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ABSTRACT

AUDIO-DRIVEN CHARACTER ANIMATION

SEPTEMBER 2021

YANG ZHOU

B.E., SHANGHAI JIAO TONG UNIVERSITY

M.E., SHANGHAI JIAO TONG UNIVERSITY

M.E., GEORGIA INSTITUTE OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Evangelos Kalogerakis

Generating believable character animations is a fundamentally important problem

in the field of computer graphics and computer vision. It also has a diverse set of

applications ranging from entertainment (e.g., films, games), medicine (e.g., facial

therapy and prosthetics), mixed reality, and education (e.g., language/speech training

and cyber-assistants). All these applications are all empowered by the ability to model

and animate characters convincingly (human or non-human). Existing key-framing

or performance capture approaches used for creating animations, especially facial

animations, are either laborious or hard to edit. In particular, producing expressive

animations from input speech automatically remains an open challenge.

In this thesis, I propose novel deep-learning based approaches to produce speech

audio-driven character animations, including talking-head animations for character
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face rigs and portrait images, and reenacted gesture animations for natural human

speech videos.

First, I propose a neural network architecture, called VisemeNet, that can au-

tomatically animate an input face rig using audio as input. The network has three

stages: one that learns to predict a sequence of phoneme-groups from audio; another

that learns to predict the geometric location of important facial landmarks from au-

dio; and a final stage that combines the outcome from previous stages to produce

animation motion curves for FACS-based (Facial Action Coding System-based) face

rigs.

Second, I propose MakeItTalk, a method that takes as input a portrait image

of a face along with audio, and produces the expressive synchronized talking-head

animation. The portrait image can range from artistic cartoons to real human faces.

In addition, the method generates the whole head motion dynamics matching the

audio stresses and pauses. The key insight of the method is to disentangle the content

and speaker identity in the input audio signals, and drive the animation from both

of them. The content is used for robust synchronization of lips and nearby facial

regions. The speaker information is used to capture the rest of the facial expressions

and head motion dynamics that are important for generating expressive talking head

animations. I also show that MakeItTalk can generalize to new audio clips and face

images not seen during training. Both VisemeNet and MakeItTalk lead to much

more expressive talking-head animations with higher overall quality compared to the

state-of-the-art.

Lastly, I propose a method that generates speech gesture animation by reenacting

a given video to match a target speech audio. The key idea is to split and re-

assemble clips from an existing reference video through a novel video motion graph

encoding valid transitions between clips. To seamlessly connect different clips in

the reenactment, I propose a pose-aware video blending network which synthesizes
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video frames around the stitched frames between two clips. Moreover, the method

incorporates an audio-based gesture searching algorithm to find the optimal order of

the reenacted frames. The method generates reenactments that are consistent with

both the audio rhythms and the speech content. The resulting synthesized videos have

much higher quality and consistency with the target audio compared to previous work

and baselines.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The importance of realistic computer generated human animations cannot be un-

derstated. A diverse set of applications ranging from entertainment (movies and

games), medicine (facial therapy and prosthetics) and education (language/speech

training and cyber-assistants) are all empowered by the ability to realistically model,

simulate and animate human characters. Imperfect emulation of even subtle nuance

of the character, e.g. facial expressions or hand gestures, can plunge an animated

character into the Uncanny Valley, where the audience loses trust and empathy with

the character. Paradoxically, the greater the rendered realism of the character, the

less tolerant we are of flaws in its animation [89]. In particular, the expressive anima-

tion of speech, unsurprisingly, is a critical component of character facial and gesture

animation that has been the subject of research for decades [8, 93, 69].

In terms of talking-head (or facial animation), keyframing or performance capture

are used for high-end commercial animation. Keyframing by professional animators

is both expressive and editable, but laborious and prohibitively expensive in time and

effort. Performance capture solutions are the opposite; recording a vocal performance

is relatively easy, but hard to further edit or refine, and voice actors often have visu-

ally inexpressive faces. Despite recent advances, generating realistic facial animation

with little or no manual labor still remains an open challenge in computer graphics.

Several key factors contribute to this challenge. Traditionally, the synchronization

between speech and facial movement is hard to achieve manually. Facial dynam-
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ics lie on a high-dimensional manifold, making it nontrivial to find a mapping from

audio/speech [39]. Secondly, different talking styles in multiple talking-heads can con-

vey different personalities and lead to better viewing experiences [129]. Last but not

least, handling lip syncing and facial animation are not sufficient for the perception

of realism of talking-heads. The entire facial expression considering the correlation

between all facial elements and head pose also play an important role [47, 57]. These

correlations, however, are less constrained by the audio and thus hard to be estimated.

Moreover, gesture is also a key visual component for human speech communica-

tion [69]. It enhances the expressiveness of human performance and helps the audience

to better comprehend the speech content [38]. Unlike ahead facial lip motions with

phoneme-to-viseme mappings [39, 120, 153], gestures exhibit even more complex rela-

tionships with not only acoustics but also semantics of the audio [93]. To bridge the

gap between speech audio and natural human video, previous methods [53, 82] predict

body pose (i.e., a jointed skeleton) as an intermediate low dimensional representation

to drive the video synthesis. However, they dissect the problem into two indepen-

dent modules (audio-to-pose, and pose-to-video) and produce results suffering from

noticeable artifacts, e.g. distorted body parts and blurred appearance. Therefore, it

is nontrivial to find a direct cross-modal mapping from audio waveform to gesture

videos, even for the same speaker.

The main focus of this thesis is to address the above challenges to produce ex-

pressive and realistic talking head and gesture animations directly from input speech

audio alone. I also explore different types of the animation output, such as rigged

avatar faces for professional animators and 2D cartoon characters and photorealistic

human photos for casual users.
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Figure 1.1: VisemeNet is a deep-learning approach that uses a 3-stage LSTM network,
to predict compact animator-centric viseme curves with proper co-articulation, and
speech style parameters, directly from speech audio in near real-time (120ms lag).

1.2 VisemeNet: Audio-Driven Animator-Centric Speech An-

imation

I first propose a method, called VisemeNet, to address the problem of producing

animator-centric speech animation directly from input audio (Fig. 1.1). The method

builds upon JALI [39], a psycho-linguistically inspired face rig approach capable of

animating a range of speech styles. In addition, JALI is animator-centric, allow-

ing animators to control speech style (e.g., “mumbling” vs “screaming”), while also

providing an interactive lip-synchronization procedure based on audio and speech

transcript as input. Unfortunately, JALI requires a text transcript as input and also

manual control of speech style or/and speech animation curves through the JALI in-

put parameter space. My work in the first part of my thesis addresses the problem of

producing animator-centric speech animation automatically and directly from input

audio.

VisemeNet is inspired by the following psycho-linguistic observations:

• While classification of a precise phonetic stream from audio can be difficult due

to categorical perception [51], and its dependence on cultural and linguistic con-

text, the problem of predicting a stream of phoneme-groups is simpler. Aurally

individual phonemes within a phoneme-group are often hard to distinguish (eg.

3



pa and ba) [83], but unnecessary for speech animation as they map to near

identical visemes [49].

• The Jaw and Lip parameters in the JALI model that capture speech style as

a combination of the contribution of the tongue-jaw and face-muscles to the

produced speech, are visually manifested by the motion of facial landmarks on

the nose, jaw and lips.

• The profile of speech motion curves (attributes like onset, apex, sustain and

decay) capture speaker or animator style in professionally keyframed animation.

Learning these curves from training data allow us to encode aspects of animator

or speaker style.

I thus propose a three-stage network architecture trained end-to-end: one that learns

to predict a sequence of phoneme-groups from audio; another that learns to predict

the geometric location of important facial landmarks from audio; and a final stage

that learns to use phoneme groups and facial landmarks to produce JALI parameter

values and sparse speech motion curves, that animate the face.

The contribution of this thesis is thus a deep-learning based architecture to pro-

duce state-of-the-art animator-centric speech animation directly from an audio signal

in near real-time (120ms lag). The evaluation is five-fold: I evaluate the results

quantitatively by cross-validation to ground-truth data; I also provide a qualitative

critique of the results by a professional animator; as well as the ability to further edit

and refine the animated output; I also show the results to be comparable with recent

non-animator-centric audio to lip-synchronization solutions; finally I show that with

speech training data that is reasonably diverse in speaker, gender and language, the

architecture can provide a truly language agnostic solution to speech animation from

audio.
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Input: audio and single portrait image Output: talking head animation

Figure 1.2: Given an audio speech signal and a single portrait image as input (left),
the model generates speaker-aware talking-head animations (right). Both the speech
signal and the input face image are not observed during the model training process. the
method creates both non-photorealistic cartoon animations (top) and photorealistic
human face videos (bottom).

1.3 MakeItTalk: Speaker-Aware Talking-Head Animation

To animate a 3D model of a head, VisemeNet requires that it is already rigged

based on FACS [40] or JALI [39]. Rigging a 3D head model often requires artistic

expertise and professional training. In the second part of the thesis, I propose another

method, called MakeItTalk, that enables 3D talking head animations even for amateur

users that do not have any rigging expertise. The method generates talking-heads

from a single facial image and audio as the only input (Fig. 1.2). At test time,

MakeItTalk is able to produce plausible talking-head animations with both facial

expressions and head motions for new faces and voices not observed during training.

Mapping audio to facial animation is challenging, since it is not a one-to-one

mapping. Different speakers can have large variations in head pose and expressions

given the same audio content. The key insight of the approach is to disentangle the

speech content and speaker identity information in the input audio signal. The con-

tent captures the phonetic and prosodic information in the input audio and is used

for robust synchronization of lips and nearby facial regions. The speaker informa-

tion captures the rest of the facial expressions and head motion dynamics that are
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important for generating expressive talking-head animation. I demonstrate that this

disentanglement leads to significantly more plausible and believable head animations.

Another key component of the method is the prediction of facial landmarks as

an intermediate representation incorporating speaker-aware dynamics. This is in

contrast to previous approaches that attempt to directly generate raw pixels from

the audio. Leveraging facial landmarks as the intermediate representation between

audio to visual animation has several advantages. First, based on the disentangled

representations, the model learns to generate landmarks that capture subtle, speaker-

dependent dynamics, sidestepping the learning of low-level pixel appearance that

tends to miss those. Second, the degrees of freedom (DoFs) for landmarks is in the

order of tens (68 in the implementation), as opposed to millions of pixels in raw

video generation methods. As a result, the learned model is also compact, making it

possible to train it from moderately sized datasets. Last but not least, the landmarks

can be easily used to drive a wide range of different types of animation content,

including photorealistic human face images and non-photorealistic cartoon images,

such as sketches, 2D cartoon characters, Japanese mangas and stylized caricatures.

Specifically, in the case of photorealistic animation, an image-to-image translation

framework [68, 104] is implemented to convert landmarks to realistic image sequences

can produce plausible videos. In the case of non-photorealistic outputs (e.g., cartoon

images), an image deformation approach can work well and preserve feature curves

common in vector art.

In summary, given an audio signal and a single portrait image as input (both

unseen during training), the method generates expressive talking-head animations. I

highlight the following contributions:

• a new deep-learning based architecture is introduced to predict facial landmarks,

capturing both facial expressions and overall head poses, from only speech sig-

nals.
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Figure 1.3: Given an input reference video of a speaker (left), the method reenacts
it with gestures matching a target speech audio (right). The video is synthesized by
re-assembling clips from the reference video and blending the inconsistent boundaries
with a pose-aware neural network such that the synthesized video is coherent visually
and consistent with both the rhythm and content of the target audio.

• speaker-aware talking-head animations are generated based on disentangled

speech content and speaker information, inspired by advances from voice con-

version.

• two image synthesis methods are presented for both non-photorealistic cartoon

images and photorealistic natural human face images. These methods can han-

dle new faces and cartoon characters not observed during training.

• a set of quantitative metrics and conduct user studies are proposed for evalua-

tion of talking-head animation methods.

1.4 Audio-driven Neural Gesture Reenactment with Video

Motion Graph

Human speech is often accompanied by body gestures including arm and hand

gestures. To take one more step towards building automatic avatar animations, I

propose the third method in my thesis, an audio-driven gesture reenactment system,

that is able to synthesize high-resolution, high-quality speech gesture videos directly

by cutting, re-assembling, and blending clips from a single input reference video

(Fig. 1.3). The process is driven by a novel video motion graph, inspired by 3D
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motion graphs used in character animation [76, 6]. The graph nodes represent frames

in the reference video, and edges encode possible transitions between them. Possible

valid transitions between frames are discovered, then paths in the graph leading to

the generation of a new video are also discovered such that the re-enacted gestures

are coherent and consistent with both the audio rhythms and speech content of the

target audio.

Direct playback on the discovered paths for an output video can cause temporal

inconsistency at the boundary of two disjoint raw frames. Existing frame blending

methods cannot easily solve this problem, especially with fast moving and highly de-

formed human poses. Therefore, I also propose a novel human pose-aware video blend-

ing network to smoothly blend frames around the temporally inconsistent boundaries

to produce naturally-looking video transitions. By doing so, I successfully transform

the problem of audio-driven gesture reenactment into the search for valid paths that

best match the given audio. The path discovery algorithm is motivated by psycholog-

ical studies on co-speech gesture analysis. The studies show co-speech gestures can

be categorized into rhythmic gestures and referential gestures [93]. While rhythmic

gestures are well synchronized with audio onsets [14, 147], referential gestures mostly

co-occur with certain phrases, e.g. a greeting gesture of hand-waving appears when a

speaker says ‘hello‘ or ‘hi‘ [25, 13]. I analyze the speech of the reference video and de-

tect the audio onset peaks [35] as well as a set of keywords from its transcript [142] as

audio features added to the corresponding nodes on the video motion graph. Given

the extracted audio onset peaks and keywords from a new audio clip, the optimal

paths that best match audio features are used to drive the video synthesis.

The contributions in this part of the thesis are summarized as follows:

• a new system that creates high-quality human speech videos with realistic ges-

tures driven by audio only,
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• a novel video motion graph that preserves the video realism and gesture sub-

tleties,

• a pose-aware video blending neural network that synthesizes smooth transitions

of two disjoint reference video clips along graph paths and

• an audio-based search algorithm that drives the video synthesis such that the

synthesized gesture frames are consistent with both the audio rhythms and the

speech content.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, I review the most relevant work on speech audio-driven charac-

ter animation, including facial and body gesture animation. In computer graphics

and vision, there is a long history of such cross-modal synthesis, as discussed in the

following sections.

2.1 Audio-driven Facial Animation

More than two decades ago, Brand et al. [15] pioneered Voice Puppetry to gen-

erating full facial animation from an audio track. Later on, a large body of research

explores this direction and it can be broadly classified into procedural, performance-

capture, data-driven, and more specifically the recent deep-learning based techniques.

In the following paragraphs, we overview prior work based on deep learning methods,

after a brief overview of the other three approaches.

Procedural. Procedural speech animation segments audio speech into a sequence of

phonemes, which are then mapped by rules to visemes. A viseme or visible phoneme

[49] refers to the shape of the mouth at the apex of a given phoneme. The three

problems that a procedural approach must solve are: mapping a given phoneme

to a viseme (in general a many-many mapping based on the spoken context [121]);

co-articulation, or the overlap in time between successive visemes, resulting from

the fluid and energy efficient nature of human speech, often addressed using Cohen

and Massaro’s [32] seminal dominance model; viseme profile, or the curve shape that
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defines the attack, apex, sustain and decay of a viseme over time [7] . JALI [39] defines

the state of the art in procedural speech animation, producing compact animator-

friendly motion curves that correspond directly to the input phonetic stream. The

first part of my thesis is built upon JALI that automatically creates animator-centric

motion curves from input audio alone.

Performance-capture. Performance-capture based speech animation transfers mo-

tion data captured from a human performer onto a digital face [140]. Performance

capture has become increasingly powerful and mainstream with the widespread adop-

tion of cameras, depth sensors, and reconstruction techniques, that can produce a 3D

face model from a single image [64]. Real-time performance-based facial animation

research [137, 80] and products like Faceware (faceware.com), are able to create high

quality general facial animation, including speech, and can be further complemented

by speech analysis [137]. The disadvantage of performance capture is that is visually

limited by the actor’s performance and is difficult for an animator to edit or refine.

Data-driven. Early data-driven approaches smoothly stitch pieces of facial anima-

tion data from a large corpus, to match an input speech track [16], using morphable

[45], hidden Markov [132], and active appearance models (aam) [5, 121]. These data-

driven methods tend to be limited in scope to the data available, and the output, like

performance-capture, is not animator-centric.

Deep Learning-based Speech Animation. Recent research has shown the po-

tential of deep learning to provide a compelling solution to automatic lip-synchronization

simply using an audio signal [119, 72, 120]. To consider different key criteria in talking-

head generation, we further overview the prior deep learning-based works on facial

landmark synthesis, facial animation, and video generation aspects. Table 2.1 sum-

marizes differences of deep-learning methods that are most related to ours based on

a set of key criteria.
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format facial expression head pose style-aware handle unseen faces

[119] image X X × ×
[120] face rig × × × X
[72] 3D mesh X × × ×
[151] image X × × X
[128] image X × × ×
[28] image X × × X
[123] image X × X ×

VisemeNet face rig × × X X
MakeItTalk image X X X X

Table 2.1: A comparison of related works across to various criteria shown on top.
“Handle unseen faces” means handling face images or rigs unobserved during training.

• Audio-driven Facial Landmark Animation. Eskimez et al. [42, 43] gen-

erated synchronized facial landmarks with robust noise resilience using deep

neural networks. Later, Chen et al. [28] trained decoupled blocks to obtain

landmarks first and then generate rasterized videos. Attention masks are used

to focus on the most changing parts on the face, especially the lips. Greenwood

et al. [57] jointly learnt facial expressions and head poses in terms of land-

marks from a forked Bi-directional LSTM network. Most previous audio-to-face-

animation work focused on matching speech content and left out style/identity

information since the identity is usually bypassed due to mode collapse or av-

eraging during training. In contrast, the second proposed method of my thesis

disentangles audio content and speaker information, and drives landmarks cap-

turing speaker-dependent dynamics.

• Audio-driven Facial Lip Synchronization. With the increasing power of

GPUs, we have seen prolific progress on end-to-end learning from audio to

video frames, such as predicting lip movement [27, 120], generating full faces

with GANs [128, 116] or encoder-decoder CNNs [30], recognizing visemes [153],

and estimating blendshape parameters [100]. However, the above methods do

not capture speaker identity or style. As a result, if the same sentence is spoken
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by two different voices, they will tend to generate the same facial animation

lacking the dynamics required to make it more expressive and realistic.

• Audio-driven Style-aware Facial Animation. Suwajanakorn et al. [119]

used a re-timing dynamic programming method to reproduce speaker motion

dynamics. However, it was specific to a single subject (Obama), and does not

generalize to faces other than Obama’s. Cudeiro et al. [34] attempts to model

speaker style in a latent representation. Thies et al. [123] encodes personal

style in static blendshape bases. Both methods, however, focus on lower facial

animation, especially lips, and do not predict head pose. More similar to ours,

Zhou et al. [151] learned a joint audio-visual representation to disentangle the

identity and content from the image domain. However, their identity informa-

tion primarily focus on static facial appearance and not the speaker dynamics.

Speaker awareness encompasses many aspects beyond mere static appearances.

The individual facial expressions and head movements are both important fac-

tors for speaker-aware animations. Our method addresses speaker identity by

learning jointly the static appearance and head motion dynamics, to deliver

faithfully animated talking-heads.

• Audio Content and Speaker Style Disentanglement Disentanglement of

content and style in audio has been widely studied in the voice conversion com-

munity. Without diving into its long history (see [118] for a detailed survey),

here we only discuss recent methods that fit into our deep learning pipeline.

Wan et al. [130] developed Resemblyzer as a speaker identity embedding for

verification purposes across different languages. Qian et al. [102] proposed Au-

toVC, a few-shot voice conversion method to separate the audio into the speech

content and the identity information. As a baseline, we use AutoVC for ex-

tracting voice content and Resemblyzer for extracting feature embeddings of
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speaker identities. In the second part of my thesis, we introduce the idea of

voice conversion to audio-driven animation and demonstrate the advantages of

speaker-aware talking-head generation.

• Image Translation for Human Face Synthesis. Neural image translation

approach is widely used recently for talking face synthesis and editing [68, 135,

134, 73]. Face2Face and VDub are among the early explorers to demonstrate

robust appearance transfer between two talking-head videos [124, 52]. Later, ad-

versarial training was adopted to improve the quality of the transferred results.

For example, Kim et al. [74] used cycle-consistency loss to transfer styles and

showed promising results on one-to-one transfers. Zakharov et al. [148] devel-

oped a few-shot learning scheme that leveraged landmarks to generate realistic

faces. Based on these prior works, we also employ an image-to-image trans-

lation network to generate realistic talking-head animations. Unlike Zakharov

et al. [148], the second part of my thesis, MakeItTalk, handles generalization

to faces unseen during training without the need of fine-tuning. Additionally,

we are able to generate non-photorealistic cartoon images through an image

deformation module.

2.2 Audio-driven Human Gesture Animation

Several approaches for audio-driven speech animation of body gestures have been

proposed in the recent years [3, 78, 146, 4]. They propose learning methods to solve

the multi-modal mapping from audio to 3D human gestures. They represent synthe-

sized gestures with 3D skeletons, which can drive a 3D character model. Yet, these

methods are not able to synthesize video of a target speaker unless they are also

provided with an extremely detailed, textured, and rigged 3D model for that speaker.

Since such input is not easily obtained, their demonstrated results lack photorealism.

Instead, in the third part of my thesis, the proposed method is a reenactment system,
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that is able to synthesize high-resolution, high-quality photorealistic speech gesture

videos directly by cutting, re-assembling, and blending clips from a single input refer-

ence video. The method is related to previous work on motion graphs, human video

synthesis, and video frame blending. In the following paragraphs, we overview prior

work in such directions.

Motion Graph. The idea of motion graphs was first proposed in [76, 6] to create

realistic and controllable animation based on a pre-captured motion. It is broadly used

in generating 3D character animations [61, 111, 10, 79, 103, 94, 107, 77]. However,

these approaches only work on 3D human skeleton representations and cannot be

directly applied to video animation in image space. While blending re-assembled

motions requires interpolating 3D joint positions in character animation, in our case

blending requires synthesizing whole image frames to create a coherent video.

[108, 2] propose motion graph in pixel space and solve this issue by de-ghosting

[112] and gradient-domain compositing [131] based on pixel warping. However, these

approaches focus on simple periodical scene scenarios, e.g. pendulum, waterfalls, etc.

and cannot work on complex human motions. [50, 143, 81, 149] generates controllable

human action videos by retrieving and warping nearest candidate frames. However,

they require additional motion capture resources such as physical markers, multi-

view or RGB-D cameras. [23, 22, 66] also introduce human video synthesis based

on reconstruction of human meshes from pre-captured multi-view camera datasets.

However, these methods are not suitable for monocular camera videos.

Human Gesture Video Synthesis. [53, 82] translate predicted skeletal gesture

motions to photo-realistic speaker videos by utilizing recent neural image translation

approaches similar to facial animations [68, 135, 134, 73]. However, neural image

translation is not artifact-free. In particular, in human gesture video generation, dis-

connected moving object parts, as well as incoherent texture appearance are known
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issues [134]. For example, first, skeleton-based image translation methods can synthe-

size plausible results for most areas of human bodies, but they cannot perform well

on details such as fingers. Second, since human gestures have a lot of freedom, the

outlier gestures which occur more frequently, can easily lead to unpleasant artifacts,

e.g. broken faces, arms and/or fingers. Due to their large number of parameters in

their generator and discriminator, these methods also require large datasets. It is

possible for celebrities with tons of video recordings, while it is impossible for other

normal people to create their own speech videos. Few-shot solutions [148, 133] do not

have such large dataset requirements, yet they suffer from various artifacts, in partic-

ular for human pose synthesis, such as blurred appearance and distorted body parts

[133]. [138, 85, 84, 113, 139] fit human body model or/and texture parameters to a

training video to improve the appearance of body shapes and texture at test time.

Yet, inaccurate fitting easily results in artifacts and lose of body or cloth subtleties,

especially in the presence of loose clothing and detailed body part deformations, e.g.

fingers. In the third part of my thesis, the proposed method follows a largely different

approach from all the above prior works: instead of per-frame neural translation, the

video of a speaker is generated by re-assembling clips from a short, few minute long

reference video. Because most of the frames originate from the reference video, the

synthesized video preserves gesture realism as well as body and cloth subtleties. As

a result, the problem is simplified to blending video frames. Our neural blending

network focuses on solving this particular task, instead of learning to generate all

frames from scratch.

Video Frame Blending. The choice of the frame blending strategy significantly

impacts the quality of the video generated from re-assembling clips. Naive weighted

averaging of video frames easily result in ghost effect [108, 95]. More advanced frame

interpolation methods [86, 70, 96, 58] based on optical flow estimation [67, 9, 122] have

been proposed to synthesize intermediate frames between two consecutive frames, in
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particular for slow motion videos. However, such methods fail if two frames are very

different from each other and the optical flow estimation is not accurate enough. They

work for generic content, yet do not consider human motion as a prior for our task.

The third proposed method in this thesis uses a human pose-aware neural network

for frame blending that produces significantly better quality video compared to prior

such work, as demonstrated in our experiments.
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CHAPTER 3

VISEMENET: AUDIO-DRIVEN ANIMATOR-CENTRIC
SPEECH ANIMATION

The first part of this thesis discusses VisemeNet, a novel deep-learning based

approach to producing animator-centric speech motion curves that drive a JALI or

standard FACS-based production face-rig, directly from input audio [153]. 1 Our

three-stage Long Short-Term Memory (LSTM) network architecture is motivated by

psycho-linguistic insights: segmenting speech audio into a stream of phonetic-groups is

sufficient for viseme construction; speech styles like mumbling or shouting are strongly

co-related to the motion of facial landmarks; and animator style is encoded in viseme

motion curve profiles. Our contribution is an automatic real-time lip-synchronization

from audio solution that integrates seamlessly into existing animation pipelines. We

evaluate our results by: cross-validation to ground-truth data; animator critique and

edits; visual comparison to recent deep-learning lip-synchronization solutions; and

showing our approach to be resilient to diversity in speaker and language.

3.1 Algorithm Design

Our approach is designed to achieve high-quality, animator-editable, style-aware,

language agnostic, real-time speech animation from audio.

Following the current animation practice of FACS-like face rigs, and state-of-the-

art animator-centric speech [39], our network uses an input audio signal to predict a

1This work is published at the ACM Transactions on Graphics, Vol. 37, No. 4, 2018, and was
also presented in the Proceedings of ACM SIGGRAPH 2018.
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Viseme Phoneme Output Viseme Phoneme Output

Ah ɑ, ɔ, a LNTD l, n, t, d, 
ʄ, ʟ, ɾ

Aa æ GK g, k, ŋ, 
q, ɢ

Eh e, Ɛ MBP b, m, p

Ee i R ɹ

Ih ɪ WA_PED
AL w, ʋ, ʍ 

Oh o, ɒ JY j, dʒ, c, 
ɟ

Uh ʊ, ʌ, ɞ, ɐ, 
ɶ, ʊ̈, or, ɨ S s, z, ɣ

U u ShChZh ʃ, tʃ, ʒ, 
ɬ, ɮ, 

Eu œ, y, ɯ, 
ø, ɵ Th θ, ð

Schwa ə, ɘ FV f, v, ɱ  

Figure 3.1: List of visemes along with groups of phonemes (in International Phonetic
Alphabet format) and corresponding lower face rig outputs that our architecture
produces.

sparse and compact set of viseme values (see Figure 3.1), and jaw and lip parameters,

over time. Our neural network architecture (see Figure 3.2) is designed to exploit

psycho-linguistic insights and make the most effective use of our training data.

Phoneme Group Prediction A large part of our network, the “phoneme group

stage” in Figure 3.2 (top left box), is dedicated to map audio to phonemes groups

corresponding to visemes. For example, the two labio-dental phonemes /f and v/

form a group that maps to a single, near-identical viseme [39], where the lower lip
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Figure 3.2: Our architecture processes an audio signal (left) to predict JALI-based
viseme representations: viseme and co-articulation control activations (top right),
viseme and co-articulation rig parameters (middle right), and 2D JALI viseme field
parameters (bottom right). Viseme prediction is performed in three LSTM-based
stages: the input audio is first processed through the phoneme group stage (top left)
and landmark stage (bottom left), then the predicted phoneme group and landmark
representations along with audio features are processed through the viseme stage.

is pressed against the upper teeth in Figure 3.1 (last row, right). We identified 20

such visual groups of phonemes expressed in the International Phonetic Alphabet

(IPA) in Figure 3.1. Our network is trained to recognize these phoneme groups from

audio without any text or phonetic transcript. By predicting only phonetic groups

relevant to animation, our task is simpler and less sensitive to linguistic context. The

network can also be trained with less data than most speech processing pipelines. As

demonstrated in the evaluation (Sec. 3.4), using off-the-shelf audio-to-text techniques

to extract individual phonemes that subsequently predict visemes, leads to lower

performance than our end-to-end architecture.

Speech Style Prediction Phoneme groups alone have no information of vocal

delivery and cannot predict visemes, specially for expressive emotional speech. The

same phoneme might be pronounced conversationally, or screamed. These style at-

tributes of the audio performance can be captured using jaw and lip parameters [39].

These parameters are also strongly correlated to the (2D frontal) jaw and lip land-
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mark positions in a visual capture of the vocal performance. The “landmark stage”

of our network in Figure 3.2 (bottom-left box) is designed to predict a set of jaw and

lip landmark positions over time given input audio.

Viseme Prediction The last part of our network, the “viseme stage” in Figure

3.2(right-box), combines the intermediate predictions of phoneme groups, jaw and lip

parameters, as well as the audio signal itself to produce visemes. By training our

architecture on a combination of data sources containing audio, 2D video, and 3D

animation of human speech, we are able to predict visemes accurately. We repre-

sent visemes based on the JALI model [39], comprising a set of intensity values for

20 visemes and 9 co-articulation rules, and JAW and LIP parameters that capture

speaking styles. The viseme and co-articulation values over time can animate stan-

dard FACS-based production rigs, with the JA-LI parameters for a rig adding control

over speech style. Notably, these are precisely the controls professional animators

keyframe, and are thus directly amenable to editing and refinement.

Transfer Learning from Audiovisual Datasets. We need reliable sources of

diverse training data with compelling variation in terms of different speakers, speech

styles, and emotional content, to train a network that generalizes well. An end-to-

end source of training data would be audio clips with corresponding streams of 3D

facial rig parameters. Such a large coherent dataset with enough variability is not

easily available, and would be too expensive to create with professional animators.

On the other hand, there is a wealth of publicly available audiovisual corpora (2D

audio+video+text transcript clips), such as BIWI [48], SAVEE [60], and GRID [33].

Although these corpora do not contain any facial rig parameters, they are nonetheless

valuable, in the context of our network architecture:

• The faces in the video clips can be accurately detected and annotated with

landmarks through modern computer vision. The extracted facial landmarks
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corresponding to the speech audio are then useful to train the landmark stage

of our network.

• The text transcripts can be automatically aligned with the audio clip [91], to

provide training phonemes for the phoneme group stage of our network.

To make use of the large amounts of data in these audiovisual datasets, we employ

a transfer learning procedure to train our network. We first “pre-train” the phoneme

group and landmark stages of our network based on training phoneme groups and

landmarks extracted from the above audiovisual datasets. We then initialize these

two stages according to their pre-trained parameters, and then jointly train the whole

network end-to-end. To perform this joint training, we still need a dataset of audio

clips with associated streams of facial rig parameters. Mapping phoneme groups

and facial landmarks to visemes however, is significantly easier than mapping general

speech audio to phonemes and landmarks. Further, the phoneme groups are strongly

correlated to visemes, while the landmarks are strongly correlated to jaw and lip

parameters. Thus, to train the viseme stage, a much smaller dataset of example

3D animations with face rig parameters is required for sufficient generalization. We

empirically observed that using our transfer learning procedure results in a better

generalization performance than simply training the entire network on a small dataset

of audio clips with rig parameters. We also found that adapting a Multi-Task Learning

(MTL) procedure to train the network simultaneously according to multiple objectives

involving phoneme group, landmark, viseme and other rig parameter prediction was

also important to achieve high performance.

Memory-enabled Networks We adapt a memory-enabled neural network archi-

tecture based on Long Short-Term Memory units (LSTMs) [98, 63] for all stages of

our network. We believe that memory-based networks are important to correctly

capture co-articulation and speech context from input audio, which even for a human
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listener, is challenging from isolated audio fragments. Memory-enabled networks ex-

plicitly store and represent a large amount of context in the input signal that is useful

to reliably infer the spoken context. Finally, another advantage of our architecture is

that it can predict viseme motion curves in near real-time (120ms or 12 frame lag),

given the input audio on modern GPUs. In the following sections, we discuss the

network architecture and training procedure in more detail.

3.2 Network Architecture

Our network has an end-to-end architecture that takes an audio signal as input

and outputs viseme representations based on JALI. As discussed in the previous

section and shown in Figure 3.2, our network has a three stage-architecture: the input

audio is first processed through the phoneme group and landmark stages, then the

predicted phoneme group and landmark representations along with audio features

are processed through the viseme prediction stage. All branches are based on a

combination of memory-based LSTM units, which encode context in the input signal,

and fully connected layers, which decode the memory of the units into time-varying

predictions. Below we discuss our input audio representation and the three stages of

our network in more detail.

Input Audio Representation. Given an audio signal as input, we extract a fea-

ture vector for each frame encoding various power spectrum and audio frequency

signal characteristics. Our feature vector concatenates 13 Mel Frequency Cepstral

Coefficients (MFCCs) [36] that have been widely used for speech recognition, 26 raw

Mel Filter Bank (MFB) features that have been shown to be particularly useful for

emotion discrimination in audio [19], and finally 26 Spectral Subband Centroid fea-

tures that often result in better speech recognition accuracy when they are used in

conjuction with MFCCs [99]. The resulting 65-dimensional feature vector is passed

as input to all three stages of our network for further processing. The features are
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extracted every 10 ms, or in other words feature extraction is performed at a 100 FPS

rate. The frequency analysis is performed within windows of size 25 ms in the input

audio.

3.2.1 Phoneme Group Stage

The phoneme group stage takes as input the audio features concatenated from

12 frames before the current frame, and also the audio features of the current frame

plus 11 frames after the current one. This means that given real-time audio inputs,

the network will infer visemes with a lag of 120 ms, plus the required time to extract

audio features and perform viseme inference given the audio features per frame (fea-

ture extraction and network inference take 1 ms per frame measured on a TitanX

GPU, allowing real-time inference with the abovementioned lag). The concatenation

produces a 1560-dimensional feature vector xt per frame t ( 65 features x 24 frames)

covering audio signal information in a window of 240ms. The rationale behind using

this window is that it approximately matches the average duration of a phoneme in

normal speech. We also found that that such window size represented a good trade-off

between fast processing time and high phoneme group prediction accuracy.

The feature vector xt passes through three layers of unidirectional LSTM units

that hierarchically update their internal memory state (encoded with a 256-dimensional

vector in our implementation) based on the input information in the audio features.

We found that at least three layers (i.e., a deep network) were necessary to achieve

sufficient generalization. The LSTM units can choose to either store in their memory

cells representations of the incoming features, or alternatively erase representations

from their memory cells. The choices of erasing or storing, as well as the transfor-

mations of the input features are controlled through non-linear functions (sigmoid

and hyperbolic tangent functions) with learnable parameters (for their exact form,

we refer to the popular tutorial [98] and [63]).
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At each frame, the memory state of the last LSTM layer is decoded towards

probabilistic predictions of phoneme groups. The decoding is performed through two

non-linear transformations. The first transformation involves a fully connected layer

that takes as input the representation of the uppermost LSTM layer, applies a linear

transformation on it to produce a 256-dimensional output, which is further processed

through the commonly used REctified Linear Unit (RELU) non-linearity. The second

layer takes the resulting vector, applies another linear transformation on it producing

a 20-dimensional vector zt, which is then passed through a softmax function to output

a per-frame probability for each phoneme group listed in Figure 3.1.

Overall, this network stage can be seen as a non-linear function f that considers

audio features up to the current frame x1:t (by exploiting the LSTM recurrent con-

nections) to output phoneme group probabilities: P (Ct = c) = f(x1:t,θ,φ) where

Ct is a discrete random variable whose possible values c are our phoneme groups, θ

are the LSTM parameters, and φ are the decoder parameters. We note that we also

experimented with a time-delayed LSTM, as proposed in [56], yet we did not perceive

any noticeable differences in the output predictions. We suspect this is because we

consider audio features from a large window containing both past and future frames.

3.2.2 Landmark Stage

This stage of our network takes as input the 1560-dimensional feature vector xt

per frame (same input as in the phoneme group part), passes it through three LSTM

layers and decodes the uppermost layer memory into a sparse set of 38 2D facial

landmarks, representing the jaw, lip, and nose configuration per frame. Ground-

truth and predicted landmarks are visualized in Figure 3.3. The landmarks do not

aim at capturing the morphology of a particular face, but instead approximately

capture the shape of the lips, positions of jaw and nose of an average face. We found

that predicting these visual cues are particularly useful to infer correct visemes that
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M

Ah

Eh

Figure 3.3: Landmark output predictions for a few test frames. The spoken phoneme
is shown on the top left. The first column shows ground-truth landmarks. The second
column shows landmark predictions from the landmark stage of our network for the
same frames. The third column shows the corresponding predicted rig outputs.

reflect speech style (e.g., mumbling, screaming). In particular, the advantage of using

these visual cues is that we can exploit audio and landmarks extracted from video

available in large, public audiovisual datasets as additional supervisory signal to train

the LSTM layers, as described in the next section.

Since phonetic groups and lower face shape are correlated, the three LSTM layers

are shared between the phoneme group and landmark stages. Sharing representa-

tions is a common strategy in multi-task learning [21], which helps generalization

when tasks are correlated. The decoder of the landmark stage is specific to landmark

predictions and has its own learned parameters. It is composed of two transforma-

tions, implemented as a fully connected layer followed by RELUs, and a second fully

connected layer that outputs landmark displacements per frame. The displacements

are expressed relative to landmarks representing an average lower face in neutral
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expression. The displacements are stored in a 76-dimensional vector qt per frame

t, which simply concatenates displacement coordinates of all the landmarks. Given

the neutral face landmarks b, the animated landmark positions can be computed as

b + qt per frame. Overall, this part of our network can be seen as another non-linear

function h that considers audio features up to the current frame x1:t and outputs

landmark displacements per frame: qt = h(x1:t,θ,ω) where θ are the shared LSTM

parameters, and ω are the decoder parameters of this stage.

3.2.3 Viseme Stage

The viseme stage takes as input the produced phoneme group representations zt

(i.e., phoneme group activations before applying softmax), landmark displacements

qt, and also the audio features xt and outputs JALI-based rig parameters and controls

that determine the visemes per frame. Here, we use the audio features as additional

input since phoneme groups and landmarks might not entirely capture all speech style-

related information existing in audio (for example, fast breathing due to a nervous

style of speech will not be captured in landmarks or phonemes, yet will manifest in

audio features).

The viseme stage produces the following outputs per frame t (see also Figure 3.2,

right):

• 29 continuously-valued viseme animation and co-articulation parameters present

in JALI (we refer to [39] for more details). The rig parameters are represented

by a 29-dimensional continuous vector vt.

• 29 binary random variables, represented as a vector mt, that indicate whether

each of the above viseme and co-articulation control parameters is active per

frame. The underlying reason for using these binary variables is that the acti-

vations of viseme and co-articulation rig parameters are largely sparse (Figure

1.1a), since at a given frame only one viseme is dominantly active. If we train
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the network to match the viseme and co-articulation parameters in the training

data, without considering these binary indicator variables, then the predicted

values of these action units are often biased towards low or zero values since

most of the time their corresponding training values are zero.

• an output 2-dimensional vector yt representing the 2D JALI viseme field values

capturing speech style per frame t.

Given the inputs {zt,qt,xt} concatenated as a single vector, the viseme stage uses

a three-layer LSTM-based architecture to produce the above outputs. Here, we found

that using separate LSTM layers (i.e., without shared parameters) for each output

type offers the best performance, probably due to the fact that the JALI viseme

field is designed to be independently controllable from the rest of rig parameters

[39], and also because the continuous rig parameter values vary widely given their

activation state. Each LSTM layer uses units with a 256-dimensional memory state.

The rig parameters vt and JALI viseme field values yt are computed by decoding their

corresponding uppermost LSTM layer memory through two dedicated fully connected

layers with a RELU non-linearity in-between. The binary indicator variables are

predicted by decoding their corresponding uppermost LSTM layer memory, followed

by two dedicated fully connected layers with a RELU non-linearity in-between, and

finally a sigmoid function that produces the probability of each rig parameter to be

active or not. At test time, we first predict these activation probabilities. Then

we produce the continuous values of the corresponding viseme and co-articulation rig

parameters whose activation probability is above a threshold, which we automatically

set during training.

Overall, this part of our network can be seen as a set of three non-linear func-

tions g1, g2, g3 that considers phoneme group predictions z1:t, landmark predictions

q1:t, and audio features x1:t up to the current frame and output probabilities of

rig parameter activations P (mt) = g1(z1:t,q1:t,x1:t, ξ1), rig parameter values vt =
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g2(z1:t,q1:t,x1:t, ξ2), and viseme field values yt = g3(z1:t,q1:t,x1:t, ξ3), where ξ =

{ξ1, ξ2, ξ3} are learned parameters of each corresponding set of LSTM layer and de-

coder. In the following section, we describe how all the parameters of our network

are learned.

3.3 Training

We follow a two-step, transfer learning procedure to train our network. Motivated

by the observation that there are large valuable amounts of audiovisual data with text

transcripts available in public repositories, we first “pre-train” the phoneme group

and landmark stages of our network based on 15 hours of recorded audio along with

ground-truth phoneme groups and tracked facial landmarks from video as supervisory

signal. After this pre-training step, we fine-tune the whole network jointly, end-to-

end, to accurately predict visemes based on a smaller, painstakingly created dataset

consisting of one hour of audio with exemplar streams of JALI rig parameter values.

Below we explain our datasets and pre-processing, then we discuss pre-training and

joint training procedures. Training and test splits are discussed in the results section

(Sec. 3.4).

Audiovisual Dataset. This dataset contains audiovisual data from three reposi-

tories. First, we use the GRID dataset [33], which contains transcripts, audio and

video recordings of 1000 sentences spoken by 34 speakers (18 male, 16 females) in a

neutral style of speech with total time duration of about 14 hours. The sentences

are deliberately chosen to cover common phonemes in English. Second, we use the

SAVEE dataset [136], which contains transcripts, audio and video recordings of 480

sentences spoken by 4 male speakers expressing different emotions, including anger,

disgust, fear, sadness and surprise. The total clip duration is 30 minutes. Third, we

used the BIWI 3D audiovisual corpus dataset [48], which contains transcripts, audio,

video and RGBD recordings of 1109 sentences spoken by 14 speakers (6 males and 8
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females) in various emotional and neutral styles of speech with total time duration of

about 1 hour. We pre-processed the videos of these datasets to extract facial land-

marks involving lips, jaw and nose (Figure 3.3, left column) through DLib [75] and

FaceWare Analyzer [46]. The landmarks were aligned with our average face template

in neutral poses and normalized to be invariant to face location, orientation and size.

Then we extracted training landmark displacements for each frame relative to the

average face. Given the provided text transcripts in these datasets, we used the Mon-

treal Forced Aligner (MFA) [91] to align audio with text and extract phonemes along

with corresponding phoneme groups.

JALI-annotated Dataset An experienced animator created rigs according to the

JALI template for the BIWI dataset (total 1h of rig motion curves with corresponding

audio involving the 14 BIWI speakers).

3.3.1 Pre-training

Given N audio clips with sequences of landmark displacements q̂1:tn (where tn

is number of frames of the nth audio clip, n = 1...N), and corresponding phoneme

groups ĉ1:tn extracted per frame from the training audiovisual datasets, the goal of the

pre-training step is to estimate the decoder parameters φ of the phoneme group stage,

the decoder parameters ω of the landmark stage, and the parameters θ of their shared

LSTM layers. The parameters are learned such that the predicted phoneme groups

match the training ones as much as possible, the predicted landmark coordinates

are as close as possible to the training ones, and also the predicted landmarks do

not change over time abruptly. The goals can be expressed with a combination

of a classification loss Lc(θ,φ) for phoneme groups, a regression loss Lq(θ,ω) for

landmarks, and another loss L′q(θ,ω) that promotes smoothness in the predicted

landmark movement. This combination is expressed as the following multi-task loss:
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L1(θ,φ,ω) = wc Lc(θ,φ) + wqLq(θ,ω) + w′qL
′
q(θ,ω) (3.1)

where weights of the three losses are set as wc = 0.75, wq = 0.25, w′q = 0.1 in all our

experiments. The classification loss Lc(θ,φ) favors parameters that maximize the

probability of the training phoneme groups, or equivalently minimize their negative

log-probability. It can be expressed as the popular cross-entropy multi-class loss:

Lc(θ,φ) = − 1

N

N∑
n=1

(
1

tn

tn∑
t=1

logP (Ct = ĉt)

)
(3.2)

The regression loss Lq(θ,ω) is expressed as the absolute differences (i.e., L1-norm

loss) between the training and predicted landmark coordinates (their total number is

M = 76 coordinates from 38 2D landmarks):

Lq(θ,ω) =
1

N

1

M

N∑
n=1

(
1

tn

tn∑
t=1

||qt − q̂t||1
)

(3.3)

The smoothness loss L′q(θ,ω) penalizes large absolute values of landmark motion

derivatives with respect to time:

L′q(θ,ω) =
1

N

1

M

N∑
n=1

(
1

tn

tn∑
t=1

||q̇t||1
)

(3.4)

where q̇t represents the derivative of the predicted landmark displacements over time.

The derivative is computed through central finite differences in our implementation.

Minimizing the above multi-task loss function is done through batch gradient

descent with batch size 256, learning rate 0.00001, momentum set to 0.9, over 2M

iterations.

3.3.2 Joint Training

For joint training, we initialize the parameters θ,φ,ω of the phoneme group and

landmark stages to their pretrained values, which are already expected to be close to
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a desired local minimum. Then we estimate all the parameters of the whole network

jointly, including the parameters ξ = {ξ1, ξ2, ξ3} of the viseme prediction branch,

such that based on the JALI-annotated dataset, we satisfy the above goals: (a) the

predicted viseme and co-articulation parameter activations match the ground-truth

ones through a binary classifications loss La(ξ1), (b) the predicted viseme and co-

articulation parameters are as close as possible to the ground-truth ones when these

units are active through a regression loss Lv(ξ2) modified to consider these activations,

(c) the predicted 2D JALI viseme field values are also as close as possible to the

ground-truth ones through a regression loss Lj(ξ3), (d) the rig parameters and JALI

field values do not change abruptly over time through two smoothness losses L′v(ξ2)

and L′j(ξ3), and finally (e) the predicted phoneme groups and landmarks remain

close to the ground-truth ones (as done in the pre-training step). This goal can be

expressed again as a multi-task loss:

L2(θ,φ,ω, ξ) = L1(θ,φ,ω) + waLa(ξ1) + wvLv(ξ2)

+ wjLj(ξ3) + w′vL
′
v(ξ2) + w′jL

′
j(ξ3) (3.5)

where L1(θ,φ,ω) is the loss of Eq. 3.1 (same as pre-training, but now evaluated in the

JALI-annotated dataset). The loss weights are set in all our experiments as follows:

wa = 0.1, wv = 0.2, wj = 0.2, w′v = 0.15, and w′j = 0.15. Note that this loss function

is not decomposable because the predictions (and in turn, the losses) associated with

the viseme branch depend on the predicted phonemes and landmarks of the other

two stages during training. Below we describe the individual loss functions in detail.

The loss function La(ξ1) penalizes disagreements between predicted parameter

activations mt and ground-truth parameter activations m̂t for each training frame

t. Since multiple rig parameters can be active at a given time, this loss function

attempts to maximize the probability of correct, individual activations per parameter
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(or equivalently minimize their negative log-probability). It can be expressed as a

sum of A = 29 binary cross-entropy losses, one per rig parameter:

La(ξ1) = − 1

N

1

A

N∑
n=1

N∑
a=1

(
1

tn

tn∑
t=1

[m̂a,t = 1] logP (ma,t = 1)

1

tn

tn∑
t=1

[m̂a,t = 0] logP (ma,t = 0)

)
(3.6)

where [m̂a,t = 1], [m̂a,t = 0] are binary functions indicating whether the rig parameter

a is active or not at frame t.

The loss function Lv(ξ2) measures absolute differences between the training values

v̂a,t and predicted values va,t of each viseme and co-articulation rig parameter a when

these are active according to the ground-truth binary activity indicator functions:

Lv(ξ2) =
1

N

1

A

N∑
n=1

A∑
a=1

(
1

tn,a

tn∑
t=1

[m̂a,t = 1] · |va,t − v̂a,t|
)

(3.7)

where tn,a is the number of frames where the rig parameter a is active per clip n in the

ground-truth (i.e., tn,a =
∑

t[m̂a,t = 1]) An alternative approach would be to evaluate

rig parameter differences when these are inactive (i.e., pushing the predictions towards

0 in these cases). However, we found that this degrades the prediction quality of

the rig parameters because the network over-focuses on making correct predictions

in periods where visemes are inactive. The smoothness loss L′v(ξ2) penalizes large

derivatives of predicted viseme and co-articulation parameters over time:

Lq(ξ2) =
1

N

1

A

N∑
n=1

A∑
a=1

(
1

tn,a

tn∑
t=1

[m̂a,t = 1] · |v̇a,t|
)

(3.8)

Finally, the loss function Lj(ξ3) measures absolute differences between the training

values ŷt and predicted values yt of the 2D JALI viseme field, while L′j(ξ3) penalizes

large changes in the viseme field values over time:
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Lj(ξ3) =
1

N

N∑
n=1

(
1

tn

tn∑
t=1

||yt − ŷt||1
)

(3.9)

L′j(ξ3) =
1

N

N∑
n=1

(
1

tn

tn∑
t=1

||ẏt||1
)

(3.10)

Minimizing the above multi-task loss function is done through batch gradient

descent with with batch size 256, learning rate 0.00001, momentum set to 0.9, over

200K iterations.

Thresholding Activation Probabilities. In the training stage, we also compute

a threshold thra for each rig parameter a that determines when to activate it based on

the rig control activation probability produced by our network, i.e., check P (ma,t >

thra). One potential choice could be to simply set thra = 0.5. Yet, we found that

optimizing the threshold per rig parameter through a dense grid search in a small

hold-out validation dataset and selecting the value yielding the best precision and

recall in rig activations in that dataset offered better performance.

Implementation and Running Times. Our network is implemented in Tensor-

flow. Pre-training takes 30h and joint training takes 15h in our training datasets

measured on a TitanX GPU. At test time, audio feature extraction and network in-

ference (forward propagation) is performed at 1000 FPS (1ms per frame) with a lag

of 120 ms relative to the current frame (see Sec. 3.2, phoneme branch paragraph).

Our code for training and testing the network, trained models, datasets, and results

will become publicly available upon acceptance.

3.4 Evaluation

We evaluated our method and alternatives both quantitatively and qualitatively.

In this section, we primarily focus on quantitative evaluation. We refer the reader to

the video for qualitative results and comparisons.
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Methodology. We focused on the BIWI 3D audiovisual dataset to validate our

method and alternatives. As mentioned in the previous section, exemplar JALI-based

motion curves were provided by an artist for the whole dataset, thus we can compare

predicted rig parameters to ground-truth. In addition, each of the 14 speakers of

the BIWI dataset speaks the same sentence in both neutral and expressive styles,

conveying emotions such as anger, sadness, fear, nervousness, and excitement. Thus,

we can compare our method and alternatives on how well they handle different styles

of speech.

Because this JALI-annotated dataset has only 14 speakers, we perform the evalua-

tion through a leave-one-out approach: for each of the 14 BIWI speakers, we perform

pre-training on our audiovisual dataset (including GRID, SAVEE, and BIWI but ex-

cluding that BIWI speaker), and then perform joint training on the JALI-annotated

BIWI dataset using the other 13 speakers. As a result, we form 14 training and

test splits, where the test splits always involve a speaker not observed during train-

ing. Since we aim at learning a speaker-independent, generic model, we believe that

this is a more compelling and practically useful generalization scenario, compared to

training and testing on the same speaker.

Quantitative Evaluation Measures. The first evaluation measure we use is the

rig parameter activation precision, which measures how often we activate the right

viseme and co-articulation rig parameters based on the ground-truth. Specifically,

given a binary variable m̂a,t indicating whether the rig parameter a is activated or not

at frame t in the ground-truth, and given our predicted binary variable ma,t for that

parameter and frame, the precision is calculated as the number of times we correctly

predict activations for the rig parameters (i.e.,
∑

a,t[m̂a,t = 1 &ma,t = 1], or in other

words, the number of true positives) normalized by the total number of predicted

activations (i.e.,
∑

a,t[ma,t = 1]). We also evaluate the rig parameter activation recall,

which measures out of all the ground-truth rig parameter activations, what fraction
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Table 3.1: Precision and recall for activation of rig controls for our full method and
degraded versions of it for neutral and expressive speech styles, averaged over all test
splits (higher precision and recall are better). We also report the average standard
deviation (SD) of precision and recall for each variant.

neutral expressive
precision recall SD precision recall SD

(%) (%) (%) (%)
full method 89.5 92.2 1.9 90.1 92.3 2.2

landmark-based 73.6 82.0 5.1 74.4 82.7 4.9
phoneme-based 87.8 91.5 1.8 88.2 91.6 2.0

audio-based 68.7 81.3 5.2 69.3 82.2 4.9
no transfer learning 85.8 89.5 2.3 86.1 89.6 2.2

no shared weights (LP) 88.5 91.5 1.0 88.8 91.6 1.9
shared weights (V) 89.0 91.9 1.7 89.3 91.9 1.9

ASR-based 87.6 89.2 1.6 88.4 89.8 1.4
GRU-based 87.4 91.2 2.1 87.8 91.1 2.3

sliding window-based 78.1 77.8 1.5 78.6 78.2 1.5

of them we predict correctly. The recall is calculated as the number of times we

correctly predict activations for the rig parameters (again, number of true positives)

divided by the total number of ground-truth activations
∑

a,t[m̂a,t = 1]. In the ideal

scenario, precision and recall should be both 100%.

We also measure the motion curve differences, which evaluates the absolute differ-

ences of our predicted rig parameter values (viseme, co-articulation, and JALI field

parameters) compared to their ground-truth values averaged over the test frames

where the corresponding rig parameters are active either in the ground-truth or in the

predictions. We note that we do not consider inactive parameters in the evaluation of

motion curve differences because the motion curves are very sparse; zero-values would

dominate the measure otherwise. Since all the rig parameters are normalized between

[0, 1] during training and testing, these differences can be treated as percentages.

Quantitative Comparisons. We compare our network with the following alterna-

tive architectures: (a) landmark-based: we eliminate the phoneme group stage of
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Table 3.2: Percentage difference of motion curves (including viseme, co-articulation,
and JALI field parameters) for our method and degraded versions of our architecture
for neutral and expressive styles of speech, averaged over all test splits (lower difference
is better). We also report the standard deviation (SD) of the percentage differences
for each variant.

neutral expressive
motion curve SD motion curve SD
differences (%) differences (%)

full method 7.8 0.8 7.6 0.9
landmark-based 13.6 1.8 13.2 1.5
phoneme-based 9.0 0.7 8.8 0.7

audio-based 14.5 1.8 14.2 1.6
no transfer learning 9.7 0.9 9.6 0.8

no shared weights (LP) 8.8 0.6 8.7 0.7
shared weights (V) 9.5 0.7 9.2 0.7

ASR-based 9.1 0.6 8.8 0.6
GRU-based 9.1 0.7 9.0 0.8

sliding window-based 15.4 0.3 15.2 0.4

our network i.e., visemes are predicted based on landmarks and audio features only,

(b) phoneme-based: we eliminate the landmark stage of our network i.e., visemes

are predicted based on phoneme groups and audio features only, (c) audio-based:

we eliminate both the landmark and phoneme group stages i.e., visemes are predicted

directly from audio features alone, which also implies that there is no pre-training

since no training phoneme groups or landmarks can be used in this condition (d) no

transfer learning: we keep all the stages of our network, yet we train only on the

JALI-annotated BIWI training split and not on the rest of the audiovidual datasets,

(e) no shared weights (LP): we disable weight sharing between the landmark and

phoneme stages i.e., the LSTM layers of these two stages have independent parameters

in this variant, (f) shared weights (V): we force weight sharing between the layers

of the three LSTM modules used for predicting rig control activations, viseme/co-

articulation parameters, and JALI parameters in the viseme stage (this is in contrast

to our proposed architecture that uses LSTMs without shared weights in this stage).
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(g) ASR-based: instead of using our phoneme group prediction part, we pass the

input audio through the popular Google Cloud automatic speech recognition engine

[54] to extract text, then extract phonemes based on the MFA forced aligner [91],

form the phoneme groups of Figure 3.1, encode them into a binary vector with 1s

corresponding to present phoneme groups and 0s for the non-present ones per frame,

and pass this vector to our viseme branch (instead of our phoneme group representa-

tions). This alternative architecture tests the condition where phonemes are acquired

automatically in separate stages through existing off-the-shelf tools, (h) GRU-based:

we use Gated Recurrent Units (GRUs) [29] instead of LSTMs as memory modules,

(i) sliding window-based: instead of using LSTMs in our three stages, we experi-

mented with the memory-less neural network modules based on three fully connected

hidden layers operating on sliding windows, as proposed in [120]. We note that we

further benefited this approach by using the same type of inputs in each stage (i.e.,

the viseme stage receives audio, landmarks, and phonemes as input instead of using

phonemes alone as done in [120]) and also using the same pre-training and transfer

learning procedure as in our approach (without these enhancements, the performance

was worse). We also increased the number of hidden nodes per layer so that the

number of learnable parameters is comparable to the one in our architecture (using

the original number of hidden nodes also resulted in worse performance).

We trained these alternative architectures based on the same corresponding loss

functions in the same training sets as our method, performed the same hyper-parameter

tuning procedure as in our method, and evaluated them in the same test splits. Table

3.1 and Table 3.2 report the abovementioned evaluation measures for our method and

the alternatives for neutral and expressive styles of speech. Our full method offers the

best performance in terms of all evaluation measures and different styles of speech.

Based on the results, if one attempts to skip our intermediate phoneme group and

landmark stages, and predict visemes from audio features directly (“audio-based” con-
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dition), then the performance degrades a lot (see also accompanying video and Figure

3.4 for qualitative comparisons). Skipping the phoneme group stage (“landmark-

based” condition) also results in a large performance drop, which indicates that rec-

ognizing phoneme groups is crucial for predicting correct visemes, as the psycho-

linguistic literature indicates. Skipping landmarks (“phoneme-based” condition) also

results in a noticeable drop in performance for both neutral and expressive styles of

speech. Using off-the-shelf tools for viseme recognition (“ASR-based” condition) also

results in worse performance than our approach. Note also that this ASR-based ap-

proach is language-dependent and requires an input language-based phoneme model

specification, while our approach is language-agnostic since our phoneme groups are

based on the International Phonetic Alphabet (IPA). Furthermore, we observed that

transfer learning and weight sharing in the landmark and phoneme stages improve

performance. Using GRUs results in worse performance compared to LSTMs. Finally,

replacing the LSTMs with fully connected network modules operating on sliding win-

dows causes a large drop in performance.

Qualitative Comparisons. Our video shows facial animation results produced by

our method and degraded versions of our architecture as well as comparisons with

previous works [72], [119], and [120]. Quantitative comparisons with these previous

works are not possible because their used test rigs are not FACS-enabled, and their

implementation is not publicly available. In contrast to our approach, none of these

previous methods produce editable, animator-centric viseme curves or facial action

units. We also demonstrate generalization to speech animation involving different

languages.

3.5 Conclusion

We presented an animator-centric, deep learning approach that maps audio to

speech motion curves. There are various avenues for future work. Our implemen-
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Figure 3.4: Characteristic outputs of alternative architectures versus our method for
a frame from our test splits. (top) Comparison with using audio features alone
(“audio-based” training) (middle) Comparison with using landmarks and audio fea-
tures alone (“landmark-based” training) (bottom) Comparison with using phoneme
groups and audio features alone (“phoneme-based” training). Ground-truth for the
corresponding test frame is shown on the right column.
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tation currently uses hand-engineered audio features. Replacing them with learned

features, similarly to what is done in image and shape processing pipelines, could

help improving performance. Another interesting extension would be to incorporate

a discriminator network that would attempt to infer the quality of the generated an-

imations, and use its predictions to boost the performance of our viseme generator

network, as done in cGAN-based approaches [68] for image and shape synthesis. Fi-

nally, our method is able to drive only the lower part of the face. Learning to control

the upper face e.g., eyes, without explicit supervisory signals would also be a fruitful

direction.

The marriage between animator-centric techniques and deep-learning has the po-

tential to fundamentally alter current facial animation practice in film and game stu-

dios, leaving animators free to focus on the creative and nuanced aspects of character

expression. We believe our solution is a significant step in this direction.

41



CHAPTER 4

MAKEITTALK: SPEAKER-AWARE TALKING-HEAD
ANIMATION

The second part of my thesis focuses on “MakeItTalk”, a method that generates

expressive talking-head videos from a single facial image with audio as the only input

[152].1 In contrast to previous attempts to learn direct mappings from audio to raw

pixels for creating talking faces, our method first disentangles the content and speaker

information in the input audio signal. The audio content robustly controls the motion

of lips and nearby facial regions, while the speaker information determines the specifics

of facial expressions and the rest of the talking-head dynamics. Another key compo-

nent of our method is the prediction of facial landmarks reflecting the speaker-aware

dynamics. Based on this intermediate representation, our method works with many

portrait images in a single unified framework, including artistic paintings, sketches,

2D cartoon characters, Japanese mangas, and stylized caricatures. In addition, our

method generalizes well for faces and characters that were not observed during train-

ing. We present extensive quantitative and qualitative evaluation of our method, in

addition to user studies, demonstrating generated talking-heads of significantly higher

quality compared to prior state-of-the-art methods.

1This work is published at the ACM Transactions on Graphics, Vol. 39, No. 6, 2020, and was
also presented in the Proceedings of ACM SIGGRAPH ASIA 2020.
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4.1 Overview

As summarized in Figure 4.1, given an audio clip and a single facial image, our

architecture, called “MakeItTalk”, generates a speaker-aware talking-head animation

synchronized with the audio. In the training phase, we use an off-the-shelf face 3D

landmark detector to preprocess the input videos to extract the landmarks [18]. A

baseline model to animate the speech content can be trained from the input audio

and the extracted landmarks directly. However, to achieve high-fidelity dynamics,

we found that landmarks should instead be predicted from a disentangled content

representation and speaker embedding of the input audio signal.

Specifically, we use a voice conversion neural network to disentangle the speech

content and identity information [102]. The content is speaker-agnostic and captures

the general motion of lips and nearby regions (Figure 4.1, Speech Content Animation,

Section. 4.2.1). The identity of the speaker determines the specifics of the motions

and the rest of the talking-head dynamics (Figure 4.1, Speaker-Aware Animation,

Section. 4.2.2). For example, no matter who speaks the word ‘Ha!’, the lips are

expected to be open, which is speaker-agnostic and only dictated by the content.

As for the exact shape and size of the opening, as well as the motion of nose, eyes

and head, these will depend on who speaks the word, i.e., identity. Conditioned on

the content and speaker identity information, our deep model outputs a sequence of

predicted landmarks for the given audio.

To generate rasterized images, we developed two algorithms for the landmark-

to-image synthesis (Section. 4.2.3). For non-photorealistic images like paintings or

vector arts (Fig. 4.7), we use a simple image warping method based on Delaunay

triangulation (Figure 4.1, Face Warp). For photorealistic ones (Fig. 4.6), we devised

an image-to-image translation network (similar to pix2pix [68]) to animate the given

natural human face image with the underlying landmark predictions (Figure 4.1,

Image2Image Translation). Combining all the image frames and input audio together
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Figure 4.1: Pipeline of our method (“MakeItTalk”). Given an input audio signal along
with a single portrait image (cartoon or real photo), our method animates the portrait
in a speaker-aware fashion driven by disentangled content and speaker embeddings.
The animation is driven by intermediate predictions of 3D landmark displacements.
The “speech content animation” module maps the disentangled audio content to
landmark displacements synchronizing the lip, jaw, and nearby face regions with the
input speech. The same set of landmarks is further modulated by the “speaker-aware
animation” branch that takes into account the speaker embedding to capture the rest
of the facial expressions and head motion dynamics.

gives us the final talking-head animations. In the following sections, we describe each

module of our architecture.

4.2 Method

4.2.1 Speech Content Animation

To extract the speaker-agnostic content representation of the audio, we use Au-

toVC encoder from [102]. The AutoVC network utilizes an LSTM-based encoder

that compresses the input audio into a compact representation (bottleneck) trained

to abandon the original speaker identity but preserve content. In our case, we extract

a content embedding A ∈ RT×D from AutoVC network, where T is the total number

of input audio frames, and D is the content dimension.
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The goal of the content animation component is to map the content embedding A

to facial landmark positions with a neutral style. In our experiments, we found that

recurrent networks are much better suited for the task than feedforward networks,

since they are designed to capture such sequential dependencies between the audio

content and landmarks. We experimented with vanilla RNNs and LSTMs [55], and

found that LSTMs offered better performance. Specifically, at each frame t, the

LSTM module takes as input the audio content A within a window [t → t + τ ].

We set τ = 18 frames (a window size of 0.3s in our experiments). To animate any

input 3D static landmarks q, where q ∈ R68×3 that are extracted using a landmark

detector, the output from LSTM layers is fed into a Multi-Layer Perceptron (MLP)

and finally predicts displacements ∆qt, which put the input landmarks in motion at

each frame.

To summarize, the speech content animation module models sequential dependen-

cies to output landmarks based on the following transformations:

ct = LSTMc

(
At→t+τ ; wlstm,c

)
, (4.1)

∆qt = MLPc(ct,q; wmlp,c), (4.2)

pt = q + ∆qt, (4.3)

where {wlstm,c,wmlp,c} are learnable parameters for the LSTM and MLP networks

respectively. The LSTM has three layers of units, each having an internal hidden

state vector of size 256. The decoder MLP network has three layers with internal

hidden state vector size of 512, 256 and 204 (68× 3), respectively.

4.2.2 Speaker-Aware Animation

Matching just the lip motion to the audio content is not sufficient. The motion of

the head or the subtle correlation between mouth and eyebrows are also crucial clues

to generate realistic talking-heads. For example, Figure 4.2 shows our speaker-aware
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Given Facial
Landmarks

Speaker 2 (active dynamics)

Speaker 1 (static dynamics)

Figure 4.2: Landmark prediction for different speaker identities. Left: static facial
landmarks from a given portrait image. Right-top: predicted landmark sequence
from a speaker who tends to be conservative in terms of head motion. Right-bottom:
predicted landmark sequence from another speaker who tends to be more active.

predictions for two different speaker embeddings: one originates from a speaker whose

head motion tends to be more static, and another that is more active. Our method

successfully differentiates the head motion dynamics between these two speakers.

To achieve this, we extract the speaker identity embedding with a speaker veri-

fication model [130] which maximizes the embedding similarity among different ut-

terances of the same speaker, and minimizes the similarity among different speakers.

The original identity embedding vector s has a size of 256. We found that reducing

its dimensionality from 256 to 128 via a single-layer MLP improved the generaliza-

tion of facial animations especially for speakers not observed during training. Given

the identity embedding s extracted, we further modulate the per-frame landmarks pt

such that they reflect the speaker’s identity. More specifically, the landmarks are per-

turbed to match head motion distribution and facial expression dynamics observed

in speakers during training.

As shown in the bottom stream of Figure 4.1, we first use an LSTM to encode the

content representation within time windows, which has the same network architecture

and time window length as the LSTM used in the speech content animation module.
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We found, however, that it is better to have different learned parameters for this

LSTM, such that the resulting representation c̃t is more tailored for capturing head

motion and facial expression dynamics:

c̃t = LSTMs

(
At→t+τ ; wlstm,s

)
, (4.4)

where wlstm,s are trainable parameters. Then, the following model takes as in-

put the speaker embedding s, the audio content representation c̃t, and the initial

static landmarks q to generate speaker-aware landmark displacement. Notably, we

found that producing coherent head motions and facial expressions requires capturing

longer time-dependencies compared to the speech content animation module. While

phonemes typically last for a few tens of milliseconds, head motions, e.g., a head

swinging left-to-right, may last for one or few seconds, several magnitudes longer.

To capture such long and structured dependencies, we adopted a self-attention net-

work [126, 37]. The self-attention layers compute an output expressed as a weighted

combination of learned per-frame representations i.e., the audio content representa-

tion c̃t extracted by the above LSTM concatenated with the speaker embedding s.

The weight assigned to each frame is computed by a compatibility function comparing

all-pairs frame representations within a window. We set the window size to τ ′ = 256

frames (4 sec) in all experiments. The output from the last self-attention layer and

the initial static landmarks are processed by an MLP to predict the final per-frame

landmarks.

Mathematically, our speaker-aware animation models structural dependencies to

perturb landmarks that capture head motion and personalized expressions, which can

be formulated as follows:
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ht = Attns(c̃t→t+τ ′ , s; wattn,s), (4.5)

∆pt = MLPs(ht,q; wmlp,s), (4.6)

yt = pt + ∆pt, (4.7)

where {wattn,s,wmlp,c} are trainable parameters of the self-attention encoder and MLP

decoder, pt is computed by Eq. (4.3), and yt are the final per-frame landmarks cap-

turing both speech content and speaker identity. In our implementation, the attention

network follows the encoder block in [126]. More details about its architecture are

provided in the appendix.

4.2.3 Single-Image Animation

The last step of our model creates the final animation of the input portrait. Given

an input image Q and the predicted landmarks {yt} for each frame t, we produce a

sequence of images {Ft} representing the facial animation. The input portrait might

either depict a cartoon face, or a photorealistic human face image. We use different

implementations for each of these two types of portraits. In the next paragraphs, we

explain the variant used for each type.

Cartoon Images (Non-photorealistic). These images usually have sharp fea-

ture edges, e.g., from vector arts or flat shaded drawings. To preserve these sharp

features, we propose a morphing-based method to animate them, avoiding pixel-level

artifacts. From the input image, we extract the facial landmarks using [145]. We

then run Delaunay triangulation on these landmarks to generate semantic triangles.

By mapping the initial pixels as texture maps to the triangles, the subsequent anima-

tion process becomes straightforward. As long as the landmark topology remains the

same, the textures on each triangle naturally transfer across frames. An illustration

is shown in Figure 4.3. An analogy with our approach is the vertex and fragment

shader pipeline in rendering. The textures are bind to each fragment at the very
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Figure 4.3: Cartoon image face warping through facial landmarks and Delaunay
Triangulation. Left: Given cartoon image and its facial landmarks. Middle: Delaunay
triangulation. Right: Warped image guided by the displaced landmarks.

beginning and from then on, only the vertex shader is changing the location of these

vertices (landmark positions). In practice, we implement a GLSL-based C++ code

that uses vertex/fragment shaders and runs in real-time.

Photorealistic Images. The goal here is to synthesize a sequence of frames given

the input photo and the predicted animated landmarks from our model. Inspired by

the landmark-based facial animation from [148], we first create an image represen-

tation Yt of the predicted landmarks yt by connecting consecutive facial landmarks

and rendering them as line segments of predefined color (Figure 4.1). The image Yt

is concatenated channel-wise with the input portrait image Q to form a 6-channel

image of resolution 256 × 256. The image is passed to an encoder-decoder network

that performs image translation to produce the image Ft per frame. Its architecture

follows the generators proposed in [44] and [59]. Specifically, the encoder employs 6

convolutional layers, where each layer contains one 2-strided convolution followed by

two residual blocks, and produces a bottleneck, which is then decoded through sym-

metric upsampling decoders. Skip connections are utilized between symmetric layers

of the encoder and decoder, as in U-net architectures [104]. The generation proceeds
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for each frame. Since the landmarks change smoothly over time, the output images

formed as an interpolation of these landmarks exhibit temporal coherence. Examples

of generated image sequences are shown in Figure 4.6.

4.3 Training

We now describe our training procedure to learn the parameters of each module

in our architecture.

Voice Conversion Training. We follow the training setup described in [102] with

the speaker embedding initialized by the pretrained model provided by [130]. A

training source speech from each speaker is processed through the content encoder.

Then another utterance of the same source speaker is used to extract the speaker

embedding, which is passed to the decoder along with the audio content embedding

to reconstruct the original source speech. The content encoder, decoder, and MLP are

trained to minimize the self-reconstruction error of the source speech spectrograms

[102]. Training is performed on the VCTK corpus [127], which is a speech dataset

including utterances by 109 native English speakers with various accents.

4.3.1 Speech Content Animation Training

Dataset. To train a content-based animation model, we use an audio-visual dataset

that provides high-quality facial landmarks and corresponding audio. To this end,

we use the Obama Weekly Address dataset [119] containing 6 hours of video featur-

ing various Obama’s speeches. Due to its high resolution and relatively consistent

front facing camera angle, we can obtain accurate facial landmark detection results

using [18]. We also register the facial landmarks to a front-facing standard facial

template [11] using a best-estimated affine transformation [109]. This also results in

factoring out the speaker-dependent head pose motion, which we will address in Sec-
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tion. 4.3.2. We emphasize that one registered speaker is enough to train this module,

since our goal here is to learn a mapping from audio content to facial landmarks.

Loss Function. To learn the parameters {wlstm,c,wmlp,c} used in the LSTM and

MLP, we minimize a loss function that evaluates (a) the distance between the reg-

istered reference landmark positions p̂t and predicted ones pt, and (b) the distance

between their respective graph Laplacian coordinates, which promotes correct place-

ment of landmarks with respect to each other and preserves facial shape details [117].

Specifically, our loss is:

Lc =
T∑
t=1

N∑
i=1

∥∥pi,t − p̂i,t
∥∥2
2

+ λc

T∑
t=1

N∑
i=1

∥∥L(pi,t)− L(p̂i,t)
∥∥2
2
, (4.8)

where i is the index for each individual landmark, and λc weighs the second term

(λc=1 in our implementation, set through hold-out validation). We use the following

graph Laplacian L(pt):

L(pi,t) = pi,t −
1

|N (pi)|
∑

pj∈N (pi)

pj,t, (4.9)

where N (pi) includes the landmark neighbors connected to pi within a distinct facial

part (Figure 4.4). We use 8 facial parts that contain subsets of landmarks predefined

for the facial template.

4.3.2 Speaker-Aware Animation Training

Dataset. To learn the speaker-aware dynamics of head motion and facial expres-

sions, we need an audio-visual dataset featuring a diverse set of speakers. We found

the VoxCeleb2 dataset is well-suited for our purpose since it contains video segments

from a variety of speakers [31]. VoxCeleb2 was originally designed for speaker verifi-

cation. Since our goal is different, i.e., capturing speaker dynamics for talking head
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Figure 4.4: Graph Laplacian coordinates illustration. Left: 8 facial parts that contain
subsets of landmarks. Right: Zoom-in graph Laplacian vector and related neighboring
landmark points.

synthesis, we chose a subset of 67 speakers with a total of 1,232 videos clips from

VoxCeleb2. On average, we have around 5-10 minutes of videos for each speaker.

The criterion for selection was accurate landmark detection in the videos based on

manual verification. Speakers were selected based on Poisson disk sampling on the

speaker representation space. We split this dataset as 60% / 20% / 20% for training,

hold-out validation and testing respectively. In contrast to the content animation

step, we do not register the landmarks to a front-facing template since here we are

interested in learning the overall head motion.

Adversarial Network. Apart from capturing landmark position, we also aim to

match the speaker’s head motion and facial expression dynamics during training. To

this end, we incorporate a GAN approach. Specifically, we create a discriminator

network Attnd which follows a similar structure with the self-attention generator

network in Section. 4.3.2. More details about its architecture are provided in the

appendix. The goal of the discriminator is to find out if the temporal dynamics of

the speaker’s facial landmarks look “realistic” or fake. It takes as input the sequence

of facial landmarks within the same window used in the generator, along with audio

content and speaker’s embedding. It returns an output characterizing the “realism”

rt per frame t:
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rt = Attnd(yt→t+τ ′ , c̃t→t+τ ′ , s; wattn,d), (4.10)

where wattn,d are the parameters of the discriminator. We use the LSGAN loss func-

tion [90] to train the discriminator parameters treating the training landmarks as

“real” and the generated ones as “fake” for each frame:

Lgan =
T∑
t=1

(r̂t − 1)2 + r2t , (4.11)

where r̂t denotes the discriminator output when the training landmarks ŷt are used

as its input.

Loss Function. To train the parameters wattn,s of the self-attention generator net-

work, we attempt to maximize the “realism” of the output landmarks, and also con-

sider the distance to the training ones in terms of absolute position and Laplacian

coordinates:

Ls =
T∑
t=1

N∑
i=1

∥∥yi,t − ŷi,t
∥∥2
2

+ λs

T∑
t=1

N∑
i=1

∥∥L(yi,t)− L(ŷi,t)
∥∥2
2

+ µs

T∑
t=1

(rt − 1)2, (4.12)

where λs = 1 and µs = 0.001 are set through hold-out validation. We alternate

training between the generator (minimizing Ls) and discriminator (minimizing Lgan)

to improve each other as done in GAN approaches [90].

4.3.3 Image-to-Image Translation Training

Finally, we train our image-to-image translation module to handle photorealistic

animation outputs. The encoder/decoder pair used for image translation is first

trained on paired video frames from VoxCeleb2. Then, we fine-tune the network on

a subset which contains high-resolution video crops provided by [114]. In particular,
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based on a video of a talking person in the dataset, we randomly sample a frame

pair: a source training frame Q̂src and a target frame Q̂trg of this person. The facial

landmarks of the target face are extracted and rasterized into an RGB image Ŷtrg

based on the approach described in Section. 4.2.3. The encoder/decoder network

takes as input the concatenation of Q̂src and Ŷtrg and outputs a reconstructed face

Qtrg. The loss function aims to minimize the L1 per-pixel distance and perceptual

feature distance between the reconstructed face Qtrg and training target face Q̂trg as

in [71]:

La =
∑
{src,trg}

||Qtrg − Q̂trg||1 + λa
∑
{src,trg}

||φ(Qtrg)− φ(Q̂trg)||1,

where λa = 1, and φ concatenates feature map activations from the pretrained VGG19

network [115].

4.3.4 Implementation Details

All landmarks in our dataset are converted to 62.5 frames per second and audio

waveforms are sampled under 16K Hz frequency. Both of these rates followed [102],

i.e. 62.5 Hz for the mel-spetrogram and 16 kHz for the speech waveform. We experi-

mented with other common frame rates, and we found the above worked well for the

entire pipeline. We note that the facial landmarks are extracted from the input video

at its original frame rate and the interpolation is performed on landmarks rather than

the original pixels. We trained both the speech content animation and speaker-aware

animation modules with the Adam optimizer using PyTorch. The learning rate was

set to 10−4, and weight decay to 10−6. The speech content animation module con-

tains 1.9M parameters and took 12 hours to train on a Nvidia 1080Ti GPU. The

speaker-aware animation module has 3.8M parameters and took 30 hours to train

on the same GPU. The single-face animation module for generating realistic human

faces was also trained with the Adam optimizer, a learning rate of 10−4, and a batch
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Non-photorealistic (cartoon) animations Photorealistic human face animations

Figure 4.5: Generated talking-head animation gallery for non-photorealistic cartoon
faces (left) and photorealistic human faces (right). The corresponding intermediate
facial landmark predictions are also shown on the right-bottom corner of each ani-
mation frame. Our method synthesizes not only facial expressions, but also different
head poses.

size of 16. The network has 30.7M parameters and was trained for 20 hours on 8

Nvidia 1080Ti GPUs.

4.4 Results

With all the pieces in place, we now present results of talking-head videos from

a single input image and a given audio file. Figure 4.5 shows a gallery of our gen-

erated animations for cartoon and photorealistic images. We note that the resulting

animations include both full facial expressions and dynamic head poses.

In the following sections, we discuss more results for generating photorealistic

video and non-photorealistic animations, along with qualitative comparisons. Then

we present detailed numerical evaluation, an ablation study, and applications of our

method.

4.4.1 Animating Photorealistic Images

Figure 4.6 shows synthesized photorealistic videos featuring talking people as well

as comparisons with state-of-the-art video generation methods [28, 128]. The ground-
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[Vougioukas et 
al. 2019]

[Chen et al. 
2019]

Ours

Ours
(cropped)

Source speaker with slight head motion Source speaker with active head motion 

Figure 4.6: Comparison with state-of-the-art methods for video generation of photo-
realistic talking-heads. The compared methods crop the face and predict primarily
the lip region while ours generates both facial expression and head motion. GT and
our results are full faces and are cropped for a better visualization of the lip region.
Left example: [28] has worse lip synchronization for side-faces (see the red box). Right
example: our method predicts speaker-aware head pose dynamics (see the green box).
Note that the predicted head pose is different than the one in the ground-truth video,
but it exhibits similar dynamics that are characteristic for the speaker.

truth (GT) and our results are cropped to highlight the differences in the lip region

(see row 2 and 5). We notice that the videos generated by [128, 28] predict primarily

the lip region on cropped faces and therefore miss the head poses. [128] does not

generalize well to faces unseen during training. [28] lacks synchronization with the

input audio, especially for side-facing portraits (see the red box). Compared to these

methods, our method predicts facial expressions more accurately and also captures a

plausible head motion (see the green box).

Our supplementary video also includes a comparison with the concurrent work

by [123]. Given the same audio and target speaker image at test time, we found

that our lip synchronization appears to be more accurate than their method. We also

emphasize that our method learns to generate head poses, while in their case the head
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Artistic painting 2D cartoon Random sketch Japanese manga Stylized caricature Casual photo

Figure 4.7: Our model works for a variety types of non-photorealistic (cartoon) por-
trait images, including artistic paintings, 2D cartoon characters, random sketches,
Japanese mangas, stylized caricatures and casual photos. Top row: input cartoon
images. Next rows: generated talking face examples by face warping. Please also see
our supplementary video.

pose is not explicitly handled or is added back heuristically in a post-processing step

(not detailed in their paper). Their synthesized video frames appear sharper than

ours perhaps due to their neural renderer of their 3D face model, and additional target

speaker-specific training. However, this limits the applicability of their method when

no target speaker videos are available. Our network instead requires only a single

target speaker image to generate the talking-head animation without retraining. As

a result, our method has the advantage of driving a diverse set of animations, including

animations of cartoon characters, casual photos, paintings, and sketches, for which

training videos are often not available.

4.4.2 Animating Non-Photorealistic Images

Figure 4.7 shows a gallery of our generated non-photorealistic animations. Each

animation is generated from input audio and a single portrait image. The portrait
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images can be artistic paintings, random sketches, 2D cartoon characters, Japanese

mangas, stylized caricatures and casual photos. Despite being only trained on hu-

man facial landmarks, our method can successfully generalize to a large variety of

stylized cartoon faces. This is because our method uses landmarks as intermediate

representations, and also learns relative landmark displacements instead of absolute

positions.

4.4.3 Evaluation Protocol

We evaluated MakeItTalk and compared with related methods quantitatively and

with user studies. We created a test split from the VoxCeleb2 subset, containing

268 video segments from 67 speakers. The speaker identities were observed during

training, however, their test speech and video are different from the training ones.

Each video clip lasts 5 to 30 seconds. Landmarks were extracted using [18] from test

clips and their quality was manually verified. We call these as “reference landmarks”

and use them in the evaluation metrics explained below.

Evaluation Metrics. To evaluate how well the synthesized landmarks represent

accurate lip movements, we use the following metrics:

• Landmark distance for jaw-lips (D-LL) represents the average Euclidean

distance between predicted facial landmark locations of the jaw and lips and ref-

erence ones. The landmark positions are normalized according to the maximum

width of the reference lips for each test video clip.

• Landmark velocity difference for jaw-lips (D-VL) represents the average

Euclidean distance between reference landmark velocities of the jaw and lips

and predicted ones. Velocity is computed as the difference of landmark locations

between consecutive frames. The metric captures differences in first-order jaw-

lips dynamics.
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• Difference in open mouth area (D-A:): the average difference between

the area of the predicted mouth shape and reference one. It is expressed as

percentage of the maximum area of the reference mouth for each test video clip.

To evaluate how well the landmarks produced by our method and others reproduce

overall head motion, facial expressions, and their dynamics, we use the following

metrics:

• Landmark distance (D-L): the average Euclidean distance between all pre-

dicted facial landmark locations and reference ones (normalized by the width

of the face).

• Landmark velocity difference (D-V): the average Euclidean distance be-

tween reference landmark velocities and predicted ones (again normalized by the

width of the face). Velocity is computed as the difference of landmark locations

between consecutive frames. This metric serves as an indicator of landmark

motion dynamics.

• Head rotation and position difference (D-Rot/Pos): the average differ-

ence between the reference and predicted head rotation angles (measured in

degrees) and head position (again normalized by the width of the face). The

measure indicates head pose differences, like nods and tilts.

4.4.4 Content Animation Evaluation

We begin our evaluation by comparing MakeItTalk with state-of-the-art methods

for synthesis of facial expressions driven by landmarks. Specifically, we compare with

[42], [153], and [28]. All these methods attempt to synthesize facial landmarks, but

cannot produce head motion. Head movements are either generated procedurally or

copied from a source video. Thus, to perform a fair evaluation, we factor out head

motion from our method, and focus only on comparing predicted landmarks under

59



Methods D-LL ↓ D-VL ↓ D-A ↓
Zhou et al. [153] 6.2% 0.85% 15.2%

Eskimez et al. [42] 4.0% 0.46% 7.5%
Chen et al. [28] 5.0% 0.49% 5.0%

Ours (no speaker ID) 2.2% 0.45% 5.9%
Ours (no content) 3.1% 0.61% 10.2%

Ours (full) 2.0% 0.44% 4.2%

Table 4.1: Quantitative comparison of facial landmark predictions of MakeItTalk
versus state-of-the-art methods.

an identical “neutral” head pose for all methods. For the purpose of this evaluation,

we focus on the lip synchronization metrics (D-LL, D-VL, D-A), and ignore head

pose metrics. Quantitatively, Table 4.1 reports these metrics for the above-mentioned

methods and ours. We include our full method, including two reduced variants: (a)

“Ours (no speaker ID)”, where we train and test the speech content branch alone

without the speaker-aware branch, (b) “Ours (no content)”, where we train and test

the speaker-aware branch alone without the speech content branch. We discuss these

two variants in more detail in our ablation study (Section 4.4.6). The result shows

that our method achieves the lowest errors for all measures. In particular, our method

has 2x times less D-LL error in lip landmark positions compared to [42], and 2.5x

times less D-LL error compared to [28].

Figure 4.8 shows characteristic examples of facial landmark outputs for the above

methods and ours from our test set. Each row shows one output frame. [153] is only

able to predict the lower part of the face and cannot reproduce closed mouths accu-

rately (see second row). [42] and [28], on the other hand, tend to favor conservative

mouth opening. In particular, [28] predicts bottom and upper lips that sometimes

overlap with each other (see second row, red box). In contrast, our method captures

facial expressions that match better the reference ones. Ours can also predict subtle

facial expressions, such as the lip-corner lifting (see first row, red box).
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Figure 4.8: Facial expression landmark comparison. Each row shows an example
frame prediction for different methods. The GT landmark and uttered phonemes are
shown on left.

4.4.5 Speaker-Aware Animation Evaluation

Head Pose Prediction and Speaker Awareness Existing speech-driven facial

animation methods do not synthesize head motion. Instead, a common strategy is to

copy head poses from another existing video. Based on this observation, we evaluate

our method against two baselines: “retrieve-same ID” and “retrieve-random ID”.

These baselines retrieve the head pose and position sequence from another video clip

randomly picked from our training set. Then the facial landmarks are translated

and rotated to reproduce the copied head poses and positions. The first baseline

“retrieve-same ID” uses a training video with the same speaker as in the test video.

This strategy makes this baseline stronger since it re-uses dynamics from the same

speaker. The second baseline “retrieve-random ID” uses a video from a different ran-

dom speaker. This baseline is useful to examine whether our method and alternatives

produce head pose and facial expressions better than random or not.

Table 4.2 reports the D-L, D-V, and D-Rot/Pos metrics. Our full method

achieves much smaller errors compared to both baselines, indicating our speaker-aware
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Methods D-L ↓ D-V ↓ D-Rot/Pos ↓
retrieve-same ID 17.1% 1.1% 10.3/8.1%

retrieve-random ID 20.8% 1.2% 21.4/9.2%

Ours (random ID) 33.0% 1.8% 28.7/12.3%
Ours (no speaker ID) 13.8% 0.7% 12.6/6.9%

Ours (no content) 12.5% 0.8% 8.6/5.7%
Ours (full) 12.3% 0.7% 8.0/5.4%

Table 4.2: Head pose prediction comparison with the baseline methods in S4.4.5 and
our variants based on our head pose metrics.

prediction is more faithful compared to merely copying head motion from another

video. In particular, we observe that our method produces 2.7× less error in head pose

(D-Rot), and 1.7× less error in head position (D-Pos) compared to using a random

speaker identity (see “retrieve-random ID”). This result also confirms that the head

motion dynamics of random speakers largely differ from ground-truth ones. Compared

to the stronger baseline of re-using video from the same speaker (see “retrieve-same

ID”), we observe that our method still produces 1.3× less error in head pose (D-

Rot), and 1.5× less error in head position (D-Pos). This result confirms that re-using

head motion from a video clip even from the right speaker still results in significant

discrepancies, since the copied head pose and position does not necessarily synchronize

well with the audio. Our full method instead captures the head motion dynamics and

facial expressions more consistently w.r.t. the input audio and speaker identity.

Figure 4.5 shows a gallery of our generated cartoon images and natural human

faces under different predicted head poses. The corresponding generated facial land-

marks are also shown on the right-bottom corner of each image. The demonstrated

examples show that our method is able to synthesize head pose well, including nods

and swings. Figure 4.9 shows another qualitative validation of our method’s ability

to capture personalized head motion dynamics. The figure embeds 8 representative

speakers from our dataset based on their variance in Action Units (AUs), head pose
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Figure 4.9: t-SNE visualization for AUs, head pose and position variance based on 8
reference speakers videos (solid dots) and our predictions (stars). Different speakers
are marked with different colors as shown in the legend.

and position variance. The AUs are computed from the predicted landmarks based

on the definitions from [40]. The embedding is performed through t-SNE [88]. These

8 representatives were selected using furthest sampling i.e., their AUs, head pose and

position differ most from the rest of the speakers in our dataset. We use different

colors for different speakers and use solid dots for embeddings produced based on the

reference videos in AUs, head pose and position variance, and stars for embeddings

resulting from our method. The visualization demonstrates that our method produces

head motion dynamics that tend to be located more closely to reference ones.

4.4.6 Ablation Study

Individual Branch Performance. We performed an ablation study by training

and testing reduced variants of our network: (a) the first variant, called “Ours (no

speaker ID)” uses only the speech content animation branch i.e. omitting the speaker-

aware animation branch during training/testing, (b) the second variant, called “Ours

(no content)” uses only the speaker-aware animation branch i.e. omitting the speech
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content animation branch during training/testing. The aim of this variant is to check

whether a single network can jointly learn both lip synchronization and speaker-aware

head motion. The results of these two variants and our full method are shown in in

Table 4.1 and Table 4.2. We also refer readers to the supplementary video for more

visual comparisons.

The variant “Ours (no speaker ID)” only predicts facial landmarks from the audio

content without considering the speaker identity. It performs well in terms of cap-

turing the lip landmarks, since these are synchronized with the audio content. The

variant is slightly worse than our method based on the lip evaluation metrics (see

Table 4.1). However, it results in 1.6x larger errors in head pose and 1.3× larger

error in head position (see Table 4.2) since head motion is a function of both speaker

identity and content.

The results of the variant “Ours (no content)” has the opposite behaviour: it

performs well in terms of capturing head pose and position (it is slightly worse than

our method, see Table 4.2). However, it has 1.6× higher error in jaw-lip landmark

difference and 2.4× higher error in open mouth area difference (see Table 4.1), which

indicates that the lower part of face dynamics are not synchronized well with the

audio content. Figure 4.10 demonstrates that using the speaker-aware animation

branch alone i.e., the “Ours (no content)” variant results in noticeable artifacts in

the jaw-lip landmark displacements.

Using both branches in our full method offers the best performance according to

all evaluation metrics.

Random Speaker ID Injection We tested one more variant of our method called

“Ours (random ID)”. For this variant, we use our full network, however, instead

of using the correct speaker embedding, we inject another random speaker identity

embedding. The result of this variant is shown in Table 3. Again we observe that

the performance is significantly worse (3.6x more error for head pose). This indicates
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Figure 4.10: Comparison to “Ours (no content)” variant (right-top) which uses only
the speaker-aware animation branch. The full model (right-bottom) result has much
better articulation in the lower-part of the face. It demonstrates that a single network
architecture cannot jointly learn both lip synchronization and speaker-aware head
motion.

that our method successfully splits the content and speaker-aware motion dynamics,

and captures the correct speaker head motion dynamics (i.e., it does not reproduce

random ones).

4.4.7 User Studies

We also evaluated our method through perceptual user studies via Amazon Me-

chanical Turk service. We obtained 6480 query responses from 324 different MTurk

participants in our two different user studies described below.

User Study for Speaker Awareness To evaluate the speaker awareness of differ-

ent variants of our method, we assembled a pool of 300 queries displayed on different

webpages. On top of the webpage, we showed a reference video of a real person talk-

ing, and on the bottom we showed two cartoon animations: one cartoon animation

generated using our full method and another cartoon animation based on one of the
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two variants discussed above: (“Ours (random ID)” and “Ours (no speaker ID)”.

The two cartoon videos were placed in randomly picked left/right positions for each

webpage. Each query included the following question: “Suppose that you want to

see the real person of the video on the top as the cartoon character shown on the

bottom. Which of the two cartoon animations best represents the person’s talking

style in terms of facial expressions and head motion?” The MTurk participants were

asked to pick one of the following choices: “left animation”, “right animation”, “can’t

tell - both represent the person quite well”, “can’t tell - none represent the person

well”. Each MTurk participant was asked to complete a questionnaire with 20 queries

randomly picked from our pool. Queries were shown at a random order. Each query

was repeated twice (i.e., we had 10 unique queries per questionnaire), with the two

cartoon videos randomly flipped each time to detect unreliable participants giving

inconsistent answers. We filtered out unreliable MTurk participants who gave two

different answers to more than 5 out of the 10 unique queries in the questionnaire, or

took less than a minute to complete it. Each participant was allowed to answer one

questionnaire maximum to ensure participant diversity. We had 90 different, reliable

MTurk participants for this user study. For each of our 300 queries, we got votes from

3 different MTurk participants. Since each MTurk participant voted for 10 unique

queries twice, we gathered 1800 responses (300 queries × 3 votes × 2 repetitions) from

our 90 MTurk participants. Figure 4.11 (top) shows the study result. We see that

the majority of MTurkers picked our full method more frequently, when compared

with either of the two variants.

User Study for Photorealistic Videos. To validate our landmark-driven photo-

realistic animation method, we conducted one more user study. Each MTurk partic-

ipant was shown a questionnaire with 20 queries involving random pairwise compar-

isons out of a pool with 780 queries we generated. For each query, we showed a single

frame showing the head of a real person on top, and two generated videos below (ran-
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Figure 4.11: User study results for speaker awareness (top) and photorealistic anima-
tion (bottom).

domly placed at left/right positions): one video synthesized from our method, and

another from either [128] or [28]. The participants were asked which person’s facial

expression and head motion look more realistic and plausible. We also explicitly in-

struct them to ignore the particular camera position or zoom factor and focus on the

face. Participants were asked to pick one of four choices (“left”, “right”, “both” or

“none”) as in the previous study. We also employed the same random and repeated

query design and MTurker consistency and reliability checks to filter out unreliable

answers. We had 234 different MTurk participants for this user study. Like in the pre-

vious study, each query received votes from 3 different, reliable MTurk participants.

As a result, we gathered 780 queries × 3 votes × 2 repetitions = 4680 responses from

our 234 participants. Figure 4.11 (bottom) shows the study result. Our method was

voted as the most “realistic” and “plausible” by a large majority, when compared to

[28] or [128].
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Figure 4.12: Applications. Top row: video dubbing for target actor given only audio as
input. Middle and bottom row: bandwidth-limited video conference for photorealistic
and non-photorealistic user profile images. Please also see our supplementary video.
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4.4.8 Applications

Synthesizing realistic talking-heads has numerous applications [74, 151]. One com-

mon application is dubbing using voice from a person different from the one in the

original video, or even using voice in a different language. In Figure 4.12(top), given

a single frame of the target actor and a dubbing audio spoken by another person,

we can generate a video of the target actor talking according to that other person’s

speech.

Another application is bandwidth-limited video conference. In scenarios where the

visual frames cannot be delivered with high fidelity and frame-rate, we can make use

only of the audio signal to drive the talking-head video. Audio signal can be preserved

under much lower bandwidth compared to its visual counterpart. Yet, it is still im-

portant to preserve visual facial expressions, especially lip motions, since they heavily

contribute to understanding in communication [92]. Figure 4.12(middle) shows that

we can synthesize talking heads with facial expressions and lip motions with only the

audio and an initial high-quality user profile image as input. Figure 4.12(bottom)

shows an example of non-photorealistic talking-head animation that can be used in

teleconferencing for entertainment reasons, or due to privacy concerns related to video

recording. We also refer readers to the supplementary video.

Our supplementary video also demonstrates a text-to-video application, where we

synthesize photorealistic video from text input, after converting it to audio through

a speech synthesizer [97].

Finally, our video demonstrates the possibility of interactively editing the pose of

our synthesized talking heads by applying a rotation to the intermediate landmarks

predicted by our network.
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4.5 Ethical Considerations

“Deepfake videos” are becoming more prevalent in our everyday life. The general

public might still think that talking head videos are hard or impossible to generate

synthetically. As a result, algorithms for talking head generation can be misused to

spread misinformation or for other malicious acts. I hope the method proposed will

help people understand that generating such videos is entirely feasible. My main

intention is to spread awareness and demystify this technology. The corresponding

code for this method is publicly released on the Github2 which includes a watermark

to the generated videos making it clear that they are synthetic.

4.6 Conclusion

We have introduced a deep learning based approach to generate speaker-aware

talking-head animations from an audio clip and a single image. Our method can

handle new audio clips and new portrait images not seen during training. Our key

insight was to predict landmarks from disentangled audio content and speaker, such

that they capture better lip synchronization, personalized facial expressions and head

motion dynamics. This led to much more expressive animations with higher overall

quality compared to the state-of-the-art.

2https://github.com/yzhou359/MakeItTalk
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CHAPTER 5

AUDIO-DRIVEN NEURAL GESTURE REENACTMENT
WITH VIDEO MOTION GRAPHS

Human speech is often accompanied by body gestures including arm and hand

gestures. The third part of my thesis focuses on generating plausible speech gestures

while human talking.1 We present a method that reenacts a high-resolution and

high-quality video with gestures matching a target speech audio. The key idea of our

method is to split and re-assemble clips from a reference video through a novel video

motion graph encoding valid transitions between clips. To seamlessly connect different

clips in the reenactment, we propose a pose-aware video blending network which

synthesizes video frames around the stitched frames between two clips. Moreover,

we developed an audio-based gesture searching algorithm to find the optimal order

of the reenacted frames. Our system generates reenactments that are consistent with

both the audio rhythms and the speech content. We evaluate our synthesized video

quality quantitatively, qualitatively, and with user studies, demonstrating that our

method produces videos of much higher quality and consistency with the target audio

compared to previous work and baselines.

5.1 Method

5.1.1 Overview.

The goal of our method is to synthesize a new video for a reference speaker given

a target speech audio from the same or different speaker. Our video synthesis is

1This work is submitted to ICCV 2021 and is currently under review
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Figure 5.1: System overview. The reference video is first encoded into a directed graph
where nodes represent video frames and audio features, and edges represent transi-
tions. The transitions include original ones between consecutive reference frames, and
synthetic ones between disjoint frames. Given a unseen target audio at test time, a
beam search algorithm finds plausible playback paths such that gestures best match
the target speech audio. Synthetic transitions along disjoint frames are neurally
blended to achieve temporal consistency.

guided by a novel video motion graph created from an input reference video of the

speaker (Section. 5.1.2). The video motion graph is a directed graph that encodes

how the reference video may be split and re-assembled in different graph paths (see

Fig. 5.1 for an illustration). The graph node representations are defined as the raw

reference video frames and corresponding audio features. The edges are defined as

the transitions between frames, including natural transitions between the original

consecutive frames in the input video and synthetic transitions connecting disjoint

clips. Synthetic transitions are introduced to expand the graph connectivity and

enable nonlinear video playback.

However, a direct nonlinear playback along synthetic transitions does not guar-

antee smooth video rendering due to the abrupt changes of disjoint frames in image

space. Thus, we design a novel pose-aware video blending network to re-render and

interpolate neighboring frames required by the synthetic transitions (Section. 5.1.3).

We develop an audio-based searching method to find optimal paths in the video motion

graph that best match the target audio features both rhythmically and semantically
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(Section. 5.1.4). To generate new videos, we retrieve the raw input video frames at

natural transitions and synthesize neural blended frames at synthetic transitions.

5.1.2 Video Motion Graph

The key idea of our video motion graph is to create synthetic transitions based on

the similarity of the speaker’s pose in the reference video frames. Our pose similarity

metric relies on 3D space and image space cues. Given a reference video, our first

step is to extract pose parameters θ of the SMPL model [87] for all frames with an

off-the-shelf motion capture method [141]. We further smooth the pose parameters

with [24] to promote temporally coherent results.

3D Space Pose Similarity. Based on the pose parameters, we compute the 3D

positions and velocities in world space for all joints via forward kinematics. For each

pair of frames with indices (m,n) (including non-consecutive ones), we evaluate pose

dissimilarity dfeat(m,n) by calculating the Euclidean distance of their feature vectors

produced by concatenating the SMPL pose parameters, positions, and velocities of

all joints.

Image Space Pose Similarity. To obtain the pose similarity in image space, for

each frame m, we project the fitted 3D SMPL human mesh onto image space using

known camera parameters from [141], and mark the mesh surface area which is visible

on image after projection as Sm. Then for each pair of frames (m,n), we compute their

image space dissimilarity based on the the Intersection-over-Union (IoU) between

their corresponding visible surface areas: dimg(m,n) = 1− (Sm ∩ Sn)/(Sm ∪ Sn). The

lower dimg(m,n) is, the higher the IoU, thus larger overlap exists in the surface area

in two meshes, indicating higher pose similarity in terms of image rendering.

Based on these two distance measurements, we create graph synthetic transitions

between any pair of reference video frames (nodes in our graph) if their distance
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dfeat(m,n) and dimg(m,n) are below predefined thresholds (both distance for natural

transitions are defined as 0). Here we follow [144] to set the thresholds as the corre-

sponding average distance between frames (m,m + l) in the reference video. Larger

frame offset l results in higher thresholds, thus more synthetic transitions, increasing

the possible number of paths in the resulting denser graph. This also results in larger

computational cost for the path search algorithm of Section. 5.1.4. Our experiments

use l = 4 which we practically find to achieve a good balance between computational

cost and number of available paths in the graph.

5.1.3 Pose-aware Video Blending

A mere playback of connected frames at synthetic transitions easily results in

noticeable jittering artifacts (see direct playback in Fig. 5.2(a) grey dashed path and

Fig. 5.2(b) third column).

To solve this problem, we synthesize blended frames to replace original frames

around a small temporal neighborhood of a synthetic transition so that the video

can smoothly blend from the first sequence to the other (see Fig. 5.2(a) solid black

path and Fig. 5.2(b) last column). For a synthetic transition connecting frames m,n,

we define the neighborhood using the frame range [m − k,m] and [n, n + k] with a

neighborhood size k.

We designed a pose-aware video blending network to synthesize frames within

the above neighborhood. Given two frames with indices i, j (where i ∈ [m − k,m]

and j ∈ [n, n + k]) and their corresponding raw RGB image representations Ii and

Ij ∈ RH×W×3 from the reference video, the network synthesizes each blended frame

in the neighborhood with a target blended weight α ∈ [0, 1/K, 2/K, ..., 1], where

K = 2k.
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(a) Illustration of pose-aware blended playback.

Input Sequence 1 Input Sequence 2 Direct Playback Blended Playback

(b) Our blended playback generates smoother transition.

Figure 5.2: Compared to direct playback along synthetic transitions which have severe
horizontal shift for body poses and abrupt change in hand rotations (see dashed lines
and circles in (b)), our blending strategy generates natural transitions between clips.
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Figure 5.3: Pose-aware neural blending network architecture. Two source frames are
encoded into deep feature maps and then warped based on the predicted flows from
two stages: a 3D mesh-based flow stage for coarse feature map alignment, followed by
an optical flow-based stage further refining the warping. Finally, the warped features
are blended with predicted visibility masks to generate the target frame.

As a first step, we use the blending weight to estimate the SMPL pose parameter

θt for a blended frame t as: θt = (1 − α)θi + αθj, where θi and θj are the SMPL

pose parameters captured from two input frames respectively.

Our network processes the images Ii, Ij, the body foreground masks extracted

from the silhouettes of the fitted SMPL meshes, and the pose parameter θi,θj,θt.

Processing takes place in two stages. The first stage warps foreground human body

image features based on a 3D motion field computed from vertex displacements of

the fitted SMPL meshes. The second stage further refines the warping by computing

the residual optical flow between the warped body image features produced by the

first stage, and the optical flow for the rest of the image (i.e., background). An

image translation network transforms the refined warped image features to the image

It representing the target output frame t. The network architecture is shown in

Fig. 5.3.

Mesh Flow Stage. The first stage has two parallel streams, each producing image

deep feature maps encoding the warping for the input images Ii and Ij. To produce

these features, we first compute an initial 3D motion field, which we refer to as initial
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“mesh flow”, from the SMPL body mesh displacements between the two frames. To

this end, we first find the body mesh vertex positions vi,vj,vt from the SMPL pose

parameters θi,θj,θt respectively. Then we obtain the initial mesh flow F init
t→i and F init

t→j

as the displacement of the corresponding mesh vertices vt − vi and vt − vj ∈ RN×3

respectively. We note that we only consider here the displacements from visible

vertices found via perspective projection onto image plane. These displacements are

projected and rasterized as image-space motion field RN×3 → RH×W×2. Since the

vertex sampling does not match the image resolution, the resulting flow fields are

rather sparse. Thus, we diffuse them with a Gaussian kernel with σ set to 8 in our

experiments.

These initial motion fields are far from perfect. This is because the boundaries of

the projected mesh often do not exactly align with the boundaries of the human body

in the input frames. Thus, we refine these fields with a neural module. The module

has two streams, each refining the corresponding motion field for frame i and j. The

first stream processes as inputs the RGB image Ii, the foreground mask Imask, and an

image containing the rendered skeleton Iskel representing the SMPL pose parameters.

It then encodes them into an image deep feature map xi:

xi = Es(Ii, Imask, Iskel; ws) (5.1)

where ws are learnable weights. Similarly, the second stream produces an image deep

feature map xj for frame j. The two streams share the same network based on 8

stacked CNN residual blocks [17]. More details are provided in the supplementary

material.

We then estimate the refined motion fields through another network Em,
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Only Mesh Flow Warping

Ours Full
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No ghost effect

Figure 5.4: A ghost effect example. Left: two input frames. Top-right: ghost effect
from using mesh flow only. Bottom-right: sharp features with further warping by
optical flow.

Fm
t→i = Em(xi, F

init
t→i ; wm), (5.2)

Fm
t→j = Em(xj, F

init
t→j ; wm). (5.3)

where wm are learnable weights. This network is designed based on UNet [104].

More details are provided in the supplementary material. We then backwards warp

the above image feature maps with the above motion fields to obtain the warped deep

features x′i and x′j.

Optical Flow Stage. Synthesizing the final target frame directly from the two

warped feature maps x′i and x′j suffers from ghost effect (Fig. 5.4). This is because

the motion field calculated in the previous stage is based on the SMPL model which

ignores details such as textures on clothing.

Our second stage aims to further warp the deep feature maps x′i and x′j based

on optical flow computed throughout the image including the background. At this
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stage, the warped features already represent bodies that are roughly aligned. We

found that an off-the-shelf frame interpolation network based on optical flow [70] can

reproduce the missing pixel-level details and remedy the ghost effect. The network

predicts optical flow F o
t→i and F o

t→j to further warp the features from x′i and x′j to x′′i

and x′′j respectively. It also estimates soft visibility maps [70] Vt→i and Vt→j used for

blending to obtain a deep feature map for frame t:

x′′t = (1− α)Vt→i � x′′i + αVt→j � x′′j . (5.4)

Finally, we take as input the above blended deep feature map to synthesize the target

image It. This is performed with a generator network G following a UNet image

translation network architecture from Chapter. 4:

Ît = G(x′′t ; wg) (5.5)

where wg are learnable weights.

Fig. 5.5 and Fig. 5.6 show output images from the video blending network for

different blending weights, along with results from our intermediate stages.

Training. To train our pose-aware video blending network, we sample triplets of

frames in the reference video. Given a target frame e.g., frame t, we randomly sample

two other nearby frames with indices t− k0 and t+ k1, k0, k1 ∈ [1, 8] to form triplets.

The corresponding blending weight α is computed as k1/(k1 + k2). We train the entire

network end-to-end with losses defined to better estimate the flows and reconstruct

the final image.

More specifically, we first have an L1 reconstruction loss Lrec and a perceptual

loss Lper between the synthesized image Ît and It:
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α = 5/8 α = 3/4 α = 7/8 Ij

Figure 5.5: Pose-aware video blending results of synthesized in-between frames with
blended human gestures for different blending weights α ∈ (0, 1).

Lrec = L1(It, Ît) (5.6)

Lper = L1(φ(It), φ(Ît)) (5.7)

where φ(·) concatenates feature map activations from a pre-trained VGG19 net-

work [115].

We then adopt another L1 reconstruction loss Lbrec promoting better frame recon-

struction directly from the warped deep features x′′i and x′′j after these pass through

our generator network G. This helped predict warped deep features such that they

lead to generating frames as close as possible to ground-truth in the first place. We

also empirically observed faster convergence with this loss:

Lbrec = L1(It, G(x′′i )) + L1(It, G(x′′j )) (5.8)

Further, we have warping loss Lmwarp and Lowarp by measuring the L1 reconstruction

error between the target image and the source images Ii and Ij after being warped

through the motion field Fm
t→i and also the optical flow F o

t→i:
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Figure 5.6: Pose-aware video blending results of intermediate mesh flows, optical
flows and visibility maps results for corresponding blending weights α ∈ (0, 1).

Lmwarp = L1(It,W(Ii, F
m
t→i))+

L1(It,W(Ij, F
m
t→j))

(5.9)
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Lowarp = L1(It,W(W(Ii, F
m
t→i), F

o
t→i))+

L1(It,W(W(Ij, F
m
t→j), F

o
t→j))

(5.10)

where W(I, F ) applies backward warping flow F on image I.

Finally, we follow [70] and include a smoothness loss for both mesh flow and optical

flow:

Lsm = ||∇Fm
t→i||1 + ||∇Fm

t→j||1+ (5.11)

||∇F o
t→i||1 + ||∇F o

t→j||1 (5.12)

The overall loss L is defined as the weighted sum of all losses described above,

then averaged over all training frames.

L = Lrec + λpLper + λbLbrec+

λmLmwarp + λoLowarp + λsLsm
(5.13)

The weights have been set empirically using the validation set as λp = 0.01, λb =

0.25, λm = 0.25, λo = 0.25, λs = 0.01.

To train the entire model, we first train the mesh flow estimator network with

Lmwarp as a “warming” stage. Then we load a pre-trained optical flow model from [70].

Finally, we train the entire network end-to-end with the loss mentioned above. The

network weights are optimized with Adam optimizer using PyTorch. The learning

rate is set to 10−4 and weight decay to 10−6. The training process is performed on

4 Nvidia GeForce 1080Ti GPUs. Each speaker video takes around 10k iterations to

converge.
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5.1.4 Audio-based Search

Given a speech audio at test time, we develop a graph search algorithm to find

plausible paths along which gestures match the speech audio both rhythmically and

semantically. Previous studies have shown that speech gestures can be classified into

two categories: 1) referential gestures that appear together with specific, meaningful

keywords, and 2) rhythmic gestures which respond to the audio prosody features [93].

More specifically, the key stroke of a rhythmic gesture appear at the same time as (or

within a very short of period of) an audio onset within a phonemic clause [41]. To

find precise gestures on the right timings, or frame indices, we define a pair of audio

features for input speech: audio onset feature and keyword feature. The audio frame

indices match the video frame rate.

Audio Onset and Keyword Feature. We define the audio onset feature as a

binary value indicating the activation of an audio onset for each frame detected with a

standard audio processing algorithm [12]. To extract keyword features, we first use the

Microsoft Azure speech-to-text engine [142] to convert the input audio into transcripts

with corresponding start and end time for each word. We create a dictionary of

common words for referential gestures, which we call keywords (see supplementary

for a list). If a keyword appears at a frame (or node), we set its keyword feature to

that word. Otherwise, we simply set it to empty (no keyword).

Target Speech Audio Segmentation. We split the target speech audio into seg-

ments starting and ending with the frames where the audio onset or keyword feature

is activated. Let {as}Ss=1 be the frame indices of such frames, where S is their total

number. Segments are represented as as → as+1, and their duration are Ls = as+1−as

(number of frames). We also add two extra endpoints a0 = 1 and aS+1 = Nt indi-

cating the first and last frame of the target audio respectively to form the complete

segment list, i.e. as → as+1, s = 0, 1, .., S.
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Beam Search. We initialize a beam search [106] procedure in the video motion

graph to find K plausible paths matching the target speech audio segments. We set

K to 20. The beam search initializes K paths starting with K random nodes as the

first frame a0 for the target audio, then expands in a breadth-first-search manner to

find paths ending at a target graph node whose audio feature matches the target audio

feature at the endpoint of the first segment a1, associated with either an activated

audio onset or the same non-empty keyword feature. Note that there can be multiple

target graph nodes sharing the same audio feature with a1.

During the beam search, all the explored paths are sorted based on a path tran-

sition cost, plus a path duration cost. The path transition cost is defined as the sum

of node distances (see Section. 5.1.2) between all consecutive nodes m,n along the

path, i.e.
∑

m,n (dfeat(m,n) + dimg(m,n)). The cost of synthetic transitions are al-

ways higher than natural ones. Thus, the path cost prevents using implausible paths

with too many synthetic transitions.

When a path reaches a target graph node, we check its duration. Due to the

sparsity of the graph, there may not be any path matching exactly the target audio

segment length Li. Still, the path length should be similar to Li, otherwise one would

need to accelerate or decelerate the path too much to adjust it to the exact length,

leading to unnaturally fast or slow gestures. We only accept paths with duration

L′s ∈ [0.9Ls, 1.1Ls] since these can be slightly adjusted, e.g. re-sampled, to match

the target segment duration. For the above range, we observed that the motion still

looks natural. Nevertheless, we also add a path duration cost |1 − L′s/Ls| to favor

paths during beam search with duration closer to the target duration.

After processing the first segment a0 → a1, we start another beam search for

the next segment a1 → a2. Here, the path expansion starts with the last node of

the K paths discovered from previous iteration. The expansion continues with the

same search procedure as above. In order, the searches run iteratively for all the rest
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segments as → as+1, s ∈ [1, S] while always keeping the most plausible K paths.

All searched K paths can be used to generate various plausible results for the same

target speech audio (see the supplementary video). The best path is picked in our

experiments.

Video Synthesis. We generate a video along with the final path in the motion

graph discovered by the beam search executions, and use the blending network to

handle synthetic transitions (see Fig. 5.2 for an example). As explained above, for

each synthesized video segment corresponding to target audio segment as → as+1,

we adjust its speed to match the target duration. Finally, we post-process our result

by adopting [101] to synchronize the lips of the speaker to match the corresponding

speech audio.

5.2 Results and Evaluation

Dataset. We collected seven speech videos. Each speaker is asked to tell a personal

story in front of a static camera, either standing or sitting. Speakers are encouraged

to use their gestures while telling the stories. The length of the video varies between

2-10 minutes depending on the story.

5.2.1 Audio-driven Reenactment Results

Given a reference video from speaker A and a target audio clip randomly from

another speaker B in our dataset, we reenact the reference video with our system to

generate a new speech video with A’s appearance and B’s voice. We generate 127

such videos of 25 seconds in length and 512×512 in resolution, each of which contains

expressive speech gestures. Example results are provided in the supplementary video.

Evaluation. To evaluate the consistency of such reenacted videos to target speech

audio, we perform a perceptual user study via the Amazon Mechanical Turk service.
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Figure 5.7: Pairwise comparison results from our user study. The comparison of
Ours-full against Ours-no-search shows the effectiveness of the proposed audio-based
search algorithm.

We compare the results from our full system (Ours-full) against ground-truth (GT),

which are original reference video clips of speaker B, and results from a baseline

system (Ours-no-search), which randomly finds paths along video motion graphs

without audio-based search. All videos are post-processed by masking face regions

with a solid white box to prevent facial motions from dominating visual perception.

We design the user study questionnaire by providing a list of queries involving

pairwise comparisons of results from two out of three methods mentioned above. We

have a pool of 381 queries (127 videos from each method × 3 comparison pairs). For

each query, we show two videos in parallel randomly placed at left/right positions.

The participants are asked which speaker’s gestures are more consistent with the

speech audio and vote for one of the two choices: “left animation”, “right animation”.

We also explicitly instruct them to focus on the speakers’ hand gestures and ignore

the masked facial area. Detailed user study setup are found in the supplementary

material. Each participant is asked to complete a questionnaire with 10 queries

randomly picked from our pool and altogether 1130 votes from 113 valid participants

are gathered. We plot the statistics in Fig. 5.7.

The preference (61% vs. 39%) of Ours-full over Ours-no-search shows the effec-

tiveness of the audio-based search algorithm. Although no audio guidance is used,

30% votes received by Ours-no-search against GT also suggest our video motion

graph and frame blending approach is able to generate high-quality and realistic

videos. The relative higher votes (41%) given to Ours-full against GT demonstrates
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our full system generates better though not perfect gesture videos that are coherent

with the audio.

5.2.2 Video Blending Evaluation

We also numerically evaluate the proposed video blending network. To this end,

we split each video in our dataset in three parts: the first part (80% of the original

video duration) is used for training the network, the second and third part are used

for hold-out validation and testing respectively (each has 10% of the original video

duration).

Given two frames t − k and t + k in the test split of each video, we synthesize

blended frames with the blending weight α = 0.5 and compare its quality with the

ground-truth frame t. All the compared frames are multiplied with ground-truth

human masks to compare the foreground human results only.

We compare our method with the state-of-the-art frame interpolation methods

FeatureFlow[58] and SuperSlMo[70], as well as human pose-based image synthesis

methods vUnet[44] and EBDance[26] which uses a Pix2PixHD backbone [135]. For

the pose-based image synthesis methods, we estimate the interpolated human skeleton

by averaging joint positions. We retrain all the comparison methods on our dataset

for a fair comparison. We also evaluate two network alternatives: Ours w/ mesh

which only uses mesh-based warping flows and Ours w/ optical which only uses

optical flows.

Image Quality. We evaluate the quality of synthesized images via four common

metrics: Image Error (IE) - average absolute pixel difference between two images;

Peak Signal-to-Noise Ratio (PSNR) and LPIPS [150].

Table 5.1 shows the comparison for methods mentioned above. It shows our full

model consistently outperforms all frame interpolation methods [58, 70] and pose-

based image synthesis methods [44, 26]. Fig. 5.8 shows two examples of synthesized
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Method IE↓ PSNR↑ LPIPS↓

FeatureFlow[58] 1.18 33.5 0.015
SuperSlMo[70] 1.04 35.0 0.012

vUnet[44] 1.20 33.6 0.013
EBDance[26] 1.75 30.7 0.020

Ours w/ mesh 0.87 35.2 0.009
Ours w/ optical 0.97 34.6 0.009

Ours 0.76 36.1 0.007

Table 5.1: Image quality assessment of video blending results.

Method
MOVIE[110] ×10−2

FID↓
S↓ T↓ S-T↓

FeatureFlow[58] 2.17 0.97 0.22 19.1
SuperSlMo[70] 1.84 0.84 0.17 15.4

vUnet[44] 2.06 0.78 0.19 15.6
EBDance[26] 3.04 1.9 0.43 20.5

Ours w/ mesh 1.80 0.63 0.14 15.1
Ours w/ optical 1.84 0.74 0.16 13.2

Ours 1.67 0.68 0.13 13.0

Table 5.2: Video quality assessment of video blending results.
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2 Input Frames FeatureFlow[58] SuperSlMo[70] vUnet[44]

EBDance[26] Ours

2 Input Frames FeatureFlow[58] SuperSlMo[70] vUnet[44]

EBDance[26] Ours

Figure 5.8: Comparison of blended frame synthesis using different methods. Note the
natural look of details such as fingers in our method.
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frames by ours and other methods. In the top example, the inputs are two frames with

larger gesture difference. The existing frame interpolation methods [58, 70] cannot

estimate the flow field, and thus result in broken and blurred hand results. The pose-

based image synthesis methods [44, 26] preserve hand structures but have artifacts

around fingers and clothing. Ours achieves the best quality for both hands and

clothing. The lower example shows frames with smaller gesture differences. [70, 44, 26]

preserve hands better but still suffer from broken and blurred texture. Ours generates

clear and sharp finger results.

Video Quality. To evaluate the quality of the generated video, we adopt the metric,

MOVIE [110] index, to evaluate the distortion in spatial (S), temporal (T), and spatio-

temporal (S-T) aspects. We also follow [134] to evaluate the visual quality of the video

and temporal consistency with Fréchet Inception Distance (FID) scores [62]. We use

the pre-trained video recognition CNN model to get features from synthesized video

clips [20]. Table 5.2 shows our method can achieve the best video quality in the

temporal domain. It demonstrates that the synthesized blended frames seamlessly

connect reenacted frames with much less temporal artifacts. We provide additional

synthesized clips to showcase blending results in the supplementary video.

5.3 Conclusion

We propose a novel system based on video motion graphs to generate new videos that

best preserve high image synthesis quality and speaker gesture motion subtleties. To

seamlessly reenact disjoint frames from the input video, we introduce a neural pose-

aware video blending method to smoothly blend inconsistent transition frames. We

show the superior performance of the proposed system comparing to the state-of-

the-art methods and baselines via both numerical experiments and perceptual user

studies.
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CHAPTER 6

CONCLUSION

This thesis explored three different neural network architectures for generating

various audio-driven character animations, ranging from character facial animations

of FACS-based face rigs and cartoon/natural human face images to character gesture

animations of human speech videos.

In Chapter 3 and 4, I presented two different approaches to create character facial

animation based on a single speech audio clip as input. Both approaches learnt a cross-

modality mapping from audio signals to talking-head visual animations. Chapter 3

specially introduced speech motion curves of professional face rigs as the output

representation, which are commonly used by character animators. The solution of

the proposed approach can be seamlessly integrated into existing facial animation

practice in film and game studios, leaving animators free to focus on the creative

and nuanced aspects of character expression. Chapter 4 presented an audio-driven

facial animation solution for a more generic character representation: portrait images,

which are easily accessed by most users. By taking as input either natural human

portraits or 2D cartoon character faces, the proposed approach is able to synthesize

corresponding talking-head animation videos based on the input speech audio. The

key insight is to animate faces from disentangled audio content and speaker identity,

such that they capture better lip synchronization, personalized facial expressions and

head motion dynamics. This leads to much more expressive animations with higher

overall quality compared to the state-of-the-art. I believe these two solutions are

significant steps towards automatic character talking-head animation.
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Apart from facial animation, human speech is often accompanied by body ges-

tures including arm and hand gestures, which enhances the expressiveness of human

performance and helps the audience to better comprehend the speech content. There-

fore, Chapter 5 focused on speech gestures and presented a novel system to generate

character speech videos with plausible gestures while talking. Instead of synthesizing

videos from scratch, the proposed system was built upon splitting and re-assembling

clips from a reference video through a novel video motion graph, which is able to

preserve high image synthesis resolution and speaker gesture motion subtleties. To

seamlessly reenact disjoint frames from the input video, I introduced a neural pose-

aware video blending method to smoothly blend inconsistent transition frames which

would otherwise suffer from temporal inconsistency. The better performance of the

proposed system is demonstrated by comparing to the state-of-the-art methods and

baselines via both numerical experiments and perceptual user studies.

6.1 Future Work

6.1.1 Audio-driven Character Facial Animation

In Chapters 3 and 4, we investigated the use of facial landmarks as a key interme-

diate representation to help generating the final animation. Landmarks capture the

shape outlines of animated lips, jaw, and other key facial parts, and can be trained

from massive 2D audiovisual datasets available online. Despite its advantages, the

intermediate facial landmark representation, can still not capture all fine nuances

of facial animations. Expanding the facial landmark representations to more fine-

grained facial representations can be a plausible future work direction to improve

the quality and expressiveness of the photorealistic video synthesis. I suspect that

the new representations would be useful for animating heads based on a richer set of

utterances, e.g., laughter, singing, and so on.
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In addition, although the method proposed in the second part of my thesis cap-

tures aspects of the speaker’s style e.g., predicting head swings reflecting active speech,

there are several other factors that can influence head motion dynamics. For exam-

ple, the speaker’s mood can also play a significant role in determining head motion

and facial expressions. Further incorporating sentiment analysis into the animation

pipeline to make the animated character more vivid and expressive is another promis-

ing research direction.

The synthetic image generation and manipulation, especially the “deepfake videos”

synthesized via deep neural networks, have raised significant concerns about their

potential misuse. A promising and urgent future work direction is digital media

forensics, especially the detection of deepfake videos involving facial or lip region

manipulation. Forgery videos can be identified by detecting synthesized pixel arti-

facts on each frame around the manipulated regions, e.g. blurred teeth, double chins

[105, 125, 1]. Based on the work of this thesis, personal facial expression dynam-

ics could also be considered i.e., synthesized deepfake talking-head videos may have

inconsistent speaker-specific talking styles. Analyzing high level facial motion kine-

matics, e.g. lip motions, facial expression motions, may be useful to detect forgeries

in the temporal space.

6.1.2 Audio-driven Character Gesture Animation

In Chapter 5, we use a pre-defined common keyword dictionary for the keyword

features, which may fail when an invididual uses words outside that vocabulary. Us-

ing richer audio features learnt through data might help with more accurate gesture

matching and might also remove the dependency on having an input transcript. There

is an inevitable trade-off between the quality and the variety of synthesized anima-

tions – increasing the graph edge density can increase the transitions variety, yet

may retrieve frames that are harder to blend. Even though the result from Chap-
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ter 5 is not as realistic as the ground truth, it is significantly better than all existing

approaches. I believe a hybrid framework of video motion graph and neural reenact-

ment is a promising future work direction for high-quality controllable digital human

animations.
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APPENDIX A

MAKEITTALK SUPPLEMENTARY MATERIALS

In this section we describe the supplementary materials including the details of

neural network architectures used in Chapter. 4.

A.1 Speaker-Aware Animation network

The attention network follows the encoder block structure in Vaswani et al. [126].

It is composed of a stack of N = 2 identical layers. Each layer has (a) a multi-head

self-attention mechanism with Nhead = 2 heads and dimensionality dmodel = 32 and

(b) a fully connected feed-forward layer whose size is the same to the input size. We

also use the embedding layer (a one-layer MLP with hidden size 32) and the position

encoder layer as mentioned in [126].

The discriminator network has a similar network architecture to the attention

network. The difference is that the discriminator also includes a three-layer MLP

network which has 512, 256, 1 hidden size respectively.

A.2 Image-to-image translation network

The layers of the network architecture used to generate photorealistic images are

listed in Table A.1. In this table, the left column indicates the spatial resolution of

the feature map output. ResBlock down means a 2-strided convolutional layer with

3×3 kernel followed by two residual blocks, ResBlock up means a nearest-neighbor

upsampling with a scale of 2, followed by a 3 × 3 convolutional layer and then two
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Landmark Representation Yt

256× 256 Input Image Q
128× 128 ResBlock down (3 + 3)→ 64
64× 64 ResBlock down 64→ 128
32× 32 ResBlock down 128→ 256
16× 16 ResBlock down 256→ 512
8× 8 ResBlock down 512→ 512
4× 4 ResBlock down 512→ 512
8× 8 ResBlock up 512→ 512

16× 16 Skip + ResBlock up (512 + 512)→ 512
32× 32 Skip + ResBlock up (512 + 512)→ 256
64× 64 Skip + ResBlock up (256 + 256)→ 128

128× 128 Skip + ResBlock up (128 + 128)→ 64
256× 256 Skip + ResBlock up (64 + 64)→ 3
256× 256 Tanh

Table A.1: Generator architecture for synthesizing photorealistic images.

residual blocks, and Skip means a skip connection that concatenates the feature maps

of an encoding layer and decoding layer with the same spatial resolution.
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APPENDIX B

NEURAL GESTURE REENACTMENT
SUPPLEMENTARY MATERIALS

In this section we describe the supplementary materials for Chapter. 5.

B.1 Dictionary of Common Keywords

Referential gestures, especially iconic and metaphoric gestures, have strong cor-

relations with the transcript [93, 146]. They usually appear together with certain

keywords, such as action verbs, concrete objects, abstract concepts, and relative

quantities to co-express the speech content [65]. We gather a few frequently used

such keywords co-occurring with referential gestures in our speaker videos, as shown

in Table. B.1.

B.2 Spatial Encoder Details

The spatial encoder network Es takes as input the RGB image Ii, the foreground

mask Imask, and an image containing the rendered skeleton Iskel representing the

SMPL pose parameters. Fig. B.1 shows an example of these input images. The spa-

tial encoder network consists of 8 residual blocks [17] with no up- or down-sampling.

Table B.2 shows the blocks in detail. The left column of the table indicates the spatial

resolution of the feature map. The numbers before and after → in the right column

are the numbers of input and output channels, respectively.
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Category Keywords

greeting hey, hi, hello
counting one, two, three, first, second, third
direction east, west, north, south, back, front, away,

here, around
sentiment crazy, incredible, surprising, screaming

action walk, drive, ride, enter, open, attach, take, move
relative more, less, much, few
others called

Table B.1: Dictionary of common keywords.

(a) (b) (c)

Figure B.1: An example of inputs to our spatial encoder network (a) input image
frame, (b) corresponding foreground human mask and (c) rendered skeleton image.

B.3 Mesh Flow Estimator Details

We show our Mesh Flow Estimator network structure for generating the mesh

flow warping field in Table B.3. In this table, the left column indicates the spatial

resolution of the feature map output. The ResBlock down block is a 2-strided convo-

lutional layer with a 3 × 3 kernel followed by two residual blocks. The ResBlock up

block is a nearest-neighbor upsampling with a scale of 2, followed by a a 3 × 3 con-

volutional layer and then two residual blocks. The term Skip means skip connection

that concatenates the feature maps of an encoding layer and decoding layer with the

same spatial resolution.

98



512× 512
Input image Ii

Foreground body mesh mask Imask
Rendered skeleton image Iskel

512× 512 ResBlock (3 + 1 + 3)→ 16
512× 512 ResBlock 16→ 16
512× 512 ResBlock 16→ 16
512× 512 ResBlock 16→ 16
512× 512 ResBlock 16→ 16
512× 512 ResBlock 16→ 16
512× 512 ResBlock 16→ 16
512× 512 ResBlock 16→ 16

Table B.2: Spatial Encoder network structure.

B.4 Image Generator Network Details

The image generator network follows the structure of the Mesh Flow Estimator

network (see Table B.3). There are three differences. The first difference is that the

number of input feature channels is 16 (instead of 18), which represents the number

of deep feature x′′ channels. The second difference is that the number of output chan-

nels is changed from 2 to 3 for generating RGB images. Finally, the network uses in

the end a tanh(·) activation to regularize the image values between [0, 1].

B.5 User Study Details

We provide here more details about the user study. Fig. B.2 shows the web-

page layout used in our questionnaires. The layout shows two video results to the

participants, a question on the bottom and two choices (“left”/“right”). To enable

the selection of either choice, the users must watch both videos until the end. Our

questionnaires also include a similar page layout showing tutorial examples in the

beginning. The tutorial shows a pair of videos with clear differences: one video is

from ground-truth in which the speaker’s gestures are naturally consistent with the

audio; the other video is a failure case, which shows gestures that are inconsistent
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512× 512
Input image deep feature x′i
Input initial mesh flow F init

t→i
256× 256 ResBlock down (16 + 2)→ 32
128× 128 ResBlock down 32→ 64
64× 64 ResBlock down 64→ 128
32× 32 ResBlock down 128→ 256
16× 16 ResBlock down 256→ 512
8× 8 ResBlock down 512→ 512
4× 4 ResBlock down 512→ 512
8× 8 ResBlock up 512→ 512

16× 16 Skip + ResBlock up (512 + 512)→ 512
32× 32 Skip + ResBlock up (512 + 512)→ 256
64× 64 Skip + ResBlock up (256 + 256)→ 128

128× 128 Skip + ResBlock up (128 + 128)→ 64
256× 256 Skip + ResBlock up (64 + 64)→ 32
512× 512 Skip + ResBlock up (32 + 32)→ 2

Table B.3: Mesh Flow Estimator network structure.

with audio at some places. For these tutorial cases only, we let the participants pick

an answer first and then let them know whether their answer is correct or wrong and

explain why.

We also adapt a user validation check to filter out unreliable MTurkers. Specifi-

cally, after the tutorial, our questionnaires showed 10 queries in a random order. 3 of

the queries were repeated twice (i.e., we had 7 unique queries per questionnaire). We

randomly flipped the two videos each time to detect unreliable participants giving

inconsistent answers. We filter out unreliable MTurk participants who give different

answers to two (or more) of the repeated queries in the questionnaire or took less

than 5 minutes to complete it. Each participant was allowed to answer one ques-

tionnaire maximum to ensure participant diversity. We collected answers from 113

reliable participants for our user study.
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Figure B.2: User study questionnaire page.
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