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ABSTRACT	

United	States	Household	Carbon	Footprints:	
Quantifying	the	relationship	between	household-level	income	inequality	and	

greenhouse	gas	emissions	(1996-2015)	
	

SEPTEMBER	2021	
	

JARED	STARR,	B.A.,	GEORGE	WASHINGTON	UNIVERSITY	
	

M.S.,	UNIVERSITY	OF	MASSACHUSETTS	AMHERST	
	

Ph.D.,	UNIVERSITY	OF	MASSACHUSETTS	AMHERST	
	

Directed	by:	Professor	Craig	Nicolson	
	

As	long	as	humanity	has	existed,	we	have	altered	our	environment	to	provide	goods,	

services,	and	(more	recently)	wealth	to	people.	Over	the	last	several	centuries,	the	

scope	and	pace	of	this	transformation	has	accelerated	with	the	onset	of	

technological	innovation,	social	and	economic	reorganization,	and	an	ensuing	

population	boom.	Today,	humanity’s	demands	on	nature	have	become	the	dominant	

force	shaping	the	critical	earth	systems	upon	which	all	life	depends.	From	local	land-

use	change	to	the	global	climate	many	of	these	anthropogenic	pressures	pose	an	

existential	threat	to	nature	and	the	dependent	social	systems	that	rely	on	them.	Yet,	

extreme	economic	and	social	inequality	within	and	across	human	societies	leads	to	

significant	inequality	in	who	reaps	the	benefits	of	these	transformations,	who	reaps	

the	harms,	and	who	makes	the	decisions	on	that	benefit-harm	distribution.	Here	I	

quantify,	at	high	granularity	and	over	a	20-year	period	(1996-2015),	the	GHG	

emissions	footprints	of	United	States	households,	based	on	the	flow	of	income,	

goods	and	services	these	emissions	enable.	I	compare	the	scale	and	distributions	of	
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household-level	GHG	emissions	across	different	social	groups	and	responsibility	

frameworks	and	provide	policy	insights	related	to	those	findings.	
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CHAPTER	1	

1 INTRODUCTION	
	

1.1 Overview	

	
Individual	people	and	society,	writ	large,	are	fundamentally	dependent	on	a	

steady	flow	of	ecosystem	goods	and	services	to	meet	our	wants	and	needs	(1).	

Over	the	millennia,	the	scale	and	scope	of	these	wants	and	needs	has	

increased	with	growing	populations	and	rising	living	standards.	Today,	human	

society	is	over	7	billion	strong	and	people	are	living	longer,	attaining	higher	levels	of	

education,	capturing	more	wealth,	gaining	food	and	energy	security,	travelling	

further,	and	participating	in	a	globally-connected	society	(2).	

Such	remarkable	gains	provide	significant	human	benefits,	yet	the	scale	of	

environmental	transformation	underpinning	these	benefits	is	resulting	in	

increasingly	dangerous	levels	of	environmental	change	(3–5).	At	scales	ranging	from	

local	to	global,	human	demands	are	transforming	natural	systems	in	ecologically	

significant	ways	that	fundamentally	reduce	their	biodiversity	(6),	resiliency,	and	

ability	to	provide	future	ecosystem	services	(4,	5).	

Such	changes	are	not	just	concerning	for	those	who	care	about	“nature”,	but	

also	for	those	who	care	about	people.	Our	global	society	depends	on	stable	natural	

systems:	a)	from	which	we	produce	food,	raw	materials,	and	energy;	upon	which	we	

build	our	homes,	cities,	roads,	and	ports;	and	to	which	we	send	airborne,	liquid,	and	

solid	waste	for	processing.	As	humanity	alters	the	natural	systems	that	produce	
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value	for	people,	we	are	reducing	their	stability,	resiliency,	dependability,	and	basic	

ability	to	continue	producing	valuable	goods	in	the	future	(7).	

With	the	global	population	projected	to	swell	by	2	billion	or	more	by	mid-

century,	the	economy	expected	to	triple	(8),	and	nature	already	flashing	warning	

signs	that	human	demands	are	unsustainable,	society	is	drifting	down	an	

existentially	dangerous	path.	If	we	are	to	welcome	billions	more	people	onto	the	

planet	and	they	are	to	live	wealthier	lives,	then	we	must	find	ways	to	dramatically	

reduce	net	environmental	impacts:	thereby	ensuring	basic	environmental	integrity.	

To	do	so,	requires	thoughtful	decision-making	in	our	social,	political,	and	

economic	systems	to	balance	present	and	future	human	wellbeing	while	

maintaining	the	stable	productive	ecosystems	that	underpin	this	wellbeing.	Such	

decisions,	in	turn,	require	a	deep	empirically-based	understanding	of	the	human-

nature	relationship	as	it	interacts	across	space,	time,	and	scales.	

My	work	here	focuses	on	one	aspect	of	this	relationship:	the	connection	

between	greenhouse	gas	(GHG)	emissions	and	the	income	and	consumption	benefits	

these	emissions	enable.	Specifically,	I	link	U.S.	households	with	the	global	GHG	

emissions	used	to	generate	their	income	and	produce	the	goods	and	services	they	

consume.	I	do	this	at	high	granularity,	over	a	20-year	period,	and	analyze	how	

economic	inequality	and	race	shape	the	distribution	of	GHG	emissions	

responsibility.	

In	doing	so,	this	work	gives	insight	into	two	key	trends	shaping	society’s	

relationship	with	nature,	in	recent	decades:	long	globalized	supply	chains	and	

uneven	resource	distribution	within	society.	These	trends	mean	that	massive	
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environmental	change	in	one	geographic	area	may	be	ultimately	driven	by	a	small	

group	of	consumers	(or	shareholders)	halfway	across	the	globe	that	reap	the	

benefits	of	this	transformation,	while	other	groups	within	society	are	left	to	face	the	

harms	of	this	transformation.	My	work	reveals	these	connections	and	in	doing	so	

highlights	some	policy	choices	that	can	help	achieve	the	more	ambitious	targets	of	

the	United	Nations	2015	Paris	Agreement,	to	stabilize	the	global	climate.		

1.2 Tools	for	quantifying	coupled	human-nature	systems		

People	and	nature	are	coupled	in	complex	relationships	that	span	dimensions	

of	organizational	levels,	time,	and	space	(9).	Humanity	is	a	part	of	nature,	

fundamentally	dependent	on	our	environment	for	the	raw	materials	and	basic	

conditions	that	make	our	lives,	societies,	and	economies	possible.	Nature	is	likewise	

powerfully	shaped	by	people.	As	humanity’s	population	and	consumption	have	

grown,	people	have	become	the	dominant	force	driving	global	environmental	

change	(10).	Thus,	nature’s	wellbeing	is	increasingly	determined	by	humanity’s	

choices.	

In	recent	decades	several	integrated-system	frameworks	have	emerged	to	

quantify	these	coupled	human-nature	connections	(11).	These	include	ecosystem	

services	(1,	12),	human-nature	nexus	(11,	13),	telecoupling	(9,	14),	and	

environmental	footprints	(15–21).	

While	ecosystem	services	are	a	powerful	framework	to	understand	and	value	

the	Support,	Regulation,	Provisioning,	and	Cultural	services	nature	provides	to	

people,	environmental	footprints	are	a	way	to	quantify	the	flow	of	such	
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environmental	services	through	society.	These	can	measure	both	the	quantities	of	

goods	and/or	services	appropriated	from	nature	and	the	quantities	of	pollution	sent	

back	to	nature.	Mathis	Wackernagel	and	William	Rees	pioneered	this	field	with	the	

development	of	the	Ecological	Footprint	(EF)	in	the	early	1990s	(22,	23).	For	a	given	

geographical	scale,	the	EF	framework	defines	a	concept	called	“biocapacity”	and	

provides	standardized	methods	for	assessing	1)	the	total	biocapacity	of	that	

geographic	unit	at	a	point	in	time,	and	2)	how	much	of	that	total	available	

biocapacity	people	consume	in	a	given	time	period.	By	progressively	aggregating	

geographic	units	up	to	the	ultimate	scale	of	the	whole	earth,	the	EF	framework	

allows	one	to	assess	whether	humanity’s	demands	on	natural	systems	are	within	

nature’s	constraints,	and,	if	they	exceed	those	constraints,	by	how	much.	This	

framework	helps	quantify	how	certain	wealthy	nations	have	disproportionately	

consumed	more	than	their	“fair	share”	of	environmental	resources	while	the	

burdens	of	environmental	change	are	disproportionately	concentrated	on	those	in	

the	developing	world	(24).	

When	combined	with	data	on	monetary	transactions	(using	input-output	(IO)	

tables),	this	kind	of	accounting	ties	together	actors	up,	down,	and	across	a	supply	

chain	by	tracking	how	materials,	energy,	emissions,	or	some	other	environmental	

indicator	of	interest	flow	through	different	sectors	of	an	economy.	This	reveals	

environmental	inputs	or	outputs	that	are	embodied	in	the	production	recipe	(25).	

Comparing	these	production	recipes	for	different	economic	sectors	within	a	

country,	across	countries,	or	analyzing	the	same	sector	in	different	countries	reveals	
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the	scale	and	scope	of	a	sector’s	environmental	demands	(i.e.	its	environmental	

footprint).	

Since	the	work	of	Wackernagel	and	Rees,	environmental-extended	multi-

region	input-output	(EE-MRIO)	tables	have	been	further	developed	and	applied	to	

several	resource/topic	specific	areas	like	energy	(20),	nitrogen	(17),	biodiversity	

(18,	26),	materials	(21),	and	water,	land,	and	carbon	(16,	27).	Such	footprints	reveal	

how	resource	demands	vary	across	countries	and	can	be	normalized	to	show	

national	level	per-capita	resources	consumption.	

In	terms	of	GHG	footprints,	by	tracking	individual	consumer’s	purchases	from	

these	sectors,	final	demand	consumers	can	be	connected	to	the	full	supply	chain	

GHG	emissions	used	to	produce	the	goods	and	services	they	purchase	(embodied	

consumption-based	GHG	responsibility)	(Fig.	1.1).	Conversely,	GHG	emissions	can	

also	be	linked	to	income	they	generate	by	either	tracking	to	whom	income	flows	

when	GHG	emissions	occur	along	the	supply	chain	(direct	producer-income	GHG	

responsibility)	or	to	whom	income	flows	when	the	fossil	fuels	that	enabled	

downstream	emissions	enter	the	economy	(supplier-income	GHG	footprint).	The	

total	emissions	in	all	accounting	methods	are	exactly	the	same,	but	they	differ	in	

terms	of	how	those	emissions	are	distributed	across	households.	
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Fig.	1.1:	A	simplified	diagram	of	responsibility	frameworks.	In	supplier-
income	responsibility	(blue),	those	who	receive	income	by	supplying	fossil	

fuels	(this	captures	direct	extraction	companies	and	all	those	along	the	entire	
supply	chain	who	directly	or	indirectly	interact	with	them:	such	as	machine	
suppliers,	banks,	or	consulting	companies)	are	assigned	full	responsibility	for	

all	GHG	emissions.	In	a	producer-income	responsibility	(green),	those	
receiving	income	from	an	industry	are	assigned	responsibility	for	emissions	
directly	emitted	by	that	industry.	Finally,	consumer	responsibility	(gold)	

assigns	all	emissions	responsibility	to	those	consuming	the	goods	and	services	
those	emissions	were	used	to	produce.	

	

In	this	way,	the	EE-MRIO	footprints	can	link	individual	consumers,	

households,	or	categories	of	consumers	(e.g.	categorized	by	income	level,	race,	age,	

region)	to	their	consumption-responsibility	(28–39),	income-based	responsibility	

(40–46),	or	a	shared	/	total	responsibility	that	apportions	some	responsibility	to	

each	method	(44,	47–50).	
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1.3 Existing	research	gaps	
	

Prior	work	has	been	done	to	quantify	U.S.	national-level	GHG	emissions	based	

on	direct	producer	emissions	(51),	consumption-based	emissions	(52),	and	supplier	

income-emissions	(43).	This	has	also	been	explored	for	U.S.	households,	for	a	single	

time	period	(28,	35,	38)	and	more	recently	for	a	time	series	(29).	While	some	prior	

consumption-based	studies	investigate	differences	in	footprints	related	to	per	capita	

or	household	income,	no	peer-reviewed	studies	have	focused	on	very	high-income	

households.	To	date,	the	maximum	group	reported	is	per	capita	income	above	

$200,000.	While	this	is	by	no	means	a	paltry	amount,	it	is	far	below	the	minimum	

needed	to	count	as	a	top	1%	U.S.	household	($535,000)	and	well	below	the	average	

income	of	that	group	($1.5	million).	This	top	1%	group	is	critical	to	understand	

because	not	only	does	its	income	allow	for	disproportionately	high	consumption	

levels,	but	it	is	this	group’s	preferences	that	determine	U.S.	public	policy	(53).	

It	is	also	worth	noting	two	working	papers	that	do	make	estimates	for	high-

income	U.S.	groups.	Ummel	(54)	estimates	GHG	footprints	of	~6	million	simulated	

U.S.	households	(based	on	expenditures	from	23,553	unique	households),	across	52	

consumption	categories	and	specifically	makes	per	capita	GHG	estimates	for	the	top	

2%.	He	estimates	average	per	capita	footprints	of	53.5	tons	CO2e	for	this	group.	He	

also	finds	the	share	of	embodied	vs	direct	emissions	increases	with	income;	

accounting	for	75%	of	emissions	footprint	for	the	highest	2%	income	group.	Yet,	this	

2%	income	group	is	based	on	survey	data	that	under-samples	top	income	

households.	
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Chancel	and	Piketty	(55)	use	the	Global	Trade	Analysis	Project	(GTAP)	IO	

database	and	the	Lakner-Milanovic	dataset	(56)	that	provides	decile-level	average	

income/consumption.	They	estimate	the	top	1%	of	the	U.S.	income	distribution	is	

responsible	for	318	tons	CO2e	annually	-	50	times	the	world	average	and	2,500	

times	the	lowest	global	emitters.	Yet,	they	are	ultimately	basing	these	CO2e	

multipliers	on	estimated	income	of	pre-aggregated	decile	groups	and	income	to	

CO2e	elasticity	estimated	by	other	studies,	using	broad	expenditure	categories,	not	

detailed	household	level	spending	data.	This	lacks	the	precision	of	detailed	bottom	

up	household-level	estimates	that	assign	emissions	based	on	granular	expenditure	

categories	and	savings	rates,	before	aggregating	income	groups.	Because	very	top	

income	U.S.	households	have	higher	savings	rates	and	purchase	less	CO2e	intensity	

goods	and	services	than	other	groups,	the	elasticity	values	they	employ	will	

overestimate	U.S.	top	1%	household	footprints.	

In	terms	of	producer-income	or	supplier-income	responsibility,	no	prior	work	

at	all	has	examined	the	distribution	of	GHG	income	benefits	at	the	U.S.	household	

level.	Nor	have	there	been	any	shared	/	total	responsibility	studies	at	the	U.S.	

household	level.	Indeed,	I	am	aware	of	no	existing	research,	for	any	country,	that	

links	households	to	the	GHG	emissions	embodied	in	their	income	for	producer-

income,	supplier-income,	or	total	responsibility.	Furthermore,	to	my	knowledge,	no	

prior	study	has	examined	the	racial	inequality	in	U.S.	consumption	emissions	under	

any	accounting	framework.	The	lack	of	knowledge	in	how	GHG	responsibility	is	

distributed	within	U.S.	society	obscures	the	truth	of	who	benefits	and	who	is	harmed	
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by	climate	change	and	hinders	effective	policy	development	that	reflects	and	

leverages	this	distribution	of	income	and	consumption	benefits.	

1.4 Research	questions	

To	fill	in	these	gaps	I	examine	U.S.	GHG	emissions	at	a	highly	granular-level	using	

four	accounting	frameworks	(consumer,	producer-income,	supplier-income,	and	

total	responsibility)	over	a	20-year	period	(1996-2015).	This	is	guided	by	the	

following	research	questions:	

1) Using	a	consumer-responsibility	framework,	what	is	the	distribution	of	GHG	

responsibility	across	U.S.	households?	What	is	the	scale	of	inequality	

between	different	economic	and	racial	groups?	Specifically,	how	do	very	top	

income	households	compare	to	other	economic	groups	within	society?	How	

do	the	emissions	responsibility	of	these	groups	compare	to	households	in	

other	countries?	And	how	do	these	GHG	inequities,	across	economic	groups,	

vary	across	time?	

2) Using	a	supplier-responsibility	framework,	what	is	the	distribution	of	GHG	

responsibility	across	U.S.	households?	What	is	the	scale	of	inequality	

between	different	economic	and	racial	groups?	Specifically,	how	do	very	top	

income	households	compare	to	other	economic	groups	within	society?	And	

how	do	these	GHG	inequities,	across	economic	groups,	vary	across	time?	

3) Using	a	producer-responsibility	framework,	what	is	the	distribution	of	GHG	

responsibility	across	U.S.	households?	What	is	the	scale	of	inequality	

between	different	economic	and	racial	groups?	Specifically,	how	do	very	top	
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income	households	compare	to	other	economic	groups	within	society?	And	

how	do	these	GHG	inequities,	across	economic	groups,	vary	across	time?	

4) Using	a	total-responsibility	framework	that	captures	both	consumption	and	

income	benefits	what	is	the	distribution	of	GHG	responsibility,	across	U.S.	

households?	What	is	the	scale	of	inequality	between	different	economic	and	

racial	groups?	Specifically,	how	do	very	top	income	households	compare	to	

other	economic	groups	within	society?	And	how	do	these	GHG	inequities,	

across	economic	groups,	vary	across	time?	

By	examining	U.S.	households	under	these	different	accounting	frameworks,	

explicitly	modeling	top	1%	households	(and	sub-groups	within	this),	including	race,	

and	conducting	a	time-series	analysis	my	research	gives	an	unprecedentedly	clear	

picture	of	how	economic	inequality,	race,	and	GHG	responsibility	relate	and	how	this	

changes	over	time.	

1.5 Methods	

To	conduct	this	research	I	pair	an	EE-MRIO	(Fig.	1.2)	with	consumer	

expenditure	surveys,	household	income	survey	data,	and	additional	income	data	for	

very	high-income	households.	The	GHG	intensity	of	goods	and	services	and	income	

is	calculated	using	the	Eora	MRIO	database	(57,	58);	a	highly	granular	IO	model	

covering	14,839	sectors,	190	countries,	and	1,140	final	demand	and	value	added	

categories.	It	has	2,720	environmental	satellite	accounts	and	20	years	of	data	tables.	

Each	year	tracks	about	100	million	inter-sectoral	interactions,	for	a	total	of	about	2	

billion	interactions	over	the	1996-2015	period.	
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Fig.	1.2:	A	simplified	visual	representation	of	a	multi-region	input	output	table	
for	a	three-country	world.	Rows	(dotted	lines)	are	output	from	each	industry	
to	intermediate	or	final	demand,	columns	(dotted	lines)	are	value	added,	

environmental,	and	intermediate	inputs	into	each	industry.	Total	output	and	
total	input	are	equal	(Based	on	Fig.	2.8	in	(59))	
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1.5.1 Environmentally-Extended	Multi-Region	Input-Output	Model	(EE-

MRIO)	

IO	modeling,	including	EE-MRIO,	is	grounded	in	the	work	of	Wassily	Leontief	

(25)	who	formalized	calculating	the	output	of	an	economy	as	the	sum	of	

intermediate	(industry	to	industry	transactions)	and	final	demand	

𝑥 = 𝐴𝑥 + 𝑦	 	 	 	 	 	 	 	 	 	 							(1)	

In	this	matrix	equation,	where	x	is	a	vector	of	total	output	from	each	sector,	A	is	a	

technical	coefficient	matrix	of	the	economy’s	production	function	(the	amount	of	

inputs	received	from	each	sector	divided	by	total	output	of	that	sector),	and	y	is	a	

vector	of	all	final	demand	consumption	for	each	sector.1	Using	matrix	notation	this	

is	written	as		

𝐴 =

𝐴!! 𝐴!" ⋯ 𝐴!!
𝐴!" 𝐴!! ⋯ 𝐴!!
⋮ ⋮ ⋱ ⋮
𝐴!! 𝐴!! ⋯ 𝐴!!

;   𝑥 =

𝑥!
𝑥!
⋮
𝑥!

;   𝑦 =

𝑦!
𝑦!
⋮
𝑦!

 	 	 	 	 							(2)	

In	matrix	equation	form	it	can	be	written	as	

𝑥 = 𝐼 − 𝐴 !!𝑦 	 	 	 	 	 	 	 		 																					(3)	

where	I	is	an	identity	matrix	and	(I	-	A)-1	is	the	Leontief	inverse	matrix	(L)2,	which	

captures	all	direct	and	indirect	inputs	used	to	create	one	unit	of	final	demand	

output.	

Since	(I	-	A)-1	=	L,	this	can	be	simplified	to		

                                            
1	The	vector	y	is	the	row	sum	of	an	m	x	n	matrix,	where	rows	m	are	all	sectors	of	the	global	economy	
and	columns	n	are	five	categories	of	final	demand	(household	consumption,	non-profits	serving	
households,	government	final	demand,	gross	fixed	capital	formation,	and	changes	in	inventories),	for	
each	country.		
2	For	a	comprehensive	guide	to	input	output	analysis	see:	(61,	95,	106).	For	a	basic	introduction	see	
(107)	
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𝑥 = 𝐿𝑦 	 	 	 	 	 	 	 	 			 																					(4)		

An	alternative	to	the	Leontief	demand-side	model	was	proposed	by	Ambica	Ghosh,	

in	1958	(60,	61).	In	this	supply-side	model	gross	output	is	a	function	of	primary	

inputs,	or	a	unit	of	value	(i.e.	value	added)	entering	the	economy.	In	matrix	equation	

form	this	is	

𝑥′ = 𝑣′ 𝐼 − 𝐵 !! 	 	 	 	 	 	 	 	 	 						(5)	 	

where	x	is	a	vector	of	total	output,	‘	denotes	transposing,	v	is	a	vector	of	value	

added3,	I	is	an	identity	matrix,	B	is	a	direct	output-coefficient	matrix	(output	to	each	

industry	divided	by	total	output	from	that	industry),	and	(I	-	B)-1	is	the	Ghosh	

inverse	matrix	(G),	which	captures	all	direct	and	indirect	inputs	used	to	create	one	

unit	of	final	demand	output.		

	

Matrix	notation	for	B,	v,	and	x,	are	written	as		

𝐵 =
𝐵!! 𝐵!" ⋯ 𝐵!!
𝐵!" 𝐵!! ⋯ 𝐵!!
⋮ ⋮ ⋱ ⋮
𝐵!! 𝐵!! ⋯ 𝐵!!

;   𝑣 =
𝑣!
𝑣!
⋮
𝑣!

;   𝑥 =
𝑥!
𝑥!
⋮
𝑥!

              	 					 	 							(6)	

These	can	also	be	transposed	to	

𝑥 = 𝐵′𝑥 + 𝑣	 	 	 	 	 	 	 	 	 	 							(7)	

and	

𝑥 = 𝐼 − 𝐵′ !!𝑣 	 	 	 	 	 	 	 	 	 							(8)		

or	simply	

𝑥 = 𝐺′𝑣 	 	 	 	 	 	 	 	 	 	 							(9)		
                                            
3	The	vector	v	is	the	column	sum	of	an	m	x	n	matrix,	where	rows	m	are	five	value	added	categories	
(compensation	of	employees,	taxes	on	production,	subsidies	on	production,	net	operating	surplus,	
net	mixed	income),	for	each	country,	and	columns	n	are	all	sectors	of	the	global	economy.	
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The	Ghosh	Inverse	(G)	can	also	be	directly	computer	from	the	Leontief	inverse	(L)	

𝐺 = 𝑥!!𝐿𝑥 	 	 	 	 	 	 	 	 	 	 					(10)		

where	^	denoted	a	diagonal	matrix.	

1.5.2 Environmental	Extensions	

This	monetary	input-output	analysis	can	be	extended	to	environmental	

applications	by	treating	environmental	inputs	(e.g.	raw	materials)	or	outputs	(e.g.	

pollution)	as	an	input	to	production.	For	example,	GHG	reporting	allows	for	the	

estimation	of	total	mtCO2e	directly	emitted	by	each	industry.	These	direct	

emissions,	f,	are	divided	by	output	per	industry	to	obtain	mtCO2e	per	unit	of	output	

𝑒 = 𝑓 × 𝑥!!	 	 	 	 	 	 	 	 	 	 					(11)	

where	e	is	a	vector	of	the	direct	environmental	intensity,	from	each	sector.	The	“∧”	

above	x	indicates	matrix	diagonalization.	Matrix	inversion,	-1,	is	used	for	division	

with	matrices.	This	direct	intensity	is	then	combined	with	v	and	G	

𝑊 =  𝑣 × 𝐺 × 𝑒	 	 	 	 	 	 	 	 	 					(12)	

which	yields	W	a	matrix	of	all	direct	and	indirect	CO2e	emissions	from	each	sector.	

Summing	W,	we	obtain	the	total	mtCO2e	emissions	across	the	whole	economy,	

which	equals	the	sum	of	f	(direct	emissions),	but	the	emissions	have	now	been	

redistributed	based	on	the	supplier-income	responsibility	principle.	Summing	each	

column	of	W	gives	the	total	supplier-based	CO2e	of	each	industry	and	summing	each	

row	of	W	gives	the	direct	producer-based	emissions.	Finally,	by	dividing	element-

wise	W	column	sums	by	the	column	sum	of	total	value	added	to	that	sector,	v,	we	

obtain	the	mtCO2e	per	dollar	of	value	added	(also	referred	to	as	CO2e	intensity).	
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The	producer	income	responsibility	is	considerably	simpler	in	formulation.	

𝑃 = 𝑓 × 𝑣!!	 	 	 	 	 	 	 	 	 	 					(13)	

Here	P	is	a	vector	of	direct	emissions	intensity	per	dollar	of	value	added,	f	is	direct	

emissions,	and	these	are	divided	by	value	added	(v).	This	yields	mt	CO2e	per	dollar	

of	value	added,	for	the	direct	producer	responsibility	framework.	

	

Finally,	the	original	demand-side	Leontief	model	has	the	form	

Q	=	 𝑒 × 𝐿 × 𝑦		 	 	 	 	 	 	 	 	 					(14)	

Where	Q	is	a	matrix	of	all	direct	and	indirect	CO2e	emissions	from	each	sector.	

Summing	Q	yields	the	total	mtCO2e	emissions	used	across	the	whole	economy,	

which	equals	the	sum	of	f	(direct	emissions),	but	the	emissions	have	now	been	

redistributed	based	on	the	consumer-responsibility	principle.	Summing	each	

column	of	Q	gives	the	total	consumer-based	CO2e	of	each	industry,	summing	each	

row	of	Q	gives	the	direct	producer-based	emissions.	Finally,	by	dividing	element-

wise	Q	column	sums	by	the	row	sum	of	total	final	demand	for	that	sector,	y,	we	

obtain	the	mtCO2e	per	dollar	of	final	demand	purchase	(also	referred	to	as	CO2e	

intensity).	

In	theory,	while	each	commodity	or	industry	row	of	W,	P	and	Q	may	be	

different,	based	on	the	accounting	principle	used,	summing	each	one	should	obtain	

exactly	the	same	value	(here	total	global	GHG	emissions).	In	practice	I	found	total	

GHG	estimates	for	W,	the	supply	income	model,	were	about	3%	off	from	P	(direct	

producer)	and	Q	(consumer	responsibility).	This	is	because	total	inputs	in	Eora	are	
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not	perfectly	balanced	with	total	outputs	in	Eora.	However,	at	only	3%	difference,	

the	effect	here	is	reasonably	small.	

1.5.3 Pairing	GHG	intensity	with	household	benefits	

To	calculate	household	consumption-based	GHG	footprints,	the	GHG	

intensity	of	commodities	(goods	and	services)	are	matched	with	individual	

household	purchases	of	those	commodities.	This	is	done	using	U.S.	Bureau	of	Labor	

Statistics	(BLS)	Consumer	Expenditure	Surveys	(CES),	which	reports	detailed	

household	consumption	data	for	a	mostly	representative	U.S.	national	sample4	of	

about	14,500	unique	households	(consumer	units)	each	year.	I	extract	83	

expenditure	categories	that	capture	about	90-95%	of	consumer	expenditures	(62).	

In	addition	I	extract	74	variables	related	to	income,	geographic	location,	and	

demographics.	Each	year	yields	a	matrix	of	~1,200,000	expenditure	data	points	and	

~2,300,000	total	data	points,	totaling	about	46,000,000	points	over	the	20-years.	

The	GHG	intensity	of	income	is	calculated	by	linking	industry	specific	GHG	

multipliers	(generated	via	the	Eora	IO	analysis)	with	individual-level	income	data.	

Income	data	come	from	IPUMS	CPS,	a	harmonized	dataset	drawn	from	the	Census	

Bureau’s	Current	Population	Survey	(63).	It	includes	approximately	65,000	U.S.	

households	and	about	189,000	individuals	per	year	and	reports	the	industry	from	

which	income	comes.	From	CPS,	I	extract	31	income	categories,	3	retirement	and	

employer	healthcare	variables,	and	11	social	benefits	and	44	other	variables	related	

                                            
4	The	CES	under-samples	high-income	households.	This	is	accounted	for	via	a	bootstrap	and	
estimation	procedure.	A	detailed	methodology	is	provided	in	the	consumer-responsibility	chapter.	
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to	individual	or	household	characteristics.	Each	year	yields	17,000,000	data	points,	

totaling	about	350,000,000	data	points	across	the	20-year	period.	

The	total	responsibility	framework	is	calculated	by	first	averaging	the	

supplier	and	producer	income	footprints	then	averaging	this	with	consumer	

footprints.	This	provides	a	total	responsibility	framework	in	which	half	a	

household’s	responsibility	is	linked	to	their	source	of	income	and	the	other	half	to	

their	consumption.	

By	quantifying	the	scale	of	GHG	inequality	across	U.S.	households,	exploring	

the	racial	and	temporal	trends	in	this,	and	examining	households	under	different	

responsibility	frameworks	I	hope	to	reveal	a	previously	unknown	insight	into	U.S.	

emissions,	inform	social	narratives	related	to		environmental	and	climate	justice,	

and	highlight	some	policy	opportunities	these	findings	might	impact.	If	we	are	to	

achieve	a	stable	climate	it	is	critical	to	understand	who	is	benefitting	from	GHG	

emissions	so	that	this	group	also	bears	a	commensurate	responsibility	in	an	

effective	policy	response.	My	hope	is	that	the	research	presented	here	will	help	

contribute	to	that	effort.	

1.6 Organization	of	the	Dissertation	
	

Chapter	1	introduced	the	motivation	for	this	work,	research	questions,	and	

broad	methods.	Chapter	2	presents	background,	results,	methods	and	policy	

implications	for	U.S.	household	consumption-based	footprints.	Chapter	3	presents	

background	results,	methods	and	policy	implications	for	producer	and	supplier	

income	based	U.S.	household	GHG	footprints.	Chapter	4	presents	background,	
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results,	methods	and	policy	implications	for	a	producer-supplier	shared	income	

responsibility	and	a	total	responsibility	(based	50%	on	consumption,	25%	on	

supplier-income,	and	25%	on	producer	income).	Chapter	5	concludes	the	work	by	

discussing	how	the	findings	of	Chapters	2-4	relate	to	each	other	and	inform	policy	

formation.	In	addition	it	proposes	future	research	directions	and	places	this	work	in	

a	broader	context.	
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CHAPTER	2	

2 CONSUMPTION-BASED	U.S.	HOUSEHOLD	CARBON	FOOTPRINTS	
	

2.1 Abstract	

Unsustainable	environmental	degradation	and	extreme	economic	inequality	

are	two	of	humanity’s	most	pressing	challenges	and	they	are	intimately	linked.	

Climate	changing	greenhouse	gas	(GHG)	emissions	are	disproportionately	driven	by	

the	consumption	patterns	of	wealthy	and	socially	privileged	groups,	yet	poorer	and	

socially	marginalized	peoples	face	disproportionate	climate	harms.	Here	I	quantify	

GHG	emissions	related	to	the	goods	and	services	consumed	by	United	States	

households	between	1996	and	2015.	Results	reveal	significant	GHG	inequality	

across	economic	class	and	racial	lines.	The	top	1%	of	income	earning	households	

captured	18.9%	of	national	income	and	had	emissions	14.8x	(1,379%)	higher	than	

bottom	decile	U.S.	households	and	218x	(21,674%)	higher	than	low-income	country	

households.	White	non-Hispanic	household	emissions	were	42%	higher	than	black	

households.	If	climate	policy	does	not	account	for	such	extreme	emissions	

disparities	it	will	limit	effectiveness,	erode	public	support,	and	disproportionately	

harm	economic	and	socially	marginalized	groups.	

2.2 Significance	Statement	

Over	the	last	several	decades,	a	growing	share	of	U.S.	national	income	has	

flowed	to	the	top	1%	of	households.	At	the	same	time,	U.S.	greenhouse	gas	emissions	

are	well	above	what	is	needed	to	limit	global	temperature	rise	to	1.5°C.	The	link	
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between	income	and	household-level	emissions	has	previously	been	investigated,	

but	little	work	has	been	done	to	quantify	emissions	of	those	at	the	very	top	of	the	

income	distribution;	this	group	is	of	particular	interest	because	it	exerts	

disproportionate	political	power	in	shaping	climate	policy.	Here,	I	report	20	years	of	

U.S.	emissions	estimates	for	top	income	households.	I	find	significant	inequality	and	

a	meaningful	share	of	national	emissions	being	driven	by	this	small	politically	

powerful	group.	

2.3 Introduction	

Even	if	the	Nationally	Determined	Contributions	(NDC)	of	the	Paris	Agreement	

are	realized,	global	annual	greenhouse	gas	(GHG)	emissions,	in	2030,	are	projected	

to	be	124%	higher	than	what	is	needed	to	limit	global	temperature	rise	to	1.5°C	

(64).	These	emissions	occur	to	provide	goods,	services,	and	wealth	to	people	around	

the	world	(65).	Yet	significant	economic	inequality,	both	within	and	between	

countries,	results	in	a	powerful	disconnect	between	the	groups	who	reap	these	

benefits	and	those	that	are	left	to	deal	with	the	harms	caused	by	excessive	GHG	

emissions,	i.e.,	global	climate	change.	Poorer	and	socially	marginalized	peoples	tend	

to	be	the	most	impacted	by	climate	change	and	other	environmental	degradation	

(66–72)	yet	environmental	change	is	disproportionately	driven	by,	and	for	the	

benefit	of,	those	with	the	most	resources	and	social	privilege	(21,	28,	29,	32,	73,	74).		

It	is	widely	accepted	as	a	basic	principle	of	fairness	that	those	benefiting	from	

an	activity,	like	the	GHG	emissions	that	drive	climate	change,	should	bear	some	

responsibility	in	mitigating	the	damage	caused	by	those	activities.	From	the	
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international	community’s	first	attempt	at	collective	climate	action,	the	1992	United	

Nations	Framework	Convention	on	Climate	Change	(UNFCCC),	through	the	2015	

Paris	Agreement,	this	responsibility	has	been	conceptualized	as	national-level	

responsibility	for	emissions	produced	within	a	country’s	territory.	However,	the	

continued	globalization	of	supply	chains,	since	the	UNFCCC,	means	that	significant	

emissions	may	occur	in	one	country	to	create	goods	and	services	that	are	exported	

around	the	globe.	To	account	for	this,	an	alternative	consumer	responsibility	

framework	has	been	developed	over	the	last	few	decades	(28–39).	This	calculates	a	

nation’s	responsibility	based	on	emissions	that	occur	anywhere	in	the	world	to	

produce	the	goods	and	services	consumed	within	a	country’s	territory.	Because	

goods	and	services	ultimately	flow	to	people,	this	emissions	responsibility	can	be	

traced	to	the	individual	households	who	consume	those	goods	and	services.			

Below,	I	present	results	from	a	highly	granular	time	series	analysis	(1996-

2015)	of	consumption-based	U.S.	household	GHG	emissions.	For	each	year,	I	employ	

a	global	multi-region	input-output	table	to	track	the	GHG	emissions	embodied	in	

10,211	commodities	across	190	countries	(>	100	million	inter-sectoral	transfers	per	

year)	(see	Materials	and	Methods).	The	embodied	emissions	in	these	goods	and	

services	are	tracked	to	final-demand	household-level	purchasing	from	a	mostly	

nationally	representative5	sample	of	~14,500	U.S.	households	per	year.	

Expenditures	for	top	1%	and	0.1%	households,	which	are	under-sampled	in	the	

underlying	survey	data,	are	also	estimated	(see	Materials	and	Methods).	Direct	

                                            
5	Note,	the	underlying	survey	used	in	my	analysis	is	considered	“nationally	representative”,	but	there	
is	a	known	undercount	of	high-income	households.	See	Materials	and	Methods	for	how	I	address	this.	
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household	emissions,	such	as	vehicle	fuel	use	and	home	heating,	are	also	accounted	

for.	To	reveal	how	income	inequality	relates	to	inequality	in	emissions	footprints,	

households	are	binned	into	income	deciles,	including	a	disaggregation	of	the	top	

decile	into	the	top	1%	(99.0th	-	100th	percentile),	next	9%	(90.0th	-	99th	percentile),	

and	a	further	disaggregation	of	the	top	1%	into	the	top	0.1%	(99.9th	-	100th	

percentile)	and	next	0.9%	(99.0th	-	99.9th	percentile)	of	income	earners.	

2.4 Results	

2.4.1 Time	Series:	1996-2015	

From	1996	to	2015,	national	average	household	emissions	declined	14%,	

from	49.3	to	42.2	metric	tons	(mt)	CO2e.	All	deciles	show	similar	net	declines	(range:	

-7%	to	-23%).	However,	when	decile	10	is	broken	into	the	top	1%	and	next	9%,	I	

find	the	trends	suddenly	diverging	(Fig.	2.1).	The	next	9%,	like	all	the	lower	deciles,	

also	shows	a	net	emissions	decline	(-14%),	from	94.1	to	81.3	mt	CO2e.	Unlike	the	

lower	99%	of	households,	the	top	1%	saw	an	increasing	emissions	trend	(+19%)	

from	216	to	256	mt	CO2e.		

When	I	further	disaggregate	the	top	1%	into	the	next	0.9%	and	the	top	0.1%,	I	

find	the	next	0.9%	emissions	increased	8%	in	those	20	years	(167	to	181	mt	CO2e),	

while	top	0.1%	households	emissions	rose	42%	(658	to	937	mt	CO2e).		These	net	20-

year	rises	in	estimated	household	GHG	footprint	for	the	top	1%,	next	0.9%,	and	top	

0.1%	households	all	stand	in	stark	contrast	to	the	decreasing	footprints	seen	by	the	

bottom	99%	of	households.	
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Indeed,	apart	from	the	consumption-based	emissions	of	these	very	top	

households,	many	emissions-related	measures	fell	during	this	time:	total	U.S.	

territorial	producer	emissions,	national	GHG	per	capita,	per	household,	and	per	

dollar	spent	(Fig.	2.1).	Total	consumption-based	emissions	summed	over	all	U.S.	

households	saw	only	a	modest	increase	(+5%),	in	spite	of	a	much	larger	increase	in	

the	U.S.	population	(+19%)	and	expenditure	dollars	per	capita	(+15%).	So	why	do	

both	subgroups	in	the	top	1%	of	households	buck	these	declining,	or	only	modestly	

increasing,	emissions	trends?	One	factor	is	the	significant	income	growth	that	has	

accrued	to	this	group	(Fig.	2.2).	The	next	0.9%	saw	income	growth	of	52%,	from	

$595,000	to	$903,000.	The	top	0.1%	saw	average	pre	tax	incomes	rise	85%	over	20	

years,	from	$3.6	million	to	$6.7	million	(in	2020	US$).	Rising	incomes	result	in	more	

dollars	available	to	purchase	the	goods	and	services	that	drive	GHG	emissions,	even	

though	the	marginal	propensity	to	consume	tends	to	fall,	at	higher	income	levels	

(75).	
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Fig.	2.1:	Mean	household	metric	tons	CO2e	emissions	(1996-2015)	per	income	
decile,	with	Decile	10	broken	into	top	0.1%,	top	1%,	next	0.9%	and	next	9%.	

Shading	is	standard	error.	
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Fig.	2.2:	Percent	changes	(1996-2015)	in	income,	population,	spending,	total	
and	average	U.S.	CO2e	emissions,	and	CO2e	intensity	relative	to	1996	base	

year.	

2.4.2 Most	Recent	Year	(2015)	

In	2015,	the	most	recent	year	for	which	I	have	data,	I	estimate	the	top	decile	

had	an	average	emissions	footprint	of	98.8	mt	CO2e	(median	(x̃)	=	76.1),	and	

collectively	accounted	for	23%	of	total	U.S.	emissions.		Within	decile	10,	the	next	9%	

averaged	81.3	mt	CO2e	(x̃	=	74.1)	and	accounted	for	17%	of	total	U.S.	emissions.	Top	

1%	households	averaged	255.9	mt	CO2e	(x̃	=		165.8,	responsible	for	6%	of	total	U.S.	

emissions)	(Fig.	2.3);	with	next	0.9%	averaging	180.6	mt	CO2e	(x̃	=		154.2,	3.8%	of	

U.S.	emissions),	and	top	0.1%	averaging	937.5	mt	CO2e	(x̃	=	567.2,	2.2%	of	total	U.S.	

emissions)	(Fig.	2.4).	
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Fig.	2.3:	Mean	household	mt	CO2e	emissions	(2015)	per	income	decile,	with	
Decile	10	broken	into	top	1%	and	next	9%.	The	width	of	each	income	group,	
on	the	x-axis,	corresponds	with	each	group’s	share	of	total	national	CO2e	
emissions.	Colors	represent	the	mt	CO2e	from	each	expenditure	category,	
based	on	mean	contribution	from	each	category,	per	income	group.	Note:	

standard	error	bars	are	for	each	income	group's	mean	footprint.	
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Fig.	2.4:	Mean	household	mt	CO2e	emissions	(2015)	per	income	decile,	with	
Decile	10	broken	into	top	0.1%,	next	0.9%	and	next	9%.	The	width	of	each	
income	group,	on	the	x-axis,	corresponds	with	each	group’s	share	of	total	

national	CO2e	emissions.	Colors	represent	the	mt	CO2e	from	each	expenditure	
category,	based	on	mean	contribution	from	each	category,	per	income	group.	

Note:	standard	error	bars	are	for	each	income	group's	mean	footprint.	
	

The	absolute	difference	in	emissions,	between	groups,	is	stark.	Yet	by	

normalizing	each	group’s	share	of	national	emissions	by	its	population	share,	the	

results	reveal	even	more	significant	inequality.	The	bottom	decile’s	emissions	are	

60%	lower	per	household,	than	if	emissions	were	equitably	distributed	across	all	

U.S.	households	(Fig.	2.5).	Similarly,	deciles	2-6	accounts	for	a	smaller	emission	

fraction	than	their	share	of	total	U.S.	population.	The	top	1%	has	emissions	501%	

(6x)	higher	than	its	population	share	and	1,379%	(14.8x)	larger	than	an	average	

bottom	decile	household.	The	top	0.1%	has	average	emissions	2,099%	(22x)	higher	

than	its	population	share	and	5,318%	(54.2x)	larger	than	an	average	bottom	decile	

household.	
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Fig.	2.5:	Emissions	share	relative	to	population	share	(%	difference)	for	

deciles	1-9,	next	9%,	next	0.9%	and	top	0.1%	(2015).	A	zero	value	on	the	y-axis	
indicates	an	equitable	distribution:	i.e.	the	group’s	share	of	national	emissions	
equals	its	population	share.	The	width	of	each	income	group,	on	the	x-axis,	
corresponds	with	each	group’s	share	of	total	national	CO2e	emissions.	Note,	
the	negative	emissions	of	deciles	1-6	and	extreme	inequality	of	the	next	0.9	

and		top	0.1%.	
	

Household	footprints	are	critically	shaped	by	the	types	of	goods	and	services	

purchased.		In	2015,	purchases	from	Transport	and	the	Utility	and	Home	Energy	

categories	accounted	for	14.6%	of	expenditure	dollars,	from	average	top	1%	

households	(Fig.	2.6);	yet	contributed	36.7%	to	the	household’s	emissions	footprint	

(Fig.	2.7).	Meanwhile,	expenditures	related	to	the	Finance	and	Insurance	(non-
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health)	and	Home	categories	accounted	for	53.0%	of	their	expenditure	dollars,	but	

only	37.6%	of	their	emissions	footprint.	Households	at	a	given	expenditure	level	

may	thus	have	very	different	footprints,	based	on	the	types	of	goods	and	services	

purchased.	Across	groups,	the	CO2e	intensity	of	low-income	households	tends	to	be	

higher	than	upper	income	households	(1.5x	higher	than	the	top	1%,	see	Fig.	6.5	in	

Appendix	A),	as	their	consumption	is	dominated	by	carbon	intensive	necessities.		

	
Fig.	2.6:	Expenditure	percent	per	expenditure	category	(2015).	
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Fig.	2.7:	Emissions	percent	per	expenditure	category	(2015).	

	

2.4.3 Relationship	to	Racial	Inequality	

The	bottom	income	decile,	which	was	responsible	for	4%	of	U.S.	

consumption-based	emissions,	in	2015,	is	19%	black	(the	highest	share	in	any	

decile),	14%	Hispanic,	and	58%	white	non-Hispanic	(the	lowest	share	in	any	decile).	

The	top	decile,	responsible	for	23%	of	national	emissions	is	4%	black	(the	lowest	

share	in	any	decile),	5%	Hispanic,	and	79%	white	non-Hispanic	(the	highest	share	in	

any	decile).	Across	all	economic	groups,	black	households	had	average	footprints	of	

31.8	mt	CO2e,	white	Hispanic	households	35.2	mt	CO2e,	and	white	non-Hispanic	

households	45.1	mt	CO2e.	The	fact	that	white	non-Hispanic	households	had	

emissions	28%	higher	than	Hispanic	households	and	42%	higher	than	black	

households	reflects	a	striking	degree	of	racial	inequality	in	who	receives	the	

consumption	benefits	of	GHG	emissions.	
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2.4.4 Super	Emitters		

For	2015,	I	estimate	3.9%	of	the	top	0.1%	households	had	emissions	over	

3,000	mt	CO2e	(mean	=	3,617,	x̃	=	3,476)	.	Even	though	they	make	up	only	a	tiny	

fraction	of	households,	are	such	high	estimates	feasible?	To	cross-check	their	

validity,	I	independently	estimate	per	household	emissions	related	to	luxury	goods	

that	are	principally	or	only	consumed	by	top	1%	households	(see	SI	for	

methodology).	This	includes	large	mansions	or	multiple	large	homes,	first	class	air	

travel,	private	jets,	and	super	yachts.	

Construction	of	40,000	square	feet	of	living	space	(either	in	one	large	home	

or	multiple	homes)	emits	~1,688	mt	CO2e.		Yet,	because	these	emissions	are	

amortized	over	an	estimated	50	year	home	lifespan,	annual	emissions,	from	initial	

construction,	are	only	about	34	mt	CO2e.	Emissions	related	to	electricity	and	utilities	

add	about	95	-	122	mt	CO2e,	per	year,	for	40,000	square	feet	of	home.	

Emissions	from	first	class	air	travel	add	up	to	100	mt	CO2e	or	more	for	an	

average	sized	family	travelling	on	3-5	long	haul	flights	per	year.	I	estimate	annual	

fuel-related	emissions	from	private	jets,	whose	ownership	and	use	are	concentrated	

within	extremely	wealthy	households,	average	about	1,172	mt	CO2e	per	jet.	On	the	

seas,	I	estimate	average	annual	emissions	from	motorized	superyachts	(30+	meter)	

to	be	about	1,150	mt	CO2e	per	vessel.	For	both	jets	and	super-yachts,	individual	

emissions	can	be	even	higher	if	the	vessels	are	larger	or	used	more	frequently	than	

my	estimates.	While	rare,	adding	these	extreme	luxury	emissions	together	with	

other	expenditures,	household	GHG	footprints	of	3,000	(or	more)	mt	CO2e	per	year,	

are	feasible.	
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2.4.5 Global	Comparison	(2010)	

While	significant	emissions	inequality	exists	across	U.S.	households,	even	the	

bottom	U.S.	decile	has	relatively	high	emissions	when	compared	to	other	countries’	

consumption-based	emissions	(Table	2.1)	(76).	The	national	average	U.S.	footprint	

is	2.9x	larger	than	the	high-income	country	average	and	32.6x	larger	than	the	low-

income	country	average.	An	average	top	1%	U.S.	household	has	emissions	19.5x	

larger	than	the	high-income	country	average	and	218x	(21,674%)	higher	than	the	

low-income	country	average.	At	the	extremes,	the	top	0.1%	U.S.	income	group	is	

745x	(74,509%)	higher	than	an	average	household	in	a	low-income	country	and	an	

average	U.S.	super	emitter	is	2,582x	(258,155%)	higher	than	the	low-income	country	

average.	
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Table	2.1:	Comparison	(times	larger)	of	mean	household	emissions,	per	U.S.	
income	group,	including	super	emitters	(2010),	to	per	household	national	

averages	for	low,	low-middle,	high-middle,	and	high-income	countries	(global	
estimates	are	2010	from	(76).	

	
	 U.S.	income	groups	

(times	larger)	

Global	
income	
groups	

Decile	
1	
	

Decile	
5	
	

National	
househo

ld	
average	

Decile	
10	
	

Decile	10	 top	1%	

next	
9%	

top	
1%	

next	
0.9%	

top	
0.1%	

super	
emitters	

(mtCO2e)	 (15.9	mt)	 (38.3	mt)	 (47.3	mt)	 (121.9	mt)	 (100	mt)	(316	mt)	 (233	mt)	 (1081	mt)	 (3747	mt)	

Low		
(1.5	mt)	 11.0	 26.4	 32.6	 84.0	 68.9	 217.7	 160.8	 745.1	 2581.6	

Low-
middle		
(4.4	mt)	 3.6	 8.6	 10.6	 27.4	 22.5	 71.1	 52.5	 243.3	 843.0	

High-
middle		
(8.9	mt)	 1.8	 4.3	 5.3	 13.7	 11.3	 35.5	 26.3	 121.6	 421.5	

High		
(16.2	mt)	 1.0	 2.4	 2.9	 7.5	 6.2	 19.5	 14.4	 66.6	 230.8	

2.5 Discussion		

2.5.1 Relationship	of	Emissions	Inequality	to	Income	Inequality		

My	results	show	significant	emissions	inequality	within	U.S.	society.	In	2015,	

the	bottom	50%	of	the	population	was	responsible	for	30.9%	of	national	emissions,	

while	the	top	10%,	top	1%,	and	top	0.1%	were	respectively	responsible	for	23.2%,	

6%,	and	2.2%	of	national	emissions.	Yet,	the	income	that	enables	consumption-

based	emissions	is	even	more	inequitably	distributed	(77).	In	2015,	the	bottom	50%	

of	the	population	captured	just	12.9%	of	national	income,	while	the	top	10%,	top	

1%,	and	top	0.1%	captured	45.7%,	18.9%,	and	8.5%	of	national	income	(78).	
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Emissions	are	less	unequal	than	income	because	social	welfare	programs,	

progressive	taxation,	and	variable	savings	rates	decouple	income	from	expenditure.	

Among	low-income	households,	social	welfare	programs	result	in	some	households	

having	expenditures	higher	than	incomes,	thus	increasing	their	GHG	emissions	per	

dollar	of	income.	Among	high	earning	households,	progressive	taxation	and	high	

savings	rates	results	in	less	expenditures	per	dollar	of	income.	Especially	at	very	

high	income	levels,	a	high	savings	rate	reflects	the	diminishing	marginal	propensity	

to	consume	(75).	Additionally,	the	types	of	goods	and	services	purchased	(Fig.	2.6)	

and	their	respective	GHG	intensities	(Fig.	2.7)	vary	across	income	groups.	Low-

income	decile	spending	is	dominated	by	GHG	intensive	necessities	while	the	top	1%	

shifts	spending	to	less	GHG-intensive	services,	resulting	in	lower	GHG	intensity	per	

expenditure	dollar	(see	Fig.	6.5	in	Appendix	A).		

2.5.2 Factors	shaping	household	footprints		

Household	footprints	are	directly	determined	by	the	types	and	quantity	of	

goods	and	services	purchased.	As	my	results	show,	these	household	expenditures	

are	strongly	tied	to	household	income.	Yet	even	at	a	given	income	level,	GHG	

footprints	vary	due	to	differences	in	consumer	preferences,	geographic,	social,	

economic,	and	policy	factors,	cutting	across	scales	(household,	community,	regional,	

national,	and	global)	over	which	individual	households	have	varying	degrees	of	

agency	(79).	

Among	the	lowest	deciles,	the	ability	to	shift	spending	towards	less	GHG-

intensive	goods	is	limited	by	expenditures	principally	flowing	to	carbon	intensive	
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basic	necessities	and	limited	access	to	savings	or	credit.	In	contrast,	high-income	

households	have	significant	agency,	discretionary	spending,	saving	rates,	wealth,	

and	credit	that	results	in	consequential	emissions	differences,	even	at	a	given	

income	level.	Variations	in	these	factors,	particularly	tax	and	savings	rates,	drive	the	

significant	year	to	year	GHG	variation	we	see	in	top	0.1%	households	(Fig.	2.1).	

Household	agency	is	nested	within	community	and	regional	factors	such	as	

local	climate,	energy	efficiency	of	available	housing	stock,	and	transportation	and	

energy	infrastructure.	The	GHG	intensity	of	regional	electric	grids	is	a	key	factor	

shaping	household	footprints,	and	it	is	one	over	which	they	have	extremely	limited	

agency.	In	2015,	the	average	CO2e	intensity	per	dollar	of	electricity	production	from	

the	ten	dirtiest	states	was	6.7	times	higher	than	that	of	the	ten	cleanest	states	(80,	

81).	At	the	state	and	national-level,	differences	in	tax	policy,	environmental	

regulation	and	clean	energy	investment	also	play	an	important	role	in	shaping	

household	level	GHG	variations,	since	they	can	encourage	(or	discourage)	moves	

toward	less	GHG	intensity.	Finally,	the	GHG	intensity	of	internationally-produced	

goods	and	services	is	nested	within	globalized	supply	chains,	and	here	too,	

individual	consumers	cannot	exert	much	influence	at	all.		

2.5.3 Policy	Implications	

Economists	widely	agree	that	carbon	pricing,	via	either	a	carbon	tax	or	cap-

and-trade	system,	will	be	essential	to	decarbonize	the	US	economy	in	a	cost-

effective	way	(82,	83).	Both	carbon	taxes	and	cap-and-trade	have	their	own	unique	

features,	but	their	ultimate	effect	is	to	price	in	some	of	the	social	costs	of	emissions.	
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To	successfully	shift	spending,	however,	it	is	estimated	that	the	tax	rate	would	need	

to	be	set	relatively	high.	For	example,	Heal	and	Schlenker	(83)	have	calculated	that	

achieving	a	5%	impact	on	oil	consumption	would	require	the	tax	rate	to	be	set	at	

$200	per	ton	CO2e,	with	70-80%	of	this	cost	initially	passed	onto	consumers.		

For	a	top	1%	household,	a	carbon	tax	of	$200	per	mt	CO2e	amounts	to	3%	of	

pre-tax	income	(11%	of	expenditures).	In	contrast,	for	deciles	1-3,	it	equates	to	

53%,	26%,	and	21%	of	their	respective	incomes	(15-16%	of	expenditures)6.	With	

little	discretionary	spending	or	savings	to	draw	on,	low-income	families	would	be	

forced	to	make	painful	cutbacks	when	faced	with	such	a	tax,	while	middle-decile	

households	could	pursue	a	mix	of	cutbacks	and	decreased	savings.	Meanwhile,	high-

income	households	enjoy	significant	savings	rates	(46%	for	top	1%	and	57%	for	top	

0.1%	groups,	in	2015)	that	allow	them	to	simply	absorb	the	tax.	This	raises	a	

significant	equity	concern	that	high-emitting	wealthy	families	would	be	free	to	make	

no	meaningful	lifestyle	changes,	while	low-emitting	poor	families	would	face	a	

crushing	burden.	

To	address	this,	any	revenue	generated	from	tax	or	emissions	permit	sales	

could	be	used	to	reduce	general	sales	tax	or	even	make	lump	sum	dividend	

payments	to	households.	This	can	make	such	price	increases	either	cost	neutral	or	

even	of	net	benefit	to	low-income	households	(84–86).	Yet	if	high-income	

households	largely	absorb	the	tax,	and	low-income	households	see	a	net	benefit,	it	

could	have	the	result	of	boosting	their	expenditures	(which	are	47%	more	CO2e	

                                            
6	The	carbon	tax	as	a	share	of	expenditure	is	lower	and	more	consistent	across	these	groups,	than	as	
a	share	of	income,	because	social	transfers	result	in	expenditures	that	are	higher	than	incomes	and	
average	expenditures	between	groups	are	closer	than	their	average	incomes.	
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intensive	than	top	1%	households)	and	thus	their	GHG	emissions.	If	such	transfers	

made	the	tax	neutral	for	low-income	families	and	the	remainder	flowed	to	clean	

energy	investment	and	credits	or	subsidies	for	low-income	households,	it	may	

successfully	lead	to	emissions	reductions.	Yet,	a	significant	political	challenge	with	

any	such	proposal	is	that	setting	rates	high	enough	to	shift	behavior	may	stimulate	

public	backlash.	While	a	redistribution	plan	could	increase	public	support,	the	high-

income	households	that	would	pay	the	most	tax	are	the	same	households	whose	

preferences	dominate	policy-making	(53),	potentially	reducing	their	support	for	

such	measures.	

2.5.4 Equity,	Climate	and	Environmental	Justice		

My	results	show	significant	emissions	inequality,	within	U.S.	society,	that	cuts	

across	economic	class	and	race.	They	also	show	this	inequality	is	even	more	

significant	when	compared	to	global	income	groups.	In	order	to	keep	global	

temperature	within	1.5°C,	only	~420	GT	of	additional	CO2e	(approximately	10	years	

of	global	emissions	at	current	rates)	can	still	be	added	to	the	atmosphere	(87).7	How	

should	these	emissions	be	divided	among	the	planet’s	7.8	billion	inhabitants	(and	

future	generations)?	

The	U.S.	accounts	for	just	4%	of	the	global	population,	but	at	current	rates,	

U.S.	consumption-based	emissions	alone	would	use	all	of	this	budget	by	2100,	with,	

as	my	results	show,	the	wealthiest	U.S.	households	capturing	a	disproportionate	

share.	At	the	same	time,	there	are	currently	~700	million	people	globally	who	live	in	

                                            
7	Note,	this	is	a	66%	probability	of	remaining	within	1.5°C.	The	IPPC	estimate	was	published	in	2018,	
I	have	updated	it	to	2020.	
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extreme	poverty	(<$1.90	PPP	per	day).	Moving	this	group	to	a	very	modest	global	

middle	class8	(<$2.97	PPP	-	$8.44	PPP)	would	also	use	up	the	entire	remaining	CO2e	

budget	by	2100	(76,	88).	

To	which	group	should	emissions	be	allocated?	Setting	aside	for	now	the	

thorny	question	of	large	disparities	between	nations’	historical	emissions,	one	

equity-seeking	approach	might	be	to	simultaneously	set	a	global	emissions	target,	

an	individual	emissions	floor,	and	an	individual	emissions	cap.	The	IPCC	estimates	

30	Gt	CO2e	is	the	upper	2030	limit	to	keep	warming	within	1.5°C.	Using	that	as	the	

global	emissions	target,	all	people	could	be	allocated	a	floor	of	at	least	0.9	mt	CO2e	

and	a	cap	of	8.7	mt	CO2e	(89).	Currently,	even	the	poorest	U.S.	decile’s	emissions	per	

capita	are	47%	(1.5x)	above	the	cap,	while	average	top	1%	and	top	0.1%	emissions	

per	capita	are	945%	(10.5x)	and	3,734%	(38x)	higher.	

These	emissions	disparities	highlight	the	unequal	allocation	of	consumption	

benefits	to	higher	income	countries,	and	particularly	to	high-income	households	

within	such	countries.	At	the	same	time,	the	harms	of	climate	change	will	fall	

unequally	on	poorer	nations	and	on	poorer	households	in	nearly	every	country	(66,	

69).	

Humanity	is	thus	faced	with	stark	choices.	Should	emissions	go	to	the	poorest	

to	create	a	global	middle	class?	Should	they	go	to	future	generations?	Or	should	they	

go	toward	enabling	the	wealthiest	to	consume	10,	100,	or	>1,000	times	more	than	

others?	If	it	is	to	go	to	the	richest,	what	compensation	is	owed	to	society?	By	

                                            
8	Note,	this	is	the	global	middle	class,	which	is	well	below	middle	class	living	standards	in	developed	
countries.	Global	middle	class	is	below	the	poverty	line	in	a	developed	nation.	
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quantifying	the	scale	of	this	inequity,	my	findings	help	to	inform	such	discussions	

and	provide	the	basis	for	improving	policy	design.	

	

2.6 Materials	and	Methods	

I	combine	an	Environmentally-Extended	Multi-Region	Input-Output	Model	

(EE-MRIO)	direct	emissions	data,	consumer	expenditure	surveys	(CES),	and	income	

data	to	link	global	GHG	emissions	with	the	goods	and	services	consumed	by	U.S.	

households.	

To	calculate	the	embodied	CO2e	intensity	of	these	goods	and	services,	I	use	the	

Eora	MRIO	database	(57,	58)	covering	14,839	sectors,	across	190	countries,	with	

1,140	final	demand	and	value	added	categories.	For	each	year,	I	convert	EORA	from	

a	heterogeneous	classification	system	to	a	square	10,211	sector	commodity	by	

commodity	input-output	table,	using	the	Industry	Technology	Assumption,	and	

convert	current	year	dollars	to	constant	2020	US$.	Direct	production-based	CO2e	

emissions	data,	from	the	PRIMAPHIST	database	(available	in	Eora),	for	six	Kyoto	

GHG	(90),	are	converted	to	embodied	emissions	per	dollar	of	final	demand	using	the	

Leontief	inverse	(21,	25,	28–30,	38).	This	captures	all	direct	and	indirect	CO2e	

emissions,	along	the	whole	supply	chain	(>	100	million	inter-sectoral	transfers	each	

year),	that	were	used	to	produce	a	dollar	output	to	final	demand.	

Direct	emissions	by	the	consumer,	most	notably	transportation	fuels	and	

home	heating	and	cooking	fuels,	were	calculated	based	on	CO2e	emissions	factors,	

per	physical	unit	of	fuel	(91)	and	price	data	per	unit	of	fuel	from	the	U.S.	Energy	
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Information	Administration.	Where	available,	regional	or	state	level	price	

adjustments	were	made.	

For	each	year,	these	supply	chain	and	direct	emissions	factors	are	matched	

with	household-level	expenditure	data	from	the	U.S.	Bureau	of	Labor	Statistics	(BLS)	

Consumer	Expenditure	Surveys	(CES).	The	CES	is	a	mostly	representative	U.S.	

national	sample	of	about	14,500	unique	households	(consumer	units)	each	year,	

capturing	about	90-95%	of	consumer	expenditures	(62).	From	the	full	CES	dataset,	I	

extract	83	detailed	expenditure	categories9	and	74	variables	related	to	income,	

geographic	location,	and	demographics.	Each	year	yields	a	matrix	of	~1,200,000	

expenditure	data	points	and	~2,300,000	total	data	points.		

Prior	to	2008,	electricity	and	direct	energy	use	CO2e	intensities	per	dollar	

were	regionally	adjusted,	as	data	allowed,	but	no	regional	price	adjustments	data	

were	available	for	other	expenditure	categories.	For	2008	onward,	all	expenditure	

categories	are	regionally	adjusted	using	the	Bureau	of	Economic	Analysis	(BEA)	

Price	Parity	by	Portion	(PARPP).	For	each	household,	this	makes	region-specific	

price	adjustments	based	on	type	of	expenditure,	state,	and	urban	or	rural	status.	For	

electricity	expenditures,	the	national	CO2e	intensities	are	replaced	with	state-level	

multipliers	that	reflect	the	CO2e	intensity	of	the	local	electric	grid,	in	the	relevant	

year	(80,	81).	

While	CES	is	the	most	authoritative	source	on	U.S.	household	expenditures,	it	

has	a	known	underreporting	bias	from	high-income	households	(92,	93).	To	account	

for	this,	I	create	a	synthetic	dataset	for	the	next	0.9%	and	top	0.1%	households	and	

                                            
9	These	are	compiled	from	several	hundred	lower	level	expenditure	categories	
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estimate	their	expenditures.	I	do	this	by	first	creating	a	distribution	of	1,000	

households,	per	group,	whose	mean	pre-tax	income	and	upper	and	lower	bounds	

matches	that	reported	by	the	World	Inequality	Database	(WID),	and	whose	

distribution	is	right-skewed	to	reflect	the	income	inequality	within	these	groups.	I	

then	subtract	estimated	tax	and	savings	rates,	with	the	difference	considered	

expenditure	dollars.	To	allocate	spending	across	the	expenditure	categories,	I	

bootstrap	CES	households	that	meet	the	top	1%	WID	threshold.	I	then	apply	a	

randomization	algorithm,	to	simulate	household	spending	differences,	that	

calculates	each	household’s	percent	of	expenditure,	per	category,	while	allowing	

each	expenditure	category	to	vary	+/-	50%,	from	the	original	bootstrapped	value.	At	

the	same	time,	each	household’s	total	expenditures	are	constrained	to	a	sum	of	

100%.	Finally,	these	estimated	percentages,	per	category,	are	multiplied	by	the	

synthetic	dataset’s	expenditure	dollars.	This	yields	dollars,	per	expenditure	category	

estimates,	for	next	0.9%	and	top	0.1%	groups.	Top	1%	CO2	estimates	come	from	a	

weighted	average	of	the	next	0.9%	and	top	0.1%	groups.	

For	each	household,	purchases	from	each	of	the	83	CES	goods	and	service	

sectors	are	linked	to	the	mt	CO2e	per	dollar	final	demand	of	that	sector,	from	Eora.	

This	is	done	via	a	10,211	x	83	concordance	matrix,	using	the	International	Standard	

Industrial	Classification	(ISIC)	system.	Multiplying	each	household’s	expenditures	

by	this	concordance	matrix	yields	emissions	per	expenditure	category.	Summing	

across	all	categories	and	adding	direct	emissions,	yields	each	household’s	total	

consumption-based	mt	CO2e	footprint	(see	SI	for	more	detailed	methods,	treatment	

of	durable	goods,	and	crosscheck	of	super-emitter	households).	
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CHAPTER	3	

3 INCOME-BASED	U.S.	HOUSEHOLD	CARBON	FOOTPRINTS	
	

3.1 Abstract	

Since	1996,	the	share	of	national	income	flowing	to	the	top	1%	of	United	States	

(U.S.)	households	has	increased	about	a	quarter,	to	over	18%	today.	At	the	same	

time,	U.S.	greenhouse	gas	(GHG)	emissions	remain	far	above	what	is	possible	if	

humanity	is	to	restrict	global	temperature	rise	to	1.5°C.	In	this	chapter	I	combine	

environmentally-extended	multi-region	input-output	analysis	with	nationally	

representative	household	surveys	and	top	income	group	data	to	examine	the	GHG	

emissions	responsibility	of	U.S.	households	based	on	the	emissions	used	to	generate	

their	income.	I	do	this	at	high	granularity,	over	the	20-year	period	1996-2015,	and	

compare	emissions	responsibility	across	income	groups.	As	in	Chapter	2,	I	find	

significant	inequality	across	groups,	with	the	bottom	50%	of	households	

responsible	for	only	15-24%	of	national	income-based	emissions	(depending	on	

framework)	while	the	politically	powerful	top	1%	of	U.S.	households	is	responsible	

for	11-16%.	These	results	suggest	an	alternative	income-based	carbon	tax	(on	wage	

or	investment	income)	may	have	equity	advantages	over	traditional	consumer-

facing	cap-and-trade	or	carbon	tax	options.	

3.2 Significance	Statement	

Prior	work	has	examined	the	greenhouse	gas	(GHG)	emissions	of	nations	

based	on	different	responsibility	principals	including:	supplier,	producer,	and	
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consumer.	These	have	respectively	linked	GHG	emissions	to	the	income	it	generates	

and	the	consumption	it	enables.	While	consumption-based	footprints	have	been	

traced	to	the	household-level,	no	prior	analysis	has	extended	income-based	GHG	

responsibility	to	households.	This	misses	a	critical	connection	between	GHG	

emissions	and	the	flow	of	economic	benefits.	Here,	for	the	first	time,	I	link	20	years	

of	U.S.	household-level	income	data	to	the	GHG	emissions	that	occurred	to	generate	

that	income,	using	both	supplier	and	producer	responsibility	frameworks.	I	find	vast	

inequality	across	households	and	a	significant	share	of	national	emissions	being	

driven	by	top	income	households.		

3.3 Introduction	

Over	the	last	decade,	the	average	global	average	temperature	was	the	warmest	

10-year	period	on	record	and	trends	in	the	greenhouse	gas	(GHG)	emissions	driving	

such	warming	remain	stubbornly	above	Paris	Agreement	targets	(64,	94).	At	the	

same	time,	extreme	economic	inequality,	across	and	within	societies,	results	in	a	

powerful	disconnect	between	those	who	reap	the	economic	or	consumption	benefits	

these	GHG	enable	and	those	who	face	the	worst	impacts	of	climate	change.	Putting	

aside	intergenerational	equity,	this	present	day	disconnect	creates	a	fundamental	

challenge	to	effective	and	equitable	policy	development,	as	those	most	benefitting	

from	GHG	emissions	also	tend	to	have	the	most	economic	and	political	power	while	

those	most	at	risk	of	climate	harms	tend	to	have	the	least.	

No	country	on	earth	has	emitted	more	climate	altering	greenhouse	gases	

(GHG)	or	reaped	more	economic	benefit,	from	the	cheap	energy	driving	these	
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emissions,	than	the	United	States	(U.S.).	It	is	the	largest	historical	GHG	emitter,	

currently	the	second	largest	territorial	emitter	and	has	some	of	the	highest	per	

capita	incomes	and	consumption	on	the	planet.	At	the	same	time,	the	U.S.	has	

significant	economic	inequality,	with	the	top	10%	of	income	earners	capturing	46%	

of	national	income,	in	2019,	and	the	top	1%	alone	capturing	19%	(78).	This	top	

income	group	is	not	only	richer,	but	also	whiter,	more	educated,	and	more	

economically,	socially,	and	politically	powerful	than	any	other	group	in	the	country.	

It	is	the	preferences	of	this	group	that	shape	public	policy,	including	climate	action	

(53).	Because,	prior	work	linking	U.S.	households	to	their	consumption	or	income-

based	GHG	emissions	has	focused	on	decile	or	national-level	analysis	the	GHG	

emissions	responsibility	of	these	politically	powerful	households	have	until	now	

been	obscured.	Here	I	analyze	the	income-based	GHG	emissions	of	U.S	households,	

including	the	top	1%,	over	a	20-year	period	(1996-2015).	

Our	income-based	approach	(40–46)	has	two	distinct	accounting	regimens:	

direct-producer	emitter	and	supplier	and	calculates	both	pre-tax	and	post-tax	GHG	

responsibility.	In	the	direct-producer	emitter	approach,	households	drawing	an	

income	from	an	industry	(through	wages	or	return	on	investment)	are	held	

responsible	for	a	share10	of	that	industry’s	direct	operational	emissions	(Scope	1).11	

In	the	supplier	approach,	households	receiving	an	income	(wages	or	return	on	

                                            
10	In	both	accounting	schemes	the	units	are	metric	tons	(mt)	CO2e	per	dollar	of	income.	Each	
household’s	share	of	responsibility	is	commensurate	with	their	share	of	income	out	of	total	value	
added	(compensation	of	employees,	taxes,	subsidies,	net	operating	surplus,	and	net	mixed	income)	of	
that	industry.		
11	This	is	similar	to	current	international	climate	agreements,	like	Paris,	in	that	emissions	are	direct	
emissions	from	an	industry,	but	distinct	in	that	I	link	these	emissions	to	income	that	flows	to	
individual	households,	rather	than	assigning	responsibility	at	the	national	or	industry-level.	
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investment)	from	an	industry	are	responsible	for	a	share	of	the	total	downstream	

emissions	enabled	by	that	industry’s	activities.	To	make	this	concrete,	in	a	direct	

approach,	income	from	a	fossil	fuel	extraction	company	is	linked	to	that	company’s	

direct	operational	emissions,	whereas	in	a	supplier	approach,	income	is	linked	to	the	

downstream	emissions	generated	when	that	fossil	fuel	is	ultimately	combusted	by	

other	industries.	

Here	I	present	results	for	a	highly	granular	time	series	analysis	(1996-2015)	

that	links	global	GHG	emissions	to	both	the	direct	and	supplier	based	income	

responsibility	of	U.S.	households.	In	both	responsibility	frameworks,	global	GHG	

emissions	intensity	per	dollar	of	income	are	calculated	for	9,812	industries	across	

190	countries	(~	96	million	inter-sectoral	transfers	per	year)	using	the	Eora	multi-

region	input-output	(MRIO)	model	(see	Methods)	(57,	58).	Using	the	nationally	

representative	IPUMS	harmonized	Current	Population	Survey	(CPS),	I	link	these	

direct	and	supplier	emissions	intensities	with	industry-specific	income	received	by	

individuals	(annual	mean	=	~189,000),	then	aggregate	individual	emissions	into	

households	(annual	mean	=	~65,000).	Households	are	binned	into	income	groups	

including	the	next	9%	(90	-	99.0th	percentile),	top	1%	(99.0th	-	100th	percentile),	

next	0.9%	(99.0th	-	99.9th	percentile),	and	top	0.1%	(99.9th	-	100th	percentile)	and	

emissions	are	compared	(see	Methods	for	how	I	estimate	top	1%	households,	which	

are	under	sampled	in	CPS).	
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3.4 Results	

3.4.1 Time	Series:	1996-2015	

3.4.1.1 Supplier	Income:	Pre-	and	Post-tax	

In	the	supplier	income	responsibility	framework,	national	average	household	

emissions	declined	19%	(41.5	–	33.7	mt	CO2e),	pre-tax,	between	1996	and	2015,	

and	18%	(35.1	to	29.0	mt	CO2e)	post-tax.	Pre-tax,	deciles	1-10	all	fell	between	9%	

and	38%.	But	within	this	top	decile,	while	the	next	9%	decreased	16%,	the	top	1%	

increased	7%	(477	-	510	mt	CO2e),	the	next	0.9%	remained	essentially	flat	at	-1%	

(320	-	316	mt	CO2e)	and	the	top	0.1%	increased	19%	(1,888	–	2,254	mt	CO2e)	(Fig.	

3.1(A)).	Post-tax,	all	deciles	declined	7-26%,	with	the	next	9%	declining	16%,	the	top	

1%	seeing	an	almost	flat	2%	decline	(335	-	328	mt	CO2e),	the	next	0.9%	declining	

9%	(226	-	206	mt	CO2e),	and	the	top	0.1%	increasing	9%	(1,319	–	1,434	mt	CO2e)	

(Fig.	3.1(C)).	

3.4.1.2 Producer	Income:	Pre-	and	Post-tax	

Under	the	producer	income	framework,	national	average	household	

emissions	declined	16%	(pre-tax)	and	12%	(post-tax),	over	the	20-year	period,	from	

47.2	to	39.9	metric	tons	(mt)	CO2e	pre-tax	and	39.9	to	35.0	mt	CO2e	post-tax.	Pre-tax	

deciles’	1-9	all	fell	between	22%	and	33%	and	decile	10	declined	3%	(Fig.	3.1(B)).	

The	next	9%	decreased	16%	and	the	top	1%	increased	26%	(498	to	626	mt	CO2e).	

Within	this	group,	the	next	0.9%	increased	13%	(335	-	379	mt	CO2e)	and	the	top	

0.1%	increased	45%	(1,966	–	2,849	mt	CO2e).	Post-tax,	deciles’	1	and	2	show	a	slight	

increase	(8-10%),	while	declies’	3-10	all	show	declines	between	3-24%.	Here,	the	
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next	9%	decreased	16%,	the	top	1%	increased	15%	(351	to	403	mt	CO2e),	the	next	

0.9%	increased	4%	(237	-	247	mt	CO2e),	and	the	top	0.1%	increased	32%	(1,374	–	

1,811	mt	CO2e)	(Fig.	3.1	(D)).	

	

Fig.	3.1:	Income-based	mean	household	mt	CO2e	emissions	(1996-2015)	per	
income	group	under	the	Supplier	pre-tax	(A),	post-tax	(C)	and	Producer	pre-
tax	(B)	and	post-tax	(C)	accounting	methods.	Colored	shading	is	standard	

error,	gray	box	shading	indicates	recession,	vertical	dashed	lines	(2001-2003)	
and	dotted	line	(2013)	respectively	indicate	tax	cuts	and	tax	increase	for	the	

highest	tax	bracket.	

3.4.2 Income,	Population	and	Emissions	Trends	

The	U.S.	population	grew	19%	during	this	20-year	period	and	dollars	per	

household12	increased	26%	(Fig.	3.2).	At	the	same	time	that	the	nation’s	population	

and	wealth	increased,	its	total	national	Supplier	and	Producer	emissions,	
                                            
12	All	dollar	units,	in	this	paper,	are	inflation	adjusted	from	current	year	to	constant	2020	dollars.	
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respectively	fell	15%	and	5%.	With	both	frameworks,	per	household	emissions	fell	

between	12-18%	and	GHG	intensity	(mt	CO2e	per	dollar)	fell	30-34%,	likely	

reflecting	the	effect	of	technological	efficiency	gains	in	the	broader	U.S.	economy	and	

the	gradual	decrease	in	GHG	intensity	of	the	U.S.	energy	sector.	Yet,	income	flowing	

to	the	top	1%	of	households	increased	significantly,	52%	for	the	next	0.9%	group	

(from	$595,000	to	$903,000)	and	85%	(from	$3.6	million	to	$6.7	million)	for	the	top	

0.1%.	This	income	growth	outpaced	the	declining	GHG	intensity	per	dollar	and	helps	

explain	why,	unlike	the	bottom	99%	of	the	population,	top	1%	households	saw	

increasing	income-based	emissions	footprints	between	1996	and	2015.	

	

Fig.	3.2:	Percent	changes	(1996-2015)	in	income,	population,	spending,	total	
and	average	U.S.	CO2e	emissions,	and	CO2e	intensity	for	both	Producer	and	

Supplier	frameworks	(post-tax),	relative	to	1996	base	year.	
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3.4.3 Most	Recent	Year	(2015)	

3.4.3.1 Supplier	Income	
	

Pre-tax,	the	top	decile,	in	2015,	was	responsible	for	41%	of	U.S.	emissions	

(mean	(x̅)	=	135.4	mt	CO2e,	(median	(x̃)	=	86.6)	(Fig.	3.3(A)).	The	top	1%	averaged	

510	mt	CO2e	(x̃	=	306)	and	accounted	for	15%	of	national	emissions.	With	the	next	

0.9%	driving	9%	of	emissions	(x̅	=	316,	x̃	=	291	mt	CO2e)	and	the	top	0.1%	alone	was	

responsible	for	7%	of	emissions,	with	a	significant	2,254	mt	CO2e	average	footprint	

(x̃	=	1,990).	By	comparison,	the	bottom	50%	of	households	were	responsible	for	less	

than	15%	of	national	emissions.	Post-tax,	the	bottom	50%	increased	its	share	to	

23%	of	national	emission.	The	top	decile	was	responsible	for	33%	of	emissions	(x̅	=	

95.7,	x̃	=	65.2	mt	CO2e),	the	top	1%	drove	11%	of	national	emissions	(x̅	=	329,	x̃	=	

202	mt	CO2e),	the	next	0.9%	was	responsible	for	6%	of	emissions	(x̅	=	205,	x̃	=	192	

mt	CO2e),	and	the	top	0.1%	was	responsible	for	5%	(x̅	=	1,299,	x̃	=	711	mt	CO2e)	(Fig.	

3.3(C)).	

3.4.3.2 Producer	Income	
	

Producer-based	income	results	for	2015	are	generally	similar,	with	the	pre-

tax	top	decile	responsible	for	40%	of	U.S.	emissions	(x̅	=	157.1	mt	CO2e,	x̃	=	94.8)	

(Fig.	3.3(B)).	The	top	1%	accounted	for	16%	of	national	emissions	(x̅	=	626	mt	CO2e,	

x̃	=	360).	The	next	0.9%	bore	responsibility	for	9%,	(x̅	=	379,	x̃	=	342	mt	CO2e).	While	

the	top	0.1%	bore	responsibility	for	7%	of	emissions,	averaging	2,849	mt	CO2e	(x̃	=	

2,481).	Similar	to	the	pre-tax	supplier	emissions	responsibility,	the	bottom	5	deciles	

account	for	just	under	15%	of	national	emissions.	Post-tax	the	bottom	50%	
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increased	their	share	to	24%	and	the	top	decile	dropped	to	32%	(x̅	=	111.2,	x̃	=	72.7	

mt	CO2e).	The	top	1%	drove	12%	of	national	emissions	(x̅	=	403,	x̃	=	238	mt	CO2e),	

the	next	0.9%	drove	6%	(x̅	=	247,	x̃	=	227	mt	CO2e)	and	the	top	0.1%	was	responsible	

for	5%	(x̅	=	1,811,	x̃	=	1,624	mt	CO2e)	(Fig.	3.3(D)).	

	

Fig.	3.3:	Mean	household	mt	CO2e	emissions	(2015)	per	income	group	under	
the	Supplier	pre-tax	(A),	post-tax	(C)	and	Producer	pre-tax	(C)	and	post-tax	
(D)	frameworks.	The	width	of	each	income	group,	on	the	x-axis,	corresponds	
with	each	group’s	share	of	total	national	CO2e	emissions.	Color	indicates	

income	category	and	bars	are	standard	error.	
	

With	both	accounting	methods	and	for	pre-tax	and	post-tax	there	are	stark	

differences	between	income	groups;	with	those	at	the	very	top	responsible	for	large	

absolute	values	(mt	CO2e)	and	driving	a	significant	share	of	national	emissions.	But	
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by	normalizing	each	group’s	share	of	national	emissions	by	its	population	share,	I	

produce	an	even	clearer	picture	of	inequality	across	groups.	In	a	supplier	income	

framework	the	bottom	decile’s	emissions	are	96%	lower	per	household	(pre-tax,	

73%	post-tax),	than	if	emissions	were	equitably	distributed	across	all	U.S.	

households	(Fig.	3.4).	Deciles	2-7	also	account	for	a	smaller	emission	fraction	than	

their	population	share.	Pre-tax	the	top	1%	has	emissions	1,428%	(15.3x)	higher	

than	its	population	share	and	38,791%	(389x)	larger	than	an	average	bottom	decile	

household.	The	top	0.1%	has	average	emissions	6,657%	(68x)	higher	than	its	

population	share	and	171,800%	(1,719x)	larger	than	an	average	bottom	decile	

household.	The	producer	responsibility	framework	shows	similar	trends	with	the	

first	7	deciles	all	negative	and	the	top	1%	and	0.1%	having	emissions	1,490%	

(15.9x)	and	7,134%	(72.3x)	larger	than	their	population	share	and	39,300%	(394x)	

and	179,300%	(1,794x)	higher	than	bottom	decile	households	(Fig.	3.5).	Indeed,	in	

both	frameworks	the	differences	between	deciles	1-8	are	almost	indistinguishable	

due	to	the	extreme	inequality	at	the	very	top.	
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Fig.	3.4:	Supplier	income	emissions	share	relative	to	population	share	(%	
difference)	for	deciles	1-9,	next	9%,	next	0.9%	and	top	0.1%	(2015).	A	zero	

value	on	the	y-axis	indicates	an	equitable	distribution:	i.e.	the	group’s	share	of	
national	emissions	equals	its	population	share.	The	width	of	each	income	
group,	on	the	x-axis,	corresponds	with	each	group’s	share	of	total	national	
CO2e	emissions.	Note,	the	negative	emissions	of	deciles	1-6	and	extreme	

inequality	of	the	next	0.9	and		top	0.1%.	



 
 
 

53	

	

	

Fig.	3.5:	Producer	income	emissions	share	relative	to	population	share	(%	
difference)	for	deciles	1-9,	next	9%,	next	0.9%	and	top	0.1%	(2015).	A	zero	

value	on	the	y-axis	indicates	an	equitable	distribution:	i.e.	the	group’s	share	of	
national	emissions	equals	its	population	share.	The	width	of	each	income	
group,	on	the	x-axis,	corresponds	with	each	group’s	share	of	total	national	
CO2e	emissions.	Note,	the	negative	emissions	of	deciles	1-6	and	extreme	

inequality	of	the	next	0.9	and	top	0.1%.	
 

Post-tax	the	emissions	distribution	becomes	more	equitable	as	taxes	reduce	

top	income	group	footprints	and	social	transfers	increase	lower	decile	footprints	

(Fig.	3.6).	Indeed,	social	transfers	make	up	a	significant	share	of	lower	income	

groups	post-tax	footprint,	while	the	top	income	group’s	emissions	footprint	is	
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dominated	by	capital	gains	and	compensation	(Fig.	3.7)	(Fig.	3.8).	But	in	both	

supplier	and	producer	methods	the	top	0.1%	emissions’	share	is	still	49x-51x	larger	

than	its	population	share	and	171x-185x	larger	than	bottom	decile	household	

average	emissions.		

	

Fig.	3.6:	Supplier	income,	percent	change	from	pre-tax	to	post-tax	footprints	
(2015).	Note,	that	deciles’	1-6	increase	their	footprint,	while	those	in	decile	7	

and	above	decrease.	Producer	income	has	a	similar	trend.	
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Fig.	3.7:	Supplier	responsibility-based	share	of	emissions	from	each	income	
category,	by	income	group	(2015).	

	

Fig.	3.8:	Producer	responsibility-based	share	of	emissions	from	each	income	
category,	by	income	group	(2015).	

 
Regardless	of	framework,	household	footprints	are	sensitive	to	the	income	

source,	but	the	GHG	intensity	of	income	source	also	does	vary	between	accounting	
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methods.	In	a	supplier	income	framework,	mining	and	quarrying	has	the	largest	

carbon	intensity	per	dollar	(Fig.	3.9),	since	here	they	are	responsible	for	emissions	

that	occur	when	the	fossil	fuels	they	supply	are	combusted.	Whereas	in	the	producer	

framework,	manufacturing,	which	is	a	heavy	user	of	fossil	fuels,	has	the	highest	GHG	

intensity,	while	mining	and	quarrying	(which	includes	fossil	fuel	extraction)	ranks	

relatively	modestly,	since	their	operational	emissions	are	lower	than	others	(Fig.	

3.10).	

	

Fig.	3.9:	Supplier	income,	CO2e	intensity	per	$1,000	income,	by	industry	
(2015).	Blue	diamond	denotes	mean.	
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Fig.	3.10:	Producer	income,	CO2e	intensity	per	$1,000	income,	by	industry	
(2015).	Blue	diamonds	denote	mean.	

	

3.4.3.3 Relationship	to	Racial	Inequality	
	

Across	all	economic	groups,	black	households	had	average	pre-tax	footprints	

of	21.0	mt	CO2e	(supplier)	and	30.2	mt	CO2e	(producer),	white	Hispanic	households	

25.5	mt	CO2e	(supplier)	and		27.5	mt	CO2e	(supplier),	and	white	non-Hispanic	

households	38.0	mt	CO2e	(supplier)	and	44.3	mt	CO2e	(producer).	There	is	a	striking	

degree	of	racial	inequality	in	how	the	income	benefits	of	GHG	emissions	are	

distributed,	as	white	non-Hispanic	households	emissions	were	49%	(supplier)	and	
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47%	(producer)	higher	than	white	Hispanic	households	and	81%	(supplier)	and	

63%	(producer)	higher	than	black	households.	Post-tax	the	racial	emissions	gap	

closes	somewhat,	but	white	households	still	have	emissions	30-55%	higher	than	

other	groups.		

This	emissions	inequality	reflects	the	extreme	racial	inequity	of	the	

underlying	income	distribution.	The	top	1%	is	79%	white	non-Hispanic	(the	highest	

share	of	any	income	group),	8%	Hispanic,	and	only	3%	black	(the	lowest	share	of	

any	income	group).	The	bottom	decile	is	46%	white	non-Hispanic	(the	lowest	share	

of	any	decile),	16%	Hispanic,	and	27%	black	(the	highest	share	of	any	decile).	

3.4.3.4 Super	Emitters		
	

I	estimate	about	25%	of	the	top	0.1%	households	have	pre-tax	income	

responsibility	emissions	over	3,000	mt	CO2e	with	the	supplier	framework	and	about	

37%	with	the	producer	framework.	These	super	emitters	average	3,942	mt	CO2e	(x̃	

=	3,780)	with	supplier	income	and	4,497	mt	CO2e	(x̃	=	4,152)	with	producer	income	

accounting.	Post-tax,	this	drops	to	3%	for	supplier-based	accounting	with	a	mean	of	

3,427	mt	CO2e	(x̃	=	3,352)	and	10%	for	producer-based	accounting	with	a	mean	of	

3,831	mt	CO2e	(x̃	=	3,658).	

3.5 Discussion		

3.5.1 Relationship	of	Emissions	Inequality	to	Income	Inequality		

Income-based	emissions	responsibility	closely	correlates	with	income	

inequality.	In	2015,	the	bottom	50%	of	the	population	captured	just	12.9%	of	pre-

tax	national	income,	while	the	top	10%,	top	1%,	and	top	0.1%	captured	46%,	19%,	
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and	8.5%	of	national	income	(78).	In	terms	of	income-based	emissions	(pre-tax),	

these	same	groups	were	respectively	responsible	for	41%,	15%,	and	6.7%	of	U.S.	

supplier-based	emissions		and	40%,	16%,	and	7.2%	of	U.S.	national	producer-based	

emissions.	Post-tax	and	social	transfers	income-based	emissions	begin	to	slightly	

decouple	from	earned	income,	with	the	top	decile	and	top	1%	seeing	a	reduction	in	

their	share	of	national	emissions	and	the	lowest	deciles	seeing	an	increase.	This	

reflects	the	power	of	tax	policy	to	transfer	economic	benefits,	and	the	emissions	

embodied	in	those	benefits,	between	households.	

3.5.2 Factors	shaping	household	footprints		

With	consumption-based	GHG	emissions	accounting,	a	household’s	income	is	

not	their	GHG	emissions	destiny;	meaning	households	have	some	agency	over	how	

they	spend	their	income.	For	example,	they	can	choose	to	purchase	less	GHG	

intensive	goods	and	services.	This	agency	increases	with	wealth.	With	income-based	

accounting	approaches,	a	household’s	footprint	is	a	direct	result	of	their	income	and	

they	have	extremely	limited	agency	in	shaping	it.	Here	a	household’s	pre-tax	

footprint	is	a	function	of	GHG	intensity	of	the	industry/ies	they	work	for	and	the	

amount	of	income	they	earn.	While	individuals	and	households	have	some	agency	in	

choosing	which	industry	to	seek	employment	or	invest	in,	which	leads	to	variability	

in	footprints	at	a	given	income	level	(Fig.	3.11),	they	generally	have	extremely	

limited	individual	agency	in	influencing	that	industry’s	GHG	intensity,	though	they	

may	have	some	agency	to	influence	their	individual	firm.	
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Fig.	3.11:	Relationship	between	income	and	household	GHG	footprint	(log-log)	
using	the	pre-tax	supplier	income	method	(2015).	Supplier	income	has	a	

similar	trend.	
	

For	low-income	households,	including	the	value	of	employer	provided	

healthcare,	government	assistance	(such	as	healthcare,	housing,	tax	credits,	food,	or	

heating	assistance)	and	direct	social	transfers	(such	as	monetary	gifts,	education,	

child	support,	or	alimony)	in	income-based	footprints	increase	their	responsibility.	

At	the	top	of	the	income	distribution,	taxes	significantly	reduce	household	

footprints:	about	35%	for	top	1%.	
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Individual	households	are	also	sensitive	to	the	accounting	method	choice.	For	

example,	households	working	for	an	oil	company	will	have	a	higher	GHG	footprint	

when	using	the	supplier	accounting	method	than	they	would	with	the	producer	

accounting	method.	In	2015,	the	producer	method	also	generates	a	higher	absolute	

GHG	estimate	per	income	group,	than	the	supplier	method	(Fig.	3.12).	This	averages	

19%	across	income	groups,	and	varies	between	11%-21%	within	income	groups.13		

	

Fig.	3.12:	Comparing	pre-tax	mean	household	GHG	footprints	from	supplier	
and	producer	frameworks	(2015).	

	

                                            
13	Note,	the	19%	difference	observed	in	2015	is	higher	than	the	average	difference	in	other	years	
(Fig.	3.1).		
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3.5.3 Policy	Implications	

There	is	general	agreement	among	economists	that	carbon	pricing,	either	

through	cap-and-trade	or	a	carbon	tax,	are	an	essential	and	cost	effective	way	to	

help	decarbonize	the	US	economy	(82,	83).	Prior	work	has	shown	a	carbon	tax	could	

help	phase	out	coal	at	a	fairly	low	cost,	but	would	need	to	be	quite	high,	>$200	per	

ton	CO2e,	to	achieve	even	a	5%	reduction	in	oil	consumption.	About	70-80%	of	this	

cost	would	be	initially	passed	onto	consumers	(83).	My	work	on	consumption-based	

footprints	highlights	how	a	tax	this	high	could	be	crushing	to	low-income	families,	

who	purchase	more	GHG	intensive	basic	necessities,	but	have	small	absolute	GHG	

footprints.	In	contrast,	high-income	households	purchase	less	GHG	intensive	goods	

and	services	but	have	extremely	high	absolute	emissions	footprints.	High	savings	

rates,	among	this	group,	will	allow	them	to	simply	absorb	any	tax	increases	and	

continue	driving	significant	emissions.	

The	fact	that	income-based	footprints	are	more	inequitable	than	

consumption-based	footprints	highlights	a	possible	alternative	approach	to	carbon	

pricing	schemes	that	could	be	more	equitable.	Instead	of	taxing	companies	that	pass	

on	these	costs	to	consumers,	an	income-based	carbon	tax,	determined	by	the	GHG	

intensity	of	the	industry	from	which	the	income	is	earned,	could	be	applied	to	wage	

earners	and	investors.	While	this	too	would	impact	low-income	families,	it	would	

impact	them	less	than	a	consumption-based	tax,	because	income	is	more	inequitable	

than	consumption.	Additionally,	households	below	a	given	income	threshold	could	

be	excluded,	or	graduated	tax	credits	could	be	granted,	to	address	equity	concerns	

for	low-income	families.	
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Such	a	tax	could	be	based	on	the	producer	income	or	supplier	income	

principal,	or	some	allocation	that	splits	responsibility	between	the	two.	For	

example,	calculating	the	GHG	intensity	tax	by	averaging	both	methods	for	an	even	

50/50	split.	Revenue,	from	this	tax,	could	be	used	to	fund	mitigation	and	adaptation	

efforts.		

A	significant	complication	with	such	an	approach	is	in	calculating	the	

emissions	responsibility	of	an	individual	business.	For	large	fossil	fuel	suppliers	and	

industrial	facilities	the	GHG	data	requirement	would	be	the	same	as	in	a	traditional	

cap-and-trade	or	carbon	tax	scheme	and	the	U.S.	Environmental	Protection	Agency	

Greenhouse	Gas	Reporting	Program	(GHGRP)	already	collects	relevant	data,	

capturing	about	85-90%	of	domestic	emissions.	Wage	and	investment	income	from	

those	industries	is	already	reported	to	the	Internal	Revenue	Service	by	employers	

and	financial	institutions,	so	the	data	needed	to	link	income	source	and	industry	is	

already	being	collected.	A	direct	producer	income	tax	would	be	based	on	direct	

emissions	from	industrial	facilities.	In	a	supplier	responsibility	framework,	if	all	

responsibility	were	to	be	assigned	directly	to	the	supplier	of	fossil	fuels,	this	existing	

data	could	also	be	used	to	calculate	the	commensurate	tax	responsibility.	Though	for	

smaller	firms,	not	captured	by	GHGRP,	the	producer	and	supplier	emissions	

responsibilities	would	be	missed.	

Alternatively,	instead	of	taxing	wage	income,	this	tax	could	just	be	applied	to	

investment	income	or	as	a	shareholder	tax.	Because	investment	income	and	stock	

and	bond	ownership	is	even	more	inequitable	than	wage	income,	this	would	help	

focus	the	tax	on	those	at	the	very	top	of	the	income	distribution	who	reap	the	most	
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economic	benefit	from	GHG	emissions.	This	could	be	applied	as	a	tax	at	time	of	share	

sale,	or	an	annual	tax	applied	to	ownership	of	shares.	The	latter	would	be	a	form	of	

wealth	tax,	which	has	gained	traction	in	recent	years	in	progressive	policy	circles.	

Focusing	on	the	embodied	emissions	in	certain	types	of	wealth	(i.e.	stock	or	bond	

ownership	in	fossil	fuel	intensive	industries)	may	provide	additional	rationale	for	

such	a	tax.	

One	advantage	to	a	wealth-based	tax	is	that	unlike	an	income-based	tax	it	

does	not	come	as	a	huge	financial	burden	in	one	year.	While	there	is	some	overlap	of	

households	in	the	top	1%	or	0.1%	of	income	earners	and	the	top	1%	or	0.1%	of	

wealth	holders	there	is	far	more	annual	churn	among	the	top	income	group,	as	

households	may	see	huge	profits	one	year	from	the	sale	of	a	business,	but	far	less	

income	in	subsequent	years.	An	income-based	tax	that	affects	households	with	a	

heavy	tax	in	one	year	may	be	less	desirable	than	having	a	wealth-based	tax	that	is	

lower,	but	more	stable	year	to	year.	Because	wealth	is	even	more	inequitably	

distributed	than	income,	it	is	also	a	more	effective	tool	to	address	systemic	

inequality	and	capture	the	GHG	emissions	in	unrealized	capital	gains.	To	make	this	

income	versus	wealth	distinction	concrete,	in	2019,	top	1%	and	0.1%	income	

earners	respectively	had	entry	thresholds	of	$510,000	and	$2.4	million,	averaged	

$1.4	and	$6.4	million,	and	captured	19%	and	8%	of	national	income.	Meanwhile,	top	

1%	and	0.1%	wealth	holders	respectively	had	entry	thresholds	of	$4.2	and	$17.8	

million,	averaged	$13.7	and	$70	million,	and	captured	35%	and	18%	of	national	

wealth.			
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Whether	the	tax	is	applied	at	time	of	sale	or	annually,	based	on	ownership,	

both	approaches	would	also	have	a	beneficial	secondary	effect	in	spurring	fiduciary	

fund	managers	to	divest	from	GHG	intensive	industries.	Such	a	tax	could	again	be	

targeted	to	supplier	or	direct	emitter	companies,	using	the	same	GHGRP	data.	Large	

and	particularly	publicly	traded	companies	would	be	the	easiest	to	apply	the	tax	to,	

but	the	challenge	here	is	applying	it	to	private	and	smaller	companies.		

Under	any	such	plan	a	key	challenge	will	be	that	the	households	that	would	

see	the	most	direct	effect	of	such	an	income	or	shareholder	tax	are	also	the	

households	who	dominate	policy	making.	Indeed	they	are	the	only	group	whose	

preferences	determine	policy	outcomes	(53).	Convincing	this	group	to	support	such	

a	tax	is	a	significant	hurdle.	Additionally	workers	in	industries	that	would	directly	

feel	the	effects	of	such	a	tax	would	also	likely	fight	such	a	measure.	Though	focusing	

solely	on	investment	income	may	help	galvanize	broad	public	support.	

3.5.4 Equity,	Climate	and	Environmental	Justice		

Climate	change	is	an	existential	threat	to	humanity	and	the	natural	world.	Its	

effects	(deadly	heat	waves,	sea	level	rise,	exacerbated	wildfires,	flooding,	drought,	

extinction)	are	already	being	felt	today	and	will	worsen	throughout	this	century.	

These	effects	will	be	broadly	felt	by	current	and	future	generations,	but	will	largely	

fall	hardest	on	the	poorest	countries	and	poor,	socially,	and	racially	marginalized	

communities	within	countries.	Meanwhile,	the	benefits	made	possible	by	GHG	

emissions	(wealth	and	the	goods	and	services	that	wealth	can	purchase)	are	
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concentrated	heavily	in	the	present14	and	are	disproportionately	captured	by	

wealthy	countries	and	wealthy,	socially,	and	racially	favored	groups	within	

countries.		

It	is	a	basic	principle	of	fairness	that	those	responsible	for	harm	bear	a	

commensurate	responsibility	to	repair	that	harm.	As	GHG	emissions	create	income,	

those	reaping	this	income	have	a	responsibility	to	address	the	harm	caused	by	the	

emissions	used	to	produce	it.	In	the	U.S.,	income	is	extremely	inequitably	

distributed,	with	those	at	the	very	top	capturing	income	and	driving	emissions	

>1,000x	more	than	those	at	the	bottom.	Because	of	this	inequitable	distribution,	

these	highest	earning	households	also	have	a	disproportionate	responsibility	in	

repairing	emissions	damage.	Here,	public	policy,	such	as	income	or	shareholder	

carbon	tax,	can	ensure	that	those	benefiting	the	most	from	GHG	emissions	are	

contributing	equitably	to	the	climate	mitigation	and	adaptation	efforts	needed	to	

ensure	the	human	and	natural	world	can	flourish	in	the	future.	

3.6 Materials	and	Methods	

For	both	the	producer	and	supplier	approach	I	link	income	to	GHG	emissions	

using	an	Environmentally-Extended	Multi-Region	Input-Output	Model	(EE-MRIO).	

The	GHG	intensity	per	dollar	of	income,	for	each	industry,	is	calculated	and	

multiplied	by	an	individual’s	income	from	that	industry.	The	GHG	intensities	of	

benefits	and	social	transfers	are	also	accounted	for	and	the	emissions	responsibility	

                                            
14	Intergenerational	fortunes	and	assets	that	passed	onto	future	generations	do	provide	some	benefit	
to	the	future.	Though	these	are	heavily	concentrated	in	wealthy	households.		
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of	taxes	are	subtracted.	Individuals	are	aggregated	into	households	and	households	

are	ranked	into	percentiles	and	deciles	for	income	group	comparisons.	

To	calculate	the	embodied	CO2e	intensity	of	income,	I	use	the	Eora	MRIO	

database	(57,	58)	covering	14,839	sectors,	190	countries,	and	1,140	final	demand	

and	value	added	categories.	For	each	of	the	20	years,	EORA	is	converted	from	a	

14,839	x	14,839	heterogeneous	classification	system	to	a	square	9,812	x	9,812	

industry	by	industry	input-output	table,	using	the	Fixed	Product	Sales	Structure	

assumption	(95).	Current	year	dollars	are	adjusted	to	constant	2020	US$.	Emissions	

data,	from	the	PRIMAPHIST	database	(available	in	Eora),	capturing	the	six	Kyoto	

GHG	(90),	are	used	for	both	income	accounting	methods.	In	a	producer	income	

approach	the	direct	emissions	of	each	industry	are	divided	by	that	industry’s	value	

added	inputs	(which	includes	compensation	of	employees).	This	yields	direct	

emissions	in	mt	CO2e	per	dollar	value	added.	In	the	supplier	income	emissions	

framework	I	calculate	the	enabled	emissions,	in	mt	CO2e	e	per	dollar	value,	using	the	

Ghosh	inverse.	This	captures	all	direct	and	indirect	CO2e	emissions,	along	the	whole	

downstream	global	supply	chain	(~	100	million	inter-sectoral	transfers	each	year)	

that	were	enabled	in	order	to	produce	a	dollar	of	value	added.	

For	each	year,	these	supply	chain	and	direct	emissions	factors	are	matched	

with	individual-level	IPUMS	CPS	income	data.	This	is	done	by	first	applying	a	

concordance	matrix	to	convert	emissions	factors	from	the	429	U.S.	industries	in	

Eora	to	the	246	U.S.	industries	reported	by	CPS,	using	International	Standard	

Industrial	Classification	(ISIC)	system	coding.	Individual-level	wage	data	in	CPS,	

includes	both	the	amount	(in	dollars)	and	the	industry	from	which	income	is	earned.	
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Individual-level	wage	data	are	then	multiplied	by	the	corresponding	CO2e	intensity	

for	that	industry.	Other	forms	of	income	such	as	capital	gains,	interest,	dividends,	

retirement	pensions	or	social	security,	and	the	value	of	employer	healthcare	

contributions	are	also	accounted	for.	Here,	when	the	source	of	income	is	not	from	an	

employer,	CO2e	multipliers	are	based	on	the	average	emissions	intensity	of	the	U.S.	

economy.	The	income	value	of	employer	healthcare	contributions	is	based	on	the	

employing	industry	CO2e	multiplier.	After	multiplying	by	the	corresponding	CO2e	

intensity,	individuals	are	merged	into	their	respective	households	and	mt	CO2e	are	

summed.	This	yields	the	pre-tax	emissions	footprint	of	each	household.	

To	calculate	the	post-tax	footprint,	the	value	of	social	transfers	such	as	

monetary	gifts	and	publically	provided	benefits	such	as	veterans	benefits,	

unemployment,	heating,	rental,	educational	assistance	and	others	are	also	included.	

CO2e	multipliers	are	based	on	the	average	emissions	intensity	of	the	U.S.	economy.	

Finally,	post-tax	footprints	are	reduced	by	the	percent	paid	in	taxes.	

To	do	this	I	use	IPUMS	CPS,	a	harmonized	dataset	drawn	from	the	Census	

Bureau’s	Current	Population	Survey	(63).	It	includes	approximately	65,000	U.S.	

households	and	about	189,000	individuals	per	year.	From	CPS,	I	extract	31	income	

categories,	3	retirement	and	employer	healthcare	variables,	and	11	social	benefits	

and	44	other	variables	related	to	individual	or	household	characteristics.	Each	year	

yields	17,000,000	data	points,	totaling	about	350,000,000	data	points	across	the	20-

year	period.	

While	CPS	is	the	most	authoritative	source	on	U.S.	household	income,	top	

coding	and	sampling	challenges	with	top	income	households	limit	its	accuracy	for	
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those	at	the	very	top	of	the	income	distribution.	To	address	this,	I	create	an	over-

sampled	synthetic	dataset	for	the	next	0.9%	and	top	0.1%	households	and	estimate	

their	income.	This	is	done	by	creating	a	distribution	of	1,000	households,	for	each	of	

these	groups.	Mean	pre-tax	income	and	upper	and	lower	thresholds	come	from	the	

World	Inequality	Database	(WID).	These	synthetic	dataset	distributions	are	right-

skewed	to	reflect	within-group	income	inequality	(See	Appendix	A	for	detailed	

methodology).		

For	IPUMS	CPS	households	that	meet	the	WID	threshold	I	extract	their	CO2e	

intensity	per	dollar	income	values,	bootstrap	these	into	the	same	size	as	the	

synthetic	datasets	and	allow	the	values	to	vary	+/-	25%,	to	reflect	the	natural	

variation	in	GHG	intensity	that	exists	across	households	income	sources.	This	is	

separately	done	for	both	wage	income	and	investment	income	because	they	have	

different	CO2e	multipliers.	In	addition	to	under-sampling	top	1%	household	CPS,	top	

coding	and	limited	reporting	on	capital	gains	and	investment	income	necessitated	

an	additional	treatment	of	the	share	of	income	coming	from	capital	(as	opposed	to	

wages).	Here	I	use	annual	Congressional	Budget	Office	(CBO)	estimates	on	the	share	

of	top	1%	income	from	capital	and	estimate	the	next	0.9%	and	top	0.1%	share	based	

on	CBO’s	estimation	(96).	The	WID	income	estimates	and	the	bootstrapped	CPS	

households	are	both	ordered	and	matched	based	on	total	income	rank.	Income	

related	to	retirement,	healthcare,	and	public	benefits	from	the	CPS	households	are	

then	directly	subtracted	from	the	WID	income	estimates,	though	these	make	up	an	

exceedingly	small	share	of	income	(and	emissions)	for	top	1%	households.	The	

remainder	is	considered	earned	income.	Using	CBO	estimates,	this	income	is	broken	
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into	the	share	related	to	wages	and	share	related	to	capital.	These,	along	with	

healthcare	and	benefits	are	matched	with	the	corresponding	GHG	intensities	and	

multiplied.	Summing	all	categories	yields	pre-tax	income-based	GHG	footprints	for	

next	0.9%	and	top	0.1%	groups.	Post-tax	footprints	are	calculated	by	reducing	this	

footprint	in	proportion	to	the	household’s	tax	rate,	which	comes	from	the	

bootstrapped	CPS	top	1%	households.	
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CHAPTER	4	

4 TOTAL-RESPONSIBILITY	BASED	U.S.	HOUSEHOLD	CARBON	FOOTPRINTS		

	
4.1 Abstract	

Anthropogenic	greenhouse	gas	emissions	occur	to	produce	wealth,	goods	and	

services	for	people.	Yet,	extreme	inequality,	both	between	and	within	countries	

often	results	in	a	powerful	disconnect	between	those	who	ultimately	benefit	from	

these	emissions	and	those	who	are	harmed.	Harms	disproportionately	accrue	to	

economically,	socially,	or	racially	marginalized	people	(and	to	future	generations)	

while	benefits	are	disproportionately	captured	by	wealthier,	socially,	and	racially	

favored	groups	within	and	across	societies	(and	by	the	current	generation).	

Chapters	2	and	3	examined	this	flow	of	benefits	to	U.S.	households	using	consumer-

based	and	income-based	(supplier	and	producer)	responsibility	principles.	This	

Chapter	examines	20-years	of	U.S.	household	total	(or	shared)	GHG	responsibility,	

based	on	the	total	benefits	a	household	receives,	as	both	a	producer	and	consumer,	

from	GHG	emissions.	I	find	significant	inequality	across	groups,	with	the	top	1%	of	

U.S.	households	increasing	their	total-responsibility	GHG	emissions	over	the	last	20	

years	(+11%),	while	the	bottom	99%	of	households	have	decreased	their	emissions,	

with	all	deciles	showing	an	8-21%	decline.	The	total	responsibility	framework	best	

captures	the	full	range	of	benefits	a	household	receives	from	GHG	emissions	and	

policies	that	take	into	account	total	household	responsibility	may	be	best	suited	to	

address	the	unsustainably	high	GHG	footprint	of	U.S.	households.		
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4.2 Significance	Statement	

At	least	since	the	start	of	the	industrial	revolution,	the	creation	of	income,	

goods	and	services	has	involved	the	emission	of	GHGs.	In	modern	economies	the	

income	and	consumption	benefits,	enabled	by	these	emissions,	largely	ultimately	

flow	to	households.	Yet	a	holistic	household-level	accounting	of	GHG	emissions,	that	

includes	both	income	and	consumption	responsibility,	has	never	been	done,	either	

for	the	U.S.	or	indeed	for	any	country.	In	this	chapter,	I	investigate	and	report	what	I	

believe	is	the	first	total	GHG	responsibility	accounting	of	households	that	captured	

their	dual	role	as	both	producers	and	consumers.	I	find	significant	inequality	across	

income	groups,	with	the	top	1%	of	U.S.	households,	increasing	their	emissions	over	

time,	driving	a	significant	share	of	national	emissions,	and	having	emissions	well	

above	an	equitable	distribution.	This	work	informs	environmental	justice	and	

domestic	and	international	climate	policy	discussions;	particularly	those	centered	

on	climate	equity.	

4.3 Introduction	

Over	the	last	century,	humanity	transformed	nature	at	an	unprecedented	

scale.	Such	transformation	produced	incredible	benefits	across	a	variety	of	human	

well-being	metrics;	including	greater	wealth,	material	abundance,	nutritional	access,	

longer	lifespans,	clean	water	access,	safe	shelter,	and	creating	an	infrastructure	that	

fosters	human	connections	across	space	(97,	98).	However,	at	scales	ranging	from	

local	to	global,	anthropogenic	environmental	transformation	also	creates	harm	(5,	
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15,	99).	Harm	is	done	to	nature,	most	dramatically	in	biodiversity	loss	and	

extinction	and	harm	is	done	to	people	from	toxic	pollution	exposure,	deadly	heat	

waves,	homes	and	communities	made	uninhabitable	by	climate	change,	novel	virus	

exposure,	and	a	range	of	other	damages	to	economic	life,	social	well-being,	and	

health.	

The	distribution	of	these	benefits	and	harms	is	not	equitably	shared.	At	both	

the	national	and	sub-national	level,	the	rich	disproportionately	capture	benefits	

while	the	poor	are	disproportionately	burdened	with	harm	(66,	68–70).	Chapters	2	

and	3	explored	household-level	greenhouse	gas	(GHG)	emissions	responsibility	

based	on	how	the	consumption	(21,	25,	28–30,	38)	and	income	benefits	(40–46),	

created	by	GHG	emissions,	are	distributed	across	U.S.	households.	While	separately	

analyzing	consumption	and	income-based	emissions	highlight	different	scales	of	

inequality,	drivers,	and	policy	responses	for	GHG	inequality	they	do	not	fully	capture	

the	total	responsibility	of	households	based	on	their	dual	roles	as	both	producers	

and	consumers.	Here	I	present	results	for	a	shared	responsibility	(44,	47–50)	

framework	where	emissions	related	to	a	household’s	income	and	consumption	

contribute	equally	to	its	overall	GHG	footprint.15	

Results	cover	twenty	years	(1996-2015)	and	link	consumption,	production,	

and	supplier	emissions	responsibility	to	U.S.	households.	Emissions	multipliers	are	

derived	from	Eora,	a	highly	granular	global	multi-region	input-output	(MRIO)	model	

covering	190	countries	(57,	58).	Consumption	multipliers	are	derived	from	a	10,211	

                                            
15	Income-responsibility	is	calculated	as	the	average	of	supplier	and	producer	responsibility.	This	is	
then	averaged	with	the	consumption	responsibility	emissions	to	obtain	a	GHG	footprint	that	is	a	50-
50	split	between	income	and	consumption	footprints.		
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x	10,211	commodity-by-commodity	table,	while	income	responsibility	is	based	on	a	

9,812	x	9,812	industry-by-industry	model	(see	Materials	and	Methods).	

Consumption	data	come	from	Consumer	Expenditure	Surveys	(CES)	and	Income	

from	IPUMS	harmonized	Current	Population	Survey	(CPS)	(63).	Households	are	

binned	into	income	groups	that	include	a	breakout	of	decile	10	into	the	next	9%	(90-

99th	percentile),	top	1%	(99.0th	-	100th	percentile),	next	0.9%	(99.0th	-	99.9th	

percentile),	and	top	0.1%	(99.9th	-	100th	percentile)	(see	Materials	and	Methods	for	

how	I	estimate	consumption	and	income	for	top	1%	households,	which	are	under	

sampled	in	both	CES	and	CPS).	

4.4 Results	

4.4.1 Time	Series:	1996-2015	

4.4.1.1 Supplier	and	Producer	-	shared	income	responsibility	
	

Income	is	generated	when	fossil	fuels	are	extracted	by	industries	and	when	

they	are	used	by	industries.	The	downstream	supplier	accounting	method	links	

emissions	to	income	generated	by	the	first	and	the	direct	producer	accounting	

method	links	income	with	emissions	related	to	the	second.	As	my	work	on	income-

responsibility	shows,	depending	on	the	framework	used,	households	will	have	

different	emissions	responsibilities.	One	way	to	handle	the	discrepancy	between	

methods	is	to	allocate	some	responsibility	from	each	method	to	the	household.	Here	

I	create	a	shared-income	responsibility	by	having	each	method	count	for	half	of	the	

household’s	income	responsibility.		
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I	find	the	post-tax	national	average	declined	15%,	from	37.5	to	32.0	metric	

tons	(mt)	CO2e.	Deciles	1	and	2	remained	essentially	flat,	respectively	decreasing	

4%	and	increasing	2%.	Deciles	3-10	all	fell	between	8%	-	25%.	Meanwhile	the	top	

1%	increased	6%,	with	the	top	0.1%	increasing	21%	to	1,623	mt	CO2e	(Fig.	4.1).	

With	a	post-tax	income	responsibility,	the	next	0.9%	emissions	declined	2%.	

Whereas	in	a	pre-tax	calculation	all	deciles	fell	6%	-	25%	and	the	next	9%	fell	15%.	

In	contrast,	the	next	0.9%,	top	1%	and	top	0.1%	respectively	increased	6%,	17%,	and	

35%	in	the	pre-tax	calculation.	

	

Fig.	4.1:	Shared	producer	and	supplier	income	responsibility	(post-tax)	
average	metric	tons	CO2e	emissions	(1996-2015),	per	income	group.	Shading	

is	standard	error.	Colored	shading	is	standard	error,	gray	box	shading	
indicates	recession,	vertical	dashed	lines	(2001-2003)	and	dotted	line	(2013)	
respectively	indicate	tax	cuts	and	tax	increase	for	the	highest	tax	bracket.	
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4.4.1.2 Supplier,	Producer,	Consumer	–	total	shared	responsibility	

Here	I	calculate	a	comprehensive	total	household	responsibility	based	on	

post-tax	income	(supplier	and	producer	50-50	split)	and	consumption.	This	

captures	emissions	related	to	the	full	range	of	economic	and	consumption	benefits	

of	households	and	accounts	for	emissions	transfers	via	taxes	and	social	benefits.	I	

find	a	14%	decline,	in	national	average	emissions,	from	43.4	to	37.1	mt	CO2e	(Fig.	

4.2).	All	deciles	declined	between	8%	and	21%.	Even	the	relatively	affluent	next	9%	

group	fell	15%.	But	unlike	the	lower	99%	of	the	income	distribution,	the	top	1%,	

next	0.9%,	and	top	0.1%	increased	their	total	emissions	11%,	2%,	and	28%.	The	top	

1%	and	top	0.1%	had	average	emissions	of	311	and	1,280	mt	CO2e,	in	2015.	

	

Fig.	4.2:	Total	responsibility	(supplier,	producer,	consumer)	mean	household	
metric	tons	CO2e	emissions	(1996-2015)	per	income	group.	Colored	shading	is	
standard	error,	gray	box	shading	indicates	recession,	vertical	dashed	lines	
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(2001-2003)	and	dotted	line	(2013)	respectively	indicate	tax	cuts	and	tax	
increase	for	the	highest	tax	bracket.	

	

4.4.2 Income,	Population	and	Emissions	Trends	

Per	household	and	per	dollar	CO2e	intensity	fell	under	the	supplier,	producer,	

and	consumer	frameworks,	as	did	total	U.S.	supplier	and	producer	emissions	(Fig	

4.3).	Total	U.S.	consumer	emissions	increased	slightly,	but	far	less	than	the	growth	

in	total	population	and	dollars	per	household.	Yet,	this	national	average	income	

growth	belies	the	truly	remarkable	income	growth	within	the	top	1%	groups.	Higher	

income	directly	affects	these	households	income-emissions	responsibility	and	

results	in	increased	consumption	that	drives	consumption-based	GHG	emissions.		

	

Fig.	4.3:	Percent	changes	(1996-2015)	in	income,	population,	spending,	total	
and	average	U.S.	CO2e	emissions,	and	CO2e	intensity	for	both	producer,	

supplier,	and	consumer	frameworks,	relative	to	1996	base	year.	
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4.4.3 Most	Recent	Year	(2015)	

With	the	total	household	responsibility	framework	the	top	decile,	in	2015,	

had	mean	(x̅)	emission	of	101.2	mt	CO2e	(median	(x̃)	=	72.6)	(Fig	4.4)	and	accounted	

for	27%	of	U.S.	emissions.	The	emissions	share	of	these	top	10%	households	is	just	

about	equal	to	the	collective	emissions	from	the	bottom	50%	of	households	(deciles	

1-5),	who	account	for	28%	of	national	emissions.	Within	the	top	decile,	the	top	1%	

alone	account	for	8%	of	total	national	emissions	(x̅	=	311,	x̃	=	193	mt	CO2e).	The	next	

0.9%	accounted	for	5%	of	national	emissions	(x̅	=	203,	x̃	=	182	mt	CO2e),	and	the	top	

0.1%	was	responsible	for	3.5%	of	national	emissions	(x̅	=	1,280,	x̃	=	1,014	mt	CO2e).		
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Fig.	4.4:	Mean	total	household	responsibility	mt	CO2e	emissions	(2015)	per	
income	decile,	with	Decile	10	broken	into	top	1%	and	next	9%.	The	width	of	
each	income	group,	on	the	x-axis,	corresponds	with	each	group’s	share	of	total	

national	CO2e	emissions.	Bars	are	standard	error.	
	

The	absolute	scale	of	inequality	between	groups	is	stark,	with	next	0.9%	and	

top	0.1%	households	having	emissions	15x	and	97x	(1,438%	and	9,582%)	larger	

than	decile	1	households	(Table	4.1).	This	inequality	comes	into	even	sharper	focus	

when	comparing	the	share	of	national	emissions	used	by	each	group	in	relation	to	

their	population	share.	In	an	equitable	distribution,	there	would	be	no	difference	

between	these	two.	Here	though,	I	find	deciles	1-6	have	negative	emissions	share	
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(Fig	4.5).	Decile	1’s	emissions	share	is	65%	lower	than	what	it	would	be	in	an	

equitable	distribution,	decile	7	is	essentially	equal	to	it’s	share,	and	the	top	1%	is	

8.4x	(736%)	larger	than	its	population	share.	The	top	0.1%	is	responsible	for	a	share	

of	national	emissions	34x	(3,343%)	higher	than	its	population	share.	

	

Table	4.1:	Comparison	(times	larger)	of	mean	household	emissions,	per	U.S.	
income	group.	

	 U.S.	income	groups	
(times	larger)	

U.S.	
income	
groups	

Decile	
1	
	

Decile	
5	
	

National	
household	
average	

Decile	
10	
	

Decile	10	 top	1%	

next	
9%	

top	
1%	

next	
0.9%	

top	
0.1%	

super	
emitters	

(mtCO2e)	 (13.2	mt)	 (28.2	mt)	 (37.1	mt)	 (102	mt)	 (77.8	mt)	 (311	mt)	 (203	mt)	 (1280	mt)	 (3738	mt)	

Decile	1	
(13.2	mt)	 1	 2.1	 2.8	 7.6	 5.9	 23.5	 15.4	 96.8	 283.2	

Decile	5	
(28.2	mt)	 0.5	 1	 1.3	 3.6	 2.8	 11.0	 7.2	 45.4	 132.6	

National	
househol
d	average	
(37.1	mt)	 0.4	 0.8	 1	 2.7	 2.1	 8.4	 5.5	 34.5	 100.8	

Decile	10	
(101.1	
mt)	 0.1	 0.3	 0.4	 1	 0.8	 3.1	 2.0	 12.7	 37.0	
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Fig.	4.5:	Total	household	emissions	share	relative	to	population	share	(%	
difference),	for	income	groups	(2015).	A	zero	value	on	the	y-axis	indicates	an	
equitable	distribution.	Width	on	the	x-axis	represents	the	group’s	share	of	

national	emissions.	
	

In	all	responsibility	frameworks	(supplier,	producer,	consumer,	and	shared	

total	responsibility)	top	income	households	are	responsible	for	significantly	

absolute	emissions	and	a	meaningful	and	disproportionate	share	of	national	

emissions.	Yet,	the	accounting	choice	does	change	group	emissions	estimates.	For	

the	lower	99%	of	households,	moving	from	an	income	responsibility	(post-tax	

supplier	producer	split)	to	the	total	household	footprint	increases	their	emissions	
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footprint	(Fig.	4.6).	This	is	because	social	welfare	programs,	at	the	bottom	of	the	

distribution,	and	very	high	savings	rates,	at	the	top	of	the	income	distribution,	make	

consumption	more	evenly	distributed	than	income.	Thus	consumption	footprints	

are	higher	than	income	footprints	for	most	income	groups.	But	for	next	0.9%	and	top	

0.1%	households	this	trend	is	reversed	(Fig.	4.7).	A	key	factor	here	is	that	high	

savings	rates	for	top	income	households	reduce	their	consumption	emissions,	but	

don’t	reduce	their	income-based	footprints,	even	if	that	income	is	saved	for	future	

use.	
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Fig.	4.6:	Percent	difference,	for	each	income	group,	between	their	post-tax	
shared	supplier	and	producer	average	and	the	total	responsibility	footprint	

(including	consumptions)	(2015).	
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Fig.	4.7:	Percent	difference,	for	each	income	group,	between	their	
consumption-based	footprint	and	the	total	responsibility	footprint	(including	

post-tax	shared	supplier	and	producer	average)	(2015).	

4.4.4 Relationship	to	Racial	Inequality	

In	the	post-tax	total	responsibility	framework,	white	non-Hispanic	

households	have	emissions	(40.0	mt	CO2e)	that	are	44%	higher	than	black	

households	(27.7	mt	CO2e)	and	30%	higher	than	white	Hispanic	households	(30.8	

mt	CO2e).	Across	all	post-tax	emissions	frameworks	(supplier,	producer,	and	

consumer)	white	non-Hispanic	households	have	emissions	that	are	between	42-
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55%	higher	than	black	households	and	28-33%	higher	than	white	Hispanic	

households.		

This	emissions	inequality	reflects	the	larger	issue	of	racial	economic	

inequality	in	U.S.	society.	Median	income	of	white	households	is	69%	higher	than	

black	households	and	35%	higher	than	Hispanic	households.	This	income	inequality	

results	in	different	levels	of	consumption	and	results	in	significant	income-based	

and	consumption-based	differences	in	GHG	emissions	responsibility	across	racial	

lines.	

4.4.5 Super	Emitters		

I	estimate	4%	of	top	0.1%	households	have	consumption-based	emissions	

above	3,000	mt	CO2e	and	3-10%	of	top	1%	households	have	income-based	

emissions	above	this	“super	emitter”	threshold.	In	the	total	responsibility	

framework	super	emitters	average	3,623	mt	CO2e	when	consumption	based-

emissions	above	5,000	mt	CO2e	are	dropped,	or	3,738	mt	CO2e	when	they	are	

included.	About	5-6%	of	top	0.1%	households	likely	count	as	total-responsibility	

super	emitters.	

4.5 Discussion		

4.5.1 Relationship	of	Emissions	Inequality	to	Income	Inequality		

In	2015,	the	top	10%,	top	1%,	and	top	0.1%	captured	46%,	19%,	and	8.5%	of	

all	pre-tax	national	income	(78).	With	the	GHG	total	responsibility	framework	those	

groups	were	responsible	for	27%,	8%,	and	3.5%	of	national	household	emissions.	

Emissions	responsibility	at	the	very	top	is	lower	than	their	share	of	income	because	
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taxes,	very	high	savings,	and	the	purchase	of	less	intensive	GHG	services	reduce	

emissions	responsibility	at	the	top.	Meanwhile,	social	benefits,	very	low	(or	

nonexistent)	savings	rates,	and	the	purchase	of	relatively	higher	GHG	intensive	

goods	increase	emissions	footprint	for	lower	decile	households.		

4.5.2 Factors	shaping	household	footprints	–	comparing	approaches	

In	pre-tax	supplier	or	producer	accounting,	income	is	GHG	footprint	destiny.	

Household	footprints	are	directly	determined	by	the	amount	of	money	received	and	

GHG	intensity	of	the	industry	from	which	it	is	received.	Because	supplier	and	

producer	footprints	calculate	GHG	intensity	differently,	household’s	footprints	are	

sensitive	to	the	method	chosen.	In	so	much	as	they	have	agency	in	shaping	their	

GHG	footprint,	individuals	may	choose	which	companies	to	work	for	(constrained	by	

what	options	are	available	to	them)	or	invest	in.	Tax	policy	and	the	value	of	social	

benefits	play	an	important	role	in	shaping	household’s	post-tax	income	footprints.	

Progressive	taxation	and	regressive	social	welfare	helps	even	out	some	of	the	most	

extreme	inequality,	seen	in	the	pre-tax	pre-benefit	accounting.		

Consumption	based	footprints	are	determined	by	a	household’s	total	amount	

of	spending	and	the	types	of	goods	and	services	purchased.	Household	agency	

related	to	both	of	these	drivers	varies	across	income	groups.	Low-income	

households	have	low	or	nonexistent	savings	rates	and	purchase	more	basic	

necessities	that	tend	to	be	more	GHG	intensive.	Wealthier	households	tend	to	

purchase	less	GHG	services	and	enjoy	very	high	savings	rates	(46%	for	top	1%	and	
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57%	for	top	0.1%	groups,	in	2015).	The	latter	significantly	reduces	their	

consumption-based	emissions.			

By	including	both	income	and	consumption	in	the	total-responsibility	

framework	I	better	capture	the	true	GHG	responsibility	of	households	related	to	the	

benefits	those	emissions	enable.	One	downside	to	the	income-only	approach	is	that	

household	choices	on	how	that	money	is	spent	have	no	impact	on	their	GHG	

footprint.	For	example,	a	household	actively	choosing	to	limit	their	consumption	and	

purchase	less	GHG	intensive	goods	and	services	will	not	see	these	personal	life-style	

choices	reflected	in	their	income	footprint.	At	the	same	time,	a	consumption-only	

approach	misses	the	GHG	emissions	that	were	required	to	create	income	benefits	

for	a	household.	For	example,	imagine	a	household	with	a	seven	figure	annual	

income,	from	a	fossil	fuel	or	coal	utility	company,	but	it	has	extremely	high	savings	

rates	and	consumes	very	little.	High	savings	rates	will	significantly	reduce	

consumption	emissions,	yet	this	saved	income	still	provides	the	household	with	real	

immediate	benefit,	in	the	form	of	financial	security,	social	status,	and	political	

influence.	The	income-based	footprint	helps	to	capture	that	benefit.	By	combining	

both	approaches,	the	total	responsibility	framework	better	accounts	for	the	true	

range	of	benefits	received,	while	including	a	household	agency.	

4.5.3 Policy	Implications	

Carbon	pricing	schemes,	like	cap-and-trade	and	carbon	taxes	internalize	

some	of	the	environmental	and	social	damage,	caused	by	GHG	emissions,	into	the	

price	of	final	demand	goods	and	services	(82,	83).	These	price	signals	aim	to	shift	
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consumer	behavior	to	less	GHG	intensive	alternatives.	As	I	discuss	in	the	

consumption-footprint	chapter,	such	taxes	would	hit	low-income	families	the	

hardest,	while	extremely	high	savings	rates	of	high-income	families	allow	them	to	

simply	absorb	the	tax	without	making	any	meaningful	lifestyle	modification.	

With	income-based	GHG	responsibility,	taxing	income	above	a	certain	

threshold,	based	on	the	GHG	emissions	it	enabled	or	on	the	GHG	emissions	that	

were	used	to	generate	it	is	an	approach	to	internalize	costs	on	the	producer	side.	

Another	approach	is	taxing	shareholders	of	fossil	fuel	suppliers	or	high	emitting	

companies.	Because	stock	ownership	is	highly	concentrated	among	the	wealthiest	

households	this	could	help	focus	efforts	on	those	top	income	households	that	are	

driving	a	disproportionate	share	of	GHG	emissions.	It	also	has	the	benefit	of	

stimulating	fiduciary	fund	managers	to	shift	investment	away	from	the	taxed	

industries.	It	would	encourage	divestment	on	fiduciary	grounds	alone.	More	work	is	

needed	to	analyze	the	regulatory	and	other	costs	that	might	be	associated	with	such	

a	plan.		

Considering	the	total-responsibility	approach,	where	households	are	

simultaneously	responsible	as	both	producers	that	gain	an	income	from	GHG	

emissions	and	consumers	that	drive	GHG	emissions	through	their	purchasing	

suggests	that	policy	efforts	that	simultaneously	target	both	consumption	and	

income	may	be	more	effective	than	either	is	alone.	Carbon	taxes	related	to	income	

help	address	the	fact	that	high	savings	rates,	among	wealthy	households,	limits	the	

impact	consumption-based	taxes	will	have	on	this	group.	While	consumption-based	
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taxes	would	provide	price	signals	that	can	help	shift	behavior,	or	at	the	very	least	

generate	revenue	to	fund	de-carbonization	efforts.		

Yet	total-responsibility	also	highlights	some	of	the	limitations	of	households	

to	independently	act	as	agents	of	de-carbonization.	Certainly	among	the	lowest	

deciles,	even	in	the	face	of	a	carbon	tax,	shifting	consumption	is	limited	by	the	fact	

that	basic	necessities	still	need	to	be	purchased	and	overly	taxing	income,	based	on	

GHG	emissions,	is	unfeasible	since	there	is	no	slack	in	low-income	household	

budgets	to	absorb	such	a	tax.	At	the	high	end,	households	have	more	agency	to	shift	

spending,	but	they	also	have	enough	savings	to	simply	absorb	any	consumption-

based	taxes	and	maintain	their	consumption	patterns.	They	also	have	extremely	

limited	individual	agency	in	determining	the	GHG	intensity	of	the	industry	from	

which	they	draw	a	wage.	Perhaps	the	most	agency	households	have	is	in	their	role	

as	investors.	This	points	to	a	strength	of	the	shareholder-based	GHG	taxing	

approach,	since	households	do	have	high	agency	in	nimbly	redirecting	investments.	

While	few	households	have	significant	investments,	thus	limiting	agency	for	most	

households,	interest,	dividends,	and	capital	gains	account	for	a	significant	share	of	

wealthy	household’s	income-based	carbon	footprint	and	thus	a	shareholder	tax	

could	be	an	effective	tool	to	encourage	these	households	(and	their	fiduciary	

financial	advisors)	to	redirect	investments	away	from	fossil	fuel	intensive	

industries.	

Yet,	the	limits	of	households	as	independent	change	agents	suggest	other	

policies	are	also	needed	to	decarbonize	areas	of	the	economy	over	which	

households	have	limited	agency.	For	example,	transportation	infrastructure	
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including	high	speed	rail,	electric	vehicle	charging	stations,	electric	buses,	and	

adequate	bike	lanes	impact	household	travel	choices,	but	households	have	limited	

independent	influence	on	this	infrastructure.	Likewise,	households	generally	have	

little	choice	over	the	GHG	intensity	of	their	electric	utility	supply.	But	together	

transport	and	utilities	make	up	50-59%	of	consumption-based	emissions	for	deciles	

1-9.	Legislative	or	regulatory	actions	that	eliminate	coal	power,	restrict	fossil	fuel	

development	on	public	lands,	and	make	investments	in	renewables	can	change	the	

GHG	intensity	of	the	U.S.	economy	in	ways	that	household	decisions	simply	cannot.		

Simultaneously	implementing	a	range	of	policies,	such	as	carbon	tax,	GHG-

based	income	and	shareholder	taxes,	and	regulatory	action	that	reduce	fossil	fuel	

intensive	activities	while	stimulating	less	intensive	alternatives	would	be	the	

quickest	approach	to	reducing	the	GHG	intensity	of	the	U.S.	economy.	Yet,	each	

policy	proposal	brings	with	it	a	legislative	fight	and	those	most	impacted	by	these	

proposals,	the	wealthiest	households,	are	the	same	households	whose	preferences	

determine	policy	(53).	

4.5.4 Equity,	Climate	and	Environmental	Justice		

Over	the	last	decade	plus	the	scale	of	economic	inequality	and	racial	injustice,	

within	U.S.	society,	have	become	increasingly	clear	and	urgently	necessary	to	

address.	At	the	same	time,	the	existential	threat	posed	by	climate	change	has	

worsened	with	another	decade	of	insufficient	action.	My	work	reveals	some	of	the	

connections	between	economic	and	racial	inequality	and	the	GHG	emissions	that	

drive	climate	change:	namely,	how	the	income	and	consumption	benefits	of	these	
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emissions	are	distributed	within	U.S.	society	and	the	scale	of	inequity	in	this	

distribution.	The	total	emissions	responsibility	of	top	0.1%	households	is	100x	

larger	than	bottom	decile	households	and	super	emitters	emissions	are	about	280x	

larger.	U.S.	society	cannot	successfully	address	the	climate	crisis	without	

understanding	which	groups	within	society	are	driving	this	crisis,	assigning	an	

appropriate	level	of	responsibility	to	those	households,	and	using	this	to	develop	

just	and	effective	public	policy.	My	work	shows	how	emissions	footprints	vary	

across	economic	and	racial	lines,	how	the	income	and	consumption	responsibilities	

of	groups	differ,	and	the	scale	of	GHG	emissions	in	the	total	benefits	received	by	

different	groups.	By	illuminating	these	differences	and	proposing	policies	that	

recognize	these	inequalities	my	work	provides	a	new	perspective	on	the	

connections	between	economic	class,	race,	and	climate	change	and	informs	more	

effective	policy	formation.		

4.6 Materials	and	Methods	
	

The	consumer	and	income	based	GHG	emissions	responsibilities,	that	

determine	total	household	responsibility,	are	calculated	using	an	Environmentally-

Extended	Multi-Region	Input-Output	Model	(EE-MRIO),	consumer	expenditures,	and	

income	data.		

Mt	CO2e	per	dollar	of	consumption	or	income	is	derived	from	the	Eora	MRIO	

(57,	58)	covering	14,839	sectors,	190	countries,	and	1,140	final	demand	and	value	

added	categories.	For	each	of	the	20	years,	EORA	is	converted	from	a	14,839	x	

14,839	heterogeneous	classification	system	to	a	square	input-output	table.	A	10,211	
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x	10,211	commodity-by-commodity	IO	table,	using	the	Industry	Technology	

Assumption,	is	generated	for	consumption	GHG	intensity.	A	9,812	x	9,812	industry	

by	industry	IO	table,	using	the	Fixed	Product	Sales	Structure	assumption,	is	

generated	for	income	GHG	intensity	(95).	Direct	emissions	data,	for	six	Kyoto	GHGs,	

come	from	the	PRIMAPHIST	database	(available	in	Eora)	(90).	Consumption-based	

emissions	are	linked	to	household	purchasing	using	Consumer	Expenditure	Surveys	

from	the	Bureau	of	Labor	Statistics	(see	the	Chapter	2	for	detailed	methodology).	

Income-based	emissions	are	linked	to	household	income	using	IPUMS	CPS,	a	

harmonized	Current	Population	Survey	database	(63)	(See	Chapter	3	for	detailed	

methodology).	For	both,	top	1%	households	are	under-sampled	in	the	underlying	

survey	data.	I	estimate	the	consumption	and	income	of	these	households	by	

bootstrapping	top	1%	households	that	are	in	the	surveys	and	matching	them	with	

simulated	high	income	household	income	distributions,	using	data	from	the	World	

Inequality	Database	(78).	Household	GHG	footprints	are	estimated	and	households	

are	binned	into	income	groups.	To	calculate	the	shared	total	responsibility,	the	

supplier	and	producer	income	responsibility,	of	each	group,	are	averaged.	This	

yields	an	income-based	footprint	where	half	the	responsibility	comes	from	the	

supply-based	emissions	responsibility	and	half	from	production-based	income	

responsibility.	This	income	footprint,	for	each	group,	is	then	averaged	with	the	

group’s	consumption-based	responsibility.	Yielding	a	total	household	responsibility	

where	both	income	and	consumption	contribute	50%	to	the	total	footprint	(see	

Appendix	A	for	additional	methods).	
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CHAPTER	5	

5 CONCLUSION		
	

5.1 Introduction	

Despite	having	about	4%	of	the	global	population,	the	U.S.	accounted	for	about	

14%	of	global	production-based	CO2	emissions,	in	2019	(100),	and	remains	the	

largest	historical	GHG	emitter.	Within	the	U.S.,	households	are	a	key	group,	as	their	

direct	emissions	and	consumption	drive	about	80%	of	U.S.	emissions	(35).	Indeed,	

decades	of	high	emissions	(incompatible	with	climate	stability)	have	yielded	

significant	income	and	consumption	benefits	for	U.S.	households.	

Thus,	if	the	world	is	to	successfully	address	the	climate	crisis,	the	U.S.	is	a	

critical	player	and	U.S.	households	are	a	key	group.	Yet,	significant	economic	and	

racial	inequality	within	U.S.	society	results	in	very	different	levels	of	emissions	

responsibility	across	households.	My	work	quantifies	the	scale	of	this	inequality	and	

its	relation	to	GHG	emissions	responsibility.	I	have	done	this	by	tracking	the	flow	of	

GHG	emissions	embodied	in	the	consumption	and	income	benefits	received	by	U.S.	

households	using	four	accounting	frameworks:	consumer,	producer,	supplier,	and	

total	(shared)	responsibility.	By	revealing	the	scale	of	inequality	within	these	

different	responsibility	frameworks,	my	work	reveals	the	true	scale	of	emissions	

inequality	within	U.S.	society,	informs	social	justice	narratives,	and	highlights	

possible	policy	opportunities.		

	

	



 
 
 

94	

5.2 Comparison	with	prior	study	and	novelty	of	work	
	

U.S.	household	consumption-based	emissions	have	previously	been	

investigated.	For	2004,	Weber	and	Matthews	(38)	estimated	average	U.S.	household	

emissions	between	43.5	-	60.8	mtCO2e.	My	2004	estimate	is	right	in	this	range,	at	

48.2	mt	CO2e.	Jones	and	Kammen	find	household	emissions	of	about	43.5	mt	CO2e,	

for	2005,	close	to	my	findings	of	47.3	mt	CO2e.	For	2007,	Ivanova	et	al.	(52),	

estimated	U.S.	per	capita	emissions	were	18.6	mt	CO2e,	while	my	2007	results	align	

quite	well	at	18.66	mt	CO2e.	Feng	et	al.	(28)	estimate	2015	per	capita	emissions	at	

16.4	mt	CO2e,	while	I	estimate	17.3	mt	CO2e.	Finally,	the	only	time	series	analysis	I	

am	familiar	with	for	U.S.	households	is	Song	et	al.	(29),	they	find	per	capita	

emissions	between	1995-2014	averaged	between	16.1	and	18.7	mt	CO2e.	I	find	

1995-2015	emissions	averaged	between	15.6	and	20.0	mt	CO2e.	At	the	household	

and	per	capita	level	my	estimates	seem	to	fit	in	line	with	previous	work.	

While	general	agreement	on	these	average	estimates	ground	my	work	in	prior	

research,	the	novelty	of	my	approach	is	in	the	granularity	of	the	analysis	and	the	

focus	on	top	income	households.	Prior	work	at	the	individual	household-level	has	

only	gone	up	to	about	$160,000	(in	2020	dollars)	and	100	mt	CO2e	(Fig. 5.1).	I	

expand	the	income	bounds	roughly	100x	and	emissions	bounds	50x.	While	prior	

work	has	found	the	scale	of	inequality	between	their	top	groups	and	bottom	group	

was	about	3x	(28)	to	5x	(29)	different,	I	find,	in	2015,	the	difference	between	my	top	

income	group	(top	0.1%)	and	the	bottom	decile	is	54x,	and	the	difference	between	

super	emitters	and	the	bottom	decile	is	209x.	The	scale	of	inequality	I	reveal	is	at	

least	10x	larger	than	what	has	previously	been	reported.	
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Fig.	5.1:	Comparison	(log-log),	of	my	study	with	prior	work,	in	terms	of	dollars	
and	mt	CO2e	in	scope.	Prior	study	upper	income	boundary	is	based	on	

threshold	for	highest	income	group	reported.	My	household-level	approach	
allows	us	to	estimate	emissions	for	individual	households	above	$10,000,000.	

Feng	et	al.	is	per	capita.	Note:	these	are	visual	approximations.	
	

In	terms	of	supplier	or	producer	income	responsibility,	a	visual	like	Fig. 5.1	is	

not	possible	because	no	prior	work	at	all	has	been	done	to	calculate	household-level	

GHG	emissions	using	income-based	accounting	for	the	U.S.	or	any	other	country.	To	

my	knowledge,	all	prior	work	has	been	done	at	national,	regional,	or	sectoral	levels	

(40–46).	This	misses	a	key	connection	between	GHG	emissions	and	the	economic	

benefits	these	emissions	enable	for	households.	I	find	the	scale	of	inequality	in	this	

distribution	is	even	more	striking	than	consumption-based	inequality.	If	just	pre-tax	

income	is	counted	here	(before	social	benefit	transfers	accrue	to	the	bottom	and	
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taxes	reduce	income	at	the	top)	the	difference	between	the	top	0.1%	and	the	bottom	

decile	is	about	1,700x	–	2,000x	higher,	depending	on	the	choice	of	producer	or	

supplier	framework.		

Another	novel	contribution	of	my	work	is	determining	how	footprint	

inequality	differs	by	race.	While	racial	inequality	related	to	the	environment	has	

been	previously	studied	(67,	69,	70,	74),	to	my	knowledge	it	has	never	been	

analyzed	in	the	context	of	household	GHG	emissions.	I	reveal	significant	disparity	

between	households,	with	white	non-Hispanic	household	emissions	far	higher	than	

black	(42-81%	higher	depending	on	accounting	method)	and	Hispanic	households	

(28-37%	higher).		

5.3 Narratives	

Over	the	last	decade	plus	there	has	been	growing	social	and	political	

engagement	(Occupy	Wall	Street,	the	Sunrise	Movement,	and	Black	Lives	Matter)	

focused	on	issues	of	inequality,	racial	fairness,	and	climate	justice.	Recently	there	

has	been	a	growing	understanding	that	these	issues	are	connected.	Yet	the	scale	of	

emissions	inequality	between	groups	has	not	been	well	understood.	Even	in	the	

Green	New	Deal,	perhaps	the	most	ambitious	policy	proposal	to	date,	to	address	

both	economic	inequality	and	climate	change,	the	connection	between	these	two	are	

only	made	in	terms	of	environmental	harm	(how	environmental	harm	exacerbates	

systematic	injustice	of	poor	or	socially	marginalized	groups)	(101).	It	does	not	

articulate	that	this	harm	is	ultimately	driven	by	an	inequitable	distribution	of	

benefits;	namely	an	uneven	consumption	distribution	where	top	income	households	
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disproportionately	drive	CO2e	emissions.	This	is	perhaps	unsurprising	as	both	

political	considerations	and	the	data	needed	to	inform	such	an	analysis	were	

barriers	to	its	inclusion.	But	my	work	here	provides	a	powerful	new	narrative	on	

how	these	issues	are	connected;	how	income	inequality	drives	emissions	inequality	

and	why	the	scale	of	this	inequality	matters	for	public	policy.	

5.4 Household	agency	
	

One	application	of	my	findings	is	in	determining	the	scale	of	GHG	reduction	

that	is	possible	due	to	individual	household	agency.	One	way	to	access	the	range	of	

agency	available	to	households	is	by	comparing	households	within	an	income	group	

to	see	the	emissions	spread.	In	2015,	the	top	1%	of	households	had	consumption-

based	emissions	ranging	from	a	minimum	of	21	to	a	maximum	of	4,910	mt	CO2e.	Yet,	

this	includes	households	with	just	over	$500,000	in	income	to	those	earning	over	

$10	million.	Looking	at	the	more	narrow	next	0.9%	group	(where	the	maximum	

income	spread	is	about	$1.7	million),	the	range	is	21	-	813	mt	CO2e	with	

consumption-based	footprints,	92	-	1,078	mt	CO2e	(supplier	income),	131	-	1,895	mt	

CO2e	(producer	income),	and	44	–	890	mt	CO2e	with	total-responsibility	accounting.	

This	spread	is	determined	by	a	range	of	factors	including	differences	in	income,	

regional	differences	that	impact	consumption	(like	GHG	intensity	of	the	electric	

grid),	regional	differences	in	GHG	of	employment,	and	household	choice.	

Because	I	model	individual	household	emissions,	I	can	control	the	within-

group	income	spread	by	focusing	on	households	at	a	given	income	level.	In	2015,	

households	around	$1	million	in	after-tax	income	had	consumption	emissions	
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between	about	100	–	900	mt	CO2e,	producer	income	around	300	-	1000	and	

supplier	income	around	200	to	900	mt	CO2e.	This	large	spread	suggests	households	

do	have	some	agency	in	shaping	their	footprints,	though	as	described	above,	

household	choice	is	only	one	of	several	factors	shaping	this	spread.	

5.5 Policy	implications	and	future	directions	
	

The	potential	policy	applications	of	my	findings	are	discussed	in	the	individual	

chapters.	Here	I	discuss	how	all	of	these	findings	together	may	inform	policy	and	

what	future	work	could	be	done	to	further	develop	these	applications.	Considering	

all	the	footprints	together,	one	thing	is	abundantly	clear:	regardless	of	the	

accounting	method	chosen	there	is	a	startling	difference	between	those	at	the	very	

top	and	everyone	else.	The	degree	of	emission	inequality	is	quite	striking.	This	

presents	both	a	challenge	and	an	opportunity	for	policy	making.	If	some	kind	of	

consumer-facing	carbon	pricing	is	to	be	implemented,	via	cap	and	trade	or	a	carbon	

tax,	setting	such	a	tax	high	enough	to	change	behavior	of	this	extremely	wealthy	

group	is	likely	quite	challenging.	Because	savings	rates	are	so	high	among	this	

group,	they	can	largely	choose	to	maintain	their	consumption	habits,	absorb	the	tax,	

and	still	have	very	high	savings	rates.	Setting	the	tax	high	enough	where	it	would	

actually	change	behavior	would	likely	be	so	high	that	it	would	be	impossible	for	less	

wealthy	households	to	pay	it	and	thus	politically	untenable.	Perhaps	the	best	effect	

such	a	tax	might	have	vis-à-vis	this	top	income	group	is	generating	revenue	to	fund	

government	de-carbonization	efforts.	Alternatively,	an	income	or	shareholder	tax	

may	be	a	tool	to	better	focus	on	top	income	households.	Because	the	tax	could	be	
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targeted	to	those	over	a	certain	income,	or	on	investment	income	(which	is	

disproportionately	the	realm	of	wealthy	households)	a	tax	here	may	better	shift	

behavior	among	top	income	households.	For	example,	by	putting	a	tax	on	shares	of	

fossil	fuel	companies,	it	may	encourage	them	to	divest	from	fossil	fuel	companies,	

whereas	a	consumption-based	carbon	tax	hitting	private	jet	fuel	cost,	perhaps	

wouldn’t	be	high	enough	to	encourage	less	flying.	This	approach	fits	with	and	could	

help	justify	existing	policy	proposals,	such	as	a	wealth	tax.	Basing	a	wealth	tax	on	

the	carbon	intensity	of	the	sources	of	that	wealth	provides	a	straightforward	

justification	for	the	tax,	provides	an	opportunity	to	reduce	or	avoid	the	tax	by	

shifting	investments	to	less	GHG	industries,	and	by	using	tax-generated	revenue	to	

fund	government	de-carbonization	efforts,	like	cleaner	transportation	or	energy	

infrastructure	the	tax	would	not	only	shift	behavior	but	would	fund	carbon	

reduction	efforts.	Yet,	while	policy	can	help	shift	some	household	actions	and	fund	

de-carbonization,	households	are	also	only	one	actor	in	the	economy	and	their	

agency	is	limited.	They	can’t	directly	determine	the	GHG	intensity	of	basic	

necessities,	for	example,	the	public	transportation	options	available	to	them,	the	

availability	of	electric	vehicle	charging	stations	or	the	GHG	intensity	of	their	

employers.	Coordinated	efforts	by	government	via	legislation	and	regulation,	such	

as	a	clean	power	plan	that	sets	carbon	efficiency	standards	or	investments	in	

renewable	energy	and	public	transportation	infrastructure	are	also	desperately	

needed.		

Finally,	while	the	policy	window	to	turn	any	of	these	ideas	into	reality	is	

limited,	there	doesn’t	have	to	be	a	choice	between	one	policy	or	the	other.	The	most	
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effective	solution	would	likely	be	all	of	the	above:	a	consumer	facing	carbon	tax	that	

encourages	less	GHG	intensive	consumption,	an	income	tax	for	high	income	

households	that	reflects	the	scale	of	GHG	emissions	used	to	generate	that	income,	a	

shareholder	tax	on	fossil	fuel	supplier	or	large	emitters	that	internalizes	the	social	

and	environmental	damage	caused	by	those	corporations,	and	direct	government	

action	(at	least	partly	funded	through	some	of	these	taxes)	that	invests	in	green	

infrastructure,	sets	electric	vehicle	fleet	standard,	and	restricts	fossil	fuel	extraction	

and	combustion	activities.	By	simultaneously	implementing	a	range	of	policy	

solutions	it	could	move	the	U.S.	economy	to	a	level	of	emissions	that	will	preserve	

life	on	this	planet.	Though	I	am	not	naïve	about	the	extreme	difficulty	in	actually	

turning	these	ideas	into	law	and	the	additional	work	that	needs	to	be	done	to	

analyze	the	effectiveness	and	cost	of	these	proposed	policies.	Indeed,	now	that	I	

have	articulated	the	scale	of	inequality	and	identified	some	of	its	implications,	I	hope	

this	is	an	area	of	future	research	that	others	will	pursue,	namely	analyzing	an	

income	or	shareholder	carbon	tax.	

5.6 Other	research	directions	

Beyond	quantifying	the	scale	of	inequality	across	income	groups,	the	

databases	I	have	created	provide	other	opportunities	to	quantify	GHG	emissions	

footprints	relationship	to	other	variables.	Here	I	quantified	racial	inequality	in	GHG	

footprints,	in	2015.	This	can	be	done	across	the	whole	20-year	dataset	to	see	trends	

in	this	inequity.	Single	year	and	time	series	state	level	or	regional	GHG	analysis	is	

also	possible.	How	GHG	footprints	vary	across	age	can	also	be	calculated	with	this	
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dataset,	giving	insight	into	an	important	factor	that	influences	inter-generational	

equity	discussions.	As	additional	years	of	Eora	MRIO,	emissions,	income,	and	

expenditure	data	become	available,	the	code	I	have	written	to	extract	relevant	data	

can	quickly	process	it	and	update	the	analysis.	

This	database	could	be	turned	into	an	online	tool	where	individuals	or	

organizations	could	calculate	their	supplier-income,	producer-income,	or	

consumption	based	footprints.	Giving	the	user	insights	into	the	scale	of	their	

emissions,	the	areas	of	their	income	or	spending	that	are	most	GHG	intensive,	reveal	

how	they	compare	to	other	groups	in	the	country,	and	help	give	them	agency	to	

reduce	their	emissions.	It	could	also	be	used	to	show	what	the	effect	of	different	

policy	solutions	(like	carbon	tax,	income	carbon	tax,	or	shareholder	tax)	might	have	

on	their	budget.	

Beyond	GHG	emissions,	the	relationship	between	economic,	inequality,	race,	

region	and	other	variables	can	be	examined.	Eora	contains	additional	environmental	

satellite	accounts,	such	as	water,	nitrogen,	and	raw	materials	that	can	be	calculated	

with	minor	code	alteration	and	linked	with	U.S.	households’	income	and	

consumption.	

Furthermore,	I	analyzed	one	country.	The	novel	method	of	bootstrapping	top	

1%	household	expenditures	and	income	sources	to	account	for	under-sampling	in	

national	surveys	could	be	applied	to	countries	around	the	world.	The	World	

Inequality	Database	(WID)	contains	fine-grained	income	data	for	a	growing	

collection	of	countries.	Using	WID	data	and	relevant	national	surveys,	the	

techniques	I	pioneer	here	could	be	used	to	better	understand	top	income	household	
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footprints	within	countries	around	the	world.	If	other	researchers	pursue	this,	a	

further	step	is	to	then	be	able	to	compare	the	GHG,	or	other	environmental	

footprint,	of	top	income	households	across	countries.		

5.7 Conclusion	
	

In	my	lifetime,	global	GHG	emissions	and	the	share	of	income	going	to	the	top	

1%	of	U.S.	households	have	both	roughly	doubled.	Neither	trend	is	sustainable.	

While	fossil	fuels	have	created	wealth	and	previously	unimaginable	levels	of	

material	comfort,	GHG	emissions	have	begun	undermining	the	wellbeing	of	both	

humanity	and	nature.	The	U.S.	and	most	countries	on	earth	are	far	from	where	we	

need	to	be	if	we	are	to	maintain	a	livable	climate.	Likewise,	extreme	economic	

inequality	cannot	flourish	while	having	a	fair,	stable,	and	just	society.	Cracks	in	

democratic	norms	and	the	very	fabric	of	our	society	have	been	exacerbated	by	many	

forces,	but	economic	inequality	and	erosion	of	economic	opportunity	certainly	plays	

a	key	role	in	the	sense	of	cultural	dispossession	and	grievance	that	has	motivated	a	

lurch	towards	despotism.	By	quantifying	the	scale	of	GHG	emissions	inequality,	both	

within	the	U.S.	and	as	compared	to	global	income	groups,	and	discussing	some	

policies	that	recognize	this	inequality,	my	hope	is	that	this	work	will	contribute	to	

the	much	needed	social	and	policy	debates	that	need	to	occur	if	U.S.	society	and	

indeed	humanity	is	to	successfully	navigate	the	climate	crisis	and	create	a	more	just	

society	as	it	does	so.		
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Appendix	A	

6 Footprints	Supplemental	Material	

6.1 Methods	

6.1.1 Challenges	with	the	Top	Income	Groups	

The	CES	database	that	I	use	for	extracting	household	consumer	expenditure	

data	and	calculating	consumption-based	GHG	footprints,	under-samples	high-

income	households	and	those	that	are	present	tend	to	be	on	the	lower-income	side	

of	the	top	1%.	For	example,	in	2015,	a	top	1%	income	household,	as	reported	by	CES,	

earned	at	least	$326,000	and	had	an	average	income	of	$451,000.	Converting	World	

Inequality	Database	(WID)	top	1%	adults	to	tax	units,	I	estimate	a	U.S.	household	

needed	to	earn	at	least	$535,000	and	had	an	average	income	of	$1,480,000:	this	is	

over	a	million	dollar	difference	in	the	group’s	mean	income	(78).	Meanwhile,	

according	to	WID	a	top	0.1%	household	needed	to	earn	at	least	$2.275	million,	in	

2015.	There	were	no	top	0.1%	households	in	the	CES	database.	

Like	CES,	the	IPUMS	CPS	that	I	used	to	extract	household	income	data	and	

calculate	their	producer	and	supplier	income-based	GHG	responsibility,	also	under	

samples	top	1%	households.	For	example,	in	2015,	a	top	1%	income	household,	as	

reported	by	IPUMS	CPS,	earned	at	least	$536,000,	which	is	almost	exactly	the	same	

as	the	top	1%	threshold	reported	by	WID,	but	the	average	IPUMS	CPS	top	1%	

household	income	was	$879,000.	The	WID	average	of	$1.48	million	is	about	

$600,000	(68%)	higher	than	the	IPUMS	CPS	top	1%	mean.	In	IPUMS,	CPS	to	count	as	

a	top	0.1%,	households	needed	to	earn	at	least	$1.2	million	and	they	had	an	average	
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pre-tax	income	of	$1.39	million.	Meanwhile	WID	estimates	a	top	0.1%	threshold	of	

$2.28	million	and	a	mean	of	$6.67	million,	or	about	$5.3	million	(383%)	higher	than	

the	CPS	top	0.1%	average.	

		 To	account	for	this	under-sampling,	I	estimate	top	0.1%	and	next	0.9%	

expenditures	and	income	by	creating	synthetic	datasets	of	households	with	income,	

whose	mean	income	matches	WID	estimates	and	whose	distribution	is	right	skewed	

(to	capture	the	significant	inequality	even	within	these	groups)	(Fig.	6.1).	The	first	

challenge	is	that	WID	average	and	threshold	income	data	is	for	adults,	while	CES	

data	is	in	consumer	units	(i.e.	households).	To	better	match	the	WID	and	CES	units	I	

convert	WID	estimates	from	adults	to	tax	units	(which	combines	incomes	of	married	

couples).	This	is	done	by	calculating	the	percent	difference	of	national	income	

captured	by	each	group	and	increasing	the	tax	unit	income	proportionally	(102).	In	

practice,	I	estimate	pre-	and	post-tax	income	of	tax	units	are	respectively	about	6-

8%	and	7-9%	higher	than	adult	(equal-split)	unit	incomes.	
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Fig.	6.1:	The	right-skewed	synthetic	household	income	distribution	for	the	

next	0.9%	income	group	(2015)	bounded	within	WID	lower	and	upper	income	
thresholds.	The	blue	line	represents	the	group	mean:	$903,187.	(n=1000).	The	

top	0.1%	distribution	has	a	similar	form.	

	

6.1.1.1 Estimating	Income-based	footprints	
	

Income	based	footprints	are	estimated	by	first	bootstrapping	IPUMS	CPS	

households	that	surpass	the	top	1%	WID	threshold	into	a	matrix	that	matches	the	

WID	synthetic	income	estimate	distribution	length.	Next,	the	CPS	households	are	

ranked	into	ascending	order	by	total	household	income,	the	WID	income	estimates	
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are	also	ranked	into	ascending	order	and	the	WID	estimates	are	applied	to	the	

correspondingly	ranked	household.	From	this	I	subtract	the	dollar	value	of	

retirement,	healthcare,	and	public	benefits	received,	with	the	remaining	amount	

considered	earned	income	that	can	be	broken	into	wage	income	and	capital	income.		

As	mentioned	in	Chapter	3,	the	CPS	estimates	for	capital	income	sources	are	

lacking,	particularly	post-2009.	For	2009	and	earlier	capital	gains	are	estimated	for	

households,	but	this	is	dropped	post-2009.	Capital	gains	and	investment	income	is	

an	import	source	of	overall	income	for	top	1%	households.	Failing	to	break	the	

dataset	up	into	wage	income	and	capital	income	will	lead	to	inaccurate	CO2e	

estimation	since	the	CO2e	multipliers	differ	for	these	income	sources.	This	is	

accounted	for	by	extracting	CBO	estimates	for	capital	and	income	share,	for	top	

income	households	(96).	Using	this	average,	I	generate	a	normally	distributed	

dataset	whose	mean	is	equal	to	CBO	values	and	whose	length	equals	the	

bootstrapped	CPS	households.	These	income	share	values	are	subtracted	from	1,	

with	the	remaining	percent	representing	wage	income	share.	These	shares	are	then	

multiplied	by	the	WID	total	income	estimates,	yielding	dollar	value	estimates	related	

to	each	household’s	capital	and	wage	income.	

Along	with	retirement,	healthcare,	and	benefits	these	are	matched	with	the	

corresponding	CO2e	multipliers	and	the	pre-tax	mt	CO2e	per	income	category	is	

calculated.	Here,	to	account	for	natural	variation	between	household	wage	income	

sources,	I	apply	a	+/-	25%	random	variation	to	the	original	bootstrapped	household	

wage-based	GHG	intensity.	This	+/-	25%	random	variation	is	also	done	for	

household’s	capital	income	CO2e	multipliers.	Summing	all	income	categories	yields	
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each	household’s	total	pre-tax	mt	GHG	footprint.	To	calculate	post-tax	footprints,	

estimated	tax	rate	(percent	paid	in	taxes)	is	derived	from	the	bootstrapped	CPS	top	

1%	households	and	household	mt	CO2e	footprints	are	reduced	by	this	percent,	

yielding	the	household’s	post-tax	footprint.	

Households	are	then	organized	into	different	economic	groups	to	compare	

emissions.	The	top	1%	CO2	emissions	are	estimated	using	a	weighted	mean,	median,	

and	weighted	standard	error	of	the	top	0.1%	and	next	0.9%	groups.	The	CO2e	per	

capita,	per	household	and	per	dollar	(Fig	3.2)	and	the	racial	breakdown	of	emissions	

per	decile	are	calculated	using	a	representative	sample	from	the	top	0.1%	and	next	

0.9%	groups.	

6.1.1.2 Estimating	expenditures	and	consumption	footprints	
	

To	calculate	consumption-based	footprints	I	first	take	the	synthetic	WID	

estimated	distribution	of	top	income	households	and	estimate	and	apply	tax	rates	to	

each	household.	Top	1%	tax	rates	are	derived	from	the	IPUMS	Current	Population	

Survey	(CPS),	which	has	better	sampling	of	high-income	households	than	CES.	From	

the	CPS,	I	sample	households	that	meet	the	WID	top	1%	income	threshold.	The	mean	

(x̄)	and	standard	deviation	(s)	tax	rate	from	this	group	is	used	to	generate	a	

distribution	of	tax	rates	that	is	subtracted	from	household	income	in	my	synthetic	

income	distribution.	Savings	rates	are	estimated	by	subtracting	total	expenditure	

dollars	from	total	post-tax	income,	for	CES	top	1%	households	(Fig. 6.2),	generating	

x̄	and	s,	and	creating	a	distribution	of	savings	rates.	Mean	savings	rates	for	the	top	

0.1%	are	estimated	to	be	25%	higher	than	the	top	1%	group,	to	reflect	the	higher	
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savings	that	are	possible	for	these	extremely	wealthy	households.	For	each	

household	in	the	synthetic	income	distribution,	a	tax	and	savings	rate	is	applied,	

with	the	remaining	post-tax	post-savings	income	considered	expenditure	dollars.	

	
Fig.	6.2:	Savings	rates	(%)	for	CES	households	above	$400,000	(2015)	with	

trendline	and	95%	confidence	intervals	(shaded).	
	

To	apply	these	total	expenditure	dollars	across	the	83	expenditure	categories	

I	extract	the	percent	expenditure	per	category,	from	CES	households	that	meet	the	

WID	top	1%	income	threshold.	These	are	bootstrapped,	with	replacement,	into	

1,000	households,	with	percent	spending	per	category	allowed	to	vary	+/-	50%	
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from	the	original	value,	while	constraining	total	expenditures	across	all	categories	

to	100%.	This	allows	us	to	capture	natural	variation	in	spending	across	households.	

I	tested	various	randomization	limits	(+/-	5%,	25%,	and	50%)	and	results	were	

fairly	insensitive	to	threshold	choice.	For	example,	in	2015,	I	find	only	a	1%	

difference	in	the	mean	and	median	mt	CO2e,	for	the	0.1%	income	group,	when	

comparing	+/-	5%	randomization	limit	to	+/-	50%.	These	expenditure	percentages	

per	category	are	converted	to	dollar	terms	by	multiplying	them	by	the	total	

expenditure	dollars	per	household,	from	my	synthetic	distribution.	This	is	

multiplied	by	the	CO2e	intensity	per	dollar	for	each	category,	direct	emissions	

estimates	for	fuel	are	then	added,	and	this	yields	a	distribution	of	households	with	

GHG	estimates	per	category.	Summing	all	categories	yields	total	GHG	footprint	per	

household	(Fig. 6.3).	
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Fig.	6.3:	Household	post-tax	income	(2014)	versus	mt	CO2e	footprint	with	
color	breakout	for	CES	data	(blue)	and	synthetic	data:	WID	next	0.9%	(grey)	

and	WID	top	0.1%	(gold)	(log-log)	.	(n=16,632).	
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Households	can	then	be	organized	into	different	economic	groups	to	

compare	emissions.	The	top	1%	CO2	emissions	are	estimated	using	a	weighted	

mean,	median,	and	weighted	standard	error	of	the	top	0.1%	and	next	0.9%	groups.	

The	CO2e	per	capita,	per	household	and	per	dollar	(Fig.	2.2	in	main	text)	and	the	

racial	breakdown	of	emissions	per	decile	are	calculated	using	a	representative	

sample	from	the	top	0.1%	and	next	0.9%	groups.	

In	the	main	text,	I	present	all	deciles	together	with	top	1%,	top	0.1%,	next	

0.9%	and	next	9%	households.	Because	the	scale	of	GHG	disparity	is	so	high,	the	

lowest	9	deciles	are	difficult	to	distinguish.	Here	I	present	just	deciles	from	1996-

2015,	to	better	visualize	the	decile-level	differences	(Fig.	6.4).	Note	all	deciles	saw	

emissions	declines	across	the	20	year	period.	
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Fig.	6.4:	Mean	household	metric	tons	CO2e	emissions	(1996-2015)	for	each	

income	decile.	Shading	is	standard	error.	
	

Each	estimation	I	make	introduces	some	inherent	error.	Most	notably	I	

model	top	1%	and	top	0.1%	spending	patterns,	with	some	introduced	variability,	on	

the	top	1%	households	in	the	CES	sample.	If	these	estimates	are	not	representative	

of	other	1%	and	0.1%	households,	the	corresponding	CO2e	emissions	footprints	I	

calculate	could	be	correspondingly	over-	or	under-estimated.	This	challenge	can	be	

seen	in	high	year-to-year	variation	in	top	0.1%	which	is	very	sensitive	to	variations	

among	the	CES	1%	households’	savings	rates	and	expenditure	patterns,	particularly	

in	high	CO2	intensity	sectors	like	Transport	and	Utilities	and	Home	Energy.	Note,	my	

crosscheck	of	super-emitter	households	suggests	it	is	rare	for	households	to	have	

emissions	in	excess	of	4,000	or	5,000	mt	CO2e.	To	control	the	effect	of	such	outliers,	
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I	drop	emissions	estimates	higher	than	5,000	mt	CO2e.	In	2015,	just	5	out	of	1,000	

top	0.1%	households	surpassed	this	threshold	and	were	dropped.		

In	addition,	the	Leontief	method	I	employ	has	an	inherent	assumption	that	

CO2	per	US$	intensity	is	an	appropriate	measure	of	embodied	CO2.	But,	quality	of	

goods	is	an	important	factor	determining	price,	so	a	luxury	good	may	have	the	same	

CO2	emissions	as	a	cheaper	good	in	volume	terms,	but	using	a	price	term	will	yield	a	

higher	CO2	emissions	for	a	luxury	good.	This	could	be	addressed	by	estimating	a	

quality	adjustment	factor.	For	example,	this	could	be	achieved	by	either	reducing	

the	CO2	intensity	per	dollar	multiplier	applied	to	spending	of	top	income	groups,	or	

perhaps	more	simply	reducing	the	estimated	dollars	expenditures,	by	some	luxury	

estimation	percent,	to	account	for	this	decoupling	from	dollars	and	CO2	intensity.	I	

do	not	have	any	data	estimates	however,	on	which	to	base	such	a	luxury	good	

reduction.	For	this	reason	and	for	consistency	with	prior	studies	I	maintain	a	

constant	CO2	intensity	per	dollar	expenditure.	Despite	these	limitations,	given	my	

crosscheck	of	super-emitter	footprints,	I	feel	confident	the	results	are	a	reasonable	

estimation	and	useful	methodological	advance.	

6.1.1.3 Super	emitters	–	consumption-based	
	

For	a	crosscheck	of	my	super-emitter	results	I	acquired	single	family	home	

square	footage	estimates	from	the	U.S.	Census	Bureau.	In	2015,	1%	of	new	single	

family	homes	completed	were	a	minimum	of	8,235	square	feet.	(103).		My	mt	CO2e	

per	square	foot	estimates	are	based	on	the	average	of	Jones	and	Kammen	(35)	and	

Monahan	and	Powell	(104).	Mt	CO2e	of	first	class	commercial	aviation,	number	of	
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private	jets	and	miles	travelled,	number	of	private	yachts,	fuel	use,	and	mt	CO2e	per	

unit	of	fuel	were	acquired	from	a	mix	of	non-profit,	research	reports,	and	

government	sources	including	Atmosfair,	Knight	Frank,	Vista	Jet	and	Wealth-X,	

Argus,	Superyacht	Intelligence,	and	U.S.	Environmental	Protection	Agency.	For	

context,	there	are	over	13,500	private	jets	in	North	America,	approximately	1,453	

North	American-owned	motorized	superyachts	(30+	meter)	and	124,587	top	0.1%	

households.	Private	jet	ownership,	fractional	ownership,	and	charters	and	super	

yacht	ownership	is	overwhelmingly	concentrated	within	top	0.1%	households.	For	

both	jets	and	super-yachts	annual	emissions	estimates	can	be	even	higher	if	it	is	

larger	than	average	or	used	more	frequently	than	my	estimates	of	293	flight	hours	

per	year	per	jet	(~12	full	days	of	flight	per	year)	and	1,009	hours	of	super-yacht	

operation	per	year	(~42	full	days	of	use).	

6.1.2 Consumption-based	methods	

6.1.2.1 Direct	emissions	
	

Direct	emissions	by	the	consumer,	during	the	use	phase,	are	important	for	

energy	commodities	that	are	combusted	by	the	consumer;	most	notably	automotive	

fuels	and	home	heating	and	cooking	fuels.	Combustion	CO2e	emissions	factors,	per	

physical	unit	of	fuel	(units	vary	by	fuel	type),	were	obtained	from	the	U.S.	

Environmental	Protection	Agency	for	gasoline,	natural	gas,	heating	oil,	propane,	and	

wood	(91).	CO2e	intensities	per	physical	unit	were	converted	to	CO2e	intensity	per	

US$.	Annual	price	data	were	obtained	from	the	Energy	Information	Administration.	

Monetary	data	for	gasoline	and	natural	gas	were	adjusted	using	state	or	regional	
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price	data	per	$	of	physical	unit.	Prices	for	fuel	oil,	propane	and	wood	were	only	

available	at	the	national	level.	However,	for	2008	onward,	these	were	adjusted	

based	on	state	and	metropolitan	status	using	Price	Parity	by	Portion	(PARPP).	For	

each	household,	the	total	embodied	plus	direct	use	for	a	fuels	(here	gasoline	is	

presented	as	an	example)	becomes		

HGas	TOTAL	=	𝑄!"# × 𝐸!"#  +  𝐷!"# × 𝐸!"#	 	 	 	 	 																	(15)	 								

where	HGas	Total	is	total	household	mt	CO2e	related	to	gasoline	production	and	use.	

QGas	is	the	CO2e	intensity	of	all	direct	and	indirect	emissions	in	producing	one	dollar	

of	gasoline.	DGas	is	CO2e	intensity	of	gasoline	emissions	from	direct	consumer	use	

(i.e.	emissions	released	when	gasoline	is	combusted	in	a	vehicle	engine).	EGas	is	

consumer	gasoline	expenditure	in	dollars.	

6.1.2.2 Price	Conversions	
	

Because	the	CO2e	intensity	of	each	product	is	being	matched	with	consumer	

purchases,	Basic	Price	is	converted	to	Purchaser	Price,	by	adding	four	margin	sheets	

(Trade,	Transport,	Taxes,	Subsidies)	to	the	Basic	Price	sheet.	For	comparison	across	

time,	I	convert	currency	from	current	year	US$	to	constant	2020	US$,	using	the	

Bureau	of	Labor	Statistics	(BLS)	Consumer	Price	Index	(CPI).	Note	that	Eora	

currencies	are	already	compatible	across	countries	because	Eora	converts	all	

currencies	into	current	year	US$16,	principally	using	International	Monetary	Fund	

(IMF)	Official	Exchange	Rates.	Price	adjusted	rates	of	exchange	and	UN	Operational	

Rates	are	used	if	IMF	data	are	not	available	(57).	

                                            
16	Eora	monetary	units	are	in	‘000	(thousand)	US$.	I	convert	them	to	a	1	US$	unit	to	match	household	
expenditure	data.			
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6.1.2.3 Negative	Values	at	Purchaser	Prices	
	

Eora	notes	that	values	in	the	margin	sheets	are	poorly	constrained	during	

optimization	and	can	erroneously	become	negative.	If	values	in	these	margin	sheets	

are	large	enough,	a	commodity’s	CO2e	intensity,	at	Basic	Price,	can	become	negative	

at	Purchaser	Price.	I	found	large	negative	Transport	Margin	sheet	values	were	

causing	seven	U.S.	transport	sectors	to	have	negative	CO2e	intensities	in	Purchaser	

Price,	i.e.	the	more	a	household	purchased	from	those	sectors	(such	as	Air	

Transport),	the	lower	their	mt	CO2e	emissions	would	be.	Indeed	households,	with	

large	airline	expenditures,	were	erroneously	generating	negative	total	household	

emissions	footprints.	To	address	this,	I	followed	the	EORA	recommendation	to	set	

these	seven	negative	Transport	Sheet	values	to	zero	before	adding	to	the	other	four	

sheets.	

I	discovered	a	very	small	number	of	other	commodities	occasionally	had	

negative	values	at	Purchaser	Price.	This	was	quite	infrequent	(between	6-34,	per	

year,	out	of	10,211	sectors).	When	present	I	either	replaced	it	with	the	CO2e	

intensity	multiplier	of	a	fairly	comparable	U.S.	commodity;	for	example	replacing	a	

negative	Canadian	air	transport	intensity	with	the	U.S.	air	transport	sector	

multiplier.	Or	when	a	suitable	replacement	was	not	possible,	I	set	that	commodity’s	

intensity	to	zero.	The	first	approach	assumes	U.S.	emissions	intensities	are	

comparable	to	the	non-U.S.	sector.	The	second	seeks	to	eliminate	the	effect	of	

negative	values	by	removing	them	altogether.	While	neither	approach	is	completely	

satisfactory,	both	are	preferable	to	including	negative	values	that	would	

erroneously	reduce	emissions	estimates	per	dollar	of	purchase	of	that	commodity.	
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The	actual	effect	of	either	treatment	choice,	on	household	footprint	estimates,	is	

almost	nonexistent	as	so	few	categories	are	affected	and	they	account	for	an	

exceedingly	small	amount	of	the	final	CO2e	intensity,	of	the	final	83	expenditure	

categories	for	U.S.	consumers.	

6.1.2.4 Limitations	
	

A	variety	of	estimation	errors	are	possible	with	the	methods	employed	here.	

MRIO	trade	data	is	imperfect	and	import	and	export	data	reported	across	countries	

may	not	exactly	align.	Eora	makes	estimations	to	balance	such	conflicts,	but	it	is	not	

possible	to	achieve	both	balanced	tables	and	be	true	to	conflicting	national	reports.	

The	conversion	from	Basic	Price	to	Purchaser	Price	also	introduces	estimation	

error.	Indeed,	estimation	errors,	in	the	transport	margin	sheet,	for	seven	U.S.	

transport	sectors	needed	to	be	set	from	negative	to	zero	values.	Additionally,	

converting	from	symmetrical	and	non-symmetrical	SUT,	II,	and	CC	tables,	in	the	

original	Eora,	to	a	symmetrical	CC	intermediate	transaction	matrix	involves	an	

Industry	Technology	Assumption	and	again	moves	away	from	the	original	national	

data	reports.	The	GHG	data	may	also	contain	reporting	or	estimation	errors.		

	

Expenditures	are	estimated	using	CES	survey	data.	This	excludes	foriegn	purchases	

and	government	and	nonprofit	expenditures	that	directly	benefit	households,	such	

as	government	benefits	or	government	subsidized	healthcare.		

6.1.2.5 Handling	Special	Expenditure	Categories	

6.1.2.5.1 Food	
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The	CES	is	made	up	of	an	interview	and	a	diary	tool.	While	the	interview	

captures	detailed	data	for	about	~60-70%	of	total	household	expenditure	it	only	

collects	broad	categories	for	food	expenditures	(food	at	home	and	food	away).	The	

diary	contains	18	detailed	at	home	food	categories.	To	take	advantage	of	the	high	

category	granularity	of	each	instrument	the	data	from	each	needs	to	be	combined.	

To	do	this,	the	detailed	food	expenditures,	from	the	diary,	are	assigned	to	similar	

households	in	the	interview	sample.	Following	the	approach	of	Weber	and	

Matthews	(9)	I	minimize	Euclidean	distance	across	three	normalized	variables	

common	to	both	datasets:	food	at	home,	family	size,	and	total	income.	The	detailed	

food	expenditures,	from	the	diary,	are	then	matched	to	comparable	households	with	

minimal	Euclidean	distance	estimates,	from	the	interview.	Unlike	Weber	and	

Matthews,	instead	of	simply	allocating	the	diary	derived	dollar	amounts	to	the	

Euclidean	matched	interview	households,	I	instead	calculate	the	percent	

expenditure	per	food	category	in	the	diary	and	multiply	this	by	the	total	food	at	

home	reported	in	the	interview.	The	advantage	to	this	approach	is	it	proportionally	

assigns	food	expenditure	to	the	more	granular	food	categories	used	in	the	diary,	but	

uses	the	more	accurate	annualized	total	food	at	home	amount	reported	in	the	

interview.	Because	the	interview	measures	expenditures	over	the	previous	quarter,	

rather	than	the	previous	week	(as	is	the	case	for	the	diary),	the	total	food	at	home	

dollars	reported	in	the	interview	is	a	better	estimate	of	actual	annual	total	food	at	

home	expenditures.	As	Weber	and	Matthews	note,	their	approach	(and	ours)	

introduces	uncertainty	as	households	of	similar	size,	income,	and	home	food	

expenditures	may	actually	purchase	different	kinds	of	food.	However,	these	
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differences	are	likely	quite	small	and	not	critical	to	overall	footprint	estimation,	

since	food	at	home	tends	to	account	for	a	relatively	small	share	of	CO2e	(<	6%	in	

2015).	

6.1.2.5.2 Durable	Goods	
	

Durable	goods	present	a	challenge	with	EE-MRIO	analysis.	Durable	goods	

may	be	purchased	in	one	year	but	last	many	years.	Many	prior	studies	have	either	

ignored	durable	good	purchases	(38)	or	assigned	all	emissions	to	a	single	year	(28,	

29).	For	relatively	inexpensive	items	like	a	kitchen	sink	or	chair,	the	method	choice	

will	not	have	a	dramatic	effect	on	a	household’s	CO2e	footprint.	But	as	the	cost	of	an	

item	increases,	the	above	methods	can	distort	a	household’s	carbon	responsibility	

by	underestimating,	overestimating,	or	double	counting	the	CO2e	emissions.	For	

example,	imagine	a	vehicle	is	purchased	in	one	year,	but	driven	for	15	years.	All	CO2	

emissions	are	assigned	for	that	purchasing	year,	even	though	the	utility	of	the	

vehicle	is	spread	out	over	15	years.	Beyond	spiking	emissions	estimates	in	the	first	

year,	this	presents	a	problem	if	the	vehicle	is	then	sold.	At	the	time	of	sale,	emissions	

would	be	calculated	again,	based	on	the	purchase	price	-	thus	the	original	

production	emissions	would	be	double	counted.	Buying	a	used	car	would	also	treat	

the	vehicle	as	though	it	was	manufactured	in	that	year.	If	automobile	production	has	

become	more	(or	less)	energy	efficient	than	at	the	time	of	actual	manufacture,	there	

may	be	an	over	or	under	estimation.		

Vehicles	present	a	second	challenge	in	that	the	price	of	the	vehicle	may	not	

be	well	tied	to	the	actual	CO2	emissions	associated	with	its	production.	Producing	a	
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$200,000	sports	car,	for	example,	likely	does	not	generate	10	times	more	CO2	than	a	

$20,000	economy	vehicle.	But	using	the	standard	CO2e/$	multiplier	of	EE-MRIO	

would	treat	it	as	such.	This	luxury-inflation	problem	can	be	present	in	any	class	of	

goods.	

6.1.2.5.3 Vehicles	
	

I	address	the	vehicle	issue	in	a	novel	way.		Instead	of	multiplying	the	vehicle	

purchase	price	by	the	Leontief	derived	mtCO2e/$	final	demand,	I	take	the	total	

consumer-based	mtCO2e	emitted	by	the	auto	industry,	and	divide	this	by	the	number	

of	vehicles	produced.17	Going	from	a	price	to	volume	measure	accounts	for	the	

luxury-inflation	problem.	I	do	this	for	the	U.S.,	Japan,	South	Korea,	and	Germany.	

Together	these	four	countries	captured	between	97%	-	98%	of	automobile	market	

share	in	the	U.S.,	each	year	between	1990-2016.	Domestic	and	Foreign	auto	

production	data	is	from	the	Bureau	of	Transportation	Statistics.	For	each	country,	

this	yields	mt	of	CO2e	per	vehicle	produced.	

The	next	calculation	produces	an	average	vehicle	CO2e	footprint	that	reflects	

the	unique	mix	of	foreign	and	domestically	produced	vehicles	for	sale	in	the	U.S.,	in	a	

given	year.	This	is	done	by	scaling	each	country’s	CO2e	footprint	per	vehicle,	in	

relation	to	their	U.S.	market	share,	and	then	summing	to	acquire	a	national	

average.18	I	do	this	for	each	year	in	the	study,	1996-2015,	creating	a	1	x	19	vector.	

                                            
17	Number	of	vehicles	owned	or	leased	are	acquired	from	the	CES	database.	
18 For	example,	in	2015	a	vehicle	produced	in	the	U.S.A	had	a	39.18	metric	ton	CO2e	footprint,	while	a	
vehicle	produced	in	Germany	had	a	15.98	metric	ton	CO2e.	Domestic	vehicles	captured	45%	of	sales	
in	the	U.S.A,	while	German	vehicles	captured	9%	of	the	market.	Thus	the	CO2	per	U.S.	vehicle	39.18	is	
multiplied	by	U.S.	producers	market	share	(0.45),	the	German	CO2	footprint	(15.98	mtCO2	per	
vehicle)	is	multiplied	by	German	market	share	(0.09).	Japan	and	South	Korea	are	calculated	in	the	
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But	for	each	year,	this	assigns	emissions	to	a	household	based	on	CO2e	estimate	

from	the	current	year’s	production	and	domestic/foreign	mix.	In	other	words	it	

assumes	everyone	has	a	brand	new	car	each	year.	

To	address	this,	I	use	data	on	miles	driven	per	year	of	vehicle	life	to	make	the	

CO2e	per	vehicle	estimate	proportional	to	the	miles	driven	by	a	vehicle	each	year.19	

Data	are	acquired	from	the	National	Highway	Traffic	Safety	Administration.	This	is	

used	as	a	proxy	for	the	number	of	vehicles	from	a	given	year	that	are	in	the	current	

year	U.S.	fleet.	I	use	this	to	estimate	the	total	mtCO2e	of	a	vehicle	in	the	U.S.	fleet,	in	a	

given	year.	

The	final	step	is	to	depreciate	the	total	mtCO2e	of	a	vehicle	over	its	lifetime.	

Here,	15	years	was	chosen	because	about	95%	of	miles	have	been	put	on	an	average	

car	by	this	time,	even	though	a	diminishing	proportion	of	cars	will	remain	on	the	

road	for	another	10	years.20	That	long	tail	would	distort	the	fact	that	the	majority	of	

cars	do	not	go	beyond	15	years	of	useful	life.	And,	about	77%	of	vehicles	will	not	

survive	past	15	years	(105).	This	yields	an	annual	depreciated	CO2e	per	vehicle	that	

reflects	each	years’	unique	mix	of	foreign	and	domestic	vehicles	and	vehicle	ages	in	

the	U.S.	fleet.	Each	vehicle	in	a	household	is	then	multiplied	by	this	amount.	

	

                                                                                                                                  
same	way,	and	the	remaining	2-3%	captured	by	other	countries	are	treated	as	though	they	have	
German	CO2	footprints.	These	scaled	values	are	then	summed	to	equal	the	average	CO2e	footprint	of	
a	vehicle.	
19	In	2015	for	example,	I	estimate	about	9%	of	the	cars	are	from	2015,	9%	from	2014,	about	5%	from	
2005,	about	1.5%	from	2000,	etc...  
20	For	example,	in	2015,	a	vehicle	in	the	U.S.	fleet	(which	now	includes	foreign	and	domestic	mix	and	
vehicles	produced	in	different	years)	is	estimated	to	have	required	26.8	mtCO2e	in	its	production.	
This	is	divided	by	15	years	to	yield	1.79	mtCO2e	per	vehicle	in	2015.	Each	vehicle	a	household	has	in	
2015	is	multiplied	by	this	amount.	
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6.1.2.5.4 Homes	
	

Home	down	payments	and	mortgage	outlays	present	a	similar	challenge	to	

vehicles,	in	that	houses	have	long	depreciation	periods,	current	year	emissions	

estimates	from	the	home	building	sector	do	not	necessarily	reflect	CO2	emissions	

used	in	an	older	house,	and	prices	may	not	correlate	well	with	CO2	emissions.	Prior	

studies	have	addressed	this	by	using	CO2e	per	square	foot	(35).	But	existing	

estimates	on	this	are	somewhat	out	of	date	now.	Additionally,	while	CES	data	

reports	the	number	of	rooms	in	the	primary	home,	which	could	be	used	for	square	

footage	estimates,	it	does	not	report	the	number	of	rooms	in	secondary	or	tertiary	

homes.		Since	I	am	particularly	interested	in	those	at	the	top	of	the	income	

distribution,	missing	expenditures	on	these	additional	homes	would	be	a	critical	

category	to	omit.	Instead,	I	do	the	traditional	multiplication	of	home	expenses	by	the	

CO2e/$	intensity	calculated	for	the	home	commodity	category.	The	last	two	studies	

on	the	U.S.,	Feng	et	al.	(28)	and	Song	et	al.	(29)	use	this	same	approach.	Weber	and	

Matthews	(38)	explored	both	methods	and	found	their	results	were	insensitive	to	

model	choice.		
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Fig.	6.5:	CO2e	intensity	(mt	CO2e	per	$1,000	(2020	USD)	for	each	income	group,	

in	2015.	
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