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ABSTRACT 

Breast cancer is the second leading cause of cancer mortality among women. Many 

risk factors for breast cancer are related to estrogen exposure and high serum estrogen 

levels. Studies have demonstrated the critical role of estrogen in breast carcinogenesis, but 

less clear how estrogen acts as an initiator of carcinogenesis. Several mechanisms have 

been implicated the pathogenic actions of estrogens. 1) Estrogens cause increased 

proliferation to indirectly introduce mutations that promote breast tumorigenesis. 2) 

Estrogens can form DNA adducts which may directly promote mutagenesis. 3) Estrogens 

induce DNA double strand breaks in the breast epithelial cells to promote transcription of 

estrogen target genes but also replication stress and genomic instability. 4) Estrogen also 

induces co-transcriptional products, called R-loops, that can lead to DNA damage.  

Recent studies have suggested associations between exposures to environmental 

chemicals may also increase risk of breast cancer. Environmental chemicals such as 

endocrine disrupting chemicals or xenoestrogens can mimic the effects of estrogen by 

binding with the receptors and alter the endocrine system. However, there is a lack of 
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detailed mechanistic understanding. The focus of our first study is to investigate the effects 

of two xenoestrogens – Benophenone-3 (BP-3) and Propyl Paraben (PP) in the breast 

epithelial cells at concentrations relevant to human exposures and are commonly found in 

cosmetics, personal care products and sunscreens. With luciferase reporter assays, our lab 

confirmed that these two xenoestrogens are able to bind with the estrogen receptor 

complexes. We showed that 17-estradiol (E2), BP-3 and PP are able to induce DNA 

damage via estrogen receptor manner in vitro but BP-3 and PP were weakly estrogenic in 

terms of transcriptional and proliferation responses. The DNA damage response from E2, 

BP-3 and PP is strongly associated with levels of ERα-mediated DNA: RNA hybrids 

triplex structures called R-loops. We also showed the induction of DNA damage and R 

loops from these compounds in mice without inducing transcription of estrogen target 

genes or proliferation in the mammary epithelial cells. These studies demonstrated that 

xenoestrogens possess the potential for genotoxic activity mediated by ERα through the 

formation of R-loops and DNA double-strand breaks. 

 While all women are exposed to endogenous and exogenous estrogens, only 1 in 8 

women are expected to develop breast cancer suggesting that the cancer-promoting effects 

of estrogen exposure vary among individuals. Our second study demonstrated that E2-

induced DNA damage is most pronounced in rodents that are genetically susceptible to 

mammary tumors and among women who are at high risk of breast cancer. Rodents which 

are susceptible to hormone-induced mammary tumors, such as BALB/c mice and ACI rats, 

showed significantly increased levels of DNA damage in the mammary epithelial cells with 

E2 treatment. E2 induced DNA damage in BALB/c mice was mainly found in ERα positive 

cells. Strains that are resistant to mammary tumors such as C57BL/6 mice and BN rats 
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showed little damage with E2. We also found increased E2-induced DNA damage in 

human breast tissues from women with inherited breast cancer risk alleles affecting DNA 

double-strand break repair. In contrast, only 1 in 5 of average risk donors exhibited a 

significant increase in E2 induced DNA damage. Together, these data demonstrate genetic 

differences in sensitivity to E2-stimulated DNA damage in rodents and that similar 

variation is observed in normal breast tissues from women.   

Lastly, we investigated the mechanism by which E2 and BP-3 induce DNA damage 

in breast cancer cell lines. We showed that treatment with E2 and BP-3 promotes another 

non-canonical DNA secondary structure called G quadruplexes (G4s) in ER+ breast cancer 

cells. Most of the G4s induced by E2 and BP-3 colocalized with R-loops indicating G-loop 

formation. The induction of G4 formation and DNA damage with E2 and BP-3 in breast 

cancer cells is mediated by reactive oxygen species (ROS). Therefore, our data suggest a 

mechanism in which E2 and BP3 induce R loop stabilization is dependent on ROS which 

contributes to the formation of DNA G4s and colocalize with sites of DNA damage.  
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CHAPTER -1 

INTRODUCTION 

 

Breast cancer and Estrogen Exposure 

Breast cancer is the most prevalent cancer type among women worldwide and the 

second leading cause of cancer related death in women (Siegel et al., 2021). It is a spectrum 

of many subtypes related to biological characteristics, such as tumor size, lymph node 

involvement, histological grade, patient’s age, estrogen receptors (ERs), progesterone 

receptor (PRs) and human epidermal growth factor receptor 2 (HER2 or c-erbB2) or triple 

negative status (lack ER, PR and HER2) (Yersal and Barutca, 2014). The risk factors for 

breast cancer include age, genetics, obesity, increased breast density, early onset of 

menarche, late menopause, nulliparity, and late full-term pregnancy (Brooks et al., 2018; 

Samavat and Kurzer, 2015; Travis and Key, 2003).  

Many of these risk factors are related to endogenous estrogen levels. Chronic 

lifetime exposure to estrogen, through early menarche (RR = 1.3), late menopause (RR = 

1.2-2.0), hormone replacement therapy with estrogen and progesterone (RR = 1.2) or 

having the highest quartile of serum estrogen levels (RR = 1.8-5.0) all increase breast 

cancer risk in women (Brinton et al., 2009, 1983; Clemons and Goss, 2001; Dall and Britt, 

2017; Eliassen et al., 2006; Rossouw et al., 2002; Trichopoulos et al., 1972). These suggest 

that lifetime exposure to estrogen increases breast cancer risk. Treatment with selective 

estrogen receptor modulators (SERMs) to inhibit estrogen activity in the breast has been 

shown to lower breast cancer incidence (Cuzick et al., 2013). Estrogen is also known to 
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contribute to breast tumor initiation and proliferation (Russo and Russo, 2006; J.-M. Tian 

et al., 2018).  

 

Estrogen Sensitivity in Rodents  
 

Previous work has identified rodent strains with increased sensitivity or resistance 

to mammary tumor development in response to carcinogen or estrogen treatment. In 

DMBA induced models of mammary tumors, the Wistar-Kyoto rat strain is resistant to 

tumor development while the Wistar-Furth strain is uniquely susceptible (Gould, 1986; 

Lan et al., 2001). For estrogen-induced mammary tumor models, the ACI strain is uniquely 

susceptible to estrogen-induced mammary tumors while the Copenhagen and Brown 

Norway strains are resistant (Dennison et al., 2015; Shull et al., 2018, 1997; Spady et al., 

1998). Treatment of susceptible ACI rats with tamoxifen reduces the development of 

estrogen-induced mammary tumors (Li et al., 2002; Singh et al., 2011), demonstrating the 

involvement of estrogen receptor signaling in mammary tumor development in the ACI 

strain. These studies have also identified quantitative trait loci (QTL), regions of the 

chromosomes linked to mammary tumor susceptibility and resistance (Gould et al., 2004; 

Haag et al., 2003; Lan et al., 2001; Schaffer et al., 2006).  

BALB/c and C57BL/6 strains of mice differ in their responses to E2 and 

progesterone (P4) (Aupperlee et al., 2008). Hormone-induced mammary tumors have been 

shown to develop in BALB/c mice whereas C57BL/6 mice are resistant (Girard et al., 2007; 

Kordon et al., 1993; Lanari et al., 1986; Molinolo et al., 1987). BALB/c mice are also 

sensitive to radiation-induced mammary tumors when compared with C57BL/6 mice 

(Ponnaiya et al., 1997; Ullrich et al., 1996). BALB/c mice with heterozygous mutations in 
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the p53 tumor suppressor gene (Trp53) develop spontaneous mammary tumors similar to 

the susceptibility to breast cancer among women with inherited mutations in TP53. In 

contrast, mammary tumors in C57BL/6-Trp53+/- mice are rare (Kuperwasser et al., 2000). 

This difference in susceptibility to mammary tumors was genetically linked to a locus on 

mouse chromosome 7 (Blackburn et al., 2007) and involves a greater reliance on repair 

DSBs in BALB/c-Trp53+/- mice through error-prone repair pathways (Böhringer et al., 

2013). Taken together, these results illustrate the potential for estrogen to contribute to 

breast cancer development in certain genetic backgrounds, suggesting unique sensitivity to 

estrogen exposure. Similarly, genetic polymorphisms and epigenetic alterations may 

render a subset of women susceptible to carcinogenic effects of estrogens resulting in breast 

cancer. 

 

Mechanism of Estrogen Signaling: Interplay of Estrogen receptors.  

 Biological responses to estrogen exposure are mediated through the two nuclear 

hormone estrogen receptors: estrogen receptor alpha (ERα) and estrogen receptor beta 

(ERβ). ERα and ERβ are ligand activated transcription factors in the steroid nuclear 

receptor family encoded by ESR1 and ESR2 gene respectively (Heldring et al., 2007). 

Studies from estrogen receptor knockout mice demonstrate that ERα function is crucial to 

mammary gland development. ERα knockout mice (αERKO) have rudimentary ductal 

mammary gland development similar to newborn mice (Bocchinfuso and Korach, 1997). 

Conversely, ERβ knockout mice (βERKO) mammary glands are indistinguishable from 

wild type mice (Krege et al., 1998). While ERβ appears dispensible with respect to 

mammary gland development, deletion of ERβ was shown to speed the onset of mammary 
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tumors when the p53 tumor suppressor gene is disrupted (Bardo et al., 2017). Therefore, it 

is possible that ER and ERβ may play antagonistic roles with respect to the carcinogenic 

actions of estrogens.  

In the classical mechanism, ligand-bound estrogen receptors form homodimers or 

heterodimers that bind estrogen response elements (ERE) in the DNA (Figure 1.1). The 

estrogen receptor dimers form complexes with other transcriptional coregulatory factors to 

drive expression of estrogen target genes (Marino et al., 2006; Saville et al., 2000; Yaşar 

et al., 2017; Yi et al., 2017). Other pathways for estrogen signaling have been identified, 

including tethered, non-genomic, and ligand-independent pathways (Heldring et al., 2007). 

The tethered pathway involves ligand-bound estrogen receptor dimer binding to other 

transcription factors bound to DNA, instead of EREs (Gaub et al., 1990; Saville et al., 

2000). Non-genomic estrogen receptor signaling involves either membrane bound estrogen 

receptors or other membrane bound receptors which in turn activate the estrogen receptors 

(Heldring et al., 2007; Levin, 2009). However, membrane-bound estrogen receptors are 

not sufficient to rescue mammary gland development in ERα knockout mice (Pedram et 

al., 2009). Therefore, it is unclear whether the non-genomic pathway plays a significant 

role in normal mammary tissue. Ligand-independent pathways involve estrogen receptor 

phosphorylation by kinases activated by growth factor signaling and are hypothesized to 

be involved in hormone-independent growth of breast tumors (Coutts and Murphy, 1998; 

Kato et al., 1995; Shim et al., 2000). Recent work has highlighted the increased complexity 

of classical estrogen receptor signaling, where estrogen receptors can control the 

expression of genes without EREs or other transcription factor binding sites through long 
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range chromatin looping, which brings distant genes into close proximity to where estrogen 

receptors are bound (Fullwood et al., 2009). 

 

Endocrine Disrupting Chemicals.   

Endocrine disrupting chemicals (EDCs) can interfere with normal hormone 

signaling by mimicking or antagonizing the effects of endogenous hormones but can also 

alter the synthesis and metabolism of endogenous hormones and their receptors (Fernandez 

and Russo, 2010; Sonnenschein and Soto, 1998).  Xenoestrogens are structurally diverse 

EDCs that affect estrogen receptor (ER) signaling pathways (Singleton and Khan, 2003). 

Estrogenic responses to putative xenoestrogens are most often determined by 

transactivation of ERE-reporters, endogenous gene expression and cell proliferation in ER-

expressing MCF-7 and T47D cell lines, where ERα is the dominant subtype (Buteau-

Lozano et al., 2002; Vladusic et al., 2000).  

Benzophenone-3 (BP-3) is a UV-filter used in personal care products, such as 

sunscreens, cosmetics and lotions. BP-3 was detected in the urine samples of 96.8% of U.S. 

population in the National Health and Nutrition Examination Survey (Calafat et al., 2008).  

BP3 was shown to be a weak agonist of ER at 1 µM levels (Kerdivel et al., 2013; Schlotz 

et al., 2017; Schlumpf et al., 2010). Exposure to BP3 during pregnancy and lactation in 

mice resulted in altered mammary gland ductal architecture (LaPlante et al., 2018). Propyl 

Paraben (PP) is widely used as an anti-microbial agent in food and personal care products. 

PP was detected in the urine samples of >96% of U.S. population surveyed during 2003-

2005 (Ye et al., 2006). PP was shown to be an effective ER-agonist with 1.3-fold induction 

of gene expression using reporter assays (ERE-CAT reporter) at 10 µM, increased 
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expression of estrogen-responsive gene Trefoil Factor 1 (TFF1, also known as pS2) and 

increased proliferation of MCF-7 cells at 1 µM (Byford et al., 2002). Proliferation induced 

by PP was inhibited by ER antagonist (fulvestrant) indicating dependence on ER. 

Xenoestrogens, therefore, have the potential to disrupt estrogen receptor signaling by 

acting as ligands and could either amplify or mitigate the risk of breast cancer posed by 

estrogen exposure.  

 

Genotoxicity by Estrogen.   

 Estrogen induces genotoxicity and DNA damage which is considered a major risk 

factor in breast cancer etiology (Roy and Liehr, 1999; Yager and Davidson, 2006). 

However, the mechanisms by which estrogen induces carcinogenesis continue to be 

debated (Figure 1.2). First, estrogen has the potential to act as a direct carcinogen. Estrogen 

is metabolized by phase I P450 enzymes to form catechol estrogens (16α-ΟΗΕ2 or 2-OHE2 

and 4-OHE2), which can be oxidized to form reactive semiquinone (SQ) intermediates and 

quinone derivatives. Two such compounds, E2-3-4-Q and E2-2-3-Q form stable DNA 

adduct or depurinating adducts such as 4-OHE2-1N7Gua and 4-OHE2-1N3Ade, which 

were associated with increased breast cancer risk (Cavalieri and Rogan, 2016) . The 

formation of DNA adducts can also generate ROS through redox cycling and are potent 

inducers of oxidized bases. The oxidized bases can promote DNA single strand breaks 

(Fussell et al., 2011; Wang et al., 2010). DNA adducts have been correlated with increased 

cancer risk and act as carcinogenic metabolites. Therefore, apurinic/apyrimidinic sites (AP) 

are mutagenic if not faithfully processed (Cavalieri et al., 1997; Cavalieri and Rogan, 2016; 

Zahid et al., 2006). However, estrogen can also initiate DNA damage that is mediated by 
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ER. ER promotes proliferation of the breast epithelium which causes replication-

associated DNA damage (Henderson and Feigelson, 2000; Preston-Martin et al., 1990). 

However, ER has been shown to recruit Topoisomerase-2β, stimulating DNA double-

strand breaks to facilitate transcription of ER target genes (Ju et al., 2006; Williamson and 

Lees-Miller, 2011). Another mechanism observed in breast cancer cell lines showed that 

ER induces expression of APOBEC3B which causes cytidine deamination leading to 

DNA damage (Periyasamy et al., 2015; Udquim et al., 2020). Recently, 17-estradiol (E2) 

was shown to induce DNA damage by promoting ER-mediated co-transcriptional 

structures called R loops (Stork et al., 2016). Therefore, estrogen can stimulate 

carcinogenesis by initiating direct DNA damage as well as through mechanisms mediated 

by ER.  

 

R loops: A double edged sword. 

R loops are non-B DNA structures that are formed when the nascent RNA 

hybridizes with the template DNA strand and causes transient displacement of the non-

template DNA strand. The term R loop refers to the three-stranded structure formed by the 

DNA-RNA hybrid and the displaced single-stranded DNA (ssDNA). R loops are a normal 

consequence of transcription, but the persistence of R loops can induce DNA damage 

responses that result in DNA double-strand breaks (Aguilera and García-Muse, 2012a; 

Skourti-Stathaki and Proudfoot, 2014; Sollier and Cimprich, 2015). There are two different 

types of R loops: Physiological and Pathological.  
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Physiological R loops:  Programmed R loops is a process which requires specific 

factors and enhanced specifically at certain regions to play a physiological role. 

Physiological R loops are intermediates that regulate several processes such as 

Immunoglobulin (Ig) class switch recombination (CSR) of B cells in vertebrates, CRISPR-

Cas9 genome editing where guide-RNA forms a DNA:RNA hybrid to mediate Cas9 

cleavage, transcription initiation and termination or mitochondrial and bacterial DNA 

replication (Aguilera and García-Muse, 2012b; Baldacci et al., 1984; García-Muse and 

Aguilera, 2019; Itoh and Tomizawa, 1980; Jinek et al., 2012; Kreuzer and Brister, 2010; 

Pohjoismäki et al., 2010; Xu and Clayton, 1996; Yu et al., 2003).  

 

Pathological R loops: R loops play an important role in many cellular processes; 

however, persistent/unscheduled R loop formation due to defects in R loop resolving or 

preventing factors is linked towards DNA damage and genomic instability. The relevant 

mechanism by which unscheduled R loops causes genomic instability is its potential to act 

as an obstacle to replication fork progression, and therefore, cause fork collapse 

(Azvolinsky et al., 2009). Several studies have reported DNA damage generated by 

collisions between replication fork and the transcriptional machinery (Boubakri et al., 

2010; Gottipati et al., 2008; Prado and Aguilera, 2005). The displaced ssDNA that is 

exposed during R loop formation is an excellent substrate and an open target to DNA 

editing enzymes such as activation induced cytidine deaminase (AID) or Apolipoprotein B 

mRNA editing enzyme (APOBEC). The DNA modifications activate base excision repair 

(BER) which creates an abasic site and ultimately a DNA lesion (Burns et al., 2013; Chiarle 

et al., 2011; Gómez-González and Aguilera, 2007). R loops can also be processed into 
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DNA double strand breaks (DSBs) by XPF and XPG endonucleases (xeroderma 

pigmentosum types F and G) involved in nucleotide excision repair (NER) (Sollier et al., 

2014) to promote genomic instability. R loops as a source of DSBs can promote 

chromosomal translocations to promote carcinogenesis (Gostissa et al., 2011; Yang et al., 

2014).  

 Multiple RNA processing factors and helicases have been shown to be involved in 

the resolution of R loops. Several proteins involved in Fanconi Anemia (FA) pathway such 

as BRCA1, BRCA2, FANCD2, FANCM and FANCA are recruited to R loop forming 

regions and their inactivation causes R loop accumulation and DNA damage  (Bhatia et al., 

2014; Hatchi et al., 2015; Madireddy et al., 2016; Okamoto et al., 2019; Schwab et al., 

2015; Silva et al., 2019). In addition, BRCA1 and BRCA2 interact with DNA: RNA hybrid 

unwinding helicases such as SETX, DDX5 and RNase H2 to promote the efficient 

resolution of R loops (D’Alessandro et al., 2018; Hatchi et al., 2015; Sessa et al., 2021). 

Blocking DNA damage response and DNA repair genes (ATR, ATM, CHK1, CHK2, 

UBE2B, and RAD18) causes R loop accumulation (Barroso et al., 2019). Thus, several 

mechanisms are used to ensure the stability of the genome and protect from DNA damage 

mediated by R loops.  

  

DNA G quadruplexes (G4s).  
 

 Another non-canonical DNA secondary structure known as G quadruplexes (G4s) 

is formed at single-stranded guanine-rich DNA sequences. DNA G4s arise from Hoogsteen 

hydrogen bonding of four guanine residues arranged within a planar G-quartet. Self-

stacking of two or more G-quartets generates a G4 structure that is stabilized by 
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monovalent cations such as K+ and Na+ (Kwok and Merrick, 2017). G4 structures are 

topologically very polymorphic and can arise from the intra- or inter- molecular folding of 

G-rich strands. Intra-molecular folding requires the presence of four or more G-tracts in 

one strand, whereas inter-molecular folding can arise from two or more strands giving rise 

to parallel or anti-parallel structures depending on the orientation of the strands in a G4 

(Kwok and Merrick, 2017; Lejault et al., 2021).  

 

Biological functions of DNA G4s.  

  Protection of Telomeres: In vertebrates, the telomeric repeats (TTAGGG)n with a 

double stranded portion that is several kilobases in length and a 3` single stranded overhang 

which is few hundred bases in length. Telomeres consists of telomeric DNA and telomere 

binding proteins including TRF1, TRF2, POT1, RAP1, TIN2 and TPP1 which constitute 

the shelterin protein complex. This complex prevents the ends of the telomere from being 

recognized as DNA break points by DNA repair machinery. Telomeric DNA repeats are 

guanine rich and can form alternative secondary structure – the G4 structures (Maizels and 

Gray, 2013; Rhodes and Lipps, 2015; T. Tian et al., 2018; Varshney et al., 2020). In S. 

cerevisiae, cdc13 knockdown (a component of telomere capping complex) results in 

telomere instability and rescued by drugs that stabilize G4 structures (Smith et al., 2011). 

G4s are very resistant to digestion by exonucleases and may provide stability to telomere 

deprived of capping complex. 

 

 Replication: G4 structures could have important roles in replication origins, both 

in origin initiation positioning and origin timing control. Origin identification by high 
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throughput sequencing of short nascent DNA strands in four human cells (fibroblasts, 

embryonic stem cells, induced pluripotent stem cells and HeLa cells) showed that the 

majority of 250,000 replication origins correspond to G4 structures (Besnard et al., 2012). 

In addition, human origin recognition complex (ORC) was shown to bind to G4 forming 

DNA and RNA sequences in vitro (Hoshina et al., 2013). Recently, by initiation site-

sequencing (ini-seq), using replicated DNA in a cell-free system, approximately 25,000 

origins were identified in the human genome and 12,000 overlapped with G4 structures 

(Langley et al., 2016). The mechanism through which G4s influence origin initiation 

processing is still poorly understood. G4s have also been shown to play a role in the 

suppression of late origin firing by acting as the binding target of Rap1-interacting factor 

1 (Rif1) in fission yeast, suggested to be a key factor in the regulation of DNA replication 

timing (Kanoh et al., 2015).  

 

 Transcription: G4s are considered to be significantly prevalent in human gene 

promoters. Computational analysis indicated the presence of 300,000 enriched putative 

quadruplex sequences (G3+N1-7G3+N1-7G3+N1-7G3+) in promoters, proximal to transcription 

start site (TSS) and revealed that 42.7% of human gene promoters contain one or more 

quadruplex motifs (Huppert and Balasubramanian, 2005). Primers targeting G4s followed 

by re-sequencing the templates treated with the G4 stabilizer Pyridostatin (PDS) to identify 

sites of polymerase pausing. This G4-seq method was used to directly identify 716,310 

distinct G4 structures in human B lymphocytes (Chambers et al., 2015). More recently, 

G4-specific antibodies were used to enrich and sequence endogenous G4 motifs (G4-

ChIPseq).  This showed that G4s are present in transcription-enhancing nucleosome-



 

12 

 

depleted promoter regions suggesting that G4 formation leads to increased transcription 

(Hänsel-Hertsch et al., 2016). In addition, G4s can contribute to CpG islands 

hypomethylation in promoter regions contributing to elevated gene expression (Mao et al., 

2018). Endogenous G4 DNA also acts as a site docking site for transcription factors (Lago 

et al., 2021; Spiegel et al., 2021). In patient-derived xenograft (PDX) models of breast 

cancer, increased G4 formation were found at the promoters of highly amplified genes that 

show increased expression (Hänsel-Hertsch et al., 2020).  

 

Genomic Instability by DNA G4s.  

Stable G4 structures can impede the progression of DNA polymerases and stall the 

replication fork progression leading to DNA damage and genomic instability (Puget et al., 

2019; Técher et al., 2017). G4s can acts as trapping sites of oxidative DNA damage caused 

by reactive oxygen species (ROS). 8-oxoG formation by ROS can affect stability of 

promoter G4 structures resulting in altered expression levels in reporter gene assays (Cogoi 

et al., 2010; Fleming et al., 2017; Fleming and Burrows, 2019; Roychoudhury et al., 2020). 

In the human genome, G4 DNA is enriched at the chromosomal translocational breakpoints 

associated with various type of cancers, confirming that G4 DNA is a contributing factor 

to oncogenic transformation (Bacolla et al., 2019, 2016).  

 

Factors resolving DNA G4s.  

Several helicases and proteins are involved in G4 resolution and suppressing G4 

mediated genomic instability (Lejault et al., 2021; Sauer and Paeschke, 2017).  The yeast 

Pif1 helicase was shown to prevent G4-mediated genomic instability and prevent DNA 
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strand breaks (Paeschke et al., 2013; Ribeyre et al., 2009). FANCJ helicase together with 

the ssDNA binding protein RPA facilitates G4 unwinding (Wu et al., 2008). Another G4 

helicase known as Bloom Syndrome (BLM) suppresses sister chromatid exchange events 

in the transcribed genes specifically at the sites of G4 motifs (Wietmarschen et al., 2018). 

In glioma cells, α-thalassemia mental retardation X-linked (ATRX) loss promotes G4 

formation, somatic copy-number alterations, and increased occupancy of BLM at DNA 

damage sites (Wang et al., 2019). BLM and Werner Syndrome (WRN) helicases interact 

with RPA mediated by the BRCA1-interacting E3 ubiquitin- protein ligase HERC2 to 

suppress G4 DNA formation (Wu et al., 2018; Zhu et al., 2021). Recently, regulator of 

telomere elongation helicase 1 (RTEL1) was shown to suppress both R loops and G4s to 

avoid transcription-replication conflicts (Kotsantis et al., 2020; Wu et al., 2020). Thus, the 

formation and resolution of G-quadruplexes need to be regulated in the genome for the 

appropriate biological function. 

 

When R loops and G4s come together – G loops. 

Multiple studies have shown that R loops are more prevalent in genomic regions 

that are G-rich. During transcription, the non-template DNA strand is displaced allowing 

G4 structures to form in the single-stranded DNA strand (Ginno et al., 2013, 2012; Reaban 

et al., 1994; Skourti-Stathaki and Proudfoot, 2014). Recent studies have shown the co-

existence of the R-loop and G4 to form a unique stable structure called as “G-loop”, where 

those G-rich sequences on the non-template strand fold into a G4 structure and R-loops on 

the template DNA strand (Figure 1.3)  (Lee et al., 2020). Using electron microscopy, 

(Duquette et al., 2004), provided the first evidence of the existence of G-loop structure in 
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vitro and in Escherichia coli. Another study used G4 ligands, such as Pyridostatin (PDS), 

to stabilize G4 structures in human cancer cells and observed that G4 ligands induce DNA 

damage by stabilization of R loops (Magis et al., 2018). In these studies, 50 - 60% of 

stabilized G4s colocalized with R-loops. Importantly, R loops allow G4 formation and 

those G4s reversibly stabilize the R loop structure indicating the interrelationship of G4 

and R-loop (Tan et al., 2020). The kinetics of R-loop and G4 formation was found to be 

similar in the cells at different timepoints and failure to resolve these structures promotes 

DNA damage and delays the repair process. G-loops can promote genomic instability by 

causing transcription-replication conflicts. Therefore, both G4 and R loops can be potential 

targets for cancer therapy. One classical example is G4 stabilizer CX-5461 causes synthetic 

lethality in BRCA deficient tumors and has advanced to clinical trials (Xu et al., 2017).  

 

Objectives in this study. 

We understand that estrogenic actions mediated by ERα plays a crucial role to 

breast carcinogenesis. Recently, co-transcriptional R loops came out to be a major player 

in terms of estrogen mediated genomic instability. All women are exposed to estrogens but 

only 1 in 8 women is expected to develop breast cancer which suggest that the genotoxic 

effects of estrogen could vary among individuals. In our studies, we tried to examine how 

estrogen and environmental disrupting chemicals can induce DNA damage. In the first part 

of our study, we investigated the mechanism of ER dependent DNA damage, R loop 

formation, transcriptional and proliferative responses by the endocrine disrupting 

chemicals BP3 and PP using in vitro and in vivo approach with E2 as a positive control. 

Next, we used different rodent strains that differ in susceptibility to mammary tumors to 
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determine whether there is a genetic basis for differences in E2 induced DNA damage.  We 

also utilized patient derived breast explant model to determine the differences in E2 

mediated DNA damage among average and high-risk women. Lastly, we studied the 

underlying DNA damage mechanism of E2 and BP3. We hypothesized that E2 and BP3 

could favor G4 structures and especially G loop formation which could be the cause of 

DNA damage.  
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Figure 1.1: Estrogen receptor signaling. 

Overview of ligand-dependent and independent mechanisms of estrogen receptor 

signaling. Direct, ligand-dependent signaling involves ligand-bound estrogen receptor 

(ER) dimers and coactivators (CoA) binding to estrogen response elements (ERE) in the 

DNA. Tethered estrogen receptor signaling involves ligand-bound receptor dimers binding 

to other transcription factors (TF) on the DNA. Ligand-independent signaling involves 

other growth factor activation, which activates kinases and leads to phosphorylation (P site) 

of the estrogen receptors. Model generated from bio render.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Mechanisms of E2 induced genomic instability.  

Ligand dependent signaling. 

(Classical Signaling) 

Ligand dependent signaling. 

(Tethered signaling) 

Ligand independent signaling. 
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Figure 1.3: Structure of a G loop. 

R loop formed on a template strand of DNA and on the non-template strand, a G quadruplex 

structure is formed. The simultaneous formation of R loop and G quadruplex structure is 

known as G loop.  
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CHAPTER -2 

EFFECTS OF BENZOPHENONE-3 AND PROPYL PARABEN ON ESTROGEN 

RECEPTOR – DEPENDENT R-LOOPS AND DNA DAMAGE IN BREAST 

EPITHELIAL CELLS AND MICE 

 

 

Published in Environmental Health Perspectives, 2020 

 

https://doi.org/10.1289/EHP5221 

 

Introduction 

 

 

Endocrine-disrupting chemicals (EDCs) alter the endocrine system by binding 

directly to the receptors and modulating downstream signaling pathways. Xenoestrogens 

are structurally diverse EDCs that affect estrogen receptor (ER) signaling pathways. BP3 

(Oxybenzone, or 2-Hydroxy-4-methoxybenzophenone, CAS No. 131-57-7) is a UV-filter 

used in personal care products, such as sunscreens, cosmetics and lotions, with 

concentrations up to 0.148% (Liao and Kannan 2014) and a maximum allowed 

concentration of 6% by Food and Drug Administration (FDA) and European commission 

(EU 2017). BP3 was detected in the urine samples of 96.8% of U.S. population in the 

National Health and Nutrition Examination Survey (NHANES) 2003-2004 conducted by 

Centers for Disease Control (CDC) (Calafat et al. 2008). Similarly, PP (propyl 

parahydroxybenzoate, CAS No. 94-13-3) is widely used as an anti-microbial agent in food 

and personal care products. While the FDA limits PP to 0.1% in food, currently there is no 

specific limit for preservatives in personal care products. PP is banned as food preservative 

and maximum permissible levels in personal care products is 0.4% in the EU (Snodin 2017) 
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(European Commission 2015). PP was detected in the urine samples of >96% of U.S. 

population surveyed during 2003-2005 by the CDC (Ye et al. 2006).  

 Estrogenic responses are determined by the action of two distinct estrogen receptor 

(ER) subtypes, estrogen receptor α (ERα) and estrogen receptor β (ERβ). Ligand-activated 

ER recruits co-activators to estrogen response elements (ERE) in promoters of target genes 

leading to transcription initiation (Shang et al. 2000; Yi et al. 2017). In ERα expressing 

breast cancer cells, proliferation is among the cellular responses (Henderson et al. 1988; 

Musgrove and Sutherland 1994). Hence, estrogenic responses to putative xenoestrogens 

are most often determined by transactivation of ERE-reporters, endogenous gene 

expression and cell proliferation in ER-expressing MCF-7 and T47D cell lines, where ERα 

is the dominant subtype (Buteau-Lozano et al. 2002; Vladusic et al. 2000). These studies 

showed BP3 was a weak agonist of ER at 1 µM  (Kerdivel et al. 2013; Schlotz et al. 2017; 

Schlumpf et al. 2001). BP3 was found in the urine samples of 25 volunteers who used 

sunscreen containing 4% BP3 twice a day for 5 days suggesting it was readily absorbed 

through skin (Gonzalez et al. 2006). Metabolites of BP3, such as 2,4-diOH-BP and 2,3,4-

triOH BP, were shown to form by oxidation in rat and human liver microsomes (Okereke 

et al. 1994; Watanabe et al. 2015). 2,4-diOH-BP was detected in the urine samples of 

women scheduled undergo a diagnostic and/or therapeutic laparoscopy or laparotomy as 

part of the ENDO study (Kunisue et al. 2012) and was shown to have higher ER 

transactivation potential compared to BP3 (Watanabe et al. 2015). BP3 and BP3 metabolite 

4,4’-dihydroxybenzophenone were also detected in 27 of the 79 breast milk samples from 

mothers who had normal pregnancy and delivery and participated in the Breast Milk Bank 

of the Blood and Tissue Bank of Catalonia (Spain) (Molins-Delgado et al. 2018). Exposure 
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of BP3 during pregnancy and lactation in mice resulted in altered mammary gland ductal 

architecture that persisted for weeks after exposures ended (LaPlante et al. 2018). Long-

term exposure of MCF-7 breast cancer cells to 100 µM BP3 for >20 weeks increased the 

motility of these cells (Alamer and Darbre 2018). This was also observed in estrogen non-

responsive cell line MDA-MB-231 suggesting alternate pathways of BP3 actions at this 

dose. Similarly, PP was shown to be an effective ER-agonist with 1.3-fold induction of 

gene expression using reporter assays (ERE-CAT reporter) at 10 µM, increased expression 

of estrogen-responsive gene Trefoil Factor 1 (TFF1, also known as pS2) and increased 

proliferation of MCF-7 cells at 1 µM (Byford et al. 2002). Proliferation induced by PP was 

inhibited by ER antagonist (fulvestrant) indicating dependence on ER. PP also increased 

cell motility (increased scratch closure) in both short-term (7 days) and long term (20 

weeks) treatments in the MCF-7 cell line (Khanna et al. 2014).  

 In addition to stimulating cell proliferation and motility, estrogen also induces 

genotoxicity and DNA damage and is considered a major risk factor in breast cancer 

etiology (Roy and Liehr 1999; Yager and Davidson 2006). Estrogen has been shown to 

induce DNA damage by 1) metabolic activation of estrogen and 2) hormonal 

carcinogenesis (Santen et al. 2009). E2 is metabolized to form catechol estrogens (16α-

ΟΗΕ2 or 2-OHE2 and 4-OHE2), which can be oxidized to form reactive semiquinone (SQ) 

intermediates and quinone derivatives. Two such compounds, E2-3-4-Q and E2-2-3-Q 

form stable DNA adduct or depurinating adducts such as 4-OHE2-1N7Gua and 4-OHE2-

1N3Ade, which were associated with increased breast cancer risk, but micromolar levels 

of E2-3-4-Q and E2-2-3-Q were required to show DNA adduct formation in vitro (Cavalieri 

and Rogan 2016). The SQ and quinone derivatives can also generate ROS through redox 
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cycling, which can be genotoxic (Fussell et al. 2011; Wang et al. 2010). Similarly, ER-

independent DNA damage was shown in ERα-negative cell lines using the COMET assay 

(Rajapakse et al. 2005), cII mutagenesis assay (Zhao et al. 2006) or LOH (Huang et al. 

2007; Russo et al. 2003). The concentrations of E2 or 4-OHE2 used in these studies were 

 70nM, with the exception of Russo et al. 2003 who reported increased clonal efficiency 

of MCF10F cells at 0.007nM. However, the median 17-estradiol level during pregnancy 

is 74 nM and < 2 nM in normal cycling women (Table 1.1) and the level of circulating 

estradiol metabolites are 100-fold lower (Xu et al. 2007; Ziegler et al. 2010). Clinical data 

show that in postmenopausal women with ER+ early breast cancer, endocrine therapy with 

an aromatase inhibitor was associated with significantly lower recurrence than tamoxifen 

therapy (EBCTCG 2015), which could be either because of lower levels of estrogen 

metabolites or reduced ER activation. Epidemiological data show that for a given level of 

total estrogen, increased levels of 4-OHE2, 2-OHE2 and 16-OHE2 are associated with 

reduced risk in breast cancer (Dallal et al. 2014; Moore et al. 2016; Sampson et al. 2017) 

or no independent association with risk (Sampson et al. 2017). Although an earlier study 

reported 4-OHE2 levels to be associated with higher breast cancer risk (Fuhrman et al. 

2012). Hence, the impact of metabolic activation of estrogen at physiologically relevant 

concentrations on DNA damage remains to be demonstrated. 

 Hormonal carcinogenesis is postulated to act through ER to initiate lesions as well 

as stimulate progression of tumors. E2 treatment stimulated renal tumors in male Syrian 

hamsters (Liehr et al. 1988). Tamoxifen (TAM) reduced tumors but did not alter levels of 

DNA-adducts suggesting the primary effect of E2 being mediated by ER. Similarly, 

blockage of ER activation through selective estrogen receptor modulators (SERMs) such 
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as TAM and raloxifene reduced the incidence of breast cancer by 50-75 % in women 

(Cummings et al. 1999; Cuzick and International Breast Cancer Intervention 2001; Martino 

et al. 2004). Bilateral oophorectomy and hysterectomy in women under 40 years of age 

reduced breast cancer later in life by 75% (Feinleib 1968). Administration of aromatase 

inhibitor (exemestane) for 35 months to a cohort of post-menopausal women with Gail 

score of 1.66, prior atypical ductal/lobular hyperplasia or ductal carcinoma in situ treated 

with mastectomy but non-carriers for BRCA1/2 and no prior invasive ductal carcinoma 

resulted in 65% relative reduction of breast cancer (Goss et al. 2011). Mobley and 

Brueggemeier (2004) showed that 8-oxo-dG production with BSO (buthionine 

sulfoximine)+ E2 (10nM) + H2O2 treatment could be reduced with TAM treatment in ER-

positive MCF7 cells but not in ER-negative MDA-MB-231 cells suggesting DNA damage 

was at least partially ER-mediated (Mobley and Brueggemeier 2004). Stork et. al (2016) a 

showed lack of DNA damage marker γΗ2ΑΧ in MCF10A cells following treatment of 10 

nM and 100 nM E2 for 24 h (Stork et al. 2016). In T47D cells, E2 mediated γH2AX was 

diminished with treatment of ER inhibitors like TAM or fulvestrant (Periyasamy et al. 

2015). ER signaling stimulates proliferation which was causally linked to tumorigenesis 

by increasing the probability of replication errors which are propagated in daughter cells 

(Henderson and Feigelson 2000; Preston-Martin et al. 1990). Therefore, E2 can be 

considered as a carcinogen through its actions on progression of cancer that was initiated 

by other factors.  

 The studies involving DNA damage by E2 have used different cell lines, tissues 

and endpoints. Therefore, there is no consistent way to discriminate the contribution of ER-
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dependent and ER-independent mechanisms across published studies. It is possible that 

both mechanisms contribute to E2 mediated carcinogenesis.  

Recent studies have shown that ER stimulation leads to transcription-coupled DNA 

damage suggesting a distinct mechanism. Interaction of ERα with chromatin forms 

transcriptional co-activator/co-repressor complexes to initiate transcription (Chao et al. 

2002; Fullwood et al. 2009; Shang et al. 2000). The open chromatin in these ERα 

complexes were susceptible to DNA damage by formation of RNA:DNA triplex structures 

called R-loops (Stork et al. 2016). Therefore, estrogen can stimulate carcinogenesis by 

initiating direct DNA damage mediated by ER and proliferation that expands the 

population of breast cells.  

Bioassays of transcriptional activities have been valuable in rapidly assessing the 

risk posed by xenoestrogens. However, it is unclear if the transcriptional activities of 

xenoestrogens reflect their potential mutagenic activity mediated by ERα. DNA damage 

by selective ER agonists such as Diethylstilbestrol (DES) and 4,4',4''-(4-Propyl-[1H]-

pyrazole-1,3,5-triyl) trisphenol (PPT) (Periyasamy et al. 2015) suggest that transcriptional 

DNA damage needs to be assessed to determine potential breast cancer risk posed by 

xenoestrogens. In this study, we evaluated effects of two xenoestrogens, BP3 and PP, 

which differ in structure and transcriptional potency and compared these with E2.  
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Materials and Methods 

 

Cell culture:  

T47D (ATCC #HTB-1330), T47DKBluc (ATCC #CRL-2865) and MCF-7(ATCC 

#HTB 22) cells were passaged in growth media containing phenol-red free (PRF) DMEM-

F12 (Sigma #D6434) or MEM 1x (Gibco #51200-038) with 10% heat inactivated FBS 

(Omega Scientific # FB-02) and 10 μg/ml insulin (Sigma #9278), 2 mM L-glutamine 

(Hyclone # SH30034.01), gentamycin 15 μg/ml (Gibco #15750-060) and 1X 

antibiotics/antimycotics (AB/AM, Gibco #15240-062) and incubated at 37oC with 5% 

CO2. For experiments, cells were grown in clearing media with charcoal-stripped serum 

(CSS) (MEM 1x with 10% charcoal-dextran treated FBS (Omega Scientific #FB-04), 10 

µg/ml insulin and 2 mM L-glutamine) for 24-72 h before being plated for experiments.  

The 76N-Tert cell line, a human mammary epithelial cell line immortalized with 

expression of human telomerase reverse transcriptase (TERT), was a gift from Dr. Vimla 

Band (Zhao et al. 2010). These cells were grown in F-media (250 mL DMEM (- pyruvate) 

(Gibco #11965-092), 250 mL Ham’s F12 (Gibco #11765-054), 5% FBS, 250 ng/mL 

hydrocortisone (Sigma #H4001), 10 ng/mL human epidermal growth factor (Tonbo 

Biosciences # 21-8356-U100), 8.6 ng/mL cholera toxin vibrio (Millipore Sigma # 227035), 

1 µg/mL human insulin solution, and 1X antibiotic-antimycotic) and passaged every 2-3 

days.  

Generation of 76N-Tert-ESR1 cells. 

An inducible ERα (ESR1) construct was generated using the pINDUCER14 vector 

(Meerbrey et al. 2011). Specifically, FLAG tag sequence was amplified from pFLAG-
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CMV-2 (Andersson et al. 1989) using forward primer 5’- 

ATACCGGTACCATGGACTACAAAGACGATGACGAC-3’ and reverse primer 5’- 

TCGACCGGTACGCGTGCGATCGCTGAATTCGCGGCAAG-3’.  The amplified 

FLAG sequence was then cleaned using the Monarch PCR & DNA Cleanup Kit (NEB 

#T1030) and ligated into pINDUCER14 by digesting both plasmids with AgeI, performing 

dephosphorylation with shrimp alkaline phosphatase (NEB #M0371S), gel electrophoresis, 

and extracting from agarose gel (DNAland Scientific #GP1001). Sequencing of 

pINDUCER14-FLAG confirmed the FLAG sequence was inserted. 

ESR1 was amplified from a plasmid expressing ESR1 made in our lab (pIRES-

hrGFPII-ESR1, unpublished data).  pIRES-hrGFPII-ESR1 contained the ESR1 cDNA 

sequence (Open Biosystems #MHS6278-211691051) in the multiple cloning site of the 

pIRES-hrGFPII vector (Stratagene #240157). ESR1 was amplified from pIRES-hrGFPII-

ESR1 using forward primer 5- GCAGAAATGACCATGACCCTCCACACCAAAGC-3 

and reverse primer 5- TAAACGCGTTCAGACCGTGGCAGGGAAACCCT-3. Ligation 

of ESR1 into pINDUCER14-FLAG was done by digesting both plasmids with EcoRI and 

MluI and then performing dephosphorylation, cleanup, and extraction as described above. 

Two linker sequences (Linker A: AATTGCGCGATCGCGG, Linker B: 

AATTCCGCGATCGCGC) between FLAG and ESR1 were added to keep the ESR1 

sequence in-frame. Sequencing of this final pINDUCER14-FLAG-ESR1 confirmed that all 

inserts were in the correct orientation relative to the vector, both FLAG and ESR1 were in 

frame, and the ESR1 sequence was identical to the Homo sapiens ESR1 gene (Sequencing 

Primers: F: CGGTGGGAGGCCTATATAAG, M: GCTACCATTATGGAGTCTGG, R: 
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ACTTATATACGGTTCTCCCC). This final construct was referred to as pIND-ESR1 and 

expressed a constitutive GFP reporter and ERα with N-terminal FLAG tag.  

In addition, 293T cells were cultured in DMEM: F12 (Sigma #D8900) 

supplemented with 10% FBS, 15 µg/mL gentamycin (Gibco #15750-060), and 1X 

antibiotic/antimycotic. Cells were lifted with 0.05% trypsin and plated in 60 mm tissue 

culture dishes at 2.5 x 106 cells per dish for next day use. 293T cells were then transfected 

with 3.5 µg pIND-ESR1, 3 µg psPAX2 (Addgene #12260) (gag, pol, and rev packaging 

vector) and 2 µg pMD2.G (Addgene #12259) (vsv-g packaging vector) in antibiotic free 

media using Lipofectamine 2000 (Thermo Fisher Scientific). Media was refreshed after 24 

hours and viral media was collected at 48 and 54 hours post initial transfection. Viral media 

from transfected 293T was filtered using a 0.45 µM filter (Corning #431220) and added to 

76N-Tert cells twice, 6 hours apart, in a 1:1 ratio with F-media. After 24 hours, viral media 

was removed and replaced with F-media. Following cell expansion, the cells were pooled 

and resuspended in 1% FBS/PBS. Selection of the stably transduced cells was performed 

by FACS for GFP+ cells using FACSAria II (Becton-Dickinson). 76N-Tert uninfected 

cells were used as a control to set the background fluorescence. Approximately 5% cells 

were GFP+ suggesting pINDUCER14-FLAG-ESR1 expression. The GFP+ cells were 

collected to 90% purity. These cells were expanded and referred to as 76N-Tert-ESR1.  

Luciferase reporter assay 

T47DKBluc cells were grown in clearing media for 72 h and plated in a 24 well 

plate at 10 x 105 cells/well density.  After 24 h cells were treated with 10 nM E2 (17β-

estradiol, Sigma #E2758), 10 nM fulvestrant (F, ICI 182, 780, Tocris #1047), 0.5 to 50 μM 
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BP3 (Sigma #H36206) or 0.5 to 50μM PP (Sigma #P53357). Stock solutions were prepared 

in DMSO (Sigma #D8418), then diluted to working concentrations in media. Luciferase 

assays were performed using the Promega Dual-Luciferase Reporter Assay (Promega # 

E1910). Cells were lysed in 1X Passive Lysis Buffer after treatment for 24 h and then 

stored at -20C. Luciferase activity was determined in lysates by using the Polar Star 

OPTIMA plate reader (BMG Labtech) and expressed in relative light units (RLU). 

Treatments were compared to 10nM E2 included on the plate and relative transactivation 

activity (RTA) is defined as percent transactivation compared to 10nM E2.  

 

RT-qPCR 

RNA from T47D cells, MCF-7 Cells or flash-frozen 4th mammary gland was 

isolated with TRIzol (Thermofisher Scientific #15596018) and Direct-zol RNA MiniPrep 

Plus (Zymo Research #R2072). cDNA was prepared from 1 µL of RNA in 20 µL reaction 

mix with Protoscript II First Strand cDNA Synthesis Kit (New England Biolabs #E6560S) 

following the standard protocol provided by manufacturer. qPCR for TFF1, progesterone 

receptor (PGR/Pgr) and Amphiregulin (AREG/Areg) was performed using primers in 

Table 2.3 (Integrated DNA Technology) and iTaq Universal SYBR Green Supermix 

(Biorad, #1725121) on CFX96 Real-Time System thermocycler (Bio-Rad). Each run (96 

well qPCR plate) included an inter-run calibrator to normalize across experiments. No 

house-keeping gene was included in the experiment to avoid possible variation due to 

treatments. Results represent average of 3 experiments. Data was analyzed with Ct 

method and relative fold change in expression of target gene was compared between 

control and treatments.  
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Cell proliferation assay 

T47D cells grown in clearing media for 72 h was plated as 100μl of cells suspension 

having 5000 or 10000 cells per well on five 96 well plates (one for each day). The 96 well 

plate had 12 cell-free wells for a blank and 7 wells per treatment on each plate. After 24h, 

media was changed in appropriate wells on each plate to reach the desired final 

concentration of E2 (0.5 nM), BP3 (5, 50 µM) or PP (1, 10 µM) in the given wells.  All 

plates were maintained in a 37oC, 5% CO2 incubator until media was exchanged, on one 

plate per day, for 10% Alamar Blue in plating media. Plates were read at the same time 

each day at 4 hr and 8 hr after media exchange on a BioTek Synergy 2 plate reader 

(Winooski, VT) at 570nm and 600nm. Percent alamar blue reduction was calculated as per 

equation 5 on the Alamar Blue protocol: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 

𝑟𝑒𝑑𝑢𝑐𝑒𝑑=

(117216 × test well A570)−(80586 × test well A600)

(155677 × mean (negative control wells A600))−(14652 × mean ( negative control wells A570 ))
 × 100 

 

Immunostaining 

T47D, MCF7, 76N-Tert or 76N-Tert-ESR1 cells were grown in clearing media for 

48 h and plated on 20 mm glass uncoated coverslips in 12 well plates with a density of 2 x 

105 cells/well. After 24h of growth, cells were treated with 10 nM E2, 1 or 5 µM BP3, and 

1 or 5 µM PP with or without 1 µM fulvestrant for 24h. γH2AX/53BP1/ERα: Cells were 

fixed in ice-cold methanol (100%) for 10 mins and quenched with 0.1 M Glycine for 15 
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mins. Cells were washed with 1X PBS, blocked in 2% BSA/PBS with 0.1% Triton-X 100 

for 1hr at room temperature (RT), incubated overnight with anti-γH2AX antibody (Cell 

Signaling # 9718S), anti-ERα antibody (Santa Cruz Biotechnology #sc-8002) or anti-

53BP1 antibody (Abcam # ab36823) at 4°C followed by 1 hour with anti-rabbit 

AlexaFluoro-488-conjugated secondary antibody (Cell Signaling #8889S) or anti-mouse 

AlexaFluoro-488-conjugated (Cell Signaling #4408S) at RT. S9.6: Cells were fixed in ice-

cold 100% methanol for 10 min at -20°C, permeabilized in 100% acetone for 1 min at RT, 

blocked for 30 min in saline sodium citrate pH 7 (SSC, 4X), 3% BSA, 0.1% Triton-X and 

incubated with S9.6 antibody (Kerafast #ENH001) for 2hr at RT followed by 1h with anti-

mouse AlexaFluoro-596-conjugated secondary antibody (Life Technologies #A11062) or 

anti-mouse AlexaFluoro-488-conjugated (Cell Signaling #4408S). For each treatment, two 

replicates of slides were stained with one set of replicates treated with RNase H (NEB 

#M0297L) for 4hr at 37°C prior to incubation with primary antibody. Stained cells were 

mounted with Vectashield mounting medium containing DAPI (Vector Laboratories # H-

1200). Slides were imaged at 60X (immersion oil) with Nikon A1 Spectral Confocal 

microscope. Analysis of γH2AX and S9.6 intensity per nucleus or foci per nucleus was 

calculated using Nikon analysis software, where DAPI was used as a mask for the nucleus.   

 

Western blot 

Cells from MCF7 grown in growth media, 76N-Tert (parental), 76N-Tert-ESR1, 

76N-Tert-ESR1 grown in F-media treated with doxycycline for 24h and 76N-Tert-ESR1 

treated with doxycycline and 10nM E2 for 24h were lysed with ice cold RIPA lysis buffer 

(50 mM Tris–HCl, pH 8.0; 150 mM NaCl; 1 mM EDTA; 1% Triton X-100; 1% Sodium 
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deoxycholate; 0.1% SDS; 1% protease inhibitors (Sigma-Aldrich # P8340), 1% 

phosphatase inhibitor #2 (Sigma-Aldrich # P5726), and 1% phosphatase inhibitor #3 

(Sigma-Aldrich # P0044).  Homogenate was centrifuged at 13,000 rpm for 15 minutes at 

4°C to remove cellular debris. Protein quantification was performed using BCA protein 

assay (Thermo Scientific # 23225).  Equal amounts of protein (28 μg) were separated by 

SDS-PAGE on 10% acrylamide under denaturating conditions and then blotted onto PVDF 

membrane (Millipore # IPVH00010).  Non-specific binding was blocked with 5% non-fat 

dry milk in TBST (Tris-buffered saline and Tween 20 containing 10 mM Tris-HCl, pH 7.5; 

150 mM NaCl; 0.05% Tween-20) for 1 hour. The blot was incubated with 1:100 anti-ERα 

antibody (Abcam # ab16660) overnight at 4°C. After incubation, the blot was washed with 

TBST and then incubated with HRP-conjugated secondary antibody (1:5000, GE 

Healthcare # NA934V) for 1 hour. Bands were detected using enhanced 

chemiluminescence solution and visualized using G-box imaging system (Syngene).  The 

blot was washed with TBST and incubated with anti-β actin antibody (1:5000, Sigma # 

A1978) overnight at 4°C. After washing with TBST and HRP secondary antibody 

incubation for 1hour (1:5000, GE Healthcare # NA931C) bands were detected with 

enhanced chemiluminescence and G-box system.  Expected molecular weights were 67 

kDa (ERα) and 42 kDa (β actin).   

 

Animal treatment 

Forty mature female mice (8 weeks old) BALB/c mice were purchased from 

Jackson Laboratory and housed in temperature-controlled facilities with a set temperature 

of 64-79 F and humidity of 30-70%, 12-hour alternating day/night light cycle and fed 
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LabChow 5058 ad libitum. All procedures were in accordance with the national guidelines 

for the care and use of animals and approved by the University of Massachusetts Amherst’s 

Institutional Animal Care and Use Committee. 

The mice were ovariectomized before treatment. Briefly, each mouse was 

anaesthetized with a mix of isoflurane and oxygen. The flanks were shaved, sterilized with 

betadine, and cleaned with alcohol. An incision was made to the skin on the right flank. 

The underlying muscle layer was nicked to reveal a small hole through which ovary was 

pulled out by grasping the periovarian fat. A Serrifin clamp was used to hold the ovary. 

After making sure the blood vessels were constricted to prevent breeding, the ovary was 

cut from the uterine horn. The periovarian fat was restored into the peritoneum. The 

peritoneum was closed with one or two stiches and the skin was closed with 9 mm wound 

clips.  The procedure was repeated on the contralateral side. The mouse was monitored for 

a week post-procedure and wound clips were removed after 10 days. After 1 week of 

recovery, the mice were randomized to four groups and began an acute oral treatment via 

pipette with vehicle control (tocopherol-stripped corn oil) (n = 7) or one of three different 

compounds E2 (n = 8), BP3 (n = 12) and PP (n =12) for 4 days. Each mouse was 

administered 1 μL of oil per gram of body weight to deliver 250 µg/kg/d E2, 3000 µg/kg/d 

BP3 or 10000 µg/kg/d PP or vehicle control. For BP3 and PP, these doses represent the 

toxicologically no-adverse-effect-level (NOAEL) doses for each compound based on 

development and reproductive toxicity assays (Scientific Committee on Consumer 

Products 2005, 2008; Soni et al. 2001).  

Six hours prior to sacrifice all of the mice were treated with 5 Gy dose of γ-

irradiation. Then two hours before sacrifice all mice were injected intraperitoneally with 
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70 µg/g body weight of BrdU (Sigma Aldrich; Cat# B5002) that was previously prepared 

at 10 mg/ml in PBS and filter sterilized. The mice were sacrificed using carbon dioxide 

followed by cervical dislocation. Whole blood was collected by cardiac puncture and 

tissues were harvested. One of the 4th mammary gland was fixed in 10% NBF and 

transferred to 70% alcohol prior to paraffin-embedding. The other 4th mammary gland was 

cleared of lymph node and stored in -70C.  The whole blood was allowed to coagulate at 

RT for 20 min and then spun down at 2000 x g for 10 min at 4C to retrieve the serum. 

 

Immunostaining of mouse mammary gland 

Freshly cut 4 μM paraffin-embedded sections were deparaffinized/rehydrated with 

100% xylenes 3 times for 5 min each, 2 times with 100% ethanol for 5 min each, 95% 

ethanol for 3 min and 70% ethanol for 3 min. Samples were rinsed with PBS. Antigen-

unmasking was performed by boiling the samples in 1 mM EDTA for 1 hr. Samples were 

cooled down to RT and then treated with SSC 0.2X with gentle shaking at RT for 20 min. 

Samples were blocked in 3% BSA in PBS with 0.5% Tween-20 for 1 hr at RT. Primary 

antibody incubation was done with monoclonal S9.6 antibody (Kerafast #ENH001) or anti-

H2AX antibody (Cell Signaling # 9718S) for overnight at 4°C. After primary incubation, 

samples were washed 3 times with PBS containing 0.5% Tween-20 and then incubated 

with anti-mouse AlexaFluoro-488-conjugated (Cell Signaling #4408S) or anti-rabbit 

AlexaFluoro-488-conjugated secondary antibody (Cell Signaling #8889S) for 1 hr at RT. 

Samples were washed 2 times with PBS containing 0.5% Tween-20 and 2 times with PBS 

and then mounted with Vectashield mounting medium containing DAPI. Slides were 

imaged at 60X with Nikon A1 Spectral Confocal microscope. Analysis of S9.6 intensity 
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per nucleus or foci per nucleus were calculated using Nikon analysis software, where DAPI 

was used as a mask for the nucleus. IHC for Ki-67 was performed on a DakoCytomation 

autostainer using 1:1000 D2H10 primary antibody (cell signaling #9027T) and the 

Envision HRP detection system (Dako, Carpinteria, CA). Positive cells were counted using 

ImageJ software. A total of 1200 cells were counted per slide to determine percent Ki67 

positive.  

 

ELISA 

The serum from whole blood that was harvested from all the mice were quantified 

using a 17β-estradiol specific enzyme-linked immunosorbent assay (ELISA) (Calbiotech 

# ES 180S- 100).  

 

Statistical analyses 

Unless specified, data were analyzed by one-way analysis of variance (ANOVA) 

followed by Tukey's honestly significant difference (HSD) multiple-range test using 

GraphPad Prism 8 statistical analysis software or R program (R Core Team 2013). The 

difference between control and fulvestrant/RNase H treated groups were evaluated with 

two-way ANOVA followed by Bonferroni correction. Results are presented as mean ± 

standard error of the mean (SEM). Data were considered statistically significant at p <0.05. 

Growth curves were fitted to linear regression model and slopes were compared between 

control and treatment conditions. Slopes and 95% confidence interval are reported in Table 

2.2.  
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Results 

 

DNA damage and TFF1 gene expression in cells treated with E2, BP3 or PP 

We monitored γΗ2AX foci as a measure of DNA damage in T47D cells treated 

with the compounds for 24h. A dose-dependent increase in γH2AX intensity was observed 

following E2 treatment (Figure 2.1A). Treatment with either BP3 or PP also led to an 

increase in γH2AX intensity. Treatment with BP3 at 1 or 5 µM increased γΗ2ΑΧ intensity 

compared to the control (p < 0.0001) although we did not observe a dose-dependent 

increase (1μM BP3 vs 5μM BP3, Figure 2.1B). PP treatment also resulted in significantly 

increased γH2AX intensity at 1 and 5μM compared to the control (p < 0.0001). The γH2AX 

intensity due to PP treatment was dose-dependent, similar to E2 treatment (1μΜ PP vs 

5μM PP, p < 0.0001) (Figure 2.1C). We confirmed the DNA damage with immunostaining 

of 53BP1, a DNA damage response factor, which localizes to the sites of DNA damage 

and forms ionization radiation induced foci. Similar to γH2AX intensity, we observed 

dose-dependent increases in 53BP1 nuclear intensity following treatment with E2 (10-100 

nM) and PP (1-5µM) compared to control in both T47D and MCF-7. BP3 treatment (1-5 

µM) showed increased nuclear 53BP1 intensity over control in both T47D and MCF-7, but 

only MCF-7 showed dose-dependent increase (Figure 2.1D and E). We also observed a 

dose-dependent increase in nuclear γH2AX intensity in MCF-7 with treatment of E2 (10 – 

100 nM), BP3 (1 – 30µM) and PP (1 – 30µM) (Figure 2.1F). 

The effect on γH2AX by these compounds was contrasted with the mRNA 

expression of estrogen-responsive gene TFF1. Treatment with 10nM E2 stimulated a 13.1-

fold increase in expression of the estrogen-responsive gene TFF1, whereas responses to 5 
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µM BP3 or PP did not differ significantly from the control (Figure 2.2A). The 

transcriptional responses to E2 were blocked by treatment with fulvestrant (ICI 182,780, 1 

µM) demonstrating the dependence on ER. Blocking ER with fulvestrant also significantly 

reduced the effect of E2 on γH2AX intensity (Figure 2.2B, p < 0.0001) and inhibited 

γH2AX intensity in response to 5µM BP3 (p < 0.0001) and 5µM PP (p <0.0001) suggesting 

that the induction of DNA damage was, in part, dependent upon ER. However, the γH2AX 

foci induced by E2 and BP3 was incompletely blocked by fulvestrant compared to its 

inhibition of TFF1 expression.  

 

Estrogenic response in cells treated with BP3 and PP. 

Reporter assays provide a sensitive means to evaluate estrogenic activity on a 

minimal promoter whereas endogenous genes containing estrogen responsive elements 

provide physiologically relevant targets. 10nM E2 is sufficient to saturate ER responses in 

these assays, hence it was used as positive control that is relevant to physiologic E2 levels 

(2-70nM) in women (Table 2.1). T47D-KBluc cells harbor an integrated ERE-luciferase 

reporter in which BP3 showed a lowest-observed-effect at 5µM with transactivation 

increasing to a maximum 37% relative transactivation activity (RTA) compared to 10nM 

E2 (Figure 2.3A left). In contrast, PP showed 4.7% RTA at 0.5 µM and increased to 288% 

at 50 µM. To estimate the transactivation activity of the compounds at levels that are 

relevant to human exposure, we used the published urinary levels of BP3 and PP (Table 

2.1). At concentrations measured in the 95th percentile of pregnant women, BP3 had 

27.166.2% and PP had 104.0720.98% RTA (Figure 2.3A right, white, and black arrows 

respectively). Expression of endogenous ER target genes AREG and PGR were also 
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quantified in T47D and MCF-7 cell lines (Figure 2.3B and C). Treatment of BP3 and PP 

at 1 µM resulted in no significant changes in mRNA expression of AREG and PGR, a 

concentration that led to significant increases in DNA damage in both T47D and MCF7 

cells (Figure 2.1). Proliferation induced by these compounds was also compared to control 

treatment to provide an additional measure of their bioactivity (Figure 2.3D, Table 2.2). 

PP stimulated significant proliferation of T47D cells at 10µM but not at 1µM PP. However, 

BP3 had marginal effect at 5 or 50µM. Low concentrations of BP3 and PP only marginally 

increased cell numbers compared to control.  

 

R-loop formation in cells treated with E2, BP3 or PP 

R-loop formation was investigated as a possible mechanism of DNA damage using 

the S9.6 antibody to specifically detect DNA: RNA hybrids. While we observed a basal 

level of R-loop foci in the vehicle-treated control in T47D cells, nuclear S9.6 foci were 

significantly increased with 5µM of BP3 or PP treatment and comparable to responses with 

10nM E2. Addition of RNase H to the cells treated with 5µM BP3 or PP or 10nM E2 

abolished the S9.6 intensities, confirming the specificity of S9.6 nuclear staining (Figure 

2.4A and B). Similarly, increased of R-loops formation was obtained with 10nM E2, 5µM 

BP3 or 5µM PP treatment of MCF-7 cells which was abrogated following RNase H 

addition post-fixation (Figure 2.4C).  
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R-loop formation in normal breast epithelial cell line treated with E2, BP3 or PP 

Next, we asked if R-loops form in normal breast epithelial cells in response to 

exposures of BP3 and PP. The 76N-Tert cells do not express endogenous ESR1 providing 

a null background to test ERα-stimulated R-loops. The cells were stably infected with an 

inducible human ESR1 (pINDUCER-ESR1, Figure 2.5A). ERα expression in 76N-Tert-

ESR1 was confirmed with western blot (Figure 2.5B).  MCF-7 cell lysate was used as a 

positive control. Immunofluorescence showed 90% of the 76N-Tert-ESR1 cell population 

were GFP+ (ERα expressing) (Figure 2.5B).   

In the parental 76N-Tert cell line, which does not express ERα, treatment with 

10nM E2, 5µM BP3 or 5µM PP showed low nuclear S9.6 staining. After induction of ERα 

with doxycycline, 5µM BP3 or PP increased number of nuclear S9.6 foci significantly over 

vehicle-treated control and comparable to 10nM E2 treatment. RNase H treatment reduced 

nuclear S9.6 foci in 10nM E2 treated as well as 5 µM BP3 or PP treated 76N-Tert-ESR1 

cell line induced with doxycycline (p<0.0001, Figure 2.5C & D).  

 

Evaluation of R-loop formation and DNA damage in mice treated with E2, BP3 or PP 

To evaluate the relevance of exposure to xenoestrogens in vivo, we treated 

ovariectomized BALB/c mice orally with E2 (250µg/kg/day), BP3 (3,000 µg/kg/day) or 

PP (10,000 µg/kg/day) for 4 days (Figure 2.6A). These doses were used in experiments 

evaluating effects of chronic exposures on mammary gland development (LaPlante et al., 

2018). We observed 3.8-fold higher nuclear S9.6 staining in the mammary epithelium of 

E2 treated animals over control treated animals. Exposure to BP3 also induced 2.5-fold 
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higher nuclear S9.6 staining in the mammary epithelial cells whereas PP induced 3.8-fold 

higher compared to control-treated animals (Figure 2.6B & C). Nuclear γΗ2AX intensity 

in the mammary gland of E2 and BP3 treated animals was significantly higher than animals 

treated with vehicle control (Figure 2.6D). While oral treatment of E2 stimulated 

proliferation as shown by higher Ki-67 straining and transcriptional activation of ER-target 

genes (Areg and Pgr) in the mammary gland, neither BP3 nor PP elicited significant 

responses (Figure 2.6 E-H). Similarly, elevated serum levels of 17β-estradiol and uterine 

weight was only observed in E2 treated mice (Figure 2.6I). 
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DISCUSSION 

Exposure of xenoestrogens was implicated in breast cancer risk (Pastor-Barriuso et 

al. 2016) as well as resistance to breast cancer treatment (Goodson et al. 2011; Warth et al. 

2018) due to their endocrine actions. The median urinary level of BP3 was 0.137µM and 

PP was 0.161µM in non-pregnant women in participating in the NHANES by CDC 

(Calafat et al. 2010; Woodruff et al. 2011). The serum levels of BP3 were reported to be 

approximately 0.87µM (200 µg/L) following exposure in women (Janjua et al. 2004; Matta 

et al. 2019; Tarazona et al. 2013). In addition, the urinary concentrations of xenoestrogens 

observed in pregnant women was higher than the general population with median urinary 

concentrations of BP3 and PP being 0.47µM and 0.253 µM, respectively and the 95th 

percentile concentrations in pregnant women being 29.5µM BP3 and 3.26µM PP (Table 

2.1). This raises the possibility that women may have higher exposure during pregnancy 

due to use of creams and lotions or that absorption and metabolism may be altered in 

pregnancy. These compounds were also found in normal tissues of women undergoing 

mastectomy for primary breast cancer (Barr et al. 2012; Barr et al. 2018) and in milk 

collected during the period of sunscreen use from 3 different cohorts of mothers of 

singleton child (Schlumpf et al. 2010). However, based on measures of transcriptional 

activity in MCF7 human breast cancer cell lines (Byford et al. 2002; Kerdivel et al. 2013), 

typical exposures to BP3 and PP would appear to pose a minimal risk for breast cancer 

through ER mediated transcriptional activation of target genes. 

Estrogens and their metabolites have been shown to induce direct DNA damage. 

However, DNA damage by catechol estrogens from ER-negative cell lines requires 

concentrations that are 100-fold greater than the average circulating concentrations in 
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women (Cavalieri and Rogan 2016; Savage et al. 2014; Xu et al. 2007).  BP3 and PP were 

shown to have the potential to cause DNA damage independent of ER transactivation, 

based on experiments on ER-negative cell lines. For example, treatment of BP3 (10 µM) 

induced γH2AX foci in normal human keratin cell lines (Kim et al. 2018) and PP (50 µM) 

showed 8-hydroxy-2-deoxyguanosine (8-OHdG) release in Vero cells (derived from 

Monkey kidney) (Martín et al. 2010). However, these levels exceeded typical 

concentrations measured in human populations (Table 2.1).  

In the breast, epithelial cells with functional ERα, we observed DNA damage at 

physiologic concentrations of E2. BP3 and PP also caused DNA damage at low 

concentrations (1-5µM) (Figure 2.1). Both the nuclear γΗ2ΑΧ and 53BP1 foci were 

diminished by fulvestrant suggesting ERα dependency of DNA damage.  At these low 

concentrations (1µM of PP and 1-5µM of BP3), we did not observe ER-mediated 

transcriptional response in target genes. Instead, we observed R-loop formation. We also 

observed increases in R-loops and γH2AX in the mammary epithelial cells of 

ovariectomized BALB/c mice orally treated with BP3 or PP at doses designed to model 

environmental exposures in humans (Figure 2.6D). The doses of BP3 and PP used in mice 

were not sufficient to affect transcription of Areg or Pgr (Figure 2.6E-F) or proliferation 

of mammary epithelium (Figure 2.6G-H) compared to control treatments. Nor were they 

sufficient to alter uterine weights compared to the control treatment in ovariectomized mice 

(Figure 2.6J). This finding for BP3 was supported by a previous study (LaPlante et al. 

2018). These results with BP3 and PP are consistent with the idea that in mammary 

epithelial cells of human and mice the formation of R-loops and DNA damage is ER-

dependent but is separable from gene transcription and proliferative responses. 
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ER-mediated DNA double strand breaks was shown to form by collision of R-loop 

formed during active transcription (co-transcriptional R-loop) and replication fork in 

MCF7 cells (Stork et al. 2016). Alternatively, R-loop formation can occur with RNA 

Polymerase II pausing which results in no increase of gene expression but leads to DNA 

damage (Hatchi et al. 2015; Shivji et al. 2018; Zhang et al. 2017). Indeed, our results 

showed that, BP3 and PP induced formation of R-loops and DNA damage (Figure 1.7) but 

did not lead to detectable increases in full-length transcripts of TFF1, AREG or PGR.  

Experiment performed using a normal breast epithelial cell line 76N-Tert 

expressing inducible ERα treated with E2, BP3 and PP provided: 1) additional evidence 

that the R-loop formation and DNA damage were ΕRα-dependent and 2) that normal breast 

epithelial cells were susceptible to DNA damage by xenoestrogens. This raises the 

possibility that a subset of women bearing variants of R-loop processing factors may be 

particularly susceptible to the genotoxic effects of xenoestrogens such as BP3 and PP. 

More than 300 R-loop binding proteins have been identified (Wang et al. 2018). A number 

of such factors were recently shown to be involved in the resolution of R-loops to limit 

DNA damage including TopI (Tuduri et al. 2009), BRCA1(Hatchi et al. 2015), BRCA2 

(Shivji et al. 2018), SETX (Cohen et al. 2018; Hatchi et al. 2015), Aquaris (Sollier et al. 

2014), THO/THREX complex (Bhatia et al. 2014; Gómez‐González et al. 2011),  BuGZ, 

Bub (Wan et al. 2015). For example, recruitment of BRCA1/SETX was important for R-

loop mediated transcriptional termination. As a consequence, the mutational rate of 

termination regions where BRCA/SETX co-localize was higher in BRCA1-deficient 

tumors compared to BRCA1-WT tumors (Hatchi et al. 2015). Premalignant breast lesions 

such as atypical hyperplasia expressed higher levels of ER (Gregory et al. 2019), and 
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thus, may be especially sensitive to the genotoxic effects of these xenoestrogens. Therefore, 

limiting exposure to personal care products and foods containing these chemicals may be 

valuable for this subset of women.  

However, the present studies do not show a direct risk of exposure to these 

compounds on subsequent breast cancer. While chronic exposure to low levels of DNA 

damage has the potential to induce mutations that either initiate or promote carcinogenesis, 

the experiments were not designed demonstrate a causal effect of BP3 or PP on mammary 

tumors or breast carcinogenesis. The DNA damage observed was associated with the 

formation of ERα-dependent R-loops, but it is unclear whether ER also contributes to the 

formation of R-loops or may mitigate this. While many tissues express ERs, they vary in 

the levels of ERα and ER as well as expression of DNA repair factors and proficiency of 

resolving R-loops. Therefore, this mechanism of DNA damage may be limited to the breast 

epithelium of a subset of individuals. It is also unclear how combinations of environmental 

xenoestrogens may interact to augment or dissipate the genotoxicity through competing 

actions on ER. Nonetheless, the data presented here reveal a need to consider the unique 

potential for genotoxicity of environmental xenoestrogens in tissues expressing ERs.  

These studies demonstrated that xenoestrogens possessed the potential for 

genotoxic activity that was mediated by ER through the formation of R-loops and DNA 

double strand breaks. These genotoxic effects were observed at concentrations well below 

those necessary for detectable transcriptional activation. Therefore, R-loop forming 

capacity provides a valuable endpoint to consider when evaluating the safety and activity 

of environmental chemicals. The inducible expression of ER in normal breast cells 

provides a tool with which to quantify the variation in sensitivity to these compounds 
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among individuals and to determine if a subset of individuals is preferentially susceptible 

to the genotoxic activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 



 

44 

 

Table 2.1: Estimation of estrogen and xenoestrogens concentrations of estradiol(E2), 

benzophenone-3(BP-3), or propyl paraben (PP) in urine/blood samples of women and 

female mice. 

 

 

 

 

 

Table 2.2: Slopes of growth curve effect of Estradiol (E2), Benzophenone-3 (BP3), or 

Propylparaben (PP) on T47D cells.  

 

Growth Curve Slope 95% CI 

Control DMSO 0.0107 -0.006811 to 0.02821 

0.5nM E2 0.08495 0.06604 to 0.1039 

1µM PP 0.01856 0.003943 to 0.03318 

10 µM PP 0.06387 0.05225 to 0.07550 

5µM BP3 0.0202 0.008131 to 0.03226 

50µM BP3 0.01581 0.0009721 to 0.03064 

 

 

 

 

 



 

45 

 

 

Table 2.3: Sequences of primers.  

 

 
Target Sequence (5 to 3) 

qPCR Primers 

TFF1 (human) 

 

 

AREG (human) 

 

 

PGR (human) 

 

 

 

Pgr (mouse) 

 

 

 

Areg (mouse) 

 

 

F: CCCCTGGTGCTTCTATCCTAA 

R: GATCCCTGCAGAAGTGTCTAAAA 

 

F: CGGAGAATGCAAATATATAGAGCAC 

R: CACCGAAATATTCTTGCTGACA 

 

F: TTTAAGAGGGCAATGGAAGG 

R: CGGATTTTATCAACGATGCAG 

 

F:  GACCACATCAGGCTCAATGCT 

R:  GGTGGGCCTTCCTAACGAG 

 

F: GTCACTATCTTTGTCTCTGCCA 

R: CCTCCTTCTTTCTTCTGTTTCTCC 
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Figure 2.1. Evaluation of DNA damage in cells treated with 17β-Estradiol (E2), 

Benzophenone-3 (BP3), or Propylparaben (PP) for 24 hours.  

Immunofluorescence (upper panel) and quantification (lower panel) of nuclear γH2AX 

intensity in T47D cells treated with (A) 10 or 100nM E2 (B) 1 or 5μM BP3 and (C) 1 or 

5μM PP. (D). Immunofluorescence of 53BP1 staining with 10 or 100nM E2, 1 or 5µM 

BP3 and 1 or 5µM PP in T47D (upper panel) and MCF-7 (lower panel). (E) Quantification 

of nuclear 53BP1 of treatments in (D) in T47D (left panel) and MCF-7 (right panel). (F) 

Quantification of nuclear γH2AX intensity in MCF-7 cells following 17β-estradiol (E2) 

10-100nM, Benzophenone-3 (BP3) 1-30μM or Propylparaben (PP) 1-30μM treatment.  

***p < 0.0001, *p < 0.01 compared control with treatments using one-way analysis of 

variance (ANOVA) followed by Tukey's honestly significant difference (HSD) multiple-

range test. n = 3 biological replicates. Scale bar = 50 µM (A-C), 10 µM (D). All graphs 

show mean ± SEM. Data collection in collaboration with Prabin. D. Majhi.  
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Figure 2.2. TFF1 expression and γ-H2AX intensity in T47D cells treated with 17β-

estradiol (E2), benzophenone-3 (BP-3), or propylparaben (PP) for 24h with or 

without the ER antagonist fulvestrant.  

(A) Inhibition of TFF1 expression following treatment of 10 nM E2, 5μM BP-3, and 5μM 

PP when cotreated with fulvestrant (ICI 182 780, 1μM) compared with 10 nM E2, 5μM 

BP-3, and 5μM PP treatments without fulvestrant. (B) Quantification of nuclear γ-H2AX 

following cotreatment of fulvestrant (1μM) with E2 (10 nM), BP-3 (5μM), or PP (5μM) 

compared with E2 (10 nM), BP-3 (5μM), or PP (5μM) without fulvestrant treatment, 

respectively. ***p<0.0001 compared control to xenoestrogens treatment and ###p<0.001 

compared with negative fulvestrant and with positive fulvestrant using multiple 

comparison for 2-way ANOVA. n=3 biological replicates. All graphs show mean ± SEM. 

Data collection in collaboration with Prabin. D. Majhi. 
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Figure 2.3. Evaluation of estrogen receptor transactivation and proliferation in cells 

treated with 17β-estradiol (E2), benzophenone-3 (BP-3), or propylparaben (PP) 

for 24h.  
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(A) (Left) Transactivation response (in relative light unit, RLU) of T47D-KBluc cells in 

response to 10nM E2 (green), 0.5–100μM BP-3 (brown), and 0.5–100μM PP (violet) 

treatment. (Right) Dose-response curve of luciferase reporter assay in T47D-KBluc cells 

treated with 17β-estradiol (E2) 10-100nM, Benzophenone-3 (BP3) 1-30μM or 

Propylparaben (PP) 1-30μM treatment. Dose-response curves were plotted using three-

parameter dose response curve. Error bars represent standard deviation (SD). n = 3 

biological replicates. The arrows represent the levels of 95%ile exposure in pregnant 

women i.e., BP3 (white arrow; 29.5 µM) PP (Black, 3.26 µM). Expression of endogenous 

genes AREG (B) and PGR (C) with E2 (10 nM), BP-3 (1 or 5μM), or PP (1 or 10μM) 

treatment as relative fold change over control in T47D (left panel) and MCF-7 (right panel). 

*p<0.05 and ***p<0.0001 compared control with treatments using one-way analysis of 

variance (ANOVA) followed by Tukey's honestly significant difference (HSD) multiple-

range test. n=3 biological replicates. (D) Proliferation of 47D cell as percent of Alamar 

Blue reduction in response to E2 (0.5nM), PP (1 or 10μM), BP-3 (5μM), or control. The 

confidence intervals of the slope are reported in Table 2. All graphs show mean ± SEM. 

Data collection in collaboration with Prabin. D. Majhi, Amy L. Roberts and Karen A. 

Dunphy.  
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Figure 2.4. R-loop formation in T47D and MCF7 cells treated with 17β-estradiol (E2), 

benzophenone-3 (BP-3), or propylparaben (PP) or vehicle with or without RNase H.  

(A) Immunostaining of R-loop with S9.6 antibody and DAPI in T47D cells treated with E2 

(10nM), BP-3 (5μM) or PP (5μM) without and with RNase H treatment following fixation. 

Scale bar=20μM. (B) Quantification of the nuclear S9.6 intensity in T47D. (C) 

Quantification of nuclear S9.6 intensity in MCF-7. ***p<0.0001 compared control with 

xenoestrogens treatment and ###p<0.001 compared negative RNase H and with positive 

RNase H using multiple comparison for 2-way ANOVA. n=3 biological replicates. All 

graphs show mean ± SEM. Data collection in collaboration with Prabin. D. Majhi. 
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Figure 2.5. Characterization of 76N-Tert-ESR1 and R-loop formation in 76N-Tert-

ESR1 following treatment with 17β-estradiol (E2), benzophenone-3 (BP-3) or 

propylparaben (PP) with and without RNase H.  

(A) Map of pIN-ESR1 construct ESR1 insertion next to doxycycline(dox) inducible TRE2 

promoter. (B) (Left) Western blot ERα (upper panel) with MCF-7 as positive control (lane 

1), 76N-Tert parental (lane 2), 76N-Tert-ESR1 without dox (lane 3), 76N-Tert-ESR1 with 

dox (lane 4), and 76N-Tert-ESR1 with dox and E2 (10nM) treatment and β-actin as loading 

control (lower panel). (Right) Immunofluorescence with anti- ERα (green) and DAPI 

(blue) showing ERα expression in > 90% of the 76N- Tert-ESR1 cell population. Scale bar 

= 10 µM (C) Immunostaining with S9.6 antibody and DAPI with 10nM E2, 5μM BP-3, 

or 5μM PP treatment to parental 76N-Tert cells (upper panel), to 76N-Tert-ESR1 with dox 

induction (middle panel) without or with RNase H treatment (lower panel). 

Scale bar=20μM. (D) Quantification of nuclear S9.6 intensity in (C). ***p<0.0001 

compared control with xenoestrogens treatment and ###p<0.001 compared among 76N-Tert 

Parental, 76N-Tert with dox and E2 (10nM) negative RNase H and 76N-Tert with dox 

and E2 (10 nM) positive RNase H using multiple comparison for 2-way ANOVA. n=3 

biological replicates. All graphs show mean ± SEM. Data collection in collaboration with 

Amy Black and Prabin D. Majhi. 
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Figure 2.6. Acute exposure of xenoestrogens in mice.  

(A) Schematic of experimental design and exposure period. (B) Immunostaining of mouse 

mammary epithelium with S9.6 antibody harvested from mice treated with E2, BP-3, or 

PP. Each image shows a ductal structure with luminal and myo-epithelial cell nucleus 

(blue) and R-loop (green) inside the nucleus. Scale bar =10μM. Quantification of the 

immunostaining data for S9.6 (C) and γ-H2AX (D). Expression of Areg (E) and Pgr (F) 

from mouse mammary gland. n=3 biological replicates. (H). Ki67 straining of luminal 

epithelial cells (G) and percent of Ki67 strained cells per luminal cells counted. (I) Serum 

17-β-estradiol (E2) levels (A) and uterine weight (B) from mice treated with E2 

(250μg/ml), Benzophenone-3 (BP3, 3000μg/ml) or Propylparaben (PP, 10000 μg/ml) 

treatment.  Scale bar=50μM [Number of biological replicates (n): control (5), E2 (8), BP-

3 (12), PP (10)] ***p<0.0001, **p<0.01 compared control with treatments using one-way 

analysis of variance (ANOVA) followed by Tukey's honestly significant difference (HSD) 

multiple-range test. All graphs show mean ± SEM. Data collection in collaboration with 

Aliza R. Majewski and Lynn M. Chuong. 
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Figure 2.7.  A schematic model for ER-dependent DNA damage.  

E2 or xenoestrogens binding to the ER recruit ER to the estrogen response element (ERE) 

in the promoter and forms R-loop. Persistence of R-loop in the promoter introduces DNA 

damage. 
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CHAPTER -3 

 

Estrogen mediated DNA damage in the mammary epithelium differs among strains 

of rodents and among women. 

 

 

 

Introduction 

 

 

Estrogens play a central role in mammary gland development by promoting 

epithelial cell proliferation and ductal elongation during puberty (Manavathi et al., 2013; 

Vrtačnik et al., 2014). However, longer lifetime exposure to estrogens due to early 

menarche and late menopause are associated with increased breast cancer risk (Clemons 

and Goss, 2001; Dall and Britt, 2017). Women with estradiol levels in the highest quartile 

had 2.1-fold higher relative risk compared to the lowest quartile (Eliassen et al., 2006). 

This carcinogenic effect of estrogen may, in part, be due to reactive metabolites that cause 

depurination or form stable DNA adducts. But the concentrations of estrogens that induce 

these effects in vitro exceed the levels typically found in women (Cavalieri and Rogan, 

2016; Okoh et al., 2011; Santen et al., 2009). This mechanism does not account for the 

preferential risk of breast cancer as cells in all tissues would be similarly vulnerable to the 

direct mutagenic consequences of these adducts. The breast epithelial cells expressing 

estrogen receptor alpha (ERα) appear to be particularly susceptible as approximately 70% 

of breast cancer cases are positive for ER (Waks and Winer, 2019). This is a striking 

enrichment as only 5-10% of normal breast epithelial cells are ER-positive (Clarke et al., 

1997). Blockade of ER activation through selective estrogen receptor modulators reduced 
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the breast cancer incidence by 50% – 75% in women (Cummings et al., 1999; Cuzick et 

al., 2013; Martino et al., 2004). Therefore, the ER+ breast epithelial cells appear to be 

vulnerable to pathogenic actions of estrogens.   

Estrogen receptors have been shown to be involved in mutagenic actions caused by 

exposure to estrogens. Two nuclear estrogen receptors, estrogen receptor alpha (ERα) and 

estrogen receptor beta (ERβ), contribute to the intracellular responses to estrogens. The 

ligand-bound estrogen receptor complex can form homodimers or heterodimers that bind 

estrogen response elements (ERE) in the DNA forming complexes with other 

transcriptional coregulatory factors to drive expression of estrogen target genes (Marino et 

al., 2006; Saville et al., 2000; Yaşar et al., 2017; Yi et al., 2017). The genes encoding the 

progesterone receptor (PGR) and amphiregulin (AREG) growth factor have EREs that have 

been well-characterized (Ciarloni et al., 2007; Lin et al., 2007; Manavathi et al., 2013; 

Palaniappan et al., 2019). ER is a primary effector of estrogen actions in mammary tissue 

and has been shown to participate in DNA damage by several mechanisms. First, ER is 

necessary for the proliferation of the breast epithelium which can also cause replication-

associated DNA damage (Henderson and Feigelson, 2000; Preston-Martin et al., 1990). 

Second, ER has been shown to recruit Topoisomerase-2β, stimulating DNA double-

strand breaks which facilitate transcription of ER target genes (Ju et al., 2006; Williamson 

and Lees-Miller, 2011). A third mechanism observed in breast cancer cell lines showed 

that ER induces expression of APOBEC3B which causes cytidine deamination leading 

to DNA damage (Periyasamy et al., 2015; Udquim et al., 2020). Recently, 17-estradiol 

(E2) and endocrine-disrupting chemicals were shown to induce DNA damage by 
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promoting ER-mediated co-transcriptional structures called R loops (Majhi et al., 2020; 

Stork et al., 2016). R loops are formed when the nascent RNA hybridizes with the template 

DNA strand causing transient displacement of the non-template strand. R loops are a 

normal consequence of transcription, but if they persist due to either the genomic context 

or a lack of resolvases, the single-stranded non-template strand can cause DNA damage 

responses that result in DNA double-strand breaks (Aguilera and García-Muse, 2012a; 

Skourti-Stathaki and Proudfoot, 2014; Sollier and Cimprich, 2015). These ER-mediated 

DNA damage mechanisms would result in preferential mutagenesis of the ER+ luminal 

breast epithelial cells and contribute to carcinogenesis.  

While all women are exposed to endogenous and exogenous estrogens, only 1 in 8 

women is expected to develop breast cancer suggesting that the cancer-promoting effects 

of estrogen exposure vary among individuals. Genome-wide association studies have 

identified >180 alleles that modify the risk of breast cancer (Ahmed et al., 2009; Easton et 

al., 2007; Hunter et al., 2007; Stacey et al., 2007; Wendt and Margolin, 2019). 

Polymorphisms in ER have been identified that contribute to inherited breast cancer risk 

(Hu et al., 2017; Lipphardt et al., 2013; Yu et al., 2011). However, differences in 

environmental and lifestyle factors account for nearly 70% of breast cancer risk (Möller et 

al., 2016; Mucci et al., 2016). Therefore, interactions between inherited risk alleles and 

environmental exposure to estrogenic chemicals may play a significant role in the 

development of breast cancer but have remained elusive due to the challenges in measuring 

environmental exposures across a woman’s lifetime and limitations in statistical power to 

detect effects (Rudolph et al., 2016).  
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Studies in rodents provide a powerful alternative approach for understanding the 

combined effects of estrogen exposure and heritable differences in sensitivity to 

environmental exposures(Jerry et al., 2018). BALB/c and C57BL/6 strains of mice differ 

in their responses to E2 and progesterone (P4) (Aupperlee et al., 2008). Hormone-induced 

mammary tumors have been shown to develop in BALB/c mice whereas C57BL/6 mice 

are resistant (Girard et al., 2007; Kordon et al., 1993; Lanari et al., 1986; Molinolo et al., 

1987). BALB/c mice are also sensitive to radiation-induced mammary tumors when 

compared with C57BL/6 mice (Ponnaiya et al., 1997; Ullrich et al., 1996). BALB/c mice 

with heterozygous mutations in the p53 tumor suppressor gene (Trp53) develop 

spontaneous mammary tumors similar to the susceptibility to breast cancer among women 

with inherited mutations in TP53. In contrast, mammary tumors in C57BL/6-Trp53+/- 

mice are rare (Kuperwasser et al., 2000). This difference in susceptibility to mammary 

tumors was genetically linked to a locus on mouse chromosome 7 (Blackburn et al., 2007) 

and involves a greater reliance on repair DSBs in BALB/c-Trp53+/- mice through error-

prone repair pathways (Böhringer et al., 2013). Therefore, hormonal exposures and 

mechanisms affecting proficiency of DNA repair play important roles in determining risk 

of mammary tumorigenesis. 

Rats also exhibit striking differences in susceptibility to mammary tumors. The 

Brown Norway (BN) strain is resistant to estrogen-induced mammary tumors while the 

August Copenhagen Irish (ACI) strain is susceptible.  Genetic loci that modify 

susceptibility to E2 have been mapped in crosses between the ACI and BN strains rats 

(Shull et al., 2018). Using comparative genomic hybridization (CGH), the tumors in ACI 

were found to have recurrent chromosomal aberrations (Adamovic et al., 2007) suggesting 
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that differences in the fidelity of DNA repair may contribute to susceptibility to mammary 

tumors in ACI rats.  

The goal of our study was to investigate the effects of genetic background on E2-

mediated DNA damage, R loop formation, and transcriptional responses in the mammary 

epithelium of rodents. DNA damage and R loops were significantly higher in BALB/c mice 

compared to C57BL/6 mice in response to acute treatment with E2 for 4 days or chronic 

exposure for 28 days. Accumulation of H2AX foci were most pronounced in the ER+ 

cells of BALB/c mice. Higher doses of E2 (0.25 vs 0.75mg/kg/d) stimulated greater 

proliferation in both strains, but levels of H2AX were increased in only the BALB/c mice. 

The differences in DNA damage and R loops between strains were not associated with 

differences in levels of ER. Elevated levels of H2AX were also observed in the 

mammary epithelium of ACI rats following E2 treatment, but not in the BN strain. Breast 

tissue explant cultures from women also exhibited striking variation in levels of E2-

induced DNA damage in the epithelial cells. In breast explant cultures from donors with 

inherited breast cancer risk, E2 stimulated significantly higher levels of DSBs. In contrast, 

only 1 in 5 of average risk donors exhibited a significant increase in DSBs in the presence 

of E2. Together, these data demonstrate genetic differences in sensitivity to E2-stimulated 

DNA damage in rodents and that similar variation is also observed in normal breast tissues 

from women. Variation in levels of the pathogenic effects of E2 may provide a biomarker 

associated with sensitivity to breast cancer.  
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Materials and Methods 

 

Experiments in mice 

Female BALB/c and C57BL/6 mice (7 weeks old) were purchased from Jackson 

Laboratory. The mice were housed in temperature-controlled facilities with a set 

temperature of 64-79 F and humidity of 30-70%, 12-hour alternating day/night light cycle 

and fed Lab Chow 5058 ad libitum for one week prior to use in experiments. The 17β-

estradiol (designated E2) used in these experiments was obtained from Sigma-Aldrich 

(E2758-250MG). All procedures were under the national guidelines for the care and use of 

animals and approved by the University of Massachusetts Amherst’s Institutional Animal 

Care and Use Committee. 

In experiments with ovariectomized, each mouse was anesthetized with a mix of 

isoflurane and oxygen. The flanks were shaved, sterilized with betadine, and cleaned with 

alcohol. An incision was made to the skin on the right flank. The underlying muscle layer 

was nicked to reveal a small opening through which the ovary was exteriorized by grasping 

the periovarian fat. A serrafin clamp was used to hold the ovary. A suture ligature was 

applied to prevent breeding, then the ovary was cut from the uterine horn. The periovarian 

fat was restored into the peritoneum. The peritoneum was closed with one or two stitches 

and the skin was closed with 9 mm wound clips.  The procedure was repeated on the 

contralateral side. The mouse was monitored for a week post-procedure and wound clips 

were removed after 10 days. After 1 week of recovery, the mice of strain were randomized 

to two groups and began an acute oral treatment via pipette with vehicle control 
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(tocopherol-stripped corn oil) (n = 5) or E2 (n = 5) for 4 days. Each mouse was administered 

1μL of oil per gram of body weight to deliver 0.25 mg/kg/day E2 or vehicle control.  

For ovary intact animals, ovariectomy was not performed and the E2 dose was 

increased to 0.75 mg/kg/day. For acute treatment of 4 days, mice of each strain were simply 

randomized to two groups and began treatment via drinking water with vehicle control 

(only water) (n=5) or E2 (n=5) for 4 days. For chronic treatment of 28 days, mice were 

treated with vehicle control (only water) (n=5) or E2 (n=10) for 28 days.  

The mice were sacrificed using carbon dioxide followed by cervical dislocation. 

One 4th mammary gland was fixed in 10% NBF and transferred to 70% alcohol within 12 

h followed by paraffin-embedding. The contralateral 4th mammary gland was cleared of 

lymph node and stored in -80C for RNA isolation. 

 

Experiments in rats  

Details of animal care, treatment, tissue collection, fixation, and processing of 

samples were explained in (Ding et al., 2013). Slides of ACI and BN mammary gland tissue 

samples were received from Dr. Shull’s lab. Briefly, 9 weeks old female rats of each strain 

were treated with E2 for 7 days, released from subcutaneous Silastic implants containing 

27.5 mg of E2. Methods for preparing and surgically implanting the hormone delivery 

tubes have been described previously (Shull et al., 1997).  Control-treated rats from each 

strain received empty implants. The rats were euthanized (by decapitation with a rodent 

guillotine) following 7 days of treatment. Mammary gland tissues were collected, fixed, 

processed, and embedded in paraffin. Sections were cut and mounted on slides.  
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Human breast patient-derived explant cultures (PDEs) 

Explant culture and treatment were described previously in detail (Dunphy et al., 

2020) Briefly, human breast tissue samples were collected from female donors undergoing 

reduction mammoplasty or mastectomy surgery. Fresh breast tissues were cut using 

microtome and sections were placed on top of surgical foam (Ethicon) in 60mm plastic 

dishes and maintained in Basal Media in a humidified incubator with 5% CO2 at 37 °C.  

Tissues were cultured in Basal Media containing phenol red-free DMEM: F12 (Sigma-

Aldrich), 10% charcoal-stripped fetal bovine serum (FB-04, Omega Scientific), 10ng/mL 

human epidermal growth factor (21–8356-U100, Tonobo Biosciences), and antibiotic-

antimycotic (15,240,062, Gibco) for up to 3 days to clear from endogenous hormones. 

Tissues were maintained in either Basal or supplemented with 10nM E2 for up to additional 

4 days. Tissues were processed and paraffin embedded. Fresh sections were cut and 

mounted on slides. 

 

Immunostaining 

Freshly cut 4-5 μM paraffin-embedded sections were deparaffinized/rehydrated 

with 100% xylenes 3 times for 5 min each, 2 times with 100% ethanol for 5 min each, 95% 

ethanol for 3 min and 70% ethanol for 3 min. Samples were rinsed with PBS. Antigen 

retrieval was performed by boiling the samples in 1 mM EDTA (pH 8.0) for 30 mins and 

cooled for 30 mins at RT. For dual staining of ERα and γH2AX, antigen retrieval was 

performed using 10mM Sodium Citrate buffer containing 0.05% Tween-20 (pH 6.0). 

Tissues were incubated in 1% Triton-X 100 in PBS for 30 mins at RT. Samples were then 

treated with SSC 0.2X with gentle shaking at RT for 20 min. Samples were washed 3 times 
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with TBS containing 0.5% Tween20. Samples were blocked in 10% goat or rabbit serum 

in PBS with 0.5% Tween-20 for 1 hr at RT. Primary antibody incubation was done with 

monoclonal S9.6 antibody (Kerafast #ENH001), anti-H2AX antibody (Cell Signaling # 

9718S), or anti-ERα (Millipore, 06-935) for overnight at 4°C. After primary incubation, 

samples were washed 3 times with TBS containing 0.5% Tween-20 and then incubated 

with anti-mouse AlexaFluoro-488-conjugated (Cell Signaling #4408S) or anti-rabbit 

AlexaFluoro-488-conjugated secondary antibody (Cell Signaling #8889S) for 2 hr. 

Samples were washed 3 times with TBS containing 0.5% Tween-20 and then mounted with 

Vectashield mounting medium containing DAPI. Slides were imaged at 60X with a Nikon 

A1 Spectral Confocal microscope. Analysis of S9.6 or γH2AX foci per nucleus and ERα 

positive cells were calculated using Nikon analysis software, where DAPI was used as a 

mask for the nucleus. IHC for Ki-67 was performed on a Dako Cytomation autostainer 

using 1:1000 D2H10 primary antibody (cell signaling #9027T) and the Envision HRP 

detection system (Dako, Carpinteria, CA). Positive cells were counted using ImageJ 

software. A total of 1200 cells were counted per slide to determine percent Ki-67 positive.  

 

RT-qPCR 

RNA from the mammary gland was isolated with TRIzol (Thermofisher Scientific 

#15596018) and Direct-zol RNA Miniprep Plus (Zymo Research #R2072). cDNA was 

prepared from 1 µL of RNA in 20 µL reaction mix with Protoscript II First Strand cDNA 

Synthesis Kit (New England Biolabs #E6560S) following the standard protocol provided 

by the manufacturer. qPCR for Estrogen receptor alpha (ESR1), progesterone receptor 

(Pgr), Amphiregulin (Areg), Apolipoprotein B Editing Complex 3 (Apobec3), and 
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Cytokeratin18 (Krt18) was performed using primers in Table 1 (Integrated DNA 

Technology) and iTaq Universal SYBR Green Supermix (Biorad, #1725121) on CFX96 

Real-Time System thermocycler (Bio-Rad). Each run (96 well qPCR plate) included an 

inter-run calibrator to normalize across experiments. Data were analyzed with Ct 

method and relative fold change in expression of the target gene was compared between 

control and treatments.  

 

Statistical Analysis 

Unless specified, data were analyzed by one-way analysis of variance (ANOVA) 

followed by Tukey's honestly significant difference (HSD) multiple-range test using 

GraphPad Prism 9 statistical analysis software. Results are presented as mean ± standard 

error of the mean (S.E.M.). Data were considered statistically significant at p <0.05. 
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Results 

 

E2 induces DNA damage and R loops in BALB/c mice but not C57BL/6 mice. 

Effects of estrogen were compared in BALB/cJ and C57BL/6J mice because they 

differ in their susceptibility to mammary tumors. Female mice were ovariectomized and 

endogenous hormones were allowed to clear for 7 days. The mice were then treated with 

E2 (0.25 mg/kg/d) for 4 days (Figure 3.1A). This dose of E2 mimics levels during early 

pregnancy (Majewski et al., 2018; Majhi et al., 2020). First, we compared proliferation in 

the mammary epithelium using Ki-67. The frequency of cells positive for Ki-67 was 

increased significantly with E2 treatment as compared to the control treatments (Figure 

3.1B). The proliferative responses to E2 treatment in the mammary epithelium were similar 

for both strains (Figure 3.1B and C). Immunostaining with phosphorylated histone H2AX 

(γH2AX), a marker of DNA-double stranded breaks, was used to assess E2-induced DNA 

damage in the luminal mammary epithelium. The number of γH2AX foci was increased 

significantly in BALB/cJ with E2 treatment compared to the control-treated mice. 

However, the C57BL/6J showed no increase in γH2AX foci with E2 treatment (Figure 

3.1D and E). Co-transcriptional R loop (DNA: RNA hybrid) structures were shown to be 

precursors of E2- induced DNA double-strand breaks (Majhi et al., 2020; Stork et al., 

2016). Therefore, immunostaining with an R loop-specific antibody (S9.6) was used to 

detect the presence of these structures in the mammary epithelium. BALB/cJ mice showed 

a significant increase in S9.6 foci with E2 treatment as compared to the control mice. In 

contrast, we did not observe any induction of S9.6 foci by E2 treatment in C57BL/6J mice 

(Figure 3.1F and G). Estrogen target genes (Pgr and Areg) were increased significantly 
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in the mammary tissues of both strains by E2 treatment (Figure 3.1H and I). However, the 

levels of Pgr and Areg were increased to a greater extent (p<0.001) in BALB/cJ mice when 

compared with C57BL/6J mice. These data show that E2 stimulates R loops and DNA 

double strand breaks in BALB/cJ, but not C57BL/6J mice. As both strains had equivalent 

proliferation at 4 days of E2 treatment, the differences in γH2AX is not attributed to 

replication-associated DNA damage.   

 

Enrichment of E2-induced DNA damage in ERα positive mammary epithelial cells in 

BALB/c mice.  

To determine which mammary epithelial cells are experiencing E2-induced DNA 

damage, we performed dual immunofluorescence to detect both γH2AX and estrogen 

receptor alpha (ERα) in the luminal mammary epithelial cells of ovariectomized mice 

treated with or without E2 for 4 days as described in Figure 1A. Both strains had similar 

proportions of ER-α positive cells (37-40%) in the luminal epithelium and were unchanged 

by E2 treatment (Figure 3.2A and B). The number of γH2AX foci/nucleus was greater in 

the ER-α positive cells in both strains compared to the ER-α negative cells, but E2-induced 

γH2AX foci were only observed in BALB/cJ mammary epithelium (Figure 3.2A and 

3.2C). While the number of γH2AX foci was greatest in mammary epithelial cells with 

detectable levels of ERα, there was also a significant increase of γH2AX foci in the ER-α 

negative population of cells in BALB/cJ mice. However, the levels of γH2AX foci in ERα-

negative cells of C57BL/6J mice were not increased (Figure 3.2C) despite similar 

proliferative responses (Figure 3.1C). We also generated frequency distributions for the 
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proportions of cells with increasing numbers of γH2AX foci to determine if there were 

different populations within the percentage of ERα positive cells (Figure 3.2D). In the 

control-treated mice, the majority of ERα-positive cells had fewer than 5 γH2AX foci 

(Figure 3.2E). There was a small shift in the distribution for C57BL/6J mice toward 

increased proportions of cells with up to 10 foci/cells but was not significant (Figure 3.2D 

and E). In contrast, E2 treatment in BALB/cJ mice resulted in 70% of the ERα-positive 

cells with >10 foci/nucleus. Therefore, ERα-positive cells in BALB/cJ mice are 

preferentially susceptible to DNA damage with physiologic levels of E2, while C57BL/6J 

mice were resistant.  

 

Effect of short-term high E2 dose on DNA damage and R loops in ovary intact mice. 

As elevated levels of E2 are associated with an increased risk of breast cancer in 

women, we wanted to determine if higher doses of E2 may be necessary to induce DNA 

damage in C57BL/6J mice. In this experiment, ovary-intact BALB/cJ and C57BL/6J mice 

treated with a 3-fold higher dose of E2 (0.75 mg/kg/day, referred to as 3xE2) in drinking 

water to allow continuous exposure for 4 days (Figure 3.3A). The proliferative response 

shown by Ki-67 staining indicates that treatment with 3xE2 significantly increased the 

proliferation rates (37.98% and 36.90% in BALB/cJ and C57BL/6J, respectively) in their 

mammary gland epithelium (Figures 3.3B and C). These levels of proliferation were 

greater than the 18% of Ki-67 positive cells observed in ovariectomized mice treated with 

0.25mg/kg/d (Figure 3.1C) indicating dose-dependent responses at up to 0.75mg/kg/d. 

Even with the higher dose of E2 and increased proliferation, there was not a significant 



 

70 

 

difference in γH2AX foci in the mammary epithelium of C57BL/6J compared to control 

treatment (Figure 3.3D and 3E). There was a modest increase with E2 treatment in 

BALB/cJ mice, but it did not reach statistical significance. The difference may be blunted 

by the presence of endogenous estrogens in the ovary-intact mice. However, the number 

of S9.6 foci/nucleus were increased significantly in the mammary epithelium of both 

BALB/cJ and C57BL/6J mice by the 3xE2 treatment (Figures 3.3F and 3G). Though R 

loops appear to be induced by E2 in both strains, the number of foci/nucleus was higher in 

BALB/cJ compared to C57BL/6J. Overall, the effect of E2 on DNA damage and co-

transcriptional R loops was similar to that observed with the 0.25mg/kg/d dose in Figure 

2.1, but the fold changes appear to be blunted by the endogenous levels of E2 in the ovary-

intact mice.  

 

Effect of chronic exposure to high E2 dose on DNA damage and R loops in ovary 

intact mice. 

Pregnancy is a period during which there are sustained increases in estrogens as 

well as other growth factors. The mammary gland undergoes dramatic proliferation in 

response to these hormones followed by differentiation.  To evaluate the effect of sustained 

increases in E2, ovary intact BALB/cJ and C57BL/6J mice were treated for 28 days with 

E2 (0.75 mg/kg/day, 3x) in drinking water (Figure 3.4A). In contrast to the dramatic 

proliferation at 4 days (~37% in Figure 3.3C), the proliferative fraction of cells returned 

to near baseline levels (2% to 3%) in the mammary epithelium of both strains of mice 

treated with E2 for 28 days (Figure 3.4B and 4C). The Ki-67 levels did not differ between 

the Control- and E2-treated groups. Although proliferative responses had declined, there 
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was a sustained elevation of γH2AX foci in E2-treated BALB/cJ mammary epithelium 

whereas there was no difference between Control- and E2 treated C57BL/6J mice (Figure 

3.4D and 4E). Chronic treatment with E2 also increased R loop levels in BALB/cJ mice 

compared to controls but no significant difference due to E2-treatment in C57BL/6 mice 

(Figure 3.4F and 4G). Therefore, the strain-specific sensitivity to E2-induced DNA 

damage in BALB/cJ but not C57BL6J mice was observed across the time course of 

treatments of 4 to 28 days and was not associated with changes in proliferation or 

physiologic states of the mammary gland.  

 

Expression of estrogen receptors and target genes with acute and chronic treatments. 

Transcriptional responses were also examined to compare the effects of the 3xE2 

dose in ovary-intact mice. As E2 stimulates proliferation of the luminal epithelium, 

expression of ERα target genes was normalized to Krt18 levels (Figure 3.5 G and H) to 

adjust for potential differences in populations of cells. Administration of E2 resulted in 

decreased Pgr mRNA levels at both 4 and 28 days in BALB/cJ mice (Figures 3.5 A and 

5B). Areg mRNA was also decreased by treatment with E2 for 28 days (Figures 3.5C and 

D).  In C57BL/6J mice, levels of Pgr were increased after 28 days of E2, but not at 4 days 

(Figure 3.5A and B). Areg expression was unchanged by E2 in C57BL/6J mammary 

tissues as well (Figures 3.5C and D).  Expression of Esr1 (encoding ERα) was decreased 

to varying degrees in both strains (Figures 3.5E and F) which may reflect feedback 

inhibition in response to administration of E2. The results in ovary-intact mice differ from 

responses in ovariectomized mice and indicate that endogenous levels of E2 in mice with 

normal ovarian cycles are sufficient to maintain the expression of ERα target genes (Areg 
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and Pgr). Therefore, the increased numbers of γH2AX foci and R loops in mammary 

tissues of BALB/cJ mice following E2 treatment does not appear to be due to a global 

increase in transcription.  

The DNA editing enzyme APOBEC3B causes base damage and was induced by 

E2 in human breast cancer cells (Periyasamy et al., 2015; Udquim et al., 2020). Therefore, 

we compared the mRNA levels of Apobec3 in BALB/cJ and C57BL/6J mice. There were 

no significant changes in Apobec3 expression in the E2-treated mice compared to controls 

(Figure 3.5 I and J). Levels of Apobec3 differed between strains, but levels were lower in 

BALB/cJ mice. Therefore, Apobec3 does not appear associated with the greater DNA 

damage observed in BALB/cJ mammary tissues.  

 

E2 induced DNA damage in the mammary epithelium of susceptible ACI rat strain. 

Rat strains have also been shown to vary dramatically in their responses to E2. The 

ACI strain is susceptible to E2-induced mammary tumors and has led to the identification 

of genetic modifiers through crosses with the resistant BN strain. However, these strains 

have not been screened for differences in DNA damage and repair pathways. Ovary-intact 

rats from both ACI and BN strains were treated continuously with E2 for 7days, then tissues 

were harvested and analyzed for γH2AX foci. E2 treatment in ACI rats resulted in 

significant increases in γH2AX foci in the mammary epithelium compared to the control 

treated ACI rats (Figure 3.6A and B). In contrast, the BN strain did not show induction of 

γH2AX foci with E2 treatment. These results demonstrate that the DNA damaging effects 

of E2 are also observed in rats and are associated with susceptibility to mammary tumors.  
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DNA damage by E2 in human breast explant tissues 

Prior studies had observed E2-induced DNA damage in breast cancer cell lines but 

had not examined effects in normal breast tissues. We used the ex-vivo culture of patient-

derived explants (PDEs) to compare the effects of estrogen among women. PDEs were 

maintained in basal media or supplemented with 10nM E2 for up to 4 days. PDEs from 

donors undergoing prophylactic mastectomies due inherited genetic risk alleles were 

designated “High Risk”. Responses were compared with donors undergoing reduction 

mammoplasty and did not have familial risk, and therefore, were considered “Average 

Risk” of breast cancer. The mean number of γH2AX foci/nucleus was increased by E2 but 

was not statistically significant within the risk groups (Figure 3.7A). The High-Risk 

patients exhibited a higher baseline level of γH2AX as well as a further increase induced 

by E2. Comparison between the risk groups, the effect of E2-induced DNA damage was 

greater in this sample of High Risk compared to the Average Risk tissues (p=0.01). The 

range of γH2AX foci/nucleus was greater in the E2 treated breast epithelium (% of cells) 

of High-Risk donors when compared with Average Risk donors (Figure 3.7B). The results 

indicate that there is variation in DNA damage caused by E2 among women and may reach 

pathogenic levels in a subset of individuals.  

 To assess the variation in the general population, we analyzed PDEs from 3 

additional women undergoing reduction mammoplasty and did not have a family history 

of breast cancer, and therefore, presumed to be “Average Risk”. The tissues were 

maintained in basal media or treated with 10nM E2. The donors had similar baseline levels 

of γH2AX foci and variable increases in foci with E2 treatment (Figures 3.7C and D). 

Among this group, only donor 184 had significantly higher levels of γH2AX foci/nucleus 
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in response to E2 compared to the basal media control (p<0.0001). The distribution of 

damage in donor 184 showed that increased H2AX foci/nucleus was broadly distributed 

across the breast epithelial cells (Figure 3.7E). In these experiments with tissues from 

Average Risk donors, we observed a significant increase in E2-induced DNA damage in 

the breast epithelium in only 1 out of 5 individuals suggesting that this method can provide 

insights into possible risks posed by exposure to estrogens for a subset of women. 
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Discussion 

A wealth of data has demonstrated the critical role of estrogen in breast 

carcinogenesis. Both dose and duration of exposure to ovarian hormones are associated 

with differences in the incidence of breast cancer (Eliassen et al., 2006) (Tamimi et al., 

2016). The “pathogenic effect” of estrogens is often attributed to the mitogenic effects in 

ERα-positive breast cell tumors. While estrogen can have a promotional role in breast 

cancer cells, it is less clear how estrogen acts as an initiator of carcinogenesis. However, 

in normal mammary epithelium, ERα rarely colocalizes with markers of proliferation in 

mice, rats, or human breast (Anderson and Clarke, 2004; Blance et al., 2009; Clarke, 2004; 

Russo et al., 1999). In the normal epithelium, estrogens act indirectly by stimulating 

production of growth factors by the ERα-positive cells. The growth factors are secreted 

and act in a paracrine fashion to induce proliferation in the adjacent ERα-negative cells. 

Studies in genetically engineered mice have shown that epidermal growth factor receptor 

(EGFR) ligands such as amphiregulin (AREG) act as paracrine growth factors to mediate 

the mitogenic effects of estrogens (Ciarloni et al., 2007). Pregnancy is a period of intense 

proliferation needed to expand the ductal epithelium in preparation for lactation and 

estrogen concentrations are approximately ten-fold higher in women during pregnancy 

compared to postmenopausal women. Rather than increasing risk, the hormones during 

pregnancy ultimately confer a long-term reduction of risk by as much as 50% (Albrektsen 

et al., 2005; Chie et al., 2000; MacMahon et al., 1970). Indeed, we find no difference in 

proliferation between BALB/cJ and C57BL/6J mice in response to E2 after 4 days (Figures 

3.1C, 3.3C). This proliferative burst is quickly resolved, and tissues return to baseline 

levels of proliferation by 28 days of E2 (Figures 3.4C). In rats, the ACI strain had a more 
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prolonged proliferative response than in the BN strain (Harvell et al., 2000). Proliferative 

responses in PDEs of normal breast showed varied responses to E2 (Dunphy et al., 2020). 

Therefore, there is not a consistent relationship between the effect of E2 on proliferation 

and its activity initiating breast cancer.  

Recent studies in breast cancer cells have shown that estrogen can have genotoxic 

effects mediated by ERα that are not dependent on replication-induced DNA damage. E2 

was shown to have an initial induction of DNA double-strand breaks within 2 hours of 

stimulation (Ju et al., 2006; Sasanuma et al., 2018). The transcription-associated damage 

was shown to be important for the expression of target genes of ERα but was transient. In 

addition to the acute DNA damage response, E2 was shown to stimulate even higher levels 

of γH2AX foci at 24 h after E2 stimulation (Stork et al., 2016). Using ChIP-sequencing, 

both γH2AX and R loops were shown to be localized to transcribed regions indicating more 

persistent damage. The E2-induced damage at 24 h was suggested to be due to stalling of 

replication forks at sites of transcription resulting in DNA double-strand breaks to allow 

replication to be re-started. However, environmental xenoestrogens were shown to also 

stimulate nuclear γH2AX foci in ERα-positive cell lines (Majhi et al., 2020), but at 

concentrations 1/10th that required for proliferation. These experiments showed the 

presence of E2-induced the DNA damage that was ERα-dependent in the absence of 

proliferative responses.  

In our studies, we demonstrate that E2 stimulates DNA damage which provides a 

mutagenic stimulus for initiating a carcinogenic cascade. However, E2-induced DNA 

damage is not uniform among strains. Both the BALB/cJ mice and ACI rats are more 
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susceptible to mammary tumorigenesis (Blackburn et al., 2007; Lanari et al., 1986; 

Ponnaiya et al., 1997; Shull et al., 2018). These strains also showed greater numbers of 

γH2AX foci in the luminal mammary epithelium in response to E2 (Figures 3.1E and 

3.6B). In BALB/cJ mice, the DNA damage was enriched in the ERα-positive cells (Figure 

3.2C). In contrast, strains that are more resistant to mammary tumors, C57BL/6J mice and 

BN rats, showed little DNA damage following E2 treatment.  

BALB/cJ mice also had higher levels of R loops that are frequently associated with 

regions of nascent transcription. Therefore, the elevated expression of ERα target genes in 

BALB/cJ mice compared to C57BL/6J (Pgr and Areg; Figure 3.1) may reflect the 

underlying mechanisms regulating transcriptional activation of ERα. Suppression of 

transcription-associated DNA damage was shown to diminish expression of ER target 

genes such as TFF1 in breast cancer cell lines. Alternatively, APOBEC3B was shown to 

bind to ERα causing deamination near promoters which resulted in DNA double-strand 

breaks in breast cancer cell lines (Periyasamy et al., 2015). However, only one form of 

APOBEC3 is found in the mouse genome and it does not retain cytidine deaminase activity 

(MacMillan et al., 2013). The mouse APOBEC3 transcripts are polymorphic between 

BALB/c and C57BL/6 mice resulting in decreased translation and lower protein levels in 

BALB/c mice (MacMillan et al., 2013; Okeoma et al., 2009). There was no increase in 

expression of Apobec3 in response to E2 in the mouse tissues from either strain (Figure 

3.5I and J). Therefore, APOBEC3B is unlikely to account for the E2-induced γH2AX 

observed in the mouse mammary epithelium. While co-transcriptional R loops have been 
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implicated as potential genomic threats, it is unclear if they provide a sufficiently sensitive 

biomarker of risk associated with estrogen exposure. 

The E2-induced DNA damage was evident with prolonged treatment with E2. 

Treatment of BALB/cJ mice with E2 for 28 days resulted in 3-fold more nuclear γH2AX 

foci in the mammary epithelium while there was no change from baseline in C57BL/6J 

mice (Figure 3.4E). At this time, proliferation had returned to baseline and transcriptional 

responses in ERα target genes were minimally affected by E2 (Figures 3.5D and E). 

Therefore, neither proliferative responses nor transcriptional activation account for the 

DNA damage observed in BALB/cJ mice though the presence of R loops induced by E2 

continued to be observed (Figure 3.4G). These data suggest that E2 stimulates continual 

DNA damage in BALB/cJ mice which can contribute to their susceptibility to mammary 

tumors.  

 The critical role of DNA damage and repair pathways has become increasingly 

important in determining breast cancer risk and guides the selection of therapies. High 

penetrance risk alleles affecting the functions of BRCA1, BRCA2, PALB2 emphasize the 

importance of canonical homologous recombination in assuring genomic stability. While 

this mechanism is present in all cells, the fact that breast cancer is the most common tumor 

type in carriers of pathogenic mutations suggests that breast tissue is keenly sensitive to 

disruptions in the repair of DNA double-strand breaks through homologous recombination. 

Deficiencies in canonical homologous recombination can lead to a greater reliance on the 

repair of DNA double-strand breaks using the lower fidelity single-strand annealing 

pathway and ALT-end joining pathways. Increased reliance on these lower fidelity 

pathways for the repair of DNA double-strand breaks is associated with an increased risk 
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of breast cancer (Keimling et al., 2012). Utilization of single-strand annealing (SSA) and 

ALT-EJ to repair DNA double-strand breaks is 3-fold greater in BALB/c compared to 

C57BL/6 mice (Böhringer et al., 2013). The differences in DNA repair between these 

strains are genetically linked to the Suprmam1 locus on mouse chromosome 7 (Blackburn 

et al., 2007). Therefore, susceptibility to mammary tumors in BALB/c mice may be due to 

combined effects of low levels of DNA double-strand breaks caused by E2 and their repair 

by error-prone SSA mechanisms. The levels of γH2AX induced by E2 treatment were also 

greater in breast tissues from women with strong familial risk associated with defects in 

DNA double strand break repair (Figure 3.7A) compared to tissues from average risk 

women. These data offer a common theme among rodents and humans where the 

prevalence of γH2AX foci induced by estrogen interacts with the proficiency of DNA 

double-strand repair mechanisms to determine the risk of developing breast cancer. Levels 

of γH2AX have been considered as a biomarker of prognosis in breast cancers. Here we 

have used quantification of nuclear foci to provide a refined quantification of DNA damage 

in normal breast epithelium that can be applied to analyses of breast tumors as well.  

 Our results support a mechanism in which estrogen exposure preferentially causes 

DNA double-strand breaks mediated by ERα. However, the extent of the damage appears 

to be augmented when DNA double-strand break repair pathways are defective. BALB/c 

mice are more sensitive to DNA damage which appears to be associated with genetic 

polymorphisms that affect non-homologous end-joining (Yu et al., 2001) as well as 

increased homology-directed repair through error-prone pathways (Böhringer et al., 2013). 

The results are consistent with data showing that E2 stimulated hyperplastic lesions in 

BALB/c-Scid mice (Itou et al., 2020) that have a defective non-homologous end-joining 
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due to mutations in Prkdc. DNA damage in these mice was blocked by treatment with 

Fulvestrant, and therefore, is dependent on ERα. We also found increased E2-induced 

DNA damage in human breast tissues from women with inherited breast cancer risk alleles 

affecting DNA double-strand break repair. In contrast to average-risk women where ERα-

positive breast cancers have a good prognosis, ERα-positive breast cancers among women 

with pathogenic mutations in BRCA1 or BRCA2 have a 3-fold higher recurrence rate and 

risk of death (Metcalfe et al., 2019; Vocka et al., 2019). It appears that DNA double-strand 

breaks are necessary to facilitate transcription of ERα target genes which, in repair-

proficient individuals, is promptly repaired using high fidelity pathways. However, in 

individuals with impairments of DNA double-strand break repair, the DNA damage in 

ERα-positive cells can reach pathogenic levels and initiate the carcinogenic cascade.  
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Table 3.1.  Sequence of primers 

Target Sequence (5 to 3) 

Esr1 

 

 

Pgr 

 

 

Areg 

 

 

Apobec3 

 

 

Krt18 

F:  AGTGTCTGTGATCTTGTCCAG 

R:  TGTGTGCCTCAAATCCATCA 

 

F:  GACCACATCAGGCTCAATGCT 

R:  GGTGGGCCTTCCTAACGAG 

 

F: GTCACTATCTTTGTCTCTGCCA 

R: CCTCCTTCTTTCTTCTGTTTCTCC 

 

F: TTCACCCGTCTCCCTTCA 

R: GCACTTTCAGTACTTTGTCATGG 

 

F: GCCACTACTTCAAGATCATCGAA 

R: GCTAGTTCTGTCTCATACTTGACT 

 

 

Table 3.2.  Details of patient derived breast explant donors: 

Patient ID Age Type of Surgery Risk Category 

184 27 Reduction mammoplasty Average 

237 18 Reduction mammoplasty Average 

243 45 Reduction mammoplasty Average 

814 23 Reduction mammoplasty Average 

772 44 Reduction mammoplasty Average 

833 42 Prophylactic mastectomy High 

812 45 Prophylactic mastectomy High 
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Figure 3.1. Effect of acute (4 days) 1x E2 treatment on mammary gland in 

ovariectomized BALB/c and C57BL/6 mice.   

(A) Workflow of experimental design and animal treatment. (B) Proliferation marker: Ki-

67 staining of mouse mammary epithelial cells. Scale bar = 50µM (C) Percentage of Ki-

67-stained cells were counted (n=5 for BALB/c control and C57BL/6 control, n=8 for 

BALB/c E2, n= 6 for C57BL/6 E2). (D) Immunostaining of mouse mammary epithelium 

with γH2AX antibody harvested from BALB/c and C57BL/6 mice treated with control 

(n=3) or E2 (n=5). Each image shows a ductal structure with a nucleus stained with DAPI 

(blue) and γH2AX (green). Scale bar = 20µM. (E) Quantification of immunostaining data 

of γH2AX foci inside the nucleus. (F) Immunostaining of mouse mammary epithelium 

with S9.6 antibody for R loops in BALB/c and C57BL/6 mice treated with control (n=3) 

or E2 (n=5). Scale bar = 20µM. (G) Quantification of immunostaining data of S9.6 foci 

inside the nucleus. Gene Expression of (H) Pgr (I) Areg in mammary gland tissues from 

ovariectomized mice treated with control or E2 (0.25mg/kg/d) for 4 days (n=5) or E2 (n=5).  

***p > 0.0001 compared to control with treatments using one-way analysis of variance 

(ANOVA) followed by Tukey's honestly significant difference (HSD) multiple-range test. 

All graphs show mean ± SEM. Data collection in collaboration with Prabin. D. Majhi and 

Amy L. Roberts.  
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Figure 3.2. Localization of DNA damage in mammary gland epithelium of 4 days 

treated BALB/c and C57BL/6 ovariectomized mice.  

(A) Dual immunostaining on mouse mammary epithelium with γH2AX antibody and ER-

alpha harvested from BALB/c and C57BL/6 mice treated with control (n=5) or E2 (n=5). 

Each image shows a ductal structure with a nucleus stained with DAPI (blue), ER-alpha 

(Red), and γH2AX (green). Scale bar = 20µM. (B) Quantification of total ER-alpha 

positivity (%) in the dual immunostaining. (C) Quantification and comparison of γH2AX 

foci inside the nucleus of ER-alpha positive versus ER-alpha negative cells. (D) 

Distribution of the number of γH2AX foci per nucleus in each ERα positive cell from 

BALB/c and C57BL/6 mice treated with control or E2 (0.25mg/kg/d) for 4 days (control 

n=5, E2 treated n=5). (E) Percentage of ERα positive cells with greater than equal to 10 

γH2AX foci per nucleus in the mammary epithelium of BALB/c and C57BL/6 mice treated 

with control or E2 (0.25mg/kg/d) for 4 days (control n=5, E2 treated n=5). ***p > 0.0001 

compared to control with treatments using one-way analysis of variance (ANOVA) 

followed by Tukey's honestly significant difference (HSD) multiple-range test. All graphs 

show mean ± SEM. Data collection in collaboration with Karen A. Dunphy. 
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Figure 3.3. Effect of acute (4 days) 3xE2 treatment on mammary gland in ovary intact 

BALB/c and C57BL/6 mice. 

(A) Workflow of experimental design and animal treatment. (B) Proliferation marker: Ki-

67 staining of mouse mammary epithelial cells in BALB/c and C57BL/6 treated with 

control (n=5) or E2 (n=5). Scale bar = 50µM. (C) Percentage of Ki-67-stained cells were 

counted. (D) Immunostaining of mouse mammary epithelium with γH2AX antibody 

harvested from BALB/c and C57BL/6 mice treated with control (n=5) or E2 (n=5). Each 

image shows a ductal structure with a nucleus stained with DAPI (blue) and γH2AX 

(green). Scale bar = 20µM. (E) Quantification of immunostaining data of γH2AX foci 

inside the nucleus. (F) Immunostaining of mouse mammary epithelium with S9.6 antibody 

for R loops in BALB/c and C57BL/6 mice treated with control (n=5) or E2 (n=5). Scale 

bar = 20µM. (G) Quantification of immunostaining data of S9.6 foci inside the nucleus. 

***p > 0.0001 compared to control with treatments using one-way analysis of variance 

(ANOVA) followed by Tukey's honestly significant difference (HSD) multiple-range test. 

All graphs show mean ± SEM. Data collection in collaboration with Amy L. Roberts.  
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Figure 3.4. Effect of chronic (28 days) 3xE2 treatment on mammary gland in ovary 

intact BALB/c and C57BL/6 mice. 

(A) Workflow of experimental design and animal treatment. (B) Proliferation marker: Ki-

67 staining of mouse mammary epithelial cells in BALB/c and C57BL/6 treated with 

control (n=5) or E2 (n=10). Scale bar = 50µM. (C) Percentage of Ki-67-stained cells were 

counted. (D) Immunostaining of mouse mammary epithelium with γH2AX antibody 

harvested from BALB/c and C57BL/6 mice treated with control (n=5) or E2 (n=10). Each 

image shows a ductal structure with a nucleus stained with DAPI (blue) and γH2AX 

(green). Scale bar = 20µM. (E) Quantification of immunostaining data of relative γH2AX 

foci inside the nucleus. (F) Immunostaining of mouse mammary epithelium with S9.6 

antibody for R loops in BALB/c and C57BL/6 mice treated with control (n=5) or E2 

(n=10). Scale bar = 20µM. (G) Quantification of immunostaining data of relative S9.6 foci 

inside the nucleus. ***p > 0.0001 compared to control with treatments using one-way 

analysis of variance (ANOVA) followed by Tukey's honestly significant difference (HSD) 

multiple-range test. All graphs show mean ± SEM. Data collection in collaboration with 

Mary J. Hagen and Amy L. Roberts. 
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Figure 3.5. Estrogen target genes expression on acute (4 days) and chronic (28 days) 

treatment with 3xE2 on mammary gland in ovary intact BALB/c and C57BL/6 mice. 

Left panel – Gene Expression of (A), Pgr (C) Areg (E) Esr1 (G) Krt18 (I) Apobec3 from 

mammary gland tissues in ovary-intact mice treated with control or E2 (0.75mg/kg/d) for 

4 days (n=5) or E2 (n=5). Right panel - Gene Expression of (B), Pgr (D), and Areg (F) 

Esr1 (H) Krt18 (I) Apobec3 from mammary gland tissue of 28 days treated ovary intact 

mice with control (n=5) or E2 (n=10). Gene expression was normalized with the gene Krt18 

expression – luminal epithelium marker. All graphs show mean ± SEM. Data collection in 

collaboration with Mary J. Hagen. 
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Figure 3.6: E2 induced DNA damage in mammary gland epithelium of 7 days treated 

ACI and BN rat strain.  

(A) Immunostaining of mammary epithelium with γH2AX antibody, harvested from ACI 

and BN rat strain treated with control (n=5) or E2 (n=5). Each image shows a ductal 

structure with nucleus stained with DAPI (blue) and γH2AX (green). Scale bar = 20µM. 

(B) Quantification of immunostaining data of γH2AX foci inside the nucleus. ***p > 

0.0001 compared to control with treatments using one-way analysis of variance (ANOVA) 

followed by Tukey's honestly significant difference (HSD) multiple-range test. All graphs 

show mean ± SEM. Data collection in collaboration with Dr. James D. Shull and Amy L. 

Roberts.  
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Figure 3.7. E2 induced DNA damage in a subset of human breast tissue explants. 

(A) Quantification of γH2AX foci per nucleus in the breast epithelium of average risk 

patients (normal) undergoing reduction mammoplasty and high-risk patients undergoing 

prophylactic mastectomy (n=2 in each group). (B) The frequency distribution graph was 

generated using the number of γH2AX foci/nucleus in the breast epithelial cells (%) from 

E2 treated average risk and high-risk patients. (C) Representative images of γH2AX 

immunostaining in human breast explants. Scale bar = 20µM. (D) Quantification of 

γH2AX foci per nucleus in the breast epithelium of 3 average risk patients treated with 

basal media or E2 (10nM). (E) The frequency distribution graph was generated using the 

number of γH2AX foci/nucleus in the breast epithelial cells (%) from E2 treated average 

risk patients. ****p<0.0001 compared control with treatments using one-way analysis of 

variance (ANOVA) followed by Tukey's honestly significant difference (HSD) multiple-

range test. All graphs show mean ± SEM. 
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CHAPTER -4 

 

Estrogen induces DNA damage and R-loop stabilization mediated by  

ROS-dependent DNA G-quadruplex (G4) structures.  

 

 

 

Introduction 

 

 

DNA can adopt multiple alternative conformations which differ from canonical B-

DNA structure. Non-B DNA structures, such as co-transcriptional DNA: RNA hybrids also 

known as R-loops, are three-stranded nucleic acid structures.  R-loops are formed when the 

nascent RNA hybridizes with the template DNA strand causing transient displacement of 

the non-template strand. R-loops are a normal consequence of transcription, however 

unscheduled or persistent R loops may form due to a lack of resolvases. The persistence of 

R loops can induce DNA damage responses that result in DNA double-strand breaks 

(Aguilera and García-Muse, 2012a; Skourti-Stathaki and Proudfoot, 2014; Sollier and 

Cimprich, 2015). Reactive oxygen species (ROS) have been shown to also play a role in 

R-loop formation at actively transcribed regions (Teng et al., 2018).  Recently, the hormone 

estrogens (E2, 17β-estradiol) and endocrine-disrupting chemicals (Benzophenone-3, BP-

3) were shown to induce DNA damage in breast epithelial cells by promoting R loops 

mediated by estrogen receptor -mediated (ER) (Majhi et al., 2020; Stork et al., 2016). BP-

3 induces DNA damage independent of proliferation (Majhi and Sharma et al., 2020). In 

addition, E2 also induces ER-dependent and -independent ROS causing oxidative stress 
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and DNA damage to promote breast cancer (Felty et al., 2005; Mobley and Brueggemeier, 

2004; Okoh et al., 2011; Roy et al., 2007; Tian et al., 2016).  

Similarly, another non-canonical DNA secondary structure known as G 

quadruplexes (G4s) is formed at single-stranded guanine-rich DNA sequences. DNA G4s 

arise from Hoogsteen hydrogen bonding of four guanine residues arranged within a planar 

G-quartet. Self-stacking of two or more G-quartets generates a G4 structure that is 

stabilized by monovalent cations such as K+ and Na+ (Kwok and Merrick, 2017). DNA G4s 

play a crucial role in several biological functions such as transcription, replication, and 

telomere maintenance but also promotes genomic instability (Rhodes and Lipps, 2015; T. 

Tian et al., 2018). With the advancement of Next Generation Sequencing (NGS) 

technologies, G4s have been mapped to critical regions such as promoters, replication 

origins, and telomeres (Hänsel-Hertsch et al., 2016; Langley et al., 2016; Maizels, 2006; 

Zahler et al., 1991).  

Previous literature has shown the cooperative relationship between G4s and R loops 

to form a stable structure called G-loops. G-loops are the co-existence of G4 and R-loop, 

where R loops are formed on the template DNA and G4 on the displaced non-template 

DNA strand (Duquette et al., 2004; Magis et al., 2018; Tan et al., 2020; Tan and Lan, 2020). 

For instance, G4 ligands such as Pyridostatin (PDS) were shown to stabilize G4 structures 

in cancer cells and increased levels of G4s and R loops were colocalized (G-loops) as well 

as DNA damage (Magis et. al. 2018). Another study showed the co-existence of G4, and 

R-loop (G-loop) mediated by ROS at transcriptionally active sites and that, if such stable 

structures are unresolved, these delay the repair of DNA damage (Tan et al., 2020).  
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The formation of transient R-loops is a general indicator of transcription activation 

in response to E2. Therefore, we investigated the role of ER-mediated secondary DNA 

structures and their role in DNA damage in breast cells. Here, we show that treatment with 

E2 and BP-3 promotes DNA G4 formation in the ER+ breast cancer cells.  Approximately, 

half of the G4 foci induced by E2 and BP-3 treatment in the cells colocalize with R-loops 

indicating G-loop formation, but these structures were blocked by treatment with ROS 

scavenger. These data suggest a mechanism in which E2, and BP-3 bind to ER to induce 

ROS-mediated G4 formation promoting stabilization of G-loops and leading to increased 

DNA damage.  
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Materials and Methods 

 

Cell culture and treatments:  

T47D (ATCC #HTB-1330), and MCF-7(ATCC #HTB 22) cells were passaged in 

growth media containing phenol-red free (PRF) DMEM-F12 (Sigma #D6434) or MEM 1x 

(Gibco #51200-038) with 10% heat inactivated FBS (Omega Scientific # FB-02) and 10 

μg/ml insulin (Sigma #9278), 2 mM L-glutamine (Hyclone # SH30034.01), gentamycin 15 

μg/ml (Gibco #15750-060) and 1X antibiotics/antimycotics (AB/AM, Gibco #15240-062) 

and incubated at 37oC with 5% CO2. For experiments, cells were grown in clearing media 

with charcoal-stripped serum (CSS) (MEM 1x with 10% charcoal-dextran treated FBS 

(Omega Scientific #FB-04), and 2 mM L-glutamine) for 48 h before being plated for 

experiments. T47D and MCF7 cells were grown in clearing media for 48 h and plated on 

20 mm glass uncoated coverslips in 12 well plates with a density of 2 x 105 cells/well. Cells 

were treated with 10nM or 100nM E2, 5 µM BP3, 10uM PDS (G4 stabilizer) with or 

without 10 mM N-acetyl cysteine (NAC) for 16-18 hrs. 

 

Immunostaining 

 Cells were fixed in 4% PFA for 20 mins at RT and quenched with 0.1 M Glycine 

for 15 mins. Cells were permeabilized with 0.5% Triton-X 100. Cells were washed with 

two times with PBS. Cells were incubated with 20ug of RNase A at 37C for 30 mins to 

eliminate RNA G4s and then washed 3 times with PBS. Cells were blocked in 10% goat 

serum with 0.1% Tween20 for 1hr at room temperature (RT), incubated overnight with 

anti-γH2AX antibody (Cell Signaling # 9718S), 1H6 (Millipore) or BG4 (Millipore) at 4°C 
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followed by 1 hour with anti-rabbit Alexa Fluor Plus-488-conjugated secondary antibody 

(ThermoFisher) or anti-mouse Alexa Fluor Plus-488-conjugated (ThermoFisher) at RT. 

Cells were mounted with Vectashield mounting medium containing DAPI (Vector 

Laboratories # H-1200). For BG4, Cells were incubated with 1:800 of DYKDDDDK Tag 

antibody (Cell Signaling ref #2368) in 5% goat serum for 1 hour at RT before the secondary 

incubation. Slides were imaged at 60X (immersion oil) with Nikon A1 Spectral Confocal 

microscope. Analysis of γH2AX, BG4 and 1H6 foci per nucleus was calculated using 

Nikon analysis software, where DAPI was used as a mask for the nucleus.  

 

Co-staining of cells with BG4 and S9.6 antibodies.  

Cell were fixed with ice-cold methanol at room temperature (RT) for 10 minutes. 

After a brief wash with PBS, cells were permeabilized with 0.5% Triton™ X-100 in PBS 

at RT for 15 minutes. Cells were blocked with 8% BSA/PBS and then incubated with 2 μg 

per slide each of BG4 and S9.6 antibodies diluted in 2% BSA/PBS for 2 hours. Cells were 

then incubated with 1:800 of DYKDDDDK Tag antibody (Cell Signaling ref #2368) in 2% 

BSA/PBS for 1 hour. Next, cells were incubated at RT with 1:1000 Alexa Fluor 594 goat 

Anti-Mouse IgG and Alexa Fluor 488 goat anti-rabbit IgG in 2% BSA/PBS for 1 hour. 

After each step, cells were washed with PBS. Cells were mounted with Vectashield 

mounting medium containing DAPI (Vector Laboratories # H-1200). Slides were imaged 

at 60X (immersion oil) with Nikon A1 Spectral Confocal microscope. Analysis of BG4 

and S9.6 foci per nucleus was calculated using Nikon analysis software, where DAPI was 

used as a mask for the nucleus. 
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Statistical Analysis 

Unless specified, data were analyzed by one-way or two-way analysis of variance 

(ANOVA) followed by Tukey's honestly significant difference (HSD) multiple-range test 

using GraphPad Prism 9 statistical analysis software. Results are presented as mean ± 

standard error of the mean (S.E.M.). Data were considered statistically significant at p 

<0.05. 
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Results 

 

E2 and BP-3 induce G4 formation.  

Activation of ER by E2 stimulates both transcription of target genes within minutes 

and proliferation becomes evident after about 24 h when foci of H2AX become prevalent 

indicating the presence of DNA double strand breaks. BP-3 was used in these studies as it 

also induces H2AX foci but without significant transcription of target genes or 

proliferation. Therefore, the effects of transcription and proliferation can be discriminated 

by comparing responses to E2 and BP-3. The concentration of E2 (10 and 100nM) was 

selected to approximate the range found during pregnancy in women. The median urinary 

concentration of BP-3 in pregnant women is ~0.5M and greater than 30M in the 95th 

percentile. Therefore, 5M BP-3 was used to reflect levels of exposure that are common 

in US women.  

We first sought to characterize the G4 formation in response to E2 and BP-3 in ER-

positive breast epithelial cancer cell lines – T47D and MCF7 cells. Cells were hormone 

starved for 48 hours and then treated with the compounds for 16-18 hrs. After treatment, 

we performed immunofluorescence with G4 specific antibody – BG4 in the breast cancer 

cells and measured the amount of G4 foci present inside the nucleus (Figure 4.1A). We 

observed that basal levels of G4 foci are present in the untreated (control) T47D and MCF7 

cells. Cells treated with E2 causes a significant increase in the number of G4 foci when 

compared with control treatment in both cell lines with no differences between the 10 and 

100nM concentrations. Treatment with 5uM BP-3 showed similar induction of G4 foci in 



 

102 

 

both MCF7 and T47D cells (Figure 4.1 A, B, and C). Taken together, these results 

demonstrate that E2 and BP-3 induce G4 formation in the ER+ breast cancer cells.  

 

E2 and BP-3 induce colocalization of G4s and R loops.  

Recently, we have shown that E2 and BP3 cause R-loop formation in T47D and 

MCF7 cells (Majhi et al., 2020). G4 formation has been shown to co-exist with R-loop 

structures, forming a stable structure called G-loops (Magis et al., 2018; Tan et al., 2020). 

Next, we wanted to investigate whether G4, and R loop structures induced by E2, and BP-

3 are formed in a similar vicinity. Therefore, we colocalized BG4 (G4 antibody) and S9.6 

(R-loop antibody) immunofluorescence and measured the % of overlapping BG4 and S9.6 

signals in both T47D and MCF7 cells (Figure 4.2 A).  

Untreated T47D cells showed low levels of colocalization (median=20%) of G4 

and R loop foci. In MCF7 cells, there was very little colocalization (median=0%) (Figure 

4.2 B and C). However, cells treated with E2 (10nM and 100nM) showed a significant 

increase in colocalization of G4 and R-loop signals as seen by yellow foci in the merged 

images of green and red foci (Figure 4.2 A, lower panel). Treatment with 10nM E2 

showed 40% colocalization and 50 – 59% colocalization was observed in 100nM E2 

treatment of T47D and MCF7 cells (Figure 4.2 B and C). Treatment with 5uM BP-3 

treatment resulted in 40% and 57% colocalization of G4 and R-loop signals in T47D and 

MCF7 cells (Figure 4.2 B and C).  Almost half of the G4 foci induced by E2 and BP3 are 

overlapping with the R-loop signals, which suggests that E2 and BP-3 promote G-loop 

formation.  
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E2 and BP-3 induced G4s, and DNA damage is ROS dependent.  

Previous studies have shown that ROS plays a role in the induction of G4 formation 

in cancer cells (Tan et al., 2020; Tan and Lan, 2020) and that E2 causes induction of ROS 

via estrogen receptor-dependent or independent mechanism (Maleki et al., 2015; Okoh et 

al., 2011; Roy et al., 2007; Tian et al., 2016). We hypothesized that in ER+ breast cancer 

cells, E2 and BP-3 could induce G4 formation mediated by the ROS mechanism. To 

determine the ROS-mediated G4 formation, we treated the cells with or without ROS 

inhibitor/scavenger - N-acetyl cysteine (NAC) along with 10nM E2, 5uM BP-3. The G4 

ligand Pyridostatin (PDS) was included as a positive control to directly stabilize G4 

structures. For these experiments, we performed immunostaining with another G4 specific 

antibody – 1H6 in an effort to confirm the results obtained with BG4 and measured the 

number of 1H6 foci present inside the nucleus (Figure 4.3A).  

In control cells, treatment with the ROS scavenger (NAC) did not significantly 

affect basal levels of nuclear G4 foci. This indicates that a subset of G4s is present and are 

independent of ROS (Figure 4.3A and B).  Cells treated with 10nM E2, 5uM BP-3, and 

10uM PDS showed a significant increase in the number of G4 foci inside the nucleus. 

However, the presence of NAC blocked the formation of G4 foci in E2 and BP-3 treated 

cells resulting in levels similar to that in control cells (Figure 4.3A and B). Cells treated 

with 10uM PDS (G4 stabilizer) showed no change in the number of G4 foci with or without 

the presence of ROS scavenger, which is expected to observe because PDS directly 

stabilizes G4 structures.  

 We also examined the DNA damage response by immunostaining with DNA 

double-strand break marker - γΗ2AX.  Previously, we have shown that E2 and BP3 cause 
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induction of DNA damage (Majhi and Sharma et. al., 2020). Here, we observed similar 

findings that E2 and BP-3 treatments showed significant increases in γΗ2AX foci when 

compared with the control-treated T47D and MCF7 cells (Figure 4.4A, B and C). As 

expected, treatment with G4 stabilizer – PDS causes significant induction of DNA damage 

in both cell lines. Interestingly, cells treated with E2 and BP-3 in the presence of NAC 

showed a significant reduction of γΗ2AX foci which suggests that DNA damage induced 

by E2 and BP3 is dependent on ROS (Figure 4.4A, B and C). On the other hand, PDS 

treatment in the presence or absence of NAC showed no significant changes in the number 

of γΗ2AX foci. Overall, our results demonstrate that E2 and BP3 induce ROS-mediated 

G4 formation and DNA damage. 
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Discussion 

 

Since the discovery of canonical right-handed DNA double-helical structure (B-

DNA) in 1953, many non-B DNA conformations have been reported to form at repetitive 

sequences (Ghosh and Bansal, 2003; Sharma, 2011). The non-canonical secondary 

structures, such as DNA: RNA hybrids (R-loops) and G-quadruplexes (G4), act as a 

double-edged sword that is involved in both biological and pathological functions such as 

transcriptional regulation, telomere maintenance, and genomic instability. Physiological 

R-loops and G4s are programmed processes and form transiently for their biological 

functions (Ohle et al., 2016; Pavri, 2017; Qiao et al., 2017). On the other side, stabilized or 

pathological R-loops and G4s that occur in an unscheduled manner can cause genomic 

instability. These non-canonical secondary structures forming during gene transcription 

and DNA replication can result in DNA double-strand breaks (Aguilera and García-Muse, 

2012b; García-Muse and Aguilera, 2019; Rhodes and Lipps, 2015). The DNA damage and 

genomic instability arises from these structures due to transcriptional pausing, replication 

stress or transcription-replication conflicts. Multiple RNA processing factors and helicases 

have been shown to be involved in the resolution of R-loops and G4 structures. Failure to 

resolve R-loops and G4s can allow these structures to accumulate to pathological levels 

and cause genomic instability. Disruption of genes involved in resolution of R-loops and 

G4s have been linked to human diseases such as neurological disorders and cancers (Groh 

and Gromak, 2014; Maizels, 2015; Richard and Manley, 2017).  In the context of breast 

cancer, the tumor suppressor proteins BRCA1 and BRCA2 have been shown to resolve 

pathological R loop structures as well as participating in homology-directed repair of DNA 
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double strand breaks (Chiang et al., 2019; D’Alessandro et al., 2018; Hatchi et al., 2015; 

Shivji et al., 2018).  

 Multiple studies have shown that R-loops are more prevalent in genomic regions 

that are G-rich. During transcription, the non-template DNA strand is displaced allowing 

G4 structures to form in the single-stranded DNA strand (Ginno et al., 2013, 2012; Reaban 

et al., 1994; Skourti-Stathaki and Proudfoot, 2014). Recent studies have shown the co-

existence of the R-loop and G4 to form a unique stable structure called as “G-loop”, where 

those G-rich sequences on the non-template strand fold into a G4 structure and R-loops on 

the template DNA strand (Lee et al., 2020). Using electron microscopy, (Duquette et al., 

2004), showed the first evidence of the existence of G-loop structure in vitro and in 

Escherichia coli. Another study used G4 ligands, such as Pyridostatin (PDS), to stabilize 

G4 structures in human cancer cells and observed that G4 ligands induce DNA damage by 

R-loops stabilization (Magis et al., 2018). In these studies, 50 - 60% of stabilized G4s 

colocalized with R-loops. Importantly, R-loops allow G4 formation and those G4s 

reversibly stabilize the R-loop structure as a feedback loop indicating the interrelationship 

of G4 and R-loop (Tan et al., 2020). The kinetics of R-loop and G4 formation was found 

to be similar in the cells at different timepoints and failure to resolve these structures 

promotes DNA damage and delays the repair process.   

Here we show that E2 and BP-3 induce G4 formation in the estrogen receptor-

positive MCF7 and T47D breast cancer cells using two G4 specific antibodies – BG4 and 

1H6 (Figure 4.1 and Figure 4.3). Almost 50% of the G4 foci induced by E2 and BP3 were 

observed in a similar vicinity with the R-loops as performed by colocalization of S9.6 and 

BG4 (Figure 4.2). This suggests that E2 and BP-3 induce R-loops that favor “G-loop” 



 

107 

 

formation in breast cancer cells. The extent of G4 and R loop colocalization by E2 and BP-

3 treatment was found to be similar to the G4 ligands used in Magis et. al., 2018. Therefore, 

ER ligands have the potential to stimulate ongoing mutagenesis in ER+ breast cancer cells. 

 Previous literature has demonstrated the mechanistic connection between Reactive 

Oxygen Species (ROS) and G4 formation (Fleming et al., 2017; Fleming and Burrows, 

2019; Roychoudhury et al., 2020). Recently, it was shown that ROS induces G4 formation 

at actively transcribed regions (Tan et al., 2020). Besides, it is already known E2 induces 

ROS, which causes oxidative stress and DNA damage (Felty et al., 2005; Mobley and 

Brueggemeier, 2004; Okoh et al., 2011; Roy et al., 2007; Tian et al., 2016). In the present 

study, our findings demonstrate that the levels of E2 and BP-3 induced G4 foci in the cells 

were significantly reduced with the presence of ROS scavenger (Figure 4.3). Similarly, 

we observed that the DNA damage marker – γH2AX foci were also significantly reduced 

in E2 and BP-3 treated cells when ROS was inhibited (Figure 4.4). This indicates that ROS 

plays an important role to induce G4 formation and DNA damage. We proposed a 

mechanistic model of E2, and BP-3 induced DNA damage (Figure 4.5). According to the 

model, E2 and BP-3 bind with the estrogen receptor to trigger R-loop formation, and the 

R-loops are stabilized by G4 formation mediated by the ROS mechanism. This promotes 

G-loop formation and is associated with DNA damage. Therefore, we have uncovered a 

G4 and R-loop relationship as an intermediate of DNA damage mechanism by estrogens. 
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Figure 4.1. Evaluation of G4 formation in cells treated with 17β-Estradiol (E2), 

Benzophenone-3 (BP3).   

(A) Immunofluorescence of BG4 foci in T47D and MCF7 cells treated with 10 or 100nM 

E2 and 5μM BP3. (B and C) Quantification of nuclear BG4 foci in T47D and MCF-7 cells 

treated with control, E2 and BP-3.   ****p < 0.0001 compared control with treatments 

using one-way analysis of variance (ANOVA) followed by Tukey's honestly significant 

difference (HSD) multiple-range test. Scale bar = 10 µM. All graphs show box plots with 

interquartile range and central line as median. 
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Figure 4.2 Evaluation of G4 and R loop colocalization in cells treated with E2 and BP-

3. (A) Co-staining of BG4 and S9.6 foci in T47D and MCF7 cells treated with 10 or 100nM 

E2 and 5μM BP3. (Upper panel) - BG4 and S9.6 colocalization confocal images with DAPI 

(blue) masked as a nucleus. (Lower panel) – Only BG4 and S9.6 channel to show clear 

yellow foci indicating G-loops. (B and C) Quantification of nuclear BG4 foci in T47D and 

MCF-7 cells treated with control, E2 and BP-3.  **p=0.003 ***p=0.0003 ****p < 0.0001 

compared control with treatments using one-way analysis of variance (ANOVA) followed 

by Tukey's honestly significant difference (HSD) multiple-range test. Scale bar = 10 µM.  

All graphs show box plots with interquartile range and central line as median. 
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Figure 4.3 Evaluation of G4 formation in cells treated with E2, BP-3 and PDS with or 

without the presence of ROS scavenger (NAC).  

(A) Immunofluorescence of 1H6 foci in T47D cells treated with 10nM E2, 5μM BP3, 

10uM PDS, and 10mM NAC. (B) Quantification of nuclear 1H6 foci in T47D treated with 

control, E2, BP-3, PDS and NAC.  **p < 0.01   ****p < 0.0001 compared control with 

treatments using two-way analysis of variance (ANOVA) followed by Tukey's honestly 

significant difference (HSD) multiple-range test. Scale bar = 10 µM. All graphs show box 

plots with interquartile range and central line as median. 
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Figure 4.4. Evaluation of γH2AX formation in cells treated with E2, BP-3 and PDS 

with or without the presence of ROS scavenger (NAC).  

(A) Immunofluorescence of γH2AX foci in MCF7 cells treated with 10nM E2, 5μM BP3, 

10uM PDS, and 10mM NAC. (B and C) Quantification of nuclear γH2AX foci in T47D 

and MCF7 cells treated with control, E2, BP-3, PDS and NAC.  **p < 0.01   ****p < 

0.0001 compared control with treatments using two-way analysis of variance (ANOVA) 

followed by Tukey's honestly significant difference (HSD) multiple-range test. Scale bar 

= 10 µM. All graphs show box plots with interquartile range and central line as median. 
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Figure 4.5. Mechanism of DNA damage induction by E2 and BP-3.  

E2 and BP-3 binds with the receptor and simulates G4 and R-loops formation 

simultaneously to form G-loops which is associated with DNA damage. E2 and BP-3 

induced G4 formation and DNA damage is mediated by ROS. PDS – a G4 ligand directly 

stabilizes G4 structures to cause DNA damage.  
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