corresponding expected request distance in case of single resource is

given by Equation (5.3) E[D] = 1/(µ− λ). Clearly,

E[Dmax] =
12µ− λ

8µ(µ− λ)
= [1.5− 0.125ρ]

1

µ− λ >
1

µ− λ = E[D], (5.28)

Thus we have E[Dmax] > E[D].

5.7 Bidirectional Allocation Policies

Both UGS and MTR minimize expected request distance among all unidirectional

policies. In this section we present the bi-directional allocation policy that minimizes

expected request distance. Let η : R → S be any mapping of users to servers. Our

objective is to find a mapping η∗ : R→ S, that satisfies

η∗ = arg min
η

∑
i∈R

dL(ri, sη(i))

s.t.
∑
i∈R

111η(i)=j ≤ c,∀j ∈ S (5.29)

W.l.o.g, let r1 ≤ r2 ≤ · · · ≤ ri ≤ · · · ≤ r|R| be locations of requests and s1 ≤ s2 ≤

· · · ≤ si ≤ · · · ≤ s|S| be locations of servers. We first focus on the case when c = 1.

104

Algorithm 2 Optimal Assignment by Dynamic Programming
1: Input: r1 ≤ · · · ≤ r|R|; s1 ≤ · · · ≤ s|S|
2: Output: The optimal assignment π
3: procedure OptDP(r, s)
4: d|R|×|S| = ComputePairwiseDistances(r, s)
5: C = {∞}|R|×|S|
6: for i = 1, · · · , |R| do
7: C[i, i] = TrivialAssignment(i, d)

8: A[|R|, |R|] = |R|
9: nearest = 0

10: nearestcost = C[1, 1]
11: for j = 2, · · · , |S| − |R|+ 1 do
12: if d[1, j] < nearestcost then
13: nearestcost = d[1, j]
14: nearest = j

15: C[1, j] = nearestcost
16: A[1, j] = nearest

17: for i = 2, · · · , |R| do
18: for j = i+ 1, · · · , i+ |S| − |R| do
19: if C[i, j − 1] < d[i, j] + C[i− 1, j − 1] then
20: C[i, j] = C[i, j − 1]
21: A[i, j] = A[i, j − 1]
22: else
23: C[i, j] = d[i, j] + C[i− 1, j − 1]
24: A[i, j] = j

25: return ReadOptAssignment(A)

26: procedure TrivialAssignment(n, d)
27: Cost = 0
28: for i = 1, · · · , n do
29: Cost = Cost+ d[i, i]

30: return Cost
31: procedure ReadOptAssignment(A)
32: |R|, |S| = Dimensions(A)
33: s = |S|
34: for i = |R|, · · · , 1 do
35: π[i] = A[i, s]
36: s = A[i, s]− 1

37: return π

105

We consider the following two scenarios.

Case 1: |R| = |S||R| = |S||R| = |S|

When |R| = |S|, an optimal allocation strategy is given by the following theorem [23].

Theorem 10. When |R| = |S|, an optimal assignment is obtained by the policy:

η∗(i) = i, ∀i ∈ {1, · · · , |R|} i.e. allocating the ith request to the ith server and the

average request distance is given by

E[D] =
1

|R|

|R|∑
i=1

|s(i)− r(i)|.

Case 2: |R| < |S||R| < |S||R| < |S| This is the case where there are fewer requesters than servers. In

this case, a Dynamic Programming (DP) based algorithm (Algorithm 2) obtains the

optimal assignment.

Let C[i, j] denote the optimal cost (i.e., sum of distances) of assigning the first i

requests (counting from the left) located at r1 ≤ r2 ≤ . . . ≤ ri to the first j servers

(also counting from the left) located at s1 ≤ s2 ≤ . . . ≤ sj. If j == i, the optimal

assignment is trivial due to Theorem 10 and C[i, i] is computed easily for all i ≤ |R|

by summing pairwise distances d[1, 1], d[2, 2], . . . , d[i, i] (Lines 6–7). For the base case,

i = 1, j > 1, only the first user needs to be assigned to its nearest server (Lines 9–

16). For the general dynamic programming step, consider j > i. Then C[i, j] can be

expressed in terms of the costs of two subproblems, i.e., C[i− 1, j− 1] and C[i, j− 1]

(Lines 19–24). In the optimal solution, two cases are possible: either request i is

assigned to server j, or the latter is left unallocated. The former case occurs if the

first i − 1 requests are assigned to the first j − 1 servers at cost C[i − 1, j − 1], and

the latter case occurs when the first i requests are assigned to the first j − 1 servers

106

at cost C[i, j − 1]. This is a consequence of the no-crossing lemma (Lemma 4). The

optimal C[i, j] is chosen depending on these two costs and the current distance d[i, j].

Lemma 4. In an optimal solution, η∗, to the problem of matching users at r1 ≤ r2 ≤

. . . ≤ r|R| to servers at s1 ≤ s2 ≤ . . . ≤ s|S|, where |S| ≥ |R|, there do not exist indices

i, j such that η∗(i) > η∗(i′) when i′ > i.

Proof. See Appendix D.4.

The dynamic programming algorithm fills cells in an |R| × |S| matrix C whose

origin is in the north-west corner. The lower triangular portion of this matrix is invalid

since |R| ≤ |S|. The base cases populate the diagonal and the northernmost row, and

in the general DP step, the value of a cell depends on the previously computed

values in the cells located to its immediate west and diagonally north-west. As an

optimization, for a fixed i, the j-th loop index needs to run only from i + 1 through

i+ |S| − |R| (Lines 11 and 18) instead of from i+ 1 through |S|. This is because the

first request has to be assigned to a server sj with j ≤ |S|− |R|+ 1 so that the rest of

the |R| − 1 requests have a chance of being placed on unique servers10. The optimal

average request distance is given by C[|R|, |S|].

9 331+ℇ 1 1 1 11+ℇ 1+ℇ 1+ℇ 1+ℇ 1+ℇ 1+ℇ 1+ℇ

Optimal minimum weight matching
Gale-Shapley stable matching

Figure 5.5: Worst case scenario for Gale-Shapley.

The time complexity of the main DP step is O(|R| × (|S| − |R| + 1)). Note

that this assumes that the pairwise distance matrix d of dimension |R| × |S| has

10Note that in this exposition, we consider server capacity c = 1. If c > 1, we simply add c servers
at each prescribed server location, and requests will still be placed on unique servers.

107

been precomputed. The optimization applied above can be similarly applied to this

computation and hence the overall time complexity of Algorithm 2 is O(|R| × (|S| −

|R| + 1)). Therefore, if |S| = O(|R|), the worst case time complexity is quadratic

in |R|. However, if |S| − |R| grows sub-linearly with |R|, the time complexity is

sub-quadratic in |R|.

Note that retrieving the optimal assignment requires more book-keeping. An

|R|×|S|matrix A stores key intermediate steps in the assignment as the DP algorithm

progresses (Lines 8, 16, 21, 24). The optimal assignment vector π can be retrieved

from matrix A using procedure ReadOptAssignment.

Another bidirectional assignment scheme is the Gale-Shapley algorithm [39], which

produces stable assignments, though in the worst case it can yield an assignment

that is O(|R|ln 3/2) ≈ O(|R|0.58) times costlier than the optimal assignment yielded

by Algorithm 2, where |R| is the number of users [84]. The worst case scenario is

illustrated in Figure 5.5, with |R| = 2t−1, where t is the number of clusters of users

and servers; and the largest distance between adjacent points is 3t−2. However at

low/moderate loads for the cases evaluated in Section 5.8, we find its performance to

be not much worse than optimal.

5.8 Numerical Experiments

In this section, we examine the effect of various system parameters on expected re-

quest distance under MTR policy. We also compare the performance of various greedy

allocation strategies along with the unidirectional policies to the optimal strategy.

5.8.1 Experimental setup

In our experiments, we consider a mean requester rate λ ∈ (0, 1). We consider

various inter-server distance distributions with density one. In particular, (i) for

exponential distributions, the density is set to µ = 1; (ii) for deterministic distribu-

108

tions, we assign parameter d0 = 1, (iii) for second order hyper-exponential distribution

(H2), denote p1 and p2 as the phase probabilities. Let µ1 and µ2 be the corresponding

phase rates. We assume p1/µ1 = p2/µ2. We express H2 parameters in terms of the

squared coefficient of variation, c2
v, and mean inter-server distance, αX , i.e. we set

p1 = (1/2)
(
1 +

√
(c2
v − 1)/(c2

v + 1)
)
, p2 = 1 − p1, µ1 = 2p1/αX and µ2 = 2p2/αX .

Unless specified, for H2 we take c2
v = 4 with c = 2. Also if not specified, users

are distributed according to a Poisson process and servers a according to a renewal

process.

We consider a collection of 105 users and 105 servers, i.e. |R| = |S| = 105. We

assign users to servers according to MTR. Let RM ⊆ R be the set of users allocated

under MTR. Clearly |RM | ≤ |R|. We then run optimal and other greedy policies on

the set RM and S. For each of the experiments, the expected request distance for the

corresponding policy is averaged over 50 trials.

5.8.2 Sensitivity analysis

5.8.2.1 Expected request distance vs. load

We first study the effect of load (= λ/cµ) on E[D] as shown in Figure 5.6(a).

Clearly E[D] increases as a function of load. Note that H2 distribution exhibits the

largest expected request distance and the deterministic distribution, the smallest be-

cause the servers are evenly spaced. While for H2, c
2
v is larger than for the exponential

distribution. Consequently servers are clustered, which increases E[D].

5.8.2.2 Expected request distance vs. squared co-efficient of variation

We now examine how c2
v affects E[D] when ρ is fixed. We compare two systems: a

general request with Poisson distributed servers (H2/M) and a Poisson request with

general distributed servers (M/H2) where the general distribution is a H2 distribution

with the same set of parameters, i.e. we fix λ = µ = 1 with c = 2. The results are

shown in Figure 5.6(b). Note that, when c2
v = 1 H2 is an exponential distribution and

109

0 0.2 0.4 0.6 0.8 1

Load

0

5

10

15

20

25

E
x

p
ec

te
d

 R
eq

u
es

t
D

is
ta

n
ce

Deterministic

Expo

Hyper-expo

(a)

0 2 4 6 8 10

Squared Co-efficient of variance

0

5

10

15

E
x
p
ec

te
d
 R

eq
u
es

t
D

is
ta

n
ce

M/H-2

H-2/M

(b)

0 2 4 6 8 10 12

Server Capacity

0

5

10

15

E
x
p
ec

te
d
 R

eq
u
es

t
D

is
ta

n
ce

Deterministic

Expo

Hyper-expo

(c)

0 5 10 15

Server capacity

0

0.2

0.4

0.6

0.8

1

E
x

p
ec

te
d

 R
eq

u
es

t
D

is
ta

n
ce

variable server capacity

Constant server capacity

(d)

Figure 5.6: Sensitivity analysis of MTR/UGS policy. (a) Effect of load on expected
request distance with c = 2c = 2c = 2. (b) Effect of squared coefficient of variation on expected
request distance with λ = µ = 1λ = µ = 1λ = µ = 1 and c = 2c = 2c = 2. (c) Effect of server capacity on expected
request distance with ρ = 0.8ρ = 0.8ρ = 0.8. (d) Effect of variability in server capacity on expected
request distance for Deterministic distribution with ρ = 0.8ρ = 0.8ρ = 0.8.

110

both H2/M and M/H2 are identical M/M/1 systems. As discussed in the previous

graph, performance of both systems decreases with increase in c2
v due to increase in the

variability of user and server placements. However, from Figure 5.6(b) it is clear that

performance is more sensitive to server placement as compared to the corresponding

user placement.

5.8.2.3 Expected request distance vs. server capacity

We now focus on how server capacity affects E[D] as shown in Figure 5.6(c). We fix

ρ = 0.8. With an increase in c, while keeping ρ fixed, E[D] decreases. This is because

queuing delay decreases. Note that E[D] gradually converges to a constant value as

server capacity increases. Theoretically, this can be explained by our discussion on

uncapacitated allocation in Section 5.6.3. As c → ∞ the contribution of queuing

delay to E[D] vanishes and E[D] becomes insensitive to c.

5.8.2.4 Expected request distance vs. capacity moments

We investigate the heterogeneous capacity scenario as discussed in Section 5.6.2.

Consider the plot shown in Figure 5.6(d). We fix ρ = 0.8. For the variable server

capacity curve we choose the server capacity of each server uniformly at random from

the set {1, 2, . . . , 2c}. For the constant server capacity curve we deterministically

assign server capacity c to each server. We observe better performance for constant

server capacity curve at lower values of c under deterministically distributed servers.

Variability in constant server case is zero, thus explaining its better performance.

Both curves exhibit similar performance under H2 distribution as well.

111

0 0.2 0.4 0.6 0.8 1

Load

0

20

40

60

80

100

120

140

160

180
V

ar
ia

n
ce

 f
o
r

R
eq

u
es

t
D

is
ta

n
ce

UGS (Deterministic)

MTR (Deterministic)

UGS (Expo)

MTR (Expo)

UGS (Hyper-expo)

MTR (Hyper-expo)

0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1

1.2

(a)

Deterministic Expo Hyper-expo

Distributions

0

2

4

6

8

10

12

E
x
p

e
c
te

d
 R

e
q

u
e

s
t

D
is

ta
n

c
e

TRN (, [0.9 , 1.1], c=1)

TRH (, [,], c=1)

SRU (, , c=1)

SRB (, /2, c=2)

(b)

Figure 5.7: (a) Effect of load on variance of request distance with c = 2c = 2c = 2 across MTR
and UGS. (b) Comparison of expected request distance under Two Resource Non-
homogeneous (TRN), Two Resource Homogeneous (TRH), Single Resource Unit-
service (SRU) and Single Resource Bulk-service (SRB) scenario across various server
distributions with λ = 0.6, µ = 1λ = 0.6, µ = 1λ = 0.6, µ = 1.

5.8.2.5 Variance vs. load

We now study the effect of load on the variance of request distance as shown in

Figure 5.7(a). Clearly variance increases as a function of load. Also note that UGS

has a higher variance as compared to MTR across all values of load and across various

inter-server distance distributions. Provable results exist (from queueing theory) that

among all service disciplines the variance of the request distance (or sojourn time in

queueing terminology) is minimized under MTR (a FCFS based policy) for Poisson

request arrivals and exponential inter-server distances (or service times) [56]. How-

ever, these results do not generalize to other inter-server distance distributions in an

exceptional service accessible batch queueing discipline. Our simulation based results

in Figure 5.7(a) thus bolster our observation in Remark 5 mentioned in Section 5.3.

Again, a deterministic equidistant placement of servers produce the least variance for

request distance among all other placements.

112

5.8.2.6 Comparison of two resource and single resource policies

We compare the performance of MTR under various two resource (TR) and single

resource (SR) settings as shown in Figure 5.7(b). For a two resource setting, denote

[µ1, µ2] as the server densities associated with resources of types 1 and 2 respectively

as described in Section 5.6.5. Denote c as the server capacity associated with each

resource type. We define a Two Resource Homogeneous (TRH) system to be a two

resource setting with µ1 = µ2 = µ. We define a Two Resource Non-homogeneous

(TRN) system to be a two resource setting with µ1 6= µ2. For simulation purpose, we

chose µ1 = µ+ε and µ2 = µ−ε such that the effective server density remains µ.We also

choose c = 1. A Single Resource Unit-service (SRU) system is a single resource system

with server density µ and c = 1. A Single Resource Bulk-service (SRB) system is also

a single resource system with server density µ/2 and c = 2. Note that the request

density and effective server densities (cµ) are same in all settings. From Figure 5.7(b),

it is clear that TRH performs better than TRN across all server distributions. This

advocates for maintaining similar densities for each resource type in a two resource

system. As expected, a deterministic equidistant placement of servers produce the

least expected request distance for each system among all other choice of placements.

SRB in deterministic server placement scenario performs the best among all other

settings. However, it does not perform well with other server distributions. Also,

note that, TRH has a higher expected request distance as compared to SRU across

all server distributions. Thus (5.28) in Section 5.6.5 holds true even under non-

markovian setting.

5.8.3 Comparison of different allocation policies

We consider the case in which both users and servers are distributed according

to Poisson processes. From Figure 5.8 (a), we observe that due to its directional

nature MTR has a larger expected request distance compared to other policies while

113

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

E
x

p
ec

te
d

 r
eq

u
es

t
d

is
ta

n
ce

MTR

NN

GS

OPT

(a)

0 2 4 6 8

Server Capacity

0

0.5

1

1.5

2

E
x

p
ec

te
d

 R
eq

u
es

t
D

is
ta

n
ce

MTR

NN

GS

OPT

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

E
x

p
ec

te
d

 c
o

st

MTR

NN

GS

OPT

(c)

0 2 4 6 8

Server Capacity

0

1

2

3

4

5

6

7

E
x
p
ec

te
d
 c

o
st

MTR

NN

GS

OPT

(d)

Figure 5.8: Comparison of different allocation policies: (a) ρρρ vs E[D]E[D]E[D] with c = 1c = 1c = 1, (b)
ccc vs. E[D]E[D]E[D] with ρ = 0.4ρ = 0.4ρ = 0.4, (c) ρρρ vs TTT with β = 2, t0 = 1, c = 1β = 2, t0 = 1, c = 1β = 2, t0 = 1, c = 1 and (d) ccc vs. TTT with
β = 2, t0 = 1, ρ = 0.4β = 2, t0 = 1, ρ = 0.4β = 2, t0 = 1, ρ = 0.4.

GS provides near optimal performance. At low loads i.e. when ρ � 1, the Nearest

Neighbor policy policy performs similar to the optimal policy. But as ρ→ 1, the NN

policy perform worse.

In Figure 5.8 (b), we compare the performance of allocation policies across different

server capacities. The expected request distance decreases with increase in server

capacities across all policies. NN, GS and the optimal policy converge to the same

value as c gets higher.

114

We now consider the expected communication cost as the performance metric.

We use a cost model described in Section 5.6.4 with the parameter β = 2 and t0 = 1.

From Figure 5.8 (c), we observe that while at low loads i.e. when ρ� 1, GS and NN

perform similar to the optimal policy, as ρ increases both GS and NN perform worse.

Note that, NN has a higher expected request distance than GS at high load as shown

in Figure 5.8 (a). However, the performance is reversed with β = 2, i.e. NN has a

lower expected cost than GS at high load as shown in Figure 5.8 (c). This depicts

the effect of β on the performance of various allocation policies. In Figure 5.8 (d),

we observe that NN, GS and the optimal policy converge to the same value as c gets

higher.

We observe similar trends in the case of deterministic inter-server distance dis-

tributions. However, under equal densities, all the policies produce smaller expected

request distance as compared to their Poisson counterpart. This advocates for placing

equidistant servers in a bidirectional system with Poisson distributed requesters to

minimize expected request distance.

5.9 Conclusion

In this Chapter, we introduced a queuing theoretic model for analyzing the behav-

ior of unidirectional policies to allocate tasks to servers on the real line. We showed

the equivalence of UGS and MTR w.r.t the expected request distance and presented

results associated with the case when either requesters or servers were Poisson dis-

tributed. In this context, we analyzed a new queueing theoretic model: ESABQ, not

previously studied in queueing literature. We also proposed a dynamic programming

based algorithm to obtain an optimal allocation policy in a bi-directional system.

We performed sensitivity analysis for unidirectional system and compared the perfor-

mance of various greedy allocation strategies along with the unidirectional policies to

that of optimal policy.

115

CHAPTER 6

PROXIMITY AWARE LOAD BALANCING POLICIES IN
TWO DIMENSIONAL SPATIAL NETWORKS

In Chapter 5 we designed resource allocation policies for a one-dimensional spatial

network. This chapter addresses the question: How should we design proximity aware

randomized load balancing policies in a two-dimensional spatial network?

6.1 Background

The past few years have witnessed an increased interest in the use of large-scale

parallel and distributed systems for database and commercial applications. An im-

portant design goal of such a system is to distribute service requests or jobs among

servers or distributed resources as evenly as possible. While the optimal server1

selection problem can be solved centrally, due to scalability concerns, it is often pre-

ferred to adopt distributed randomized load balancing strategies to distribute these

jobs among servers. This leads to the formulation of a randomized load balancing

problem for the distributed systems with the goal to make the overall user-to-server

assignments as fair as possible. Many previous works [4, 67] have used randomization

effectively to develop simple and efficient load balancing algorithms in non-geographic

settings. A randomized load balancing algorithm can be described as a classical balls

and bins problem as follows.

In the classical balls-and-bins model of randomized load balancing, m balls are

placed sequentially into n bins. Each ball samples d bins uniformly at random and is

1We use the terms “Servers” and “Resources” interchangeably.

116

allocated to the bin with the least number of balls, ties broken arbitrarily. It is well

known that when d = 1 and m = n, this assignment policy results in a maximum

load of O(log n/ log log n) with high probability [11]. However, if d = 2, then the

maximum load is O(log log n) w.h.p. [11]. Thus, there is an exponential improvement

in performance from d = 1 to d = 2. This policy with d = 2 is widely known as Power

of Two (POT) choices and the improvement in maximum load behavior is known as

POT benefits [67]. Many subsequent works have studied assignment policies that

generalize POT policy to account for correlated and non-uniform sampling strategies

[17], [24], [96].

6.1.1 Spatial Load Balancing

While classical balls and bins based randomized load balancing can directly be

used for user/job to server assignment in a geographic setting, it is oblivious to the

spatial distribution of servers and users. We define the cost of moving jobs/results

to/from their allocated servers as the implementation cost associated with a given

policy. The implementation cost generally increases with the Euclidean distance

between the user and its allocated server, also known as request distance.

For example in a wireless network, signal attenuation is strongly coupled to request

distance, therefore developing allocation policies that minimize request distance can

help reduce energy consumption. Thus the following natural question arises.

How should we design proximity aware load balancing policies that also
reduce average implementation cost?

In this chapter, we aim to answer this question. To this end we propose a spatially

motivated POT policy: spatial POT (sPOT) in which each user is allocated to the

least loaded server among its two geographically nearest servers. We assume both

users and servers are placed in a two-dimensional Euclidean plane. When both servers

and users are placed uniformly at random in the Euclidean plane, we map sPOT to

a classical balls and bins allocation policy with bins corresponding to the Voronoi

117

regions associated with the second order Voronoi diagram of the set of servers. We

show that sPOT performs better than POT in terms of average request distance.

However, a lower bound analysis on the asymptotic expected maximum load for

sPOT suggests that POT load balancing benefits are not achieved by sPOT.

Inspired by the analysis of sPOT, we further propose two assignment policies and

empirically show that these policies are able to substantially reduce both request

distance and maximum load. We first propose a server proximity aware policy, Unif-

POT(k), as follows. For each job, two servers u and v are sampled uniformly at

random from its k-nearest servers. The job is then allocated to the server with the

smallest load among u and v. Since a POT optimally balances load (by stochastic

majorization argument), we compare the load distribution of Unif-POT(k) to that

of POT. We also propose another proximity based load balancing policy: InvSq-

POT(k) as follows. For each job, two servers u and v are sampled from its k-nearest

servers with probabilities proportional to the inverse square of the Euclidean distances

between the user and the corresponding server. The job is then allocated to the server

with the smallest load among u and v. Through extensive simulations we verify that

such a simple modification in the sampling technique, produces a load distribution

behavior very similar to that of a POT policy while drastically reducing the average

implementation cost across a variety of network topologies.

6.2 System Model

In this section, we introduce the system model used in the rest of the chapter. We

have a set of users/jobs2 R with |R| = m. Similarly, S denotes the set of servers with

|S| = n. Let π : R → S, denote a load balancing policy for assigning users/jobs to

servers.

2We use the terms “users” and “jobs” interchangeably.

118

We consider a service network where users and servers are located on a two-

dimensional Euclidean plane D ⊂ R2. We assume users are placed on D uniformly

at random. In the service network, each user is assigned to a server from the server

set S. We consider two cases for placing the servers on a two-dimensional euclidean

plane, (i) Grid Placement: servers are placed on a square grid topology (ii) Uniform

placement: servers are placed uniformly at random in D.

Denote d(j, v) as the euclidean distance between user j and server v. We define the

following geometric structures that are useful constructs for analyzing various load

balancing policies on a plane.

Definition 1. Voronoi Diagram: A Voronoi cell around a server s ∈ S is the set of

points in D that are closer to s than to any other server in S \ {s} [15]. The Voronoi

diagram VS of S is the set of Voronoi cells of servers in S.

Definition 2. Delaunay Graph: The Delaunay graph, GS(S,E), is associated with

the set of servers S. Here (u, v) ∈ E iff the Voronoi cells of u, v ∈ S are adjacent.

Definition 3. Higher order Voronoi diagram: A pth order Voronoi diagram, H
(p)
S ,

is defined as partition of D into regions such that points in each region have the same

p closest servers in S.

In this chapter, our goal is to analyze the performance of several load balancing

policies on a plane including the two classic policies.

• Power of One (POO): This policy assigns each user to one of the servers

chosen uniformly at random from S.

• Power of Two (POT): In this policy, sequentially each user samples two

servers uniformly at random from S and is allocated to the least loaded server.

In addition we propose new policies to reduce both maximum load and expected

request distance. We define them as follows.

119

Figure 6.1: Second
nearest region for
user r

Figure 6.2: Delaunay
Graph associated with
grid based server place-
ment

Figure 6.3: Delaunay
Graph associated with
uniform server placement

• Unif-POT(k): Each user samples two servers uniformly at random from a

candidate set consisting of its k geographically nearest servers and is assigned

to the least loaded server.

• InvSq-POT(k): In this policy each user j samples two servers from a candidate

set consisting of its k geographically nearest servers (without replacement), each

with probability proportional to 1/d(j, v)2. The user is then assigned to the least

loaded server.

For our analysis we consider special cases of Unif-POT(k) policies with k = 2 and

k = 1. We call them Spatial Power of Two (sPOT) and Spatial Power of One (sPOO)

policies respectively for brevity. To be precise these policies are defined as

• Spatial Power of Two (sPOT): Each user is sequentially allocated to the

least loaded server among its two geographically nearest servers.

• Spatial Power of One (sPOO): This policy assigns each user to its geograph-

ically nearest server.

120

6.2.1 Performance Metrics

To evaluate and characterize the performance of various load balancing policies,

we define the performance metrics for both plane and graph based system as follows.

Denote xπ(t) = [xπi (t), i ∈ {1, · · · ,m}] as the state of the system immediately

after the tth job is assigned under policy π. Here xπi (t) denotes the fraction of servers

with exactly i jobs immediately after tth job is assigned. Denote xπ(m) as the load

distribution under policy π after all of m jobs are assigned.

Definition 4. Maximum Load: The maximum load for policy π is defined as

MLπ = i with xπi (m) 6= 0 and xπj (m) = 0 for j = i+ 1, · · · ,m.

Definition 5. Total Variation Distance: The total variation distance between two

load distributions xπ1(m) and xπ2(m) is

TV π1π2 =
1

2

m∑
i=1

|xπ1i (m)− xπ2i (m)|.

TV π1π2 takes values in [0, 1]. The closeness of two load distributions under two

different policies can be measured by the total variation distance, i.e. the smaller the

total variation distance the closer the two distributions are to each other.

Definition 6. Average Request Distance: The average request distance for policy π is

the average distance (or number of hops) between a random user (or its origin server)

and its allocated server under π, i.e.

RDπ =
1

m

∑
r∈R

d(r, π(r)).

Since POT is oblivious to inter server distances, RDPOT is generally large com-

pared to other proximity based load balancing policies.

121

6.3 Spatial Power of Two policy on a plane

We now analyze the load behavior of sPOT policy for various server placements

on a plane. We assume users are placed uniformly at random on D.

6.3.1 sPOT with Grid based server placement

Consider the case where servers are placed on a two dimensional square grid:

√
n × √n on D with wrap-around. Let B({s1, s2}, r) be the event that the two

nearest servers of r are in {s1, s2}. We establish the following result.

Lemma 5. Let GS(X,E) denote the Delaunay graph associated with S when servers

are placed on a two-dimensional square grid. Then

Pr[B({si, sj}, r)] =

1
|E| , (si, sj) ∈ E;

0, otherwise.

(6.1)

Proof. See appendix E.1.

We make use of the following lemma presented in [53].

Lemma 6. Given a ∆-regular graph with n nodes representing n bins, if n balls are

thrown into the bins by choosing a random edge and placing into the smaller of the two

bins connected by the edge, then the maximum load is at least Ω(log log n+ logn
log(∆ logn)

)

with high probability of 1− 1/nΩ(1).

We now prove the following theorem.

Theorem 11. Suppose servers are placed on a two dimensional square grid :
√
n×√n

on D with wrap-around. Let users be placed independently and uniformly at random

on D. Under sPOT, the maximum load over all servers is at least Ω(logn
log logn

) with

probability 1− 1/nΩ(1).

122

Proof. Suppose we map the set of servers to the bins and the users to the balls. The

Delaunay graph GS is 4-regular. Let e = (si, sj) be an edge in GS. From Lemma 5, it

is clear that each user (ball) selects an edge e with probability 1/|E| (i.e. uniformly

at random) and is allocated to the server (bin) connected by e with the least number

of users under sPOT. Thus a direct application of Lemma 6 with ∆ = 4 proves the

theorem.

We verify the results in Lemma 5 through simulation for a 2D square grid under

sPOT as shown in Figure 6.2. We set n = 64 and empirically compute Pr[B({si, sj}, r)]

and denote it as edge probability on edge e on the Delaunay graph. We also verify

Pr[A(s, r, 1)] = 1/|S| ∀s ∈ S expression and denote it as vertex probability on the

Delaunay graph. It is clear from Figure 6.2 that the edge probabilities are almost all

equal and so are the vertex probabilities.

Remark 6. Note that, Theorem 11 concludes that we do not get POT benefits when

servers are placed on a two dimensional square grid.

Remark 7. Note that Theorem 11 applies to other grid graphs such as a triangular

grid, i.e. we do not get POT benefits when servers are placed on a two dimensional

triangular grid. The Delaunay graph corresponding to a triangular grid based server

placement is 6- regular.

6.3.2 sPOT with Uniform server placement

We now consider the case where both users and servers are placed uniformly at

random on D. We can no longer invoke Lemma 6. This is due to the fact that the De-

launay graph associated with the servers is no longer regular. Also, the edge sampling

probabilities Pr[B(si, sj, r)] are no longer equal. This is evident from our simulation

results on the corresponding Delaunay graph as shown in Figure 6.3. We have n = 64

servers placed randomly in a 2D square and empirically compute Pr[B({si, sj}, r)]

and denote it as edge probability on edge e on the Delaunay graph. Note that the

123

edge probabilities, i.e. Pr[B({si, sj}, r)], differ from each other. Also the Delaunay

graph is not regular. Thus we resort to using a second order Voronoi diagram to

analyze the maximum asymptotic load behavior.

6.3.2.1 Majorization Basics

We present a few definitions and basic results associated with majorization theory

that we will use to analyze sPOT.

Definition 7. The vector x is said to majorize the vector y (denoted x � y) if

k∑
i=1

x[i] ≥
k∑
i=1

y[i], k = 1, · · · , n− 1,

and
n∑
i=1

x[i] =
n∑
i=1

y[i]

where x[i](y[i]) is the ith largest element of x(y).

Definition 8. A function f : Rn → R is called Schur-convex if

x � y =⇒ f(x) ≥ f(y)

Consider the following proposition (Chapter 11, [64])

Proposition 1. Let X be a random variable having the multinomial distribution

Pr[X = x] =

(
n

x1, · · · , xn

) n∏
i=1

pxii

where x = (x1, ..., xn) ∈ {z : zi are nonnegative integers,
∑
zi = n}. If δ is a Schur-

convex function of X, then ψ(p) = Epδ(X) is a Schur-convex function of p.

124

6.3.2.2 Loss of POT benefits under sPOT

Consider the second order Voronoi diagram: H
(2)
S associated with the set of servers

S. We have the following Lemma [Chapter 3.2, [70]].

Lemma 7. The number of Voronoi cells in H
(2)
S under uniform server placement is

upper bounded by O(3n) .

We also have the following Lemma.

Lemma 8. Consider the following modified version of balls and bin problem. Suppose

there are n balls and n bins. Each ball is thrown into one of the bins according to a

probability distribution p = (p1, · · · , pn) with pi being the probability of each ball falling

into bin i, in an independent manner. Denote Z to be the random variable associated

with the maximum number of balls in any bin. Then we have

Ep[Z] ≥ k0
log n

log log n
as n→∞.

where k0 is a scalar constant.

Proof. See appendix E.2.

Theorem 12. Suppose both users and servers are placed independently and uniformly

at random on D. Under sPOT, the expected maximum load over all servers is at least

Ω(logn
log logn

) with probability of 1− 1/nΩ(1), i.e., we do not get POT benefits.

Proof. See appendix E.3.

125

sPOO sPOT POO POT

20

40

60

80

100

M
ax

im
um

 L
oa

d

(a) Maximum load

sPOO sPOT POO POT
0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
vg

. R
eq

ue
st

 D
is

ta
nc

e

(b) Expected request distance

Figure 6.4: Performance comparison of basic allocation policies wrt (a) maximum
load and (b) expected request distance for n = 10000 servers.

6.3.3 Tradeoff between Load and Request Distance

In this section, we discuss the inherent tradeoff between maximum load and ex-

pected request distance metric among different allocation policies. We evaluate the

performance of sPOT and compare it to that of other allocation policies. We consider

n = 10000 servers and an equal number of users placed uniformly at random on a

unit square. We ran 10 trials for each policy. We compare the performance of various

allocation policies in Figure 6.4.

First, note that with respect to maximum load, the spatial based policies per-

form worse compared to their classical counterparts, POO and POT. Note that the

introduction of spatial considerations into a policy increases its maximum load. For

example, sPOT performs worse than both POO and POT as shown in Figure 6.4 (a).

Since the maximum asymptotic load for POO is O(log n/ log log n) with high proba-

bility, Figure 6.4(a) validates our lower bound results obtained for sPOT in Theorem

12.

126

However, the expected request distance is smallest for sPOO and almost similar

to that of sPOT. Also, both POT and POO have very large and similar expected

request distances as shown in Figures 6.4(b). Both results, shown in Figures 6.4(a)

and (b) combined, illustrate the tradeoff between maximum load and expected request

distance metric.

6.4 Improving Performance of sPOT

(a) InvSq-POT(n) Load distribution (b) InvSq-POT(n) distance distribution

(c) POT Load distribution (d) POT distance distribution

Figure 6.5: Performance comparison of allocation policies wrt InvSq-POT(n) for
n = 50000 servers. (a) and (b) plots are for InvSq-POT(n) while (c) and (d) for
POT.

127

In Section 6.3, we showed that for both grid and uniform based server placement,

sPOT does not provide POT benefits. As POT is oblivious to the spatial locations

of users and servers, it performs worse with respect to the expected request distance

metric. Thus there exists a tradeoff between maximum load and expected request

distance among different allocation policies.

Note that for each user, once its arrival location is known, the choice of two

servers by sPOT is deterministic while it is completely random for POT. This random

sampling over the entire set of servers results in better load behavior for POT than

for sPOT. However, since random sampling is oblivious to the distances of servers

from the particular user, POT exhibits a large expected request distance. Thus if

one can design a policy with random and distance dependent sampling of servers,

such a policy should provide benefits of both POT and sPOT in terms of maximum

load and expected request distance. Below we propose and evaluate two such policies

that obtain benefits of both POT and sPOT. We empirically show that they achieve

both POT like load benefits while having a request distance profile similar to that of

sPOT.

6.4.1 InvSq-POT(k)

Consider the allocation of a random user j in the service network. We propose

InvSq-POT(k) to allocate j as follows. Under InvSq-POT(k), j samples two servers

from a candidate set consisting of its k geographically nearest servers (without re-

placement), each with probability proportional to 1/d(j, v)2. Here, d(j, v) denotes

the euclidean distance between user j and server v. User j is then allocated to the

least loaded server among the two sampled servers. This rule is similar to one used

in small world routing [58]. Note that, since the probability of sampling a server is

inversely proportional to its distance from the user, InvSq-POT(k) incurs a smaller

expected request distance compared to POT. Surprisingly, InvSq-POT(k) achieves

128

similar load behavior to that of POT. We compare the performance of InvSq-POT(k)

to sPOT and POT as follows.

We perform a single simulation run for each of the policies: InvSq-POT(n), sPOT,

POT. We define the load associated with a server to be the number of users assigned

to it. We measure the load distribution across all servers and the request distance

distribution. Figure 6.5(a) shows the load distribution and Figure 6.5(b) shows the

request distance distribution for InvSq-POT(n). We plot the load distribution for

POT and request distance distribution for sPOT in Figure 6.5(c) and (d) respectively.

First we focus on the server loads in Figures 6.5(a) and (c). Interestingly, the load

distributions are almost identical for InvSq-POT(n) and POT. Similarly, sPOT per-

forms better than InvSq-POT(n) in terms of request distance distribution as shown in

Figures 6.5(b) and (d) since they significantly favor closer nodes. However, compared

to POT (as shown in Figure 6.5(e)), InvSq-POT(n) performs significantly better in

terms of request distances. Thus InvSq-POT(n) achieves the best of both worlds, i.e.,

small maximum load and small request distances.

6.4.2 Unif-POT(k)

We now propose a policy that improves the load behavior of sPOT. We define Ck

to be the candidate set (of size k) consisting of the k nearest servers to a particular

user. Under Unif-POT(k), the user selects two servers uniformly at random from Ck

and assigns itself to the least loaded one. Note that, random sampling of two servers

within the candidate set helps to balance load and reduce overall maximum load.

Clearly sPOT and POT are two extremes of the policy Unif-POT(k) with k = 2 and

k = n respectively. Below, we discuss the effect of k on maximum load and expected

request distance and compare it to other policies.

We present total variation distance between load distributions of proximity based

policies and POT as a function of number of servers in Figure 6.6 (a). We also plot the

129

103 104

n
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

To
ta

l V
ar

ia
ti

on
 D

is
ta

n
ce InvSq-POT(n)

POT
Unif-POT(log n)
sPOT

(a)

103 104

n

3 × 100

4 × 100

5 × 100

6 × 100

A
ve

ra
g
e

M
ax

im
u
m

 L
oa

d InvSq-POT(n)
POT

Unif-POT(log n)
sPOT

(b)

103 104

n

10 2

10 1

100

101

A
vg

 R
eq

 D
is

t

InvSq-POT(n)
POT

Unif-POT(log n)
sPOT

(c)

Figure 6.6: Performance comparison of Unif-POT(k) and InvSq-POT(n) with respect
to (a) total variation distance to POT (b) average maximum load and (c) average
request distance when servers placed uniformly at random on a plane.

total variation distance between load distributions of two independent runs of POT

which quantifies the noise or variation in load distribution of POT due to randomness.

Both Unif-POT(log n) and InvSq-POT(n) achieve total variation distances as low as

0.02 across a wide range of values of n. Also note that, sPOT achieves the load

distribution farthest from POT while InvSq-POT(n) achieves the closest. Due to

130

load-implementation cost trade-off, a very local policy sPOT, achieves larger variation

distance.

Figure 6.6(b) shows average maximum load as n varies. We observe that both

InvSq-POT(n) and POT perform the best. Unif-POT(k) with k = log n performs

quite well compared to sPOT. Also, we have observed through simulation that the

average maximum load profiles are very similar for Unif-POT(k) and sPOT when

k = O(1). Based on these results, we present the following conjecture.

Conjecture 2. If the candidate set in Unif-POT(k) does not grow with n, no POT

benefit is expected.

Figure 6.6(c) shows how the average request distance drops as n increases (since

the node density increases). We observe that, not surprisingly, sPOT outperforms

the other policies. However, Unif-POT(k) with k = log n performs well. Thus Unif-

POT(k) with k = O(log n) achieves good performance for both load and request

distance.

Remark 8. Among the proximity aware POT policies on a plane, InvSq-POT(n)

selects servers through distance based sampling. Thus even a minor change in po-

sitions of servers theoretically requires choosing a new set of sampling distributions.

However, sampling in Unif-POT(log n) depends on the local neighborhood of the user

and thus involves less frequent updates for server sampling distributions.

6.5 Conclusion

In this chapter we considered a class of proximity aware power of two choices based

allocation policies where both servers and users are located on a two-dimensional

plane. We analyzed the sPOT policy and provided expressions for the lower bound

on the asymptotic maximum load on the resources. We claim that for both grid and

uniform based resource placement, sPOT does not provide POT benefits. We pro-

131

posed two non-uniform euclidean distance based server sampling policies that achieved

the best load and request distance behavior.

132

CHAPTER 7

PROXIMITY AWARE LOAD BALANCING POLICIES ON
GRAPHS

In Chapter 6 we designed proximity aware load balancing policies for a two-

dimensional distributed service network. In this chapter we design proximity aware

load balancing policies for the case when resources/servers are connected as generic

graph.

7.1 Background

In Chapter 6, we studied the problem of balancing load. Load balancing is also

important in other settings such as arbitrary graphs. This has application in many

fields including bike-sharing systems, World Wide Web, peer-to-peer networks, ve-

hicular wireless ad-hoc networks. Also, load balancing can prolong the lifetimes of

battery-powered wireless sensor and actuator networks where energy is a limited re-

source [54].

Load balancing algorithms for certain fixed-degree deterministic graphs, such as

ring topologies, have been studied in [42], [93] and have applications in bike-sharing

systems. While many complex networks like the World Wide Web or peer-to-peer

networks can be modeled as scale free or random regular graphs [28], little is known

about load balancing policies on such random networks. Moreover, other complex

systems such as transportation and mobility networks are often best represented as

spatial graphs where nodes and edges are embedded in Euclidean space. For example,

the communication network resulting from radio transmitters and wireless devices can

133

be described by a random geometric graph [81]. Such networks have natural notions

of distance and the cost of assigning a job scales with distance. Hence it is important

to account for this geographical aspect when designing load balancing policies.

In the graph model, servers are represented as vertices of an arbitrary graph

G(S,E). When a job arrives at a server u (origin server), it is assigned to the server

with the least load among server u and d − 1 servers sampled uniformly at random

from its one-hop neighborhood in G [55]. In order to make the graph model more

tractable for theoretical analysis, many simplified assumptions have been made about

the graph structure. For example, Kenthapadi et al. [55] studied the scaling of

maximum load for the case d = 2 by allowing G to be regular or almost regular with

degree nε. However, in practice, real world networks are highly irregular. Moreover,

previous work lacks a comprehensive study on characterizing the implementation cost

associated with load balancing policies on real world networks.

More often previous work only consider developing theoretical framework to char-

acterize the scaling of maximum load behavior. In some applications, the load dis-

tribution may be more important than the maximum load since it yields a better

resolution into the load characteristics of the network. Similarly, while designing

proximity aware load balancing policies, one may try to balance two performance

metrics: load and implementation cost. Therefore, while the maximum load can end

up being higher in such policies than classical POT, if the distribution is nearly the

same as POT one should consider a policy with significantly lower implementation

cost as better than POT, and almost as good as POT in the sense of load balancing.

These discussions raise the following research questions.

1. How should one evaluate the performance of proximity aware load balancing

policies for non-regular graph models, such as random, scale free or spatial

graph structures?

134

2. What is a good performance metric to characterize the implementation cost

associated with real world complex networks?

3. What is the effect on load and implementation cost if servers are sampled from

a k-hop neighborhood instead of a one hop neighborhood with k ≥ 2?

4. How close can the performance of a proximity based policy be made to that of

POT with respect to load distribution instead of maximum load metric?

The primary motivations behind this chapter is to address these questions. The

key challenge in developing theoretical frameworks to answer these questions is that

the notion of neighborhood for each job heavily depends on the choice of graph topol-

ogy. Thus even asymptotic results for load balancing policies under generic graph

model are scarce and techniques like witness tree methods [55] are not applicable.

There is little hope of analyzing the graph model in this generality and generat-

ing analytical insights seems difficult to achieve. For this reason we investigate this

model through detailed and extensive computer simulations across a variety of graph

topologies in Section 7.3.

Similar to Chapter 6, we first propose a server proximity aware policy, Unif-

POT(k), as follows. For each job, a server v is sampled uniformly at random from

the k-hop neighborhood of the origin server u. The job is then allocated to the server

with the smallest load among u and v. Since a POT policy optimally balances load

(by the stochastic majorization argument), we compare the load distribution of Unif-

POT(k) policy to that of POT policy. We also propose another proximity based

load balancing policy: InvSq-POT(k) as follows. For each job, a server v is sampled

from the k-hop neighborhood of origin server u with probability proportional to the

inverse square of the shortest path distance measured in number of hops between

135

u and v. The job is then allocated to the server with the smallest load among u

and v. Through extensive simulations we verify that such a simple modification to

the sampling technique, produces load distribution behavior very similar to that of

a POT policy while drastically reducing the average implementation cost across a

variety of network topologies. Our simulations demonstrate a total variation distance

as low as 0.002 − 0.005 between load distributions of classical POT and proposed

proximity based policies while achieving a significant reduction in implementation

cost on the order of 20%−99% for proposed proximity based policies when compared

to classical POT.

7.2 System Model

In this section, we introduce the system model used in the rest of the chapter. We

denote the users/jobs1 in the system as the set R with |R| = m. Similarly, denote S

as the set of servers with |S| = n. Let π : R → S denote a load balancing policy for

assigning users/jobs to servers.

We assume servers in the network are nodes of a connected graph G(S,E) with

|S| = n and E a set of edges connecting the servers. We explore various random,

deterministic and spatial graph structures for graph based load balancing systems.

We assume that jobs arrive at one of the servers uniformly at random. Denote u as

the arrival (origin) server for a job.

Next we define several network attributes that will be useful in analyzing simula-

tion results obtained for different load balancing policies later. We denote d(u, v), u, v ∈

S as the shortest path distance measured in number of hops between nodes u and v

in the network.

1We use the terms “users” and “jobs” interchangeably.

136

Definition 9. k-hop Neighborhood: The k-hop neighborhood of a node u ∈ S is

defined as

Nk(u) = {w|1 ≤ d(u,w) ≤ k}.

Definition 10. Graph Density: The graph density of an undirected graph G(S,E) is

ρG =
|E|(
n
2

) =
2|E|

n(n− 1)
.

Definition 11. Average Path Length: The average path length of an undirected graph

G(S,E) is

lG =
1

n(n− 1)

∑
u6=v

d(u, v).

We now introduce the three load balancing policies that we study. Suppose a

job arrives at origin server u ∈ V. Denote Pu = [puv, v ∈ V] as the server sampling

distribution for the job where puv is the probability u queries server v for its load

information with puu = 0. The first policy is the well known POT policy and the next

two are newly proposed proximity based load balancing policies on a graph G.

• Power of Two (POT): If a job arrives at server u, then

puv =

1

n−1
, if v 6= u,

0, otherwise .

That is, server v is sampled uniformly at random from the remaining n − 1

servers. The job is then allocated to the server with the smallest load among u

and v.

137

• Unif-POT(k): According to this policy, if a job arrives at server u, then

puv =

1

|Nk(u)| , if v ∈ Nk(u),

0, otherwise .

That is, a server v is sampled uniformly at random from the k-hop neighbor-

hood of u2. The job is then allocated to the server with the smallest load among

u and v.

• InvSq-POT(k): According to this policy, if a job arrives at server u, then

puv =

(
1

d(u,v)2

)
∑

w∈Nk(u)

(
1

d(u,w)2

) , if v ∈ Nk(u),

0, otherwise .

That is, a server v ∈ Nk(u) is sampled with probability proportional to the

inverse square of the distance to u. The job is then allocated to the server with

the smallest load among u and v.

Remark 9. Observe that Unif-POT(k) and InvSq-POT(k) are identical for k = 1.

Similarly, POT and Unif-POT(k) are identical for k = n.

7.2.1 Performance Metrics

To evaluate and characterize the performance of various load balancing policies,

we use Maximum Load, Total Variation Distance and Average Request Distance as

performance metrics. These performance metrics are defined in Chapter 6.

2While one can sample v from k nearest servers as done for policies on a plane, choosing from the
k-hop neighborhood simplifies the graph based model and does not require tie breaking mechanism
to determine the sampling space.

138

7.3 Proximity Aware POT policies on Graphs

In this section we present extensive simulation results to illustrate the effective-

ness of both Unif-POT(k) and InvSq-POT(k) policies in graph based load balancing

systems. Our study also provides insight into the choice of a load balancing policy

under different load conditions and for different network topologies.

We implemented the proposed policies in Python to study their performance in

a simulated environment. To make the performance comparisons between the algo-

rithms meaningful, a number of simulation runs were conducted for each algorithm

with different parameter values (e.g., system size, average degree etc.) for different

graph topologies. We assume the topology remains fixed during the simulation. If

not specified, we assume n = 10000 servers interconnected through a graph G. Also,

m = 10000 jobs each arriving sequentially to one of the servers chosen uniformly

at random and is allocated to a server according to different proximity based POT

policies. We report the average of 10 simulation runs. Usually we set k = log n.

We consider a wide range of network topologies such as: deterministic, random,

scale-free and spatial networks. In our study, we evaluate the proposed schemes

using total variation distance, average request distance and average maximum load

as performance metrics. The results of the simulation experiments are presented in

the following sections.

7.3.1 Maximum Load vs Request Distance Tradeoff

We first discuss the inherent tradeoff between average maximum load and average

request distance for different values of k in Unif-POT(k) and InvSq-POT(k) policies.

We perform a simulation experiment with n = 1000 servers connected through a line

graph. We assume m = 1000 jobs each arriving sequentially to one of the servers

chosen uniformly at random and is allocated to a server according to Unif-POT(k)

policy. We report the average of 10 simulation runs. We plot both average maximum

139

2 4 6 8 10
k

3.0

3.1

3.2

3.3

3.4

3.5

Av
g.

 M
ax

. L
oa

d
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
g.

 R
eq

 D
ist

Line Graph

Figure 7.1: Trade-off between average maximum load and average request distance
for servers on a Line graph with m = n = 1000 for Unif-POT(k) policy under static
load balancing system.

load and average request distance as a function of neighborhood parameter k as shown

in Figure 7.1. We obtain similar results for the case when allocation is done according

to InvSq-POT(k) policy.

It is clear from Figure 7.1 that average maximum load value decreases as k in-

creases. This is because the size of k-hop neighborhood of an origin server increases

as k increases. Thus the load is distributed among a larger group of servers and

the behavior of Unif-POT(k) resembles more and more that of POT policy for large

values of k.

However, an increase in k results in larger values of average request distance.

When k is small, the sampled servers remain close to the origin server. However, as

k increases, the size of the k-hop neighborhood grows. One is more likely to sample

a far away server thereby increasing the average request distance. Thus one needs to

be careful in choosing the correct value of k according to the performance metric of

interest.

7.3.2 Performance Comparison for Deterministic Graphs

In this section, we analyze the performance of fixed degree deterministic graphs:

Line and Ring. The results are presented in Figure 7.2. First we plot the load

140

0 1 2 3 4 5
Load

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

Line Graph
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(a)

1000 2000 3000 4000 5000 6000 7000
n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Line Graph
InvSq-POT(1)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(log n)

(b)

1000 2000 3000 4000 5000 6000 7000
n

0

100

200

300

400

500

Av
g

Re
q

D
is

t

Line Graph
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

2500 5000
0.5

1.0

1.5

(c)

0 1 2 3 4 5
Load

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

Ring Graph
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(d)

1000 2000 3000 4000 5000 6000 7000
n

0.00

0.01

0.02

0.03

0.04

0.05

0.06

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Ring Graph
InvSq-POT(1)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(log n)

(e)

1000 2000 3000 4000 5000 6000 7000
n

0

50

100

150

200

250

300

350

400

Av
g

Re
q

D
is

t

Ring Graph
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

2500 5000
0.5

1.0

1.5

(f)

103 104

n

3 × 100

4 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Line Graph

InvSq-POT(1)
InvSq-POT(log n)
InvSq-POT(n)

Unif-POT(log n)
POT

(g)

103 104

n

3 × 100

4 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Ring Graph

InvSq-POT(1)
InvSq-POT(log n)
InvSq-POT(n)

Unif-POT(log n)
POT

(h)

Figure 7.2: Simulation Results for Unif-POT(k) and InvSq-POT(k) for line and ring
graphs.

141

distribution for Line and Ring topologies in Figures 7.2(a) and (d). We compare the

load distributions for POT, Unif-POT(log n), InvSq-POT(log n) and InvSq-POT(n)

policies. Surprisingly, the load distributions of Unif-POT(log n), InvSq-POT(log n)

and InvSq-POT(n) almost exactly match to that of POT for both Line and Ring

topologies.

Next, we compare the proximity based policies to POT with respect to total

variation distance and present graphs for both Line and Ring topologies. We plot

the total variation distance between load distributions of proximity based policies

and POT as a function of number of servers for Line graph in Figure 7.2(b). We

also plot the total variation distance between load distributions of two independent

runs of POT which quantifies the noise or variation in load distribution of POT due

to randomness. Again to our surprise, all proximity based policies with k = log n, n

achieve total variation distances as low as 0.02 across a wide range of values of n. Also

note that, InvSq-POT(1) achieves a load distribution farthest from POT while Unif-

POT(log n) achieves the closest. Due to its uniform way of sampling, Unif-POT(log n)

achieves the smallest total variation distance. However, due to a bias towards closest

severs, both InvSq-POT(log n) and InvSq-POT(n) achieve higher variation distances.

Due to load-implementation cost trade-off, a very local policy InvSq-POT(1), achieves

even higher variation distance. Both InvSq-POT(log n) and InvSq-POT(n) appear to

converge to a constant variation distance as n gets large. We obtain similar results for

the case when servers are connected through a ring graph. The results are presented

in Figure 7.2(e).

We plot average request distance as a function of number of servers in Figures

7.2(c) and (f). The average path length can be thought of as an upper bound on

average request distance under POT. Larger values of average path length imply

larger values of average request distance under POT. Surprisingly, proximity based

policies significantly decrease average request distance (∼ 99% reduction) for large

142

values of n. Since average path length for both line and ring graphs scale as O(n), the

average request distance under POT also drastically increases as n increases. Also

note that, InvSq-POT(log n) achieves the lowest average request distance compared

to other policies.

Finally Figures 7.2(g) and (h) show the growth in average maximum load as n

increases. We observe that both Unif-POT(log n) and POT produce the smallest

average maximum load. The average maximum load of InvSq-POT(log n) and InvSq-

POT(n) are similar but larger compared to Unif-POT(log n). As expected InvSq-

POT(1) exhibits the largest average maximum load since the policy distributes load

only among immediate neighbors of the origin server.

7.3.3 Performance Comparison for Random Graphs

We now study the impact of proximity based policies on random graphs. In

particular, we compare the performance of Unif-POT(k) and InvSq-POT(k) policies

for k = 2, log n and n to that of POT. We consider the three random graphs: Erdos

Reny (ER), Random Regular (RR) and Linear Preference (LP). To avoid ambiguity

we define each of the above mentioned random graphs as follows.

Graph Type n m Parameters
Erdos Reny (n, γ) 10000 10000 γ : [log n/n, · · · , 2 log n/n]

Random Regular (n, β) 10000 10000 β : [5, 6, · · · , 11]
Barabasi Albert (n, α) 10000 10000 α : [1, 2, · · · , 7]

Table 7.1: Simulation parameters for random graph topologies.

143

0.0010 0.0012 0.0014 0.0016 0.0018
0.000

0.005

0.010

0.015

0.020

0.025

0.030

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Erdos Renyi Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(a)

0.0010 0.0012 0.0014 0.0016 0.0018

0.4

0.6

0.8

1.0

1.2

1.4

Av
g

Re
q

Di
st

Erdos Renyi Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(b)

1000 2000 3000 4000 5000 6000 7000
n

0.4

0.6

0.8

1.0

1.2

1.4

Av
g

Re
q

Di
st

Erdos Renyi Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(c)

5 6 7 8 9 10 11
0.000

0.005

0.010

0.015

0.020

0.025

0.030

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Random Regular Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(d)

5 6 7 8 9 10 11
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g

Re
q

Di
st

Random Regular Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(e)

1000 2000 3000 4000 5000 6000 7000
n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g

Re
q

Di
st

Random Regular Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(f)

1 2 3 4 5 6 7
0.00

0.02

0.04

0.06

0.08

0.10

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Linear Preference Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(g)

1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0

Av
g

Re
q

Di
st

Linear Preference Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(h)

1000 2000 3000 4000 5000 6000 7000
n

0.4

0.6

0.8

1.0

1.2

1.4
Av

g
Re

q
Di

st

Linear Preference Graph
InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(i)

103 104

n

2.6 × 100

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

3.1 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Erdos Renyi Graph

InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(j)

103 104

n

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

3.1 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Random Regular Graph

InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(k)

103 104

n
2.6 × 100

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

3.1 × 100

3.2 × 100

3.3 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Linear Preference Graph

InvSq-POT(2)
InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(2)
Unif-POT(log n)

(l)

Figure 7.3: Simulation Results for Unif-POT(k) and InvSq-POT(k) with n = 10000
and k = 2, log n, n for random graphs.

144

Linear Preference Graph- LP (n, α):

An LP (n, α) graph consists of n nodes grown by adding new nodes each with α

edges attached to existing nodes with probability proportional to the node degree.

This has been shown to yield a power-law degree distribution.

Random Regular Graph- RR (n, β):

A β-regular graph RR (n, β) sampled from the probability space of all β-regular

graphs on n vertices uniformly at random with nβ being even. For β ≥ 3, a random

β-regular graph of large size is asymptotically almost surely β-connected. In our

simulations, β ≥ 3.

Erdos-Renyi Graph- ER (n, γ):

The ER (n, γ) graph is generated by choosing each of the [n(n − 1)]/2 possible

edges with probability γ. γ = log n/n is a sharp threshold for the connectedness

of ER(n, γ). Also as n → ∞, the probability that ER(n, γ) with γ = 2 log n/n is

connected, tends to 1. In all of our simulations, we assume γ ≥ log n/n.

We present the system and network parameters used in the simulation in Table

7.1. The results are presented in Figure 7.3. We first plot the total variation distance

between load distributions of proximity based policies and POT as a function of ER

edge probability parameter γ as shown in Figure 7.3(a). Note that, for all values

of k = 2, log n, n, both proximity based policies produce a variation distance as low

as 0.5%. This is surprising since, when k = O(1) = 2 we only sample the two hop

neighborhood of the origin server. But we are able to produce load distribution

behavior almost identical to that of POT, which samples from the entire set of servers.

We observe similar trends for RR graphs, as shown in Figure 7.3(d). However, we

observe different results for the LP graph as shown in Figure 7.3(g). For LP graphs, we

observe that when k = 2, both proximity based policies produce larger total variation

distances than when k = log n, n. The variation distance is still small when k = 2 and

145

fluctuates around 0.033. Note that, an increase in k should decrease variation distance

since the sampling set size increases with k. Observe that the variation distance of

policies under a Line or Ring topology is larger than that of any random topology

with fixed degree (Ex: RR topology). Higher graph densities in random topologies

yield smaller variation distances compared to Line or Ring topologies.

We now study the effect of network parameters on the average request distances

of the proximity based policies as shown in Figures 7.3(b), (e), (h). First observe that

increases in the values of network parameters α, β and γ increase the graph densities

of the corresponding graphs (LP, RR and ER) and hence connectedness. This results

in a decrease in average request distance. Also observe the insensitivity of proximity

based policies with k = 2 to the network size n. As expected, proximity policies with

k = 2 produce very small request distances when compared to the case k = log n.

Next, we study the scalability of average request distance with respect to network

size as shown in Figures 7.3(c), (f) and (i). Note that the average path length of

ER and LP exhibits small (log n) and ultra small world (log n/ log log n) behavior

respectively [38]. Due to small world behavior, the observed average request distances

are small for LP and ER topologies across all policies when compared to similar

size Line and Ring topologies. Again as expected, proximity policies with k = 2

are insensitive to changes in network size and produce the smallest average request

distances. Also, observe that between Unif-POT(k) and InvSq-POT(k) for every

k, InvSq-POT(k) policies produce smaller average request distances for similar size

networks.

We finally study how average maximum load increases as a function of network size

as shown in Figures 7.3(j), (k) and (l). For ER, for k = 2, log n, n, both proximity

based policies produce similar average maximum load values. For RR and LP we

observe that all policies produce similar average maximum loads. However as network

146

size increases, local policies InvSq-POT(2) and Unif-POT(2) produce larger maximum

load values compared to InvSq-POT(n), Unif-POT(log n), and POT.

Graph Type n m Parameters

Random Geometric (n, r) 10000 10000 r : [
√

log n/πn, · · · ,
√√

n/πn]
Spatial Line (n, Lmax) [1000, · · · , 7000] [1000, · · · , 7000] Lmax : [1000, · · · , 7000]

Spatial Ring (n,R) [1000, · · · , 7000] [1000, · · · , 7000] R : 1

Table 7.2: Simulation parameters for spatial graph topologies.

7.3.4 Performance Comparison for Spatial Graphs

In this Section, we evaluate the performance of proximity aware POT policies for

three spatial graphs: Random Geometric (RG), Spatial Line (SL) and Spatial Ring

(SR) graphs defined as follows.

2-D Random Geometric Graph-RG (n, r)

A 2-D random geometric graph RG (n, r) is an undirected graph with n nodes

uniformly sampled from a 2-dimensional Euclidean space [0, 1)2. Two vertices: a, b ∈

V share an edge iff the Euclidean distance between these two servers is less than

r, excluding any loops. RG (n, r) possesses a sharp threshold for connectivity at

r ∼
√

log n/πn. In all our simulations we consider r ≥
√

log n/πn.

Spatial Line Graph-SL(n, Lmax)

Locations of servers are uniformly sampled from a one-dimensional euclidean space

[0, Lmax).

Spatial Ring Graph-SR(n,R)

We assume servers are placed uniformly at random on a circle of radius R.

147

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
r

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Geometric Graph
InvSq-POT(n)
InvSq-POT(log n)
Unif-POT(log n)

(a)

1000 2000 3000 4000 5000 6000 7000
n

0.00

0.05

0.10

0.15

0.20

0.25

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Line Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
Unif-POT(log n)

(b)

1000 2000 3000 4000 5000 6000 7000
n

0.00

0.05

0.10

0.15

0.20

0.25

To
ta

l V
ar

ia
tio

n
D

is
ta

nc
e

Ring Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
Unif-POT(log n)

(c)

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055
r

2

4

6

8

10

Av
g

Re
q

D
is

t

Geometric Graph
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(d)

1000 2000 3000 4000 5000 6000 7000
n

0

500

1000

1500

2000

Av
g

Re
q

D
is

t

Line Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

2500 5000
1
2
3

(e)

103 104

n
2.6 × 100

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

3.1 × 100

Av
er

ag
e

M
ax

im
um

 L
oa

d

Geometric Graph

InvSq-POT(log n)
InvSq-POT(n)

POT
Unif-POT(log n)

(f)

103 104

n

3.0

3.5

4.0

4.5

5.0

5.5

Av
er

ag
e

M
ax

im
um

 L
oa

d

Line Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(g)

103 104

n

3.0

3.5

4.0

4.5

5.0

5.5

Av
er

ag
e

M
ax

im
um

 L
oa

d

Ring Graph (Spatial)
InvSq-POT(n)
InvSq-POT(log n)
POT
Unif-POT(log n)

(h)

Figure 7.4: Simulation Results for Unif-POT(k) and InvSq-POT(k) with n = 10000
and k = log n, n for spatial graphs.

148

We present the network parameters used in our simulations in Table 7.2. Note that

the radius parameters for RG are chosen such that the graph remains asymptotically

almost surely connected. We first plot total variation distance as a function of radial

parameter r of the RG topology as shown in Figure 7.4(a). Again to our surprise,

for all values of k = log n, n, both the proximity based policies produce a variation

distance as low as 0.006. Note that for SL and SR topologies, we adopt a different job

arrival model to incorporate the spatial nature of job request pattern. To be precise

we assume both jobs and servers are placed uniformly at random on a one dimensional

line [0, Lmax) and on a circle of radiusR for SL and SR topologies respectively. We plot

variation distance as a function of network size for SL and SR as shown in Figures

7.4(b), (c). We observe a clear trend that Unif-POT(log n) and InvSq-POT(log n)

policy produce the smallest and largest variation distances for both SL and SR with

InvSq-POT(log n) producing a variation distance of around 0.08. These variation

distances are insensitive to network size. Also, note that, with the introduction of

the spatial dimension, the variation distances increased by five fold compared to their

non-spatial counterparts (Figures 7.2(b) and (e)) for the same network size.

We next plot average request distance as a function of r for RG topology as shown

in Figure 7.4(d). First note that the proximity aware policies are almost insensitive to

r. As r increases, the graph density for an RG increases thereby reducing average path

length of the network. Thus we observe a decrease in average request distance for

POT with an increase in r. As observed before, InvSq-POT(k) produces lower average

request distances as compared to their Unif-POT(k) counterpart. InvSq-POT(k)

produces the smallest average request distance for SL, which is almost insensitive to

system size as shown in Figure 7.4(e). However, as expected, POT produces a large

request distance that increases linearly with system size.

We study the average maximum load behavior of the policies across various spa-

tial networks in Figures 7.4(f), (g), (h). For low values of n for RG topology, Unif-

149

POT(log n) and POT exhibit similar average maximum loads. However, the corre-

sponding average maximum load values for InvSq-POT(log n) and InvSq-POT(n) are

larger. When n is large, all policies exhibit similar behavior. For SL and SR topolo-

gies, InvSq-POT(log n) is the worst while POT is the best policy. Unif-POT(log n)

is closer to POT while InvSq-POT(n) is closer to InvSq-POT(log n) with respect to

average maximum load.

7.4 Summary

In this chapter we designed a class of proximity aware power of two choices based

allocation policies for the case when servers are interconnected as an arbitrary graph.

We performed extensive simulations over a wide range of network topologies. To our

surprise, with few simple modifications in the server sampling process, we observed

a drastic reduction in the overall system wide implementation cost while obtaining a

similar load distribution profile as that of POT policy.

150

CHAPTER 8

SUMMARY AND FUTURE WORK

The central topic of this thesis is the allocation of resources in distributed service

networks— specifically, how to optimally allocate caching resources to provide differ-

ential services and how to distribute user requests to resources in a spatial setting.

We first proposed a new method to compute an upper bound on cache hit prob-

ability for all non-anticipative caching policies. We then developed a utility based

caching framework that implemented differential services.

We designed new resource allocation policies for both one-dimensional and two-

dimensional spatial networks. Finally, we developed proximity aware load balancing

policies when resources are placed on the vertices of an arbitrary graph.

8.1 Future Work

Below we point out some potential future work and general directions that we

wish to explore further.

• In Chapter 2 we developed a hazard rate based upper bound on cache hit

probability for non-anticipative caching policies under fairly weak statistical

assumptions. Going further, we aim to build a real-time trace driven version of

our proposed bound by estimating the hazard rates and fitting the inter-request

time distributions in an online manner.

• The utility based framework developed in Chapters 3 and 4 assumed Poisson

request arrival process for contents. We would like to consider a more general

151

request arrival process in future. Our results from Section 3.5.1 advocates for

the accuracy of Poisson online approximation policy for a single cache system.

It would be interesting to compare the performance of Poisson online approxi-

mation with other cache eviction policies for general request arrival process in

an arbitrary generic cache network.

• A natural extension of the one dimensional unidirectional spatial framework

developed in Chapter 5 is to consider more general communication costs asso-

ciated with each resource allocation. Assuming communication cost for each

allocation is a function of request distance, one can derive expressions for the

expected communication cost from the request distance distribution. Thus one

of our future goals would be to derive the request distance distribution asso-

ciated with the MTR policy for various inter-resource and inter-user distance

distributions.

• It would be interesting to analyze the impact of user dynamics on the perfor-

mance of spatial resource allocation policies developed in Chapters 6 and 7. For

example, user requests may arrive on the spatial network according to a tempo-

ral Poisson process. The user can then be assigned a spatial location uniformly

at random on the network. The servers can be distributed over the network ac-

cording to some spatial process. Each server will have a queue and the service

time to process each request can be exponentially distributed. Requests can be

served in FIFO order. Our goal would then be to analyze the expected maxi-

mum queue length across all servers or the expected request distance associated

with a specific allocation policy.

152

APPENDIX A

ADDITIONAL PROOFS FOR CHAPTER 2

A.1 Proof of Equation (2.6)

We drop the argument t in ki(t) (see definition at the beginning of Section 2.2.1

as no confusion may occur.). We have

pi(t) = P
(
Ti,ki < Tj,kj ,∀j 6= i |Ht, min

j=1,...,n
Tj,kj = t

)
.

For h > 0

P
(
Ti,ki ∈ (t, t+ h), Tj,kj > t+ h,∀j 6= i

∣∣∣∣Ht, min
j=1,...,n

Tj,kj ∈ (t, t+ h)

)
=

P
(
Ti,ki ∈ (t, t+ h), Tj,kj > t+ h,∀j 6= i |Ht

)
P
(
minj=1,...,n Tj,kj ∈ (t, t+ h) |Ht

)
=

P(Ti,ki ∈ (t, h) |Hi,t)
∏

1≤j≤n
j 6=i

P(Tj,kj > t+ h |Hj,t)

P
(
minj=1,...,n Tj,kj ∈ (t, t+ h) |Ht

) , (A.1)

from the conditional independence assumption in (2.1). Let us focus on the denomi-

nator in (A.1). It can be written as

P
(

min
j=1,...,n

Tj,kj ∈ (t, t+ h) |Ht

)
=

n∑
j=1

P(Tj,kj ∈ (t, t+ h) > t+ h,∀l 6= j |Ht) + f(h),

153

with f(h) → 0 as h → 0, since as h → 0 there can be at least one random variables

(rvs) located in (t, t+ h) among the rvs T1,k1 , . . . , Tn,kn since these rvs are continous.

Therefore,

P
(
Ti,ki ∈ (t, t+ h), Tj,kj > t+ h,∀j 6= i

∣∣∣∣Ht, min
j=1,...,n

Tj,kj ∈ (t, t+ h)

)
=

P(Ti,ki ∈ (t, h) |Hi,t)
∏

1≤j≤n
j 6=i

P(Tj,kj > t+ h |Hj,t)∑n
j=1 P(Tj,kj ∈ (t, d+ t), Tl,kl > t+ h,∀l 6= j |Ht) + f(h)

= P(Ti,ki ∈ (t, h) |Hi,t)
∏

1≤j≤n
j 6=i

P(Tj,kj > t+ h |Hj,t)

×
(

n∑
j=1

P(Tj,kj ∈ (t, t+ h) |Hl,t)×
∏

1≤l≤n
l6=j

P(Tl,kl > t+ h |Hl,t) + f(h)

)−1

(A.2)

=

P(Ti,ki∈(t,t+h) |Hi,t)
P(Ti,ki>t+h |Hi,t)∑n

j=1

P(Tj,kj∈(t,t+h) |Hl,t)
P(Tj,kj>t+h |Hl,t)

+ f(h)
=

λ∗i (t+ h)∑n
j=1 λ

∗
j(t+ h) + f(h)

, (A.3)

where (A.2) and (A.3) follow from (2.1) and (2.2). Letting h→ 0 in (A.3) gives (2.6).

A.1.1 Proof of Lemma 1

The proof mimicks that of Lemma 1. Fix k ≥ 1 and denote by Z(Tk−) the state

of the process Z just before time Tk, namely, just before the kth request for an object

is made. For all π ∈ Π and x ∈ E , we have

E
[
HHR−E
k |Z(Tk−) = x

]
= P

(
Rk ∈ BHR−E

k |Z(Tk−) = x
)

=
n∑
i=1

P
(
Rk ∈ BHR−E

k |Rk = i, Z(Tk−) = x
)
P(Rk = i |Z(Tk−) = x)

=
∑

i∈BHR−Ek

P(Rk = i |Z(Tk−) = x)

=
∑

i∈BHR−Ek

λi(x)∑n
j=1 λj(x)

≥
∑
i∈Bπk

λi(x)∑n
j=1 λj(x)

= E [Hπ
k |Z(Tk−) = x] .

Removing the conditioning gives E
[
HHR−E
k

]
≥ E [Hπ

k].

154

APPENDIX B

ADDITIONAL PROOFS FOR CHAPTER 3

B.1 Stationary Behaviors of MCDP

[43] considered a caching policy LRU(m). Though the policy differ from MCDP,

the stationary analysis is similar. We present our result here for completeness.

Under IRM model, the request for content i arrives according a Poisson process

with rate λi. As discussed earlier, for TTL caches, content i spends a deterministic

time in a cache if it is not requested, which is independent of all other contents. We

denote the timer as Til for content i in cache l on the path p, where l ∈ {1, · · · , |p|}.

Denote tik as the k-th time that content i is either requested or moved from one

cache to another. For simplicity, we assume that content is in cache 0 (i.e., server)

if it is not in the cache network. Then we can define a discrete time Markov chain

(DTMC) {X i
k}k≥0 with |p|+ 1 states, where X i

k is the cache index that content i is in

at time tik. Since the event that the time between two requests for content i exceeds

Til happens with probability e−λiTil , then the transition matrix of {X i
k}k≥0 is given as

PMCDP
i =

0 1

e−λiTi1 0 1− e−λiTi1

. . .
. . .

. . .

e−λiTi(|p|−1) 0 1− e−λiTi(|p|−1)

e−λiTi|p| 1− e−λiTi|p|

 .

Let (πi0, · · · , πi|p|) be the stationary distribution for PMCDP
i , we have

πi0 =
1

1 +
∑|p|

j=1 e
λiTij

∏j−1
s=1(eλiTis − 1)

,

πi1 = πi0e
λiTi1 ,

155

πil = πi0e
λiTil

l−1∏
s=1

(eλiTis − 1), l = 2, · · · , |p|.

Then the average time that content i spends in cache l ∈ {1, · · · , |p|} can be

computed as

E[tik+1 − tik|X i
k = l] =

∫ Til

0

(
1−

[
1− e−λit

])
dt =

1− e−λiTil
λi

, (B.2)

and E[tik+1 − tik|X i
k = 0] = 1

λi
.

Given (B.1) and (B.2), the timer-average probability that content i is in cache

l ∈ {1, · · · , |p|} is

hi1 =
eλiTi1 − 1

1 +
∑|p|

j=1(eλiTi1 − 1) · · · (eλiTij − 1)
,

hil = hi(l−1)(e
λiTil − 1), l = 2, · · · , |p|,

where hil is also the hit probability for content i at cache l.

B.2 Proof of Theorem 4: Convergence of Primal Algorithm

Since Ui(·) is strictly concave, Cl(·) and C̃i(·) are convex, then (3.9) is strictly

concave, hence there exists a unique maximizer. Denote it as h∗.

Any differentiable function f(x) can be linearized around a point x∗ as L(x) =

f(x∗) + f ′(x∗)(x− x∗). Denote ∀i, l

f(hil) = hil + ζil

[
λiψ

|p|−lU ′i(λihil)− C ′l

(∑
j∈D

hjl −Bl

)
− C̃ ′i

 |p|∑
m=1

him − 1

],
(B.3)

with f : R+ → R. We have f(h∗il) = h∗il. Under linearization,

hil[k + 1] = h∗il + f ′(h∗il)(hil[k]− h∗il). (B.4)

156

Denote hδil[k] = hil[k]− h∗il as deviation from h∗il at kth iteration. Hence we have

hδil[k + 1] = f ′(h∗il)h
δ
il[k] = [f ′(h∗il)]

k
hδil[0].

Thus (B.4) is locally asymptotically stable if

|f ′(h∗il)| < 1. (B.5)

Computing f ′(h∗il) from (B.3) and substituting in (B.5) yields

ζil <
2

C ′′l

(∑
j∈D

h∗jl −Bl
)

+ C̃ ′′i

(
|p|∑
m=1

h∗im − 1

)
− λ2iψ|p|−lU ′′i (λih∗il)

. (B.6)

Note that, since the functions Cl, C̃i and Ui are strictly convex, strictly convex and

strictly concave functions respectively, C ′′l (x) < 0, C̃ ′′i (x) < 0 and U ′′i (x) < 0 ∀x ∈ R+.

Hence the r.h.s of (B.6) is strictly positive and for a sufficiently small positive step-

size parameter ζil, (B.6) always holds. Thus the update rule (3.9) converges to h∗ as

long as h
(0)
il is sufficiently close to h∗il for all i ∈ D and l = 1, 2, · · · , |p|.

B.3 Proof of Theorem 7: Convergence of Primal-dual Algo-

rithm

From Lemma 2, we know at least one of νl and µip is non-zero, for all i ∈ D,

l ∈ {1, · · · , |p|} and p ∈ P i. Hence there are three cases, (i) νl 6= 0 and µip = 0; (ii)

νl = 0 and µip 6= 0; and (iii) νl 6= 0 and µip 6= 0.

For case (i), we have

h
(p)
il =

wipψ
|p|−l

νl

(∏
q:q 6=p,

j∈{1,··· ,|q|}
(1− h(q)

ij)

) − 1

λip
,

which is clearly continuous in νl, for all i ∈ D, l ∈ {1, · · · , |p|} and p ∈ P i.

157

Similarly for case (ii), we have

h
(p)
il =

wipψ
|p|−l

µip
− 1

λip
,

which is also clearly continuous in µip, for all i ∈ D, l ∈ {1, · · · , |p|} and p ∈ P i.

For case (iii), from (3.18), it is obvious that h
(p)
il is continuous in νl and µip for all

i ∈ D, l ∈ {1, · · · , |p|} and p ∈ P i.

Therefore, we know that h
(p)
il is is continuous in νl and µip for all i ∈ D, l ∈

{1, · · · , |p|} and p ∈ P i.

158

APPENDIX C

ADDITIONAL PROOFS FOR CHAPTER 4

C.1 Proof of Lemma 3

We consider the following two cases, i.e., when β = 1 and β 6= 1.

Case 1(β = 1β = 1β = 1): The utility function is Ui(h) = wi log(h). Thus we have

Ui

(
e

n∑
k=1

xk
)

= wi log

(
e

n∑
k=1

xk
)

= wi

n∑
k=1

xk,

which is an affine function and thus concave as well.

Case 2(β 6= 1β 6= 1β 6= 1): The utility function is Ui(h) = wih
1−β/(1− β). Thus we have

Ui

(
e

n∑
k=1

xk

)
= wi

e
(1−β)

n∑
k=1

xk

1− β ,

and the corresponding Hessian matrix is

Hi = (1− β)wie
(1−β)

n∑
k=1

xk

1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1

 .

Note that, the unit matrix with all ones has eigenvalues n with multiplicity 1, and

0 with multiplicity n− 1. The terms e(1−β)
∑n
k=1 xk and wi are always positive. Hence

Hi is negative semi-definite, i.e., has non-positive eigenvalues, only when 1 − β < 0.

Combining both cases, Ui
(
e
∑n
k=1 xk

)
is a concave function for β ≥ 1.

159

APPENDIX D

ADDITIONAL PROOFS FOR CHAPTER 5

D.1 Derivation of FZ for various inter-server distance distr-

butions

D.1.1 FX(x) ∼ Exponential(µ)FX(x) ∼ Exponential(µ)FX(x) ∼ Exponential(µ)

In this case, both X and Y are exponentially distributed. Thus the difference

distribution is given by

DXY (x) = 1− λ

λ+ µ
e−µx,when x ≥ 0 (D.1)

Combining (5.4) and (D.1), we get

FZ(x) =
1− λ

λ+µ
e−µx − 1 + λ

λ+µ

λ
λ+µ

= 1− e−µx.

Thus we obtain FX(x) = FZ(x) ∼ Exponential(µ).

D.1.2 FX(x) ∼ Uniform(0, b)FX(x) ∼ Uniform(0, b)FX(x) ∼ Uniform(0, b)

The c.d.f. for uniform distribution is

FX(x) =

x
b
, 0 ≤ x ≤ b;

1, x > b,

(D.2)

160

where b is the uniform parameter. Thus we have

DXY (x) =

∫ ∞
0

FX(x+ y)λe−λydy =

[∫ b−x

0

x+ y

b
λe−λydy

]
+

[∫ ∞
b−x

1 λe−λydy

]
=
λx− e−λ(b−x) + e−λb

bλ+ e−λb − 1

Taking kλ = 1/(bλ+ e−λb − 1) and using Equation (5.4) we have

FZ(x) = kλ
[
λx+ e−λb(1− eλx)

]
and fZ(x) = λkλ

[
1− e−λbeλx)

]
.

Taking αZ =
∫ b

0
xfZ(x)dx and σ2

Z = [
∫ b

0
x2fZ(x)dx]− α2

Z we have

αZ =
b2λ

2
kλ −

1

λ
, σ2

Z =
b3λ

3
kλ −

kλ
λ

[
b(bλ− 2) +

2

λ
(1− e−λb)

]
− α2

Z ,

αX = b/2, σ2
X = b2/12.

D.1.3 FX(x) ∼ Deterministic(d0)FX(x) ∼ Deterministic(d0)FX(x) ∼ Deterministic(d0)

Another interesting scenario is when servers are equally spaced at a distance d0

from each other i.e. when FX(x) ∼ Deterministic(d0). The c.d.f. for deterministic

distribution is

FX(x) =

0, 0 ≤ x < d0;

1, x ≥ d0,

(D.3)

where d0 is the deterministic parameter. A similar analysis as that of uniform distri-

bution yields

FZ(x) = cλ

[
e−λ(d0−x) − eλd0

]
; fZ(x) = λcλ

[
e−λ(d0−x)

]
,

where cλ = 1/(1− e−λd0). Thus we have

αZ = cλ
d0λ+ e−λd0 − 1

λ
, σ2

Z =
cλ
λ

[
d0(d0λ− 2) +

2

λ
(1− e−λd0)

]
− α2

Z ,

αX = d0, σ2
X = 0.

161

D.2 ESABQ under PRGS

D.2.1 Chapman-Kolmorogov equations

Let us write the Chapman-Kolmorogov equations for the Markov chain {(L(t), R(t), I(t)), t ≥

0} defined in Section 5.5.3.1.
For n ≥ 2 and x > 0 we get

∂

∂t
pt(n, x; 1) =

∂

∂x
pt(n, x; 1)− λpt(n, x; 1)− ∂

∂x
pt(n, 0; 1) + λpt(n− 1, x; 1)

∂

∂t
pt(n, x; 2) =

∂

∂x
pt(n, x; 2)− λpt(n, x; 2)− ∂

∂x
pt(n, 0; 2) + λpt(n− 1, x; 2)

+ FX(x)
∂

∂x
pt(n+ c, 0; 1) + FX(x)

∂

∂x
pt(n+ c, 0; 2).

Letting t→∞ yields

0 =
∂

∂x
p(n, x; 1)− λp(n, x; 1)− ∂

∂x
p(n, 0; 1) + λp(n− 1, x; 1) (D.4)

0 =
∂

∂x
p(n, x; 2)− λp(n, x; 2)− ∂

∂x
p(n, 0; 2) + λp(n− 1, x; 2)

+ FX(x)
∂

∂x
p(n+ c, 0; 1) + FX(x)

∂

∂x
p(n+ c, 0; 2).

For n = 1, x > 0

∂

∂t
pt(1, x; 1) =

∂

∂x
pt(1, x; 1)− λpt(1, x; 1)− ∂

∂x
pt(1, 0; 1) + λpt(0)FZ(x)

∂

∂t
pt(1, x; 2) =

∂

∂x
pt(1, x; 2)− λpt(1, x; 2)− ∂

∂x
pt(1, 0; 2)

+ FX(x)
∂

∂x
p(1 + c, 0; 1) + FX(x)

∂

∂x
pt(1 + c, 0; 2).

Letting t→∞ yields

0 =
∂

∂x
p(1, x; 1)− λp(1, x; 1)− ∂

∂x
p(1, 0; 1) + λp(0)FZ(x)

0 =
∂

∂x
p(1, x; 2)− λp(1, x; 2)− ∂

∂x
p(1, 0; 2)

+ FX(x)

(
∂

∂x
p(1 + c, 0; 1) +

∂

∂x
p(1 + c, 0; 2)

)
, x > 0. (D.5)

162

We can collect the results in (D.4)-(D.5) as follows: for n ≥ 1, x > 0,

0 =
∂

∂x
p(n, x; 1)− λp(n, x; 1)− ∂

∂x
p(n, 0; 1) + λp(n− 1, x; 1)1(n ≥ 2)

+ λp(0)FZ(x)1(n = 1) (D.6)

0 =
∂

∂x
p(n, x; 2)− λp(n, x; 2)− ∂

∂x
p(n, 0; 2) + λp(n− 1, x; 2)1(n ≥ 2)

+ FX(x)

(
∂

∂x
p(n+ c, 0; 1) +

∂

∂x
p(n+ c, 0; 2)

)
. (D.7)

Define g(n, x) = p(n, x; 1) + p(n, x; 2) for n ≥ 1, x > 0. Summing (D.6) and (D.7)

gives

0 =
∂

∂x
g(n, x)− λg(n, x)− ∂

∂x
g(n, 0) + λg(n− 1, x)1(n ≥ 2) + λp(0)FZ(x)1(n = 1)

+ FX(x)
∂

∂x
g(n+ c, 0),∀n ≥ 1, x > 0.

D.2.2 Multiplicity of roots of zc − F ∗X(λ(1− z))

Assume that FX(x) = 1 − e−µx (regular batch service times are exponentially

distributed). Then,

zc − F ∗X(λ(1− z)) =
−ρzc+1 + (1 + ρ)zc − 1

1 + ρ(1− z)
.

zc − F ∗X(λ(1 − z)) = 0 for |z| ≤ 1 iff Q(z) := −ρzc+1 + (1 + ρ)zc − 1 = 0. The

derivative of Q(z) is Q′(z) = zc−1((1 + ρ)c − ρ(c + 1)z). It vanishes at z = 0 and at

z = (1+ρ)c
ρ(c+1)

> 1 under the stability condition ρ < c. Since z = 0 is not a zero of Q(z),

we conclude that all zeros of zc − F ∗X(λ(1− z)) in {|z| ≤ 1} have multiplicity one.

More generally, it is shown in [14] that all zeros of zc − F ∗X(λ(1− z)) in {|z| ≤ 1}

have multiplicity one if FX is a χ2-distribution with an even number 2p of degrees of

freedom, i.e. dFX(x) = ap

Γ(p)
xp−1e−axdx so that 1/µ = p/a.

163

D.2.3 Roots of A(z)

Define A(z) = F ∗X(θ(z)). If A(z) has a radius of convergence larger than one (i.e.

A(z) is analytic for |z| ≤ ν with ν > 1) and A′(1) < c ∈ {1, 2, . . .} a direct application

of Rouché’s theorem shows that zc − A(z) has c zeros in the unit disk {|z| ≤ 1}(see

e.g. [3]). If the radius of convergence of A(z) is one, A(z) is differentiable at z = 1,

A′(1) < c, and zc−A(z) has period p, then zc−A(z) has exactly p ≤ s zeros on the unit

circle and s−p zeros inside the unit disk {|z| < 1} [3, Theorem 3.2]. Assume that the

stability condition d
dz
A(z)|z=1 = ρ < c holds. A(z) has a radius of convergence larger

than one when FX is the exponential/Erlang/Gamma/ etc probability distributions.

D.2.4 Special Cases

One easily checks that (5.17) gives the classical Pollaczek-Khinchin formula for

the M/G/1 queue when c = 1 and FZ = FX .

Let now c = 1 in (5.17) with FZ and FX arbitrary. Then,

N(z) =
a1

λ

(
F ∗X(λ(1− z))− zF ∗Z(λ(1− z))

F ∗X(λ(1− z))− z

)

gives the z-transform of the stationary number of customers in a M/G/1 queue with

an exceptional first customer in a busy period. The constant a1/λ is obtained from

the identity N(1) = 1 by application of L’Hopital’s rule, which gives1 a1/λ = (1 −

ρ)/(1− ρ+ ρZ). This gives

N(z) =
1− ρ

1− ρ+ ρZ

(
F ∗X(λ(1− z))− zF ∗Z(λ(1− z))

F ∗X(λ(1− z))− z

)
.

The above is a known result [100].

1Note that we retrieve this result by letting c = 1 in (5.18).

164

If F ∗Z = F ∗X := F ∗, then

N(z) =

∑c
k=1 ak

[
(zc − zk)zc + ((1− zc)z − (1− zk))F ∗(θ(z))

]
θ(z)(zc − F ∗(θ(z))

.

D.3 Results for Section 5.6.2

ri ri’

sj’ sj

ri ri’

sj’ sj
ri ri’

sj’ sj

ri ri’

sj’ sj

ri ri’

sj’ sj

ri ri’

sj’ sj

ri ri’

sj’ sj

ri ri’

sj’ sj
ri ri’

sj’ sj

ri ri’

sj’ sj
ri ri’

sj’ sj
ri ri’

sj’ sj

�
<latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit>

=<latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit>

�
<latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit>

�
<latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit>

�
<latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit><latexit sha1_base64="VZKQl2jgG4WeTGN5r64Pj8F5Hzc=">AAAB63icbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxgv2ANpTNdtIu3U3i7kYooX/BiwdFvPqHvPlv3LQ5aOsLCw/vzLAzb5AIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEjbBluBHYThVQGAjvB5Davd55QaR5HD2aaoC/pKOIhZ9TkVn+Ej4Nqza27c5FV8AqoQaHmoPrVH8YslRgZJqjWPc9NjJ9RZTgTOKv0U40JZRM6wp7FiErUfjbfdUbOrDMkYazsiwyZu78nMiq1nsrAdkpqxnq5lpv/1XqpCa/9jEdJajBii4/CVBATk/xwMuQKmRFTC5QpbnclbEwVZcbGU7EheMsnr0L7ou5Zvr+sNW6KOMpwAqdwDh5cQQPuoAktYDCGZ3iFN0c6L86787FoLTnFzDH8kfP5Aw1ljjs=</latexit>

=<latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit><latexit sha1_base64="8uDF8DVeQnsAQmi3YnN5BydvDus=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQiFL14bMF+QBvKZjtp1242YXcjlNBf4MWDIl79Sd78N27bHLT1hYWHd2bYmTdIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw3q7efUGkeywczSdCP6FDykDNqrNW46ZcrbtWdi6yCl0MFctX75a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi1KGqH2s/miU3JmnQEJY2WfNGTu/p7IaKT1JApsZ0TNSC/XZuZ/tW5qwms/4zJJDUq2+ChMBTExmV1NBlwhM2JigTLF7a6EjaiizNhsSjYEb/nkVWhdVD3LjctK7TaPowgncArn4MEV1OAe6tAEBgjP8ApvzqPz4rw7H4vWgpPPHMMfOZ8/jM+MwQ==</latexit>

Figure D.1: Uncrossing an assignment either reduces request distance or keeps it
unchanged.

D.3.1 Derivation of v1(z) and v2(z)
v1(z) in (5.21) can further be simplified to

v1(z) =

∞∑
l=0

zl
l∑

m=0

πm

c∑
i=0

ki+l−mpi =

∞∑
m=0

πm
∑
l≥m

zl
c∑
i=0

ki+l−mpi

=

∞∑
m=0

πmz
m
∑
l≥m

zl−m
c∑
i=0

ki+l−mpi =

∞∑
m=0

πmz
m
∞∑
j=0

zj
c∑
i=0

ki+jpi

= N(z)

c∑
i=0

piz
−i
∞∑
j=0

zi+jki+j = N(z)

c∑
i=0

piz
−i
[
K(z)−

i∑
j=0

kjz
j + kiz

i

]

= N(z)

{ c∑
i=0

piz
−i
[
K(z)−

i∑
j=0

kjz
j

]
+

c∑
i=0

kiz
i

}
.

Similarly v2(z) in (5.22) can further be simplified to

165

v2(z) =

∞∑
l=0

zl
c+l∑

m=l+1

πm

c∑
i=m−l

ki+l−mpi =

[∞∑
l=0

zl
c+l∑
m=l

πm

c∑
i=m−l

ki+l−mpi

]
−N(z)

c∑
i=0

kiz
i

=

[c∑
m=0

z−m
c∑

i=m

ki−mpi

∞∑
l=0

zm+lπm+l

]
−N(z)

c∑
i=0

kiz
i

=

[c∑
m=0

z−m
c∑

i=m

ki−mpi

{
N(z)−

m−1∑
j=0

πjz
j

}]
−N(z)

c∑
i=0

kiz
i.

D.3.2 Roots of A(z)

Denote A(z) = K(z)
∑c

i=0 pc−iz
i. Clearly, A(z) is also a probability generating

function (pgf) for the non-negative random variable V + C̃ where C̃ is a random

variable on {0, . . . , c − 1} with distribution Pr(C̃ = j) = pc−j,∀j ∈ {0, 1, . . . , c − 1}.

Also we have

A′(1) = K ′(1) +
c∑
i=0

pc−ii = ρ+
c∑
i=1

pi(c− i) = ρ+
c∑
i=1

pic−
c∑
i=1

ipi = ρ+ c− C

From our stability condition we know that ρ < C. Thus A′(1) < c. Since A(z) is a pgf

and A′(1) < c, by applying the arguments from [3, Theorem 3.2] we conclude that

the denominator of equation (5.26) has c− 1 zeros inside and one on the unit circle,

|z| = 1.

D.4 Proof of Lemma 4

Proof. It can be observed that if such a 4-tuple (i, j, i′, j′) exists, the cost can be

reduced by assigning i to j′ and i′ to j, hence we arrive at a contradiction. To show

this, consider the six possible cases of relative ordering between ri, ri′ , sj, sj′ which

obey ri < ri′ and sj > sj′ . We give a pictorial proof in Figure D.12. It is easy to see

2For ease of exposition, the requesters and servers are shown to be located along two separate
horizontal lines, although they are located on the same real-line.

166

that in each of the cases, the request distance of the uncrossed assignment is either

smaller or remains unchanged.

167

APPENDIX E

ADDITIONAL PROOFS FOR CHAPTER 6

E.1 Proof of Lemma 5

Let A(s, r, l) denote the event that a random user r ∈ R is lth closest to s ∈ S

among all servers in S. Denote NN(r) as the geographically nearest server of r. Thus

we have

Pr[B({si, sj}, r)] = Pr[A(si, r, 1)] Pr[A(sj, r, 2)|NN(r) = si]

+ Pr[A(sj, r, 1)] Pr[A(si, r, 2)|NN(r) = sj]. (E.1)

It is not difficult to show that all Voronoi cells in VS have equal areas. As

Pr[A(s, r, 1)] is proportional to the area of the Voronoi cell surrounding s, we have

Pr[A(s, r, 1)] = 1/|S| ∀ s ∈ S. (E.2)

Without loss of generality (W.l.o.g.) consider a user r placed uniformly at random

on D as shown in Figure 6.1. Denote 4ABC as the triangle associated with vertices

A,B and C. Let NN(r) = s3. We now evaluate Pr[A(s1, r, 2)|NN(r) = s3]. Clearly,

Pr[A(s1, r, 2)|NN(r) = s3] ∝ Area(4WXs3). We also have

Area(4WXs3) = Area(4WZs3) = Area(4Y Xs3)

= Area(4ZY s3),

168

Therefore Pr[A(si, r, 2)|NN(r) = s3], for i ∈ {1, 2, 4, 5} are all equal. Let NG(s) be

the set of neighboring servers of a server s ∈ S on the square grid. Thus, we have

Pr[A(sj, r, 2)|NN(r) = si] =

1
4
, sj ∈ NG(si);

0, otherwise,

(E.3)

Note that when sj ∈ NG(si), the Voronoi cells corresponding to si and sj share

an edge. In this case, by definition (si, sj) ∈ E. Combining (E.2) and (E.3) and

substituting in (E.1) yields

Pr[B({si, sj}, r)] =

1

2|S| , (si, sj) ∈ E;

0, otherwise,

(E.4)

Also, when servers are placed on a square grid, GS(X,E) is 4- regular. Thus the total

number of edges is |E| = 2|X| = 2|S|. Substituting |S| = |E|/2 in Equation (E.4)

yields (6.1) and completes the proof.

E.2 Proof of Lemma 8

Denote Xi as the random variable associated with the load for bin i. Clearly

X = [X1, X2, · · · , Xn] follows multinomial distribution

Pr[X = x] =

(
n

x1, · · · , xn

) n∏
i=1

pxii

We have Z = max(X1, · · · , Xn) = δ(X). Clearly, δ(x) = max(x) is a schur convex

function since max(x) = x[1] and if x � y then x[1] ≥ y[1]. Also, we have (Chapter 1,

[64]): (p1, p2, · · · , pn) � (1/n, 1/n, · · · , 1/n). whenever pi ≥ 0 with
∑n

i=1 pi = 1. Thus

applying Proposition 1 yields Ep[Z] ≥ E(1/n,··· ,1/n)[Z] ≥ k0
logn

log logn
.

169

E.3 Proof of Theorem 12

Consider the second order Voronoi diagram: H
(2)
S associated with the set of

servers S. W.l.o.g. consider a cell {si, sj} in H
(2)
S . The probability that a user se-

lects the server pair {si, sj} as its two nearest servers is proportional to the area

of the cell {si, sj}. However, the area distribution of cells in H
(2)
S is non-uniform

(say with probability distribution p). We can invoke classical balls and bins argu-

ment on H
(2)
S as follows inspired by the discussion in [53]. We treat each cell in

H
(2)
S as a bin. Thus by Lemma 7, there are O(3n) bins (or cells). Each ball (or

user) choses a bin (or a cell) from a distribution p and let Lp denote the expected

maximum asymptotic load across the bins. Let LU denote the expected maximum

asymptotic load across the bins when O(n) balls are assigned to O(3n) bins with

each ball choosing a bin uniformly at random. From classical balls and bins the-

ory, LU = O(log n/ log log 3n) = O(log n/ log log n). Clearly, by Lemma 8, we have

Lp ≥ LU = O(log n/ log log n). Since a cell consists of a server pair, one of the server

pair corresponding to the maximum load would have load at least (1/2)Lp. Thus the

maximum load across all servers would be at least (1/2)Lp ≥ O(log n/ log log n).

170

BIBLIOGRAPHY

[1] Abadi, H. K., and Prabhakar, B. Stable Matchings in Metric Spaces: Modeling
Real-World Preferences using Proximity. arXiv:1710.05262 (2017).

[2] Abedini, N., and Shakkottai, S. Content Caching and Scheduling in Wireless
Networks with Elastic and Inelastic Traffic. IEEE/ACM Transactions on Net-
working 22, 3 (2014), 864–874.

[3] Adan, I. J. B. F., Van Leeuwaarden, J. S. H., and Winands, E. M. M. On the
Application of Rouché’s Theorem in Queueing Theory. Operations Research
Letters 34 (2006), 355–360.

[4] Adler, Micah, Chakrabarti, Soumen, Mitzenmacher, Michael, and Rasmussen,
Lars. Parallel randomized load balancing. Random Structures and Algorithms
13, 2 (1998), 159–188.

[5] Agarwal, P.K., Efrat, A., and Sharir, M. Vertical Decomposition of Shallow
Levels in 3-Dimensional Arrangements and Its Applications. SOCG (1995).

[6] Aho, A. V., Denning, P. J., and Ullman, J. D. Principles of Optimal Page
Replacement. J. ACM 18, 1 (1971), 80–93.

[7] Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. Network Flows: Theory, Algo-
rithms, and Applications. Prentice-Hall, Inc, 1993.

[8] Almeida, Virgilio, Bestavros, Azer, Crovella, Mark, and de Oliveira, Adriana.
Characterizing Reference Locality in the WWW. In 4th IEEE Conf. on Par-
allel and Distributed Information Systems (PDSI’96) (December 18-20 1996),
pp. 92–103.

[9] Arlitt, Martin, Cherkasova, Ludmila, Dilley, John, Friedrich, Rich, and Jin,
Tai. Evaluating content management techniques for web proxy caches. In ACM
SIGMETRICS 2000 (2000), vol. 27, pp. 3–11.

[10] Atzori, L., Iera, A., and Morabito, G. The Internet of Things: A Survey.
Computer Networks 54, 15 (2010), 2787–2805.

[11] Azar, Yossi, Broder, Andrei Z., Karlin, Anna R., and Upfal, Eli. Balanced
allocations. SIAM Journal on Computing 29, 1 (1999), 180–200.

[12] Baccelli, F., and Brémaud, P. Elements of Queueing Theory: Palm Martin-
gale Calculus and Stochastic Recurrences, vol. 26. Springer Science & Business
Media, 2013.

171

[13] Baccelli, François, and Brémaud, Pierre. Elements of Queueing Theory.
Springer, 2003.

[14] Bailey, N. T. J. On Queueing Processes with Bulk Service. J. R. Stat. SOCE.
16 (1954), 80–87.

[15] Bash, B. A., and Desnoyers, P. J. Exact Distributed Voronoi Cell Computation
in Sensor Networks. In IPSN (2007).

[16] Beckmann, Nathan, Chen, Haoxian, and Cidon, Asaf. LHD : Improving Cache
Hit Rate by Maximizing Hit Density Relative Size. In NSDI’18 (2018), pp. 389–
404.

[17] Berenbrink, Petra, Czumaj, Artur, Steger, Angelika, and Vöcking, Berthold.
Balanced allocations: The heavily loaded case. SIAM Journal on Computing
35, 6 (2006), 1350–1385.

[18] Berger, D. S., Gland, P., Singla, S., and Ciucu, F. Exact Analysis of TTL Cache
Networks. Performance Evaluation 79 (2014), 2–23.

[19] Berger, Daniel S., Beckmann, Nathan, and Harchol-Balter, Mor. Practical
Bounds on Optimal Caching with Variable Object Sizes. POMACS 2, 2 (2018),
1–32.

[20] Berger, Daniel S., Sitaraman, Ramesh K., and Harchol-Balter, Mor. AdaptSize:
Orchestrating the Hot Object Memory Cache in a Content Delivery Network.
In NSDI’17 (2017), pp. 483–498.

[21] Boyd, S., and Vandenberghe, L. Convex Optimization. Cambridge University
Press, 2004.

[22] Breslau, Lee, Cao, Pei, Fan, Li, Phillips, Graham, and Shenker, Scott. Web
caching and zipf-like distributions: Evidence and implications. In IEEE INFO-
COM 1999 (1999), vol. 1, pp. 126–134.

[23] Bukac, J. Matching On a Line. arXiv:1805.00214 (2018).

[24] Byers, J., Considine, J., and Mitzenmacher, M. Geometric Generalizations of
the Power of Two Choices. In SPAA (2004).

[25] Cao, Pei, and Irani, Sandy. Cost-aware WWW proxy caching algorithms. In
USENIX Symposium on Internet Technologies and Systems (USITS’97) (1997),
no. December, p. 18.

[26] Cha, Meeyoung, Kwak, Haewoon, Rodriguez, Pablo, Ahn, Yong-Yeol, and
Moon, Sue. I Tube, You Tube, Everybody Tubes: Analyzing the World’s
Largest User Generated Content Video System. In ACM IMC (2007).

172

[27] Cherkasova, Ludmila. Improving WWW proxies performance with Greedy-
Dual-Size-Frequency caching policy. HP Laboratories Technical Report, 98 -69
(1998).

[28] Cooper, Colin, Dyer, Martin, and Greenhill, Catherine. Sampling regular graphs
and a peer-to-peer network. Combinatorics Probability and Computing 16, 4
(2007), 557–593.

[29] Daley, D. J., and Vere-Jones, D. An Introduction to the Theory of Point
Processes: Elementary Theory and Methods. Springer (2003).

[30] Dehghan, M., Massoulie, L., Towsley, D., Menasche, D., and Tay, Y.C. A
Utility Optimization Approach to Network Cache Design. In Proc. of IEEE
INFOCOM (2016).

[31] Dehghan, M., Seetharam, A., Jiang, B., He, T., Salonidis, T., Kurose, J.,
Towsley, D., and Sitaraman, R.h. On the Complexity of Optimal Routing and
Content Caching in Heterogeneous Networks. In Proc. of IEEE INFOCOM
(2015), pp. 936–944.

[32] Doshi, S., and Bhandare, S. An On-demand Minimum Energy Routing Protocol
for a Wireless ad-hoc Network. In ACM Mobile Computing and Communica-
tions Review (2002).

[33] Downey, Allen B. Lognormal and pareto distributions in the internet. Computer
Communications 28, 7 (2005), 790 – 801.

[34] Ferragut, A., Rodŕıguez, I., and Paganini, F. Optimizing TTL Caches under
Heavy-tailed Demands. In Proc. of ACM SIGMETRICS (2016).

[35] Fofack, N. C., Dehghan, M., Towsley, D., Badov, M., and Goeckel, D. L. On
the Performance of General Cache Networks. In VALUETOOLS (2014).

[36] Fofack, N. C., Nain, P., Neglia, G., and Towsley, D. Analysis of TTL-based
Cache Networks. In VALUETOOLS (2012).

[37] Fofack, N. C., Nain, P., Neglia, G., and Towsley, D. Performance Evaluation
of Hierarchical TTL-based Cache Networks. Computer Networks 65 (2014),
212–231.

[38] Fronczak, Agata, Fronczak, Piotr, and Ho lyst, Janusz A. Average path length
in random networks. Physical Review E - Statistical Physics, Plasmas, Fluids,
and Related Interdisciplinary Topics 70, 5 (2004), 7.

[39] Gale, D., and Shapley, L. College Admissions and Stability of Marriage. Amer.
Math. Monthly 69 (1962), 9–15.

[40] Garetto, M., Leonardi, E., and Martina, V. A Unified Approach to the Perfor-
mance Analysis of Caching Systems. ACM TOMPECS 1, 3 (2016), 12.

173

[41] Garetto, Michele, Leonardi, Emilio, and Traverso, Stefano. Efficient analysis
of caching strategies under dynamic content popularity. In IEEE INFOCOM
2015 (2015), pp. 2263–2271.

[42] Gast, N. The power of two choices on graphs: the pair-approximation is accu-
rate. In In Proc. MAMA workshop 2015 (2015), pp. 69–71.

[43] Gast, N., and Houdt, B. V. Asymptotically Exact TTL-Approximations of the
Cache Replacement Algorithms LRU(m) and h-LRU. In ITC 28 (2016).

[44] Goodrich, Michael T., and Tamassia, Roberto. Algorithm Design: Foundations,
Analysis, and Internet Examples. John Wiley & Sons, 2002.

[45] Goswami, V., and Laxmi, P. V. A Renewal Input Single and Batch Service
Queues with Accessibility to Batches. International Journal of Management
Science and Engineering Management (2011), 366–373.

[46] Gracia-Tinedo, Raúl, Tian, Yongchao, Sampé, Josep, Harkous, Hamza, Lenton,
John, Garćıa-López, Pedro, Sánchez-Artigas, Marc, and Vukolic, Marko. Dis-
secting UbuntuOne: Autopsy of a global-scale personal cloud back-end. In
Internet Measurement Conference (IMC’15) (October 2015), pp. 155–168.

[47] Gross, D., and Harris, C.M. Fundamentals of Queueing Theory. Wiley Series
in Probability and Statistics (1998).

[48] Ho, I. W. H., Leung, K. K., and Polak, J. W. Stochastic Model and Connectivity
Dynamics for VANETs in Signalized Road Systems. IEEE/ACM Transactions
on Networking 19, 1 (2011), 195–208.

[49] Ioannidis, S., and Yeh, E. Adaptive Caching Networks with Optimality Guar-
antees. In Proc. of ACM SIGMETRICS (2016), pp. 113–124.

[50] Ioannidis, S., and Yeh, E. Jointly Optimal Routing and Caching for Arbitrary
Network Topologies. In Proc. of ACM ICN (2017), pp. 77–87.

[51] Jaleel, Aamer, Theobald, Kevin B., Steely, Simon C., and Joel, Jr. High Perfor-
mance Cache Replacement Using Re-Reference Interval Prediction (RRIP). In
37th Int. Symposium on Computer Architecture (ISCA’10) (Saint Malo, France,
June 19-23 2010).

[52] Jiang, Song, and Zhang, Xiaodong. LIRS: An efficient low inter-reference re-
cency set replacement policy to improve buffer cache performance. In ACM
SIGMETRICS 2002 (2002), vol. 30, pp. 31–42.

[53] K., Kenthapadi, and Panigrahy, R. Balanced Allocation on Graphs. In SODA
(2006).

[54] Kacimi, Rahim, Dhaou, Riadh, and Beylot, André Luc. Load balancing tech-
niques for lifetime maximizing in wireless sensor networks. Ad Hoc Networks
11, 8 (2013), 2172–2186.

174

[55] Kenthapadi, K., and Panigrahy, R. Balanced Allocation on Graphs.

[56] Kingman, F.C. The Effect of Queue Discipline on Waiting Time Variance.
Math. Proc. Cambridge Phil. Soc. 58 (1962), 163–164.

[57] Kingman, J. F. C. The Ergodic Theory of Subadditive Stochastic Processes.
Journal of the Royal Statistical Society: Series B (Methodological) 30, 3 (1968),
499–510.

[58] Kleinberg, Jon M. Navigation in a small world. Nature 406, 6798 (2000), 845.

[59] Kyparisis, J. On Uniqueness of Kuhn-Tucker Multipliers in Nonlinear Program-
ming. Mathematical Programming 32, 2 (1985), 242–246.

[60] Leung, K. K., Massey, W. A., and Whitt, W. Traffic Models for Wireless
Communication Networks. IEEE Journal on Selected Areas in Communications
12, 8 (1994), 1353–1364.

[61] Li, J., Phan, T. K., Chai, W. K., Tuncer, D., Pavlou, G., Griffin, D., and Rio,
M. DR-Cache: Distributed Resilient Caching with Latency Guarantees. In
Proc. IEEE INFOCOM (2018).

[62] Liu, Zhen, Nain, Philippe, Niclausse, Nicolas, and Towsley, Don. Static Caching
of Web Servers. In Multimedia Computing And Networking (MCNC’98) (San
Jose, CA, USA, January 1998), SPIE Press, Ed.

[63] Maggi, Lorenzo, Gkatzikis, Lazaros, Paschos, Georgios, and Leguay, Jérémie.
Adapting caching to audience retention rate. Computer Communications 116
(2018), 159–171.

[64] Marshall, A. W., and Olkin, I. Inequalities: Theory of Majorization and its
Applications. In In: Academic Press (1979).

[65] Megiddo, Nimrod, and Modha, Dharmendra S. ARC: A Self-Tuning, Low Over-
head Replacement Cache. In FAST’03: 2nd USENIX Conference on File and
Storage Technologies (2003), pp. 115–130.

[66] Meyn, S. P, and Tweedie, R. L. Markov Chains and Stochastic Stability.
Springer Science & Business Media, 2012.

[67] Mitzenmacher, M. D. The Power of Two Choices in Randomized Load Balanc-
ing. In Ph.D. Dissertation, Harvard University (1996).

[68] Nain, Philippe, Panigrahy, Nitish K, Basu, Prithwish, and Towsley, Don. One-
dimensional service networks and batch service queues. Queueing Systems 98,
1 (2021), 181–207.

[69] Nelson, R., and Tantawi, A.N. Approximate Analysis of Fork/join Synchro-
nization in Parallel Queues. IEEE Transactions on Computers 37, 6 (1988),
739–743.

175

[70] Okabe, A., Boots, B., and Sugihara, K. Spatial Tessellations Concepts and
Applications of Voronoi Diagrams. In New York: Wiley (1992).

[71] Orlin, J.B. A Polynomial Time Primal Network Simplex Algorithm for Mini-
mum Cost Flows. Mathematical Programming 78 (1997), 109–129.

[72] Panigrahy, Nitish K., Basu, Prithwish, Nain, Philippe, Towsley, Don, Swami,
Ananthram, Chan, Kevin S., and Leung, Kin K. Resource allocation in one-
dimensional distributed service networks with applications. Performance Eval-
uation 142 (2020), 102110.

[73] Panigrahy, Nitish K., Basu, Prithwish, Towsley, Don, Swami, Ananthram, and
Leung, Kin K. On the analysis of spatially constrained power of two choice
policies. SIGMETRICS Perform. Eval. Rev. 48, 3 (Mar. 2021), 51–56.

[74] Panigrahy, Nitish K., Li, Jian, Towsley, Don, and Hollot, C.V. Network cache
design under stationary requests: Exact analysis and poisson approximation.
Computer Networks 180 (2020), 107379.

[75] Panigrahy, Nitish K., Li, Jian, Zafari, Faheem, Towsley, Don, and Yu, Paul.
Jointly compressing and caching data in wireless sensor networks. In 2019
IEEE International Conference on Smart Computing (SMARTCOMP) (2019),
pp. 57–62.

[76] Panigrahy, Nitish K., Li, Jian, Zafari, Faheem, Towsley, Don, and Yu, Paul. A
ttl-based approach for content placement in edge networks, 2020.

[77] Panigrahy, Nitish K., Nain, Philippe, Neglia, Giovanni, and Towsley, Don. A
new upper bound on cache hit probability for non-anticipative caching policies.
SIGMETRICS Perform. Eval. Rev. 48, 3 (Mar. 2021), 138–143.

[78] Panigrahy, Nitish K., Nain, Philippe, Neglia, Giovanni, and Towsley, Don. A
new upper bound on cache hit probability for non-anticipative caching policies,
2021.

[79] Panigrahy, Nitish K., Vasantam, Thirupathaiah, Basu, Prithwish, and Towsley,
Don. Proximity based load balancing policies on graphs: A simulation study,
2020.

[80] Paschos, Georgios S., Destounis, Apostolos, Vigneri, Luigi, and Iosifidis,
George. Learning to Cache with No Regrets. In Proceedings - IEEE INFO-
COM (2019), pp. 235–243.

[81] Penrose, Mathew. Random Geometric Graphs. 2007.

[82] Phillips, Peter C.B. Lectures on stationary and nonstationary times series.
http://korora.econ.yale.edu/phillips/teach/notes/1988-lectures.

pdf, 1992.

176

[83] Ramadan, E., Narayanan, A., Zhang, Z.-L., Li, R., and Zhang, G. Big Cache
Abstraction for Cache Networks. In Proc. Of IEEE ICDCS (2017).

[84] Reingold, E. M., and Tarjan, R. E. On a Greedy Heuristic for Complete Match-
ing. SIAM Journal on Computing 10, 4 (1981), 676–681.

[85] Rodŕıguez, I., Ferragut, A., and Paganini, F. Improving Performance of
Multiple-level Cache Systems. In SIGCOMM (2016).

[86] Sasikumar, Archana, Zhao, Tao, Hou, I, Shakkottai, Srinivas, et al. Cache-
version selection and content placement for adaptive video streaming in wireless
edge networks. arXiv preprint arXiv:1903.12164 (2019).

[87] Singpurwalla, Nozer D., and Wong, Man Yuen. Kernel estimators of the failure-
rate function and density estimation: An analogy. Journal of the American
Statistical Association 78, 382 (1983), 478–481.

[88] Srikant, R., and Ying, L. Communication Networks: an Optimization, Control,
and Stochastic Networks Perspective. Cambridge University Press, 2013.

[89] Stuart, E.A. Matching Methods for Causal Inference: a Review and a Look
Forward. Stat. Sci. 25 (2010), 1–21.

[90] Tanenbaum, Andews S. Modern Operating Systems. Prentice Hall Press, 2001.

[91] Traverso, Stefano, Ahmed, Mohamed, Garetto, Michele, Giaccone, Paolo,
Leonardi, Emilio, and Niccolini, Saverio. Temporal locality in today’s con-
tent caching: Why it matters and how to model it. Computer Communication
Review 43, 5 (2013), 5–12.

[92] Traverso, Stefano, Ahmed, Mohamed, Garetto, Michele, Giaccone, Paolo,
Leonardi, Emilio, and Niccolini, Saverio. Unravelling the impact of tempo-
ral and geographical locality in content caching systems. IEEE Transactions
on Multimedia 17, 10 (2015), 1839–1854.

[93] Turner, Stephen R.E. The effect of increasing routing choice on resource pooling.
Probability in the Engineering and Informational Sciences 12, 1 (1998), 109–
124.

[94] Tychogiorgos, G., Gkelias, A., and Leung, K. K. A Non-Convex Distributed
Optimization Framework and its Application to Wireless Ad-Hoc Networks.
IEEE Transactions on Wireless Communications 12, 9 (2013), 4286–4296.

[95] Vecer, J. Dynamic Scoring: Probabilistic Model Selection Based on Utility
Maximization. In Available at SSRN (2018).

[96] Vöcking, Berthold. How asymmetry helps load balancing. Journal of the ACM
50, 4 (2003), 568–589.

177

[97] Wang, Jane-Ling. Smoothing Hazard Rate. Encyclopedia of Biostatistics (2nd
ed.) 7 (2005), 4986–4997.

[98] Wang, L., Tyson, G., Kangasharju, J., and Crowcroft, J. FairCache: Introduc-
ing Fairness to ICN Caching. In Proc. IEEE 24th Int. Conf. Netw. Protocols
(ICNP) (2016), 1–10.

[99] Weinberg, G.V. Kullback Leibler Divergence and the Pareto Exponential Ap-
proximation. SpringerPlus 5 (2016).

[100] Welch, P.D. On a Generalized m/g/1 Queuing Process in Which The First Cus-
tomer of Each Busy Period Receives Exceptional Service. Operations Research
12 (1964), 736–752.

[101] Zerfos, P., Srivatsa, M., Yu, H., Dennerline, D., Franke, H., and Agrawal,
D. Platform and Applications for Massive-scale Streaming Network Analytics.
IBM Journal for Research and Development: Special Edition on Massive Scale
Analytics 57, 136 (2013), 1–11.

[102] Zink, M., Suh, K., Gu, Y., and Kurose, J. Watch Global, Cache Local: YouTube
Network Traffic at a Campus Network: Measurements and Implications. In
Electronic Imaging (2008).

178

	Resource Allocation in Distributed Service Networks
	Recommended Citation

	tmp.1628741389.pdf.9Huol

