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ABSTRACT

SIMULATING THE EFFECTS OF
FLOATING PLATFORMS, TILTED ROTORS, AND

BREAKING WAVES FOR OFFSHORE WIND TURBINES

SEPTEMBER 2021

HANNAH JOHLAS

B.A., MACALESTER COLLEGE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David P. Schmidt and Professor Matthew A. Lackner

Offshore wind energy is a rapidly expanding source of renewable energy worldwide,

but many aspects of offshore wind turbine behavior are still poorly understood and are

not accurately captured by low-cost engineering models used in the design process. To

help improve these models, computational fluid dynamics (CFD) can provide valuable

insight into the complex fluid flows that affect offshore wind turbine power generation

and structural loads. This research uses CFD simulations to examine three main

topics important to future offshore wind development: how breaking waves affect

structural loads for fixed-bottom wind turbines; how platform motions affect power

generation, wake characteristics, and downwind turbine behavior in floating wind

turbines; and how rotor tilt angles affect wake characteristics when interacting with

earth’s surface. These high-fidelity simulations can help inform future improvements

to engineering models like wake models, power prediction models, and breaking wave

v



models, which are integral to designing and financing both offshore turbines and

offshore wind farm arrays.

First, breaking wave limits and slam force models are evaluated using CFD sim-

ulations of shoaling and breaking waves impacting monopile foundations, for envi-

ronmental conditions representative of U.S. East Coast offshore wind sites. Second,

floating turbine wakes are characterized by the velocity deficit, turbulent kinetic en-

ergy, and wake centerline location using large eddy simulations (LES) coupled via an

actuator line model to the multidynamics turbine modeling tool OpenFAST. These

wake metrics are compared for different floating platform types, atmospheric stabil-

ity types, and environmental conditions. Third, the power generation of spar and

semisubmersible floating turbines is simulated using OpenFAST with LES inflow,

with different platform motions isolated. These power results inform a new analytical

model for power generation in floating turbines. Fourth, downwind turbines with

different platforms are simulated in OpenFAST using an upwind floating turbine’s

LES wake as inflow, to study how floating-turbine wakes affect a downwind turbine’s

power, blade loads, and towertop displacements. Finally, LES with an actuator disk

model of a tilted wind turbine are performed for different tilt angles and blade-to-

surface gaps, to characterize tilted rotor wakes and how they interact with the sea or

ground surface.

vi



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Offshore wind turbine foundation types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Engineering models for offshore wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Rotor aerodynamics and power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Wake models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Breaking wave models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 CFD models for offshore wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Turbulence models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Modeling the atmospheric boundary layer . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Modeling turbine rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Modeling wave hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



2.3.5 Modeling turbine foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Background summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. BREAKING WAVES FOR FIXED-BOTTOM TURBINES . . . . . . . . 29

3.1 Numerical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Wave generation and absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Model verification and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Dam break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Nonlinear wave propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Nonlinear wave shoaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 Nonlinear wave forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Breaking wave limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Analysis of simulated waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Performance of empirical breaking limits . . . . . . . . . . . . . . . . . . . . . 52

3.4 Breaking wave forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Comparison to empirical slam force models . . . . . . . . . . . . . . . . . . . 63

3.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4. WAKE CHARACTERISTICS FOR FLOATING TURBINES . . . . . 75

4.1 Numerical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Simulation workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.2 SOWFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.3 Actuator line model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.4 OpenFAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Platform types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.2 Environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.3 Simulated domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.4 Case descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Platform displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.2 Time-averaged wake characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 Wake velocity differences for cases 2.1–2.6 . . . . . . . . . . . . . . . . . . . . 93
4.3.4 Wake centerline locations for cases 2.1–2.6 . . . . . . . . . . . . . . . . . . . . 96
4.3.5 Quantifying floating-fixed differences for cases 2.1–2.6 . . . . . . . . . . 97

4.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5. POWER GENERATION FOR FLOATING TURBINES . . . . . . . . . 101

5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.2 Simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.3 Case descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 Negligible effect of crosswind and vertical displacements . . . . . . . 109
5.2.2 Platform and rotor displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.3 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Analytical models for power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.1 Average φRC displacement model . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.2 Dynamic xRC displacement model . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.3 Total floating model: dynamic and time-averaged

displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.4 Analytical model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6. FLOATING-TURBINE WAKE EFFECTS ON DOWNWIND
TURBINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1.1 Case descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Downwind power and loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2.2 Frequency analysis of downwind turbine behavior . . . . . . . . . . . . . 134

6.3 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

ix



7. WAKE CHARACTERISTICS FOR TILTED ROTORS . . . . . . . . . . 141

7.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1.1 Precursor atmospheric simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.1.2 Domain setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.1.3 Actuator disk model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.1.4 Overview of cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2.1 Wake location and size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2.2 Wake shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.3 Counter-rotating vortex pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2.4 Wake deficit recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2.5 Effects on a downwind rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.2.6 Vertical momentum flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . 161

8.1 Contributions to knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.1.1 Breaking wave effects on OWTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.1.2 Wake characteristics for floating turbines . . . . . . . . . . . . . . . . . . . . 162
8.1.3 Power generation in floating turbines . . . . . . . . . . . . . . . . . . . . . . . . 163
8.1.4 Floating-turbine wake effects on downwind turbines . . . . . . . . . . . 164
8.1.5 Wake effects for tilted rotors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

APPENDICES

A. BREAKING WAVE LIMIT DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B. FLOATING-TURBINE DISPLACEMENT DATA . . . . . . . . . . . . . . . . 170

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

x



LIST OF TABLES

Table Page

2.1 Common slam force models, their predicted slam durations, and their
predicted slam coefficient time histories. . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Difference between CFD and experiment for wave height H, period
T , and peak surface elevation η at each wave gauge. . . . . . . . . . . . . . . . 42

3.2 Wave parameters for the five CFD regular wave force validation
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Water depth and seafloor slope ranges for potential U.S. wind energy
development sites, compared to CFD ranges. . . . . . . . . . . . . . . . . . . . . . 49

3.4 Summary of 39 wave trains for breaking wave simulations, listed by
nominal depth d0, slope s, generated wave height H0, and
generated wavelength L0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Comparison of breaking limit performance based on false negatives,
false positives, and steepness underprediction. . . . . . . . . . . . . . . . . . . . . 57

3.6 Summary of four breaking wave force simulations, including monopile
type, unshoaled wave characteristics, and wave characteristics just
before breaking and at impact on the monopile. . . . . . . . . . . . . . . . . . . . 62

3.7 Parameter values used to calculate drag, inertia, and slam forces for
each simulated breaking wave force case. . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Comparing maximum values for CFD total force, CFD slam force,
and predicted slam force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Summary of cases for two groups of turbine-wake simulations. . . . . . . . . . 85

4.2 Differences in mean and root-mean-square values between floating
and fixed turbines. Differences are shown for key platform
motions; rotor center displacements; and wake center locations at
three downstream locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xi



6.1 Summary of cases for two-turbine simulations. . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Percent difference in time-average value compared to the baseline case
with fixed platforms for both upwind and downwind turbines. . . . . . 132

6.3 Percent difference in root-mean-square (RMS) value compared to the
baseline case with fixed platforms for both upwind and downwind
turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.1 Non-breaking wave cases’ wave parameters and ratios of simulated to
predicted H/L for different breaking limits. . . . . . . . . . . . . . . . . . . . . . 168

A.2 Breaking wave cases’ wave parameters and ratios of simulated to
predicted H/L for different breaking limits. . . . . . . . . . . . . . . . . . . . . . 169

B.1 Spar data for time-averaged power for cases with the total floating
displacements and average displacements only, as well as average,
root-mean-square, minimum, and maximum values for rotor
displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.2 Spar data for the average, root-mean-square, minimum, and
maximum values for platform displacements. . . . . . . . . . . . . . . . . . . . . 172

B.3 Semisubmersible data for time-averaged power for cases with the
total floating displacements and average displacements only, as
well as average, root-mean-square, minimum, and maximum
values for rotor displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

B.4 Semisubmersible data for the average, root-mean-square, minimum,
and maximum values for platform displacements. . . . . . . . . . . . . . . . . 174

xii



LIST OF FIGURES

Figure Page

2.1 The NREL 5 MW reference turbine mounted on: the OC3 monopile,
the OC3-UMaine/OC3-Hywind spar, and the OC4-DeepCWind
semisubmersible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Distribution of atmospheric stability conditions at the Høvsøre (a)
and Egmond aan Zee (b) offshore wind farms as a function of
mean wind speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Comparison of average horizontal velocity as a function of height z at
different downstream locations x for ADM (−−), ADM-R (−),

ALM (u), and experiment (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 CFD results (solid blue) and analytical results based on potential
flow theory (dotted black) for a collapsing water column, initially
w=3 m wide and d0=50 cm tall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 CFD simulation of 5th order Stokes waves (H=10 cm, d=1 m, T=1
s) shown at time 10 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Time history of the surface elevation η for 5th order Stokes waves, at
locations 1 m (A) and 3 m (B) from the wave generation
boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Horizontal fluid velocity at time t=10 s according to the analytical
5th order Stokes solution (A) and the CFD results (B). . . . . . . . . . . . . 36

3.5 Partial CFD domain for the solitary wave validation case at time of
breaking, including the wavemaker (left) and three wave
gauges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Close-up of diffuse air-water interface at wave gauge 3, with reported
HRIC interface location (black cell) and diffuse interface band
(outlined cells). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 CFD and experimental time histories for regular waves surface
elevation at three gauge locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiii



3.8 CFD and experimental time histories for solitary wave surface
elevation at three gauge locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 The maximum inline force F on a cylinder due to regular waves,
plotted versus the product of wavenumber and cylinder radius
kr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Sample CFD domain for shoaling regular wave trains, including wave
generation boundary (left) and momentum damping zone
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 Surface elevation time histories at x=L0/2 for three meshes: the cell
size used in this study (−), cells twice this size (−−), and cells

half this size (u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.12 Instantaneous surface elevation of a CFD wave about to break, with
its peak and troughs circled and different options for wavelength
and height characterizations labeled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 Breaking (u) and non-breaking (E) CFD waves with McCowan,
Miche, and Goda breaking limits (lines). . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Breaking and non-breaking CFD waves (filled and unfilled markers)
with Goda breaking limit (lines) for different slopes s. . . . . . . . . . . . . . 54

3.15 Breaking and non-breaking CFD waves (filled and unfilled markers)
with McCowan, Miche, and Goda breaking limits (lines) for
different seafloor slopes s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.16 Side view of the 3D domain for a simulation with the 10 MW
monopile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.17 Side view of breaking waves just before impact for four slam force
cases. Water is shaded blue, air is grey, and the monopile is
white. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.18 Inline force time history for case 1 (10 MW monopile), including CFD
total force (−), predicted inertia and drag (dashed ∗ and ×), and

predicted total force using Goda (@), Campbell-Weynberg (C),

Cointe-Armand (A), and Wienke-Oumerachi (6) slam coefficient
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xiv



3.19 Inline force time history for case 2 (10 MW monopile), including CFD
total force (−), predicted inertia and drag (dashed ∗ and ×), and

predicted total force using Goda (@), Campbell-Weynberg (C),

Cointe-Armand (A), and Wienke-Oumerachi (6) slam coefficient
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.20 Inline force time history for case 3 (10 MW monopile), including CFD
total force (−), predicted inertia and drag (dashed ∗ and ×), and

predicted total force using Goda (@), Campbell-Weynberg (C),

Cointe-Armand (A), and Wienke-Oumerachi (6) slam coefficient
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.21 Inline force time history for case 4 (5 MW monopile), including CFD
total force (−), predicted inertia and drag (dashed ∗ and ×), and

predicted total force using Goda (@), Campbell-Weynberg (C),

Cointe-Armand (A), and Wienke-Oumerachi (6) slam coefficient
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.22 Slam coefficient time histories for all four breaking wave force cases,
calculated using the Goda (@), Campbell-Weynberg (C),

Cointe-Armand (A), and Wienke-Oumerachi (6) models, as well

as based on the CFD total force (u). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Three-step workflow for LES of turbine wakes within the atmospheric
boundary layer, coupled to floating turbine motions through an
actuator line model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Horizontally averaged wind speed U∞ and potential temperature θ
plotted against elevation z for neutral simulations with hub-height
wind speeds Uhh of 8 m/s (−) and 15 m/s (−−). . . . . . . . . . . . . . . . . . . 81

4.3 Potential temperature, wind speed, wind direction, and turbulence
intensity plotted against elevation for neutral (−) and stable
(−−) atmosphere simulations with Uhh=8 m/s, averaged over
time and across the domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Domains for the ABL simulations (3 km by 3 km by 1.02 km) and
SOWFA-OpenFAST turbine-wake simulations (2 km by 1.2 km by
1.02 km), with an average wind direction from the southwest. . . . . . . . 83

4.5 Floating platform displacements in each degree of freedom, including
displacement mean (circles), root-mean-square (−), and
minimum-maximum (vertical lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xv



4.6 Floating turbine displacements for spar neutral (s), semisubmersible

neutral (u), and spar stable (q) cases from the second group. . . . . . 86

4.7 Temporally averaged wake velocity deficit Ud plotted against
elevation z at different downstream locations x. . . . . . . . . . . . . . . . . . . . 88

4.8 Temporally averaged wake velocity deficit Ud plotted against
cross-flow coordinate y at different downstream locations x. . . . . . . . . 89

4.9 Temporally averaged turbulent kinetic energy plotted against
elevation z at different downstream locations x. . . . . . . . . . . . . . . . . . . . 90

4.10 Temporally averaged turbulent kinetic energy plotted against
cross-flow coordinate y at different downstream locations x. . . . . . . . . 91

4.11 Time-averaged velocity deficit plotted against elevation at several
downstream locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.12 Turbulent kinetic energy plotted against elevation at several
downstream locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.13 Differences in time-averaged wake velocity between fixed and floating
simulations at downstream locations of x’/D = 1, 3, 6, 9. . . . . . . . . . . . 94

4.14 Differences in time-averaged wake velocity between a fixed turbine
with 10◦ rotor yaw and a fixed turbine with 0◦ rotor yaw, at a
downstream location of x’/D = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.15 Wake center coordinates yWC , zWC versus downstream location in
neutral (A) and stable (B) atmospheres. . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Free-stream horizontal wind speed U∞, wind direction, and
turbulence intensity in the simulated ABL, averaged horizontally
and over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Three-stage simulation workflow: 1) a “precursor” LES in SOWFA
that develops the ABL, 2) SOWFA LES that contain either a
coupled OpenFAST turbine or a sampling plane at the rotor, and
3) stand-alone OpenFAST turbine simulations using the sampled
SOWFA time series as inflow wind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xvi



5.3 Partial time histories of platform surge, rotor angle φRC , rotor center
location xRC , and rotor center speed ẋRC from the prerecorded
inflow case for spar (left) and semisubmersible (right) floating
platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Side view of a scenario where pitch rotation, about the center of
rotation, creates a reported platform surge because of the distance
from the center of rotation to the platform origin, where surge is
reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Percent difference in power generation, relative to an equivalent
fixed-bottom turbine, of spar (left) and semisubmersible (right)
floating wind turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 The average (symbols), root-mean-square (−), and
minimum-maximum (vertical lines) of time histories for power
generation, blade root bending moments, and towertop
displacements (not including platform displacements) of the
downwind turbine for different simulated cases. . . . . . . . . . . . . . . . . . . 131

6.2 Fourier transform of the out-of-plane blade root bending moment
time history for each simulated case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Fourier transform of the power generation time history for each
simulated case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Fourier transform of the in-plane blade root bending moment time
history for each simulated case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Fourier transform of the towertop fore-aft displacement time history
for each simulated case, not including platform displacements. . . . . . 138

6.6 Fourier transform of the towertop side-to-side displacement time
history for each simulated case, not including platform
displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.1 Simulation domain (outer black box) with mesh refinement regions
around the wake (middle grey box) and rotor (inner white box)
for a 30◦ tilted rotor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Velocity deficit contours with wake edges and wake centers marked in
black, at different downwind cross-sections through the wake for
each simulated case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xvii



7.3 Wake edges and centers at different downwind cross-sections for
different tilt angles (top) and different surface gaps (bottom). . . . . . . 148

7.4 Sixth-degree Legendre polynomial fit (red) to wake edge polar
coordinates (black), for a selection of downwind locations and
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5 Contours of the x-component of the velocity deficit and arrows
showing the y- and z-components, at different downwind
cross-sections through the wake for each simulated case. . . . . . . . . . . 151

7.6 Circulation of the positive and negative vortices within the
counter-rotating vortex pair, at different downwind cross-sections
for each simulated case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.7 Total circulation (positive and negative) in the left and right halves of
the wake, at different downwind cross-sections for each simulated
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.8 Recovery of the velocity deficit averaged over the wake area
cross-section as a function of downwind location, starting from
0.5D downwind, for all simulated cases. . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.9 Wind power available to a second rotor at different downwind
distances, normalized by the free-stream available power, for all
simulated cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.10 Effective wind shear profiles across a downwind rotor for tilted wakes
with the standard surface gap (top) and a doubled surface gap
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.11 Velocity and volume fluxes through a rectangular surface above the
wake at different elevations, divided by the surface area, for each
simulated case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xviii



LIST OF SYMBOLS

Γ Circulation m2/s

α Angle between wind and wave directions (turbine simulations) ◦

α Void fraction: 0.0 = water, 1.0 = air (wave simulations)

β Momentum damping coefficient s−1

η Water surface elevation above still water level m

ηi Water surface elevation at time of slamming impact m

κ von Karman constant

λ Curling factor in slam force models

µ Dynamic viscosity of air Ns/m2

νT Turbulent or eddy (kinematic) viscosity m2/s

ω Frequency in sine approximation for ẋRC rad/s
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CHAPTER 1

INTRODUCTION

Offshore wind energy as a renewable energy source has expanded rapidly in the

last decade, increasing from 4.1 GW to 35.3 GW global installed capacity from 2011 to

2020 [1, 2]. This expansion is driven by better wind resources offshore and ambitious

renewable energy goals in several countries, with additional benefits such as reduced

visual impacts compared to onshore wind energy [3]. However, the complex offshore

environment introduces many new engineering challenges to consider, when designing

offshore wind turbines (OWTs) that will reliably produce power while minimizing

cost. This research focuses on three such challenges: understanding loads due to

breaking waves, understanding the behavior of floating turbines, and understanding

wakes caused by tilted rotors.

1.1 Research motivation

Offshore wind energy design relies heavily on engineering models, from design-

ing individual components of a turbine to optimizing the layout of a wind farm

array. These engineering tools are computationally inexpensive which enables itera-

tive design at reasonable timescales, but generally include many approximations and

assumptions that must be informed and confirmed by higher-fidelity models, exper-

imental data, and full-scale measurements. Unfortunately, full-scale measurements

for most OWT phenomena are usually proprietary, if they exist at all. Experimental

setups can be prohibitively expensive, especially when trying to capture the wide va-

riety of environmental conditions an OWT will experience. High-fidelity models like
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computational fluid dynamics (CFD) models can help gain a better understanding

of fundamental physics of OWT phenomena, and identify topics for more targeted

experimental or full-scale studies.

The three topics addressed in this dissertation (breaking wave loads, floating tur-

bine effects, and tilted rotor wakes) are not yet well-understood for OWTs, and predic-

tions from existing engineering models do not satisfactorily capture OWT behavior in

these areas. However, all three topics are important for the design of offshore turbines

or offshore wind farm arrays. For example, forces from breaking waves are expected

to dictate foundation design for some fixed-bottom cases [4]. Also, as offshore wind

energy moves into deeper waters beyond 50- to 60-m depth to access higher wind

resources and new energy markets, floating platforms become more economical than

fixed-bottom options [5, 6]. The additional rotor motion in floating turbines affects

power generation and fatigue loads [7, 8]. Furthermore, in large wind farm arrays,

wakes from upwind turbines reduce power production and increase fatigue loads in

downwind turbines [9, 10]. Rotor tilt is considered a potential control strategy to

increase power generation by reducing wake effects within offshore wind farm arrays

[11–13]. The rotor angle of tilted turbines and the rotor motion of floating turbines

change wake characteristics and therefore the power and loads of downwind turbines

[11, 14, 15].

1.2 Research objectives

The goal of this research is to better describe breaking wave loads, floating turbine

effects, and tilted rotor wakes using high-fidelity CFD simulations. Specifically, this

work aims to:

1. Assess the performance of engineering models for breaking wave size and loads;

2. Identify how floating platform motions affect power generation and wake char-

acteristics for a single turbine;
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3. Identify how floating platform motions affect power generation and loads in

downwind waked turbines; and

4. Characterize wakes behind tilted rotors and how these wakes interact with the

ground or sea surface.

In addition to describing and quantifying the relevant phenomena, this work seeks

to identify their underlying physical causes as well. These objectives promote im-

provement of engineering models, either by directly evaluating empirical models, or

by identifying, describing, and explaining behavior that engineering models do not

currently capture.

In achieving these research objectives, this dissertation makes the following novel

contributions to the scholarly body of knowledge:

• Evaluates breaking wave limits and slam models for conditions at East Coast

wind energy sites, finding that breaking limit accuracy depends on how wave

characteristics are measured, and that slam force models make highly conser-

vative predictions for breaking wave forces.

• Describes the far wake for floating wind turbines using high-fidelity models,

finding that fixed-turbine wake models, especially curled wake models, are ac-

ceptable for modeling floating-turbine wakes as well.

• Studies power generation for floating turbines with stochastic environmental

conditions, including determining that platform surge and pitch must be con-

currently enabled to accurately predict power.

• Proposes a new, simple analytical model for power generation in floating wind

turbines.

• Assesses how floating wakes affect downwind turbine power, including establish-

ing that the downwind platform type is more important than the upwind wake
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type, by using “mixed” cases with a fixed downwind turbine behind a floating

upwind turbine.

• Examines the wake characteristics of tilted rotors for a larger 15 MW rotor as

well as different surface-to-rotor gaps, documenting that downwind power gains

in tilted wind farm arrays are caused by the wake location, rather than a faster

deficit recovery within the wake.

• Identifies several measures to better quantify curled wakes, including counter-

rotating vortex circulation and wake shape polar coordinates.

1.3 Outline of dissertation

The first chapter of this dissertation summarizes key background information rel-

evant to this research, including several of the engineering models mentioned above,

as well as CFD techniques related to the three research areas. Following this back-

ground information, Chapters 3–7 each address an individual subtopic, including a

brief literature review, descriptions of the numerical model and simulation setups, a

discussion of the study’s results, and a summary of the conclusions for that topic.

Chapter 3 addresses breaking wave characteristics and breaking wave loads on

fixed-bottom turbines. Next, Chapters 4 and 5 examine the wake characteristics

and power generation of floating turbines, respectively. Chapter 6 continues this

theme, addressing how wakes from floating turbines affect a downwind turbine’s power

generation and structural loads. Chapter 7 then studies the wake characteristics

of wind turbines with tilted rotors, including how these tilted wakes interact with

the surface. Most of the research presented in Chapters 3-7 is also published as

conference or journal articles [16–20]. The dissertation concludes with an overview of

the research findings, including describing its scholarly contributions in more detail.

Possible directions for future work are also outlined.
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CHAPTER 2

BACKGROUND

2.1 Offshore wind turbine foundation types

OWTs can be supported by a variety of foundation types, which are classified as ei-

ther fixed-bottom or floating. Fixed-bottom designs attach directly to the seabed and

are favored for water depths up to 50–60 m [5, 6]. Common fixed-bottom categories

include gravity base, suction bucket, monopile, and jacket designs. This research uses

a monopile structure for fixed-bottom foundations, illustrated in Figure 2.1.

Floating designs consist of a buoyant platform tethered to the seafloor by a system

of mooring lines and anchors, which is more economical in deeper waters [5, 6]. Com-

mon floating categories include spar buoy, tension-leg platform, and semisubmersible

Monopile
OC3

Spar
OC3-UMaine

Semisubmersible
OC4-DeepCWind

xRC

Wind

Surge

Heave

Sway

RollPitch

Yaw

Turbine displacements

yRC

zRC

θRC

φRC

Figure 2.1. The NREL 5 MW reference turbine mounted on: the OC3 monopile, the
OC3-UMaine/OC3-Hywind spar, and the OC4-DeepCWind semisubmersible. The
subfigure defines platform displacements (surge, sway, heave, pitch, roll, and yaw) as
well as rotor displacements (xRC , yRC , zRC , φRC , and θRC) for floating turbines.
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designs. This research uses spar and semisub platforms for floating foundations, il-

lustrated in Figure 2.1. Unlike fixed-bottom foundations, floating platforms generally

move with six degrees of freedom: surge, sway, heave, pitch, roll, and yaw. Figure

2.1 also shows these degrees of freedom, which are typically defined with respect to

the wind direction (e.g. positive surge is downwind).

2.2 Engineering models for offshore wind energy

Numerous engineering models have been developed over the past several decades

to analyze processes related to wind energy. Many of these models make simplifying

assumptions that reduce their accuracy, but their low computational cost promotes

their use in design and optimization. This section summarizes the most common

engineering models used to analyze rotor aerodynamics, wind turbine wakes, and

breaking waves, and briefly discusses the limitations of each.

2.2.1 Rotor aerodynamics and power

Rotor aerodynamics are crucial for many wind energy analyses, influencing power

generation and loads on system components. Wind turbine aerodynamic performance

is typically characterized by the power coefficient CP , the ratio between the rotor

power P and the power available in the wind Pwind. Engineering tools for predicting

CP and turbine aerodynamics typically utilize simplified theories for forces on the

rotor and flow around the rotor. Nearly all rotor aerodynamics engineering tools

make use of two theories: momentum theory, and the more advanced blade element

momentum theory.

2.2.1.1 Momentum theory

The simplest approach to wind turbine aerodynamics is momentum theory, based

on conservation of mass, axial and angular momentum, and energy in a control volume

around an idealized rotor disk. The flow is assumed to be inviscid, incompressible, and
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axisymmetric. In this framework, the rotor power depends on the power coefficient

and the power available in the wind Pwind, given by the kinetic energy flux of the

wind ~U∞ through the rotor disk area ~A:

P = CPPwind

= CP

∫∫
A

1

2
|~U∞|2

(
ρ~U∞ · d ~A

)
= CP

1

2
ρ|~U∞|2~U∞ · ~A, if ~U∞ is uniform over ~A.

(2.1)

For a uniform wind field of ~U∞ = U∞ı̂ and a stationary rotor plane perpendicular to

the wind, this reduces to the well-known power formula

P =
1

2
ρCPAU

3
∞. (2.2)

Expanding on these ideas, Betz [21] developed a simple 1D momentum theory

that predicts a maximum possible power coefficient of CP = 16/27 ≈ 0.593. This

upper maximum, known as the Betz limit, is further reduced in physical turbines

by wake rotation, aerodynamic drag, and blade tip losses. Glauert [22] extended 1D

momentum theory by considering annular control volumes along the rotor radius and

including wake rotation. In this case, the maximum possible CP becomes a function

of tip speed ratio, approaching the Betz limit for high tip speed ratios [3]. Further

details of momentum theory are summarized by Sørenson [23] and Manwell et al. [3].

2.2.1.2 Blade element momentum theory

Building on momentum theory, Glauert [22] developed blade element momentum

(BEM) theory as a practical engineering approach to analyzing wind turbine blades.

BEM theory calculates the local aerodynamic forces on thin blade cross-sections (el-

ements) using tabulated lift and drag coefficient data for 2D airfoils. Flow velocity

and angle at these blade elements are predicted using momentum theory, typically
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corrected by a tip-loss factor to account for the finite number of blades in physical

rotors. Further modifications are required for unsteady or yawed inflow, operation

in the turbulent wake state, and 3D airfoil effects [23]. Additional details of BEM

theory are described by Sørenson [23] and Manwell et al. [3].

Despite BEM theory’s simplifying assumptions and reliance on airfoil coefficient

data, BEM-based models remain the most popular tools for wind turbine aerodynamic

design due to their low computational cost [23, 24]. More advanced models, including

some CFD approaches, combine higher-fidelity flow models with BEM theory’s blade

element approach (see Section 2.3.3).

2.2.2 Wake models

Because most modern wind turbines are arranged in large farms, turbine-to-

turbine interaction through wake effects is also vital for predicting power production

and loads for downstream turbines. Several engineering models have been proposed

for predicting the large-scale characteristics of wakes behind a single turbine, as well

as models for predicting wake behavior at the farm scale.

2.2.2.1 Single-turbine wake models

Numerous studies have examined the properties of wakes caused by single fixed-

bottom wind turbines, as reviewed by Vermeer et al. [24] and Crespo et al. [25], with

more recent reviews by Sørenson [23] and Stevens and Meneveau [10]. The classic

theory for turbulent axisymmetric wake in laminar flow is not valid for wind turbine

wakes, where mixing is heavily influenced by atmospheric boundary layer (ABL)

turbulent structures and the wake is subject to the ABL’s vertical velocity shear

[10]. Instead, several engineering models have been proposed with varying levels of

complexity specifically for single wind turbine wakes.

There are three popular analytic “kinematic” wake models. The Jensen (or Katic)

model [26] assumes linear downstream expansion and an axisymmetric, uniform cross-
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stream profile; it is recommended for x > 3D [9]. The Larsen model [27] is based

on self-similarity and Prandtl’s turbulent boundary layer equations and assumes an

axisymmetric, radially varying cross-stream profile; it is recommended for x < 9.6D

[9]. Finally, the Frandsen model [28] is based on self-similarity and a momentum

control volume and assumes an axisymmetric, uniform cross-stream profile; it is rec-

ommended for x < 10D [9].

Other common single-turbine wake models include the Bastankhah and Porté-Agel

model [29], the Xie and Archer model [30], and the geometric model [31]. These wake

models are discussed in more depth by Archer et al. [9] and Stevens and Meneveau

[10].

More advanced wake models that solve simplified forms of the Reynolds-averaged

Navier-Stokes (RANS) equations (see Section 2.3.1) are also gaining popularity as

engineering tools [32]. For example, the Ainslie model [33] solves the axisymmetric

parabolic Navier-Stokes equations and assumes an axisymmetric cross-section with a

Gaussian inflow profile [23]; it is recommended for x > 2D [32].

In general, more advanced wake models like the Ainslie model and its variations,

which solve simplified versions of the RANS equations, can offer more accurate results

than the early kinematic models of Jensen, Frandsen, and Larsen [32, 34]. However,

these models are more computationally expensive and typically still include some lim-

iting assumptions, such as axisymmetric wake profiles, that are not entirely realistic.

Sanderse et al. [32] review these RANS-based wake models in more detail. Recent

expansions to these RANS wake models include a curled wake model by Mart́ınez-

Tossas et al. [35, 36], which adds a vortex line to better model the curled wakes from

angled rotors.
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2.2.2.2 Farm-scale wake models

Often building on the single-turbine wake models described above, several methods

have been proposed to model multiple wakes and their interactions at farm scales.

A key feature of farm-scale wake effects is wake interaction, where multiple wakes

overlap and combine. Superposition models mathematically superimpose the effects of

individual wakes, typically through summing the velocity deficits or squared velocity

deficits:

U − U∞ =
∑

(Un − U∞) , or (2.3)

(U − U∞)2 =
∑

(Un − U∞)2 , (2.4)

where Un is the single-turbine wake velocity for the nth turbine and U∞ is the free-

stream velocity [10, 34]. U∞ can either be the true free-stream velocity outside the

farm, or the inflow to turbine n. However, there is no consensus on which super-

position model performs best, or even if such a velocity superposition approach is

physically justified [10].

Wake interaction within very large arrays is also sometimes described as a wind

turbine array boundary layer [37], where the wakes merge into a fully developed flow

after 2-3 rows so that only vertical momentum and energy exchange is important

[10, 34, 37]. Modeling this fully developed regime within the farm requires accurate

modeling of the surrounding ABL, which may explain the inaccuracy of single-turbine

wake superposition; most single-turbine wake models do not account for ABL prop-

erties [10].

In addition to wake interaction, wake meandering – the large-scale horizontal and

vertical motion of a wake caused by ABL fluctuations – can also significantly affect

downstream wind turbines. The dynamic wake meandering model [38] addresses this

by superimposing the meandering of the wake center with a steady wake deficit from

one of the single-turbine wake models described above [10].
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Overall, engineering models for wind turbine wakes, particularly the interaction

of wakes in large offshore farms, is an area of ongoing research and development

(see, for example, the work of Walker et al. [39], Barthelmie et al. [40, 41] and

the WAKEBENCH project [42]). In particular, there is no consensus on the validity

of engineering wake models for floating OWT wakes or wakes due to tilted rotors.

CFD simulations are valuable tools to better understand the physics of wake effects

in offshore wind arrays, so that better engineering models can be developed and

validated [34].

2.2.3 Breaking wave models

Engineering models are also used when designing OWT foundations, including

when analyzing breaking wave loads on fixed-bottom OWTs. Two categories of en-

gineering models are useful to understand how breaking waves interact with OWT

foundations. First, empirical limits predict whether a wave will break given its char-

acteristics. Second, slam models predict the impact force on structures due to a

breaking wave. The most popular models within each category are described in the

following sections.

2.2.3.1 Breaking wave limits

When designing support structures that can withstand breaking waves, inexpen-

sive yet accurate models are needed for predicting whether a given wave will break.

Many additional studies have examined numerical modeling of breaking wave kine-

matics, as summarized by Chella [43]. CFD models with two-phase flow have been

recently favored for capturing the role of air during breaking [43], but are computa-

tionally expensive. Empirical breaking limit models offer an inexpensive alternative,

and have been used to predict breaking for decades [44].

Numerous breaking limit models have been proposed, as summarized by Jensen

[44] and Rattanapitikon and Shibayama [45]. The following four limits are commonly
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used to predict the maximum wave steepness of a non-breaking wave:

McCowan (1894):
H

L
= 0.78

d

L
(2.5)

Miche (1944):
H

L
= 0.142 tanh

(
2π
d

L

)
(2.6)

Battjes (1978):
H

L
= 0.142 tanh

(
0.8

0.88
2π
d

L

)
(2.7)

Goda (1974):
H

L0

= 0.17

(
1− exp

(
− 1.5π

d

L0

(
1 + 15s4/3

)))
(2.8)

for wave height H (m), wavelength L (m), water depth d (m), seafloor slope s, and

deep water wavelength L0 (m) [44, 45]. These models predict that a wave will break

if its steepness (H/L) exceeds these limits.

The McCowan, Miche, and Battjes limits were developed for water of constant

depth d (s = 0%). The McCowan formulation assumes solitary waves, and therefore

includes no direct dependence on wavelength L. The Miche formulation assumes

periodic waves, as does the Battjes limit which is adapted from the Miche limit. The

Goda formulation was developed for waves on a sloped seafloor and assumes L0 is the

deep water (unshoaled) wavelength, while H and d are measured at breaking [44].

Rattanapitikon and Shibayama [45] evaluate twenty-four different breaking limits

against a large collection of experimental datasets. They find that for the limits

described in Equations 2.6 – 2.8, Miche is most accurate for s > 7%, but Goda is

most accurate for s ≤ 7%. All four models have higher errors with increasing seafloor

slope [45]. However, there is little consensus on which breaking limit performs best

for ocean conditions specific to OWT sites.

2.2.3.2 Slam force models

Empirical expressions are also used to predict loads on structures due to breaking

waves. Wave loads on cylindrical structures like monopiles are typically calculated

using the Morison equation with a drag term FD and inertia term FI . When a
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breaking wave front slams into the cylinder, an additional slam term FS is added to

the Morison equation for the force in the direction of wave propagation [4, 46, 47]:

F (t) = FD(t) + FI(t) + FS(t). (2.9)

This slam term takes the form

FS(t) = ληiρwRC
2
pCs(t), (2.10)

where λ is the curling factor, ηi is the surface elevation at impact, ρw is the density of

water, R is the cylinder radius, Cp is the wave celerity, and Cs(t) is the time-varying

slam coefficient [4, 46]. The term ληi measures how much of the cylinder’s height is

affected by the slamming force; values of 0.4 to 0.5 for λ for plunging breakers are

typically cited from Goda et al.’s 1966 work [47, 48].

However, there are several disagreeing models for the slam coefficient Cs(t). Four

of the most popular are described in Table 2.1: Goda 1966, Campbell-Weynberg

1980 (C-W), Cointe-Armand 1987 (C-A), and Wienke-Oumerachi 2005 (W-O) [4, 46].

These four models predict different slam force durations ∆ts, different shapes for the

Cs(t) curve, and different values for the maximum slam force. All four models predict

a peak Cs (and therefore a peak slam force) at the beginning of the slam force time

history, when ts = 0.

2.3 CFD models for offshore wind energy

Given the simplifying assumptions and limited accuracy of engineering models,

CFD simulations offer a higher-fidelity method for gaining insight into OWT behav-

iors. However, simulating the coupled systems of the wind turbine and the surround-

ing atmospheric flow is a complex and computationally expensive problem.
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Table 2.1. Common slam force models, their predicted slam durations, and their
predicted slam coefficient time histories. Adapted from Tu et al. [46].

Model ∆ts CS(t): peak value is bolded

Goda R
Cp

π
(

1− Cpts
R

)

C-W 2R
Cp

5.15
(

R
R+9.5Cpts

+
0.0535Cpts

R

)

C-A 3R
Cp

2π
(

4.72− ln
(

Cpts
R

))√
Cpts
R

W-O 13R
32Cp



2π − 2
√

Cpts
R tanh−1

(√
1− Cpts

4R

)
, for 0 ≤ ts ≤ R

8Cp

π
√

R
6Cpt′s

− 4

√
8Cpt′s
3R tanh−1

(√
1− Cpt′s

R

√
6Cpt′s

R

)
,

for R
8Cp
≤ ts ≤ 13R

32Cp
,

where t′s = t− R
32Cp

A full discussion of all CFD methods used to simulate wind turbines is beyond

the scope of this proposal; refer to the reviews of Sanderse et al. [32] and Mehta et al.

[34] for additional discussion. This section provides a brief overview of several simpli-

fying models that make simulating OWTs with CFD feasible, specifically turbulence

models, atmosphere modeling, rotor models, wave modeling, and floating platform

modeling.

Most CFD methods use the incompressible form of the Navier-Stokes equations to

model wind turbine flow and wakes [24]. The incompressible Navier-Stokes equations

in Einstein’s index notation are

∂ui
∂xi

= 0, and (2.11)

∂(ρ0ui)

∂t
+
∂(ρ0uiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

))
+ρ0gi

θ − 〈θ〉
θ0

+ fcεij3uj + ρ0fi,

(2.12)
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where t is time, ui and xi are the velocity and position vectors respectively, p is the

pressure, and ρ0 and θ0 are the reference air density and temperature respectively.

The buoyancy term ρ0gi(θ−〈θ〉)/θ0 is Boussinesq’s approximation using the spatially

averaged temperature 〈θ〉, typically averaged over horizontal planes [34]. The Coriolis

term fcεij3uj is often neglected except for large wind farms [32, 49]. Finally, the term

ρ0fi represents the force of the turbine rotor (and sometimes the tower and nacelle)

on the flow; this rotor force is discussed in more detail in Section 2.3.3.

2.3.1 Turbulence models

Turbulence is a key feature of fluid flows in wind energy: turbulent inflow affects

power production as well as turbine loads, and turbulence is the driving mechanism

in wake behavior. There are three sources of turbulence in wind turbine wakes: atmo-

spheric turbulence due to surface roughness and thermal effects; mechanical turbu-

lence from the blades, tower, and nacelle; and wake turbulence due to the breakdown

of tip vortices shed from the blades [32]. Unwaked turbines with “undisturbed” inflow

still experience atmospheric turbulence as well.

Although Equations 2.11–2.12 fully describe turbulent flow for wind turbines,

solving these equations directly is complicated by the nonlinear convection term and

its associated range of time and length scales [34]. Resolving all these scales in direct

numerical simulation is not feasible for most wind turbine studies: turbulent scales

in the ABL range from 1 km to 1 mm, while scales in the blade boundary layer are

even smaller [32]. Instead, turbulence models are used to model the unresolved scales

for a less computationally expensive simulation.

2.3.1.1 RANS turbulence models

The Reynolds-averaged Navier-Stokes (RANS) turbulence model assumes turbu-

lent variables (such as the velocity ui) can be separated into an ensemble-averaged

portion ui plus a fluctuating portion u′i. Substituting this decomposition into Equa-
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tions 2.11–2.12 gives rise to the RANS equations (see [34]), which are solved for the

averaged velocity ui, pressure p, and temperature θ. In the RANS equations, the

Reynolds stress tensor τRij = u′iu
′
j must be modeled in terms of these known flow

variables, creating the so-called closure problem [34].

The Boussinesq hypothesis (distinct from the Boussinesq approximation for den-

sity effects) is often used to model the Reynolds stress tensor based on a turbulent

(or eddy) viscosity νT . Various models have been proposed to represent the turbulent

viscosity νT , such as the popular k− ε and k−ω models and their variants. However,

most of these models are not valid for the ABL’s anisotropic turbulence or the wake

shear layer’s rapid changes in mean strain rate [32, 34]. The Reynolds stress model is

an alternative approach to the Boussinesq hypothesis suitable for anisotropic flows,

but is more expensive and typically relies on models that resemble the Boussinesq

hypothesis for additional parameters [32].

In addition, numerical diffusion is typically employed to help stabilize RANS sim-

ulations, causing unrealistically rapid wake recovery unless model constants are care-

fully adjusted [50]. Despite these limitations, RANS models remain popular due to

their reasonable accuracy and intermediate computational cost. Sanderse et al. [32],

Mehta et al. [34], and Cabezón et al. [50] provide additional commentary on RANS

models and their limitations for wind turbine flows.

2.3.1.2 LES turbulence models

Although many CFD studies of wind turbines still rely on RANS turbulence mod-

els, the large eddy simulation (LES) approach has emerged as a more sophisticated

way to study the underlying physics of wind turbine flow phenomena, particularly in

wakes. Fundamentally, LES resolves large energy-containing scales as well as inter-

mediate inertial scales, modeling only the small Kolmogorov scales that are strongly

influenced by molecular viscosity [34]. Mathematically, LES decomposes the turbu-
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lence variables into a filtered (resolved) component ũi plus a subgrid (unresolved)

component u′i. Substituting this decomposition into Equations 2.11–2.12 introduces

the filtered convection term ũiuj, which is usually modeled as

ũiuj = ũiũj + τSGSij (2.13)

where τSGSij is the subgrid-scale (SGS) stress tensor [34], which physically represents

how the unresolved scales affect the larger (resolved) scales [32].

Like the Reynolds stress tensor in RANS, there are many proposed models for the

SGS stresses. The most popular SGS models for wind farm LES are eddy-viscosity

models, which relate the SGS stresses to the resolved velocity field ũi through the

local eddy viscosity νT using the Boussinesq hypothesis [32, 34]. Commonly used

eddy-viscosity models for wind farm simulations include the Smagorinsky model and

variants, as well as Germano’s standard dynamic model (SDM) and variants like

the scale-dependent dynamic model. Although SDM-type models can produce more

accurate results than Smagorinsky-type models, their filter-based approach is only

computationally feasible with pseudo-spectral CFD schemes [34]. Mehta et al. [34]

provides an in-depth discussion of LES SGS models and their limitations for wind

farm simulations.

Note that the most widely used LES closures do not model anisotropic turbulence

(like the ABL) well, just like most RANS closures. Also, overly dissipative spatial

and temporal discretizations can cause wake turbulence to decay too quickly in LES,

just as in RANS. However, LES mesh refinement studies are often neglected in favor

of energy spectrum comparisons, encouraging partial cancellation of numerical error

with subgrid modeling error [32]. Despite its limitations and high computational

cost, LES can capture the time evolution of turbulent eddies, allowing for realistic

conditions like wind gusts and wake meandering [34].
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2.3.1.3 Vortex methods for turbulence

Vortex methods offer a fundamentally different approach to modeling turbulent

flow, assuming that the main flow features can be modeled as inviscid potential flow.

This allows for linear superposition of uniform flow profiles and vortex lines, which are

discretized into filaments and tracked as Lagrangian markers [15, 51, 52]. Free-wake

vortex simulations often model the rotor blades as lifting lines that shed vorticity

from their trailing edges, circumventing the actuator models described in Section

2.3.3 [52, 53]. Further details of vortex methods as applied to wind turbines are

discussed by Sebastian and Lackner [15] and Farrugia et al. [51].

Vortex methods are sometimes considered mid-fidelity CFD models due to the

assumption of inviscid potential flow, which does not accurately capture strong flow

separation on the blade [7] and may not completely capture the complex rotor-wake

interaction in floating OWTs [15]. Nonetheless, vortex methods are computationally

much less expensive than LES or RANS simulations, and have been successfully used

to analyze the aerodynamics and wakes of fixed-bottom and floating wind turbines

(see, for example, [15, 51–54]).

2.3.2 Modeling the atmospheric boundary layer

Turbulence modeling is important for wind turbines in part because all wind

turbine arrays are located in the turbulent atmospheric boundary layer (ABL), the

lower section of the atmosphere affected by Earth’s surface. Above the ABL, the

atmospheric flow is characterized by a geostrophic velocity due to geostrophic bal-

ance, when the Coriolis accelerations are balanced by large-scale horizontal pressure

gradients. Wind arrays are typically assumed to not affect the geostrophic balance,

although large arrays can affect characteristics of the ABL [10].

ABL characteristics such as mean velocity profiles, turbulence intensity, and tur-

bulence structures are determined by thermal stratification, measured by the vertical
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gradient in (average) potential temperature ∂θ/∂z. Three broad categories are used

to describe the ABL for different thermal stratifications: near-neutral (∂θ/∂z ≈ 0),

stable (∂θ/∂z > 0), and unstable (∂θ/∂z < 0). Unstable conditions generally have

higher turbulence than neutral conditions, with larger vertical structures due to con-

vective mixing. Conversely, stable conditions have less turbulence with suppressed

vertical structures [55].

In general, higher wind speeds correlate with more neutral conditions at offshore

sites, although the distribution of stable, unstable, and neutral conditions varies

widely by site [56–58]. Figure 2.2 shows the distribution of different atmospheric

stability conditions at two offshore wind sites for different wind speeds. Due to the

site-specific nature of this distribution, it is difficult to choose a representative offshore

atmospheric stability when setting up simulations.

In terms of wind turbines, atmospheric stability affects wind speed at hub height,

wind shear across the rotor, and turbulence properties, which in turn have a significant

Figure 2.2. Distribution of atmospheric stability conditions at the Høvsøre (a) and
Egmond aan Zee (b) offshore wind farms as a function of mean wind speed. Conditions
are classified as very stable (vs), stable (s), near-neutral stable (nns), neutral (n),
near-neutral unstable (nnu), unstable (u), or very unstable (vu). Reproduced from
Sathe et al. [58].
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impact on wind turbine power production [56], loads [55, 58], fatigue [57], and wake

characteristics [55], particularly at farm scales.

2.3.2.1 Monin-Obukhov similarity theory

The most widely used ABL model is Monin-Obukhov similarity theory, derived

from classic boundary layer theory, which gives the mean free-stream wind speed U∞

as a function of elevation z:

U∞(z) =
u∗
κ

[
ln

(
z

z0

)
− ψ

(
z

L

)]
, (2.14)

where κ = 0.4 is the von Karman constant, u∗ is the friction velocity, z0 is the aerody-

namic surface roughness height, L is the Obukhov length, and ψ(z/L) is an empirically

based thermal stratification correction function [10, 57]. In practice, Equation 2.14

is often written in terms of a known wind speed at a reference height zr:

U∞(z) = U∞(zr)
ln ( z

z0
)− ψ

(
z
L

)
ln ( zr

z0
)− ψ

(
zr
L

) , (2.15)

so that the wind speed profile can be calculated using only the reference height wind

speed (often the hub-height wind speed), the surface roughness z0, and the Obukhov

length L (for non-neutral stability) [57]. Sathe and Bierbooms [57] provide further

details on Monin-Obukhov similarity theory.

Monin-Obukhov similarity theory requires the aerodynamic surface roughness z0,

which depends on the terrain. For offshore sites in particular, there is little consensus

on an appropriate model for z0; commonly used models include assuming a constant

z0, the simple Charnock relation, and more complicated wave-dependent models based

on wave age [56, 59, 60]. However, work by Motta et al. [56] and Lange et al.

[60] suggests that using different surface roughness models have negligible effect on

OWT wind resource assessment, likely because roughness model errors only become
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significant at high wind speeds, where the turbine power curve is flat [60]. On the

other hand, studies by Churchfield et al. [55] and Lee et al. [61] indicate that different

values for z0 can produce significantly different turbine loads and waked turbine power

production, due to differences in turbulence.

2.3.2.2 Modeling the offshore ABL in CFD

There are two main approaches when simulating the offshore ABL for CFD studies

of OWTs, differentiated by their approach to the offshore environment’s wind-wave

coupling. The first approach is to decouple the wind and waves by using Monin-

Obukhov similarity theory for the bottom boundary condition (see, for example,

[12, 55, 61, 62]). This method avoids simulation of the waves, depending only on the

sea surface roughness z0, making it computationally more efficient. It also permits

parameter studies to independently vary wave properties and wind properties.

The second approach is to simulate both the wind and waves using CFD, allowing

for better wind-wave coupling. This approach often features fully two-phase simula-

tions where the air and water phases are concurrently simulated using a single solver

(see, for example, [7, 63]). Alternatively, sometimes the air and water phases are par-

tially or fully coupled through surface elevation, velocity, and pressure despite using

different solvers (see, for example, [64, 65]). In general, simulating both phases is more

computationally expensive and these studies tend towards smaller domains focusing

on single-turbine behavior. However, this approach is popular for simulating floating

platforms, where accurate wind-wave coupling can affect turbine aerodynamics.

Regardless of the wind-wave coupling approach, CFD simulations must provide

appropriately turbulent inflow boundary conditions and initial conditions for the air

phase. RANS simulations can generally use Monin-Obukhov similarity theory to

prescribe velocity profiles and turbulence characteristics. However, the time-varying

nature of LES requires one of two techniques for generating unsteady inflow. First,
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a synthetic turbulent field based on the desired turbulence characteristics can be

prescribed, although this approach often neglects the effects of the ground.

Alternatively, a precursor simulation can be used to generate a turbulent velocity

field that accurately includes the effect of the ground and is furthermore a solution

to the Navier-Stokes equations. However, precursor simulations are more expensive

and cannot easily be adjusted to acquire the desired turbulence characteristics [32].

Sanderse et al. [32] provides a more detailed review on initial conditions and boundary

conditions in CFD simulations of the ABL.

2.3.3 Modeling turbine rotors

In most RANS and LES studies of wake behavior, rotors are modeled by actu-

ator disks or lines rather than resolving the flow around each blade. This avoids

simulating the blade boundary layer with CFD, which greatly reduces the meshing

requirements around the rotor, both in complexity and number of mesh elements.

Also, directly simulating the blade geometry can require solving the compressible

Navier-Stokes equations, to capture compressability effects at the blade tips of large

turbines. Therefore, actuator models significantly lower the computational cost com-

pared to blade-resolved CFD [32]. Given current computing limitations, it remains

unfeasible to simulate a many-turbine array using a blade-resolved approach; actuator

models are the preferred alternative for CFD studies of wakes [34].

In an actuator model, the rotor is represented as a momentum sink and a turbu-

lence source in the flow equations, to account for the force exerted on the flow by the

rotor as well as the mechanical turbulence created by the blades [32]. The two main

classes of actuator models (disk and line) differ in the form of the momentum sink

term ρfi in Equation 2.12, with a trade-off of accuracy and computational cost.
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2.3.3.1 Actuator disk models

The actuator disk model (ADM) represents the rotor as a disk with swept area A.

The uniformly loaded ADM assumes the rotor force ρfi is constant across the rotor

disk, expressed as a function of a “reference” velocity and the thrust coefficient CT .

However, this reference velocity is poorly defined for yawed turbines or turbines in

disturbed flow, including wakes [32]. An alternative is non-uniformly loaded disks,

which assume the rotor force varies with radial position, but is constant across an

annular section of the disk. As in BEM theory, blade lift and drag coefficients are

used to predict the force for each annulus. Unlike BEM theory, the local flow velocity

is interpolated from the surrounding CFD flow field [32].

In addition to allowing axially non-uniform loading, the ADM with rotation

(ADM-R) adds tangential forces to consider rotational effects. The work of Wu and

Porté-Agel [66, 67] suggests that the uniformly loaded ADM significantly underpre-

dicts the wake deficit and wake turbulence intensity compared to the ADM-R (with

non-uniform loading). Consequently, the ADM-R approach better predicts the power

output of a large wind farm, where wake effects are important [67]. Additional ADM

variations and their performance are summarized by Sanderse et al. [32].

2.3.3.2 Actuator line models

Sørenson and Shen [68] extended the non-uniformly loaded ADM to the actuator

line model (ALM), where the rotor force ρfi is represented as line forces at each

blade. The blade forces vary with radial position and are again based on airfoil lift

and drag coefficients. Due to the ALM’s reliance on 2D airfoil data, corrections are

implemented to account for centrifugal, Coriolis, and tip effects [32].

Unlike ADM variations, the ALM can capture blade tip vortices and generally

performs better in the near wake (x < 3D) than the ADM [68, 69]. As shown in Figure

2.3, the ALM and ADM-R are of comparable accuracy, though both perform better
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Figure 2.3. Comparison of average horizontal velocity as a function of height z
at different downstream locations x for ADM (−−), ADM-R (−), ALM (u), and

experiment (E). Adapted from Sanderse et al. [32] and Porté-Agel et al. [49].

than the ADM in the near wake. However, the ALM generally requires higher mesh

resolution across the rotor diameter than either ADM approach [32, 70]. Furthermore,

work by Stevens et al. [69] and Wu and Porté-Agel [66, 67] indicates that the ADM

approach is preferable to ALM for large farm studies; ADM-R in particular can

satisfactorily predict flow within the farm at a lower computational cost.

However, these comparisons between the ADM and ALM have thus far been

conducted only for fixed-bottom turbines. Floating platform motion induces non-

axisymmetric variations in relative velocity across the rotor disk. These variations

can only be captured by the ALM and not by the ADM or ADM-R, which at best

assume constant loading across each disk annulus. It is unclear if these velocity vari-

ations cause significant wake differences far enough downstream to favor ALM-based

simulations for floating turbine farm studies.
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In addition to modeling the rotor, an ALM-like body force approach can be used

to model the effect of the tower and nacelle on the flow. This method is more easily

implemented than an immersed boundary method and less computationally expen-

sive than resolving the structures [71]. Including tower and nacelle effects typically

improves wake predictions, particularly in the near wake [71, 72]. Santoni et al.

examines tower and nacelle effects on the wake in more detail [72].

2.3.3.3 Models with flexible rotors

If the rotor force is simulated using a blade-resolved approach, ALM, or vortex

method lifting lines, the blades can be modeled as either rigid bodies or with an elastic

structural model, creating a so-called flexible rotor. Manolas et al. [53] and Lee et

al. [14] conducted CFD simulations of floating OWTs with flexible rotors. Work by

Rodriguez and Jaworski [52] indicates that flexible rotors cause earlier breakdown of

the tip vortices in the near wake. However, flexible rotors require an additional elastic

structural model, adding complexity.

2.3.4 Modeling wave hydrodynamics

There are two main approaches to modeling ocean hydrodynamics within CFD

simulations for offshore wind energy. The first approach is to solve the Navier-Stokes

equations for the water phase as well, requiring a two-phase CFD model. The Volume

of Fluid (VOF) method is often used for these multi-phase simulations, which can

be extremely computationally expensive. Two-phase VOF is used when simulating

the areodynamics of floating OWTs (see [7, 63, 65, 73]) as well as breaking waves for

fixed-bottom OWTs (see [43]).

The second approach is to rely on engineering models based on potential flow

or strip theory, such as OpenFAST’s HydroDyn module [74]. This decouples the

simulated wind from the waves, but is much less expensive computationally. This
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approach is frequently used for CFD simulations focused on rotor aerodynamics or

turbine wakes, especially when simulating multiple turbines.

2.3.5 Modeling turbine foundations

CFD simulations of OWTs also sometimes require models for the turbine foun-

dation, whether fixed or floating. The foundations of fixed-bottom OWTs are either

assumed to be rigid and stationary, or an elastic structural model is employed to cap-

ture the structural deformation and dynamics. The rigid foundation approximation

is popular for CFD studies focused on breaking wave kinematics or turbine wakes.

However, simulating OWTs mounted on floating platforms introduces the complexity

of accurately modeling floating platform motion. Approaches to including floating

platform motion in CFD simulations fall into two categories: prescribed or coupled

platform motion.

2.3.5.1 Prescribed platform motion

The easiest approach to simulating a floating platform in CFD is to prescribe

platform motion (see, for example, [15, 51, 52, 54, 64, 65, 75, 76]). Often only 1-3

degrees of freedom – typically surge, heave, pitch, or yaw depending on the floating

platform type – are retained to simplify analysis. The complexity of the prescribed

motion ranges from simple sinusoidal motion in a single degree of freedom, to platform

displacement time histories from simulations in engineering tools like OpenFAST [15].

Unfortunately, many current studies do not thoroughly justify their prescribed

motion. In general, the amplitude and period of prescribed sinusoidal motion should

be well-justified for the particular platform, wind speed, and wave characteristics

through comparison to simulations, experiments, or field measurements that include

the effects of aerodynamic loading on the platform motion. For example, studies by

Sebastian and Lackner [15] and Farrugia et al. [51] prescribe bi-sinusoidal platform

motion based on fits to platform displacement time histories simulated in OpenFAST.
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Although easily implemented, prescribed platform motion only allows one-way

coupling between the platform motion and the aerodynamic loading. In reality, the

platform motion is affected by aerodynamic loading, which is in turn dependent on

platform motion [7, 15]. This two-way coupling cannot be accurately replicated using

prescribed platform motion, although it can be approximated if the prescribed motion

is informed by methods that do include the two-way coupling.

2.3.5.2 Coupled platform motion

Instead of prescribing platform motion, several CFD studies have coupled the

platform motion to the aerodynamic and hydrodynamic loading (see, for example, [7,

14, 53, 63, 65, 73]). This approach is widely used by studies that use VOF CFD for the

water phase [7, 63, 65, 73], since the hydrodynamic forces are easily calculated without

resorting to models like the Morison equation. However, less expensive possibilities

include coupling aerodynamic CFD to engineering tools for hydrodynamic loads, as

done by Manolas et al. [53] and Lee et al. [14].

Regardless of how the hydrodynamic forces are modeled, coupled platform motion

also requires an accurate mooring line model. VOF simulations tend to use in-house

mooring line models, which are often validated against engineering tools like Open-

FAST [7, 63, 65, 73]. Alternatively, engineering tools can provide mooring models

packaged with hydrodynamic load models, controls models, and elastic structural

models [14, 53].

2.4 Background summary

In offshore wind energy models, high-fidelity and detailed results usually come at

the cost of increased computational expense. Engineering models for rotor power,

turbine wakes, and breaking wave loads are used in design and optimization due to

their low costs. CFD simulations can offer a better understanding of these phenomena,
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and in some cases more accurate predictions, which can inform future improvements

to the engineering models.

Even within CFD simulations of OWTs, computational cost is often reduced by

limiting detailed accuracy when modeling turbulence, the ABL, turbine rotors, wave

hydrodynamics, and fixed or floating foundations. However, this trade-off is required

depending on the focus of study: higher-fidelity simulations like RANS or LES of

a blade-resolved turbine with two-phase VOF and coupled platform motion cannot

simulate beyond the near wake due to computational cost, even with cost-saving

numerical schemes (see for example [7, 63]). Though computational power continues

to improve, CFD simulations still require properly applied models to remain valuable

tools for understanding OWT aerodynamics, wakes, and wave loads.
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CHAPTER 3

BREAKING WAVES FOR FIXED-BOTTOM TURBINES

Fixed-bottom OWTs in shallower water depths are likely to experience breaking

waves due to bottom interaction, particularly during severe sea states [77, 78]. Break-

ing waves can cause significant loads on offshore structures [79] and are expected to

drive the design of OWT support structures for some design cases [4].

Numerous experimental and numerical studies have examined breaking wave loads

on fixed-bottom OWT support structures (see, for example, the work of the Wave

Loads project [80], the Wave Impact on Fixed Foundations Joint Industry Project [79],

Chella [43], Stansby et al. [81], and Marino et al. [82]). Other studies have addressed

breaking wave loads on similar slender cylindrical structures (see, for example, the

work of Wienke and Oumeraci [47], Luck and Benoit [83], and Irschik [84]). These

studies mainly focus on modeling breaking wave kinematics and loads, rather than

predicting if waves are breaking or non-breaking.

In the first component of this research, the performance of four breaking limits

(McCowan, Miche, Battjes, and Goda from Equations 2.5–2.8) is evaluated and com-

pared for regular wave trains shoaling over sloped bottoms in conditions representative

of potential wind energy development sites off the U.S. Atlantic Coast. To provide

a basis for comparison, nonlinear regular wave trains are simulated using CFD for

numerous combinations of wave height, wavelength, water depth, and seafloor slope.

Shoaling regular waves are selected as cleanly representative of breaking due to bot-

tom interaction and seafloor slope, but this neglects breaking due to superposition of

irregular wave train components [44].
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In the second component of this research, the performance of four slam force

models (Goda, Campbell-Weynberg, Cointe-Armand, and Wienke-Oumerachi from

Table 2.1) is evaluated and compared using CFD simulations of regular wave trains

shoaling over a sloped seafloor until the waves break on or shortly before monopile

foundations. A total of four different combinations of wave height, wavelength, and

monopile size are considered.

In this chapter, the CFD model used to simulate the wave trains is described

first. The model is then verified against analytical solutions and validated against

experimental data for four cases: a dam break case, nonlinear wave propagation,

nonlinear wave shoaling experiments, and nonlinear wave force experiments. The

CFD simulations for evaluating the breaking wave limits are then described, and

their results compared to the four limits. Finally, the CFD simulations for evaluating

the slam force models are described, and their results compared to the four slam

models.

3.1 Numerical models

The regular wave trains are simulated using a two-phase finite-volume CFD model

that solves the 3D incompressible Navier-Stokes equations. The air-water interface is

modeled using a VOF approach with a void fraction solution method with Piecewise

Linear Interface Calculation (PLIC) interface reconstruction. The model is imple-

mented in CONVERGE version 2.4.15, a commercial CFD software with adaptive

meshing capabilities [85].

The CFD model uses the Pressure Implicit with Split Operator (PISO) solver algo-

rithm with Rhie-Chow interpolation, using SOR and BiCGstab matrix solvers for the

momentum and pressure terms respectively. For the momentum advection term, the

CFD model uses a blended Monotonic Upstream-Centered Scheme for Conservation

Laws (MUSCL) interpolation scheme, with a van Leer flux limiter [85].
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The CFD model does not include a turbulence model or wall functions, although

the mesh resolution is not fine enough to resolve the boundary layer on the domain

bottom. However, various turbulence models were found to add too much dissipation

in the validation cases and did not agree well with experimental results.

3.1.1 Wave generation and absorption

In the simulations used to evaluate the breaking limits and slam force models,

the regular wave trains are generated by prescribing the appropriate surface elevation

and water velocity at one domain boundary, as an adaptation of a traditional inlet

boundary condition. The surface elevation and water velocity values are calculated

using 25th order stream function theory [86]. The prescribed wave kinematics slowly

increase from zero to the full values over one wave period at the beginning of the

simulation.

The domain boundary opposite this wave generation boundary is an adaption of a

traditional outlet boundary condition. At this boundary, a hydrostatic pressure dis-

tribution is prescribed with a Neumann condition on velocity. To prevent nonphysical

reflections off this boundary, a momentum damping zone suppresses the waves before

they reach the boundary. The damping region is implemented by adding a sink term

βρwui to the momentum equation. The positive sink coefficient β increases quadrat-

ically from the beginning of the damping zone to create a smooth transition between

the damped and non-damped regions.

3.2 Model verification and validation

Before using the CONVERGE CFD model for evaluating the breaking wave limits

and slam force models, it must first be validated and verified against experimental

data and accepted analytical models for cases relevant to breaking wave forces on
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fixed-bottom OWTs. Each of the following four cases provides confirmation for a

different aspect of modeling breaking wave forces on offshore wind support structures:

1. Dam break: capture structure of breaking water front

2. Nonlinear wave propagation: generate, propagate, and absorb waves

3. Nonlinear wave shoaling: capture shoaling and produce breaking waves

4. Nonlinear wave forces: predict forces on cylinders from regular waves

The process of validating and verifying these four cases also develops a set of “best

practice” guidelines for setting parameters in the CONVERGE CFD model for wave

applications (like solver parameters, interface reconstruction models, mesh resolution,

turbulence models, etc.).

3.2.1 Dam break

The first case is the single-sided 2D dam break described by Whitman [87], where

the flow is assumed to be incompressible, inviscid, and without surface tension. A

column of water with height d0=50 cm and width w=3 m is initially confined on the

left side of a 10 m by 60 cm domain. The column is released at the beginning of the

simulation (t=0 s) and allowed to collapse towards the right under the influence of

gravity g.

The CFD domain is bounded by slip walls on the left and right sides as well as

the bottom, with the top open to atmospheric pressure. The CFD mesh has a base

cell size of w/150 by d0/100 and adaptive mesh refinement at the interface down to a

cell size of w/300 by d0/200. The timestep size is adjusted throughout the simulation

to maintain a Courant number of 0.4, with a first-order upwinding advection scheme.
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The water depth d, as a function of distance x from the left edge of the domain

and time t, is compared to the analytical solution based on potential flow theory, as

discussed by Whitman [87]:

√
gd =

1

3

(
2
√
gd0 −

x− w
t

)
, for −

√
gd0 ≤

x− w
t
≤ 2
√
gd0. (3.1)

Figure 3.1 shows the depth d across the domain length at two different times,

comparing the CFD results to the analytical solution. As Figure 3.1 shows, the CFD

interface shape is in excellent agreement with the analytical solution, particularly at

later times when the potential flow solution is more accurate [87]. The verification

of this dam break case against analytical results indicates that the CFD model can

accurately simulate a collapsing water front, like those found in breaking waves.

Figure 3.1. CFD results (solid blue) and analytical results based on potential flow
theory (dotted black) for a collapsing water column, initially w=3 m wide and d0=50
cm tall. Water depth d is plotted versus distance from the left tank wall x at times
of 1 s (A) and 2 s (B).
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3.2.2 Nonlinear wave propagation

The second verification case is the generation and propagation of 2D nonlinear

regular waves. Nonlinear waves of height H=10 cm, period T=1.0 s, and wavelength

L=1.62 m are generated in a constant water depth of d=1.0 m. The waves kinematics

are defined by 5th order Stokes wave theory, described by Fenton [88, 89], rather than

the more general 25th order stream function theory. Figure 3.2 shows the case setup.

The CFD domain is 5 m long and 1.5 m tall, with slip walls on the top and

bottom. The waves are generated using the wavemaker boundary approach described

in Section 3.1.1. A momentum damping region in the rightmost 1 m of the domain

absorbs the waves before they reach the outlet boundary condition, as described in

Section 3.1.1.

The CFD mesh has a base cell size of L/20 by d/12.5, with adaptive mesh re-

finement at the interface down to a cell size of L/160 by H/10. The timestep was

adjusted to maintain a Courant number of 0.75. As with the dam break case, first-

order upwinding is used for the advection scheme.

Figure 3.2. CFD simulation of 5th order Stokes waves (H=10 cm, d=1 m, T=1 s)
shown at time 10 s. The 2D domain is 5 m long, with a 1 m momentum damping
region at the right boundary. The surface elevation is measured at 0.5, 1, 2, and 3 m
from the wave generation boundary on the left (indicated by white dots).

34



Figure 3.3. Time history of the surface elevation η for 5th order Stokes waves, at
locations 1 m (A) and 3 m (B) from the wave generation boundary. CFD results are
plotted in solid blue while analytical results are in dotted black.

Figure 3.3 shows the surface elevation η as a function of time t at x=1 m=0.62L

from the left wave generation boundary (Figure 3.3A) and at x=3 m=1.85L from

the left wave generation boundary (Figure 3.3B). As shown in Figure 3.3, the CFD

surface elevations match the analytical 5th order Stokes solution within the size of one

cell (0.1H), though the agreement deteriorates farther from the left wave generation

boundary, likely due to the numerical viscosity introduced by the first-order advection

scheme. Similar trends are observed in the surface elevations for locations 0.5 m and

2 m from the inlet.
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Figure 3.4. Horizontal fluid velocity at time t=10 s according to the analytical 5th
order Stokes solution (A) and the CFD results (B).

Figure 3.4 shows the satisfactory agreement between analytical (Figure 3.4A) and

CFD (Figure 3.4B) results for horizontal particle velocity at t=10 s. As with the

surface elevation, the CFD velocity profile becomes less accurate farther from the left

wave generation boundary. The vertical particle velocity and pressure distribution

also show reasonable agreement between the CFD and analytical results, again with

poorer agreement far from the wave generation boundary.

Overall, the CFD results agree reasonably well with the analytical solution de-

rived from 5th order Stokes wave theory. This case confirms the CFD model’s ability

to generate and propagate nonlinear waves accurately, including the absorption of

nonphysical waves by a momentum damping region. However, the decreasing accu-

racy far from the inlet could likely be improved by using a higher-order advection
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scheme. A similar wave generation and propagation case was also performed using

25th order stream function theory, as described by Fenton [86], to generate highly

nonlinear waves. This case verified the approach of prescribing wave kinematics from

stream function theory.

3.2.3 Nonlinear wave shoaling

The third case considers regular and solitary waves shoaling over a sloped floor,

including a breaking solitary wave. The simulated surface elevations are validated

against experimental data from two tests conducted in the Large Wave Flume at the

O.H. Hinsdale Wave Research Facility at Oregon State University.

3.2.3.1 Validation domain

The experimental flume is 87 m long and 3.7 m wide, with a piston wavemaker at

one end for generating unidirectional waves. The flume bathymetry features an 8.3%

slope starting at x=14.07 m from the wavemaker, followed by a horizontal plateau at

43.33 < x < 79.91 m which is raised 1.75 m above the flume floor. An 8.3% slope

beyond the plateau acts as an artificial beach for wave absorption.

The CFD domain replicates the experimental bathymetry along the entire length

and is 3.0 m tall from top to bottom at the wavemaker. Although the CFD model

solves the 3D Navier-Stokes equations, a 2D domain is created by a domain width of

one cell and symmetry boundary conditions on the domain sides. The 2D approxi-

mation is appropriate because the experimental waves are unidirectional and have a

uniform cross-flume profile.

The CFD wavemaker wall generates waves by moving horizontally according to

the experimental wavemaker displacement time history, which had a maximum error

of 0.39% at the most recent instrument calibration. The CFD wavemaker, floor,

and beach wall are treated as no-slip walls, while the top of the domain is set to
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atmospheric pressure. Figure 3.5 shows the simulated validation domain, with the

wavemaker on the left.

These validation simulations use High-Resolution Interface Capturing (HRIC) in-

terface reconstruction, rather than the PLIC reconstruction used in the other wave

simulations. Although PLIC interfaces are less diffuse than HRIC interfaces [90],

PLIC is unsuitable for the validation cases because it does not conserve mass in cases

with moving walls [85]. Improving upon the previous verification cases, the momen-

tum interpolation uses a blended MUSCL interpolation scheme, with a van Leer flux

limiter [85].

Two validation cases are simulated: first, nonlinear regular waves of height H=16

cm, period T=2.5 s, and wavelength L=8.8 m are generated in a water depth of

d=2.15 m at the wavemaker. Second, an error function solitary wave of height H=51

cm and time width T=10 s is generated in a water depth of d=2.00 m, shown in

Figure 3.5 at the time of breaking.

For the regular waves case, the CFD mesh consists of Cartesian base cells sized

L/110 by d/215, producing an aspect ratio of 1:8 and ensuring that the still water

depth on the plateau is spanned by 40 cells. The time-evolving air-water interface

is refined to cells of size L/440 by H/64 using adaptive mesh refinement (AMR).

CONVERGE’s adaptive meshing also allows mesh deformation at the wavemaker’s

Figure 3.5. Partial CFD domain for the solitary wave validation case at time of
breaking, including the wavemaker (left) and three wave gauges.
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moving wall boundary [85]. The same mesh settings are used for the solitary wave

case, so that the solitary wave interface is refined to H/204.

For both validation cases, the timestep is adaptively adjusted to maintain a

Courant number of 0.2. This produces timesteps on the order of 0.9 ms=T/2800

for the regular waves case and 0.4 ms=T/25,000 for the solitary wave. For the soli-

tary wave, the simulated time is 18.9 s, from the start of the wavemaker motion to

when the wave has propagated onto the plateau. For the regular waves, the simulated

time is 48.4 s, from the start of the wavemaker motion to when three full-sized waves

have propagated onto the plateau.

3.2.3.2 Surface elevation analysis

The CFD and experimental surface elevations η(t) are compared at the three wave

gauges shown in Figure 3.5, located at x=14.172 m, 32.326 m, and 43.431 m from

the wavemaker respectively. The experimental wave gauges are calibrated pairs of

surface-piercing wire resistance gauges. During the calibrations before and after the

two validation tests, the standard deviation on minute-long wave gauge measurements

ranged from 0.02 cm to 1.13 cm, with an average standard deviation of 0.65 cm. This

may be considered an estimation for the uncertainty on the experimental wave gauge

measurements. The water level in the flume also varies by about 3 mm over a 5-10

minute cycle during the tests, as water leaks behind the wavemaker and is pumped

back into the flume.

The CFD surface elevations are inherently imprecise because the interface is dif-

fused over several cells. The reported diffuse interface includes all cells with void

fractions α between 0.01 and 0.99. These cells are neither fully water (α=0.0) nor

fully air (α=1.0). When using HRIC interface reconstruction, the reported interface

location is the average location of all cells with α=0.5. For PLIC’s smaller interface

band, the reported surface elevation is the average location of all cells in the uncer-
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Figure 3.6. Close-up of diffuse air-water interface at wave gauge 3, with reported
HRIC interface location (black cell) and diffuse interface band (outlined cells).

tainty band, because typically no cell has α=0.5 exactly. Figure 3.6 illustrates the

diffuse interface and reported HRIC interface location at wave gauge 3 for the solitary

wave simulation.

3.2.3.3 Shoaling validation results

The CFD and experimental time histories of surface elevation η(t) are compared

at the three wave gauges for the regular waves validation case in Figure 3.7. At

each wave gauge, the CFD and experimental surface elevations agree within the CFD

diffuse interface band, although the CFD model tends to overpredict the surface ele-

vation. The CFD model accurately captures the wave shoaling, correctly predicting

the change in period and wave height across the wave gauges. Note that the experi-

mental wave gauge 3 is unable to measure η < 0 due to its placement and therefore

cannot capture the wave troughs.

Similarly, Figure 3.8 compares the CFD and experimental surface elevation time

histories η(t) at the three wave gauges for the solitary wave validation case. Again,

the CFD model overpredicts the surface elevation, though the peak height is within

the CFD diffuse interface band at wave gauges 1 and 2. The CFD wave also exhibits
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reasonable shoaling, but the CFD model slightly overpredicts the celerity so that the

CFD wave arrives sooner at a given location than in the experiment.

Table 3.1 quantifies the difference between the CFD and experimental results at

each wave gauge for the solitary and regular waves validation cases. Positive values

indicate that the CFD prediction exceeds the experimental data. The difference in

the regular waves’ period and wave height are the averaged differences from three

Figure 3.7. CFD and experimental time histories for regular waves surface elevation
at three gauge locations.

Figure 3.8. CFD and experimental time histories for solitary wave surface elevation
at three gauge locations.
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Table 3.1. Difference between CFD and experiment for wave height H, period T ,
and peak surface elevation η at each wave gauge.

Regular waves Solitary wave
Gauge ∆H (cm) ∆T (ms) ∆(peak η) (cm)

1 0.5 (+3.5%) 45.0 (+1.8%) 6.4 (+12.5%)
2 -1.1 (+3.5%) 0.2 (+0.01%) 7.8 (+13.1%)
3 1.0 (+9.5%) 0.0 (+0.0%) 40.2 (+112%)

waves. For gauge 3, the regular waves’ peak surface elevation is substituted for wave

height because the experimental troughs are not captured (see Figure 3.7). Table 3.1

also lists the difference in the solitary wave’s peak surface elevation.

In Figure 3.8 and Table 3.1, the CFD and experimental surface elevations at wave

gauge 3 show poor agreement for the solitary wave, particularly at the peak. At

this gauge location, the wave is a plunging breaker in the process of collapsing. The

collapsing wave produces spray, an air-water mixture that the experimental gauge

struggles to capture. The CFD diffuse interface includes the modeled version of this

spray. The diffuse interface band is therefore larger at gauge 3, when the wave is

breaking, than at gauges 1 or 2 (see Figure 3.8). In this case, the bottom of the

CFD diffuse interface band is a better approximation for the experimental gauge

measurement, which largely neglects the spray. When the diffuse interface bottom is

used for the CFD surface elevation, the CFD overpredicts solitary wave peak elevation

by 14.2 cm (+39.4%).

The CFD model’s overprediction of surface elevation and celerity could indicate

a need for a well-tuned turbulence model to add more dissipation, although initial

efforts to add turbulence models added too much dissipation and did not match the

experimental data. Additional validation simulations indicate that applying a slip

wall boundary condition on the CFD floor rather than a no-slip condition could also

improve the CFD predictions in the absence of a turbulence model.
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Overall, the CFD model satisfactorily predicts the surface elevation for regular

nonlinear and solitary waves shoaling over a sloped bottom. In the solitary wave

case, the CFD model also predicts a breaking wave due to shoaling at approximately

the correct location and time. The CFD regular wave heights are correct at each

gauge within experimental uncertainty, given the diffuse interface (see Figure 3.7 and

Table 3.1). The CFD regular wave periods are also satisfactorily accurate. The CFD

solitary wave peak surface elevation is correct within experimental uncertainty given

the diffuse interface for gauges 1 and 2, although the CFD model overpredicts the

surface elevation of a wave in a late stage of breaking (see Figure 3.8 and Table 3.1).

These validation cases indicate that the CFD model can accurately capture a shoaling

nonlinear wave train and produce a breaking wave due to shoaling.

3.2.4 Nonlinear wave forces

The fourth and final case validates the CFD force on a cylinder due to regular

waves against experimental work by Niedzwecki and Duggal [91]. Niedzwecki and

Duggal measure the inline forces on a cylinder of radius r=5.7 cm subjected to regular

waves with periods T=0.5–1.5 s and wave heights H=1.04–12.69 cm. The experiments

are carried out in a wave flume 37 m long, 0.91 m wide, and 1.22 m tall, filled to a

water depth d=0.91 m with wave absorption provided by a 1:3.5 slope placed after

the cylinder.

In the CFD simulations, the domain is reduced to 5–6 wavelengths long, 0.91 m

wide, and 1.0 m tall, in order to reduce computational cost. The simulations include

a dynamic Smagorinsky LES turbulence model with a Werner-Wengle wall model on

the cylinder. The domain bottom and cross-flow sides are no-slip walls, with the top

open to atmospheric pressure.

The regular waves are generated in the CFD simulations by prescribing the velocity

and void fraction at a location at the boundary located 1–2 wavelengths upstream
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of the cylinder, according to 5th order Stokes wave theory [88, 89]. The domain is

also initialized with velocity, pressure, and void fraction distributions according to

5th order Stokes wave theory. Wave absorption is provided by a momentum damping

region 1–2 wavelengths long, located 2–3 wavelengths downstream of the cylinder.

These methods for wave generation and absorption are described in Section 3.1.1 and

verified by the wave propagation case described in Section 3.2.2.

The CFD mesh consists of base cells with an approximate size of L/10 by L/10

by d/22. AMR adds cells of size L/180 by L/180 by H/20 at the interface, and four

layers of r/45 by r/45 by H/80 cells are also added to the cylinder surface. This mesh

is selected after a brief mesh convergence study shows that halving the dimensions

of the base and cylinder cells yields minimal improvements to the force results, while

doubling the cell dimensions creates significant noise in the force results. Like in

the previous validation and verification cases, the timestep is adjusted to maintain

a Courant number of 0.4 and first-order upwinding is used for the advection scheme

with the HRIC interface tracking scheme.

The CFD simulations focus on five of the fifteen wave parameter combinations

studied by Niedzwecki and Duggal [91]. Each CFD case simulates waves of a different

period, with wave heights in the range described by Niedzwecki and Duggal for that

period. See Table 3.2 for a summary of the five CFD wave parameter combinations.

Niedzwecki and Duggal characterize the waves by the scatter parameter kr, the prod-

uct of the wavenumber k and the cylinder radius r, representing a ratio of cylinder

size to wavelength.

The force on the cylinder is characterized by the maximum inline force F on the

cylinder, averaged over several waves, in keeping with Niedzwecki and Duggal. Figure

3.9 plots the maximum inline force against the scatter parameter kr from the CFD

simulation, Niedzwecki and Duggal’s experiments, and the results of linear diffraction

theory as described by Niedzwecki and Duggal [91].
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Figure 3.9. The maximum inline force F on a cylinder due to regular waves, plotted
versus the product of wavenumber and cylinder radius kr. The CFD results (A)

agree well with experimental values (E) from Niedzwecki and Dugal [91], as well as
results from linear diffraction theory (−), particularly for kr < 0.7.

As shown in Figure 3.9, the CFD force agrees very well with the experimental

and theoretical values for kr less than about 0.7. For larger kr, the CFD force is

significantly larger than the experimental and theoretical results. However, note that

the experimental results vary considerably for a given kr depending on the wave

height, although the CFD kr=0.895 case is outside the experimental range given for

nearby kr. Despite this, the CFD model’s success at low kr is encouraging, since

ocean waves for OWTs tend to have low kr due to their large wavelengths compared

to the scales of OWT monopiles.

Table 3.2. Wave parameters for the five CFD regular wave force validation cases.
Wavelength and wavenumber are calculated according to 5th order Stokes wave the-
ory.

Scatter parameter kr 0.112 0.253 0.399 0.627 0.895

Wave period T (s) 1.47 0.947 0.749 0.595 0.498
Wave height H (cm) 4.93 4.65 4.43 3.29 2.25
Wavelength L (m) 3.12 1.41 0.897 0.571 0.400
Wavenumber k (m−1) 1.96 4.44 7.00 11.0 15.7
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Overall, the validation of CFD regular wave forces against experimental data

indicates that the CFD model accurately predicts the forces on cylindrical structures

due to wave trains, especially for scales relevant for offshore wind energy.

3.3 Breaking wave limits

Using the validated CFD model, thirty-nine shoaling regular wave trains are sim-

ulated with various wave parameter combinations representative of wind energy de-

velopment sites off the U.S. Atlantic Coast. This set of simulations provides a basis

for evaluating the performance of the McCowan, Miche, Battjes and Goda empirical

breaking limits described in Equations 2.5–2.8. This section describes the CFD sim-

ulation setup, discusses how the simulated waves are analyzed, and finally evaluates

the performance of the four empirical breaking limits using the simulated waves.

3.3.1 Simulation setup

Each shoaling regular wave train is simulated using the best-practice CFD settings

identified while verifying and validating the CFD model, as described in Section 3.2.

3.3.1.1 Simulation domain

Each wave train is generated in a 2D computational domain with a floor of some

slope s. The domain is one cell wide with symmetry boundary conditions on the

sides, creating a 2D domain although the Navier-Stokes equations are solved in 3D.

The top of the domain is open to atmospheric pressure and the floor is modeled as a

no-slip wall.

For cases with s=0, the domain floor is horizontal, with a constant water depth

d0. For cases with s <0, the domain floor slopes upward from a water depth of 1.75d0

at the left end of the domain to a depth of 0.25d0 at the right, with the nominal

depth d0 occurring at the midpoint of the slope. Figure 3.10 illustrates the simulated
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domain for a case with nominal depth d0=35 m, nominal wavelength L0=315 m, and

slope s=6%.

The CFD mesh consists of Cartesian base cells sized L0/100 by d0/160 or smaller,

maintaining an aspect ratio of 1:8 based on the vertical cell size. The vertical cell size

ensures that the shallowest still water depth is spanned by at least 40 cells. One level

of AMR is added at the evolving air-water interface, producing cells sized L0/200 by

H0/110 or smaller at the interface.

A brief mesh convergence study is carried out for a case with nominal depth d0=35

m, slope s=6%, nominal wavelength L0=315 m, nominal wave height H0=17.5 m, and

nominal period T0=15.1 s. Three mesh resolutions are considered: base cells sized

L0/187 by d0/166 as described above, base cells twice this size, and base cells half

this size. One level of interface AMR is added to each mesh’s base cells. Figure

3.11 compares each mesh’s surface elevation time history at x=L0/2 for the first wave

generated. As shown in Figure 3.11, there is little difference between the three meshes,

although the coarsest mesh predicts a slightly lower wave height than the other two

meshes. The middle mesh is therefore selected for this study, as described above.

The adaptive timestep is adjusted to maintain a Courant number of 0.2 throughout

each simulation, creating timesteps on the order of 0.2–4 ms. The simulated time

ranges from about 20 s to 100 s, depending on the wave train and domain.

The regular wave trains are generated at the left domain boundary using 25th

order stream function theory [86], as described in Section 3.1.1. The stream function

Figure 3.10. Sample CFD domain for shoaling regular wave trains, including wave
generation boundary (left) and momentum damping zone (right).

47



wave kinematics are calculated for a nominal wave height H0 and nominal wavelength

L0, assuming a constant water depth of d0 for s=0 or 1.75d0 for s > 0. The waves

propagate to the right into the initially still domain, shoaling over the sloped floor.

For wave absorption, a momentum damping zone is added on an L0-long horizontal

plateau at the right domain boundary, as shown in Figure 3.10 and described in

Section 3.1.1.

3.3.1.2 Wave parameters

Each simulated wave train is characterized by four parameters: the seafloor slope

s, the nominal depth d0, the nominal wave height H0, and the nominal wavelength

L0. Simulated values for the nominal depth d0 and the seafloor slope s are chosen

based on representative ranges for potential U.S. offshore wind energy development

sites off Maine, New Jersey, and Georgia. Table 3.3 summarizes the depth and slope

ranges for the three sites as well as the simulated wave trains. The water depths

for the three sites in Table 3.3 are derived from the U.S. Coastal Relief Model from

Figure 3.11. Surface elevation time histories at x=L0/2 for three meshes: the cell

size used in this study (−), cells twice this size (−−), and cells half this size (u).
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the National Oceanic and Atmospheric Administration (NOAA), with further details

documented in Johlas et al. [16].

While the simulated water depths and slopes are based on the U.S. site data,

the nominal wave heights H0 and wavelengths L0 are selected to create breaking

waves. Values for H0 and L0 are chosen so that some, but not all, of the generated

wave trains exceed the McCowan, Miche, Battjes, and Goda breaking limits at the

nominal depth d0. This is accomplished using the ranges 0.50 ≤ H0/d0 ≤ 1.15 and

5 ≤ L0/d0 ≤ 14. This range for H0/d0 produces some simulated wave heights that

exceed expected extreme wave heights for the three U.S. sites. However, these large

heights are necessary to obtain breaking waves for use in evaluating the breaking

limits. A total of 39 different regular wave trains are simulated. Table 3.4 summarizes

the nominal wave train parameters d0, s, H0, and L0 for each of these simulations.

3.3.2 Analysis of simulated waves

The 39 simulated wave trains yield a collection of 25 breaking waves and 19 non-

breaking waves. To evaluate the four empirical breaking limits using this collection

of simulated waves, the simulated waves must be characterized by parameters used

in the breaking limits.

3.3.2.1 Characterization of breaking waves

Although each simulated wave train is defined by the nominal parameters d0,

s, H0/d0, and L0/d0, individual waves within that train develop new characteristic

Table 3.3. Water depth and seafloor slope ranges for potential U.S. wind energy
development sites, compared to CFD ranges.

Depth (m) Slope (%)

Maine 2 ≤ d ≤ 50 0 ≤ s ≤ 12
New Jersey 2 ≤ d ≤ 20 0 ≤ s ≤ 2
Georgia 12 ≤ d ≤ 25 0 ≤ s ≤ 1
Simulations 5 ≤ d0 ≤ 50 0 ≤ s ≤ 12
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values as they shoal and break. Therefore, each individual wave is characterized using

local, instantaneous values d, H, and L rather than the wave train’s nominal values.

The seafloor slope s is consistent between the nominal wave train and each individual

wave.

Within some wave trains, one or more individual waves break during the simu-

lated time. In this study, the breaking waves are mostly plunging breakers, with some

spilling breakers [43]. It is difficult to capture the exact instant of breaking, so the

local instantaneous parameters d, H, and L are averaged from two times: immedi-

ately before the wave tongue curls over, and as the wave tongue begins to curl over.

For wave trains where no waves break within the simulated time, the local instanta-

neous parameters are taken from the steepest non-breaking wave at the end of the

simulation.

Table 3.4. Summary of 39 wave trains for breaking wave simulations, listed by
nominal depth d0, slope s, generated wave height H0, and generated wavelength L0.

s (%) d0 (m) H0/d0 L0/d0 s (%) d0 (m) H0/d0 L0/d0

0 5 1.10 11 6 25 0.80 11
0 10 0.55 14 6 35 0.50 9
0 20 0.70 6 8 10 1.15 8
0 25 0.50 13 8 20 1.00 10
0 30 0.85 10 8 30 0.70 12
0 35 0.65 7 8 40 0.55 6
0 40 1.00 8 8 50 0.85 14
0 45 0.80 9 9 5 0.50 5
0 50 1.15 12 9 15 0.80 7
2 10 0.70 10 9 25 0.95 9
2 30 0.55 8 9 45 0.65 11
2 40 0.85 12 11 20 0.55 12
3 5 0.65 9 11 40 1.15 10
3 15 0.50 11 11 50 0.70 8
3 45 0.95 13 12 5 0.80 13
5 20 0.85 8 12 15 1.10 9
5 40 0.70 14 12 25 0.65 5
5 50 0.55 10 12 35 0.95 11
6 5 0.95 7 12 45 0.50 7
6 15 0.65 13
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Figure 3.12. Instantaneous surface elevation of a CFD wave about to break, with
its peak and troughs circled and different options for wavelength and height charac-
terizations labeled.

3.3.2.2 Ambiguity of H and L

The simulated waves are highly nonlinear and often asymmetric, as illustrated in

Figure 3.12. Although the PLIC diffuse interface band is relatively small in Figure

3.12, characterizing the local instantaneous d, H, and L is still ambiguous due to the

wave’s asymmetry. The depth d is defined as the still water depth at the location of

the wave’s peak. The height H can be defined in three ways:

1. Hleft, the vertical distance between the left trough and the peak of the wave,

2. Hright, the vertical distance between the right trough and the peak, or

3. Havg, the average given by (Hleft +Hright)/2.

The vertical arrows in Figure 3.12 illustrateHleft andHright. Similarly, the wavelength

L can be defined as:

1. Lleft, twice the horizontal distance between the left trough and the wave peak,

2. Lright, twice the horizontal distance between the right trough and the peak, or

3. Lavg, the horizontal distance between the left and right troughs.
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The horizontal arrows in Figure 3.12 illustrate Lleft, Lright, and Lavg. Of these three

options, Lavg is most consistent with observations of physical asymmetric waves, since

measuring trough-to-trough makes no assumptions about the symmetry of the wave.

3.3.3 Performance of empirical breaking limits

The McCowan, Miche, Battjes, and Goda breaking limits are evaluated against

the shoaling and breaking regular wave trains simulated using the CFD model. First,

how the characterization of individual CFD waves affects model performance is dis-

cussed. Second, the key metrics for evaluating breaking limit performance are de-

scribed. Next, the apparent tendency of the breaking limits to underpredict the

breaking steepness is examined. Finally, the performance of each limit is evaluated

and compared.

3.3.3.1 Effect of H and L choice

Different options for wave height and wavelength characterizations produce decid-

edly different results, as shown in Figure 3.13. Figure 3.13 plots the steepness H/L

against the relative depth d/L for each simulated wave: breaking and non-breaking

waves are filled and non-filled circles respectively. The limits predicted by the Mc-

Cowan, Miche, and Goda (for s=0% and s=12%) breaking criteria are also shown;

the breaking region is above the limit lines. Figure 3.13 compares the accuracy of the

criteria for different combinations of H and L characterizations. The Battjes limit

predicts a slightly lower breaking limit than Miche for all d/L, but is nearly identical

to Miche and is therefore not included in Figure 3.13 for visual clarity.

Choosing the average options Havg and Lavg (top, Figure 3.13) works reasonably

well for all four breaking limits. The left options Hleft and Lleft (middle, Figure

3.13) and the right options Hright and Lright (bottom, Figure 3.13) do not agree as

well with the four criteria, although the left options still agree acceptably with the

Miche, Battjes, and McCowan limits. Additionally, using Hright with Lavg also agrees
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Figure 3.13. Breaking (u) and non-breaking (E) CFD waves with McCowan,
Miche, and Goda breaking limits (lines). Waves are characterized by the average,
left, or right L and H (top, middle, or bottom plot).

reasonably well with all four limits. For the remainder of the analysis, the average

options Havg and Lavg are used unless otherwise noted.

It is expected that the trough-to-trough wavelength characterization Lavg agrees

the best with the four limits, since this is the only wavelength option with real physical

meaning. The average or right height characterizations (Havg or Hright) are also

compatible with typical experimental measurements of waves, which are usually time

histories of surface elevation taken at single-location wave gauges.
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Figure 3.14. Breaking and non-breaking CFD waves (filled and unfilled markers)
with Goda breaking limit (lines) for different slopes s. Waves are characterized by
the deep water wavelength L0 and average height H.

3.3.3.2 Goda with deep water L

Although Figure 3.13 uses the local, instantaneous wavelength L, the Goda limit

was originally derived for the deep water wavelength L0 rather than the local wave-

length L [44, 45]. Figure 3.14 compares the Goda limit to the simulated waves using

Havg and the deep water wavelength L0, for different slope ranges s. The Goda limit

matches the CFD results better when the deep water L0 is used rather than the local

L, but only for seafloor slopes s ≤ 8%. This slope-dependent accuracy is comparable

to the results of Rattanapitikon and Shibayama [45]. In general, the local L is an

acceptable alternative in the Goda limit and is preferable for larger seafloor slopes.

3.3.3.3 Breaking limit performance metrics

The performance of the McCowan, Miche, Battjes, and Goda breaking limits is

evaluated by comparing the breaking limit predictions to the CFD simulation re-

sults, using the average wavelength and wave height. Figure 3.15 compares the Mc-

Cowan, Miche, and Goda breaking limits to the breaking and non-breaking CFD

waves, grouped by seafloor slope s. Note that the Battjes formulation predicts a
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Figure 3.15. Breaking and non-breaking CFD waves (filled and unfilled markers)
with McCowan, Miche, and Goda breaking limits (lines) for different seafloor slopes
s. Waves are characterized by average wavelength and height.

slightly lower limit than the Miche limit, but again is not included in Figure 3.15

for visual clarity. Appendix A also summarizes the data in Figures 3.14–3.15, and

indicates disagreement between the CFD wave and each limit for each wave. When

evaluating the four limits’ performance in relation to the simulated waves, it is con-

venient to examine three main ways a limit may be inaccurate when compared with

a CFD wave.

First, the limit may predict that a wave should break, although the simulated

wave does not. The limit then produces a false positive. Second, the limit may

predict that a wave should not break, but the simulated wave does break, producing

a false negative. False positives are preferable to false negatives for conservative

design purposes, because breaking wave loads are generally higher than non-breaking

wave loads [43].

Third, the limit may underpredict the steepness H/L at which a wave breaks,

even if it correctly predicts the CFD wave’s status at the end of the simulation.

This underprediction is quantified by the ratio of the CFD wave’s steepness to the

limit steepness for a given d/L. Appendix A also uses this ratio to indicate if the
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breaking limit prediction agrees with the CFD wave. This steepness underprediction

is illustrated when the simulated breaking waves significantly exceed the breaking

criteria’s predictions, as shown in Figure 3.15 and Appendix A, which requires further

examination.

3.3.3.4 Steepness underprediction

In this analysis, waves are identified as breaking when the wave tongue curls over.

A few timesteps before a shoaling wave is identified as breaking, the wave had a

larger d and L but lower H. Therefore, this slightly earlier version of the simulated

wave is not yet breaking, yet still exceeds the breaking limit. There are two possible

explanations for this behavior:

1. Breaking is truly initiated significantly before the wave tongue curls over, so

the simulated wave continues to shoal throughout the process of breaking, or

2. The breaking limits underpredict the steepness H/L at which a wave breaks for

a given d/L.

A combination of both explanations is most likely.

Conversely, the simulated non-breaking waves are often significantly below the

breaking limits, as shown in Figure 3.15 and Appendix A. This behavior is physical

and expected, since the limits predict an upper bound on non-breaking wave size. For

the s > 0% non-breaking waves, the relatively small waves shown in Figure 3.15 are

simply an artifact of when these waves are measured, at the end of the simulation.

With additional domain space and simulation time, presumably these waves would

continue to shoal and eventually break.

For s=0% waves there are no shoaling effects, so that if a wave does not immedi-

ately break when generated, it will never break during the simulation. Several of the

s=0% wave trains are in fact unstable or breaking when initially generated at the left

domain boundary, as predicted by the breaking limits. However, these waves are not
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included in the breaking wave group because the wave kinematics are prescribed by

stream function theory, which is inaccurate for breaking waves [86], rather than being

allowed to develop naturally during the simulation. The stable, smaller waves that

form after these initial waves break are recorded as non-breaking, so all simulated

s=0% waves are non-breaking.

3.3.3.5 Breaking limit performance

Table 3.5 compares the McCowan, Miche, Battjes, and Goda limits based on the

occurrence of these three kinds of inaccuracy. The percentage of all recorded waves

that are false negatives and false positives are presented for each limit in the first

two rows of Table 3.5. The last row shows the average steepness underprediction as

a percentage of the CFD breaking steepness.

As shown in Table 3.5, none of the limits perform well across all three metrics of

accuracy. The Battjes limit has no false negatives and is therefore the most conserva-

tive, but tends to significantly underpredict the breaking steepness. The Miche limit

also has an acceptably low false negative rate but a lower intermediate false positive

rate and steepness underprediction than the Battjes limit. In terms of conservative

predictions for design purposes that work for all seafloor slopes, the Battjes and Miche

limits have the best overall performance.

The Goda limits with L and the McCowan limit have higher false negative rates

than the Miche and Battjes limits, but lower false positive rates (see Table 3.5). The

Goda limit with L0 has the highest false negative rate, although these false negatives

only occur for seafloor slopes s ≥ 8%, as illustrated in Appendix A. The Battjes and

Table 3.5. Comparison of breaking limit performance based on false negatives, false
positives, and steepness underprediction.

CFD wave breaks? McCowan Miche Battjes Goda, L Goda, L0

Yes, limit says no 9.1% 2.3% 0.0% 9.1% 60.0%
No, limit says yes 0.0% 9.1% 21.0% 6.8% 0.0%

Mean H/L underprediction 23.2% 21.1% 26.6% 13.3% 11.8%
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Miche limits are therefore preferable to the McCowan and Goda limits for conservative

predictions for design, particularly for large seafloor slopes. However, the Goda limit

is preferable for conservative predictions for lower seafloor slopes (see Appendix A),

like those found in most of the shallow to intermediate depths off the U.S. East Coast.

Aside from each limit’s accuracy, external factors may also influence which limit is

best-suited for the design of OWTs. For example, it may be difficult to collect data on

the deep water wavelength and sea floor slope required for the full deep water Goda

limit with L0. The Miche and Battjes models’ dependence on local wave parameters,

without the slope, is advantageous in this respect.

Furthermore, initial attempts to slightly modify the Battjes and Goda limits did

not yield improvements in overall performance. For example, adjusting the coefficients

or adding a slope dependence to the Battjes limit may reduce the average steepness

overprediction, but increase the number of false negatives. Therefore, the Goda limit

with the deep water wavelength should be used for seafloor slopes s < 8%, and the

Battjes limit for seafloor slopes s ≥ 8%.

3.4 Breaking wave forces

Having addressed whether a given wave will break, the second component of this

research examines the force on a monopile OWT due to a breaking wave. Specifically,

this study compares four empirical slam force models (Goda, Campbell-Weynberg,

Cointe-Armand, and Wienke-Oumerachi from Table 2.1) to CFD simulations of break-

ing waves impacting monopile OWTs. CFD simulations are performed for regular

wave trains shoaling over a sloped floor until the waves break on or shortly before

the monopile. A total of four different combinations of wave height, wavelength, and

monopile size are considered. This section describes the simulation setup, presents

the CFD results for wave characteristic and peak slam force, and finally compares the

simulated forces to predictions from the empirical slam force models.
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3.4.1 Simulation setup

3.4.1.1 Monopile foundation descriptions

Two different monopile designs are examined: a monopile for the DTU 10 MW

reference turbine [92] and the UpWind reference monopile for the UpWind 5 MW

turbine [93]. The simulated 5 MW and 10 MW untapered monopiles have diameters

D of 6 m and 9 m respectively [92, 93], and are designed for 25 m of water depth. The

D=6 m monopile has the same diameter as the OC3 monopile for the NREL 5 MW

reference turbine, although the design water depth is slightly deeper (25 m instead of

20 m).

Both monopiles are simulated as fixed rigid bodies, removing the need to simulate

each structure’s below-mudline embedded pile. The simulations also do not include

any transition pieces, platform decks, or towers, in favor of isolating the breaking

wave interaction with the substructure. Both monopiles are extended at a constant

diameter to a length of 45 m above the sea floor, to capture impact forces from

the large breaking waves. Although this extended height is larger than the height

specified in the original designs [92, 93], it represents well-designed structures that

avoid deck slamming during the highest wave.

3.4.1.2 Simulation domains

The wave trains are simulated in a 3D computational domain with a sloping floor

dictated by seafloor slope s. The setup of each individual simulation is determined

by the support structure type. The water depth at the structure is chosen to be 25

m ± 5 m for the monopiles to reasonably match the design depth for each structure.

This monopile depth is also very reasonable for the U.S. East Coast when compared

to the site ranges in Table 3.3. The depth at the left end of the domain is 40 m.

The seafloor slopes upward to a depth of 20 m at the right end of the domain, as

illustrated in Figure 3.16.
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Figure 3.16. Side view of the 3D domain for a simulation with the 10 MW monopile.
Waves are generated at the left domain boundary, with a momentum damping zone
before the right domain boundary.

As described in Section 3.1.1, wave trains are generated in the initially still domain

by prescribing the surface elevation and fluid velocity at the left domain boundary,

according to 25th order stream function theory [86]. The wave generation kinematics

are for a wave of height H0 and wavelength L0 in water of constant depth d0=40 m

(see Figure 3.16). The unshoaled wave height H0 and wavelength L0 are selected to

produce breaking near the design depth of 25 m, based on breaking wave simulations

from Section 3.3. As described in Section 3.1.1, an L0-long momentum damping zone

with a horizontal floor is added to the right end of a domain (see Figure 3.16).

The width of the 3D domain is based on the structure width; the domain width

is five times the monopile diameter D. The prescribed wave kinematics are uniform

across the width of the domain, creating waves that are largely 2D until they interact

with the structure. Symmetry boundary conditions are applied to the domain sides

to minimize the sides’ effect on the simulation.

For these simulations, the momentum interpolation scheme is full upwinding with

a Courant number of 0.9, due to improvements to the VOF portion of the CON-

VERGE model after the simulations in Section 3.3 were completed. No turbulence

model is included due to the numerical diffusion supplied by the full upwinding

scheme. Slip wall boundary conditions are then applied to the domain floor and

the structure, which neglects the viscous force on the structure. This is justified by

the validation case of regular waves on cylinders (see Section 3.2.4), which indicates
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that pressure forces are significantly larger than viscous forces, even for waves with

no slamming impact force.

The CFD mesh resolution is similar to the resolution used in the breaking wave

simulations described in Section 3.3.1. The base cell size is approximately L0/120 by

L0/120 by d/150 or smaller, with L0/240 by L0/240 by H0/170 or smaller cells at

the interface. Additional refinement is added around the monopile, creating cells of

width D/120 for the 10 MW monopile and D/80 for the 5 MW monopile. These cell

sizes create meshes with about 14 million cells.

3.4.1.3 Simulation workflow

Preliminary 2D simulations without monopiles are conducted with different sea-

floor slopes s, for each unique combination of water depth, wave height H0, and

wavelength L0. Based on these preliminary simulations, the chosen value of s=5% is

found to produce breaking waves near the desired depths, with reasonable values for

the wave height at breaking H and the wavelength at breaking L.

The preliminary simulations also estimate the location where waves break for

a given wave height H0, wavelength L0, and support structure type. For the 3D

simulations, the upstream edge of the structure is located at this estimated breaking

location (for waves breaking on the structure), or two structure widths downstream

of this estimated breaking location (for waves breaking before the structure).

3.4.1.4 Summary of cases

Table 3.6 summarizes the domain parameters for each of the four simulations.

The 5 MW and 10 MW monopiles are subjected to the same wave train, in order to

compare the effect of structure size. Similarly, the 10 MW monopile is subjected to

the same wave at different locations relative to the 2D predicted breaking location,

in order to compare the effect of breaking location. Finally, the 10 MW monopile is

subjected to two different wave trains, in order to compare the effect of wave size.
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Table 3.6. Summary of four breaking wave force simulations, including monopile
type, unshoaled wave characteristics, and wave characteristics just before breaking
and at impact on the monopile. The last row lists the maximum inline force, when
the slam impact occurs.

Case 1 2 3 4

Structure 10 MW mono. 10 MW mono. 10 MW mono. 5 MW mono.
d0 (m) 40 40 40 40
H0 (m) 20 20 25 20
L0 (m) 250 250 250 250
s (%) 5 5 5 5

2D break loc. On mono. Before mono. On mono. On mono.

db (m) 32.01 32.00 31.01 31.68
Hb (m) 18.19 18.19 18.27 17.69
Lb (m) 198.0 197.4 203.5 201.7

di (m) 31.06 31.06 29.86 31.06
Hi (m) 16.79 15.65 17.20 16.84
Li (m) 199.8 178.1 217.8 202.2

xi − xb (m) 36.21 54.00 18.25 28.00
Max. F (MN) 22.00 24.49 17.88 11.30

3.4.2 Simulation results

During each simulation, a time history of the force vector on the structure is

recorded. Snapshots of the surface elevation around the monopile, pressure on the

monopile, and fluid velocity within the wave are also captured throughout the simu-

lations. Table 3.6 lists the wave characteristics derived from these surface elevation

snapshots at the time just before breaking and the time of impact on the structure.

These values for H and L are the average values Havg and Lavg (see Section 3.3.2).

The horizontal location of the peak xb at the moment just before it breaks (when

db, Hb, Lb are measured) and the horizontal location of the peak xi at the moment of

impact (when di, Hi, Li are measured) are also compared for the full 3D simulations.

The values of xi–xb reported in Table 3.6 therefore reflect the horizontal distance

between when the wave starts to break and when the wave impacts the structure.

Figure 3.17 shows a 2D side view of each wave just before it impacts the structure.

Runup on the leading edge of the cylinder is evident in all four cases. Most notably,
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Figure 3.17. Side view of breaking waves just before impact for four slam force
cases. Water is shaded blue, air is grey, and the monopile is white.

however, cases 2 and 3 are farther along in the breaking process than cases 1 and 4,

so that more of the wave crest is moving as a vertical wall of water.

The maximum force caused by each breaking wave is also included in Table 3.6.

These peak forces occur when the breaking wave front impacts the front of the struc-

ture. Time histories of the inline force on the structure are shown and discussed

further in the next section.

3.4.3 Comparison to empirical slam force models

The breaking wave force simulations summarized in Table 3.6 are compared to the

predictions made by the four empirical slam force models in Table 2.1, in conjunction

with the Morison equation with slam force term FS (see Equations 2.9–2.10).

3.4.3.1 Calculating drag and inertia terms

Although the slam force is separated from the drag and inertia forces in the

Morison equation (see Equation 2.9), the simulated CFD force is the combined total
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inline force (in the direction of wave propagation). The inline drag and inertia forces

must therefore also be predicted using the Morison equation in order to compare

the slam coefficient models to the CFD force. This approach would also be used in

design, to predict the total load a monopile would experience due to a breaking wave

of known characteristics.

The inline drag force on the cylindrical monopile is predicted from the CFD hor-

izontal fluid velocities u(z, t), by summing up the inline force per unit length over

dz-tall segments of the cylinder. The total inline drag force on the cylinder is then

given by

FD(t) =

z=interface∑
z=floor

((
1− α(z, t)

)
ρwRu(z, t)|u(z, t)|Cd dz

)
, (3.2)

where the water density ρw is weighted by the void fraction α to account for cells

that are not fully water (α > 0.0). The drag coefficient Cd is estimated for each

of the four slam force simulations by extrapolating from the commonly cited Sarp-

kaya experimental curves, which give Cd as a function of Reynolds number Re and

Keulegan-Carpenter number KC [94].

The CFD u(z, t) is measured at the x-location of the monopile’s leading edge, at

a y-location of 4R from the structure center. Since the wave form is mostly uniform

in y until it interacts with the structure, this approximates the wave kinematics at

the structure location as if no structure existed. This approach is akin to obtain-

ing breaking wave kinematics for a known wave (from measurements, wave theory

approximations, or CFD) and predicting the force on a theoretical structure using

the Morison equation. Using the structure leading edge as the x-location for the

u(z, t) measurement, rather than the structure center, was found to better capture

the gradual rise in force prior to the slamming impact.
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The inline inertia force on the cylinder is predicted from the CFD horizontal fluid

acceleration a(z, t) using a similar summing approach as the drag force:

FI(t) =

z=interface∑
z=floor

((
1− α(z, t)

)
ρwπR

2a(z, t)|u(z, t)|Cm dz

)
, (3.3)

where the inertia coefficient Cm is again estimated for each CFD wave using Sarpkaya’s

experimental Cm(Re,KC) curves [94]. The CFD a(z, t) is estimated from the same

u(z, t) used in the drag calculation, using a central difference approximation for the

derivative. This represents the undisturbed horizontal acceleration at the location of

the structure’s leading edge.

Table 3.7 summarizes the parameter values used to calculate the predicted drag

and inertia force for each CFD wave, including the cylinder segment height dz,

Reynolds number Re, Keulegan-Carpenter number KC, and the estimated drag and

inertia coefficients Cd and Cm. For each simulated wave, the cylinder segment height

dz=0.075 m is equal to the cell size at the air-water interface. The wave celerity Cp

and surface elevation at impact ηi used to calculate the predicted slam force in Equa-

tion 2.10 are also included in Table 3.7. Values for Cp and ηi are calculated from CFD

surface elevation snapshots, again located at y=4R to approximate a wave without a

structure. A value of λ=0.4 is used for the curling factor for all four simulated waves.

Table 3.7. Parameter values used to calculate drag, inertia, and slam forces for each
simulated breaking wave force case.

Case Max. CFD F (MN) Re KC CD CM Cp (m/s) ηi (m)

1 22.00 1.8 x 108 33 0.71 1.74 17.44 13.03
2 24.49 1.8 x 108 32 0.71 1.74 17.98 12.22
3 17.88 1.9 x 108 31 0.71 1.74 18.88 13.82
4 11.30 1.2 x 108 48 0.68 1.76 17.48 13.01
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3.4.3.2 Comparison of force time histories

Using Equations 3.2–3.3 and the values listed in Table 3.7, the drag and inertia

forces predicted by the Morison equation are calculated for each simulated CFD

wave. The slam force is also calculated for each CFD wave, using each of the four

slam coefficient models listed in Table 2.1. The predicted total inline force time

history (drag plus inertia plus slam) is then compared to the CFD total inline force

time history for each wave. Figures 3.18–3.21 compare the CFD (black curve) and

predicted total force time histories for the four slamming coefficient models (colored

curves), for each of the four CFD simulations. The predicted drag and inertia force

time histories are also included in Figures 3.18–3.21.

As shown in Figures 3.18–3.21, the predicted total inline force matches the CFD

total force reasonably well for the times leading up to the impact in each case. The

inertia force dominates the predicted total force until the times immediately before

impact, when the fast-moving wave crest contributes to a larger predicted drag force.

Figure 3.18. Inline force time history for case 1 (10 MW monopile), including CFD
total force (−), predicted inertia and drag (dashed ∗ and ×), and predicted total

force using Goda (@), Campbell-Weynberg (C), Cointe-Armand (A), and Wienke-

Oumerachi (6) slam coefficient models.
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Figure 3.19. Inline force time history for case 2 (10 MW monopile), including CFD
total force (−), predicted inertia and drag (dashed ∗ and ×), and predicted total

force using Goda (@), Campbell-Weynberg (C), Cointe-Armand (A), and Wienke-

Oumerachi (6) slam coefficient models.

Figure 3.20. Inline force time history for case 3 (10 MW monopile), including CFD
total force (−), predicted inertia and drag (dashed ∗ and ×), and predicted total

force using Goda (@), Campbell-Weynberg (C), Cointe-Armand (A), and Wienke-

Oumerachi (6) slam coefficient models.
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Figure 3.21. Inline force time history for case 4 (5 MW monopile), including CFD
total force (−), predicted inertia and drag (dashed ∗ and ×), and predicted total

force using Goda (@), Campbell-Weynberg (C), Cointe-Armand (A), and Wienke-

Oumerachi (6) slam coefficient models.

At impact, all four slam coefficient models predict a higher peak total force than

the CFD model, although Goda is the closest with the lowest peak slam coefficient

(see Figures 3.18–3.21). This could partially be caused by numerical dispersion in the

wave crest in the CFD simulations, where the fast-moving crest is artificially spread

out (see Figure 3.17) which causes the slam force to be lower in magnitude but longer

in duration.

After the initial impact, the four slam models vary significantly due to their differ-

ent slam durations (see Figures 3.18–3.21). For example, the W-O slam model tends

to predict a total force lower than the CFD force after the initial impact due to its

short slam duration, while the C-A slam model tends to predict a higher post-impact

force than the CFD, due to C-A’s longer slam duration.

Of the four CFD simulations, some feature a distinct slam force more clearly than

others. In particular, case 2 most clearly displays a sharp slam force (Figure 3.19),

and a smaller slam force is also evident in case 3 (Figure 3.20). Cases 1 and 4 (Figures

3.18 and 3.21) also show a sharp increase in force when the wave front impacts the
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structure, although it does not decay quickly after impact as would be expected with

a slam force. However, this increase in force is only partially captured using drag and

inertia models alone, indicating that some slam force is present.

The differences in CFD force time history between the four simulated waves are

strongly dependent on wave structure at the time of impact. As shown in Table 3.6,

the four waves are extremely similar just before breaking. However, the waves are

still in the process of breaking when they impact the structures; the stage of breaking

has a significant effect on the force. As discussed in Section 3.4.2, cases 2 and 3 are

farther along in the breaking process than cases 1 and 4, so that more of the crest is

moving as a vertical wall of water (see Figure 3.12). This creates the more distinct

slamming force peak, and is consistent with the idea that the highest force occurs

when the crest has turned into a vertical wall of water impacting the cylinder [47].

3.4.3.3 Comparison of slam coefficients

To gain additional insight into how the slam coefficient models compare to each

other and to the CFD results, a CFD-based slam coefficient Cs(t) is calculated for each

case using the total CFD force and the predicted drag and inertia forces. Figure 3.22

plots the slam coefficient time histories for the four slam coefficient models (colored

curves) alongside the CFD-based Cs(t) (black circles). Markers indicate the times

where drag and inertia forces are calculated, limited to the times of recorded snapshots

of the CFD fluid velocity u(z, t).

As illustrated in Figure 3.22, none of the four models for Cs(t) capture the CFD

force beyond the predicted drag and inertia terms well. Cases 3 and 4 in particular

feature a sustained, slightly increasing CFD force beyond the initial time of impact.

None of the four Cs(t) models fit this shape, likely because the sustained CFD force is

caused less by the slamming impact and more due to a continued imbalance in surface

elevation across the cylinder. This sustained elevated force can also be seen for all
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Figure 3.22. Slam coefficient time histories for all four breaking wave force cases,
calculated using the Goda (@), Campbell-Weynberg (C), Cointe-Armand (A), and

Wienke-Oumerachi (6) models, as well as based on the CFD total force (u).

the simulated waves (see Figures 3.18–3.21), even those with identifiable slam force

(see Figures 3.19–3.20). Improved models for drag and inertia, or perhaps adding an

additional term to the Morison force equation, may address this portion of the force

better than any slam-focused model.

Aside from the shape of the slamming coefficient time history, the maximum total

force should also be accurately predicted by the slamming coefficient models when

used in conjunction with the Morison equation. However, as noted in Figures 3.18–

3.21), the maximum CFD total force is significantly below the predicted peak force

using the four slam models, even for the simulations with clear slam forces. Table 3.8
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Table 3.8. Comparing maximum values for CFD total force, CFD slam force, and
predicted slam force. Slamming coefficient and single fit parameter λCs are reported
based on CFD slam force. Values in parentheses are relative to CFD slam force.

Case
CFD F CFD FS Goda FS C-W FS C-A, W-O FS CFD CS , CFD λCS

(MN) (MN) (MN) (MN) (MN) λ=0.4

1 22.00 11.81 22.41 (1.9x) 36.74 (3.1x) 44.82 (3.8x) 1.66 0.662
2 24.49 11.95 22.34 (1.9x) 36.62 (3.1x) 44.67 (3.1x) 1.68 0.673
3 17.88 7.96 27.87 (3.5x) 45.68 (5.7x) 55.73 (5.7x) 0.897 0.359
4 11.30 5.67 14.98 (2.6x) 24.56 (2.6x) 29.97 (4.3x) 1.19 0.476

compares the peak inline force for the total CFD force, the CFD slam force based on

interpolated values for the predicted drag and inertia, and the predicted slam force

using all four slamming coefficient models. The ratio between the predicted slam

force and the CFD slam force is reported in parentheses for each model and each

simulated wave.

A CFD-based maximum Cs is also included in Table 3.8, based on the peak CFD

Cs using the same λ=0.4 used throughout this research. The last column in Table

3.8 factors out the curling factor λ to give a single dimensionless parameter λCs that

is theoretically constant across all waves.

As Table 3.8 illustrates, all four models predict a peak slam force several times

larger than the CFD peak slam force. Goda is the closest to the peak CFD slam

force, followed by Campbell-Weynberg, followed by Cointe-Armand and Wienke-

Oumerachi.

3.4.3.4 Limitations of existing slam models

As indicated in Table 3.8 as well as Figures 3.18–3.22, the existing slam models

significantly disagree with the simulated forces for these four breaking waves. Ac-

cording to the CFD peak slam forces, a lower value for the peak Cs should be used

(see Table 3.8), or perhaps a lower value for the factor λCs since very little guidance

is given on the curling factor. The variation in the peak λCs across the four simulated
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waves indicates that one or more important factors are neglected in the existing slam

model formulations.

For instance, cylinder runup is not explicitly accounted for in the existing slam

models, although it is present in all four simulations (see Figure 3.17). Using the

horizontal velocity u(z, t) and acceleration a(z, t) as measured at the cylinder leading

edge (rather than the cylinder center) for Morison drag and inertia does capture the

effect of runup acceptably, at least before wave impact, as shown in Figures 3.18–3.21.

However, the effects of runup post-impact could explain the sustained elevated force

post-impact observed in all four simulated waves. None of the four existing models

for slam capture this effect, as shown in Figures 3.18–3.22.

Additionally, the existing slam models assume the breaking wave is a plunging

breaker, with the moment of impact occurring when the wave front is vertical. While

this scenario produces the highest peak force, it does not address breaking waves at

other stages of breaking, as reflected in Table 3.8 and Figures 3.18–3.22.

Overall, these CFD simulations indicate that the existing slam force models pro-

vide a strongly conservative prediction for the peak inline force due to breaking waves.

However, the predicted time history of the total breaking force could be further im-

proved by including runup effects. These four slam force models in conjunction with

traditional Morison drag and inertia do not account for the variety of breaking wave

shapes and impact timings, but provide a conservative estimate for most breaking

waves.

3.5 Summary and conclusions

In summary, four breaking wave limits and four slam force models are evaluated

using CFD simulations of breaking waves with characteristics representative of poten-

tial East Coast offshore wind energy sites. The CFD model used in the simulations is

first developed in a series of validation and verification studies, including wave gen-
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eration and absorption, wave shoaling and breaking, and wave forces on a cylinder.

In the first component of this research, four breaking wave limits (McCowan, Miche,

Battjes, and Goda) that predict if a wave will break are evaluated using thirty-nine

CFD simulations of shoaling and breaking waves. In the second component of this

research, four slam force models (Goda, Campbell-Weynberg, Cointe-Armand, and

Wienke-Oumerachi) that predict the force on a cylinder due to breaking waves are

evaluated using four CFD simulations of waves shoaling and breaking on monopiles

designed for 5 and 10 MW OWTs.

When examining the breaking wave limits, this research concludes that:

• The Goda limit is the most accurate breaking limit for low seafloor slopes (s <

8%), which are common at East Coast sites suitable for fixed-bottom offshore

wind farms.

• The Miche and Battjes limits are acceptable conservative alternatives that per-

form reasonably for a wider range of seafloor slopes.

• Simple modifications to the Goda and Battjes limits do not yield improved

overall performance.

• The performance of each limit depends on how the wave height and wavelength

are measured in an asymmetric shoaling wave.

Regarding the force predictions from slam force models, this research indicates that:

• All four slam force models are conservative and assume the “worst case” shape

for the breaking wave during impact. Less conservative models should account

for different wave shapes during impact by adjusting the value of λCS.

• When predicting peak impact force, the Goda slam model is generally the least

conservative, while the Cointe-Armand and Wienke-Oumerachi slam models are

generally the most conservative.
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• All four slam force models do not capture the total force time history well after

the initial impact, potentially due to neglecting the effects of runup on the

monopile.

In conclusion, this work indicates that the Goda breaking wave limit should be

used to predict if a wave will break for seafloor slopes less than 8%, and the Battjes

limit should be used to conservatively predict if a wave will break for seafloor slopes

greater than 8%. Furthermore, the Wienke-Oumerachi or Cointe-Armand slam force

models are good choices for highly conservative predictions of the peak impact force

due to a breaking wave.
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CHAPTER 4

WAKE CHARACTERISTICS FOR FLOATING TURBINES

Wind turbine wake effects can decrease power generation and increase turbine

loads in wind farm arrays. A better understanding of floating OWT wake physics

allows for improved engineering wake models used in design. Wakes of floating OWTs

are particularly complex because they are generated by a rotor that moves with the

floating platform. This research examines how downstream wake characteristics differ

between fixed and floating turbines, and specifically how these differences depend on

floating platform type and environmental conditions.

Floating OWT wakes are difficult to accurately model, due in part to the coupled

nature of floating OWT rotor aerodynamics and platform motion. To meet this

challenge, LES coupled with reasonable platform motions are increasingly used to

study floating OWT rotor aerodynamics and wakes [14, 95, 96]. For instance, Wang et

al. [95] compared LES to experimental results for the wake of a multi-turbine platform

with prescribed motion. Lyu et al. [64] also used LES to briefly examine floating

OWT behavior for prescribed motion. However, this type of study is limited by

prescribed platform motion, which only partially captures the aerodynamic-platform

coupling. An improved approach is demonstrated by Lee et al. [14], where the

responses of waked downwind floating OWTs are examined using LES coupled to a

turbine dynamics solver.

Floating OWT wake behavior depends on environmental conditions, just like fixed-

bottom turbine wakes. However, most current studies of floating OWT wakes do not

thoroughly examine the effects of environmental conditions like wind speed, wave
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height, or wind-wave alignment, regardless of methodology [15, 97]. Although exist-

ing studies examine how platform type affects floating OWT loads and rotor aero-

dynamics (see [15, 98–100]) and how atmospheric stability affects onshore turbine

wakes (see [55, 101–103]), the effects of platform type and atmospheric stability on

floating OWT wakes require further study, particularly in the mid-to-far wake where

downstream turbines would typically be placed.

In this research, the wake of a floating OWT is simulated with high-fidelity LES

in the Simulator fOr Wind Farm Applications (SOWFA), coupled to the turbine

simulator OpenFAST using an ALM. Wake characteristics are compared among a

fixed-bottom turbine, a spar floating OWT, and a semisubmersible floating OWT

for different wind speeds, wave heights, wind-wave alignments, rotor yaw angles, and

atmospheric stability conditions.

4.1 Numerical models

Wakes of individual floating OWTs are simulated in SOWFA [104], a CFD tool

developed by the National Renewable Energy Laboratory (NREL) based on the Open-

FOAM v2.4 toolbox [105]. The SOWFA simulations of the wake and surrounding ABL

flow include an ALM for the turbine rotor, loosely coupled with NREL’s aeroelastic

turbine simulator OpenFAST v1.0.0 [106] for the motion of the rotor, tower, and

platform. OpenFAST’s submodules model the effects of the hydrodynamics, moor-

ing lines, and turbine controllers on the turbine motion. The SOWFA-OpenFAST

model used in this work is briefly described below, with a more extensive description

provided by Churchfield et al. [55]. Past validation and verification of the SOWFA

framework includes recent work by Doubrawa et al. [107], Mart́ınez-Tossas et al.

[108], Mirocha et al. [109], and Churchfield et al. [110], with Fleming et al. [12]

summarizing prior efforts.
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4.1.1 Simulation workflow

The wake simulation workflow in this study consists of three main steps. First,

LES of the ABL is performed using SOWFA for a large domain with no turbine,

which develops the wind shear profile and large turbulent structures within the ABL.

Second, this “precursor” simulation is continued for additional simulation time, which

generates and records boundary condition time histories. Third, LES of the turbine

wake is performed using SOWFA, coupled to OpenFAST via the rotor ALM. This

third SOWFA simulation is initialized using ABL flow field data generated by the

first step and uses the boundary condition histories generated during the second step.

Figure 4.1 illustrates this three-step workflow, which is is similar to that used by Lee

et al. [14], among other studies.

Figure 4.1. Three-step workflow for LES of turbine wakes within the atmospheric
boundary layer, coupled to floating turbine motions through an actuator line model.
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4.1.2 SOWFA

SOWFA solves the filtered incompressible Navier-Stokes equations using a finite-

volume method. The momentum equations include Coriolis effects due to the Earth’s

rotation and incorporate buoyancy effects using the Boussinesq approximation, adding

a temperature transport equation [55]. The PISO algorithm [111] is used with Rhie-

Chow interpolation [112] to avoid pressure-velocity decoupling. The Deardorff-Lilly

one-equation model [113] is used as the LES subgrid-scale model.

The lower boundary is treated using the rough-wall shear stress model of Schu-

mann [114]. Monin-Obukhov similarity theory is used [115] to relate the friction

velocity to the flow adjacent to the surface, the surface roughness height z0, and the

surface heat flux, as is common practice in ABL LES [55]. The upper boundary

is located in the geostrophic region above the ABL and is therefore modeled as a

stress-free, rigid lid. The four side boundary conditions are laterally periodic for pre-

cursor ABL simulations, but are inflow or outflow for turbine-wake simulations. The

inflow values are based on the recorded boundary conditions from the precursor ABL

simulations, while a zero normal gradient condition is used for outflow boundaries.

4.1.3 Actuator line model

For the turbine-wake simulations, the ALM of Sørenson and Shen [68] is used to

model each turbine blade as a line of distributed forces. The drag and lift forces are

projected onto the LES flow field as body forces in the momentum equation, using a

3D Gaussian kernel at each blade line element. The width of this Gaussian projection

is set to slightly more than twice the local cell size to maintain numerical stability,

as Troldborg [116] and Churchfield et al. [55] recommend.

The traditional turbine ALM models how the rotor influences the LES flow, but

does not account for the effects of the tower or nacelle. However, work by Santoni et

al. [72] indicates that including tower and nacelle models can moderately affect the
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wake up to 6D downstream, although their unusually large nacelle may exaggerate

the importance of the tower and nacelle. To account for these effects, SOWFA has the

capability to include ALM-based tower and nacelle models as described by Churchfield

et al. [71]. A preliminary study conducted for 8 m/s hub-height wind speed and

a fixed platform indicates that the SOWFA tower and nacelle models significantly

influence only the near wake, with little effect by 4D downstream. Although these

models could use improvement [71] and do not appear to affect the far wake, these

simulations implement SOWFA’s ALM-based tower and nacelle models, in addition

to the traditional ALM rotor model.

4.1.4 OpenFAST

In the coupled SOWFA-OpenFAST turbine simulations, OpenFAST computes the

time-varying motion of the turbine blades, tower, and platform. The structural dy-

namics of the flexible blades and tower are modeled with the ElastoDyn submodule,

while variable-speed and blade-pitch control is included using the ServoDyn submod-

ule. The rotor yaw degree of freedom is disabled so that the rotor yaw angle can be

set without depending on a yaw controller. The HydroDyn submodule models the

hydrodynamic loading on the platform, while the mooring lines are modeled with the

MoorDyn submodule. Additional details on the underlying OpenFAST solvers are

described by Jonkman and Buhl [117], and in the OpenFAST documentation [118].

4.2 Simulation setup

4.2.1 Platform types

This study simulates the NREL 5 MW reference turbine (diameter D=126 m, hub

height zhh=90 m, rated wind speed 11.4 m/s, and shaft tilt φt=5◦) [119] mounted on

two floating platforms: the OC3-UMaine spar [98] and the OC4-DeepCWind semisub-

mersible [120] (see Figure 2.1). The OC3-UMaine spar is identical to the OC3-Hywind

79



spar [121], but with the catenary mooring lines adjusted to match the semisub’s water

depth of 200 m [98]. For comparison, an equivalent fixed-bottom turbine is also sim-

ulated by disabling all platform degrees of freedom to remove any foundation motion

or deflections.

4.2.2 Environmental conditions

The OWTs are simulated for various combinations of environmental conditions.

Common attributes across the simulations include unidirectional, irregular JON-

SWAP waves and sheared, turbulent wind from the southwest. The OWTs are sim-

ulated for two different atmospheric stability conditions: neutral and stable.

4.2.2.1 Neutral atmosphere

First, a neutral atmosphere is simulated with no surface cooling and a strong

capping inversion at an elevation of z=750 m. The surface roughness height z0 is

based on the Charnock model with α=0.011, as recommended by International Elec-

trotechnical Commission standard 614000-3 [122]. This z0 model is selected because

preliminary studies indicate that it creates turbulence intensities at z=90 m (hub

height) and z=30 m that best match those measured at the FINO1 platform [123].

Two different hub-height wind speeds are examined for these neutral conditions,

Uhh=8 m/s and Uhh=15 m/s, requiring two different neutral precursor ABL simu-

lations. The wind shear and temperature profiles for both neutral precursor ABL

simulations are shown in Figure 4.2.

4.2.2.2 Stable atmosphere

Second, a stable atmosphere is also simulated with a surface cooling rate of 0.25

K/h and an initial temperature inversion starting at z=250 m, based on the canon-

ical GABLS1 case, as described by Beare et al. [124] but with the initial inversion
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Figure 4.2. Horizontally averaged wind speed U∞ and potential temperature θ
plotted against elevation z for neutral simulations with hub-height wind speeds Uhh
of 8 m/s (−) and 15 m/s (−−). The turbine rotor location is marked by dotted
horizontal lines.

raised above the rotor disk. The surface roughness height is identical to the neutral

atmosphere simulations.

Only a hub-height wind speed of Uhh=8 m/s is simulated for the stable atmo-

sphere. As shown in Figure 4.3, the stable atmosphere exhibits higher wind shear,

higher wind veer, and lower turbulence intensity across the rotor disk than the neutral

atmosphere with the same wind speed. Figure 4.3 compares the neutral and stable

atmospheres for Uhh=8 m/s, showing the vertical profiles of the potential temperature

θ, free-stream horizontal wind speed U∞, free-stream horizontal wind direction, and

turbulence intensity (TI), averaged over time and across the domain.

Figure 4.3. Potential temperature, wind speed, wind direction, and turbulence
intensity plotted against elevation for neutral (−) and stable (−−) atmosphere sim-
ulations with Uhh=8 m/s, averaged over time and across the domain. The shaded
region indicates the rotor disk elevation.
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4.2.3 Simulated domains

The size and mesh resolution of each CFD domain depends on if the simulation is

a precursor or turbine-wake simulation, and on if atmospheric stability is neutral or

stable. The neutral precursor simulations develop the neutral ABL over 5.5 hours, in

a 3 km by 3 km by 1.02 km domain on a 10 m uniform cubic mesh, for a total of 9.2

million cells. The stable precursor simulations develop the stable ABL over 10 hours

in a 2 km by 2 km by 0.5 km domain on a 5 m mesh, for a total of 16 million cells.

For the turbine-wake simulations, the neutral domain size is reduced to 2 km by

1–1.2 km by 1.02 km with a base cell size of 10 m, to reduce computational cost.

The stable domain size is likewise reduced to 2 km by 1 km by 0.5 km, with a base

cell size of 5 m. For both the neutral and stable turbine-wake simulations, a wake

refinement region at 2.5 m resolution extends from 4D upstream to 10.3D downstream

of the turbine. Also, a rotor refinement region at 1.25 m resolution extends from 0.5D

upstream to 1.5D downstream. The rotor, wake, and base resolutions are comparable

to those used in other SOWFA studies [12–14, 55, 125]. For these simulations in

particular, halving the cell size in the wake refinement region has negligible effects on

the floating turbine wakes, although small changes in the resolved turbulent kinetic

energy are observed. In total, the neutral and stable turbine simulation cell counts

are 18.3 and 23.8 million cells, respectively.

Figure 4.4 illustrates the key features of the CFD domains, using the neutral

precursor and turbine-wake simulations as an example. Figure 4.4 includes slices

through the turbine-wake domain mesh at the rotor plane (for 0◦ rotor yaw) and at

hub height, colored by instantaneous velocity magnitude. For all simulations, the

domain sides and Cartesian mesh are aligned with the cardinal directions, while the

average wind U∞ blows from the southwest at 245◦ (measured clockwise from north).

This means that the precursor’s lateral periodic boundaries are not aligned with the

wind direction, to avoid spurious periodicity. The coordinate system is defined so

82



Figure 4.4. Domains for the ABL simulations (3 km by 3 km by 1.02 km) and
SOWFA-OpenFAST turbine-wake simulations (2 km by 1.2 km by 1.02 km), with an
average wind direction from the southwest. For the turbine-wake domain, mesh slices
colored by instantaneous wind speed are shown at the rotor plane (x = 0D) and at
hub height, including wake and rotor refinement regions (solid and dashed boxes).

that the x axis is aligned with the average wind flow U∞, the y axis is aligned with

the rotor plane (for 0◦ rotor yaw), and the z axis points in the upward direction.

4.2.4 Case descriptions

Two groups of turbine-wake simulations are performed. First, the spar and fixed-

bottom OWTs are compared in a neutral atmosphere, for different wind speeds, wave

heights, wind-wave alignments, and rotor yaw angles. Second, spar, semisub, and

fixed-bottom OWTs are compared in neutral and stable atmospheres, for a single

combination of wind speed/wave height/wind-wave alignment/rotor yaw angle.
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For the first group of cases, the wind speeds are either Uhh=8 m/s or 15 m/s,

representing below-rated or above-rated operating conditions. The significant wave

heights are either Hs=4 m or 8 m, with peak spectral periods of Tp=10 s and 14 s,

respectively. Wind-wave alignments of α=0◦ and 30◦ are also compared. Finally, rotor

yaw angles of φy = 0◦ and 10◦ are compared. The nacelle yaw angle is held constant

at the nominal yaw, but variations in wind direction and platform yaw motion cause

the instantaneous wind-rotor alignment to fluctuate about this average angle.

In this first group, starting with a baseline floating OWT simulation with Uhh=8

m/s, Hs=8 m, α=0◦, and φy=0◦, eight cases allow each parameter – wind speed, wave

height, wind-wave alignment, and rotor yaw – to be studied individually. Table 4.1

enumerates each case in this first group.

For the second group of cases, all simulations use Uhh=8 m/s, Hs=8 m, α=25◦,

and φy=0◦. This combination represents conditions most likely to accentuate wake

differences between fixed and floating turbines. In this second group, wake charac-

teristics are compared across spar, semisub and fixed-bottom turbines in both the

neutral and stable atmospheres. Table 4.1 also lists the cases in this second group.

4.3 Simulation results

To understand how environmental conditions and platform type affect the dif-

ferences between fixed and floating OWT wakes, each floating case in Table 4.1 is

compared to the equivalent fixed-bottom case. The wake and turbine behavior are

examined after discarding the initial 10 minutes of transient behavior, producing 50

minutes of usable data for the first group of cases and 60 minutes for the second

group.
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Table 4.1. Summary of cases for two groups of turbine-wake simulations.

Case Platform Atmosphere Uhh (m/s) Hs (m) α (◦) φy (◦)

1.1 Fixed Neutral 8 – – 0
1.2 Spar Neutral 8 8 0 0
1.3 Spar Neutral 8 4 0 0
1.4 Spar Neutral 8 8 30 0

1.5 Fixed Neutral 8 – – 10
1.6 Spar Neutral 8 8 0 10

1.7 Fixed Neutral 15 – – 0
1.8 Spar Neutral 15 8 0 0

2.1 Fixed Neutral 8 – – 0
2.2 Spar Neutral 8 8 25 0
2.3 Semisub Neutral 8 8 25 0

2.4 Fixed Stable 8 – – 0
2.5 Spar Stable 8 8 25 0
2.6 Semisub Stable 8 8 25 0

4.3.1 Platform displacements

The nuances of platform motion are key to understanding how floating platforms

affect wakes. In addition to the inherent time-varying motion, non-zero mean dis-

placements of floating platforms also affect the wake. Figure 4.5 summarizes the

platform displacements for all floating cases in the first group. The time-averaged

displacement is reported, as well as the root-mean-square (RMS), minimum, and

maximum of the time-varying displacement, for each degree of freedom.

In Figure 4.5, the large mean surge and pitch displacements are caused by the

rotor aerodynamic thrust, which increases with wind speed. As expected, the smaller

wave height produces less time variation (smaller RMS) in all degrees of freedom.

Also, the larger wind-wave misalignment increases the time variation (larger RMS),

especially in sway, roll, and yaw.

Figure 4.6 similarly shows platform displacements for the second group of cases,

and also includes rotor center displacements (∆xRC , ∆yRC , ∆zRC). For each floating
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Figure 4.5. Floating platform displacements in each degree of freedom, including
displacement mean (circles), root-mean-square (−), and minimum-maximum (vertical
lines). The baseline floating simulation (case 1.2 in Table 4.1) is compared to the other
floating cases in the first group.

case, the time-averaged displacement is again reported alongside the RMS, minimum,

and maximum of the displacement time history.

Comparing the spar to the semisub (for a neutral atmosphere) in Figure 4.6, the

spar exhibits a larger mean surge, larger mean pitch, larger yaw RMS, and smaller

heave RMS than the semisub. Although the spar and semisub have similar surge

and pitch RMS, the phasing of these motions differs significantly between the two

platforms. Surge and pitch are in phase for the spar but out of phase for the semisub,

so that the spar ∆xRC RMS is more than twice the semisub RMS. The spar and

Figure 4.6. Floating turbine displacements for spar neutral (s), semisubmersible

neutral (u), and spar stable (q) cases from the second group. The mean (symbols),
root-mean-square (−), and minimum/maximum (vertical lines) are shown for six
platform motions as well as rotor center displacements.
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semisub also have similar sway and roll RMS values, but the spar’s larger yaw RMS

causes a larger ∆yRC RMS because the rotor center is offset from the yaw axis. The

spar’s smaller heave RMS translates directly into smaller ∆zRC RMS.

Comparing the neutral atmosphere to the stable atmosphere (for the spar) in Fig-

ure 4.6, the stable atmosphere creates slightly smaller RMS variations in most degrees

of freedom, as expected for the stable atmosphere’s lower turbulence intensity. The

neutral mean surge and pitch are slightly larger than the stable mean values, but

the mean displacements are generally similar between the neutral and stable atmo-

spheres. The overall similarity in platform displacements between the neutral and

stable atmospheres indicates that atmospheric stability plays little role in platform

motion for these conditions.

4.3.2 Time-averaged wake characteristics

Wakes are typically characterized by the streamwise velocity deficit Ud = U −U∞

as well as increased turbulent kinetic energy (TKE). The time-averaged results for

these quantities are presented in this section, for both groups of cases.

4.3.2.1 Wake characteristics for cases 1.1–1.8

Figures 4.7 and 4.8 plot the wake velocity deficit Ud against elevation z and cross-

stream coordinate y at downstream locations of x/D=1, 3, 6, and 9, for the first group

of cases. The top row compares the fixed-platform case with Uhh=8 m/s and 0◦ yaw

(case 1.1) to similar floating-platform cases (cases 1.2–1.4) with different wave heights

Hs and wind-wave alignments α. The middle row compares the fixed and floating

cases with Uhh=8 m/s and 10◦ yaw (cases 1.5–1.6). The bottom row compares the

fixed and floating cases with Uhh=15 m/s and 0◦ yaw (cases 1.7–1.8).

As expected, all wake deficits recover with downstream distance, with the higher

wind speed cases recovering faster, partially due to their slightly higher ambient

turbulence intensities TIhh and lower thrust coefficients CT . The deficit profiles in
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Figure 4.7. Temporally averaged wake velocity deficit Ud plotted against elevation
z at different downstream locations x. Fixed and floating platforms are compared for
different wave heights Hs (top), wind-wave alignments α (top), rotor yaw angles φy
(middle), and wind speeds Uhh (bottom).

the yawed cases are slightly distorted due to the wake veer caused by the yawed rotor,

as expected. In general, floating- and fixed-platform wakes are very similar in shape.

As illustrated in Figure 4.8, the floating-platform wake deficits are nearly identical

to the fixed-platform wake deficits in the cross-stream direction, especially as the

distance downstream increases. However, the wake deficit elevation profiles in Figure

4.7 show that the floating-platform wakes are generally deflected upward compared

to the fixed platform, though this effect is reduced for higher wind speeds or lower

wave heights.
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Figure 4.8. Temporally averaged wake velocity deficit Ud plotted against cross-flow
coordinate y at different downstream locations x. Refer to Figure 4.7.

Figures 4.9–4.10 plot the TKE profiles in the wake, in a manner similar to Figures

4.7–4.8. The high-turbulence regions at the blade tips and nacelle decay downstream,

with faster recovery for the higher wind speed cases (again, due to lower CT and higher

TIhh). As with the wake deficit, the fixed and floating platforms produce similar TKE

profiles. However, the floating platforms produce increased TKE in the wake shear

layer compared to the fixed cases, though this effect is lessened for smaller wave

heights and higher wind speeds (see in particular Figure 4.10).

Based on Figures 4.5 and 4.7, the floating-platform wakes are deflected upward

due to the mean platform pitch, as observed in other studies [14, 97]. This vertical
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Figure 4.9. Temporally averaged turbulent kinetic energy plotted against elevation
z at different downstream locations x. Refer to Figure 4.7.

deflection is similar to the well-known horizontal wake veer due to rotor yaw. Also,

the mean platform surge may explain the slight differences in wake deficit shape at

x/D=1: x is measured from a 0 m surge, so that the floating platform’s x/D=1

(as reported) is effectively slightly upstream compared to the fixed platform. The

importance of this mean surge effect decreases farther downstream.

In addition, based on Figures 4.5 and 4.7–4.10, the increased TKE in the wake

shear layer for floating platforms is associated with time-varying platform motion.

More platform movement results in more rotor motion, which triggers instability in

the wake shear layer faster than in fixed-platform cases. This idea is supported by the
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Figure 4.10. Temporally averaged turbulent kinetic energy plotted against cross-
flow coordinate y at different downstream locations x. Refer to Figure 4.7.

Hs=4 m case, where smaller time-varying platform motions cause smaller increases

in TKE in the wake shear layer.

Overall, Figures 4.5 and 4.9–4.10 indicate that the wake deficit shape is altered

by mean platform displacements, specifically shifting the elevation of the peak wake

deficit upwards by up to 10%. Also, peak TKE in the wake shear layer is increased

up to 6% due to time-varying platform motion. These effects are relatively small

in this study, especially for higher wind speeds and lower wave heights. However,

because the platform motion is on the order of the simulation cell size, it is unclear

if this study adequately resolves the full effects of floating-platform motion on the

wake. Although higher mesh resolution remains computationally prohibitive, suffi-
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ciently high-resolution data from experiments or field measurements are also difficult

to obtain.

4.3.2.2 Wake characteristics for cases 2.1–2.6

Figure 4.11 shows Ud versus elevation z at different downstream locations for the

fixed, spar, and semisub turbines in neutral (A) and stable (B) atmospheres. For

each simulation, the downstream location x’ is measured from the turbine’s mean

rotor center displacement such that x’ = x - ∆xRC . Similarly, Figure 4.12 plots the

resolved TKE against elevation z at different downstream locations x’.

As shown in Figures 4.11–4.12, all wakes recover with downstream distance as

expected, indicated by reduced wake deficits and turbulence levels. The double-peak

wake shape at x’/D = 1, 3 is caused by the low-thrust region near the blade roots.

Figures 4.11–4.12 also show that the fixed-turbine wakes are similar to the floating-

turbine wakes for both neutral and stable atmospheres.

Figure 4.11. Time-averaged velocity deficit plotted against elevation at several
downstream locations. Fixed and floating turbines are compared in neutral (A) and
stable (B) atmospheres. The downstream locations are measured from the mean rotor
displacement.
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Figure 4.12. Turbulent kinetic energy plotted against elevation at several down-
stream locations. Fixed and floating turbines are compared in neutral (A) and stable
(B) atmospheres. The downstream locations are measured from the mean rotor dis-
placement.

4.3.3 Wake velocity differences for cases 2.1–2.6

To better illustrate the small differences between the fixed-turbine wakes and

floating-turbine wakes, Figure 4.13 displays contours of the difference in time-averaged

streamwise velocity, ∆U , at several cross-stream planes. Specifically, velocity differ-

ences are shown: between the spar and the fixed turbine in the neutral atmosphere

(top), between the semisub and the fixed turbine in the neutral atmosphere (center),

and between the spar and the fixed turbine in the stable atmosphere (bottom). The

downstream locations x’ are again measured from the mean rotor displacement, and

an outline of the undisplaced rotor disk is included for reference.

The most prominent feature of the time-averaged velocity difference contours in

Figure 4.13 is the positive ∆U near the bottom of the wake paired with a negative

∆U near the top of the wake. This is caused by the floating-turbine wakes deflecting

upward compared to the fixed-turbine wakes: the floating wake is shifted upwards,

creating a higher-velocity region near the bottom of the rotor disk and a lower-velocity
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Figure 4.13. Differences in time-averaged wake velocity between fixed and floating
simulations at downstream locations of x’/D = 1, 3, 6, 9. The downstream locations
are measured from the mean rotor displacement. The undisplaced rotor disk is out-
lined for reference.

region near the top. At x’/D = 1 and 3, the alternating positive-negative ∆U areas

inside the rotor outline are caused by the upwards deflection of the double-peak wake

shape shown in Figures 4.11–4.12. The differences between the semisub and the fixed

turbine are smaller than between the spar and the fixed turbine, although the same

upwards deflection appears for both floating platforms. For the stable simulations,

the higher wind veer skews the wake more, causing the positive-negative ∆U pattern

to be stretched diagonally.

This upwards deflection of floating-turbine wakes is caused by the mean platform

pitch backwards, creating a vertically curled wake, as also observed by Lee et al. [14]

and Rockel et al. [97]. This curled wake resulting from platform pitch is similar to

curled wakes caused by rotor tilt [11–13, 126], and is also analogous to horizontally
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curled wakes caused by nacelle yaw. Although the vertical deflection is measurable for

these floating-turbine wakes, the curled shape distortion is relatively weak because

of the low effective rotor tilt angles (5◦ shaft tilt plus 1-3◦ mean platform pitch),

especially beyond the near wake, x’/D > 1.

To further illustrate the reason why floating-turbine wakes are deflected upward

compared to fixed-turbine wakes, Figure 4.14 shows a contour at x’/D = 3 of the

difference in time-averaged streamwise velocity ∆U between a fixed turbine with a

10◦ nacelle yaw angle (case 1.5) and a fixed turbine with a 0◦ yaw angle in the neutral

atmosphere (case 1.1). The horizontal positive-negative ∆U pattern in Figure 4.14

is similar to the vertical positive-negative ∆U in Figure 4.13, including the effects

of the double-peak wake shape inside the rotor outline. This similarity to the wake

differences between two fixed turbines (one yawed and one without yaw) suggests that

the floating-turbine wakes’ upward deflection is mostly caused by the mean platform

pitch displacement, rather than any time-varying motions due to the floating platform.

Figure 4.14. Differences in time-averaged
wake velocity between a fixed turbine with
10◦ rotor yaw and a fixed turbine with 0◦

rotor yaw, at a downstream location of
x’/D = 3. The undisplaced rotor disk is
also outlined.

In contrast to the time-averaged wake velocity differences in Figure 4.13, the in-

stantaneous wake velocity differences between the floating and fixed turbines (not

shown) do not show recognizable patterns over time or space. Although the instanta-

neous streamwise velocity in the wake is noticeably different (1-2 m/s) at any given

time between the fixed and floating simulations, these differences represent a differ-

ent realization of wake turbulence and do not form spatial or temporal patterns that

would affect a downstream turbine.
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4.3.4 Wake centerline locations for cases 2.1–2.6

To further investigate how floating-turbine wakes differ from fixed-turbine wakes,

the wake center is tracked over time for cases in the second group. The wake center at

each downstream location is identified every 1 s, using the SAMWICH toolbox [127]

by fitting a 2D Gaussian to the streamwise velocity deficit and taking the Gaussian

center as the wake center. This method can track the wake center up to x’/D = 6,

but results farther downstream are omitted because of spurious wake center locations.

Figure 4.15 shows the wake center cross-stream coordinate yWC and vertical co-

ordinate zWC at different downstream slices x’ for each platform type in neutral (A)

and stable (B) atmospheres. The time-averaged wake center is shown with the RMS,

minimum, and maximum of the wake center time history. The downstream location

x’ is measured from the mean rotor displacement.

The mean wake center elevations zWC in Figure 4.15 confirm that the floating-

turbine wakes are deflected upwards, compared to the fixed-turbine wakes. However,

even the fixed-turbine wakes are somewhat deflected upward, due to the 5◦ shaft tilt

Figure 4.15. Wake center coordinates yWC , zWC versus downstream location in
neutral (A) and stable (B) atmospheres. The mean (symbols), root-mean-square

(−), and minimum/maximum (|) are shown for the fixed (p, v), spar (s, q), and

semisubmersible (u) platforms.
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[119]. The spar wake center is deflected upward more than the semisub wake center,

which is consistent with the spar’s larger wake velocity differences in Figure 4.13. This

trend is caused by the spar’s larger mean platform pitch (see Figure 4.6). Comparing

atmospheric stabilities, the stable spar wake is deflected more than the neutral spar,

suggesting that floating-turbine wake deflection is influenced by wind shear.

The mean wake center cross-stream locations yWC in Figure 4.15 are generally

similar between fixed and floating turbines for the neutral atmosphere, with differ-

ences less than 1%D. Since the stable atmosphere has higher wind veer, the stable

wakes are deflected more than the neutral wakes in the cross-stream direction. Fur-

thermore, the stable floating-turbine wakes are deflected more in the cross-stream

direction than the stable fixed-turbine wakes (up to 13%D). This is caused by the

vertical wake deflection interacting with the stable atmosphere’s wind veer.

The time-varying fluctuations in wake center location in Figure 4.15 are generally

similar between the fixed and floating turbines. For both yWC and zWC , the RMS

differences between fixed and floating wake center locations are mostly less than

1%D. However, the stable atmosphere’s low TI increases the importance of the

platform motion’s effect on the wake, creating a 3%D difference in horizontal RMS

between the stable fixed and floating cases at x’/D = 6. Differences in the RMS

yWC and zWC between the stable and neutral atmospheres are generally larger than

the RMS differences between fixed and floating turbines, indicating that atmospheric

flow influences wake center variations more than floating platform motion.

4.3.5 Quantifying floating-fixed differences for cases 2.1–2.6

Table 4.2 summarizes the key differences between fixed and floating turbines pre-

sented in Figures 4.6 and 4.11–4.15, illustrating how floating platform motion and

rotor center displacements translate into differences in wake center locations. As in-

dicated in Table 4.2, mean platform pitch values of 1.8-2.6◦ result in increased vertical
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Table 4.2. Differences in mean and root-mean-square values between floating and
fixed turbines. Differences are shown for key platform motions; rotor center displace-
ments; and wake center locations at three downstream locations.

Spar vs. Fixed Semi vs. Fixed Spar vs. Fixed
(Neutral) (Neutral) (Stable)

Difference Mean RMS Mean RMS Mean RMS

Surge (m) 8.36 1.41 6.02 1.26 7.87 1.34
Heave (m) −0.19 0.29 0.02 0.85 −0.18 0.29
Pitch (◦) 2.63 0.68 1.83 0.69 2.49 0.66
Yaw (◦) 0.04 0.55 0.03 0.16 0.08 0.49

∆xRC (m) 12.21 2.52 8.82 1.12 11.92 2.46
∆yRC (m) −0.33 1.16 −0.20 0.58 −0.41 1.15
∆zRC (m) −0.05 0.26 0.13 0.81 −0.05 0.26

yWC

x′/D=1 −0.37%D −0.03%D −0.11%D −0.01%D −0.45%D 0.00%D
x′/D=3 −0.20%D −0.01%D −0.25%D −0.05%D −1.17%D 0.04%D
x′/D=6 −0.70%D −0.30%D −0.67%D 0.03%D −12.97%D −3.05%D

zWC

x′/D=1 0.12%D 0.04%D 0.30%D −0.04%D 0.21%D 0.18%D
x′/D=3 1.96%D 0.03%D 1.47%D −0.03%D 0.77%D 0.33%D
x′/D=6 3.42%D −0.16%D 2.95%D 0.08%D 4.93%D −0.66%D

wake deflections of 3-5%D at x’/D=6, with the stable atmosphere increasing the ver-

tical wake deflection. Increased rotor displacement RMS values of 1-3 m result in

negligible (mostly less than 1%D) changes in wake center location RMS, though the

stable atmosphere creates larger differences (up to 3%D) in horizontal wake center

fluctuations between the fixed and floating cases.

4.4 Summary and conclusions

In summary, floating OWTs are simulated using LES with an ALM in a coupled

SOWFA-OpenFAST framework for different wind speeds, wave heights, wind-wave

alignments, rotor yaw angles, floating platform types, and atmospheric stability con-

ditions. Wake characteristics such as velocity deficit Ud, TKE, and wake centerline

locations are compared between the floating OWTs and an equivalent fixed-bottom

turbine.
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For the simulated conditions, floating OWT wakes generally have similar char-

acteristics to fixed-platform wakes. The primary difference is that floating-turbine

wakes are deflected upwards because of mean platform pitch angles in all simula-

tions. This vertical wake deflection for floating turbines is similar to horizontal wake

deflection caused by nacelle yaw in fixed turbines (see Figures 4.13–4.14). Across

the different environmental conditions studied in cases 1.1–1.8, mean platform pitch

deflected the wake upwards by 5–10%. Based on cases 2.1–2.6, the spar platform pro-

duces larger upwards wake deflections than the semisub, because of the spar’s larger

mean platform pitch (see Table 4.2). The stable atmosphere produces larger vertical

and horizontal deflections than the neutral atmosphere (see Table 4.2), indicating

that wind shear and wind veer interact with this pitch-driven wake deflection.

In addition, small variations in turbulence are associated with time-varying plat-

form motions, particularly a 1–6% increase in peak TKE in the wake shear layer.

These differences persist into the far wake 6 to 9D downstream, but are reduced

for higher wind speeds or lower wave heights. Rotor yaw angle and wind-wave align-

ment only minimally affect the differences between fixed- and floating-platform wakes.

Due to mesh resolution limitations, these results may not capture all floating-platform

wake effects.

Floating-turbine wake fluctuations in time do not significantly differ from fixed-

turbine wake fluctuations, even for conditions selected to accentuate floating wake

differences (high wave height, below-rated wind speed, and wind-wave misalignment).

The RMS fluctuations in wake center location differ by less than 1%D between fixed

and floating turbines in most cases, although the stable atmosphere’s low turbulence

intensity allows the floating platform motion to have a larger effect on horizontal wake

center fluctuations (see Figure 4.15 and Table 4.2).

These conclusions suggest that reduced-order wake models for fixed turbines can

reasonably apply to floating-turbine wakes, especially curled wake models that cap-
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ture upwards wake deflection caused by mean platform pitch. Additional adjustments

may be necessary for vertical wake deflections interacting with wind shear and wind

veer, for some conditions.
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CHAPTER 5

POWER GENERATION FOR FLOATING TURBINES

Accurately predicting the power generation for floating turbines is vital for design-

ing and financing large-scale floating wind projects. In floating OWTs, the coupling

of platform mobility to aerodynamic loads on the turbine rotor affects the power

generation, structural loads, and wind flow around the turbine [7, 8]. It is impor-

tant to understand how and why power generation differs between floating turbines

and fixed-bottom turbines, so that appropriate adjustments can be made to power

prediction models used in project design and planning.

Floating platform displacements are described by six degrees of freedom: surge,

sway, heave, pitch, roll, and yaw, as illustrated in Figure 2.1. These platform dis-

placements cause displacements of the rotor, also shown in Figure 2.1: the three linear

displacements of the rotor center, xRC , yRC , and zRC , as well as the rotor “pitch” and

“yaw” angles due to platform displacements, φRC and θRC . In general, both rotor

and platform displacements may include both fluctuating motions (“dynamic dis-

placements”) and nonzero time-averaged positions (“time-averaged displacements”).

Previous studies examine how specific types of dynamic platform displacements

affect a floating turbine’s power generation. In particular, dynamic motions in surge

and pitch typically increase time-averaged power generation: the associated rotor

motions upwind-downwind change the relative wind speed experienced by the rotor,

which results in a power gain when averaged over time. This phenomenon is observed

for isolated pitch motions, isolated surge motions, and combinations of surge and
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pitch motions in studies by Huang and Wan [128], Karimian Aliabadi and Rasekh

[129], Lin et al. [76], Sant et al. [130], Shen et al. [131], and Wen et al. [132–134].

Other studies also document that statically angling the rotor relative to the wind

decreases power generation. Specifically, static rotor yaw reduces a turbine’s power

generation [13, 135], with a power loss coefficient typically predicted by a cosn model

[135]. Similarly, static rotor tilt decreases a turbine’s power generation [13]. For

floating turbines, platform yaw and pitch directly cause an angled rotor, which may

act like static rotor yaw or tilt and decrease power [128]. Additionally, platform roll

and heave may affect power by causing vertical rotor displacements within the wind

shear profile, though the vertical displacements may be too small relative to the wind

shear to create a substantial effect.

Although platform displacements are the underlying reason behind power gains

or losses in floating turbines, previous studies rarely use representative displacement

values. A realistic floating turbine’s platform displacements are driven by stochastic

environmental loads from irregular waves and turbulent wind, with possible coupling

between different platform degrees of freedom [99]. Despite this, simulated platform

displacement time histories are often approximated as prescribed sinusoids with time-

averaged values of zero, and individual platform degrees of freedom are often studied

in isolation [95, 129, 131–134, 136]. Direct comparisons between multiple common

floating platform types are also rare, limiting the ability to generalize trends across

platform types. Notable exceptions include Sebastian and Lackner [99], who examined

barge, spar, and tension-leg platforms with dynamic behavior under irregular waves

and steady wind, as well as Huang and Wan [128], who examined a spar platform

with dynamic behavior under regular waves and steady wind.

This research aims to provide upper estimates for power gains or losses due to

floating platform displacements for two common floating platform types, the spar

and semisubmersible. Furthermore, this research seeks to link these power gains
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or losses to rotor displacement patterns, and in doing so, identify the underlying

physical phenomena that cause differences in average power between floating and

fixed-bottom turbines. Specifically, this study focuses on determining which types of

realistic platform behavior most affect the average power for below-rated conditions,

by addressing the following questions:

• Do any dynamic rotor or platform displacements significantly affect power?

• Do any time-averaged rotor or platform displacements significantly affect power?

• Which rotor and platform degrees of freedom affect power the most?

• How does average power generation differ between spar and semisub platforms?

To answer these questions, floating turbines are simulated using OpenFAST [106]

and SOWFA [104]. Section 5.1 describes the simulation setup, including details on the

simulation models, platform types, environmental conditions, and case descriptions.

Section 5.2 presents the simulated results for platform displacements and average

power generation. In Section 5.3, a new analytical model for floating power gener-

ation is proposed and evaluated against the simulated results. Finally, Section 5.4

summarizes this work’s conclusions about how specific platform displacements affect

average power generation in floating turbines.

5.1 Simulation setup

This study simulates the power generation of the NREL 5 MW reference turbine,

which has a diameter of D=126 m, a hub height of zhh=90 m, a rated wind speed of

11.4 m/s, and a shaft tilt of φt=5◦ [119]. The simulated turbine is mounted on two

floating platforms: the OC3-UMaine spar [98] and the OC4-DeepCWind semisub-

mersible [120] (see Section 4.2.1). For comparison, a fixed-bottom version of the

NREL 5 MW turbine is also replicated by disabling all platform displacements for a

spar simulation, as described in Section 4.2.1.
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5.1.1 Environmental conditions

This study considers the power generation under one combination of environmen-

tal conditions. The turbulent wind conditions represent an offshore ABL with neutral

stability, capped by a stable inversion at an elevation of 750 m. At hub height, the

wind speed is 8 m/s and the turbulence intensity is 4%, with a wind shear of 0.008

m/s/m and a wind veer of 0.02◦/m across the rotor height. Figure 5.1 shows the

average horizontal wind speed, wind direction, and turbulence intensity as a func-

tion of elevation in the simulated ABL. Additional characteristics of a similar neutral

boundary layer are described in more detail in Sections 4.2.2–4.2.4. The 8-m/s wind

speed is in the turbine’s below-rated operating region, where tip-speed ratios are high

and power generation is most influenced by platform behavior [76, 129].

The wave conditions are irregular, unidirectional JONSWAP waves in a water

depth of 200 m. The irregular waves have a significant wave height of Hs=8 m and

a peak spectral period of Tp=14 s. The wave propagation direction is aligned with

the hub-height wind direction. These environmental conditions represent an unusual

combination of below-rated wind speeds and very large waves; a more typical 10-

year significant wave height might be 4.5-5 m for this wind speed [100]. Previous

studies indicate that this combination increases the platform displacements [17, 100]

while remaining in the below-rated control regime where power is most affected by

platform motions, therefore giving an upper estimate for the power gains or losses

due to floating platform displacements.

Figure 5.1. Free-stream horizontal wind speed U∞, wind direction, and turbulence
intensity in the simulated ABL, averaged horizontally and over time.
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5.1.2 Simulation models

The spar, semisubmersible, and fixed-bottom turbines in these environmental con-

ditions are simulated using OpenFAST v2.3.0 [106], NREL’s modular aeroelastic en-

gineering tool that models the platform motion, rotor motion, rotor aerodynamic

performance, and power generation. Variable-speed control and blade-pitch control

are included using OpenFAST’s ServoDyn module, but the blade pitch remains at

0◦ due to the below-rated wind speed. The HydroDyn module models the irregular

wave conditions. The turbulent inflow wind is generated by LES of the ABL flow.

This LES is performed with SOWFA [104], described in Section 4.1.2, which models

the wind flow around the turbine.

The majority of the OpenFAST simulations in this chapter use a prerecorded time

history of the inflow wind field. This prerecorded inflow is generated by sampling on

a plane in the SOWFA LES, producing a time series of 2D slices of the instantaneous

wind field at 16 Hz. These slices are then converted to HAWC-format binary files,

and marched past the turbine in OpenFAST to recreate the SOWFA flow field time

history at the rotor plane. This approach of using prerecorded SOWFA slices as

inflow wind to a stand-alone OpenFAST simulation is documented further by Lee et

al. [14].

Although computationally efficient, this prerecorded inflow field does not fully

capture the two-way interaction between the floating rotor motion and the surround-

ing flow. To address this shortcoming, additional simulations are performed by di-

rectly coupling the OpenFAST turbine with a simultaneous SOWFA LES of the sur-

rounding wind flow. The two-way coupling between the OpenFAST turbine and the

SOWFA flow field is achieved via an ALM and is updated every time-step to cap-

ture the feedback between rotor motion and the surrounding fluid flow. This coupled

SOWFA-OpenFAST model is described further in Section 4.1.
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The simulation workflow in this study follows three main stages, as illustrated

in Figure 5.2. First, a precursor LES in SOWFA establishes the stably-capped neu-

tral ABL with no turbine present. This precursor simulation develops the turbulent

structures and wind shear profile over 5.5 hours, on a uniform 10-m cubic mesh in a

domain with dimensions of 8 km by 2 km by 1 km and lateral periodic boundaries (see

Figure 5.2). This precursor simulation provides the initial condition and boundary

condition time histories for the next simulation stage.

In the second stage, SOWFA simulations capture the flow surrounding the turbine

for 70 minutes. These turbine-focused simulations are carried out in a smaller domain

with dimensions 1.8 km by 1 km by 1 km, with inflow/outflow x boundaries and

periodic y boundaries. These SOWFA simulations contain either an ALM with the

3. OpenFAST simulations: sampled wind as inflow

Undisturbed wind
at turbine location 
at 16 Hz

t0

t1
t2

t3
t4

1. Precursor simulation: no turbine

8 km
2 km

1 km

y
z

x

Wind

Top view

2.5m
Wind, waves

Sampling plane

y

x

1.25m

10m mesh

1.8 km
1 km

1 km

Sampling plane

2. SOWFA simulations: turbine or sampling plane

Figure 5.2. Three-stage simulation workflow: 1) a “precursor” LES in SOWFA that
develops the ABL, 2) SOWFA LES that contain either a coupled OpenFAST turbine
or a sampling plane at the rotor, and 3) stand-alone OpenFAST turbine simulations
using the sampled SOWFA time series as inflow wind. The SOWFA simulation do-
main, mesh refinement regions, and sampling plane location are illustrated, including
a top view.
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coupled OpenFAST turbine (for the coupled inflow approach), or a sampling plane at

the hypothetical rotor’s undisplaced location (for the prerecorded inflow approach).

In both situations, the uniform cubic 10-m mesh is refined to 1.25 m around the

rotor, with a larger refinement region to 2.5 m in the turbine wake region. Figure 5.2

illustrates this domain, the mesh refinement regions, and the sampling plane location.

The third stage consists of stand-alone OpenFAST simulations of the turbine over 70

minutes, using the prerecorded SOWFA inflow wind time series as described above.

Similar precursor simulations and similar coupled SOWFA-OpenFAST simulations

are described in further detail in Chapter 4.

5.1.3 Case descriptions

To study how power generation is affected by floating platform displacements, a

total of 36 simulations of an individual turbine are performed using the same inflow

wind from SOWFA. The baseline case represents a fixed-bottom turbine, with all

platform displacements set to a constant value of zero. All values for power gener-

ation by floating turbines are compared to this baseline case. To better understand

how platform type affects power generation and to identify underlying physical ef-

fects that can be generalized for any platform type, all cases with floating turbines

are repeated for both the spar and semisubmersible platforms. The main floating case

represents a typical floating turbine, with platform displacements in all six degrees

of freedom (surge, sway, heave, pitch, roll, and yaw) causing rotor displacements in

xRC , yRC , zRC , φRC , and θRC . These displacements generally consist of dynamic mo-

tion (“dynamic displacement”) around some time-averaged value (“time-averaged dis-

placement”). The all-displacements floating case (for the spar and semisubmersible)

and the fixed-bottom baseline case are performed using both the prerecorded inflow

slices approach and the two-way coupled inflow approach. To limit computational
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cost, the remaining cases discussed next are performed using the prerecorded inflow

approach only.

To better understand how individual platform degrees of freedom affect power

generation, an additional set of cases restricts platform displacements to one or two

degrees of freedom. For these cases, the nonactive degrees of freedom are set to a

constant displacement of zero, with motion disabled in that direction. Each platform

degree of freedom (surge, sway, heave, pitch, roll, and yaw) is simulated in isolation

in this manner, as well as a case with both surge and pitch enabled together, for both

platforms. Within this simulation framework, it is not possible to isolate individual

rotor displacements directly, only platform displacements. Still, some of these cases

can serve as proxies for isolating rotor displacements: for example, the surge-only

case produces only xRC displacements.

The floating cases described so far include both dynamic and time-averaged dis-

placements. To better separate the effects of these two categories of displacement,

another set of cases isolates the time-averaged displacement by disabling dynamic

platform motions. For this set, each of the floating cases described above is repeated,

but with the active degrees of freedom set to a constant displacement equal to the

mean value from the previous cases. Conversely, the dynamic motion effect cannot

be isolated in this simulation framework; this would require artificially prescribing

displacement time histories with the time-averaged value subtracted out. However,

the other floating cases that include both dynamic and time-averaged displacements

still provide insight into the dynamic displacement effect.

5.2 Simulation results

Each simulated case described in Section 5.1.3 produces 70-minute time histories

for power generation, platform displacements, and rotor displacements. The first 10

minutes of each time history are discarded to remove any transient startup effects,

108



producing time histories of 60 minutes for analysis. In this section, the rotor and

platform displacements that affect power generation are identified. The important

rotor and platform displacements are then compared across platform type and across

inflow approach. The difference in power generation between the floating cases and the

fixed-bottom turbine is then linked to specific types of rotor displacements, explaining

the underlying physical reasons for power losses or gains associated with floating wind

turbines.

5.2.1 Negligible effect of crosswind and vertical displacements

For the simulated conditions with both wind and waves aligned with the x-axis,

power generation is unaffected by crosswind and vertical rotor displacements, specif-

ically yRC , zRC , and θRC . The associated platform displacements in sway, heave, roll,

and yaw are small for the simulated conditions, and cause rotor displacements that

are too small to significantly affect the average power. Comparing the case with all

displacements enabled to the case with surge and pitch enabled, the average power

agrees within 0.3%, indicating that the other displacements do not significantly affect

the power. These unimportant displacements and results from cases that isolate the

corresponding platform degrees of freedom are not discussed further, but are docu-

mented in Appendix B. Instead, the analysis focuses on displacements that do affect

the power: the downwind rotor displacement xRC and the rotor “pitch” angle φRC ,

caused by platform surge and pitch.

5.2.2 Platform and rotor displacements

Understanding power generation in floating wind turbines requires understanding

the underlying platform and rotor displacements that ultimately affect that power.

The OpenFAST simulations record platform displacements, which are used to calcu-

late rotor displacements based on simple geometry. For example, the downwind rotor

displacement xRC and rotor “pitch” angle φRC are calculated from the platform surge
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and pitch, neglecting the small platform yaw displacement and tower bending effects:

xRC = Surge+ zhh sin(Pitch)

φRC = Pitch,

(5.1)

where zhh is the distance between the platform origin and rotor center (90 m for the

NREL 5 MW reference turbine [119]).

Figure 5.3 presents partial time histories for the rotor and platform displacements

that affect power: platform surge, rotor angle φRC (equivalent to platform pitch),

rotor center location downwind xRC , and the resulting rotor center speed ẋRC . The

time histories shown are for the case with prerecorded inflow and all displacements

enabled. Additionally, the entire 60-minute time histories are summarized using four

metrics: the time-average, the root-mean-square (RMS), the minimum, and the max-

imum. Figure 5.3 includes summary metrics for four different cases: all displacements

enabled with coupled inflow, all displacements enabled with prerecorded inflow, only

average φRC (via platform pitch) displacement with prerecorded inflow, and only xRC

displacements (via platform surge) with prerecorded inflow.

As shown in Figure 5.3, the coupled inflow case (grey circle) has nearly identical

platform and rotor displacements as the prerecorded inflow case (black square). For

example, the average values for φRC and xRC agree within 1.5%, and the RMS values

for φRC , xRC , and ẋRC agree within 1%. This is expected, because both cases use

OpenFAST to compute the platform displacements regardless of inflow approach. In

contrast, the displacements in Figure 5.3 vary significantly between the other cases,

and between the spar and semisubmersible.

Differences between the spar and semisubmersible displacements in Figure 5.3 are

largely caused by the platforms’ different geometries and center of mass locations. The

spar center of mass is 89.9 m below still water level [121], but the semisubmersible

center of mass is much higher at only 13.5 m below still water level [120]. In Figure
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Figure 5.3. Partial time histories of platform surge, rotor angle φRC , rotor center
location xRC , and rotor center speed ẋRC from the prerecorded inflow case for spar
(left) and semisubmersible (right) floating platforms. Key metrics of the entire time
history, including the average, root-mean-square, minimum, and maximum values,
are shown for four cases, including cases where the displacements are restricted to
only the time-averaged φRC value or only xRC displacements.

5.3, the rotor aerodynamic thrust causes the nonzero averages for φRC and xRC , as

also observed by Liu et al. [7]. However, the spar average φRC = 2.5◦ is 45% larger

than the semisubmersible average φRC = 1.7◦.

In Figure 5.3, the two platforms have similar RMS values for φRC , but the spar

RMS values for xRC and ẋRC are 1.5 m (125%) larger and 0.8 m/s (197%) larger for

the semisubmersible. This is partially because the lower center of mass for the spar

creates a longer rotation arm to the rotor center, compared to the semisubmersible.
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So, similarly sized RMS platform pitch values are amplified into larger RMS xRC

values for the spar than for the semisubmersible. In fact, platform pitch rotation is the

dominant driver of xRC displacements for the spar, but not for the semisubmersible:

the spar has a 99% correlation between the pitch and xRC time histories, but the

semisubmersible only has a 36% correlation. These different correlation levels between

xRC and pitch (or φRC) are also evident in the time histories in Figure 5.3.

The center of mass location also helps explain correlation patterns between plat-

form surge and pitch. The spar platform surge is strongly positively correlated to

platform pitch at a +97% correlation coefficient, so that large positive pitch varia-

tions occur at the same time as positive surge variations (see Figure 5.3). In contrast,

the semisubmersible platform surge is somewhat negatively correlated to platform

pitch at a -56% correlation coefficient, so that large positive pitch variations occur at

the same time as negative surge variations (see Figure 5.3). This is partially because

OpenFAST reports platform displacements with respect to a platform origin at still

water level [118], rather than the center of rotation. Therefore, the reported platform

surge is partly caused by platform rotation, rather than a purely linear displacement

of the center of rotation.

Figure 5.4 illustrates the scenario where platform pitch rotation, about the cen-

ter of rotation, causes a reported platform surge and xRC rotor displacement. The

spar center of rotation is far below still water level, so that positive pitch angles sig-

nificantly increase the reported platform surge at still water level. In contrast, the

semisubmersible center of rotation is much closer to still water level because of its

high center of mass, so that positive pitch angles do not affect the reported platform

surge as much.

The influence of platform pitch on both xRC and reported platform surge also

explains why the surge-only case has different xRC displacements than the cases with

all displacements enabled. In Figure 5.3, the xRC-only case (blue triangle) is sim-
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Figure 5.4. Side view of a scenario where pitch rotation, about the center of rotation,
creates a reported platform surge because of the distance from the center of rotation
to the platform origin, where surge is reported. Similarly, this pure platform rotation
creates a linear displacement xRC at the rotor center.

ulated by enabling surge platform displacements only and is therefore missing the

contribution of platform pitch to reported surge and xRC . So, the xRC and ẋRC RMS

values are significantly different between this case and the other cases: the spar has

xRC and ẋRC RMS values that are 2.0 m (72%) and 1.0 m/s (77%) smaller for this

case, whereas the semisubmersible values are 0.2 m (20%) and 0.2 m/s (41%) larger

for this case.

Finally, both surge and pitch must be enabled concurrently to obtain realistic rotor

displacements, because isolating surge or pitch changes their displacement metrics

and xRC results from both surge and pitch. Still, power is directly affected by rotor

displacements, so power effects are best explained by focusing on rotor displacements
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xRC and φRC , with the awareness that xRC displacements are caused by a combination

of platform surge and pitch.

5.2.3 Power generation

The turbine displacements summarized in Figure 5.3 affect the power generation

of the floating wind turbine. Figure 5.5 presents the difference in power between

floating turbine cases and an equivalent fixed-bottom turbine baseline case, where

the solid bars represent the simulation results. The striped bars represent results

from the proposed analytical model and are discussed in Section 5.3. These power

differences are compared across four different cases: all displacements enabled with

coupled inflow, all displacements enabled with prerecorded inflow, only average φRC

displacement with prerecorded inflow, and only xRC displacements with prerecorded

inflow.

Figure 5.5 illustrates that coupled inflow (grey) and prerecorded inflow (black)

generate slightly different amounts of power, despite agreeing well on rotor displace-

ments (see Figure 5.3). Specifically, the prerecorded inflow approach predicts lower

*The xRC only case has different rotor displacements than other cases, see Figure 5.3.

Figure 5.5. Percent difference in power generation, relative to an equivalent fixed-
bottom turbine, of spar (left) and semisubmersible (right) floating wind turbines.
Simulated power gains/losses (solid bars) are compared to predictions from the ana-
lytical model (striped bars) for four cases.
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power generation than the coupled approach for all three platform types: the prere-

corded cases’ power predictions are 2.0%, 3.4%, and 3.3% smaller than the coupled

cases’ for the spar, semisubmersible, and fixed-bottom platforms, respectively. This

power difference is caused by the two inflow methods’ models for rotor-flow inter-

actions. Although both inflow approaches rely on an ALM, the prerecorded inflow

method uses AeroDyn’s dynamic blade element momentum theory model to estimate

rotor wake and induction effects [106]. In contrast, the coupled inflow approach di-

rectly captures these effects by allowing the blade node forces to affect the surrounding

flow [55].

5.2.3.1 Time-averaged displacement effect on power

To examine how average rotor angle φRC affects the average power, compare the

prerecorded inflow case with all displacements enabled to the case with only average

φRC in Figure 5.5. The nonzero average φRC causes a 0.9%-1.4% power loss com-

pared to the fixed-bottom case, because it increases the angle of the relative wind

and therefore reduces aerodynamic performance. In contrast, the nonzero average

xRC displacement does not affect the power, because statically shifting the rotor

downwind does not affect its aerodynamic performance: the case with only average

xRC displacement (not pictured) produces the same power as the fixed-bottom case

(see Appendix B). Comparing between the two platforms, the spar power loss is 1.6

times the semisubmersible power loss for the average-φRC-only case, because the spar

average φRC angle is 1.4 times the semisubmersible average φRC (see Figure 5.3).

5.2.3.2 Dynamic displacement effect on power

In general, dynamic displacements in xRC create power gains compared to the

fixed-bottom case, because it adds a relative rotor velocity ẋRC to the inflow wind

speed. Though ẋRC can take both positive and negative values, the additional motion

causes a net power gain when averaged over time. Although dynamic displacements
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cannot be simulated separately from time-averaged displacements in this simulation

framework, the case with only xRC displacements (both average and dynamic) does

offer evidence that dynamic xRC displacements cause power gains. Average xRC does

not affect the power, implying that the entire 0.4%-1.6% power gain for the xRC case

(see Figure 5.5) is caused by the dynamic xRC displacements. Comparing between

the two platforms, the semisubmersible power gain caused by dynamic xRC is 4.1

times the spar power gain (see Figure 5.5), because the xRC and ẋRC variations are

larger for the semisubmersible, as measured by the RMS values (see Figure 5.3).

5.2.3.3 Total floating effect on power

The total effect of floating platforms on power is a balance between the time-

averaged and dynamic displacement effects, specifically a balance between the power

loss due to average φRC and the power gain due to dynamic xRC displacements. This

balance explains why the all-displacement case results in a large 4.1%-4.5% power

gain for the spar, but a negligible 0.1%-0.2% power gain for the semisubmersible (see

Figure 5.5): the spar ẋRC variations are 197% larger than for the semisubmersible,

which outweighs the 45% larger average φRC to create a substantially larger power

gain.

In Figure 5.5, it appears that the power gains in the all-displacement cases are not

a simple superposition of the average φRC-only power loss and the xRC-only power

gain. However, the xRC-only case has substantially different xRC displacements than

the all-displacement cases, as discussed in Section 5.2.2, so power gains should not

be directly compared between the xRC-only case and the all-displacement cases.

Finally, these power results are all based on a below-rated wind speed of 8 m/s.

When the turbine is operating at above-rated wind speeds in control region 3, power

loss caused by average φRC may be insignificant, because the turbine is capped at

rated power regardless. For above-rated wind speeds, the size of any power gain
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caused by dynamic xRC displacements likely depends on how the blade pitch con-

troller interacts with the displacement frequencies. However, the trends in platform

displacements, rotor displacements, and power generation discussed in this section

generally hold true for nonaligned wind and waves, as indicated by similar simulations

with 30◦ misalignment between the wind and wave directions conducted previously.

The simulated results are also generally consistent with limited field measurements

from the Hywind Demo and WindFloat WF1 projects, as reported in Roddier et

al. [137]. In particular, the WF1 semisubmersible generated power on par with an

equivalent fixed-bottom turbine [137]. Also, the Hywind Demo spar required intro-

ducing a platform control system for above-rated wind speeds to reduce unacceptably

large platform pitch displacements, although how this affected power generation is

not documented [137].

5.3 Analytical models for power generation

Based on the simulation results in Section 5.2, simple analytical models are pro-

posed for estimating the power generation from floating wind turbines in the below-

rated operating region. As discussed in Section 5.2, the total floating effect on power

generation is a combination of the effects of average φRC displacement and dynamic

xRC displacement (caused by surge and pitch). The final proposed analytical model

is a combination of two analytical submodels for each of these effects.

The proposed analytical models predict the difference between a floating wind

turbine and an equivalent fixed-bottom turbine using basic momentum theory. First,

recall the derivation for a fixed-bottom turbine’s power, given by Equation 2.1. The

power Pfb produced by a fixed-bottom turbine with no rotor displacement, in a uni-

form wind field of ~U = Uı̂, is given directly from Equation 2.2:

Pfb =
1

2
ρCPAU

3. (5.2)

117



If the rotor is moving or angled with respect to the wind, Equation 2.1 can be

adapted by considering the reference frame of the turbine, where the rotor area ~A

remains unchanged but the wind vector ~U becomes the relative wind velocity ~Urel.

The instantaneous power coefficient CP is also altered due to modified aerodynamic

performance, but the simple analytical models presented here assume that CP is

constant over time, and also consistent between floating and fixed turbines.

5.3.1 Average φRC displacement model

The first model considers a rotor at an angle φ relative to a uniform wind field

with wind speed U . In the reference frame of the rotor, the relative wind vector is

~Urel = U cosφı̂ and the rotor area is ~A = Aı̂. Assuming a constant power coefficient

CP in Equation 2.1, the angled turbine’s power is

P (φ) =
1

2
ρCP

∫∫
A

(U cosφ)3dA = Pfb cos3 φ. (5.3)

If the angle φ is static over time, then Equation 5.3 directly gives the time-averaged

power, assuming U is steady. This variety of cosn φ model is commonly used for angled

rotors (especially rotors at a constant yaw) throughout the literature [135, 138], with

n = 3 as a common exponent [135]. Different experiments suggest values of n varying

from 1 to 5 for yawed rotors [135, 139].

On the other hand, if φ varies in time, the entire Pfb cos3 φ term should be aver-

aged to get the time-averaged P (φ). Despite this, the proposed average pitch model

assumes that the effect of a dynamically varying rotor angle φ(t) can be approximated

by a constant rotor angle at the time-averaged value φ:

P (φ) = P fb cos3 φ. (5.4)

Equation 5.4 can be used to model how average rotor “pitch” φRC changes power

generation in floating wind turbines. In this case, the overall angle φ between the
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wind vector and the rotor disk should incorporate both the platform-induced angle

φRC and the shaft tilt angle φt (5◦ for the NREL 5 MW reference turbine [119]). The

shaft tilt angle is typically ignored in yawed rotor analysis, or implicitly included in

Pfb. However, for a rotor with an average angle caused by platform pitch, the power

is better modeled by explicitly including the shaft tilt angle as a constant rotor angle,

for both the the floating turbine and the fixed-bottom turbine. In this situation,

Equation 5.4 becomes

P fb = P (φ = 0) cos3 φt (5.5)

for the fixed-bottom turbine and

P (φRC + φt) = P (φ = 0) cos3(φRC + φt)

= P fb cos3(φRC + φt)/ cos3 φt

(5.6)

for the turbine with an average pitch displacement. The shaft tilt angle can simi-

larly be incorporated into a yawed rotor model. Note that this model predicts that

a positive φRC always works to decrease the average power generation, which is con-

sistent with the simulated results. Equation 5.6 is the proposed analytical model for

describing the effect of average rotor angle φRC on power generation.

5.3.2 Dynamic xRC displacement model

The second model considers a rotor perpendicular to the steady wind vector ~U =

Uı̂, moving forward and backward into the wind with motion xRC(t). The relative

wind vector is ~Urel = (U − ẋRC )̂ı and the rotor area is ~A = Aı̂. Assuming a constant

power coefficient CP in Equation 2.1, the moving turbine’s power is

P (t) =
1

2
ρCP

∫∫
A

(U − ẋRC)3dA =
1

2
ρCPA(U − ẋRC)3, if U is uniform over A.

(5.7)
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To further simplify the model, let the rotor velocity ẋRC be modeled as a sine curve

with angular frequency ω and amplitude VRC , such that ẋRC = VRC sin(ωt). The

time-averaged power is then obtained by integrating over one period:

P =
ω

2π

1

2
ρCPA

∫ π/ω

−π/ω
(U − ẋRC)3dt

=
ω

2π

1

2
ρCPA

∫ π/ω

−π/ω

(
U − VRC sin(ωt)

)3
dt

=
1

2
ρCPAU

3

(
1 +

3

2

V 2
RC

U2

)
= P fb

(
1 +

3

2

V 2
RC

U2

)
,

(5.8)

since the odd-powered sine terms in the cubic expansion integrate to zero. Note that

this model predicts that xRC motions always work to increase time-averaged power,

which is consistent with the simulated results. The model given by Equation 5.8 is

similar to analytical models proposed by Wen et al. for sinusoidal platform surge and

sinusoidal pitch [132, 133]. However, the models by Wen et al. separate surge from

pitch, rather than considering the rotor center velocity ẋRC caused by both surge and

pitch together. Wen et al.’s pitch model also explicitly assumes φRC is small enough

that cos(φRC) ≈ 1, which neglects the average pitch effect modeled by Equation 5.6.

Equation 5.8 can be used to model how dynamic xRC displacements affect power

generation for floating platforms. Numerical differentiation of xRC(t) produces a time

history for the rotor center x-velocity ẋRC(t), which can be approximated by a sine

curve with amplitude VRC , as in Equation 5.8. For these simulations, the ẋRC(t)

time history does not directly fit a sine curve well (see Figure 5.3). So, a proxy VRC

amplitude is computed from the RMS of the ẋRC(t) time history using VRC =
√

2

RMS(ẋRC), where the factor of
√

2 is determined by the ratio of amplitude to RMS for

all sine curves. Equation 5.8 with the RMS approximation for VRC is the proposed

analytical model for describing the effect of dynamic xRC displacements on power

generation.
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5.3.3 Total floating model: dynamic and time-averaged displacements

The final model considers a floating wind turbine’s rotor that is free to move under

the influence of all six platform degrees of freedom. As discussed in Section 5.2, the

power generation of this rotor is predominantly affected by both the time-averaged

rotor angle φRC and dynamic xRC displacements, caused by platform surge and pitch.

To model the overall power difference between this floating turbine and an equivalent

fixed-bottom turbine, the analytical model for average φRC displacement (Section

5.3.1) is combined with the analytical model for dynamic xRC displacements (Section

5.3.2).

Specifically, this total floating model treats the rotor as translating horizontally

according to xRC , while also angled at a constant value given by the time-averaged

φRC (plus shaft tilt). In the reference frame of the rotor, the relative wind vector is

then

~Urel =
(
U + ẋRC

)
cos(φRC + φt)̂ı (5.9)

and the rotor area is ~A = Aı̂. Note that the cos(φRC + φt)̂ı term in Equation 5.9

does not vary in time, so it can be moved outside the time integral when calculating

the time-averaged power generation. Following similar steps as in Sections 5.3.1 and

5.3.2, the time-averaged power generated by this floating wind turbine is

P = P fb

(
1 +

3

2

V 2
RC

U2

)
cos3(φRC + φt)/ cos3 φt, (5.10)

assuming a constant CP , an average rotor angle of φRC , a shaft tilt of φt, and a sine

curve model for the rotor center velocity: ẋRC = VRC sin(ωt).

Equation 5.10 is the proposed model for how a floating wind turbine’s power

generation compares to a fixed-bottom turbine’s power overall, including effects from

both average rotor angle as well as dynamic xRC displacements. For no rotor motion

(VRC = 0), this total floating model reduces to the average rotor angle model in
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Equation 5.6. For no average rotor angle (φRC = 0), this total floating model reduces

to the dynamic xRC displacement model in Equation 5.8.

5.3.4 Analytical model performance

Figure 5.5 compares power gain predictions from the total-floating-effect analytical

model in Equation 5.10 (striped bars) to the simulated power results discussed in

Section 5.2 (solid bars), for both the spar and semisubmersible. The analytical model

agrees with the simulations that the all-displacement spar cases show a significant

power gain, although the semisubmersible only shows a small power difference (see

Figure 5.5). However, this basic analytical model does not perfectly agree with the

magnitude of the simulated power gains/losses.

For the case with only average φRC , the analytical model performs well, with a

ratio of 0.99-1.02 between the analytical and simulated power losses (see Figure 5.5).

This indicates that the analytical model can reasonably predict how a constant φRC

angle affects power generation. For the case with only xRC displacements, the ana-

lytical model also performs well, with a ratio of 0.96-1.06 between the analytical and

simulated power losses (see Figure 5.5). This indicates that the dynamic displace-

ment model with the RMS approximation for ẋRC amplitude reasonably captures the

simulated power gain due to dynamic xRC displacements.

However, for the all-displacement cases which are more representative of a real

turbine, the analytical model does not perfectly predict the power gain/loss magni-

tude, with ratios of 0.81-1.83 between the analytical and simulated power gains/losses

(see Figure 5.5). This disagreement in power gain/loss magnitude indicates that the

analytical model does not fully capture some simulated effect. Several adjustments

to the model were attempted to address this disagreement:

• Removing the sine approximation for ẋRC : the simulated time history for

ẋRC was used in Equation 5.9 instead of using the sine curve approximation,
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and then this time history was averaged over time to replace the 3V 2
RC/2U

2

term in Equation 5.10.

• Removing the constant-angle approximation for the average pitch

effect: as well as using the time history for ẋRC , the simulated φRC time history

replaced the time-averaged angle φRC in Equation 5.9 and then the entire term

(U + ẋRC) cos(φRC + φt) was averaged over time.

• Removing the steady wind approximation: the simulated time history for

U at hub height was used instead of assuming steady wind, and then the entire

term (U + ẋRC) cos(φRC + φt) was again averaged over time using simulated

time histories for U , ẋRC , and φRC .

However, these attempted adjustments did not clearly improve the model performance

for power gain/loss magnitude. Possible reasons for the continued disagreement in-

clude assuming that CP is constant, although CP actually varies in time as the relative

inflow wind fluctuates. This effect is difficult to capture with a model of comparable

simplicity, but one possibility is to adjust the instantaneous CP using an empirical

relationship between CP and tip speed ratio (possibly filtered and with a time delay

to account for the variable-speed controller). Precursory attempts to predict the in-

stantaneous power using the instantaneous platform or rotor displacements were not

successful, possibly because of the influence of the variable-speed controller. The dis-

agreement between the simulated and modeled average power may also be partially

caused by only including the effect of instantaneous rotor angle φRC at the rotor

center, rather than across the height of the rotor disk. This could explain why the

analytical model performs better for the xRC-only case, where platform pitch does

not contribute to the xRC displacements.
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5.4 Summary and conclusions

In summary, OpenFAST simulations of the NREL 5 MW reference turbine are

performed for three platform types: the OC3-UMaine spar, the OC4-DeepCWind

semisubmersible, and a fixed-bottom counterpart with no platform displacements.

These simulations examine how platform and rotor displacements, both dynamic and

time-averaged, affect the average power generation of floating wind turbines for a

single combination of a below-rated wind speed and extreme wave height. The main

conclusions of this study are:

• Overall power gains or losses in floating OWTs are primarily caused by a balance

between two competing effects:

– Power decreases caused by average rotor pitch angle (φRC) driven by plat-

form pitch, and

– Power increases caused by dynamic rotor motions upwind-downwind (xRC)

driven by platform surge and pitch motions, which change the relative wind

velocity at the rotor.

• Rotor displacements caused by platform sway, heave, roll, and yaw do not sig-

nificantly affect the average power.

• Contrary to the common practice of isolating platform surge or pitch when

studying floating platforms, surge and pitch must be enabled concurrently to

accurately capture the power generated by floating OWTs, for two reasons:

– Isolating surge or pitch changes displacement characteristics, and

– Both surge and pitch contribute to the dynamic rotor motions upwind-

downwind (xRC).

• The spar’s lower center of mass creates larger, pitch-dominated rotor motions

upwind-downwind, which outweigh its larger average rotor pitch angle to cause
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a 3.1%-4.5% power gain compared to a fixed-bottom wind turbine (for this

below-rated wind speed).

• The semisub has smaller rotor motions upwind-downwind, which barely out-

weigh the smaller average rotor pitch angle to cause an insignificant (0.1%-0.2%)

power gain.

• The simple analytical model proposed in Equation 5.10 reasonably predicts

power differences caused by floating platforms, but the magnitude of the pre-

dicted gain/loss can be improved.

Overall, although predicting floating-turbine power is vital for floating wind farm

design and economics, this study indicates that floating platforms do not provide

universally significant power gains compared to fixed-bottom wind turbines; a closer

analysis of details in the platform’s displacement behavior is required for such a

prediction. Future research in this area should examine additional environmental

conditions, especially near-rated wind speeds and lower wave heights, which are ex-

pected to reduce the power gains observed for the spar. The trends observed here

should be confirmed by field measurements, when available. Field measurements, ex-

periments, and additional simulations with simplified environmental conditions could

also inform significant improvements to the proposed analytical model, with a focus

on a time-varying power coefficient and instantaneous pitch angle effects.
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CHAPTER 6

FLOATING-TURBINE WAKE EFFECTS ON
DOWNWIND TURBINES

The previous two chapters describe how wake characteristics behind a single tur-

bine differ between floating and fixed-bottom OWTs (Chapter 4) and how power

generation of a single turbine differs between floating and fixed-bottom OWTs (Chap-

ter 5). Having identified that power generation is significantly affected by floating

platform displacements, and that floating OWTs wakes have slightly different char-

acteristics in the far wake (e.g. wake deflection upwards and higher TKE in the wake

shear layer), a natural continuation is to consider the power generation and loads

of a downwind floating OWT when placed in the wake of an upwind floating OWT.

This extends the research from single-turbine behavior to multi-turbine interactions,

which are vital to designing a floating wind farm array.

Recently, a small number of other studies explore the response of a waked down-

wind offshore OWT. Manolas et al. [53] simulate a partially-waked spar OWT using

a free vortex method coupled with the engineering tool hGAST, while Lee et al. [14]

conduct LES coupled with FAST for a partially and fully waked spar OWT. Wise and

Bachynski [140] simulate fully waked spar, semisub, and tension-leg platform floating

OWTs using FAST.Farm, a mid-fidelity tool that combines OpenFAST with dynamic

wake meandering models.

Wise and Bachynski observe that yaw motions are excited by wake meandering

when the downwind turbine is fully waked, but surge and pitch motions are also

affected by upwards deflection in wake deficit due to time-averaged platform pitch
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[140]. Both Manolas et al. [53] and Lee et al. [14] also observe that partially waked

spar OWTs are excited in the yaw degree of freedom at rotor rotational frequencies.

Lee et al. further conclude that partial waking also reduces power production and

changes platform response beyond yaw [14].

Wise and Bachynski conclude that fatigue loads do not increase when fully waked

at rated wind speed [140], but Lee et al. and Manolas et al. disagree, concluding that

fatigue loads do increase when fully or partially waked [14, 53]. Lee et al. also note

that fatigue loads are increased by placing the downstream turbine to the left of the

wake rather than to the right, due to wake asymmetry [14].

Taken together, these studies indicate the need for high-fidelity simulations of

fully- and partially-waked downwind floating OWTs, for multiple platform types.

Although Wise and Bachynski simulate multiple floating platform types in turbulent

sheared inflow, their wake characteristics are generated by engineering models rather

than full LES, and they do not consider partial waking [140]. Manolas et al. use

mid-fidelity vortex methods for partial waking, but are limited to a single platform

type [53]. Lee et al. use high-fidelity LES for partial waking, but are also limited to

a single platform [14].

Although these studies all examine a downwind OWT’s platform displacements

and structural loading, only Lee et al. address power generation [14], indicating the

need for research into how wakes affect power generation for floating OWTs. These

studies also use various turbines with different rated powers ranging from 3 MW to

10 MW, so further research for other turbine capacities could help identify universal

trends as well.

The primary goal of this study is to identify how downwind floating and fixed-

bottom OWTs differ in their power generation and structural loads, when placed in

the wake of an upwind turbine. Key questions include:
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• Do the floating wake differences described in Chapter 4 translate into significant

differences in a downwind turbine’s power generation or structural loads?

• Are differences in downwind power or loads caused predominantly by floating

wake differences, or by the downwind platform’s ability to move?

• Does the downwind turbine’s location in the wake affect power or load differ-

ences between floating and fixed-bottom OWTs?

• Does floating platform type affect the downwind turbine’s response?

6.1 Simulation setup

In this chapter, the NREL 5 MW reference turbine [119] is simulated in Open-

FAST [106]. The turbine is mounted on the same three platforms simulated in Chap-

ter 4: the OC3-UMaine spar [98], the OC4-DeepCWind semisubmersible [120], and

a fixed-bottom baseline represented by disabling all platform displacements (see Sec-

tion 4.2.1). These simulated turbines represent a downwind turbine within a wind

farm array, located behind an upwind turbine. The upwind turbine is simulated in

coupled SOWFA-OpenFAST LES, then the LES wake flow field is used as the inflow

to OpenFAST simulations of the downwind turbine.

The SOWFA-OpenFAST simulations of the upwind turbine are the coupled LES

simulations described in Section 5.1, with the same environmental conditions of tur-

bulent, sheared, veered wind with 8 m/s hub-height wind speed and 8 m JONSWAP

irregular waves. The wake from the upwind turbine is sampled at 7D downwind using

a similar prerecorded inflow approach described in Section 5.1: a time series of 2D

slices of the instantaneous velocity field is sampled at 16 Hz, converted to HAWC-

format binary files, and then marched past the downwind turbine in OpenFAST to

recreate the SOWFA wake flow field at the downwind rotor plane. The downwind

turbine is simulated in the newer OpenFAST v2.5.0, but otherwise the downwind sim-

ulation inputs are the same as those described in Section 5.1. The downwind turbine
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in OpenFAST is subjected to the same wave conditions as the upwind turbine, but

with a different realization of a wave train with the same JONSWAP characteristics.

6.1.1 Case descriptions

A total of ten different two-turbine configurations are simulated. Three simu-

lations are performed where the upwind and downwind turbines are mounted on

matching platform types: spar-spar, semisub-semisub, and fixed-fixed. An additional

two simulations use inflow from spar and semisub upwind turbines, but with a fixed

downwind turbine; this mixed configuration addresses whether any differences in the

downwind turbine response are caused primarily by floating wake characteristics, or

by the downwind platform type. For all five of these upwind-downwind configura-

tions, one case simulates the downwind turbine located directly downwind of the

upwind turbine, representing a fully-waked downwind turbine. A second case shifts

the downwind turbine 0.5D to the right, representing a half-waked downwind turbine.

Table 6.1 summarizes these ten different cases.

Table 6.1. Summary of cases for two-turbine simulations.

Case Upwind platform Downwind platform Downwind location

1a / 1b Fixed Fixed Fully-waked / Half-waked
2a / 2b Spar Spar Fully-waked / Half-waked
3a / 3b Semisub Semisub Fully-waked / Half-waked
4a / 4b Spar Fixed Fully-waked / Half-waked
5a / 5b Semisub Fixed Fully-waked / Half-waked

6.2 Simulation results

For each simulated case in Table 6.1, the downwind turbine behavior is analyzed

through time histories of its power generation, blade loads, and towertop displace-

ments. The first 10 minutes of each simulation are discarded to remove transient

start-up effects, leaving the remaining 60 minutes for analysis. These 60-minute

129



time histories are quantified by their average, minimum, and maximum values. The

root-mean-square (RMS) is also calculated for each time history to help quantify the

amplitude of fluctuations over time, similar to the analysis performed in Chapters 4

and 5. The frequency contents are also compared using Fourier analysis.

6.2.1 Downwind power and loads

Figure 6.1 plots the time-averaged value of the downwind turbine’s power genera-

tion, in-plane blade root bending moment, out-of-plane blade root bending moment,

towertop fore-aft displacement, and towertop side-to-side displacement. The left col-

umn compares the fully-waked cases with different upwind-downwind configurations:

for example, 1:spar/2:fixed refers to the case with an upwind spar turbine and down-

wind fixed turbine. The right column compares the half-waked cases. For each case,

the minimum-maximum spread of the time history is represented by vertical lines,

and the RMS values are shown as horizontal bars added and subtracted from the

average value. Note that the towertop displacements do not include the contribution

from floating platform motions, and the blade root moments are from one blade.

Table 6.2 also quantifies how the average values differ between the baseline fixed-

fixed case and the other cases, using the percent difference from the fixed-fixed value.

Table 6.3 similarly examines the percent difference of the RMS values compared

to the baseline fixed-fixed case. As indicated in Figure 6.1 and Table 6.2, the time-

averaged values of the generated power, blade root loads, and towertop displacements

are fairly similar for all cases with a fixed downwind turbine: the average values for

the spar-fixed and semisub-fixed cases are within 3.5% of the fixed-fixed value. For

the spar-fixed and semisub-fixed cases, the fully waked configuration produces larger

differences from the baseline than the half-waked configuration does, but only in the

towertop displacements.

130



Figure 6.1. The average (symbols), root-mean-square (−), and minimum-maximum
(vertical lines) of time histories for power generation, blade root bending moments,
and towertop displacements (not including platform displacements) of the downwind
turbine for different simulated cases.

In contrast, cases with a floating downwind turbine have average values that differ

significantly from the fixed-fixed baseline, especially for the spar-spar case and for

towertop displacements. In particular, the spar-spar case generates up to 13.0% more

average power than the baseline fixed-fixed case, due to the downwind spar turbine
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Table 6.2. Percent difference in time-average value compared to the baseline case
with fixed platforms for both upwind and downwind turbines.

Fully waked Half waked
Upwind platform spar spar semi semi spar spar semi semi
Downwind platform spar fixed fixed semi spar fixed fixed semi

Power 13.0% 1.1% 1.4% 2.7% 9.5% 1.3% 1.2% 1.8%
IP blade root moment 11.0% 1.7% 1.7% 3.7% 7.2% 1.2% 1.1% 1.8%
OoP blade root moment 3.5% 0.4% 0.5% 2.5% 3.8% 0.6% 0.4% 2.2%
Towertop FA disp. 55.7% -1.3% -0.5% 38.2% 59.1% 0.3% 0.3% 39.6%
Towertop SS disp. 22.8% -3.5% -1.7% 13.8% 28.0% -0.5% -0.1% 9.4%

Table 6.3. Percent difference in root-mean-square (RMS) value compared to the
baseline case with fixed platforms for both upwind and downwind turbines.

Fully waked Half waked
Upwind platform spar spar semi semi spar spar semi semi
Downwind platform spar fixed fixed semi spar fixed fixed semi

Power 149.8% 0.1% 0.2% 25.2% 102.7% -4.6% -1.2% 13.5%
IP blade root mom. -0.2% 0.0% -0.1% -0.2% -0.5% -0.1% -0.1% -0.4%
OoP blade root mom. 111.4% 2.0% 2.2% 25.3% 64.6% -0.2% 0.8% 14.0%
Towertop FA disp. 242.1% -4.2% -2.7% 69.2% 365.8% 6.1% -1.1% 134.8%
Towertop SS disp. -75.3% -11.0% -11.0% -66.8% -56.8% -4.9% 11.4% -37.8%

gaining additional rotor velocity as documented in Chapter 5. The in-plane blade

root bending moment is likewise up to 11.0% larger in the spar-spar case than in

the baseline fixed-fixed case. In general, the percent difference between the spar-spar

case and the baseline case is an order of magnitude larger than the percent difference

between the spar-fixed case and the baseline case (see Table 6.2). This indicates that

for the spar, the floating platform motions of the downwind turbine have a much

larger influence on the downwind turbine behavior than any changes to the wake

initiated by an upwind floating turbine.

However, the floating motions of the downwind semisub only moderately increase

the average power gain and in-plane blade root bending moment, with the semisub-

semisub case generating up to 2.7% more power than the baseline versus the semisub-

fixed case generating up to 1.4% more power than the baseline already. Still, the

semisub-semisub out-of-plane blade root bending moment and towertop displacements
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increase much more significantly compared to the baseline: the percent difference

between the semisub-semisub case and the baseline is again an order of magnitude

larger than the difference between the semisub-fixed case and the baseline, for these

load and displacements average value (see Table 6.2). The platform motions of the

downwind turbine again significantly influence the downwind turbine’s behavior, but

are comparable to the floating wake’s influences on power generation and in-plane

blade root moments only.

Comparing between the half-waked and fully waked cases, the platform type of

the downwind turbine affects the downwind power and loads slightly more in fully

waked cases. This suggests that the downwind platform type is even more important,

compared to the upwind platform type and associated wake characteristics, for a fully

waked configuration.

As shown in Figure 6.1 and Table 6.3, the RMS values also differ from the baseline

case significantly more for cases with a floating downwind turbine, compared to cases

with a fixed downwind turbine. For example, the spar-spar case power RMS is 150%

larger than the baseline fixed-fixed power RMS, while the spar-fixed power RMS is

only 0.1% larger. A similar trend occurs for the semisub cases, although not as

drastically. This indicates that the large RMS values in the floating-floating cases

are caused mainly by the platform motions of the floating downwind turbine. These

RMS trends hold true for power, out-of-plane blade root bending moment, and the

towertop displacements, but not for the in-plane blade root bending moment RMS

which is virtually identical across all cases.

Comparing between the half-waked and fully waked cases, the upwind turbine

type affects the RMS power more for half-waked cases. For example, the spar-fixed

power RMS is only 0.1% larger than the baseline for the fully waked configuration,

but is 4.6% smaller than the baseline for the half-waked configuration. However, this

observation does not consistently hold true for blade moment or towertop displace-
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ment RMS values. In general, there is not a universal trend in how half-waked versus

fully waked placements affect the RMS differences from the baseline case.

Overall, the downwind platform motions affect the downwind turbine average

and RMS behaviors much more than any wake changes caused by a floating upwind

turbine. One exception is the semisub average power, which is affected only slightly

more by the downwind platform type than by the upwind wake type.

6.2.2 Frequency analysis of downwind turbine behavior

In addition to the average and RMS values, the time history frequencies of the

power, blade root bending moments, and towertop displacements are also compared

across the different cases. For example, Figure 6.2 plots a Fourier transform of the

out-of-plane blade root bending moment time history for each different case.

As shown in Figure 6.2, cases with fixed downwind turbines have similar fre-

quency responses in this blade root moment, with the expected peak at the 1P blade

passing frequency. There are not substantial differences in frequency content be-

tween the downwind fixed cases with floating upwind turbines and the baseline fixed-

fixed case. However, cases with floating downwind turbines, i.e. the spar-spar and

semisub-semisub cases, have additional frequency content due to the downwind plat-

form motions. A similar trend is observed in Fourier transform results for the power

generation (see Figure 6.3), in-plane blade root bending moments (see Figure 6.4),

and both towertop displacements (see Figures 6.5 and 6.6): cases with fixed downwind

turbines have very similar frequency content, regardless of upwind turbine type, and

the frequency content of some downwind behaviors only differs when the downwind

turbine is floating.
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Figure 6.2. Fourier transform of the out-of-plane blade root bending moment time
history for each simulated case.
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Figure 6.3. Fourier transform of the power generation time history for each simu-
lated case.
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Figure 6.4. Fourier transform of the in-plane blade root bending moment time
history for each simulated case.
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Figure 6.5. Fourier transform of the towertop fore-aft displacement time history for
each simulated case, not including platform displacements.
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Figure 6.6. Fourier transform of the towertop side-to-side displacement time history
for each simulated case, not including platform displacements.
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6.3 Summary and conclusions

In summary, a two-turbine configuration of the NREL 5 MW reference tur-

bine is simulated using OpenFAST for the downwind turbine and coupled SOWFA-

OpenFAST LES for the upwind turbine. The power generation, blade root bending

moments, and towertop displacements of the downwind turbine are compared between

cases with spar, semisub, and fixed platforms for both turbines, as well as mixed cases

with a fixed downwind turbine and a floating upwind turbine. Fully waked downwind

turbines, which are located directly downwind of the first turbine, are also compared

to half-waked downwind turbines, which are located 0.5D to the right of the first

turbine.

The main finding of this study is that the downwind turbine behavior is affected

much more by the downwind platform type than by the upwind platform type, and

any associated changes to the wake. Specifically, the power, blade loads, and towertop

displacement characteristics are fairly similar across all cases with a downwind fixed

turbine, regardless of the upwind turbine type, with slight differences in average

values (<4%) and somewhat larger differences in RMS values (up to 11%). The

frequency content is also very similar for all cases with a fixed downwind turbine.

However, any differences between floating-fixed cases and the fixed-fixed baseline are

usually much smaller (i.e. from half as large, to an order of magnitude smaller) than

differences between floating-floating configurations and the baseline, especially for the

spar platform.

In conclusion, for both fully and half-waked downwind turbines, the platform type

of the downwind turbine affects the downwind turbine behavior much more than any

wake changes caused by a floating upwind turbine. Therefore, when modeling floating

wind farm arrays, it may be acceptable to approximate the floating wake using fixed-

bottom wake models that do not address how a floating upwind turbine changes the

wake.
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CHAPTER 7

WAKE CHARACTERISTICS FOR TILTED ROTORS

Wake steering is a potential control strategy to increase power generation in wind

farm arrays, by reducing wake losses at downwind turbines [13]. Yaw-based wake

steering, in which the wake is deflected horizontally, is the most prominent method

researched to date, with many studies documenting the associated power gains [13,

126, 138, 141–144]. Several studies also document the key characteristics of the curled

wakes that result from yaw-based wake steering: the wake deflecting in the opposite

direction of the rotor orientation [141, 145–148], the “bean”-like curled wake shape

[35, 146, 148, 149], and the cross-flow features that appear as a pair of counter-rotating

vortices in the curled wake [35, 145, 148, 149].

Similarly to turbine yaw, another option to steer wakes away from downwind tur-

bines is vertically deflecting the wake using turbine rotor tilt. Specifically, tilting the

rotor top forward into the wind steers the wake downwards [11–13]. This positive ro-

tor tilt angle may be accomplished using either downwind-style turbines with built-in

tilt, or appropriately ballasted floating support structures for OWTs. The downward

wake trajectory entrains high-speed air from above the wind farm, which increases

the wind power available to downwind turbines, offering a potential advantage over

yaw-based wake steering [11]. However, downward wake trajectories can cause wake

interactions with the ground or sea surface [150], which are exacerbated by increasing

rotor diameters without commensurate hub-height increases [151].

Several existing studies use high-fidelity CFD to model the wakes of tilted rotors,

including LES in SOWFA by Annoni et al. [11] and Fleming et al. [12, 13], as well as
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ANSYS simulations by Weipao et al. [126]. These studies agree that downward wake

steering using rotor tilt can increase the overall power generation of a wind farm array.

While these studies do reasonably capture surface effects through variants on a wall

boundary condition for the bottom surface, their results focus on power generation

rather than characterizing wake behavior.

Other research by Storm [150] compares high-fidelity LES of tilted rotor wakes

in SOWFA to engineering wake models implemented in FLORIS, a popular wake

modeling tool developed by NREL. Storm concludes that engineering models like

FLORIS may overestimate power gains due to rotor tilt control, because the models

lack a realistic ground model, so the wakes simply disappear into the ground [150].

Storm suggests mirroring wakes about the ground to prevent the wakes disappearing

[150], although this approach does not necessarily capture surface effects accurately.

Overall, the literature indicates that rotor tilt can increase wind farm power gen-

eration, but that current approaches to modeling surface effects in engineering wake

models are inadequate for tilted rotor wakes. Furthermore, while power gains from

tilt-based wake steering are well-documented and tilted wakes are qualitatively de-

scribed, more quantitative measures of curled wake features are needed for engineering

model comparison and validation. These existing studies also establish high-fidelity

LES using SOWFA as an appropriate tool to study wake effects for vertically tilted

rotors. Taken together, the existing literature suggests the need to better charac-

terize surface effects on tilted rotor wakes using high-fidelity LES, to inform future

improvements to engineering wake models.

This chapter aims to describe the characteristics of vertically curled wakes from

tilted rotors, and examine how these wakes interact with the ground or sea surface

when they are deflected downwards. Specifically, this research addresses the following

questions:

• What are the key characteristics of tilted wakes?
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• How is a tilted wake affected by the ground or sea surface?

• What quantitative measures can be used to characterize curled wakes?

To answer these questions, the IEA 15 MW reference turbine [152] is simulated

at several tilt angles and surface gap distances, using LES in SOWFA [104] with an

ADM for the rotor. Section 7.1 describes the simulation setup, including details on

the rotor model, the simulation domain, the background ABL, and case descriptions.

Section 7.2 presents the simulation results for the wake geometry, downwind veloc-

ity deficits, wake circulation, and downward momentum flux from above the wake.

Finally, Section 7.3 summarizes conclusions about the characteristics of wakes from

tilted rotors.

7.1 Simulation setup

The wakes of tilted rotors are simulated using LES in SOWFA [104], which is

described in detail in Section 4.1.2. The simulation workflow in this study consists

of three main steps, similar to the workflow described in Chapter 4. First, SOWFA

LES is performed for the ABL in a large domain with no rotor, which develops the

wind shear profile and large background turbulence structures. Second, this initial

“precursor” simulation is continued for additional simulation time, which records a

time history of the flow field at the upwind domain boundary face. Third, SOWFA

LES of the wind turbine wake is performed with an actuator disk model for the

rotor. This third SOWFA simulation is initialized using free-stream flow field data

generated by the first step, and the upwind boundary inflow is prescribed according

to the boundary time history from the second step. This workflow is similar to that

used by Lee et al. [14], among other studies.
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7.1.1 Precursor atmospheric simulation

The precursor LES develops the wind profile and turbulence structures of an

offshore ABL with neutral stability, capped by a stable inversion at an elevation of

750 m. The same precursor simulation used in this chapter is identical to that used

in Chapters 5–6. At a hub height of 150 m, the wind speed is 8.3 m/s and the

turbulence intensity is 3.4%, with a wind shear of 0.03 m/s/m and a wind veer of

0.05◦/m across the height of the rotor disk. See Figure 5.1 for how these quantities

vary with elevation.

7.1.2 Domain setup

Following the precursor simulation, a set of simulations is performed with an

actuator disk model to represent a wind turbine. These LES cases simulate the

turbine wake for 70 minutes with a timestep of 0.0625 s, using the precursor flow

field as an initial condition. The simulation domain is 11D long by 8D wide by 1 km

tall, with the turbine located 4D from the upwind boundary and centered laterally

in the domain. The uniform cubic mesh has a 10 m cell size, with two additional

mesh refinement regions. In the wake region, the mesh is refined to 5 m cells within a

1.875D-wide box that starts 2D upwind of the rotor and extends to 6.1D downwind

of the rotor, with height reaching from the lower boundary to 105 m above the top

of the rotor disk. In the rotor region, the mesh is refined to 2.5 m cells within a

1.125D-wide box that extends 1D upwind and 1D downwind of the rotor, with a

height from the lower boundary to 30 m above the top of the rotor disk. Figure 7.1

illustrates the key features of the simulation domain, including the locations of the

rotor disk and mesh refinement regions for a rotor with 150 m hub height and 30◦ tilt.

Figure 7.1 also includes a slice through the rotor center of the instantaneous velocity

field.
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Figure 7.1. Simulation domain (outer black box) with mesh refinement regions
around the wake (middle grey box) and rotor (inner white box) for a 30◦ tilted rotor.
A snapshot of the velocity field is shown for a slice through the rotor center.

The floor boundary condition is the same rough-wall model as in the precursor

simulation, while the upper boundary is an inlet/outlet condition to permit downward

entrainment due to the tilted rotor. The lateral side boundaries are periodic, so that

the simulation represents a row of wind turbines with 8D lateral spacing. The upwind

side boundary uses an inflow condition with values prescribed using the precursor time

histories, and the downwind side boundary uses an outflow condition with zero normal

gradients. In Figure 7.1, the inflow boundary is the front left domain face.

7.1.3 Actuator disk model

For these LES cases, the wind turbine rotor is modeled using the ADM described

by Mart́ınez-Tossas et al. [125]. The rotor disk is discretized into a radial grid with

120 sectors from blade root to tip, similar to the ALM of Sørenson and Shen [68]. The

drag and lift forces are calculated from the airfoil characteristics at each sector, and

then projected onto the LES flow field as body forces in the momentum equation using

a 3D Gaussian kernel at each rotor point. The width of this Gaussian projection is set
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to 5.1 m, which is slightly more than twice the local cell size to maintain numerical

stability, as recommended by Troldborg [116] and Churchfield et al. [55].

For these simulations, the wind turbine controllers are simplified to a lookup

table relating the generator speed to generator torque, based on the rotor performance

values from steady-state OpenFAST simulations provided in the IEA 15 MW reference

turbine documentation [152]. The simulated wind speeds remain below the rated

10.59 m/s for this turbine [152], so the blade pitch remains at 0◦. Yaw control is also

disabled.

7.1.4 Overview of cases

Using this LES framework in SOWFA, five different cases are simulated. First,

IEA 15 MW rotors with tilt angles of 0◦, 15◦, and 30◦ are simulated at a hub height of

150 m, the standard hub height for the IEA 15 MW reference turbine [152]. Second,

the hub height is increased to 180 m for tilt angles of 0◦ and 30◦, which doubles the

gap between the lower boundary and the bottom of the rotor from 30 m to 60 m.

7.2 Simulation results

7.2.1 Wake location and size

For all simulated wakes, the initial 10 minutes are discarded to remove transient

start-up effects, and the wake behavior is averaged over the remaining 60 minutes.

First, the wake is identified using the velocity deficit ~Ud = ~U − ~U∞. In this chapter,

the wake volume is defined as all points where the x-component of the velocity deficit

Ud is at least 10% of the hub-height free-stream wind speed. The edge of the wake

is the outermost points of the wake volume. The wake center is calculated as the

Ud-weighted coordinate average of a box around the wake. Figure 7.2 shows color

contours of Ud for cross-sections of the wake at different downwind locations from
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Figure 7.2. Velocity deficit contours with wake edges and wake centers marked in
black, at different downwind cross-sections through the wake for each simulated case.

x=2D to x =6D, for each of the five cases. The wake edges and wake centers are also

shown for each cross-section.

Figure 7.2 illustrates that the tilted wakes behave as documented in the literature

[11–13, 126, 150], with positive rotor tilt causing downward wake steering and the

bean-like curled wake shape. The effect of the free-stream wind veer (see Figure 5.1)

is evident in the diagonal stretching and lateral asymmetry of the wake in all cases.

To more directly compare wake size and shape between the five cases, Figure 7.3

plots just the wake edges and centers for different downwind cross-sections. The top

row compares the three cases with the standard hub height of 150 m across different

tilt angles, while the bottom row compares the 0◦ and 30◦ tilt cases at the increased

hub height of 180 m at to the corresponding tilts at the standard hub height.
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Figure 7.3. Wake edges and centers at different downwind cross-sections for different
tilt angles (top) and different surface gaps (bottom).

As illustrated in Figure 7.3, larger tilt angles deflect the wake downward. For

example, at 6D downwind, 15◦ tilt at a hub height of 150 m causes the wake center

to move downward by 0.23D relative to the non-tilted case, while 30◦ tilt causes

the wake center to move downward by 0.33D. When the surface gap is doubled

by increasing the hub height, at 6D downwind the wake center moves downward

by 0.38D compared to the non-tilted case. This indicates that the presence of the

surface limits the downward deflection of tilted wakes, as expected. Also, when the

tilted wakes are steered downward, the free-stream wind veer causes the wake center

and overall wake area to shift leftward compared to the non-tilted cases.

As shown in the top row of Figure 7.3, larger tilt angles cause shorter, wider wakes

as the wake curls into the bean-like shape. For example, at 6D downwind, the 15◦

tilted wake is 25% wider and 24% shorter than the non-tilted rotor, while the 30◦

tilted wake is 38% wider and 39% shorter. Examining the bottom row of Figure 7.3,

a larger surface gap reduces the wake shortening and widening caused by rotor tilt.

For example, at 6D downwind, the 30◦ tilted wake is only 29% wider and 36% shorter

than the non-tilted rotor when the hub height is 180 m, compared to 38% wider and
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39% shorter when the hub height is 150 m. Physically, smaller surface gaps flatten

tilted wakes more, because the surface interacts more with the wake.

7.2.2 Wake shape

In addition to changing the wake location and size, rotor tilt affects the wake

shape as well. The larger 30◦ tilt angle results in the classic bean-shape associated

with curled wakes, as illustrated in Figures 7.2 and 7.3. Although other studies have

identified this bean shape qualitatively [35, 145, 148, 149], it is uncommon to quantify

the shape in a way that can be compared across models or studies. To this end, an

approach for quantifying curled wake shapes is proposed, based on a similar approach

used by Bradshaw et al. for droplet characterization [153].

First, the wake edge coordinates are converted to polar coordinates r and θ, with

the wake center serving as the origin and θ=0 aligned with the y-axis. Second, the

polar coordinates are shifted (i.e., the wake is rotated) so that θ=0 corresponds to

the minimum r-value. Third, a sixth-degree Legendre polynomial is fit to the shifted

r-θ curve. Figure 7.4 shows the rotated polar coordinates of the wake edges at 2D,

4D, and 6D downwind for the three cases with a standard hub height of 150 m. The

Legendre polynomial fits are overlaid in red, with vertical lines indicating the rotated

θ=0 value (black dashed) and the original θ=0 value (grey dotted) for each case and

downwind location.

Comparing Figures 7.3 and 7.4, sixth-degree Legendre polynomials provide a good

fit for non-tilted wakes and for less extreme curled wakes, such as the 15◦ wake and

even the 30◦ wake at x = 2D and 4D. The poor fit for the extremely curled wake at

30◦ farther downwind indicates that the wake has completely departed from a circular

shape. In general, the larger the amplitude in the r-θ plots, the more bean-like the

wake shape. In the future, coefficients from Legendre polynomial fits could be used

to quantitatively compare wake shapes from different models, or even perhaps tune
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Figure 7.4. Sixth-degree Legendre polynomial fit (red) to wake edge polar coor-
dinates (black), for a selection of downwind locations and cases. The rotated θ=0
location (black dashed) and original θ=0 location (grey dotted), are also shown.

wake shapes in an engineering model for curled wakes. Even without fitting, the polar

form of the wake edges could quantify differences in wake shape between models.

7.2.3 Counter-rotating vortex pair

In addition to the bean shape, the tilted wakes also feature the counter-rotating

vortex pair documented in other curled wake studies [35, 148, 149]. Figure 7.5 plots

the crosswind and vertical components of the velocity deficit as arrows, on top of a

color contour of the x-component of the velocity deficit to illustrate the wake location.

As shown in Figure 7.5, cases with 30◦ tilt exhibit a pair of counter-rotating vortices

in the wake, with a large downward velocity at the the center of the wake. The 15◦ tilt

case also has a weaker counter-rotating vortex pair, although it is more asymmetrical.

Although other studies document these counter-rotating vortex pairs in curled

wakes [35, 148, 149], the associated vorticity is often not quantified in a way that can

be compared to results from other models or studies. To quantify the strength of these

vortex pairs, the vorticity flux through a downwind rectangular surface is calculated
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Figure 7.5. Contours of the x-component of the velocity deficit and arrows showing
the y- and z-components, at different downwind cross-sections through the wake for
each simulated case.

for each case, which is equivalent to the circulation Γ around the perimeter containing

the wake:

Γ =

∮
L

~Ud · d~̀=

∮
S

(∇× ~Ud) · d~S. (7.1)

Because the rectangular loop encompasses both the positive and negative vortices,

the total circulation is approximately zero, except for additional contribution from

the rotating rotor. However, the positive and negative vorticity fluxes can be summed

separately while calculating the numerical surface integral, which gives a circulation-

like measure for the individual positive and negative vortices within the rectangular

loop without identifying the edges of each vortex. Figure 7.6 plots these positive
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Figure 7.6. Circulation of the positive and negative vortices within the counter-
rotating vortex pair, at different downwind cross-sections for each simulated case.

and negative vortex circulations at different downwind locations for the different

cases. As shown in Figure 7.6, a larger tilt angle causes a larger strength of counter-

rotating vortex pair, as measured by the circulations. However, this is a nonlinear

relationship: the circulation difference between 0◦ and 15◦ tilt is much smaller than the

circulation difference between 15◦ and 30◦ tilt. Also, the surface gap has little impact

on the circulation, particularly farther downwind: surface effects do not appear to

significantly affect vortex dissipation.

Although summing the positive and negative vortex circulations is a simple way

to quantify the vortex strength, it does not distinguish between the counter-rotating

vortex pair in curled wakes and blade root or blade tip vortices in non-tilted wakes.

For example, Figure 7.6 documents significant positive and negative vortices in the 0◦

tilt cases, despite the lack of a counter-rotating vortex pair in these non-curled wakes

(see Figure 7.5). In these cases, the positive circulation is from the blade tip vortex

and the negative circulation is from the blade root vortex.

To better distinguish between the counter-rotating vortex pair in the curled wakes

from the tip and root vortices in non-curled wakes, Figure 7.7 plots the total circu-

lation (both positive and negative vorticity fluxes summed together) for the left and

152



Figure 7.7. Total circulation (positive and negative) in the left and right halves of
the wake, at different downwind cross-sections for each simulated case.

right halves of the rectangular loop. Although the wake is not perfectly centered be-

tween these two halves due to wind shear, this approach better captures the left-right

asymmetry of the counter-rotating vortex pair, compared to the relative left-right

symmetry of the tip and root vortices in the non-tilted wakes.

7.2.4 Wake deficit recovery

In addition to identifying the wake location, the velocity deficit Ud quantifies the

wake recovery. For different downwind cross-sections, Ud is averaged over the wake

area, as identified by the Ud cut-off at 10% U∞ at hub height (see Figure 7.2). These

wake deficit averages are then normalized by the average at x=0.5D downwind, to

give the wake deficit recovery (i.e., recovery is 0 at x/D=0.5 and 1 whenever the wake

recovers to the free-stream wind speed). Figure 7.8 plots this wake deficit recovery

as a function of downwind location for all five simulated cases.

As shown in Figure 7.8, the wake deficit recovery is similar for all simulated cases,

regardless of tilt angle. Significantly, the tilted cases do not consistently recover faster

than the non-tilted cases. Wakes with larger surface gaps recover slightly faster than
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Figure 7.8. Recovery of the velocity deficit averaged over the wake area cross-section
as a function of downwind location, starting from 0.5D downwind, for all simulated
cases.

wakes nearer to the surface, but the surface gap does not affect the 30◦ wake recovery

compared to the non-tilted wakes.

7.2.5 Effects on a downwind rotor

Although the literature clearly documents that tilting an upwind rotor causes a

power increase to downwind rotors [11–13, 126, 150], this power gain is not caused

by a faster recovery of the wake deficit (see Figure 7.8). Instead, downwind power

gains appear to be caused by a combination of the reduced thrust at the upwind

tilted rotor, the location of the downwind wake, and high-speed wind being pulled

downward along with the wake.

To estimate how the simulated wakes would affect a downwind turbine’s power

generation, a circular area representing a second IEA 15 MW reference rotor is ana-

lyzed at different distances downwind, with the second rotor located directly behind

the simulated upwind rotor. The downwind rotor’s hub height also matches the up-

wind rotor for each case. First, the cube of the wind x-component is averaged over

this downwind rotor area, in order to quantify the power available to the theoretical

downwind turbine. Figure 7.9 plots this cubed wind speed, normalized by the power

154



Figure 7.9. Wind power available to a second rotor at different downwind distances,
normalized by the free-stream available power, for all simulated cases.

available in the free-stream wind over the same rotor area, for rotor areas at different

distances downwind. The free-stream wind as a function of elevation is taken from

the precursor simulation.

Comparing the cases in Figure 7.9, tilting the upwind rotor significantly increases

the power available to a downwind rotor. However, a substantial portion of this

downwind power gain is caused by the tilted upwind rotor extracting less power in

the first place, due to the sub-optimal rotor angle. For example, at standard hub

height, the rotors with 15◦ and 30◦ tilt extracted 6.6% and 24.7% less power than the

non-tilted rotor, respectively.

Wake deflection also contributes to downwind power gains: a tilted upwind rotor

steers the wake downward, so that the low-speed wake overlaps less with the downwind

rotor area. This can be illustrated by examining the downwind power recovery from

0.5D downwind to 6D downwind: the available downwind power recovers by 37%

and 44% of the free-stream power for 15◦ and 30◦ tilt, respectively, compared to the

non-tilted wake only recovering 28% of the free-stream power. Larger surface gaps

also allow for faster power recovery, though the effect is limited when combined with

faster power recovery due to tilt: the non-tilted wake with the larger surface gap
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recovers 31% of the free-stream power between 0.5D and 6D, and the 30◦ tilted wake

with the larger surface gap recovers 45% of the free-stream power. This faster power

recovery due to wake location is the primary benefit of tilting rotors within a wind

farm array.

Although tilted wakes provide more available power to downwind turbines, this

comes at the cost of a larger effective wind shear across the downwind rotor, which

can increase structural loads and fatigue [151]. To estimate the effective wind shear

from tilted wakes, the x-component of the wind velocity is averaged at each elevation,

across the local width of the downwind rotor disk. Figure 7.10 plots this effective wind

shear across the downwind rotor’s height, for all cases at different downwind locations.

The top row compares the cases with the standard surface gap, while the bottom row

shows cases with the larger surface gap. The free-stream wind shear profile is also

included in Figure 7.10 for reference.

Figure 7.10. Effective wind shear profiles across a downwind rotor for tilted wakes
with the standard surface gap (top) and a doubled surface gap (bottom). The free-
stream wind profile is shown for comparison.
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As illustrated in Figure 7.10, the effective wind shear experienced by a downwind

rotor is larger for tilted wakes than for non-tilted wakes. For example, the wind speed

varies by 2.17 m/s across a downwind rotor at standard hub height for a non-tilted

upwind turbine, but the wind speed variations are 3.55 m/s and 2.95 m/s when the

upwind rotor is tilted by 15◦ and 30◦, respectively. The downwind effective wind

shear is more severe for the 15◦ case than for the 30◦ case, because the lowest-speed

regions within the 30◦ tilted wake are curled and steered to the sides of the downwind

rotor area (see Figure 7.2). In contrast, the 15◦ wake is only steered downwards, to

the bottom of the downwind rotor area.

Examining the effects of the surface gap size, a larger surface gap causes a smaller

effective wind shear for both 0◦ and 30◦ tilt: 1.57 m/s and 2.64 m/s, respectively.

However, the larger surface gap causes a slightly larger difference between the tilted

and non-tilted wakes, because the tilted wake can curl away from the downwind rotor

area even more with less interference from the surface.

7.2.6 Vertical momentum flux

To help illustrate where downwind rotors get the extra available energy in tilted

wake cases, the vertical velocity and volume fluxes are calculated at different eleva-

tions above the wake, as stand-ins for the momentum and mass fluxes in an incom-

pressible solver where density differences are neglected except for buoyancy terms.

The velocity flux
∫
S
~U ~U · d~S and volume flux

∫
S
~U · d~S are calculated through a

2D-wide rectangular horizontal surface located from x=1D to 6D downwind, for el-

evations from z=400 m (just above the wake) to 850 m (above the capping inversion

layer). Figure 7.11 plots these fluxes divided by the surface area for each simulated

case, with positive values indicating downward flow.

Figure 7.11 indicates that tilted wakes do entrain more high-speed air from just

above the wind farm than non-tilted wakes, as shown by the increased velocity and
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Figure 7.11. Velocity and volume fluxes through a rectangular surface above the
wake at different elevations, divided by the surface area, for each simulated case.
Positive values indicate downward flow.

downward volume fluxes from z=400 m to 500 m for the tilted cases. However,

the tilt angle also affects the downward fluxes higher in the atmosphere, with the

fluxes increasing with elevation in the non-tilted cases while the fluxes decrease with

elevation in the tilted cases. These higher-elevation effects may be caused by different

blockage effects due to the different rotor thrust coefficients, as well as interactions

with the upper boundary condition and the capping inversion. Examining the effect

of surface gap size, a larger surface gap causes larger fluxes at a given elevation,

because that elevation is closer to the wake due to the increased hub height.

7.3 Summary and conclusions

In this chapter, LES of the IEA 15 MW reference turbine are performed using

SOWFA with an ADM, for three different rotor tilt angles and two different surface

gaps. The characteristics of the resulting curled wakes are compared and quantified,

and the effects on a downwind rotor are estimated as well.

Key findings about tilted wake characteristics include:

• Larger rotor tilt angles steer wakes downward and cause shorter, wider wakes.
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• Increasing rotor tilt causes a nonlinear increase in the strength of the counter-

rotating vortex pair within the wake, as quantified by the vortex circulations.

• At a large tilt angle of 30◦, the wake curls into classic “bean”-shaped cross-

sections, which can be quantified using Legendre polynomials.

Further findings about the effect of tilted wakes on downwind rotors include:

• Increasing rotor tilt increases the power available to downwind rotors for two

reasons: 1) the tilted upwind rotor extracts less power from the wind, and 2)

tilting the upwind rotor allows faster power recovery because the tilted wake

location and shape overlap less with the downwind rotor, allowing the downwind

rotor to access high-speed air pulled down from just above the wind farm.

• Increasing rotor tilt does not cause faster recovery of the velocity deficit within

the wake: downwind power recovery is caused only by wake location, and not

by deficit recovery within the wake.

• Tilting the upwind rotor increases the effective wind shear across a downwind

rotor, which may cause increases in loads and fatigue damage.

Finally, this research also shows that smaller surface gaps limit downward wake

steering as the tilted wake collides with the surface, causing shorter, wider wakes,

slower downwind power recovery, and a larger wind shear increase.

In summary, this research identifies key features of tilted wakes, including down-

ward steering, shorter and wider wake cross-sections, stronger counter-rotating vortex

pairs, and similar velocity deficit recovery within the wake. The estimated downwind

power gain from tilting an upwind turbine is attributed to the wake steering away

from the downwind rotor area and the reduced power extraction at the upwind rotor,

but this power gain comes at the cost of increased wind shear downwind. The sur-

face gap size is shown to influence the wake location, size, and shape, as well as the
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downwind power recovery and effective wind shear. Several measures are proposed

for quantitatively comparing curled wakes from different models, including circulation

for the counter-rotating vortex pair as well as polar coordinate-based curve fitting for

the wake shape. Future work could compare these simulated wakes to results from

engineering models for curled wakes.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation presents CFD investigations of three main topics in offshore wind

energy: how breaking waves affect structural loads for fixed-bottom wind turbines;

how platform motions affect power generation, wake characteristics, and downwind

turbine behavior for floating wind turbines; and how rotor tilt angles affect wake

characteristics when interacting with the ground or sea surface. The high-fidelity CFD

simulations provide insight into physical phenomena that can be difficult to capture

with current reduced-order engineering models, and expensive or inpractical to obtain

from field measurements. One focus of this dissertation is quantifying context-specific

metrics for flow fields and turbine behavior, so that these CFD results can help

inform and validate future improvements to engineering models for wind turbine

wakes, power prediction, and breaking waves. The contributions of this dissertation

to the scholarly body of knowledge are summarized here, concluding with a short

description of possible future directions of this research.

8.1 Contributions to knowledge

8.1.1 Breaking wave effects on OWTs

CFD simulations are performed of breaking waves with characteristics represen-

tative of potential East Coast offshore wind energy sites. The CFD model in CON-

VERGE is first verified and validated using both analytical solutions and experi-

mental data for different cases. CFD simulations of shoaling and breaking waves

are then used to evaluate the McCown, Miche, Battjes, and Goda breaking wave
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limits. This study concludes that the Goda breaking limit is the most accurate op-

tion for seafloor slopes below 8%, which are common at fixed-bottom OWT sites

on the East Coast, although the Miche and Battjes limits are acceptable conserva-

tive alternatives that perform reasonably for a wider range of seafloor slopes. Next,

CFD simulations of shoaling waves breaking on monopiles for 5 and 10 MW OWTs

were used to evaluate the Goda, Campbell-Weynberg, Cointe-Armand, and Wienke-

Oumerachi wave slam force models. These simulations indicate that all four slam

force models are conservative because they assume the “worst case” wave shape dur-

ing impact, though the Goda slam model is least conservative and the Cointe-Armand

and Wienke-Oumerachi models are the most.

This is the first time that breaking wave limits and slam models are evaluated

for wave and site conditions specific to East Coast OWT sites. Furthermore, this

research identifies that the accuracy of breaking limit models is highly impacted by

how wave height and wavelength are measured in an asymmetric shoaling wave. These

CFD simulations also suggest that slam force models do not account for variations

in wave shape or impact timing, and also do not accurately capture the force time

history after initial impact, although the VOF interface model may affect the CFD

accuracy. These simulations indicate that these slam force models should only be

used to generate conservative predictions of the peak breaking wave force.

8.1.2 Wake characteristics for floating turbines

Wake characteristics of floating turbines are compared to a fixed turbine wake,

using LES coupled to an aeroelastic turbine model through an ALM, for different

environmental conditions, rotor yaw angles, and floating platform types. This re-

search concludes that floating OWT wakes generally have similar characteristics to

wakes from fixed wind turbines, with a primary difference of floating wakes deflecting

upwards by 5-10% due to mean platform pitch angles. Spar platforms produce larger
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upward wake deflections than the semisubmersible because the spar has a larger pitch

angle. Stable atmospheric conditions also produce larger vertical and horizontal wake

deflections than neutral conditions, suggesting that the floating wake deflection in-

teracts with wind shear and wind veer. In addition to the upwards wake deflection,

floating turbines cause a 1-6% increase in peak TKE in the wake shear layer, though

this effect is limited for higher wind speeds or lower wave heights. Fluctuations in

the wake center location are not significantly increased by floating turbines, although

horizontal fluctuations are higher in stable atmospheric conditions.

This is the first study to use LES coupled with realistic (i.e., non-prescribed)

floating platform motions to study floating turbines’ far wake characteristics for dif-

ferent combinations of atmospheric stabilities, platform types, wind speeds, wave

heights, and wind-wave alignments. This research suggests that reduced-order wake

models originally developed for fixed turbines can reasonably apply to most floating-

turbine wakes, especially curled wake models that can capture upward wake deflection

caused by platform pitch. However, additional adjustments may be necessary for ver-

tical wake deflections interacting with wind shear and wind veer, especially in stable

atmospheric conditions.

8.1.3 Power generation in floating turbines

Aeroelastic floating OWT simulations with turbulent inflow wind from LES are

performed for spar and semisubmersible platforms, as well as a baseline fixed tur-

bine, to identify how floating platform motions affect power generation in OWTs.

This study concludes that overall power gains or losses in floating wind turbines

are primarily caused by the balance between two competing effects: power decreases

caused by a mean rotor tilt angle driven by platform pitch, and power increases

caused by dynamic upwind-downwind rotor motions driven by platform surge and

pitch motion. Floating platforms do not provide universally significant power gains

163



over fixed-bottom turbines; it depends on details in the platform dynamics. For ex-

ample, the spar turbine generates 3.1-4.5% more power than the fixed turbine for

this below-rated wind speed, because its lower center of mass creates larger, pitch-

dominated rotor motions that outweigh its larger platform pitch angle. In contrast,

the semisubmersible generates a negligible (0.1-0.2%) power gain, because its smaller

rotor motions barely outweigh its smaller platform pitch angle.

Unlike most previous studies into floating OWT power generation, this research

more realistically allows irregular waves and turbulent LES inflow to drive the plat-

form motions, and also allows for non-zero time-averaged values for platform dis-

placements. Furthermore, this set of simulations includes cases with different com-

binations of the six platform degrees of freedom enabled. These cases indicate that

contrary to the common practice of isolating platform surge or pitch motions, surge

and pitch must be enabled concurrently to accurately capture power generation in

floating OWTs.

In addition, this work proposes a simple analytical model for power generation in

floating OWTs in Equation 5.10, which explicitly addresses average platform pitch,

rotor shaft tilt, and rotor motions upwind-downwind. This novel model reasonably

predicts whether a floating platform causes a power gain or loss relative to the fixed

turbine, though the magnitude of the predicted power gain or loss can be improved.

8.1.4 Floating-turbine wake effects on downwind turbines

Aeroelastic simulations of a downwind floating OWT are performed with LES

wakes from an upwind OWT as the inflow flow field, for different upwind-downwind

combinations of spar, semisubmersible, and fixed platforms. Configurations where the

downwind turbine is fully waked and half waked are also compared. The main conclu-

sion from these simulations is that the power, blade loads, and towertop displacements

of the downwind turbine are affected much more by the downwind platform type, than
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by any wake characteristics caused by a floating upwind turbine. Cases with a fixed

downwind turbine had fairly similar average values, RMS values, and frequency con-

tent, regardless of upwind turbine type. Notably, differences between floating-floating

configurations and the baseline fixed-fixed configuration were much larger (i.e. from

doubled to an order of magnitude larger) than any differences between floating-fixed

configurations and the baseline, especially for the spar.

This research is one of the few studies that addresses how floating wake charac-

teristics affect downwind power generation, and not just downwind structural loads.

Also, this study novelly compares multiple platform types for both fully waked and

half-waked configurations, using high-fidelity LES for the upwind turbine’s wake. Fi-

nally, this research is unusual in that it includes “mixed” configurations with floating

upwind turbines and fixed downwind turbines, which is vital to isolating the floating

wake’s effects from any effects due to the downwind platform motion. In confirmation

of the recommendation suggested by the floating wake characteristics study in Chap-

ter 4, these simulations also indicate that when modeling floating wind farm arrays, it

is likely acceptable to approximate the floating wake with fixed-bottom wake models

that do not specifically address how a floating upwind turbine alters the wake.

8.1.5 Wake effects for tilted rotors

LES of tilted wind turbine rotors and their wakes is performed for three different

tilt angles and two different gaps between the rotor bottom and the sea surface. These

simulations agree with previous studies that increasing the tilt angle steers wakes

downward, curls the wake into a shape with bean-like cross-sections, and creates a

pair of counter-rotating vortices in the wake. This research further concludes that

increasing the tilt angle causes shorter, wider wakes as well as a nonlinear increase

in the strength of the counter-rotating vortex pair. These simulations also identify

the physical phenomena behind the well-documented downwind power gains in tilted
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turbine arrays: first, the titled upwind rotor simply extracts less power from the

free-stream wind. More notably, the downward wake deflection and curled wake

shape reduce the overlap of the wake with the downwind rotor area, allowing the

downwind turbine to access high-speed air pulled down from just above the wind farm.

Furthermore, rotor tilt does not cause a faster recovery of the velocity deficit within

the wake, so wake recovery does not contribute to downwind power gains. These

simulations also indicate that tilting the upwind rotor also increases the effective wind

shear across a downwind turbine, which may increase loads and fatigue damage.

This research is the first to examine how surface gap size affects wake effects for

tilted rotors, concluding that smaller surface gaps limit downward wake steering as

the tilted wake collides with surface. This causes shorter, wider wakes, slower down-

wind power recovery, and a larger wind shear increase. Additionally, this research

proposes metrics that can help quantitatively compare curled wake results from differ-

ent models, including circulation of the counter-rotating vortex pair as well as polar

coordinate-based curve fitting for the wake shape. Finally, this research is the first

to simulate curled wakes for a larger 15 MW turbine, establishing that curled wake

characteristics observed for smaller turbines are also present for larger rotors.

8.2 Future Work

Future work on the topics addressed in this dissertation should include validating

these simulation results against full-scale field measurements for floating OWTs and

turbines with tilted rotors, when this data is available. The simulations of wake effects

and power generation for floating turbines and tilted rotors should also be repeated

for additional environmental conditions, especially for above-rated wind speeds and

lower wave heights. This would give a better insight into the typical wind turbine

performance over longer time periods, rather than just examining the conditions

where wakes and floating platform motions are expected to have the largest effects. In
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addition, the effect of the tilted wake on a downwind turbine could be more precisely

assessed through aeroelastic simulations of a downwind turbine, using the tilted wake

LES as inflow. Finally, the tilted rotor study could be extended by using these LES

wake results to evaluate and improve reduced-order curled wake models.
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APPENDIX A

BREAKING WAVE LIMIT DATA

Wave parameters for breaking and non-breaking waves are listed in the following

tables for the breaking wave simulations described in Section 3.3. The ratios of the

simulated H/L to the predicted breaking H/L for the McCowan, Miche, Battjes, and

Goda (both local L and deep water L0) limits are presented in the last five columns.

Boldface ratios indicate disagreement between the simulated wave and the breaking

limit. Unless otherwise noted, the reported H and L are the average wave height

Havg and average wavelength Lavg.

Table A.1. Non-breaking wave cases’ wave parameters and ratios of simulated to
predicted H/L for different breaking limits.

s d H L
d/L H/L McCowan Miche Battjes

Goda, Goda,
(%) (m) (m) (m) L L0

0 10.0 4.8 111.0 0.090 0.043 0.61 0.59 0.64 0.73 –
0 25.0 10.7 227.4 0.110 0.047 0.55 0.55 0.60 0.69 –
0 30.0 17.5 253.4 0.118 0.069 0.75 0.77 0.83 0.95 –
0 5.0 2.8 40.6 0.123 0.069 0.72 0.75 0.80 0.92 –
0 50.0 28.8 391.2 0.128 0.074 0.74 0.78 0.83 0.96 –
0 45.0 21.4 281.7 0.160 0.076 0.61 0.70 0.74 0.85 –
0 40.0 21.9 249.0 0.161 0.088 0.70 0.81 0.85 0.97 –
0 20.0 10.7 120.0 0.167 0.089 0.68 0.80 0.85 0.96 –
0 35.0 18.8 202.4 0.173 0.093 0.69 0.82 0.87 0.98 –
2 54.9 34.4 409.0 0.134 0.084 0.80 0.86 0.92 1.00 0.95
2 13.0 5.8 83.0 0.157 0.069 0.57 0.65 0.68 0.74 0.70
2 36.6 13.4 203.8 0.180 0.066 0.47 0.57 0.60 0.65 0.61
3 15.7 7.2 123.7 0.127 0.058 0.59 0.62 0.66 0.69 0.64
3 69.6 40.5 515.2 0.135 0.079 0.75 0.80 0.85 0.90 0.86
3 7.1 3.2 39.3 0.180 0.081 0.58 0.70 0.74 0.77 0.73
5 27.0 16.0 130.6 0.207 0.123 0.76 1.00 1.04 1.01 0.92
8 22.3 17.3 142.1 0.157 0.122 1.00 1.14 1.20 1.06 0.93
8 12.3 8.4 61.2 0.202 0.137 0.87 1.13 1.18 1.05 0.92
12 17.8 12.7 94.3 0.189 0.135 0.92 1.15 1.20 0.98 0.80

168



Table A.2. Breaking wave cases’ wave parameters and ratios of simulated to pre-
dicted H/L for different breaking limits.

s d H L
d/L H/L McCowan Miche Battjes

Goda, Goda,
(%) (m) (m) (m) L L0

5 21.4 25.1 329.8 0.065 0.076 1.50 1.38 1.51 1.38 1.30
5 32.1 31.5 407.5 0.079 0.077 1.26 1.19 1.29 1.21 1.14
6 12.2 17.4 206.4 0.059 0.084 1.83 1.67 1.82 1.58 1.48
6 11.6 11.3 139.4 0.083 0.081 1.25 1.19 1.29 1.16 1.08
6 18.7 18.3 208.7 0.089 0.088 1.26 1.21 1.31 1.19 1.09
6 21.7 19.7 207.9 0.104 0.095 1.16 1.16 1.25 1.15 1.07
6 2.9 2.6 25.1 0.114 0.105 1.17 1.20 1.28 1.19 1.08
8 21.7 21.8 243.4 0.089 0.090 1.29 1.24 1.35 1.12 1.02
8 42.8 45.6 451.1 0.095 0.101 1.36 1.33 1.44 1.21 1.08
8 21.6 18.0 174.8 0.124 0.103 1.07 1.12 1.20 1.04 0.93
9 32.9 32.1 337.4 0.098 0.095 1.25 1.23 1.32 1.07 0.97
9 21.6 18.8 164.6 0.131 0.114 1.12 1.19 1.27 1.07 0.95
9 2.4 1.8 17.2 0.140 0.104 0.95 1.04 1.10 0.94 0.81
9 2.3 1.8 16.0 0.143 0.110 0.99 1.09 1.16 0.98 0.83
9 2.9 1.8 18.0 0.159 0.102 0.82 0.94 1.00 0.86 0.74
9 15.5 10.3 84.5 0.183 0.121 0.85 1.04 1.09 0.95 0.85
11 12.0 12.9 148.7 0.081 0.086 1.37 1.30 1.41 1.03 0.91
11 33.2 31.1 286.1 0.116 0.109 1.20 1.23 1.32 1.02 0.91
11 36.7 32.3 287.4 0.128 0.112 1.13 1.19 1.27 1.00 0.88
11 39.6 36.3 238.5 0.166 0.152 1.17 1.38 1.45 1.19 0.94
12 3.8 4.2 40.8 0.093 0.104 1.44 1.40 1.51 1.09 0.95
12 18.0 20.4 191.0 0.094 0.107 1.45 1.42 1.53 1.11 0.96
12 20.9 23.9 200.2 0.104 0.120 1.47 1.46 1.58 1.16 1.00
12 27.9 30.9 247.2 0.113 0.125 1.42 1.45 1.55 1.16 1.00
12 13.7 12.5 90.0 0.152 0.138 1.17 1.31 1.39 1.10 0.94
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APPENDIX B

FLOATING-TURBINE DISPLACEMENT DATA

The following tables give average, root-mean-square, minimum, and maximum

values for rotor center displacements and platform displacements from the simulations

described in Chapter 5, with different platform degrees of freedom enabled. The

time-averaged power for simulations with both dynamic and average displacements

and with average displacements only is also presented. Tables B.1 and B.2 show rotor

and platform displacement data for the spar platform, while Tables B.3 and B.4 show

rotor and platform displacement data for the semisubmersible platform.
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Table B.1. Spar data for time-averaged power for cases with the total floating displacements and average displacements only,
as well as average, root-mean-square, minimum, and maximum values for rotor displacements. Columns are organized by which
platform degree of freedom (DOF) is enabled for that case.

Active DOF:
All DOF,

All DOF Surge & pitch Surge Sway Heave Roll Pitch Yaw
coupled inflow

Power (MW)*
Total disp. 1.712 1.678 1.679 1.611 1.606 1.606 1.606 1.599 1.606
Avg. disp. – 1.582 1.583 1.606 1.606 1.606 1.606 1.583 1.606

xRC (m)

Avg. 12.129 12.080 12.062 5.092 – – – 1.717 –
RMS 2.707 2.736 2.713 0.755 – – – 0.412 –
Min. 3.010 2.853 2.911 2.335 – – – 0.355 –
Max. 21.006 21.217 21.063 7.740 – – – 3.387 –

yRC (m)

Avg. -0.309 -0.263 – – -0.009 – -0.109 – –
RMS 0.078 0.091 – – 0.045 – 0.069 – –
Min. -0.531 -0.547 – – -0.130 – -0.280 – –
Max. -0.080 -0.011 – – 0.118 – 0.051 – –

zRC (m)

Avg. -0.277 -0.273 -0.096 – – -0.072 – -0.017 –
RMS 0.292 0.288 0.053 – – 0.307 – 0.008 –
Min. -1.201 -1.184 -0.329 – – -1.065 – -0.064 –
Max. 0.714 0.709 – – – 0.916 – -0.001 –

φRC = Pitch (◦)

Avg. 2.555 2.538 2.537 – – – – 1.093 –
RMS 0.743 0.750 0.743 – – – – 0.262 –
Min. 0.199 0.148 0.150 – – – – 0.226 –
Max. 4.962 4.961 4.904 – – – – 2.157 –

θRC = Yaw (◦)

Avg. 0.014 0.013 – – – – – – -0.006
RMS 0.183 0.174 – – – – – – 0.121
Min. -0.642 -0.594 – – – – – – -0.394
Max. 0.646 0.599 – – – – – – 0.326

*The average power for an equivalent fixed-bottom turbine is 1.661 MW for coupled inflow cases and 1.605 MW for prerecorded inflow cases.
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Table B.2. Spar data for the average, root-mean-square, minimum, and maximum values for platform displacements (yaw and
pitch values are reported in Table B.1). Columns are organized by which platform degree of freedom (DOF) is enabled for that
case.

Active DOF:
All DOF,

All DOF Surge & pitch Surge Sway Heave Roll Pitch Yaw
coupled inflow

Roll (◦)

Avg. 0.106 0.094 – – – – 0.069 – –
RMS 0.025 0.029 – – – – 0.044 – –
Min. 0.035 0.008 – – – – -0.032 – –
Max. 0.183 0.186 – – – – 0.178 – –

Surge (m)

Avg. 8.117 8.096 8.078 5.092 – – – – –
RMS 1.559 1.583 1.571 0.755 – – – – –
Min. 2.639 2.513 2.539 2.335 – – – – –
Max. 13.400 13.570 13.490 7.740 – – – – –

Sway (m)

Avg. -0.143 -0.115 – – -0.009 – – – –
RMS 0.046 0.054 – – 0.045 – – – –
Min. -0.275 -0.266 – – -0.130 – – – –
Max. -0.018 0.040 – – 0.118 – – – –

Heave (m)

Avg. -0.180 -0.177 – – – -0.072 – – –
RMS 0.290 0.287 – – – 0.307 – – –
Min. -1.105 -1.094 – – – -1.065 – – –
Max. 0.796 0.793 – – – 0.916 – – –
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Table B.3. Semisubmersible data for time-averaged power for cases with the total floating displacements and average dis-
placements only, as well as average, root-mean-square, minimum, and maximum values for rotor displacements. Columns are
organized by which platform degree of freedom (DOF) is enabled for that case.

Active DOF:
All DOF,

All DOF Surge & pitch Surge Sway Heave Roll Pitch Yaw
coupled inflow

Power (MW)*
Total disp. 1.664 1.608 1.604 1.630 1.606 1.607 1.606 1.694 1.606
Avg. disp. – 1.591 1.591 1.606 1.606 1.606 1.606 1.591 1.606

xRC (m)

Avg. 8.417 8.359 8.327 5.571 – – – 2.729 –
RMS 1.218 1.214 1.148 1.459 – – – 2.583 –
Min. 3.092 3.102 4.147 1.259 – – – -5.270 –
Max. 12.859 12.821 12.887 10.340 – – – 12.147 –

yRC (m)

Avg. -0.205 -0.171 – – -0.010 – -0.167 – –
RMS 0.062 0.072 – – 0.038 – 0.024 – –
Min. -0.373 -0.373 – – -0.110 – -0.259 – –
Max. -0.051 0.027 – – 0.104 – -0.077 – –

zRC (m)

Avg. -0.027 -0.026 -0.051 – – 0.033 – -0.079 –
RMS 0.853 0.853 0.041 – – 0.847 – 0.098 –
Min. -3.206 -3.205 -0.354 – – -3.014 – -0.824 –
Max. 3.027 3.027 – – – 3.028 – – –

φRC = Pitch (◦)

Avg. 1.773 1.746 1.754 – – – – 1.738 –
RMS 0.761 0.759 0.780 – – – – 1.646 –
Min. -0.570 -0.580 -1.106 – – – – -3.357 –
Max. 4.911 4.840 5.083 – – – – 7.757 –

θRC = Yaw (◦)

Avg. 0.009 0.011 – – – – – – -0.006
RMS 0.155 0.185 – – – – – – 0.182
Min. -0.453 -0.526 – – – – – – -0.554
Max. 0.607 0.713 – – – – – – 0.668

*The average power for an equivalent fixed-bottom turbine is 1.661 MW for coupled inflow cases and 1.605 MW for prerecorded inflow cases.
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Table B.4. Semisubmersible data for the average, root-mean-square, minimum, and maximum values for platform displacements
(yaw and pitch values are reported in Table B.3). Columns are organized by which platform degree of freedom (DOF) is enabled
for that case.

Active DOF:
All DOF,

All DOF Surge & pitch Surge Sway Heave Roll Pitch Yaw
coupled inflow

Roll (◦)

Avg. 0.113 0.105 – – – – 0.106 – –
RMS 0.023 0.026 – – – – 0.015 – –
Min. 0.024 0.011 – – – – 0.049 – –
Max. 0.187 0.183 – – – – 0.165 – –

Surge (m)

Avg. 5.633 5.616 5.572 5.571 – – – – –
RMS 1.364 1.363 1.373 1.459 – – – – –
Min. 1.375 1.359 1.374 1.259 – – – – –
Max. 10.180 10.200 10.110 10.340 – – – – –

Sway (m)

Avg. -0.027 -0.006 – – -0.010 – – – –
RMS 0.047 0.056 – – 0.038 – – – –
Min. -0.129 -0.136 – – -0.110 – – – –
Max. 0.096 0.148 – – 0.104 – – – –

Heave (m)

Avg. 0.024 0.024 – – – 0.033 – – –
RMS 0.849 0.849 – – – 0.847 – – –
Min. -3.147 -3.147 – – – -3.014 – – –
Max. 3.084 3.084 – – – 3.028 – – –
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many: Vandenhoeck and Ruprecht; 1926.

[22] Glauert H. Airplane propellers. In: Durand WF, ed. Aerodynamic Theory.
Berlin, Germany: Springer; 1935: 169–360. doi: 10.1007/978-3-642-91487-4 3

[23] Sørensen J. Aerodynamic aspects of wind energy conversion. Annual Review of
Fluid Mechanics 2011; 43: 427–448. doi: 10.1146/annurev-fluid-122109-160801

[24] Vermeer LJ, Sørensen JN, Crespo A. Wind turbine wake aerodynamics. Progress
in Aerospace Sciences 2003; 39: 467–510. doi: 10.1016/S0376-0421(03)00078-2

176

http://dx.doi.org/10.1016/j.renene.2014.02.015
http://dx.doi.org/10.1016/j.renene.2014.02.015
http://dx.doi.org/10.1002/we.1810
http://dx.doi.org/10.1002/we.1810
http://dx.doi.org/10.3390/en11071895
http://dx.doi.org/10.3390/en5040968
http://dx.doi.org/10.3390/en5040968
http://dx.doi.org/10.1115/IOWTC2018-1095
http://dx.doi.org/10.1088/1742-6596/1256/1/012018
http://dx.doi.org/10.1088/1742-6596/1452/1/012034
http://dx.doi.org/10.1088/1742-6596/1452/1/012034
http://dx.doi.org/10.1002/we.2608
http://dx.doi.org/10.1007/978-3-642-91487-4_3
http://dx.doi.org/10.1146/annurev-fluid-122109-160801
http://dx.doi.org/10.1016/S0376-0421(03)00078-2


[25] Crespo A, Hernández J, Frandsen S. Survey of modelling methods for wind
turbine wakes and wind farms. Wind Energy 1999; 2: 1–24.

[26] Katic I, Højstrup J, Jensen NO. A simple model for cluster efficiency. Proceed-
ings of European Wind Energy Association Conference and Exhibition. EWEA;
7-9 October 1986; Rome, Italy: 407–410.

[27] Larsen G.A Simple Wake Calculation Procedure. Roskilde, Denmark: Risø Na-
tional Laboratory; 1988. Tech. report Risø-M-2760.

[28] Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S. Deficit in large
offshore wind farms. Wind Energy 2006; 9: 39–53. doi: 10.1002/we
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[67] Wu Y, Porté-Agel F. Modeling turbine wakes and power losses within a wind
farm using LES: An application to the Horns Rev offshore wind farm. Renewable
Energy 2015; 75: 945–955. doi: 10.1016/J.RENENE.2014.06.019

[68] Sørensen J, Shen W. Numerical modeling of wind turbine wakes. Journal of
Fluids Engineering 2002; 124: 393–399. doi: 10.1115/1.1471361

[69] Stevens R, Mart́ınez-Tossas L, Meneveau C. Comparison of wind farm
large eddy simulations using actuator disk and actuator line models with
wind tunnel experiments. Renewable Energy 2018; 116: 470–478. doi:
10.1016/j.renene.2017.08.072

[70] Mart́ınez-Tossas LA, Churchfield M, Meneveau C. Optimal smoothing length
scale for actuator line models of wind turbine blades based on Gaussian body
force distribution. Wind Energy 2017; 20: 1083–1096. doi: 10.1002/we.2081

[71] Churchfield M, Lee S, Schmitz S, Wang Z. Modeling wind turbine tower and
nacelle effects within an actuator line model. Proceedings of the 33rd Wind En-
ergy Symposium, AIAA SciTech. AIAA; 5-9 January 2015; Kissimmee, Florida:
AIAA2015-0214. doi: 10.2514/6.2015-0214

[72] Santoni C, Carrasquillo K, Arenas-Navarro I, Leonardi S. Effect of tower and
nacelle on the flow past a wind turbine. Wind Energy 2017; 20: 1927–1939. doi:
10.1002/we.2130

[73] Ren N, Li Y, Ou J. Coupled wind-wave time domain analysis of floating off-
shore wind turbine based on computational fluid dynamics method. Journal of
Renewable and Sustainable Energy 2014; 6: 023106. doi: 10.1063/1.4870988

180

http://dx.doi.org/10.1007/s10712-015-9313-7
http://dx.doi.org/10.1016/j.renene.2016.02.021
http://dx.doi.org/10.1115/IOWTC2018-1046
http://dx.doi.org/10.1016/j.renene.2016.05.061
http://dx.doi.org/10.1007/s10546-010-9569-x
http://dx.doi.org/10.1016/J.RENENE.2014.06.019
http://dx.doi.org/10.1115/1.1471361
http://dx.doi.org/10.1016/j.renene.2017.08.072
http://dx.doi.org/10.1016/j.renene.2017.08.072
http://dx.doi.org/10.1002/we.2081
http://dx.doi.org/10.2514/6.2015-0214
http://dx.doi.org/10.1002/we.2130
http://dx.doi.org/10.1002/we.2130
http://dx.doi.org/10.1063/1.4870988


[74] Jonkman J, Hayman G. HydroDyn. National Renewable Energy Laboratory;
2020. https://www.nrel.gov/wind/nwtc/hydrodyn.html. Accessed 11 June
2021.

[75] Cormier M, Caboni M, Lutz T, Boorsma K, Krämer E. Numerical analysis of
unsteady aerodynamics of floating offshore wind turbines. Journal of Physics:
Conference Series 2018; 1037: 072048. doi: 10.1088/1742-6596/1037/7/072048

[76] Lin L, Wang K, Vassalos D. Detecting wake performance of floating
offshore wind turbine. Ocean Engineering 2018; 156: 263–276. doi:
10.1016/J.OCEANENG.2018.03.028

[77] Burmester S, de Ridder EJ, Wehmeyer C, Asp E, Gujer P. Comparing differ-
ent approaches for calculating wave impacts on a monopile turbine foundation.
Proceedings of the ASME 2017 36th International Conference on Ocean, Off-
shore and Arctic Engineering. ASME; 25-30 June 2017; Trondheim, Norway:
OMAE2017-61182. doi: 10.1115/OMAE2017-61182

[78] Hallowell S. Large scale modeling of breaking waves. International Offshore
Wind Partnering Forum. Business Network for Offshore Wind; 3-6 April 2017;
Princeton, New Jersey.

[79] de Ridder EJ, Bunnik T, Peeringa JM, Paulsen BT, Weyhmeyer C, Gujer P,
Asp E. Summary of the joint industry project wave impact on fixed foundations
(WIFI JIP). Proceedings of the ASME 2017 36th International Conference on
Ocean, Offshore and Arctic Engineering. ASME; 25-30 June 2017; Trondheim,
Norway: OMAE2017-62040. doi: 10.1115/OMAE2017-62040

[80] Bredmose H, Mariegaard J, Paulsen BT, Jensen B, Schløer S, Larsen TJ, Kim T,
Hansen AM.The Wave Loads Project. Roskilde, Denmark: Technical University
of Denmark; 2013. Tech. report E-0045.

[81] Stansby PK, Devaney LC, Stallard TJ. Breaking wave loads on monopiles for
offshore wind turbines and estimation of extreme overturning moment. IET Re-
newable Power Generation 2013; 7(5): 514–520. doi: 10.1049/iet-rpg.2012.0205

[82] Marino E, Borri C, Peil U. A fully nonlinear wave model to account for breaking
wave impact loads on offshore wind turbines. Journal of Wind Engineering and
Industrial Aerodynamics 2011; 99(4): 483–490. doi: 10.1016/j.jweia.2010.12.015

[83] Luck M, Benoit M. Wave loading on monopile foundation for offshore wind
turbines in shallow-water areas. Coastal Engineering 2004, Proceedings of the
29th International Conference. ASME; 19-24 September 2004; Lisbon, Portugal:
3992-4004. doi: 10.1142/9789812701916 0322

[84] Irschik K.Loading of Slender Cylindrical Piles Due to Non-Breaking and Break-
ing Waves. [dissertation]. Braunschweig, Germany: Technical University of
Braunschweig (TU Braunschweig); 2012.

181

https://www.nrel.gov/wind/nwtc/hydrodyn.html
http://dx.doi.org/10.1088/1742-6596/1037/7/072048
http://dx.doi.org/10.1016/J.OCEANENG.2018.03.028
http://dx.doi.org/10.1016/J.OCEANENG.2018.03.028
http://dx.doi.org/10.1115/OMAE2017-61182
http://dx.doi.org/10.1115/OMAE2017-62040
http://dx.doi.org/10.1049/iet-rpg.2012.0205
http://dx.doi.org/10.1016/j.jweia.2010.12.015
http://dx.doi.org/10.1142/9789812701916_0322


[85] Richards KJ, Senecal PK, Pomraning E.CONVERGE v2.4 Manual. Madison,
Wisconsin: Convergent Science; 2018.

[86] Fenton JD. The numerical solution of steady water wave problems. Computers
and Geosciences 1990; 14(3): 357–368. doi: 10.1016/0098-3004(88)90066-0

[87] Whitman GB.Linear and Nonlinear Waves. New York: John Wiley and Sons;
1974.

[88] Fenton JD. A fifth-order Stokes theory for steady waves. Journal of Wa-
terway, Port, Coastal, and Ocean Engineering 1985; 111(2): 216–234. doi:
10.1061/(ASCE)0733-950X(1985)111:2(216)

[89] Fenton JD. Nonlinear wave theories. In: Méhauté BL, Hanes DM, eds. The Sea:
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