
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

October 2021

COST-EFFICIENT RESOURCE PROVISIONING FOR CLOUD-COST-EFFICIENT RESOURCE PROVISIONING FOR CLOUD-

ENABLED SCHEDULERS ENABLED SCHEDULERS

Lurdh Pradeep Reddy Ambati
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Computational Engineering Commons, and the Computer Engineering Commons

Recommended Citation Recommended Citation
Ambati, Lurdh Pradeep Reddy, "COST-EFFICIENT RESOURCE PROVISIONING FOR CLOUD-ENABLED
SCHEDULERS" (2021). Doctoral Dissertations. 2258.
https://doi.org/10.7275/24161492 https://scholarworks.umass.edu/dissertations_2/2258

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2258&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/24161492
https://scholarworks.umass.edu/dissertations_2/2258?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

COST-EFFICIENT RESOURCE PROVISIONING FOR
CLOUD-ENABLED SCHEDULERS

A Dissertation Presented

by

LURDH PRADEEP REDDY AMBATI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2021

Electrical and Computer Enginering

© Copyright by Lurdh Pradeep Reddy Ambati 2021

All Rights Reserved

COST-EFFICIENT RESOURCE PROVISIONING FOR
CLOUD-ENABLED SCHEDULERS

A Dissertation Presented

by

LURDH PRADEEP REDDY AMBATI

Approved as to style and content by:

David E Irwin, Chair

Prashant Shenoy, Member

Lixin Gao, Member

Tongping Liu, Member

Christopher V. Hollot, Department Head
Electrical and Computer Enginering

DEDICATION

To my parents and my friends.

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Prof. David Irwin, for

his excellent advice and constant support, and for being an endless source of mo-

tivation throughout my doctorate studies. His patience, invaluable feedback, and

perspectives on research forged every element of this dissertation. David taught me

so much about the various aspects of research: finding interesting problems, keeping

the bigger picture in mind, avoiding premature optimizations, and the importance of

documentation. None of this would have been possible without you.

Next, I would like to thank my research mentors and colleagues. Prashant Shenoy

has provided continuous guidance and close mentorship over the years. I am im-

mensely grateful for his support. My colleagues Noman Bashir, Srini Iyengar, Akansa

Singh, Supreeth Shastri, Dong Chen, and Zeal Shah took the challenging process of

spending over four years working long-winded hours and made it truly fun. I’d also

like to thank my dissertation committee members, Prof. Lixin Gao, and Prof. Tong

Ping, for their interest in my work and their comments and feedback.

My time in Amherst has been made better by my close friends. My sincere thanks

to all my friends: Sourabh Kulkarni, Subrahmanyam Nukkala, Sachin Bhat, Parth

Gandhi, and Sukhneet Kaur, for giving me company through peace, joy, and panic.

Special thanks to my gaming friends: Faux, Auto, Binky, Crelder, and Ant for the

laughs and memorable moments.

Finally, I would like to thank my parents, my sister, and my brother-in-law, for

their unwavering support and understanding. I could never have finished my Ph.D.

without your support and encouragement.

v

ABSTRACT

COST-EFFICIENT RESOURCE PROVISIONING FOR
CLOUD-ENABLED SCHEDULERS

SEPTEMBER 2021

LURDH PRADEEP REDDY AMBATI

B.E., CHAITANYA BHARATHI INSTITUTE OF TECHNOLOGY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David E Irwin

Since the last decade, public cloud platforms are rapidly becoming de-facto com-

puting platform for our society. To support the wide range of users and their diverse

applications, public cloud platforms started to offer the same VMs under many pur-

chasing options that differ across their cost, performance, availability, and time com-

mitments. Popular purchasing options include on-demand, reserved, and transient

VM types. Reserved VMs require long time commitments, whereas users can acquire

and release the on-demand (and transient) VMs at any time. While transient VMs

cost significantly less than on-demand VMs, platforms may revoke them at any time.

In general, the stronger the commitment, i.e., longer and less flexible, the lower the

price. However, longer and less flexible time commitments can increase cloud costs

for users if future workloads cannot utilize the VMs they committed to buying.

Interestingly, this wide range of purchasing options provide opportunities for cost

savings. However, large cloud customers often find it challenging to choose the right

vi

mix of purchasing options to minimize their long-term costs while retaining the ability

to adjust their capacity up and down in response to workload variations. Thus,

optimizing the cloud costs requires users to select a mix of VM purchasing options

based on their short- and long-term expectation of workload utilization. Notably,

hybrid clouds combine multiple VM purchasing options or private clusters with public

cloud VMs to optimize the cloud costs based on their workload expectations.

In this thesis, we address the challenge of choosing a mix of different VM purchas-

ing options in the context of large cloud customers and thereby optimizing their cloud

costs. To this end, we make the following contributions: (i) design and implement a

container orchestration platform (using Kubernetes) to optimize the cost of execut-

ing mixed interactive and batch workloads on cloud platforms using on-demand and

transient VMs, (ii) develop simple analytical models for different straggler mitigation

techniques to better understand the cost of synchronization in distributed machine

learning workloads and compare their cost and performance on on-demand and tran-

sient VMs, (iii) design multiple policies to optimize long-term cloud costs by selecting

a mix of VM purchasing options based on short- and long-term expectations of work-

load utilization (with no job waiting), (iv) introduce the concept of waiting policy

for cloud-enabled schedulers, and show that provisioning long-term resources (e.g.,

reserved VMs) to optimize the cloud costs is dependent on it, and (v) design and

implement speculative execution and ML-based waiting time predictions (for waiting

policies) to show that optimizing job waiting in the cloud is possible without accurate

job runtime predictions.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Motivation . 2
1.2 Summary of Contributions . 3
1.3 Dissertation Outline . 8

2. BACKGROUND . 10

2.1 Job Schedulers . 10
2.2 Cloud Purchasing Options . 11
2.3 Workload Characteristics . 16
2.4 Container Orchestration Platforms (COPs) . 16

3. EXECUTING MIXED INTERACTIVE AND BATCH
WORKLOADS ON TRANSIENT VMS . 19

3.1 TR-Kubernetes Overview . 19
3.2 TR-Kubernetes Design . 20
3.3 Provisioning Algorithm . 22
3.4 Implementation . 27
3.5 Evaluation . 28
3.6 Related Works . 34
3.7 Conclusion and Status . 35

viii

4. UNDERSTANDING SYNCHRONIZATION COSTS FOR
DISTRIBUTED ML ON TRANSIENT VMS 36

4.1 Motivation . 36
4.2 Model Overview . 38
4.3 Comparing Synchronization Models . 41
4.4 Conclusion and Status . 56

5. OPTIMIZING LONG-TERM BATCH WORKLOADS ON
MIXED VM PURCHASING OPTIONS . 57

5.1 Policies Overview . 57
5.2 Optimistic Optimal Offline Approach . 58
5.3 Practical Online Approach . 63
5.4 Implementation . 65
5.5 Evaluation . 66
5.6 Related Works . 71
5.7 Conclusion and Status . 72

6. OPTIMALLY PROVISIONING FIXED RESOURCES FOR
CLOUD-ENABLED SCHEDULERS . 73

6.1 Motivation . 73
6.2 Introduce Waiting Policy . 74
6.3 Background: Marginal Analysis . 75
6.4 Non-selective Waiting Policies . 77
6.5 Selective Waiting Policies . 84
6.6 Implementation . 96
6.7 Evaluation . 97
6.8 Related Works . 105
6.9 Conclusion and Status . 106

7. DATA-DRIVEN JOB SCHEDULING FOR CLOUD-ENABLED
SCHEDULERS . 108

7.1 Motivation . 108
7.2 Background: Context and Baselines . 111
7.3 Design . 113
7.4 Implementation . 121
7.5 Evaluation . 125
7.6 Related Works . 131
7.7 Conclusion and Status . 132

8. CONCLUSION . 133

ix

8.1 Summary of Contributions . 133
8.2 Directions for Future Research . 135

BIBLIOGRAPHY . 137

x

LIST OF TABLES

Table Page

2.1 Overview of the primary VM purchasing options across the major
cloud providers . 12

4.1 Name and description of our model’s parameters, including their
units and range. 39

4.2 Representative model parameter values for baseline job. 40

7.1 Cluster state features used for training our ML-based waiting time
prediction models . 119

xi

LIST OF FIGURES

Figure Page

3.1 A depiction of TR-Kubernetes architecture. 21

3.2 Comparison of average transient VM cost and availability in
us-west-1c from 2017/9-12. 22

3.3 Heatmap showing the correlation in availability periods of spot VMs
in us-west-1c from September to November 2017. The figure
shows that availability periods are largely independent across spot
VMs. 23

3.4 Distributed web server throughput as a function of revocation
frequency for different working set sizes. 29

3.5 Latency distribution of a distributed web server for different
revocation rates. 30

3.6 Failed server requests (HTTP 200) as a function of revocation rate
with and without the revocation daemon. 31

3.7 The cost relative to on-demand (a) and excess resources relative to
the target capacity (b) for a target capacity of 5000 ECUs as
availability varies. 32

3.8 Unpredictable prices affect TR-Kubernetes’s accuracy at satisfying its
availability target. 33

4.1 Parallel job using BSP on on-demand servers. 42

4.2 Speedup and cost of executing our representative parallel job using
BSP on on-demand cloud servers as the degree of parallelism
increases. 43

4.3 Parallel job using BSP on transient servers. 44

xii

4.4 Speedup and cost of executing our representative parallel job using
BSP on transient cloud servers as the degree of parallelism
increases. 44

4.5 Parallel job using BSP on transient servers with backup replica tasks
where k = 4 and r = 1. 46

4.6 The speedup (left) and cost (right) of executing our representative
parallel job with different numbers of backup replica tasks using
BSP on transient cloud servers as the degree of parallelism
increases. 47

4.7 Parallel job using bounded staleness on transient servers. 48

4.8 The speedup (top) and cost (bottom) of executing our representative
parallel job with different staleness parameters d under bounded
staleness on transient cloud servers as the degree of parallelism
increases. 49

4.9 Parallel job using partial barriers on transient servers. 51

4.10 The speedup (top) and cost (bottom) of executing our representative
parallel job using partial barriers for different numbers of dropped
slow tasks N as the degree of parallelism increases. 52

4.11 Parallel job using FSP on transient servers. 53

4.12 The speedup (left) and cost (right) of executing our representative
parallel job using flexible synchronous processing (FSP) for
different numbers of dropped slow tasks N as the degree of
parallelism increases. 55

4.13 The speedup/cost ratio for executing our baseline parallel job for
different straggler mitigation techniques on on-demand and
transient servers. 55

4.14 The speedup/cost ratio for executing our baseline parallel job for a
hybrid straggler mitigation technique that combines FSP with
backup tasks. 56

5.1 Illustration of the utilization of each unit of resource demand for
normalizing the reserved option cost. 61

xiii

5.2 Simple flow chart for selecting the VM purchasing option online when
only reserved, transient, and on-demand are available, as with
Microsoft. 64

5.3 (a) The hourly core demand over 2018. The average over the year is
4380 cores. (b) Job runtime for different length jobs each year in
our batch trace. 67

5.4 Cost for executing our batch trace using all purchasing options from
the different cloud providers in the optimistic offline case as a
percentage of using on-demand only. 68

5.5 Mix of VM purchasing options used over 2016-2018 in the offline case
(with the transient option). 68

5.6 Cost for executing our batch trace using all purchasing options from
the different cloud providers in the online case as a percentage of
using on-demand only (a) and optimistic offline cost (b). 69

5.7 Mix of VM purchasing options used over 2016-2018 in the offline case
(with the transient option). 69

5.8 Mix of VM purchasing options used over 2016-2018 in the (a) offline
case and (b) online case without the transient option. 70

6.1 Illustration of utilization for each unit of stacked resource demand
and the break even point at 40% utilization. 76

6.2 Normalized price P (left y-axis) and mean wait time w (right y-axis)
as a function of fixed resources s under AJW. 79

6.3 Normalized price P (left y-axis) and mean utilization of the sth
resource ρs (right y-axis) as a function of fixed resources s under
NJW. The minimum price occurs when the fixed resources’
discount factor d=ρs. 81

6.4 Normalized price P (a) and Mean waiting time w (b) as a function of
fixed resources s under AJW-T for different threshold waiting
times b. 82

6.5 Mean waiting time as a function of fixed resources under SWW and
AJW-T where b=900s=15m. 85

xiv

6.6 Normalized price P (a) and Mean waiting time w (b) as a function of
s under SWW for different over-prediction errors fover and
NJW. 87

6.7 Mean waiting time as a function of fixed resources s under SWW for
different under prediction rates funder. 88

6.8 Normalized price P and mean wait time w as a function of the short
job threshold t (in seconds) for s=101 under an LJW waiting
policy. 90

6.9 Normalized price (a) and mean job waiting time (b) as a function of
the fraction of jobs with incorrect over- and under-predictions (%)
of job running time for s=101 and t=180 under an LJW waiting
policy. 92

6.10 Normalized price P and mean wait time w as a function of fixed
resources s for our compound policy (b=900 and t=180) and LJW
(t=180). 93

6.11 Opportunity cost as a function of fixed resources s under AJW,
AJW-T, SWW, LJW, and compound policy when using (a) FCFS
scheduling and (b) SJF scheduling . 95

6.12 Histograms of job inter-arrival times (a) and service times (b) for our
real production batch workload along with an exponential
distribution using the same mean, as well as the mix of long and
short jobs (c). 98

6.13 Normalized price (a), mean job waiting time (b), and opportunity
cost (c) as a function of m5.16xlarge VMs when executing our
real production batch workload under AJW, AJW-T, SWW,
LJW, and our compound policy with FCFS scheduling policy. 99

6.14 Normalized price (a), mean job waiting time (b), and opportunity
cost (c) as a function of m5.16xlarge VMs when executing our
real production batch workload under AJW, AJW-T, SWW,
LJW, and our compound policy with SJF scheduling policy. 100

6.15 Normalized price (a), mean job waiting time (b), and opportunity
cost (c) as a function of the long job prediction error when
executing our real production batch workload under a compound
policy assuming 150 m5.16xlarge VMs. 101

xv

6.16 Normalized price (a) and mean job waiting time (b) as a function of
fixed resources s when executing our real production batch
workload under SWW for different over-prediction errors fover and
NJW. 103

6.17 Mean waiting time as a function of fixed resources s when executing
our real production batch workload under SWW for different
over-prediction errors funder. 104

6.18 Normalized price (a) and mean job waiting time (b) as a function of
the fraction of jobs with over- and under-prediction errors (%) in
job running time for s=200 m5.16xlarge VMs and t=3 minutes
when executing our real production batch workload under
LJW. 105

7.1 On-demand cost, as a percentage of fixed resource cost, (left y-axis)
and average waiting time (right y-axis) as a function of LJW’s
short job threshold t. As t increases, waiting time drops steeply,
while cost increases modestly. 112

7.2 MAPE (a) and MCC (b) of multiple ML models for predicting job
runtime from features in our batch trace. 113

7.3 CDF of job runtime for our batch workload, a widely-used Google job
trace [76], and an exponential distribution with the same mean as
our batch workload. 115

7.4 Percentage increase in cost compared to using LJW with a job
runtime prediction oracle (a) and average waiting time (b) for
multiple LJW variants and and multiple short job thresholds
(x-axis). 117

7.5 MCC of different ML models for predicting job waiting time for
different waiting time thresholds b. 120

7.6 On-demand cost, as a percentage of fixed resource cost (a) and
average job waiting time (b) for different approaches to predicting
job waiting time under SWW with different thresholds b
(x-axis). 120

7.7 On-demand cost, as a percentage of fixed resource cost, on the y-axis
as a function of both LJW’s short job threshold t (a) and SWW’s
waiting time threshold b (b) using our baseline parameters. 122

xvi

7.8 Mean wait time (hours) on the y-axis as a function of both LJW’s
short job threshold t (a) and SWW’s waiting time threshold b (b)
using our baseline parameters. 123

7.9 Total cost of amortized fixed and on-demand resources (as a
percentage of the oracle) as a function of fixed resource capacity
(a). Mean wait time as a function of fixed resource capacity for
our approach and the oracle (b). 127

7.10 MCC of ML models for predicting job waiting time for different
waiting time thresholds b in the Google trace. 128

7.11 On-demand cost, as a percentage of fixed resource cost, on the y-axis
as a function of both LJW’s short job threshold t (a) and SWW’s
waiting time threshold b (b) for our Google trace using the
baseline parameters. 128

7.12 Mean wait time (hours) on the y-axis as a function of both LJW’s
short job threshold t (a) and SWW’s waiting time threshold b (b)
for Google trace using our baseline parameters. 128

xvii

CHAPTER 1

INTRODUCTION

Cloud computing platforms are rapidly becoming de-facto computing platforms

for our society. Early providers include Amazon Elastic Compute (EC2) which of-

fered Infrastructure-as-a-Service (IaaS) virtual machines starting in August 2006 [25].

These IaaS cloud platforms provide numerous benefits like access to compute resources

on-demand, pay as you use model, an illusion of infinite scalability, and all of these

without a significant upfront cost. As a result, cloud computing platforms have be-

come ubiquitous for providing the access to large-scale computing power to nearly

every field like scientific, entertainment, finance, etc. Given this widespread adop-

tion, the global cloud computing market size is expected to grow from $371.4 billion

in 2020 to $760.98 billion by 2025 [10].

With the advent of cloud computing, large institutions that have traditionally

operated large private compute clusters for their general computing needs have begun

to migrate to public Infrastructure-as-a-Service (IaaS) cloud platforms like Amazon

AWS, Google GCP, and Microsoft Azure. These private clusters typically manage

a fixed number of computing resources typically sized for peak demands, and they

often have low average utilization (<30%), but may periodically experience large

bursts in job arrivals, e.g., due to deadlines, product releases, or seasonal variations,

that result in long job waiting times. As with large institutions, software systems

like container orchestration platforms and job schedulers that manage these private

computing clusters are now cloud-enabled and support dynamic cloud resources.

1

As large institutions migrate their workloads to the cloud platforms, they have

numerous options for optimizing their cost and reduce the job waiting times. For ex-

ample, schedulers may provision cloud VMs on demand to service each job, requiring

them to only pay for resources when jobs need them. In this case, the cloud’s oper-

ating costs are often much lower than the capital cost of an under-utilized fixed-size

cluster, since the latter must effectively “pay” even when resources are idle.

1.1 Motivation
Migrating a largescale private computing infrastructure to a public cloud is a

complex task. For example, the major hyper-scale public cloud providers — Ama-

zon, Google, and Microsoft — now offer dozens of VM types with different CPU,

memory, I/O, and network characteristics at different prices [9]. Thus, selecting the

“right” type of VM that yields the desired performance at the lowest cost — for a

particular workload can be challenging. In addition, a significant fraction of a pri-

vate cluster’s cost is due to upfront capital expenses, e.g., server hardware, building

space, supporting IT equipment, etc., that are fixed, while a cloud-based cluster’s

cost is largely operational expenses that are dependent on expectations of the future

workload. If cloud resources are provisioned judiciously by choosing the optimal mix

of VM options when migrating large workloads to the cloud, cloud costs can be of-

ten lower than operating a private cluster. However, the large number of cloud VM

configurations, the uncertainty in future workload characteristics, and the complexity

of decision making when operating a large cloud cluster imply there is no guarantee

that the potential cost savings from migrating to the cloud will actually be realized.

In addition, cloud platforms offer many types of VMs under a variety of different

purchasing options, which differ in their cost, performance, and availability. The

specific set of purchasing options, as well as their names, prices, and some details,

differ across cloud providers, which we discuss in §2.2. In particular, on-demand,

2

reserved, and transient VMs are popular purchasing options. On-demand VMs are

the most popular, enabling users to request and release VMs at any time and only be

charged for the time they hold them. In contrast, the reserved option requires users

to commit to buying 1 or 3 years of VM time in advance, but at a significant discount

compared to holding an on-demand VM for 1 or 3 years. Of course, if reserved VMs

are utilized less than their discount factor, then they will incur a higher cost than

using the equivalent on-demand VMs, since users may release on-demand VMs when

not in use.

Given this wide variety of VMs with different performance profiles and different

purchasing options, optimizing for long-term cloud costs not only requires selecting

the right VM types based on a workload’s requirements, but also selecting the right

mix of purchasing options based on future workload expectations. While the former

problem of choosing cloud VM types has been the subject of much research [16,47,80,

88], but optimizing the purchasing options for the chosen VMs has not seen as much

attention. This problem requires cloud users to balance tradeoffs — (i) making the

longest possible commitments for the provisioned VMs to extract the greatest savings,

while retaining some ability to make short-term increases or decreases to provisioned

VMs to respond to changing workloads and (ii) using the unreliable transient VMs to

significantly reduce the cost, while providing the same performance and availability

guarantees as on-demand or reserved VMs.

1.2 Summary of Contributions
In this thesis, we hypothesize that, by judiciously selecting VM purchasing options

to match the workload requirements, we can significantly optimize the cloud costs

while mitigating the impact on performance, or vice versa. As part of our thesis,

we identify the following significant problems and model the solution using classic

3

statistics and implement these solutions in real-world job schedulers (when applicable)

to illustrate the benefits of the proposed solutions.

1.2.1 Mixed Interactive and Batch Workloads on Transient VMs

Container Orchestration Platforms (COPs), such as Kubernetes, Mesos, and oth-

ers, have evolved into de facto cluster “operating systems” by automating the de-

ployment of distributed applications encapsulated in containers, and managing the

allocation of resources between them. Thus, COPs must support the availability and

performance requirements of a wide range of applications, including long-lived in-

teractive services and non-interactive batch jobs, while also maintaining high cluster

utilization.

COPs were originally developed for managing a mostly static set of dedicated

physical machines in data centers. However, increasingly, the resources that underly

COPs are virtual machines (VMs) dynamically acquired from cloud platforms. These

platforms offer many types of VMs under a variety of different contracts, which differ

in their cost, performance, and availability. In particular, transient VMs are an

increasingly popular VM type, since they typically cost 50-90% less than on-demand

VMs. However, cloud platforms reserve the right to reclaim transient VMs at any time

to satisfy higher priority tasks. Thus, while transient VMs’ low price is attractive,

their unreliability makes them unsuitable for COPs that must support long-lived

interactive services with high availability requirements. As a result, prior work focuses

primarily on optimizing only batch workloads for transient VMs.

To address the problem, we design TR-Kubernetes, a transient-aware COP that

supports both batch jobs and interactive services with high availability requirements

at a low cost using transient VMs. We show that TR-Kubernetes requires minimal

extensions to Kubernetes, and is capable of lowering the cost (by 53%) and improving

4

the availability (99.999%) of a representative interactive/batch workload on Amazon

EC2 when using transient compared to on-demand VMs.

1.2.2 Distributed ML Workloads on Transient VMs

Cloud platforms often execute parallel batch applications, such as distributed ma-

chine learning (ML), that include numerous synchronization barriers. These barriers,

which prevent any task from advancing beyond a specified point until all tasks have

reached that point, significantly degrade application performance by reducing it to

that of the slowest “straggler” task. To address the problem, researchers have pro-

posed numerous straggler mitigation techniques, including speculatively re-executing

straggler tasks and various relaxations of strict barrier semantics. While these tech-

niques improve parallel application performance, they incur a cost in terms of the

resources wasted re-executing tasks or waiting. Importantly, these costs, which are

often implicit in prior work that targets dedicated resources, become explicit in the

cloud, which charges for resources at fine-grained intervals. In addition, the cost

difference between techniques is exacerbated in cloud platforms, since they charge

substantially less for transient resources that effectively yield a probabilistic perfor-

mance across a wide range.

While transient resources’ low list price is attractive, revocations increase the

frequency and severity of stragglers, which decreases parallel job performance and

increases overall execution cost. To better understand the cost of synchronization,

we develop simple analytical models of different straggler mitigation techniques and

compare their cost and performance on on-demand and transient resources. Our anal-

ysis shows that i) transient servers offer complex tradeoffs compared to on-demand

servers, and can result in higher overall costs despite their highly discounted price

due to their probabilistic performance; ii) common approaches to straggler mitigation,

which is a well-studied problem, are less effective using transient servers that cause

5

frequent and severe stragglers; and iii) a recent approach to flexible synchronization

offers the best cost and performance.

1.2.3 Optimizing Long-term Cloud Costs by Mixing VM Purchasing Op-

tions

Cloud platforms offer the same VMs under many purchasing options that specify

different costs and time commitments, such as on-demand, reserved, sustained-use,

scheduled reserve, transient, and spot block. In general, the stronger the commit-

ment, i.e., longer and less flexible, the lower the price. However, longer and less

flexible time commitments can increase cloud costs for users if future workloads can-

not utilize the VMs they committed to buying. Large cloud customers often find

it challenging to choose the right mix of purchasing options to reduce their long-

term costs while retaining the ability to adjust capacity up and down in response to

workload variations.

To address the problem, we design policies to optimize long-term cloud costs by

selecting a mix of VM purchasing options based on short- and long-term expectations

of workload utilization. We consider a batch trace spanning 4 years from a large

shared cluster for a major state university system that includes 14k cores and 60

million job submissions, and evaluate how these jobs could be judiciously executed

using cloud servers using our approach. Our results show that our policies incur a

cost within 41% of an optimistic optimal offline approach, and 50% less than solely

using on-demand VMs.

1.2.4 Optimal Fixed Resource Provisioning for Cloud-Enabled Sched-

ulers

As job schedulers migrate to the cloud, they have many options for optimizing cost

and reducing job waiting times. For example, schedulers may provision cloud VMs on

demand to service each job, requiring them to only pay for resources when jobs need

6

them. Importantly, however, buying fixed resources (or reserving them for long peri-

ods) is significantly cheaper than renting resources on demand if the fixed resources

are highly utilized. Thus, a mixed infrastructure that satisfies some baseload with

highly-utilized fixed resources, and satisfies load bursts using on-demand resources

can decrease cost. Notably, hybrid clouds, which combine fixed private resources

with cloud bursting, use this approach, as do many companies, which both buy re-

served VMs and dynamically rent on-demand VMs.

In this work, we introduce the concept of a waiting policy for cloud-enabled sched-

ulers and show that provisioning fixed resources to optimize cost is dependent on it.

A waiting policy is the dual of a scheduling policy: while a scheduling policy deter-

mines which jobs run when fixed resources are available, a waiting policy determines

which jobs wait for fixed resources when they are not available (rather than run im-

mediately on on-demand resources). For cloud-enabled schedulers, the waiting policy

is important, since it dictates the tradeoff between job performance and cost. Our

evaluation on a year-long production batch workload consisting of 14M jobs run on

a 14.3k-core cluster and show that a compound waiting policy decreases the cost (by

5%) and mean job waiting time (by 7×) compared to a fixed cluster of the current

size.

1.2.5 Data-driven Job Scheduling for Cloud-Enabled Schedulers

Cloud-enabled scheduling differs from conventional scheduling on fixed resources

in that cost, in addition to job waiting time, is a critical metric. As a result, cloud-

enabled schedulers must not only define a scheduling policy, which selects which jobs

run when fixed resources become available, but also a waiting policy, which selects

which jobs wait for fixed resources, and for how long when they are not available before

running on on-demand resources. Importantly, as with many scheduling policies,

optimizing the waiting policies above requires a priori knowledge of job runtimes.

7

Unfortunately, scheduling policies that require knowing job runtimes, such as shortest

job first (SJF), are often not widely used because accurately predicting job runtimes

remains challenging. Recent work highlights many reasons for the low prediction

accuracy, including a lack of sufficient features for training machine learning (ML)

models and non-stationarity in workloads that leads to inconsistent performance [53].

Directly implementing the waiting policies above suffers from the same challenges.

The main contribution of this work is showing that optimizing waiting policies

for cloud-enabled schedulers is possible without accurate job runtime predictions, and

can come close to the cost and waiting time achievable given perfect knowledge of

job runtimes. To do so, we develop two techniques (speculative execution and ML-

based waiting time predictions) to optimize job waiting under policies, respectively.

Intuitively, optimizing these waiting policies in the cloud is simpler than optimizing

scheduling policies for fixed resources because i) there is no hard resource constraint,

and ii) our waiting policy predictions require only binary classification, i.e., where

a job’s running or waiting time crosses a threshold, which does not require absolute

model accuracy. Our evaluation on a year-long production batch workload shows that

using our techniques yields a cost and waiting time within 4% and 13%, respectively,

of using waiting policies with perfect knowledge of job runtime.

1.3 Dissertation Outline
We organize the rest of the proposal as follows. Chapter 2 provides the necessary

background on cloud platforms, service contracts, and container orchestration plat-

forms (COP). Chapter 3 presents TR-Kubernetes, a COP that optimizes the cost of

executing mixed interactive and batch workloads on cloud platforms using transient

VMs. Chapter 4 deals with understanding synchronization costs for Distributed ML

workload on transient and on-demand cloud resources. Chapter 5 addresses the chal-

lenge to choose the right mix of purchasing options to reduce the long-term cloud

8

costs with no job waiting. Chapter 6 describes the concept of waiting policy to opti-

mally provision the fixed (or reserved) resources to optimize cloud costs and reduce

job waiting. Chapter 7 describes how to implement waiting policies in a real-world

scenario using ML-based wait time predictions and speculative execution. Finally,

chapter 8 concludes the work.

9

CHAPTER 2

BACKGROUND

In this chapter, we will discuss the background required to understand various as-

pects of this dissertation. First, we discuss job schedulers in the context of this thesis.

Second, we provide details on the cloud VM purchasing options and compare them

to highlight the differences in their cost, required time commitment, and resource

guarantees. Third, we briefly discuss different workload characteristics considered in

this dissertation. Finally, we provide an overview of container orchestration platforms

(COPs) like Kubernetes, Mesos, etc which are used for implementing our proposed

solutions.

2.1 Job Schedulers
Job schedulers have been one of the central components of the IT infrastructure

since the early computing systems. Job scheduling can be defined most simply as

the orderly, reliable, sequencing of batch program execution. Examples of early job

schedulers include IBM’s OS/360, which had primitive capabilities for transitioning

between jobs. Traditionally, these job schedulers manage a fixed number of com-

puting resources in a private cluster at large scales. To submit jobs, users specify

job resource requirements to these schedulers, which either allocate idle resources to

execute them or force them to wait for idle resources to become available. Since the

private clusters manage a fixed number of computing resources typically provisioned

for peak demands, they often have low average utilization (<30%), but may period-

10

ically experience large bursts in job arrivals e.g., due to deadlines, product releases,

or seasonal variations, that result in long job waiting times.

Cloud-Enabled Schedulers. As cloud platforms started providing access to large-

scale computing power for nearly every enterprise sector, job schedulers began to

support the cloud resources. Using these cloud resources, job schedulers have many

options for optimizing cost and reducing job waiting times. For example, schedulers

may provision cloud VMs on demand to service each job, requiring them to only pay

for resources when their jobs need them. In this case, the cloud’s operating costs

are often much lower than the capital cost of an under-utilized fixed-size cluster. In

addition, since the cloud provides the illusion of infinite scalability, jobs never need to

wait for resources, as schedulers can always acquire cloud resources to service them

immediately. Most modern job schedulers (and workload management platforms) like

IBM’s LSF, Kubernetes, Mesos, etc., are now cloud-enabled and support such “auto-

scaling”, which acquires cloud VMs to service jobs, and release them when done [8,30].

Notably, the cloud-enabled schedulers can manage both the fixed resources in a private

cluster and the cloud resources at the same time. Such mixed infrastructures are

referred to as “hybrid clouds”, where they execute some baseload with the fixed

resources and satisfy the additional load bursts using cloud resources.

2.2 Cloud Purchasing Options
Our work focuses specifically on VM purchasing options that relate to time com-

mitments and flexibility, and not VM types or capacity reservations. Since these

options only differ in the resources they offer, users can treat them as a different

resource type. We also do not consider capacity reservations, which enable users to

pay to ensure that their future requests for on-demand VMs are not rejected due to

a lack of capacity. Currently, these capacity reservations incur the same cost as the

on-demand option, so users may just as well purchase and hold on-demand VMs.

11

Purchasing Option Relative Cost (%) Time Commitment Revocable Cloud Providers
On-demand 100% None No All
Reserved 60% 1yr No All
Reserved 40% 3yrs No All
Transient 20-40% None Yes All
Sustained-Use 70-100% None No Google
Customized 105% - - Google
Spot Block 55-70% None After 1-6hrs Amazon
Scheduled Reserved 90-95% 1200hrs-8760hrs (1yr) No Amazon

Table 2.1: Overview of the primary VM purchasing options across the major cloud
providers

Table 2.1 lists the different VM purchasing options that we consider and their

primary attributes. As can be seen, the same cloud VMs can be procured under a

number of different purchasing options. The relative cost represents the percentage

cost relative to the on-demand cost per unit time for the equivalent VM type and is

not the percentage discount. The time commitment is the amount of time the user

must commit to buying. We discuss the other attributes below.

On-demand. The on-demand option is the most common one offered by all cloud

providers and typically the default option for users. As a result, we represent the cost

of the other options relative to the on-demand option. An on-demand VM incurs

a cost per unit time from the time the cloud platform allocates it to the user until

the time the user terminates it. The per unit time cost is now billed at fine-grained

resolutions, e.g., either per-second or per-minute, rather than hourly. Cloud platforms

do not generally revoke on-demand VMs, but they are not guaranteed to be available

when requested. That is, cloud platforms may reject users’ request for on-demand

VMs if they run out of data center capacity. However, the frequency of out-of-capacity

rejections is not publicly known.

Reserved. The reserved option enables users to commit to buying a VM for 1-

or 3-year period in return for a discount compared to procuring an on-demand VM

over the same period. All cloud providers offer 1- and 3-year reserved options, which

12

are designed for cheaply satisfying a user’s expected base load—the minimum level of

demand—over the reservation’s term. While reserved VMs are not revocable, they do

generally guarantee the user capacity on request. That is, if a user ever terminates a

reserved VM, when they request the VM later (within the reservation’s term), unlike

with on-demand VMs, the cloud platform guarantees to have the capacity to satisfy

that request.

The reserved option is essentially a volume discount, where the actual discount is

based on the time commitment as well as other options, such as the amount of upfront

payment, whether reserved VMs can be “converted” to other VMs of a different

type (but the same resources), and whether the reserved VMs can switched between

different data centers within the same geographical region. The costs in Table 2.1—

60% and 40% of the on-demand price for 1- and 3-year terms—are typical discounts for

standard options, e.g., payment in full for non-convertible VMs tied to one availability

zone. In this case, if the reserved VM (3yr) is utilized >40% of the time, its effective

price and 3-year cost are less than the on-demand VM, thereby making it the cheaper

option. We call this the break-even point.

Transient. All cloud providers offer their surplus capacity in the form of transient

VMs [70] but under different names and slightly different terms. Transient VMs are

the cheapest purchasing option, costing 20-40% of the on-demand cost, and come with

no time commitment. However, since transient VM resources represent spare capacity,

cloud platform’s may revoke them at any time to satisfy higher-priority requests for

on-demand and reserved VMs. Given their low cost and priority, transient VMs

are not guaranteed, and requests for such VMs are likely rejected due to fluctuating

surplus capacity more frequently than on-demand VMs (although the rejection rates

are not publicly known). Transient VMs are generally designed for cheaply satisfying

batch jobs that run in the background and can tolerate delays due to unexpected

revocations.

13

Sustained-Use. Google offers a sustained-use discount that automatically applies

to on-demand VMs of any type that are run for some fraction of a month-long billing

period. The discount applies separately to each core, i.e., vCPU, and gigabyte (GB)

of memory regardless of type, since Google separately charges for each core and GB

of memory. Thus, VM types simply incur a cost based on their pre-defined number of

cores and memory allotment. The discount starts once each core or GB of memory is

used for 25% of the month and increases the longer they are used with the maximum

discount being 30% off the on-demand cost for the entire month. Specifically, for the

first 25% of the month users pay 100% of the on-demand cost, next for 25-50% they

pay 80%, then for 50-75% they pay 60%, and finally for 75-100% they pay 40%. The

overall cost for an entire month of sustained use comes to 70% of on-demand (i.e.,

30% discount).

Customized. Google also offers a customized VM option, which enables users to

purchase a VM with a custom cost based on a configurable number of cores and

memory. Customized VMs can be used in conjunction with any of the purchasing

options above, including the sustained-use discount. Customized VMs have the po-

tential for significant cost savings by better matching job resource requirements to

VM resources, thereby reducing wasted resources. However, this savings comes at an

increased cost, which is currently 105% the normalized cost per core and GB-memory

of an on-demand VM with pre-defined cores and memory allotment.

Spot Block. Amazon offers spot block VMs that have a short pre-defined lifetime

of 1, 2, 3, 4, 5, or 6 hours. Spot block VMs are always revoked after their pre-defined

lifetime (but typically not before), although users can terminate them early and only

pay for the time they held them. Thus, spot block VMs have a maximum lifetime, but

no time commitment. Spot block VMs cost 50-70% of the on-demand cost with higher

discounts for shorter lifetimes. Spot block VMs are a form of short-term reservation

that ensures the cloud platform is able to reclaim resources in the near future. Their

14

average discount is less than spot and near that of reserved. However, spot block

VMs do not require a long time commitment and are designed for short tasks (<6

hours) that either have a deadline or cannot gracefully handle revocations, which

makes them unsuitable for transient/spot VMs.

Scheduled Reserved. Amazon also offers a scheduled reserve option designed for

workloads that do not run continuously but do run on a regular schedule, such as

nightly batch jobs or financial simulations that run after the stock market closes each

weekday afternoon. Scheduled reserved VMs enable users to define repeating daily,

weekly, or monthly reservation schedules at hourly resolutions. For example, users

could define a daily schedule that reserves a VM from 9 pm-12 am each day. As with

the reserved option, scheduled reserved capacity is guaranteed and not revocable.

However, the discount is much smaller, only 10% during off-peak weekend hours

and 5% during peak weekday hours. Scheduled reserved are only offered for a 1-year

term, and require users to purchase a schedule with a minimum of 1200 hours over the

year. This option is also currently available in only 3 of the larger regions (Northern

Virginia, Oregon, and Ireland).

2.2.1 Differences between Cloud Providers

As Table 2.1 shows, the major cloud providers offer slightly different VM purchas-

ing options. Microsoft offers the simplest set with on-demand, 1- and 3-year reserved,

and transient options. Google then adds the sustained-use discount for on-demand

VMs, along with the ability to configure customized VMs with any purchasing op-

tion. In contrast, Amazon adds the spot block and scheduled reserved options. Note

that Table 2.1’s relative cost is an estimate across all the cloud providers. In general,

Microsoft quotes similar prices (in the same way) as Amazon for the same purchasing

options and VM types, while Google quotes prices slightly differently. However, the

discounts offered for the purchasing options (even for comparable VM sizes) are not

15

directly comparable across cloud providers, since aspects of their infrastructure, such

as the network and I/O bandwidth, and the resources may differ.

2.3 Workload Characteristics
In this work, we broadly characterize a job as either a highly available interactive

service or a batch job. In general, interactive services are treated as foreground jobs,

while the batch jobs run in the background, giving the interactive service priority

over batch jobs.

Interactive services require very high service uptime i.e., little to no downtime.

Examples of interactive services include nginx webserver, databases, etc. These ser-

vices generally support front-end services like mobile applications, web applications,

etc where they must respond to user requests in real-time at millisecond-scale laten-

cies. Because of the performance requirements of interactive services, on-demand and

reserved VMs are generally preferred for hosting (or running) them.

Batch Jobs are delay tolerant and stateful applications that typically use fault-

tolerance to mitigate any failures. Examples include data-processing applications like

Spark and distributed machine learning jobs like Tensorflow, PyTorch, etc. Resource

requirements of batch jobs can range anywhere from “single” machine to “thousands”

of machines as well. These batch job platforms like Spark and Tensorflow allow users

to checkpoint the state and hence these jobs can handle failures by restarting from the

previous state in the case. Since batch jobs can tolerate failures and delays, transient

VMs are suitable for running batch jobs (that require a large number of computing

resources) at a significantly lower cost.

2.4 Container Orchestration Platforms (COPs)
There are many publicly available COPs that offer similar functionality and sup-

port diverse workloads on large, mixed-use clusters, including Kubernetes [30], Mesos

16

(with Marathon) [43], and Docker Swarm [3]. These platforms not only manage

the allocation of cluster resources between distributed applications encapsulated in

containers but also provide a rich set of functions for supporting distributed appli-

cations and tightly integrate with IaaS cloud platforms. In addition, IaaS platforms

now natively provide container orchestration platforms hosted on their VMs, such

as Amazon’s EC2 Container Service for Kubernetes (EKS) [2], Google’s Kubernetes

Engine (GKE) [6], and Azure Kubernetes Service (AKS) [1]. These native platforms

are largely the same as the open-source platforms but are configured automatically by

the cloud provider and support elastic autoscaling, i.e., by automatically allocating

and releasing VMs as necessary.

A key assumption COPs make is that distributed applications that run on them

can handle i) the failure or revocation of containers and ii) the allocation of new

replacement containers. This assumption enables COPs i) to scale up to many thou-

sands of servers, where some failures are inevitable, by automatically replacing failed

containers with new containers and ii) to freely revoke containers from applications

without affecting application correctness. COPs generally support two broad classes

of applications—interactive services and batch jobs [81]. Interactive services must

respond to user requests in real-time at millisecond-scale latencies, while batch jobs

typically run in the background without strict deadlines. Internal support for revoca-

tions enables COPs to allocate available resources to batch jobs, while also enabling

them to revoke these resources and re-allocate them to interactive services if their

demand spikes.

Thus, distributed applications that run on COPs are designed to handle container

failures, revocations, and re-allocations. Interactive services are typically designed to

be stateless and often leverage load balancers natively built into COPs that spread

requests among services’ active containers. These load balancers automatically up-

date the active set of containers as failures and revocations occur. In contrast, batch

17

jobs either restart from the beginning, or from the most recent checkpoint, on a

revocation. Many distributed big data frameworks, such as Spark [91], Naiad [56],

TensorFlow [13], etc., that cache large datasets in memory include built-in functions

for checkpointing job state. Optimizing this checkpointing based on job characteris-

tics and revocation rates is the subject of active research [63,74,89,90].

18

CHAPTER 3

EXECUTING MIXED INTERACTIVE AND BATCH
WORKLOADS ON TRANSIENT VMS

Increasingly, the resources under container orchestration platforms (COPs) like

kubernetes are virtual machines (VMs) dynamically acquired from cloud platforms

like Amazon AWS. COPs may choose from many different types of VMs offered by

cloud platforms, which differ in their cost, performance, and availability. In particu-

lar, while transient VMs cost significantly less than on-demand VMs, platforms may

revoke them at any time, causing them to become unavailable. While transient VMs’

price is attractive, their unreliability is a problem for COPs designed to support mixed

workloads composed of, not only batch tasks, but also long-lived interactive services

with high availability requirements. In this chapter, we design TR-Kubernetes, a

COP that optimizes the cost of executing mixed interactive and batch workloads on

cloud platforms using transient VMs.

3.1 TR-Kubernetes Overview
TR-Kubernetes is a Container Orchestration Platform (COP) that uses unreliable

transient cloud VMs to execute mixed batch/interactive workloads at low cost. To

do so, TR-Kubernetes enables interactive services to explicitly specify their capacity

availability requirement. For example, a distributed web service may specify that

it needs the equivalent capacity of 500 m4.large Amazon EC2 VMs with 5 nines

of availability (99.999%). TR-Kubernetes’s provisioning policy then selects a mix of

different transient VMs, from among the hundreds offered by cloud platforms, that

satisfies the capacity availability requirement with high probability.

19

To enforce high availability using unreliable transient VMs, TR-Kubernetes must

acquire many more transient VMs than necessary most of the time. Current transient

VM prices are low enough that acquiring more transient VMs than necessary—in some

cases many more—is still much cheaper than using on-demand VMs to satisfy the

same capacity availability requirement. TR-Kubernetes automatically leverages this

excess capacity to execute batch jobs at no additional cost. However, if interactive

services ever require additional resources, due to increased demand or transient VM

revocations, TR-Kubernetes leverages internal functions COPs already provide to

revoke resources from the batch jobs and allocate them to the interactive services.

Interestingly, the reason COPs include internal support for revocations, and thus

transience, is the same reason cloud platforms offer transient VMs: to increase overall

cluster utilization. Existing integrations of COPs with cloud platforms typically run

interactive services on high-cost on-demand VMs, and run batch jobs on low-cost

transient VMs. In contrast, our hypothesis is that TR-Kubernetes can enable higher

availability, better performance, and lower costs by running mixed interactive and

batch workloads entirely on transient VMs.

3.2 TR-Kubernetes Design
In this work, we assume interactive services are stateless and leverage Kubernetes’s

built-in load balancer to distribute requests across VMs, it assumes any composition

of VMs that satisfies the ECU requirement is acceptable, as the load balancer will

distribute requests evenly based on each VM’s resource capacity.

TR-Kubernetes’s design relies heavily on existing functions built into Kubernetes,

as well as other COPs. Figure 3.1 depicts TR-Kubernetes’s extensions to Kubernetes.

These include an offline tool that runs TR-Kubernetes’s provisioning algorithm to

generate service descriptions, which specify the transient VMs necessary to satisfy the

capacity availability requirement. This service description is then submitted along

20

Algorithm Command-line tool
(eg. kube-aws)

Capacity

Availability

Transient VM data
(availability and cost

estimates)

Revocation
Daemon

Master

Node 1 Node 2 Node 3

User

Cloud Platform

Kubernetes Cluster

Cloud API

TR-Kubernetes

Revocation Warning

Figure 3.1: A depiction of TR-Kubernetes architecture.

with the job via the Kubernetes command-line tool. Since our prototype runs on EC2,

users specify capacity in terms of EC2 Compute Units (ECUs), which is a relative

measure of a VM’s integer processing power [24]. As an example, an interactive

service might specify that it requires 10,000 ECUs with an availability of 99.999%.

TR-Kubernetes’s provisioning policy determines which transient VMs to request

and how many based on their availability estimates, such that they satisfy the capacity

availability requirement at the lowest cost. Once transient VMs are allocated based on

a service description, TR-Kubernetes relies on functions already built into Kubernetes

on AWS, an open source implementation of Kubernetes designed to run on VMs

dynamically acquired from EC2. Kubernetes on AWS supports EC2 services, such as

Auto Scaling and Spot Fleet, designed to automate resource allocation and revocation.

As a result, Kubernetes on AWS can handle revocations by simply detecting them as

failed VMs and removing them from the cluster.

TR-Kubernetes also employs an external revocation daemon that interacts with

cloud APIs and Kubernetes to detect imminent revocations and proactively remove

revoked VMs to minimize failed requests. In addition, if a revoked VM reduces the

capacity of an interactive service below the requirement in its service description,

Kubernetes’s replication controller can automatically spawn replica container pods,

i.e., co-located groups of containers, on the remaining VMs to replace the resources

21

0

90

99

99.9

99.99

c4.large

i3.large

r4.large

m4.large

i3.8xlarge

i3.xlarge

c4.xlarge

i3.4xlarge

i3.2xlarge

c4.8xlarge

m4.xlarge

c4.2xlarge

c4.4xlarge

r4.xlarge

m4.2xlarge

r4.2xlarge

m4.4xlarge

d2.4xlarge

d2.2xlarge

d2.xlarge

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

A
v
a
ila

b
ili

ty
 (

%
)

C
o
s
t
(c

e
n
ts

/E
C

U
 h

r)

Availability Cost (cents/ECU hr)

Figure 3.2: Comparison of average transient VM cost and availability in us-west-1c
from 2017/9-12.

on the revoked VM. If necessary, to ensure the required capacity, Kubernetes will

revoke resources internally from lower-priority batch jobs.

3.3 Provisioning Algorithm
The differences in cost between different combinations of on-demand VMs (with

equivalent ECU or memory capacity) are small, since on-demand VMs (within each

VM class) are consistently priced in proportion to their ECU and memory capacity.

These cost differences, however, are often much higher for transient VMs at any

given time. Figure 3.2 illustrates the complexity of selecting transient spot VMs in

EC2 that are both low cost and satisfy a target availability. The figure shows that

cost and availability are not correlated, such that the VM with the lowest price is

not necessarily the most available, and that there are a wide range of options with

different tradeoffs. Note that availability is on a log scale to emphasize that small

differences are important.

Our provisioning policy addresses this problem by selecting transient VMs to

jointly optimize both cost and availability subject to the availability target. To do so,

TR-Kubernetes maintains a table of price and availability estimates for each transient

VM. Given the table, computing the aggregate availability of different capacities for

a pool of transient VMs is non-trivial, especially if transient VM availability is highly

correlated. Fortunately, Figure 3.3 shows that availability for transient VMs is not

highly correlated in EC2. While we show only 11 VM types from us-west-1c here,

22

d2.2xlarge

d2.xlarge

r4.2xlarge

r4.xlarge

r4.large

c4.2xlarge

c4.xlarge

c4.large

m4.2xlarge

m4.xlarge

m4.large

m
4
.la

rg
e

m
4
.x

la
rg

e
m

4
.2

xl
a
rg

e
c4

.la
rg

e
c4

.x
la

rg
e

c4
.2

xl
a
rg

e
r4

.la
rg

e
r4

.x
la

rg
e

r4
.2

xl
a
rg

e
d
2
.x

la
rg

e
d
2
.2

xl
a
rg

e

S
p

o
t

m
a

rk
e

ts

1.000 -0.003 0.015 -0.001 0.043 -0.004 0.019 0.031 0.044 -0.001 -0.001

-0.003 1.000 0.065 -0.001 0.024 -0.004 -0.002 0.028 0.057 -0.001 -0.001

0.015 0.065 1.000 -0.002 0.153 0.096 0.008 0.097 0.195 0.030 -0.002

-0.001 -0.001 -0.002 1.000 -0.002 -0.001 -0.001 -0.003 -0.003 -0.000 -0.000

0.043 0.024 0.153 -0.002 1.000 0.034 -0.004 0.185 0.215 0.043 -0.001

-0.004 -0.004 0.096 -0.001 0.034 1.000 -0.003 0.042 0.022 -0.001 -0.001

0.019 -0.002 0.008 -0.001 -0.004 -0.003 1.000 0.021 0.052 -0.000 -0.000

0.031 0.028 0.097 -0.003 0.185 0.042 0.021 1.000 0.243 0.023 -0.002

0.044 0.057 0.195 -0.003 0.215 0.022 0.052 0.243 1.000 0.019 -0.003

-0.001 -0.001 0.030 -0.000 0.043 -0.001 -0.000 0.023 0.019 1.000 -0.000

-0.001 -0.001 -0.002 -0.000 -0.001 -0.001 -0.000 -0.002 -0.003 -0.000 1.000

-1

-0.5

 0

 0.5

 1

P
e

a
rs

o
n

 C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

Figure 3.3: Heatmap showing the correlation in availability periods of spot VMs in
us-west-1c from September to November 2017. The figure shows that availability
periods are largely independent across spot VMs.

our analysis across the other regions, zones, and VM types yields similar results.

Given this, in our analysis below, we assume availability periods are independent.

Also note that transient VMs of the same type are perfectly correlated, since a single

price dictates their availability en masse.

3.3.1 Computing the Availability of a Target Capacity

Before describing our provisioning algorithm, we first outline how to compute the

availability of a target capacity C across a pool of transient VMs with different avail-

abilities. Since transient VMs of a given type are either available or unavailable, our

approach, described below, essentially computes the probability of all possible avail-

able/unavailable combinations, and then sums the probabilities of all combinations

that yield a capacity ≥ C. To do so, we first denote each transient VM’s availability

as pi and its capacity as ci. We can then represent a transient VM i as a polynomial

(Qi(x)) of degree ni × ci, where we have ni for each transient VM i.

Qi(x) = (1− pi)x0 + pix
nici (3.1)

23

Here, the exponents of x represent the capacity of transient VMs of type i, while

their coefficients represent the probability that a certain capacity is available (either

zero or ni × ci). We use this polynomial to indirectly represent the probability mass

function (PMF) of transient VMs of type i. Of course, any single VM type is either

available or unavailable, which yields a simple form for Qi(x).

To compute availability of a capacity C for a pool of N different transient VM

types, with ni of each type, we derive our representation of the probability mass

function of the transient VM pool by simply multiplying the polynomials of each

transient VM, as they are independent. This gives the polynomial representation

Qpool(x) for the transient VM pool shown below.

Qpool(x) =
N∏
i=1

Qi(x) (3.2)

Similar to above, Qpool(x) represents the probability mass function of the entire

transient VM pool, where x’s exponents represent the capacity for some set of tran-

sient VMs, and the coefficients represent the probability that this set of transient

VMs are the only ones that are available. From this equation, we can compute the

availability at a target capacity m (m ≤ C) by simply adding the coefficients of

x’s exponents, where the respective exponent is ≥ m, as these are the combinations

of transient VMs that yield greater than the capacity requirement. Note that the

methodology above is equivalent to taking the convolution of multiple independent

binomial random variables, where we represent i) each transient VM type’s availabil-

ity as an independent binomial random variable Ai ∀i ∈ [1, N] and ii) the transient

VM pool as the sum of the respective transient VMs’ binomial random variables.

3.3.2 Greedy Algorithm

We next outline how TR-Kubernetes selects transient VMs for the pool to min-

imize cost, while satisfying the target level of availability for the specified capacity.

The problem is complex, since there are hundreds of transient VM types within each

24

cloud region (including each AZ), and we may select multiple instances of any one

transient VM. As a result, there are an exponential number of possible pools that

satisfy the capacity availability requirement.

Our problem appears similar to a multi-dimensional unbounded knapsack prob-

lem, where the VMs are akin to items, ECUs and availabilities are akin to weight

dimensions, VM pools are akin to knapsacks, and costs are akin to item value. How-

ever, there are two primary differences that prevent applying common techniques,

such as dynamic programming, to the problem. First, in our problem we do not

know know the final number of ECUs (knapsack size) required for a given target

availability and secondly, availability dimension in our problem is not strictly ad-

ditive, since the increase in availability from adding a new transient VM to a pool

depends on the other transient VMs already in the pool.

Thus, we instead initially employed a simply greedy algorithm that selected tran-

sient VMs in order of their lowest cost (per ECU-hour) per marginal increase in

availability of the specified capacity relative to the currently selected pool of tran-

sient VMs. If the currently selected pool has less than the target capacity, then we

compute the marginal increase in availability of the capacity of the currently selected

group. This approach favors low cost transient VMs that yield high availabilities.

Note that we select based on the marginal increase in availability with respect to the

currently selected group, and not the absolute availability of the transient VM.

When we directly employed the greedy approach above, we found that it did

not work well because it applied the same weight to cost and availability. However,

transient VM availability in cloud platforms is currently high (above 90%) and users

typically reason about and specify availability based on small orders of magnitude,

i.e., some number of 9s of availability. In contrast, users reason about and specify cost

based on much larger orders of magnitude, i.e., reducing cost by 50% is significant,

while reducing it by 1% or 0.1% is generally not. As a result, we modified our initial

25

approach above by quantifying availability on a logarithmic scale using the equation

below, assuming transient VM availability is <100%, where pi is the availability of

transient VM’s of type i and σi is its cost per ECU-hour.

log(1
pi

)× σi (3.3)

Our algorithm greedily selects transient VMs based on the criteria above one by

one until the pool satisfies the specified capacity availability requirement, or its cost

exceeds the cost of using on-demand VMs to satisfy the requirement, in which case

TR-Kubernetes requests on-demand VMs.

3.3.3 Supporting Multi-Tier Services

In Kubernetes, users specify multi-tier services by submitting a separate service

description for each tier that specifies its resource requirements. Since a key goal of

TR-Kubernetes is to minimally alter Kubernetes, we adopt the same approach with

users independently specifying the capacity availability requirement of each tier. Of

course, a key problem with such independent resource specifications is they do not

allow users to specify an availability requirement for the aggregate multi-tier service.

However, we can derive this availability from the requirements of the tiers.

We consider a multi-tier service to be available if the capacity requirement of each

of its tiers is concurrently satisfied. If the availability of the transient VMs allocated

in each tier is independent and the capacities are the same, then the availability of

the aggregate service is simply (pi)k∀i ∈ [1, k], where pi is the availability of the ith

of k tiers. In this case, to enable an availability of p for the multi-tier service, users

should specify an availability of k
√
p for each tier. Thus, users must specify a higher

availability for each tier relative to their desired availability for the multi-tier service.

If each tier’s availability is independent, but the capacity is different, then we can

simply treat each tier as a single transient VM equal to the specified capacity with

26

availability pi, and use the same approach as in 3.3.1 to compute the availability of

the multi-tier service.

However, note that even when we determine each tier’s transient VM allocation

independently based on the greedy algorithm above, the resulting allocation is entirely

dependent across tiers. That is, if each tier’s capacity and availability requirement

are the same, then each tier’s allocation will be exactly the same, as our algorithm

is deterministic. This also holds if the capacity of each tier is different, but their

availability requirement is the same, since any tier’s transient VM allocation will be

a subset of the allocation for all tiers with a higher capacity. If both the capacity and

availability of each tier are different, then the availability of the multi-tier service is

bounded by the tier with the lowest availability.

3.4 Implementation
We implement TR-Kubernetes by minimally extending Kubernetes on AWS [4].

Prototype. By design, TR-Kubernetes minimally extends Kubernetes on AWS, as it

is designed to be simple and exploit much of Kubernetes’s (and other COPs’) rich set

of existing functions. The prototype uses Python bindings with the Boto3, numpy,

and PyYAML python libraries. Kubernetes on AWS already enables users to create,

update, and destroy Kubernetes clusters dynamically on AWS, either programmati-

cally or using a command-line tool. While Kubernetes includes most of the functions

TR-Kubernetes requires, they must be correctly configured. To create a cluster, the

software first generates a template configuration file, where the user has to fill in

certain cluster parameters, such as the EC2 key pair, DNS name, type of VMs to use,

and the number in each node pool. Kubernetes on AWS acquires the cluster from

EC2 based on this configuration file.

27

3.5 Evaluation
We evaluate TR-Kubernetes at small scale on EC2 using our prototype, and at

large scale over a long period using publicly-available spot price traces. Our proto-

type results focus on quantifying the effect of revocations on an interactive services’s

performance and reliability. We also use spot price traces to quantify the ability of

TR-Kubernetes to satisfy different capacity and availability requirements, and the

resulting cost compared to using on-demand VMs.

We run all simulation experiments using spot price data from all 14 EC2 AZs in

the U.S., and report error bars that represent the minimum and maximum of each

metric. Our spot price data covers 3 months from September to December 2017,

which is after the latest change in EC2’s spot price algorithm. We consider all spot

VM types except for GPUs and FPGAs, which are not general-purpose and require

support from applications. We also only consider the latest (4th) generation of VM

types, as of September 2017.

3.5.1 Prototype Results

Our prototype results focus on the application performance and reliability impact

of revocations. Since substantial prior work has optimized batch jobs for revocations,

e.g., by tuning fault tolerance mechanisms [39,42,64,74,89,90], our evaluation focuses

on interactive service performance. Note that batch jobs run on TR-Kubernetes can

leverage this prior work. For these experiments, we use a distributed web server that

serves static content as a representative application. The server uses Kubernetes’s

built-in load balancer to distribute requests across 10 server replicas (running Nginx)

hosted on t2-medium VMs in EC2. We omit results from experiments using multiple

tiers that yielded the same result due to space limitations.

Throughput. We first examine application performance under increasing revocation

frequencies. Since replacements for revoked VMs must re-warm their cache, frequent

28

 0

 20

 40

 60

 80

 100

 0 1 2 3 4

T
h
ro

u
g
h
p
u
t
(%

)

Revocations per minute

Single tier - 75% memory(pod)
Single tier - 150% memory(pod)
Single tier- 200% memory(pod)
Multi tier - 150% memory(pod)

Figure 3.4: Distributed web server throughput as a function of revocation frequency
for different working set sizes.

revocations have the potential to degrade server throughput and latency. In this

case, we seed our replicas with a number of image files, and use the ApacheBench

(ab) web server benchmarking tool by configuring 4 clients to send 2000 request over

a 8 minute period. We vary the size of the static content, i.e., image files, in each

experiment such that either i) all the content fits in the VM’s memory, ii) only some

of the content fits in the VM’s memory, requiring some content to be served from

disk, or iii) most of the content resides on and must be accessed from disk. We then

vary the revocation frequency from 0 revocations/minute to as high as 4 revocations.

Figure 3.4 presents the results, which show that the larger the size of the static

content relative to memory, the lower the effect of revocations on throughput. When

the content fits in memory, all content is served from the memory cache, such that

when a revocation occurs and flushes this cache, there is a significant decrease in

throughput as the cache re-warms. This effect is less pronounced as the size of the

content increases, as larger fractions of requests must be served from disk instead of

the cache. Even in the worst case, significant throughput degradation requires much

higher revocation frequencies. Of course, dynamic content would not be subject to

these caching penalties due to revocations. Thus, the performance impact of even

high revocation frequencies on interactive server-based applications is likely to below.

29

 0

 10

 20

 30

 40

 50

 100 150 200 250 300 350

R
e
q
u
e
s
ts

 (
%

)

Latency (ms)

3 revocations/minute
2 revocations/minute

1 revocation/minute
No revocations

Figure 3.5: Latency distribution of a distributed web server for different revocation
rates.

Latency. We next examine the effect of revocations on service latency. As noted

above, frequent revocations result in performance degradation. To illustrate, we use

the same distributed web server configuration as above, and plot latency distribution

for the requests in Figure 3.5. The graph shows that increases in the revocation rate

slightly increase the latency by shifting the distribution to the right. Even so, the

difference between no revocations, and 1 revocation/minute, which is an extremely

high revocation rate, is small. Since revocation rates this high are unlikely in practice,

revocations are unlikely to have a significant effect on average or tail latency.

Reliability. For interactive services with high throughput, simply treating VM revo-

cations as failures can cause outstanding requests on the VM to fail. As discussed in

§3.2, TR-Kubernetes’s revocation daemon uses an advance warning of the revocation

to gracefully coordinate VM removal to minimize the number of failed requests. To

demonstrate, we use the same distributed web server setup as above with 10 server

replicas, but serving out a simple static html page. We again use ApacheBench (ab)

to benchmark the server by configuring 20 clients to send 450,000 request over a 5

minute period. We then vary the rate of VM revocation, and measure the number of

failed requests both with and without TR-Kubernetes’s revocation daemon.

30

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3

F
a
ile

d
 R

e
q
u
e
s
ts

Revocations per minute

Single-tier w/o safe eviction mechanism
Single-tier w/ safe eviction mechanism

Multi-tier tier w/o safe eviction mechanism
Multi-tier w/ safe eviction mechanism

Figure 3.6: Failed server requests (HTTP 200) as a function of revocation rate with
and without the revocation daemon.

Figure 3.6 shows the results. We see that when vanilla Kubernetes treats revoca-

tions as failures, the number of failed requests increases linearly with the revocation

rate. In contrast, TR-Kubernetes’s revocation daemon decreases the number of failed

requests by >5×. These few failed requests occur when the revocation daemon in-

teracts with the Kubernetes master to make the VM un-schedulable, as this action

is likely not atomic and must coordinate with both the Kubernetes scheduler and

the load balancer. Hence, the number of failed requests is small compared with the

overall number of requests, even at high revocation rates.

3.5.2 Cost and Availability Analysis

We next analyze the potential cost and availability of an interactive service using

TR-Kubernetes over 3 months using traces of EC2 spot prices to infer realistic cost

and availability characteristics. Our cost analysis also includes the excess resources

an interactive service must acquire to maintain its capacity availability requirement.

Cost Analysis. Figure 3.7 quantifies both the cost (left) and excess resources (right)

on the y-axis for different availability targets on the x-axis for a capacity requirement

of 5000 ECUs. We normalize our cost to the cost of satisfying the target 5000 ECU

capacity using the on-demand VM with the lowest cost per ECU-hour. The (left) fig-

ure shows that, as expected, the cost increases as we increase the availability target

31

 10

 20

 30

 40

 50

 60

 70

 80

99 99.9 99.99 99.999 99.9999

C
o

s
t
(%

 o
n
-d

e
m

a
n
d

)

Availability (%)

 0

 20

 40

 60

 80

 100

 120

99 99.9 99.99 99.999 99.9999

E
x
c
e

s
s
 R

e
s
o

u
rc

e
s

(%
 t

a
rg

e
t

c
a
p

a
c
it
y
)

Availability (%)

(a) Cost (b) Excess Resources

Figure 3.7: The cost relative to on-demand (a) and excess resources relative to the
target capacity (b) for a target capacity of 5000 ECUs as availability varies.

(left), although the increase in cost is not substantial when going from 2 nines avail-

ability (at 38% the on-demand price) to 6 nines availability (at 53% of the on-demand

price). While there is some variance across AZs, as indicated by the error bars, in all

cases, the cost for even 6 nines availability, which translates to 31.5 seconds of capac-

ity below the requirement per year, is less than the cost of the equivalent on-demand

VMs.

Figure 3.7(right) then shows the amount of excess unreliable transient VM capac-

ity we must purchase to enforce our availability requirement. As expected, the higher

the availability requirement, the more excess unreliable capacity we must purchase to

enforce it. This excess capacity is the reason for the cost increase in Figure 3.7(right).

At 5 nines availability, we must purchase 30% more capacity than necessary, and for

6 nines availability, we must purchase 50% more capacity. As discussed below, TR-

Kubernetes leverages this excess capacity to execute low-priority batch jobs.

To Summarize, Figure 3.7(left) shows that TR-Kubernetes can achieve higher

availabilities at a lower cost, ranging from 20% to 80% of the on-demand price de-

pending on the availability requirement.

Availability Analysis.

32

90

99

99.9

99.99

99.999

7 10 14 21 28

A
v
a
ila

b
ili

ty
 (

%
)

Window Duration (days)

Oracle (99.99%)
Prediction (99.99%)

Prediction (99.999%)

Figure 3.8: Unpredictable prices affect TR-Kubernetes’s accuracy at satisfying its
availability target.

The analysis above uses the actual availability of the transient VMs based on their

price data over the 3 month trace period. As a result, our provisioning algorithm

always satisfies the capacity availability requirement. However, in practice, spot

prices and availability are not known a priori, requiring us to first estimate spot

prices and availability based on recent history. To understand how these estimates

affect our accuracy at satisfying the availability target, we experimented with different

prediction window durations in Figure 3.8. The window specifies the interval length

over which we estimate VM availability, such that a window of seven days estimates

availability over the previous seven days. We again use a capacity of 5000 ECUs and

an availability target of 99.99%. The graph then compares the realized availability

based on the predicted estimates with the target availability.

Figure 3.8 shows that the realized availability across prediction windows remains

relatively stable, but tends to be one 9 less than the target. The error derives from

changes in VM prices and availability over time. In contrast, the oracle that assumes

future knowledge of availability and prices always yields an availability strictly greater

than the target (since it continues adding VMs until it reaches the target). One way

to account for this error is to leverage prior work on spot price prediction to attempt

to better predict future prices, rather than use simple historical estimates. Another

33

way to address this problem is to simply set the target higher than required, which

we show in the figure by also including the availability for a target for 5 nines.

3.6 Related Works
There has been a significant amount of prior work focuses on optimizing the

selection of transient VMs and configuring of fault-tolerance mechanisms, such as

checkpointing, replication, and migration, to minimize the performance impact of

revocations [49,63–65,74,87,90,95]. In general, TR-Kubernetes differs from this work

in its focus on supporting the availability requirements of interactive workloads on

transient VMs, and using the excess resources from doing so to execute batch jobs.

There has also been some research that focuses on running interactive workloads

on transient VMs. For example, SpotCheck [65] operates at the virtualization layer

and maintains a synchronized in-memory backup of the transient VM memory state,

such that if a revocation occurs, the backup VM can seamlessly take over [69], similar

to VM-based primary-backup systems, such as Remus [32]. SpotCheck is complex to

implement, requiring the use of nested virtualization and the propagation of individual

memory writes to the backup server. By contrast, TR-Kubernetes is simple, and

leverages much of the functionality already present in COPs, which makes it more

likely to be adopted in practice. However, unlike SpotCheck, TR-Kubernetes only

supports stateless interactive services using Kubernetes’ built-in load balancer.

Similarly, Tributary [5] applies an approach called “spot dancing,” which leverages

spot VMs to support latency SLOs for interactive services at low cost, by intentionally

selecting and bidding on spot VMs to cause revocations. Tributary does have similar

dynamics as TR-Kubernetes in that it provisions many more resources than necessary,

which provides headroom for interactive services to absorb demand spikes. However,

Tributary does not ensure availability requirements or leverage additional resources

to execute batch jobs. Tributary also does not build on existing COPs to simplify its

34

use or adoption. More generally, our approach is not specific to spot VMs or EC2’s

billing model, as we only use the spot price traces to derive availability periods. As

a result, TR-Kubernetes is applicable to any variant of transient VMs with such a

characterization of availability.

3.7 Conclusion and Status
In this chapter, we presented TR-Kubernetes, a minimal extension of Kubernetes

that executes mixed interactive and batch workloads on unreliable transient VMs

dynamically acquired from cloud platforms. Unlike prior work, TR-Kubernetes is

practical to implement, as it primarily requires selecting the right set of transient

VMs based on their expected cost, availability, and capacity. We implement our

approach on EC2 and show that, when compared to running interactive services on

on-demand VMs, TR-Kubernetes is capable of lowering costs (by 53%) and providing

higher availability (99.999%).

Status. TR-Kubernetes have been evaluated on a 3-month EC2 trace via simulation

and small scale real-world experiments as well. Additional details on its design,

implementation, and evaluation are in [21].

35

CHAPTER 4

UNDERSTANDING SYNCHRONIZATION COSTS FOR
DISTRIBUTED ML ON TRANSIENT VMS

Cloud platforms often execute parallel batch applications, such as distributed ma-

chine learning (ML), that include numerous synchronization barriers. Unfortunately,

these barriers significantly degrade application performance by reducing it to that

of the slowest “straggler” task. To address the problem, researchers have proposed

numerous straggler mitigation techniques, including speculatively re-executing strag-

gler tasks and various relaxations of strict barrier semantics. While these techniques

improve parallel application performance, they incur a cost in terms of the resources

wasted re-executing tasks or waiting. While transient cloud resources’ low list price

is attractive, revocations increase the frequency and severity of stragglers, which de-

creases parallel job performance and increases overall execution cost. In this chapter,

we develop simple analytical models of different straggler mitigation techniques to

better understand the cost of synchronization and compare their cost and perfor-

mance on on-demand and transient resources.

4.1 Motivation
Public cloud platforms provide users access to an essentially unlimited number of

servers on demand without requiring a large capital investment. Thus, enterprises are

increasingly leveraging public clouds to run large-scale workloads, often for distributed

data processing, across hundreds-to-thousands of servers. Since distributed data pro-

cessing platforms, including Hadoop [68], Spark [91], Tensorflow [13], PyTorch [61]

36

and parameter servers (PSs) [54], simplify running jobs across many resources, they

have become the dominant platforms for leveraging cloud resources. Many general

platforms, including Hadoop and Spark, adopt a bulk synchronous processing (BSP)

model [79], which defines synchronization barriers that prevent any task from advanc-

ing beyond specified points until all tasks have reached those points.

Unfortunately, synchronization barriers significantly degrade parallel application

performance by reducing it to that of the slowest “straggler” task. The original work

on MapReduce identified such stragglers, which arise for many reasons [23,27,33,62].

As a result, prior work has developed many techniques to identify and mitigate the

effect of stragglers on performance. While Hadoop and Spark are general data pro-

cessing platforms, recent frameworks, such as Tensorflow and PSs, focus specifically

on distributed machine learning (ML) jobs, given their increasing importance. While

these platforms must also address stragglers, distributed ML jobs enable new ap-

proaches beyond speculative execution [31,44,54].

Importantly, while stragglers significantly degrade application performance, as

indicated above, they also significantly increase application cost when run in the

cloud. Cloud platforms charge users for the time they use a server at fine-grained

intervals, e.g., every second or minute. As a result, any time tasks spend waiting idle

at barriers results in resource waste that translates into a higher cost. In general,

prior work focuses on dedicated clusters in data centers and thus does not consider

cloud platforms’ fine-grained costs when evaluating their techniques.

Yet, cost, and not performance, is the dominant metric when using cloud plat-

forms, as it is nearly always possible to increase performance by acquiring more

cloud resources for an increased cost, although the relationship may not be linear.

However, optimizing cost tends to differ from optimizing performance because cloud

platforms offer servers under multiple different contract options. In particular, cloud

platforms sell their excess capacity at highly discounted prices in the form of transient

37

servers [71], which they may revoke at any time to satisfy new requests for on-demand

servers. While parallel batch jobs are ideal candidates for running on cheap transient

servers, revocations degrade their usable computational capacity.

Currently, cloud platforms do not reveal any information about the revocation

characteristics of transient servers [66]. Thus, transient servers essentially define a

new type of cloud server that yields a probabilistic computational capacity, dictated

by its unknown revocation characteristics, but where users pay a highly discounted

fixed price per unit time. Despite the discounted price, using a transient server could

result in a higher overall execution cost than using an on-demand server if it yields

a low capacity (due to a high revocation rate), and thus takes significantly longer to

complete a job.

For parallel jobs, transient servers also increase the likelihood of stragglers com-

pared to prior work, as any revocation results in straggling, which increases resource

waste and further increases overall cost compared to using on-demand servers. While

straggler mitigation techniques can reduce the cost of stragglers, they each impose

their own cost, making it unclear which technique is optimal and whether any provide

a net cost benefit. To better understand the design space, we develop simple analyt-

ical models to quantify and compare the expected performance and cost of executing

parallel jobs using different straggler mitigation techniques on both on-demand and

transient cloud resources.

4.2 Model Overview
We first provide an overview of our basic model, and then discuss representative

baseline values for its parameters.

38

Name Parameter Units Range
Workload W #Operations W ≥ 0
Performance s #Operations/time 0 < s ≤ 1
Price p $/time c > 0
Parallelism k # k > 0
Barriers b # b ≥ 0
Network Overhead n time n ≥ 0
Discount Factor f % 0 ≤ f < 1
Backup Replicas r # r ≥ 0
Staleness Parameter d # 1 ≤ p ≤ b
Drop Parameter N # N ≥ 0
Total Time T time T ≥ 0
Total Cost C $ C ≥ 0

Table 4.1: Name and description of our model’s parameters, including their units and
range.

4.2.1 Basic Model

Table 4.1 shows the name and description of our model’s parameters, including

their measurement units and range.

We assume parallel jobs must complete some workload W that requires executing

some number of abstract operations, which represent a collection of CPU instructions

and I/O operations. Servers execute these operations at a rate s, in operations

per unit time, based on their performance capacity. We normalize s relative to the

capacity of an on-demand server of a specific type, that experiences no revocations.

Thus, on-demand servers of the specified type complete operations at a normalized

rate of s = 1 operation per unit time. For transient cloud servers, we model s as a

random variable, since revocation rates are not revealed by cloud platforms and are

thus opaque to users. Since realistic revocation characteristics are unknown, and for

simplicity, our model assumes transient servers yield a uniformly random performance

s between 0 and 1 with an average performance of s = 0.5.

As with today’s cloud platforms, our model assumes that on-demand servers with

s = 1 incur a fixed-price p in dollars per unit time, while transient servers with

0 < s < 1 are discounted by a factor 0 < f < 1, which results in a fixed-price of

39

Name Parameter Baseline Value
Workload W 8000
Parallelism k 8
Barriers b 500
Network Overhead n 0.175
Discount Factor f 0.9

Table 4.2: Representative model parameter values for baseline job.

(1 − f) × p. Public cloud platforms currently discount transient servers up to 90%,

or f = 0.9. However, note that since we assume transient servers yield an average

performance of only s = 0.5, the discount in the expected cost C to complete a

job, when accounting for the performance overhead of revocations, is actually only

0.5× 0.9 = 45%, as the jobs must run for longer compared to on-demand servers.

We adopt a simple model for parallel jobs: their total workload W is initially

divided evenly across b barrier intervals and k parallel tasks running on separate

(on-demand or transient) servers. Our model also assumes every barrier incurs some

network overhead to communicate its results to other tasks. We model this overhead

per barrier as being linear in the number of parallel tasks, as suggested in prior

work [44], resulting in a total delay across all barriers of n × b × k, where n is

a constant representing network overhead. Given our model above, we compute a

parallel job’s expected running time T and cost C to execute a workload W . The

running time is simply the sum of the time for computing between barriers, including

the time any servers spend waiting, and for communicating at barriers. Thus, using

our notation from Table 4.1, we derive the expected running time as below.

T = W

s× k
+ (n× b× k) (4.1)

C = (1− f)× p× k × T (4.2)

40

4.2.2 Representative Baseline Parameter Values

Our model above includes many parameters that affect a parallel job’s completion

time and cost. Rather than explore the entire parameter space, we define representa-

tive values for these parameters to serve as a baseline for comparison. Table 4.2 shows

these representative values. We extract values for workload (W), degree of parallelism

(k), number of barriers (b), and network overhead (n) from experiments performed

in recent work on stale synchronization for distributed ML [44]. This representative

parallel job took ∼1700 seconds to complete using 8 parallel tasks (k = 8), 500 bar-

riers (b = 500), and a network overhead constant of 0.175 seconds (n = 0.175). This

results in a workload W of 8000 in our model when run on homogeneous on-demand

servers using BSP, assuming no stragglers.

As with any model, ours is not perfect and does not capture many job and resource

characteristics that impact performance and cost. For example, unlike prior work, we

only model stragglers caused by transient server revocations, and not other reasons.

We also do not model the effect of different synchronization approaches on algorithmic

running time and correctness. As a result, we intend our analysis to only highlight

trends in job performance and cost for different synchronization approaches as the

parameters change with a focus on scalability, i.e., an increasing degree of parallelism

(k). Finally, we do not intend our model to be predictive, and thus, in practice, the

precise performance and cost for even our baseline job may differ from our model’s

estimate.

4.3 Comparing Synchronization Models
Given the model from the previous section, we derive the expected running time

T and cost C to execute a parallel job on on-demand and transient servers using

different synchronization models and straggler mitigation techniques.

41

A

B

C

D

W/b W/b

Figure 4.1: Parallel job using BSP on on-demand servers.

4.3.1 BSP on On-demand Servers

The simplest case is to use bulk synchronous processing (BSP) on on-demand

servers, as done by Hadoop, Spark, and other distributed data processing platforms.

Since, in our model, on-demand servers experience no revocations, they exhibit no

stragglers, and thus we do not employ any straggler mitigation technique in this case.

Figure 4.1 depicts a parallel job using BSP on homogeneous on-demand servers, where

each horizontal progress bar is a task running across time on a different server, and

the vertical dotted lines represent barriers. The W
b

terms above the progress bars

represent the expected work done by all tasks over each barrier interval. We simplify

Equation 4.1 and Equation 4.2 by setting s = 1 and f = 0 for on-demand servers,

yielding an expected1 running time using BSP on on-demand servers as follows.

T = W

k
+ (n× b× k) (4.3)

C = p× k × T (4.4)

Figure 4.2 then plots the speedup (left y-axis) and cost (right y-axis) of executing

our representative parallel job from Section 4.2.2 as k increases. Here, the speedup

and cost is normalized relative to their values when running the job on a single on-

demand server with no barriers, i.e., s = 1, k = 1, and b = 0. The graph shows that

as we increase k, the speedup, as with any parallel job, increases up to a point where

1In this case, s is actually deterministic.

42

 0

 1

 2

 3

 4

 5

1 8 16 24 32
 0

 2

 4

 6

 8

 10

 12

 14

S
p
e
e
d
u
p
 (

1
X

 o
n
-d

e
m

a
n
d
,
k
=

1
)

C
o

s
t
(1

X
 o

n
-d

e
m

a
n

d
,

k
=

1
)

Degree of Parallelism (k)

Speedup Cost

Figure 4.2: Speedup and cost of executing our representative parallel job using BSP
on on-demand cloud servers as the degree of parallelism increases.

the communication delay at each barrier begins to offset the benefit of using more

resources. In contrast, the overall execution cost C rises dramatically as k increases,

as the increasing communication delays at barriers result in wasted time where the

parallel job is paying for computing capacity but not using it.

Result: Increasing the degree of parallelism k when using on-demand servers with

BSP improves performance up to a point, but at an increasingly high cost that scales

super-linearly.

4.3.2 BSP on Transient Servers

Based on the high cost above of using BSP with on-demand servers, transient

servers are a potentially attractive option for executing large-scale parallel batch jobs

due to their low price. However, as discussed in Section 4.2.1, revocations decrease

their usable performance capacity s, which we model as being uniformly random in

the range [0, 1]. Importantly, recall that under BSP the slowest straggler task to

reach a barrier dictates when all other (faster) tasks can proceed past the barrier.

Thus, while cheaper, transient servers cause stragglers that reduce performance by

increasing waiting time and resource waste. We must account for this waste and

transient servers’ discount when computing their expected running time and cost.

43

E[s] = 0.8

E[s] = 0.6

E[s] = 0.4

E[s] = 0.2

A

B

C

D

W/b W/b

Figure 4.3: Parallel job using BSP on transient servers.

 0

 0.25

 0.5

 0.75

 1

1 8 16 24 32
 0

 1

 2

 3

 4

 5

S
p
e
e
d
u
p
 (

1
X

 o
n
-d

e
m

a
n
d
,
k
=

1
)

C
o
s
t

(1
X

 o
n
-d

e
m

a
n

d
,

k
=

1
)

Degree of Parallelism (k)

Speedup Cost

Figure 4.4: Speedup and cost of executing our representative parallel job using BSP
on transient cloud servers as the degree of parallelism increases.

To do so, we must determine the expected speed of the slowest server: since we

assume transient server performance s is uniformly distributed, this is equivalent to

finding the expected minimum value when drawing k uniformly random numbers in

the range [0, 1]. As a result, the expected performance for the fastest of k servers

should be s = k
1+k and for the slowest server should be s = 1

1+k . Since the expected

performance of all transient servers is dictated by the performance of the slowest

expected server, we can reduce Equation 4.1 by simply substituting s with 1
1+k . The

cost C remains the same as in Equation 4.2.

T = W (1 + k)
k

+ (n× b× k) (4.5)

Figure 4.3 illustrates the expected performance s for each transient server when

k = 4 under our model. Here, the progress bar’s width represents each task’s expected

44

performance s,2 and the area of the progress bar represents total work, such that

within each barrier interval, the area of each progress bar is equal.

Similar to Figure 4.2, Figure 4.4 plots the speedup (left y-axis) and cost (right

y-axis) of executing our representative parallel job on transient servers as k increases.

The graph shows that a single transient server incurs an expected speedup of 0.5×

(or equivalently a slowdown of 2×), since it runs at half the expected speed of an

on-demand server. As k increases, similar to above, expected performance increases

up to a point where communication delays offset the benefit of adding more servers.

However, based on Equation 4.5, as k → ∞, the expected speedup with transient

servers can never exceed that of using a single on-demand server with s = 1. However,

despite their low performance, due to their 90% discount, transient servers offer a

lower overall cost than using a single on-demand server for up to k = 8.

Result: Increasing the degree of parallelism k when using transient servers with BSP

improves cost up to a point (based on their discount), but incurs an increasingly high

performance penalty due to their lower and non-uniform expected performance, which

diminishes their cost advantage.

4.3.3 BSP on Transient Servers with Backup Replica Tasks

Prior work proposes handling stragglers by identifying them, submitting a backup

replica task for them, and then accepting the result of whichever task finishes first

(and cancelling the other task) [23, 33, 92]. We model this approach by assuming

that we can always immediately identify the slowest server(s) and submit backup

replica tasks for them. While this assumption is not realistic, since we cannot assess

transient server performance due to their unknown revocation rates, it serves as an

upper bound on the performance and cost advantage of using backup tasks.

2In all figures, we denote performance using E[s] to emphasize that transient server performance
is an expected value, and not deterministic.

45

E[s] = 0.83

E[s] = 0.66

E[s] = 0.5

E[s] = 0.33

A

B

C

D

W/b W/b

E[s] = 0.17 X X
D

Figure 4.5: Parallel job using BSP on transient servers with backup replica tasks
where k = 4 and r = 1.

Figure 4.5 illustrates a parallel job using BSP on transient servers with backup

tasks, where our degree of parallelism k = 4 and the number of replicas r = 1. The

red X represents that the replica task is cancelled once one of the replicas reaches

the barrier. Note that the other replica is cancelled in the second barrier interval to

illustrate that performance of transient servers is probabilistic and can change over

time. As shown, the replica effectively increases the expected speed of the slowest

task from s = 0.17 to s = 0.33, by allowing us to discard the slowest task, but at

an additional cost for the replica. Thus, the expected performance s of the slowest

task is a function of both the degree of parallelism k and the number of replicas r, as

shown below.

s = 1 + r

1 + k + r
(4.6)

T = W (1 + r + k)
k(1 + r) + (n× b× k) (4.7)

C = (1− f)× c× T × (k + r) (4.8)

Figure 4.6 then plots the speedup (left) and cost (right) of executing our parallel

job on transient servers with different numbers of replicas as k increases. Note that

r = 0 represents using BSP on transient servers with no replicas and is equivalent to

Figure 4.4’s speedup and cost. The graph shows that spawning backup replica tasks

46

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 8 16 24 32

S
p
e
e
d
u
p
 (

1
X

 o
n
-d

e
m

a
n
d
,
k
=

1
)

Degree of Parallelism (k)

r=0 r=1 r=4 r=k

 0

 1

 2

 3

 4

 5

1 8 16 24 32

C
o
s
t
(1

X
 o

n
-d

e
m

a
n

d
,
k
=

1
)

Degree of Parallelism (k)

r=0 r=1 r=4 r=k

Figure 4.6: The speedup (left) and cost (right) of executing our representative parallel
job with different numbers of backup replica tasks using BSP on transient cloud
servers as the degree of parallelism increases.

improves both speedup and cost relative to not using replicas. In addition, unlike

with no replicas, backup replica tasks enable the speedup to exceed 1×. However,

replicas introduce some interesting tradeoffs. As expected, using more replicas always

increases the speedup, as shown in the left figure, but the number of replicas that

minimizes the cost is unclear, as r = 4 replicas is cheaper than both r = 1 replica

and the extreme case of r = k replicas. Overall, using replicas widens the values of k

that yield both a speedup and cost advantage compared to not using replicas.

Result: Increasing the degree of parallelism k when using transient servers with BSP

and backup task replicas strictly improves the speedup and cost compared to not using

replicas, and enables speedups greater than 1.

4.3.4 Bounded Staleness on Transient Servers

Another approach for mitigating the impact of stragglers is to enable threads

to perform a bounded amount of work past each barrier [31, 44, 54]. This approach

reduces the time that fast tasks wait for slow ones, and can also reduce communication

costs, as it effectively reduces the number of “real” barriers. The tradeoff is that,

for distributed ML in particular, some tasks may access “stale” global parameter

values that do not reflect all tasks’ updates, which may impact a job’s algorithmic

convergence time and accuracy.

47

E[s] = 0.8

E[s] = 0.6

E[s] = 0.4

E[s] = 0.2

A

B

C

D

W/b W/b

Figure 4.7: Parallel job using bounded staleness on transient servers.

We model this approach by simply introducing a staleness parameter d, similar

to the one in [44], that reduces the number of barriers by a factor d. As a result, the

expected running time T is the same as in Equation 4.5 but substituting b
d
for b, as

shown below. The cost C is the same as Equation 4.2, but includes the T below.

T = W (1 + k)
k

+ (n× b

d
× k) (4.9)

Figure 4.7 illustrates bounded staleness: typically, the barriers would be defined

by when the slowest task, in this case D, completes its work, indicated by the vertical

line in D’s progress bar. However, with bounded staleness, the other tasks may

perform a bounded amount of work past the barrier, which has the effect of making

the effective barrier intervals longer.

Figure 4.8 shows the speedup (left) and cost (right) as the degree of parallelism

changes under bounded staleness with different staleness parameters d. As expected,

increasing the staleness parameter increases the speedup and decreases the cost by

reducing the communication delays. However, even for the maximum value of d = 500,

resulting in a single barrier, there is never a speedup compared to using a single on-

demand server, and the cost becomes higher once k > 8. Bounded staleness is also

worse in terms of both speedup and cost when compared to using backup replica

tasks.

Bounded staleness is really only effective at mitigating the impact of stragglers

that are rare and temporary. In these scenarios, the expected case is similar to

using BSP with on-demand servers. Bounded staleness enables tasks to reduce (or

48

 0

 0.25

 0.5

 0.75

 1

1 8 16 24 32

S
p
e
e
d
u
p
 (

1
X

 o
n
-d

e
m

a
n
d
,
k
=

1
)

Degree of Parallelism (k)

d=1 d=10 d=500

 0

 1

 2

 3

 4

 5

1 8 16 24 32C
o

s
t

(1
X

 o
n

-d
e

m
a

n
d

,
k
=

1
)

Degree of Parallelism (k)

d=1 d=10 d=500

Figure 4.8: The speedup (top) and cost (bottom) of executing our representative
parallel job with different staleness parameters d under bounded staleness on transient
cloud servers as the degree of parallelism increases.

eliminate) any waiting and waste that might occur due to a few temporary stragglers.

In contrast, when analyzing our model of transient servers, stragglers are the expected

case and thus the fast tasks always must eventually wait for the stragglers after

proceeding a bounded amount past a barrier. In this case, bounded staleness provides

little benefit beyond reducing communication delays related to the number of barriers,

which are not dominant at values of k ≤ 32 in the graph.

Result: Increasing the degree of parallelism k when using transient servers with BSP

under bounded staleness is worse in terms of speedup and cost than using backup

replica tasks.

4.3.5 Partial Barriers on Transient Servers

The previous approaches extend the BSP model to mitigate stragglers. Prior work

has also proposed “looser” synchronization models that relax the strict barrier seman-

tics of BSP [15]. As one example, partial barriers mitigates stragglers by releasing

the barrier once some number of tasks have reached it, and then cancels (or drops)

the other tasks and re-distributes their work across all the servers. While prior work

dynamically determines this release point based on the arrival rate of tasks to barri-

ers, our model simply defines a drop parameter N , such that we release the barrier

once k −N tasks have reached it.

49

While such partial barriers are not applicable to all parallel jobs, they are appli-

cable to distributed ML, as well as other examples cited in prior work [15]. Unlike

with prior approaches, modeling partial barriers requires us to shift the cancelled

work of slow tasks to the next barrier interval. Thus, the amount of work assigned

to tasks per barrier interval increases as the job progresses. Our model redistributes

this cancelled work equally across all servers in the next barrier interval. This results

in work from slow tasks being shifted to faster servers.

We derive the expected running time T to complete a parallel job when using

partial barriers as below.

T = W (1 + k)
b× k × (1 +N) × [

b∑
i=2

[b− (i− 1)](N
k

)i−2]+

W (1 + k)
b× k

× [
b∑
i=1

(N
k

)i−1] + (n× b× k) (4.10)

While we omit a full explanation due to space limitations, the first additive (top)

term of this equation is similar to Equation 4.7 for the expected time when using

backup replica tasks. Essentially, by dropping slow tasks, the overall speed becomes

a function of the slowest non-dropped task, which is dictated by N (as opposed to

r in Equation 4.7). However, unlike with backup replicas, we must account for the

dropped work, which gets added to the work done next barrier interval and is equally

distributed across all servers. The summation in the first term is the sum of the

expected work that gets shifted to each barrier interval. The second additive term

represents the expected running time required to finish the job after the final barrier,

which is dictated by the speed of the slowest server, as we do not permit slow tasks

to be dropped after the final barrier. This is why there is no N in the second additive

term. The last term is the same communication delay as before.

The expected cost C is simply (1− f)× p× T × k as in the basic model, as this

approach, unlike with replicas, uses no additional servers. Figure 4.9 illustrates this

50

E[s] = 0.8

E[s] = 0.6

E[s] = 0.4

E[s] = 0.2

A

B

C

D

W/b W/b + W/4b

X
X

Figure 4.9: Parallel job using partial barriers on transient servers.

approach for k = 4, where the slowest task is dropped at the first barrier and its work

is shifted to the next interval, as indicated by the red term added to the work that

interval.

Figure 4.10 shows the speedup (left) and cost (right) of using partial barriers on

transient servers for different values of N . N defines a tradeoff such that higher

values increase the speed of the “slowest” server that reaches the barrier before it is

released, but it requires cancelling and re-executing more work in the next barrier

interval, which increases resource waste. In this case, the extreme points (N = 0 and

N = k− 1) result in nearly the same speedup and cost, while setting N = 1 improves

both the speedup and cost. As shown, N = k/2 results in the optimal speedup and

cost, which are comparable to the speedup and cost when using the optimal number of

backup replica tasks (see Figure 4.6). Since N = 0 represents using BSP on transient

servers, partial barriers offers a clear advantage in terms of speedup and cost, similar

to using backup replica tasks.

Compared to using backup replica tasks, partial barriers offer a slightly lower

maximum speedup (∼2.5× versus ∼3.5×) for a marginally lower cost (∼0.75× versus

∼1×). However, one advantage of partial barriers over using backup replica tasks is

that the latter is speculative, and requires jobs to first identify slow tasks, while the

former is not. One disadvantage of partial barriers is that it may require algorithmic

and implementation changes, since it alters the synchronization model.

51

 0

 0.5

 1

 1.5

 2

 2.5

1 8 16 24 32

S
p
e
e
d
u
p
 (

1
X

 o
n
-d

e
m

a
n
d
,
k
=

1
)

Degree of Parallelism (k)

N=0 N=1 N=k/2 N=k-1

 0

 1

 2

 3

 4

 5

1 8 16 24 32

C
o
s
t
(1

X
 o

n
-d

e
m

a
n

d
,
k
=

1
)

Degree of Parallelism (k)

N=0 N=1 N=k/2 N=k-1

Figure 4.10: The speedup (top) and cost (bottom) of executing our representative
parallel job using partial barriers for different numbers of dropped slow tasks N as
the degree of parallelism increases.

Result: Increasing the degree of parallelism k when using transient servers with

partial barriers strictly improves the speedup and cost compared to BSP, and enables

speedups greater than 1. The approach has a comparable speedup and cost as using

backup replica tasks.

4.3.6 Flexible Synchronization on Transient Servers

Recent work has introduced a flexible synchronous processing model [85]. FSP

proposes a synchronization model that initiates synchronization barriers dynamically

based on the progress of the tasks. Thus, if it identifies stragglers, FSP can dynami-

cally initiate a synchronization barrier, and allow the fast tasks to continue execution.

We model FSP similar to partial barriers, but where jobs do not have to re-execute

the work of “dropped” tasks at each barrier. In this case, once k − N tasks have

reached a barrier, the job initiates synchronization among all k tasks, allowing all

tasks to proceed past the barrier. The remaining work of these slow tasks is then

re-distributed across all the servers. We note that the original FSP model does not

redistribute work, since it targets “naturally occurring” stragglers that are tempo-

rary and rare. Since stragglers due to transient servers are expected and frequent, we

must distribute each interval to gain any speedup. Thus, using FSP in practice on

transient servers would require some changes. As with partial barriers, prior work on

52

E[s] = 0.8

E[s] = 0.6

E[s] = 0.4

E[s] = 0.2

A

B

C

D

W/b W/b + W/8b

Figure 4.11: Parallel job using FSP on transient servers.

FSP uses a more sophisticated approach that dynamically determines barrier points

by monitoring task progress.

Figure 4.11 illustrates using FSP on transient servers with N = 1. The figure is

the same as with partial barriers (Figure 4.9) except that the additional work shifted

to the next barrier interval is lower, since not all the work has to be redone. In both

cases, the expected case is that half the work assigned to the N slowest servers is

completed. Thus, the expected running time below is equivalent to that of partial

barriers (from Equation 4.10), except that FSP only has to shift and re-distribute the

remaining half of the work to be completed in the next barrier interval. This is the

reason for the additional 2 in the denominator compared to Equation 4.10.

T = W (1 + k)
b× k × (1 +N) × [

b∑
i=2

[b− (i− 1)](N2k)i−2]+

W (1 + k)
b× k

× [
b∑
i=1

(N2k)i−1] + (n× b× k) (4.11)

Figure 4.12 shows the speedup (left) and cost (right) of using FSP on transient

servers for different values of N . Of course, FSP is strictly better than partial barriers

because it is equivalent, except that it does not waste resources re-executing work.

In addition, FSP offers a maximum speedup near that of using backup replica tasks,

but for a lower cost (see Figure 4.5).

While FSP offers the best performance and cost, it does pose some challenges.

In particular, FSP was developed in the context of distributed ML, and, as with

53

bounded staleness and partial barriers, may impact algorithmic convergence time

and accuracy, which we do not model. In addition, as with partial barriers, FSP

is a new synchronization model that likely requires algorithmic and implementation

changes. Prior work has only applied FSP to specific problems, e.g., Expectation-

Maximization (EM) [85] and Stochastic Gradient Descent [93]. As a result, FSP’s

generality is not yet clear.

Result: Increasing the degree of parallelism k when using transient servers with FSP

yields the best speedup and cost among the straggler mitigation techniques we model.

4.3.7 Summary

Our analysis shows that users must jointly consider both speedup and cost when

deciding whether and how to use transient servers for parallel jobs. While different

users may value speedup and cost differently, Figure 4.13 plots the speedup/cost ra-

tio for all of the straggler mitigation techniques above as the degree of parallelism

k increases Since a large speedup and a low cost are preferable, higher values of the

speedup/cost ratio indicate a better “bang for your buck” for parallel jobs. Inter-

estingly, using BSP with on-demand servers is not the worst option, as using BSP

with transient servers and no replicas has a lower speedup/cost for all but the small-

est values of k, despite their high discount. Using partial barriers and using backup

replica tasks offer a speedup/cost ratio in the middle. In this case, we use parameter

values of N = k/2 and r = k, respectively, which yield the maximum speedup/cost

ratio for these techniques. At lower values of k, backup replica tasks offer a higher

speedup/cost ratio, while at larger values of k ≥ 16 partial barriers yield a higher

ratio.

As mentioned above, using FSP with transient servers yields the highest

speed/cost ratio across all values of k. In addition, since the use of backup replica

tasks is not mutually exclusive to using FSP, we were interested in whether com-

54

 0

 1

 2

 3

 4

1 8 16 24 32

S
p
e
e
d
u
p
 (

1
X

 o
n
-d

e
m

a
n
d
,
k
=

1
)

Degree of Parallelism (k)

N=0 N=1 N=k/2 N=k-1

 0

 1

 2

 3

 4

 5

1 8 16 24 32

C
o
s
t
(1

X
 o

n
-d

e
m

a
n

d
,
k
=

1
)

Degree of Parallelism (k)

N=0 N=1 N=k/2 N=k-1

Figure 4.12: The speedup (left) and cost (right) of executing our representative par-
allel job using flexible synchronous processing (FSP) for different numbers of dropped
slow tasks N as the degree of parallelism increases.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

1 8 16 24 32

S
p
e
e
d
u
p
/C

o
s
t

Degree of Parallelism (k)

On-demand BSP
Transient BSP (r=0)
Transient BSP (r=k)

Transient FSP (N=k-1)
Partial Barrier (N=k/2)

Figure 4.13: The speedup/cost ratio for executing our baseline parallel job for different
straggler mitigation techniques on on-demand and transient servers.

bining these techniques offered any advantage. We omit the equation for T for this

hybrid technique, as it is complex, but show the result in Figure 4.14 for different

combinations of N and r. In all cases, we set N = k − 1, since it is optimal, as there

is no reason for any task to ever wait with FSP. The result shows that using backup

replicas in combination with FSP does not offer an advantage in overall speedup/cost.

Replicas only add an additional cost, but offer no advantage in terms of running time,

since FSP need not wait on stragglers anyway.

55

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

1 8 16 24 32

S
p
e
e
d
u
p
/C

o
s
t

Degree of Parallelism (k)

On-demand BSP
Transient BSP (r=0)
Transient BSP (r=k)

Transient FSP (N=k-1)
Partial Barrier (N=k/2)

Figure 4.14: The speedup/cost ratio for executing our baseline parallel job for a
hybrid straggler mitigation technique that combines FSP with backup tasks.

4.4 Conclusion and Status
In this chapter, we analyze the speedup and cost of executing parallel batch jobs,

such as distributed ML jobs, on highly discounted transient cloud resources using

many different straggler mitigation techniques. We do so in the context of a simple

probabilistic model for transient server performance. Using this model, we derive the

expected running time and cost for straggler mitigation techniques proposed in prior

work for a simple parallel job with synchronization barriers. A key difference between

our work and prior work on straggler mitigation is our focus on cost, rather than per-

formance, on cloud platforms. Our analysis shows that i) transient servers offer com-

plex tradeoffs compared to using on-demand servers, and can result in higher overall

costs despite their highly discounted price due to their probabilistic performance; ii)

common approaches to straggler mitigation, which is a well-studied problem, are less

effective using transient servers that cause frequent and severe stragglers; and iii) a

recent approach to flexible synchronization [85, 93] offers the best speedup per cost

across all the techniques we study.

Status. Additional details on the analysis, and models are in [22].

56

CHAPTER 5

OPTIMIZING LONG-TERM BATCH WORKLOADS ON
MIXED VM PURCHASING OPTIONS

Cloud platforms offer the same VMs under many purchasing options that specify

different costs and time commitments, such as on-demand, reserved, sustained-use,

scheduled reserve, transient, and spot block. In general, the stronger the commitment,

i.e., longer and less flexible, the lower the price. However, longer and less flexible time

commitments can increase cloud costs for users if future workloads cannot utilize the

VMs they committed to buying. Large cloud customers often find it challenging to

choose the right mix of purchasing options to reduce their long-term costs, while re-

taining the ability to adjust capacity up and down in response to workload variations.

In this chapter, we design policies to optimize long-term cloud costs by selecting a mix

of VM purchasing options based on short- and long-term expectations of workload

utilization.

5.1 Policies Overview
Given a set of cloud VM types (of different fixed sizes) offered under the purchasing

options in Chapter 2, our problem is to select the resources and purchasing options

that minimize the long-term cost based on both short- and long-term expectations of

workload utilization. We assume our workload is composed of batch job submissions

from users that include the requested number of cores and memory.

To simplify the problem, we first consider an optimistic optimal offline approach

which assumes perfect knowledge of the future workload as well as the ability to allo-

cate fractional demand to fractional resources where possible. That is, even though

57

our workload’s demand is composed of discrete jobs, we assume that discrete jobs

can be sub-divided across resources, and purchasing options. Similarly, even though

cloud VMs are mostly composed of discrete resource bundles (types), we assume re-

sources (cores and memory) can be purchased separately and bundled together in

any quantity. Solving this offline case provides an optimistic optimal upper bound on

the realizable cost savings in practice. We then present our online approach, which

removes the assumptions above of perfect future knowledge and fractional demand.

Our online policy is similar to the offline policy, but substitutes imperfect predictions

of short- and long-term demand (based on historical data) for perfect knowledge and

considers the availability of limited VM types.

5.2 Optimistic Optimal Offline Approach
We model the workload trace in terms of the aggregate resource demand per

unit time from all active jobs within that time unit; the aggregate resource demand

is defined to be the total cores and memory requested by all active jobs within a

time unit. Thus, the workload can be viewed as a time-varying function of resource

demand. The intuition for our optimal offline approach is as follows: for each unit of

resource demand, e.g., cores and memory requested by jobs, we compute the cost of

the necessary resources under each purchasing option to satisfy that unit of demand

normalized by its utilization over the length of the commitment. For example, for one

unit of resource demand and a 1-year reservation, we normalize the cost based on the

utilization over a year. Thus, if the reservation’s cost is 60% of the on-demand cost,

but the utilization over the year is only 60%, then its normalized cost is the same as

the normalized on-demand cost. Given the normalized costs for various options, we

select the cheapest option for each unit of resource demand until the demand across

time slots is satisfied.

58

Our general strategy applies directly when considering the relative cost of on-

demand, 1- and 3-year reserved, scheduled reserved, and the sustained-use options.

In these cases, we can directly compute a optimistic optimal normalized cost for the

resources to satisfy each unit of demand under our assumption of a fractional supply

and demand. However, the normalized cost of the transient and spot block options is

directly a function of each job’s length, which prevents us from directly computing it

under the assumption of a fractional resource demand. For example, for the transient

option, the longer the job, the more revocations it will experience and the greater

its normalized cost. Similarly, a job that runs for 3 hours on a 3-hour spot block

resources has a higher normalized cost than a job that runs for 1 hour on a 1-hour

spot block resource. Thus, when computing the normalized cost for these options, we

must consider job length. As a result, in the offline case, we first assign a normalized

cost for using the transient and spot block for each job, as discussed below, before

considering the other purchasing options.

Transient. As prior work has discussed [66,74], the normalized cost of using transient

VMs is a function of not only their relative cost per unit time and the job’s length,

but also the revocation rate and the use of fault-tolerance mechanisms to mitigate the

impact of revocations. In general, the longer a job, the more likely it is to experience a

revocation. However, precise revocation rates (and their distribution) are not publicly

known, and likely differ across providers.

Our analysis assumes a more basic use of transient VMs that assumes no check-

pointing by restarting a job after each revocation. In particular, to ensure a job

assigned to a transient VM completes, once it has experienced a revocation, we just

restart it on an on-demand VM. Under this simple model, we compute the expected

cost E[C(T)] to execute a job of length T using the transient option as below. We

assume that ptransient and pondemand are the relative transient and on-demand prices,

59

R(T) is the probability the job will be revoked before it completes at time T , and

Erevoke[T] < T is the expected time a revoked job runs.

E[C(T)] = (1−R(T))(ptransient × T)+

R(T)(ptransient × Erevoke[T] + pondemand × T)
(5.1)

The first term represents the total cost to run the job if it is not revoked, while the

second term represents the total cost to run the job if it is revoked. The normalized

cost per unit time is then the expected cost to execute the job E[C(T)] divided by the

expected running time, which is (1−R(T))×T +R(T)× (Erevoke[T] +T). Of course,

our approach is dependent on the revocation characteristics. For the offline case, we

assume we know each job’s running time, as well as the revocation characteristics,

and can directly compute the normalized cost per job per unit time.

Spot Block. Spot blocks can be purchased in 1-, 2-, 3-, 4-, 5-, or 6-hour increments

with a higher discount applied to shorter increments. In the offline case, since we know

the duration of each job, we simply map jobs to the smallest spot block increment

that is greater than their running time, and compute the corresponding normalized

cost per unit of time based on the increment’s discount. Jobs longer than 6 hours

cannot be run using the spot block option. As we discuss, for the online case, we must

predict each job’s running time based on historical data to compute this normalized

cost.

On-demand. Computing the normalized cost for on-demand VMs is straightforward:

we simply assign the on-demand cost to each unit of resource demand.

Sustained-Use. The sustained-use discount for an on-demand server applies regard-

less of when a unit of resource demand is used within a month. Thus, to compute

it, we need only compute the average resource demand over each month-long billing

period. The full discount applies to the floor of this average, while a partial discount

60

Time

Re
so

ur
ce

 D
em

an
d

Fixed

On-demand

Utilization = 40%

U
tilization

Figure 5.1: Illustration of the utilization of each unit of resource demand for normal-
izing the reserved option cost.

applies to the remainder of the average. Note that the sustained-use discount applies

to the on-demand cost, so, when applied, it always results in a normalized cost equal

to or less than the on-demand cost.

Reserved. In the offline case, when normalizing the cost of the reserved option,

we assume a fractional resource, as mentioned above, that aggregates the resource

demand of all jobs. Figure 5.1 shows an illustrative example of the aggregate resource

demand over time for a batch trace. For each unit of stacked resource demand starting

at 0 on the y-axis, we compute the utilization of that unit of demand over both the

1- and 3-year offered reserved terms. For the 1- and 3-year terms we assign the same

normalized cost per unit of time to each unit of stacked resource demand starting at 0

based on its utilization across the term. This has the effect, as in Figure 6.1, of drawing

a line at each unit of demand on the y-axis, computing its utilization, and then

normalizing its cost across the term length based on the utilization. Since the 1- and 3-

year terms are 60% and 40% of the on-demand cost as shown in Table 2.1, the resource

utilization must be at least 60% and 40%, respectively, to have a normalized cost less

than the on-demand cost. The higher the utilization, the lower the normalized cost,

such that 100% utilization yields the entire discount.

Scheduled Reserved. Computing the normalized cost of the scheduled reserve

option is similar to that of reserved, in that we normalize the cost relative to the

utilization over the scheduled reserved’s 1-year term. However, unlike with the re-

61

served option, which is essentially a single schedule, with scheduled reserved we must

consider every possible daily, weekly, and monthly schedule. There may be multiple

non-overlapping schedules for each unit of demand over a 1-year term that yield a

lower cost than either the on-demand or reserved price.

To find these schedules, we observe that the problem reduces almost directly to

the classic weighted job scheduling problem, which has an efficient and well-known

dynamic programming solution that runs in O(n log n) time (and is often used in

tutorials to teach dynamic programming1). The weighted job scheduling problem

takes as in put a set of n jobs that each have a start and end time, as well as an

associated value. Given multiple, possibly overlapping jobs in time, the problem is

to select the non-overlapping set of jobs, such that we maximize overall value. In our

approach, each possible multi-hour scheduling interval is akin to a job, the normalized

discount of that schedule is akin to the value, and the output is the cheapest set of

schedules. Thus, we can solve the problem directly, given the normalized cost for

each schedule.

Selecting Purchasing Options. To compute our optimistic offline optimal cost,

we select the lowest cost for each unit of stacked resource demand, starting at 0. We

first determine the lowest of the normalized transient, spot block, on-demand, and

scheduled reserved options for each unit of resource demand for each unit of time

before considering the reserved options. For the reserved options, we first consider

the 1-year option. We compute the average cost of the lowest cost non-reserved

options above for each unit of resource demand over each 1-year term. Since we can

purchase a reserved option at any time, we use a 1-year sliding window that performs

this comparison over each 1-year interval in our data. Assuming there is >3 years of

data available, we next apply the same approach to compute the normalized 3-year

1https://www.geeksforgeeks.org/weighted-job-scheduling-log-n-time/

62

https://www.geeksforgeeks.org/weighted-job-scheduling-log-n-time/

reserved cost. We compare this normalized 3-year cost with that of the lowest of

the 1-year reserved option and non-reserved options, and take the lowest value. We

can apply a sliding window depending on data availability. Our approach above will

yield the lowest cost purchasing option for each unit of stacked resource demand over

time under our assumptions of perfect future knowledge and fractional supply and

demand.

5.3 Practical Online Approach
Since our optimistic assumptions for the offline approach are not practical, we

adapt it to an online approach and evaluate it using 4 years of job submission data

from a large-scale batch cluster. Our practical online approach is essentially the same

as our offline approach, but utilizes predictions of short- and long-term demand in

the place of perfect knowledge, and does not assume a fractional supply and demand.

Since our predictions are imperfect, our online approach is a heuristic. However,

even given perfect future knowledge of the workload, the problem is NP-hard, as

removing the fractional assumption makes it strictly harder than the NP-hard bin

packing problem.

Our predictions of long-term demand are straightforward: we simply take prior job

submission data and apply our offline approach from the previous section to estimate

the amount of 1-year, 3-year, and scheduled reserved capacity to purchase. While

evaluating we make these decisions based on the first year of job data, and evaluate

our online approach over the next 3 years. Since we do not have 3 years of prior

data, we simply assume our training year will repeat to estimate the 3-year reserved

capacity to purchase. The accuracy of such long-term predictions is a function of

whether a workload changes significantly over time. Our goal here is not to develop

the most accurate prediction model, rather it is to quantify the long-term cost benefits

of mixing different contract types using reasonable predictions.

63

Is there

enough

Reserve idle

capacity?

Select Reserve

Job

(CPU: x,
Mem: y)

Yes No

Predict Job

Runtime (Tp)

Select On-
demand VM

E[C[T]] <
Pond

Yes

Select Transient
VM

No

Figure 5.2: Simple flow chart for selecting the VM purchasing option online when
only reserved, transient, and on-demand are available, as with Microsoft.

The offline approach separately determines the amount of cores and memory to

purchase under each of the reserved purchasing options. In practice, we must map

these cores and memory to specific types of VMs. To do this, we simply purchase the

largest VM types available that have a ratio of cores to memory that is closest to the

offline ratio for each purchasing option.

After purchasing reserved capacity at the outset, as jobs arrive online, we schedule

them on available reserved capacity based on their requested cores and memory. If

there are no available resources to execute a job, we dynamically acquire additional

non-reserved resources to execute the job. Since we are using the cloud, our batch

system is not limited to a fixed-size cluster, and thus jobs never need wait in a

queue for resources. When dynamically acquiring non-reserved resources, we must

determine whether to purchase on-demand, transient, or spot block.2

Given a prediction of the job’s running time (as well as the transient revocation

characteristics), we compute the normalized cost of each option and select the lowest

cost. We compute this normalized cost for every available VM type based on the job’s

requested cores and memory. The lowest cost VM type is generally the smallest one

2The sustained-use discount is always automatically applied to on-demand when used, so we need
not consider it here.

64

that has the requisite cores and memory, although a discrete set of VM types results

in wasted resources that increase the normalized cost. Figure 5.2 depicts a simple

flow chart for the online case where only reserved, transient, and on-demand options

are available (as with Microsoft). Here, E[C[T]] is the normalized cost to execute a

job of length T on a transient VM, while Pond is the expected cost to execute it on

an on-demand VM.

Job Runtime Predictions. We develop a simple regression model based on a year

of historical job submission data to predict job runtime. As above, our goal is not to

develop the most accurate job runtime prediction model, but to quantify the long-

term cost benefits of mixing different contract types using reasonable predictions.

Each job in our batch trace, lists a user ID, job submission time, requested cores and

memory, and maximum runtime limit. The maximum runtime limit is supplied by

the user and represents the maximum time the job can run before the system kills

it—it is not a job runtime estimate. We use these attributes as the input features to

a regression model with the job runtime as the output variable. Once trained, the

model supplies a job runtime prediction given a new job’s input features.

5.4 Implementation
We implemented both the optimistic offline approach (§5.2) and practical online

approach (§5.3) in Python. The offline implementation takes as input a trace of job

submissions, and uses it to compute the mix of VM purchasing options that minimize

the cost based on the assumptions in §5.2. Each job entry includes its submission time,

requested number of cores and memory, and running time. The online implementation

also takes as input a prior year’s trace of job submissions, and uses it to determine

the amount of 1-year, 3-year, and scheduled reserved capacity, assuming subsequent

years will be similar to the prior year. The online implementation also regresses on

this data to build its job runtime prediction model.

65

We evaluate our approach in simulation using a 4-year trace of job submissions

from a 14k batch cluster for a major state University system (serving multiple cam-

puses). In addition to the job submission time and requested cores and memory, each

job entry also includes a user ID and maximum running time limit. For job runtime

predictions, we use ridge regression using these 4 input features and a job’s actual

running time as the output feature. For the online approach, we use the first year

of jobs (2015) for training, and then evaluate on the next 3 years (2016-2018) of job

submissions. We evaluate the offline approach on the same 3 years.

5.5 Evaluation
Our evaluation examines the cost benefits of using a mix of VM purchasing options

in both the offline and online cases compared to using a single purchasing option,

either all on-demand or all reserved, for our batch trace. We examine the cost benefits

for the set of purchasing options offered by each cloud provider. Specifically, Microsoft

offers on-demand, 1- and 3-year reserved, and transient. Google offers the same

as Microsoft but also with a sustained-use discount and a customized option, while

Amazon also offers the same as Microsoft but with scheduled reserved and spot block.

In addition, Google’s variant of the transient option has a maximum lifetime of 24

hours, while Amazon and Microsoft’s variant has no maximum lifetime.

Since our focus is on the benefits of different purchasing options, we use the same

standard set of VM types and prices across all providers. As a result, our evaluation

does not reflect the absolute cost difference between providers, but the relative benefits

of each provider’s set of purchasing options. We consider standard VM types with

1, 2, 4, 8, 16, 32, and 64 cores with 4, 8, 16, 32, 64, 128, and 256 GB memory,

respectively. We assume the cost of a 1 core, 4GB VM is $0.0481 per hour, which

is equivalent to an m5.large VM in Amazon with larger capacity VMs priced as a

simple scalar multiple.

66

0

10

20

30

40

50

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

x10e3

average ---

C
o

re
 D

e
m

a
n

d

Time

cores

 60

 80

 100

 120

2016 2017 2018 2016-2018

J
o
b
s
 (

%
)

Year

0-6hrs 0-24hrs 0-96hrs

96.80 97.42
94.96

96.40
98.84 99.17 98.90 98.99

99.87 99.86 99.93 99.89

(a) Resource Demand (b) Job Runtimes

Figure 5.3: (a) The hourly core demand over 2018. The average over the year is 4380
cores. (b) Job runtime for different length jobs each year in our batch trace.

5.5.1 Batch Trace Characteristics

Figure 5.3 (a) shows the hourly core demand on average for our batch cluster over

the year 2018. While our cluster has 14k cores, the core demand peaks at nearly 43k

cores, indicating that jobs may periodically experience long waiting times. In the

cloud, these waiting times are not necessary as there is no resource constraint. As

might be expected, the average core utilization over the year is much less than the

peak, at only 4380 cores, resulting in a 31% average utilization. Figure 5.3 (b) shows

that a high percentage (>96%) of the jobs are less than 6 hours in length, and only

a small percentage are longer. The number of jobs that run longer than 96 hours is

quite small at 0.11%.

5.5.2 Mixing VM Purchasing Options

Below, we evaluate the cost savings from mixing all the VM purchasing options

in both the online and offline case.

Optimistic Offline Approach. Figure 5.4 shows the cost of mixing VM purchas-

ing options using our optimistic offline approach from 2016-2018 for the sets of VM

purchasing options offered by the different cloud providers. Figure 5.5 shows the av-

erage percentage mix of each purchasing option over the 3-year period. We see that

the cost relative to on-demand is 35% for Amazon and Microsoft, but only 41% for

Google-Standard, which includes the sustained-use discount but does not permit the

67

 0

 10

 20

 30

 40

 50

 60

2016 2017 2018C
o
s
t
(%

 O
n
-D

e
m

a
n
d
)

Year

Microsoft

Google Standard

Google Customized

Amazon

Figure 5.4: Cost for executing our batch trace using all purchasing options from
the different cloud providers in the optimistic offline case as a percentage of using
on-demand only.

 0

 20

 40

 60

 80

 100

 120

Microsoft Google

Standard

Google

Customized

Amazon

C
o
s
t
(%

)

Transient Reserved On-demand

29.00

14.21
17.33

29.00
23.18 23.68

28.87
23.18

47.81

62.09

53.65
47.81

Figure 5.5: Mix of VM purchasing options used over 2016-2018 in the offline case
(with the transient option).

customized option. The savings for Google-Customized then drops to 33.62% of the

on-demand cost.

The Amazon and Microsoft cases are the same because Amazon’s additional

options—spot block and reserved—are never used in the offline case, and we treat

the transient case the same for both Microsoft and Amazon. Spot blocks never offer

a cost benefit for short 1-6 hour jobs over transient, although they may be used in

practice based on a job’s requirements, i.e., if it cannot risk a revocation. Scheduled

reserved is never selected, largely because its discount is too low (5-10%). Google’s

set of purchasing options is cheaper due to both their sustained-use discount and

customized option. Adding the sustained-use discount in Google-Standard results

in a cost 41% the on-demand cost, while also adding the customized option reduces

68

 0

 10

 20

 30

 40

 50

 60

2016 2017 2018C
o
s
t
(%

 O
n
-D

e
m

a
n
d
)

Year

Microsoft

Google Standard

Google Customized

Amazon

 0

 25

 50

 75

 100

 125

 150

 175

 200

2016 2017 2018

C
o
s
t
(%

 O
ff
lin

e
)

Year

Microsoft

Google Standard

Google Customized

Amazon

(a) (b)
Figure 5.6: Cost for executing our batch trace using all purchasing options from the
different cloud providers in the online case as a percentage of using on-demand only
(a) and optimistic offline cost (b).

this to 33.62%, despite the 5% increase in price. Nearly every job makes use of the

customized option, as most are not within 5% of the size of a standard VM.

 0

 20

 40

 60

 80

 100

 120

Microsoft Google

Standard

Google

Customized

Amazon

C
o
s
t
(%

)

Transient Reserved On-demand

36.97

20.54

30

36.97

26.27
21.59 20.88

26.27

36.75

57.86

48.22

36.75

Figure 5.7: Mix of VM purchasing options used over 2016-2018 in the offline case
(with the transient option).

Practical Online Approach. Figure 5.6 shows the cost of our online approach

both as a percentage of the cost of only using the on-demand option (a), and as a

percentage of the optimistic offline cost (b). Figure 5.7 shows the average percentage

of each VM purchasing option over the 3-year period. The mix of purchasing options

is similar to the offline approach above, although the percentage of transient VMs used

decreases due to inaccurate job runtime predictions, as we discuss below. As above,

the online approach never selects the spot block option or uses scheduled reserved.

As a result, both Amazon’s and Microsoft’s results are the same in the online case

as well. Also as before, Google-Standard and Google-Customized results in slightly

69

 0

 20

 40

 60

 80

 100

 120

Microsoft Google

Standard

Google

Customized

Amazon

C
o
s
t
(%

)

Spot block Reserved On-demand

0 0 0

13.55

36.91

27.27
31.51 32.80

63.09

72.73
68.49

48.81

 0

 20

 40

 60

 80

 100

 120

Microsoft Google

Standard

Google

Customized

Amazon

C
o
s
t
(%

)

Spot block Reserved On-demand

36.97

20.54

30

36.97

26.27
21.59 20.88

26.27

36.75

57.86

48.22

36.75

(a) Offline Case (b) Online Case
Figure 5.8: Mix of VM purchasing options used over 2016-2018 in the (a) offline case
and (b) online case without the transient option.

lower relative costs in (a). Figure 5.6(b) compares the online approach for each set of

purchasing options with the respective offline approach. Google’s online cost is the

highest relative to its offline cost due to incorrect job runtime predictions combined

with its short maximum lifetime for transient VMs. The online approach results in

35% greater cost compared to their respective optimistic offline approach for Amazon

and Microsoft, while it results in 55% greater cost for Google.

5.5.3 Removing Transient VMs

We repeat the evaluation above, but in this case without the transient option. We

do this for two reasons. First, transient characteristics are not publicly known, and

have a significant impact on our results. Second, not all jobs can run on transient

VMs due to having strict deadlines or not being able to gracefully handle revocations.

Optimistic Offline Approach. Figure 5.8 (a) shows the cost of mixing VM pur-

chasing options without the transient option in the optimistic offline case. The figure

shows that the overall cost increased relative to with the transient option because

transient VMs were by far the cheapest option. However, this does not occur to

a significant degree, primarily because not a large fraction of the CPU-hours come

from jobs that are less than 6 hours in length (see Figure ??(b)), which mitigates

the impact of spot block. However, the availability of spot block for Amazon with no

low cost replacement for transient at either Google or Microsoft results in Amazon

70

having the lowest overall cost. Their cost savings exceed Google even when using the

sustained-use discount and the customized option.

Practical Online Approach. Figure 5.8 (b) then shows the same results when using

our online approach as a percentage of the on-demand cost. The benefits of spot block

decrease when using the online approach, since the predictions of job running times

are not accurate. Due to the reduced benefit of spot block, Google’s sustained-use

discount and customized option enable it to achieve the lowest cost.

5.6 Related Works
There has been significant prior work in optimizing particular workloads and ap-

plications for using different VM purchasing options. However, most of this work

focuses on optimizing a single type of purchasing option and comparing it with using

on-demand, rather than looking at all of them in combination. Perhaps most relevant

to our work is HCloud [34], which focuses on combining the reserved and on-demand

purchasing options. However, HCloud primarily focuses on determining how to map

jobs to on-demand and reserved VMs based on their sensitivity to performance inter-

ference. As a result, HCloud focuses on small-scale workloads and does not evaluate

their approach using a real large-scale workload over a multi-year period, nor optimize

for other purchasing options.

There is a large body of work on optimizing for other purchasing options, including

transient VMs [63, 64, 74, 89, 90], the sustained-use discount [94], and burstable VMs

(which we consider to be a different VM type) [82]. There is also a large body of

related work on selecting the appropriate VM type for a particular application or

workload [16,47,80,88]. Our work differs from this work in that we focus on selecting

the best purchasing option given accurate knowledge of a job’s resource requirements.

71

5.7 Conclusion and Status
Cloud platforms offer the same VMs under a variety of purchasing options that

specify different costs and time commitments, such as on-demand, reserved, sustained-

use, scheduled reserve, spot/preemptible, and spot block. Choosing from among these

options can be challenging. To address this problem, in this work, we design policies

to optimize long-term cloud costs by selecting a mix of VM purchasing options based

on short- and long-term expectations of workload utilization. We evaluate our policies

on a batch job trace spanning 4 years from a large shared cluster for a major state

University system that includes 14k cores and 60 million job submissions, and show

how these jobs could be cost-effectively executed in the cloud using our approach.

Our results show that our policies incur a cost within 41% of an optimistic offline

optimal approach, are 50% less than solely using on-demand VMs, and 79% less than

using reserved VMs.

Status Additional details on the analysis, and models are in [17].

72

CHAPTER 6

OPTIMALLY PROVISIONING FIXED RESOURCES FOR
CLOUD-ENABLED SCHEDULERS

While cloud platforms enable users to rent computing resources on demand to

execute their jobs, buying fixed resources (or reserved VMs) is still much cheaper

than renting if their utilization is high. Thus, optimizing cloud costs requires users

to determine how many fixed resources to buy versus rent based on their workload.

In this chapter, we introduce the concept of waiting policy for the cloud-enabled

schedulers and show that optimizing the cloud costs depend on it. We define multiple

waiting policies and develop simple analytical models to reveal their key tradeoffs

between fixed resource provisioning, cost, and job waiting time.

6.1 Motivation
Cloud platforms enable users to rent computing resources on demand, in the form

of virtual machines (VMs), to execute their jobs. Cloud-enabled infrastructure uses

similar software systems as private clusters to manage resources at large scales such

as Slurm [8] or Kubernetes [30]. Users submit jobs, with specified resource require-

ments, to these schedulers, which either allocate idle resources to execute them or

force them to wait for idle resources to become available. Typically private clusters

are sized for their peak demands, and as a result they often have low average utiliza-

tion (<30%) but may periodically experience large bursts in job arrivals that result

in long job waiting times.

As job schedulers migrate to the cloud, they have many options for optimizing cost

and reducing job waiting times. Acquiring on-demand VMs dynamically allows users

73

to pay for the resources only when jobs need them and hence cloud’s operating costs

are often much lower than the capital cost of an under-utilized fixed-size cluster, since

the latter must effectively “pay” when resources are idle. In addition, cloud provides

the illusion of infinite scalability, where jobs may never need to wait for the resources.

Importantly, however, buying fixed resources (or reserving them for long periods)

is significantly cheaper than renting resources on demand if the fixed resources are

highly utilized. Cloud pricing models in 2 make this clear, as reserving a VM for 1-3

year costs 40-60% less per-hour than renting an equivalent on-demand VM over the

same time period. For example, reserving a m5.large VM from Amazon Web Services

(AWS), which includes 2 cores and 8GB RAM, for 3 years currently costs $988, while

renting it on demand costs $0.096/hour or $2,522.88 over the same period. Of course,

fixed resources are only cost-effective if they are highly utilized: if jobs only execute

on the m5.large for less than a third of the time, the on-demand option is cheaper

(at a cost of $840.96). Thus, a mixed infrastructure that satisfies some baseload with

highly-utilized fixed resources, and satisfies load bursts using on-demand resources

can decrease cost. Notably, hybrid clouds, which combine fixed private resources

with cloud bursting, use this approach [41, 57], as do many companies, which both

buy reserved VMs and dynamically rent on-demand VMs [45].

6.2 Introduce Waiting Policy
A waiting policy is the dual of a scheduling policy: while a scheduling policy

determines which jobs run when fixed resources are available, a waiting policy deter-

mines which jobs wait for fixed resources when they are not available (rather than

run immediately on on-demand resources). Waiting polcy for cloud-enabled scheduler

determines the number of fixed resources to provision in order to optimize the cost.

While there has been decades of work on job scheduling policies, we know of no prior

work that defines or analyzes waiting policies, which are distinct from scheduling poli-

74

cies in that cloud-enabled schedulers define both independently of each other. For

cloud-enabled schedulers, the waiting policy is important, since it dictates the trade-

off between job performance and cost. Our hypothesis is that, by optimizing their

waiting policy, cloud-enabled schedulers can significantly reduce job waiting times,

while mitigating the impact on cost, or vice versa.

Intuitively, the longer jobs are willing to wait for fixed resources, the higher their

utilization, and the lower their overall cost. However, as we show, the relationship

and tradeoff between the number of fixed resources, the waiting policy, and the op-

timal cost is non-intuitive. To better understand these tradeoffs, we define multiple

fundamental non-selective and selective waiting policies and develop simple analyti-

cal models for them. Non-selective waiting policies apply the same policy to all jobs,

while selective waiting policies apply the policy to only selected jobs based on system

or job characteristics. Our modeling approach extends classic marginal analysis by

combining it with a number of different queuing results and analyses to model cloud

cost under job waiting.

6.3 Background: Marginal Analysis
In economics, marginal analysis examines the additional benefits of some activity

compared to the additional costs incurred by that activity. Determining the optimal

mix of fixed and on-demand resources to execute a workload on a cloud platform to

minimize cost is a classic marginal analysis problem. Given a workload and some

fixed resources capable of servicing a fraction of it, the marginal analysis problem is

to determine whether the additional benefit of acquiring one more fixed resource to

serve (a portion of) the remaining workload outweighs its cost, i.e., the savings from

renting an on-demand VMs to service the same portion.

Figure 6.1 illustrates marginal analysis pictorially for an example workload where

time is on the x-axis and resource demand is on the y-axis. We assume the fixed

75

Time

Re
so

ur
ce

 D
em

an
d

Fixed

On-demand

Utilization = 40%

U
tilization

Figure 6.1: Illustration of utilization for each unit of stacked resource demand and
the break even point at 40% utilization.

(reserved 3yr) and on-demand VMs have the same prices as in Table 2.1. To determine

the optimal mix of fixed and on-demand resources using marginal analysis, we simply

add fixed resources, one at a time, to satisfy each unit of stacked resource demand

in order (starting from 0 on the y-axis) up to the point where the utilization of the

reserved VM equals our break even point on the y-axis, which is 40% (in dark grey).

When the instantaneous demand exceeds the total reserved VMs capacity at the

horizontal line (in light grey), dynamically acquiring and releasing on-demand VMs

to satisfy the remaining workload is cheaper.

More formally, let pf and po denote the price per unit time for a fixed resource (at

100% utilization) and on-demand VM, respectively, let d denote the discount factor

for a reserved VM, such that pf=d× po and 0≤d≤1, and let T denote the workload’s

duration. The cost of adding one more fixed resource s over the workload’s duration

T is pf × T . Now suppose this sth resource operates at utilization ρs when servicing

the remaining workload. Since the scheduler can acquire and release on-demand VMs

at any time, the cost of servicing the remaining workload using an on-demand VM is

ρs×T×po, as the scheduler can acquire the on-demand resource in ρs×T time slots and

release it when idle. Thus, using a reserved VM is only cheaper if pf×T < ρs×T×po.

By substituting pf=d× po, we observe that only when d<ρs, or the discount factor is

less than the utilization of the last reserved VM we added, is acquiring an additional

reserved VM cheaper than using on-demand VMs. Similarly, the cost of provisioning

76

an additional reserved or on-demand VM is equal when ρs=d, or the discount factor

equals the utilization of the last fixed resource. Beyond this break even point, there

is no marginal cost savings from acquiring more fixed resources.

The marginal analysis problem above is straightforward to solve in the context

of a traditional queuing model using classic results by Erlang, assuming arriving

jobs never wait for resources [38, 75, 86]. Variants of this classic problem have been

addressed in prior work both generally, and in the context of cloud computing.

Marginal Analysis under Waiting. The classic marginal analysis above implic-

itly assumes jobs never wait for resources, and always immediately execute on either

a reserved or on-demand resource. A key insight of our work is that cloud-enabled

schedulers can explicitly control whether (and how long) jobs wait for reserved re-

sources if they are busy, and that this waiting policy affects the optimal provisioning

of reserved resources that minimizes cost. We know of no work that explicitly defines

and analyzes such waiting policies for cloud-enabled schedulers by applying marginal

analysis.

6.4 Non-selective Waiting Policies
We develop a simple queuing model for cloud-enabled schedulers to understand

the relationship between the waiting policy, fixed resource provisioning, job waiting

time, and cost. We first analyze basic non-selective waiting policiesAll Jobs Wait

(AJW), No Jobs Wait (NJW), and All Jobs Wait Threshold (AJW-T)—which apply

the same policy to all jobs.

Our analysis extends a M/M/s/∞ queuing model using s fixed resources with

first-come-first-serve (FCFS) scheduling, mean job arrival rate λ, and mean job service

time 1/µ, where job arrivals follow a Poisson process, job service times are i.i.d.

and exponentially distributed, and each resource executes one job at a time. The

77

offered load is a=λ/µ, and the offered load (and utilization) per fixed resource is

ρ=a/s=λ/(s×µ).

6.4.1 All Jobs Wait (AJW)

Model Analysis. All Jobs Wait (AJW) is a baseline policy that requires all jobs

to wait for fixed resources, and never rents on-demand resources. We present it as

a foundation for our subsequent analysis. AJW’s analysis is equivalent to that of an

M/M/s/∞ queue. The effective price P for each fixed resource is simply a function

of the mean resource utilization ρ and fixed resource price pf at full utilization, as

shown below.

P = pf/ρ (6.1)

Thus, as mean utilization ρ increases, the effective price decreases up to 100%

utilization. Of course, as utilization increases, the mean waiting time w in the queue

also increases. The mean waiting time w for fixed resources under AJW is a well-

known function, shown below, of s, λ, and µ, where C(s, a)=[(s × as)/(s! × (s −

a))]/[∑s−1
i=0 a

i/i! + (s× as)/(s!× (s− a))] is Erlang’s delay (or C) formula.

w = C(s, a)
s× µ− λ

(6.2)

Empirical Validation. We empirically validate the effective price P and mean

waiting time w for all waiting policy models we present for the same baseline example.

In our baseline example, we set λ=0.2 (or 1 job every 5 seconds on average), µ=0.002

(or an average job service time of 500 seconds), po=9.6¢/hour, and pf=3.84¢/hour.

Thus, in this case, the discount factor d for fixed resources at 100% utilization is

pf/po=0.4. We plot both the continuous function from our model, as well as average

empirical values from 20 trials of our job simulator. Each trial simulates the model

on a synthetically generated job trace with 2M jobs using exponentially distributed

78

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 100 105 110 115 120
 0

 100

 200

 300

 400

 500

 600

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

M
e

a
n

 W
a

it
 T

im
e

 (
s
e

c
)

Number of Resources (s)

Normalized Price (model)
Mean Wait Time (model)

Normalized Price (empirical)
Mean Wait Time (empirical)

Figure 6.2: Normalized price P (left y-axis) and mean wait time w (right y-axis) as
a function of fixed resources s under AJW.

inter-arrival and service times using the baseline parameters, as well as any model-

specific parameters. To capture steady states, we do not include the first and last

10% of jobs when computing P and w.

For AJW, Figure 6.2 plots the effective price P (left y-axis) and the mean wait

time W (right y-axis), obtained from our model and from simulations, as a function

of the fixed resources s. Here, as in all subsequent graphs, we normalize the effective

price P by the price of on-demand resources po. The minimum value on the left y-axis

is P=pf=0.4, since this represents the lowest possible price (when using only fixed

resources at 100% utilization). Figure 6.2 shows that our model’s predictions closely

match the empirical results, both for the normalized price and the mean waiting time.

Also, as expected, the graph shows that as s increases the effective price P increases

linearly due to the decrease in mean utilization ρ. In contrast, the mean waiting time

decreases super-linearly with increasing s. Thus, AJW offers a risky tradeoff between

w and P , since provisioning fixed resources for high utilization, i.e., a low s, to reduce

the price may cause high waiting times.

Key Point. Since waiting time increases super-linearly as utilization ρ→100%, AJW

encourages over-provisioning to ensure a utilization below 100% with waiting times

near 0.

79

6.4.2 No Jobs Wait

Model Analysis. The No Jobs Wait (NJW) waiting policy is similar to existing

auto-scaling policies for cloud-enabled schedulers that execute jobs on fixed resources

when available, and dynamically acquire on-demand resources to execute jobs when

all fixed resources are busy. Recall from 6.3 that, given a workload, there is an optimal

number of fixed resources s for NJW that minimizes cost, and this value occurs when

the sth resource has a utilization equal to the fixed resource’s discount factor d. Thus,

to optimize s under NJW, we need an expression for the sth resource’s utilization,

denoted as ρs.

We find ρs using marginal analysis by applying Erlang’s loss (or B) formula, which

assumes a M/M/s/0 queue. To compute the utilization of the sth resource, we first

compute the difference between the blocking probability when using s− 1 and when

using s resources. This difference represents the percentage of jobs an additional

resource serves. Multiplying this percentage by the offered load a=λ/µ gives the mean

utilization of the sth resource ρs, as shown below, where B(s, a)=(as/s!)/(∑s
i=0(ai/i!))

is Erlang’s loss (or B) formula.

ρs = a× [B(s− 1, a)−B(s, a)] (6.3)

Under a No Jobs Wait (NJW) waiting policy, rather than actually exit the sys-

tem, the scheduler acquires on-demand resources to immediately service blocking jobs

without waiting. To determine the optimal number of fixed resources s that mini-

mizes cost, we set the discount factor d equal to ρs in Equation 6.3 and solve for s.

Since Erlang’s loss formula includes a factorial and summation, there is no closed-form

expression for s, requiring us to solve for it numerically. Since ρs is monotonically

decreasing as s increases, we can use a binary search to determine the optimal s.

P = (1− r)× pf
ρf

+ r × po (6.4)

80

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140
 0

 0.2

 0.4

 0.6

 0.8

 1

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

s
th

 R
e

s
o

u
rc

e
 L

o
a

d

Number of Resources (s)

Normalized Price (model)
sth Resource Load (model)

Normalized Price (empirical)
sth Resource Load (empirical)

Figure 6.3: Normalized price P (left y-axis) and mean utilization of the sth resource
ρs (right y-axis) as a function of fixed resources s under NJW. The minimum price
occurs when the fixed resources’ discount factor d=ρs.

Here, we use r to represent the fraction of the workload that executes on on-

demand resources. The first additive term normalizes the price of the s fixed resources

by their mean utilization ρ. The second additive term simply multiplies the price of

on-demand resources po by the remaining fraction of the workload r. For NJW,

r=B(s, a), as this represents the probability that a job blocks and then runs on on-

demand resources.

Empirical Validation. Figure 6.3 shows the effective price P (left y-axis) as a

function of fixed resources s under NJW, where we again normalize P by the price

of on-demand resources po. The right y-axis shows the mean utilization of the sth

resource ρs, as the waiting time w is always zero under NJW. As expected, the graph

shows the model closely matches the empirical results. As s increases, the effec-

tive price decreases to the optimal s=108 where ρs equals the 0.4 discount factor,

after which, the effective price increases. At the optimal s=108, NJW has an ef-

fective price P=0.467×0.096=$0.044832/hour, while AJW’s price is ∼7.5% less at

P=0.432×0.096=$0.041472/hour. However, under NJW, jobs never incur waiting

time, while AJW incurs a mean waiting time of 20s, with some jobs waiting much

longer.

81

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 100 105 110 115 120

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Number of Resources (s)

AJW-T, b=60
AJW-T,b=300

AJW-T, b=900
AJW, b=∞

NJW, b=0

 0

 120

 240

 360

 480

 600

 100 105 110 115

M
e

a
n

 W
a

it
 T

im
e

 (
s
e

c
)

Number of Resources (s)

AJW-T, b=60
AJW-T,b=300

AJW-T, b=900
AJW, b=∞

NJW, b=0

(a) Normalized price (b) Mean waiting time

Figure 6.4: Normalized price P (a) and Mean waiting time w (b) as a function of
fixed resources s under AJW-T for different threshold waiting times b.

Key Point. While NJW’s cost is higher than AJW’s for the same fixed resources,

it guarantees no waiting time. NJW encourages optimal provisioning, since its cost

increases as fixed resource provisioning deviates from the optimal.

6.4.3 All Jobs Wait - Threshold

Model Analysis. AJW and NJW define two extremes: AJW yields a low price but

with a potentially high waiting time, while NJW yields a higher price but zero waiting

time. The All Jobs Wait-Threshold (AJW-T) waiting policy defines a continuous

tradeoff between these two extremes by requiring all jobs to wait up to some threshold

time b, at which point the scheduler acquires an on-demand resource to service them.

At b=0, AJW-T is equivalent to NJW, and as b→∞, AJW-T approaches AJW. In

queuing literature, AJW-T is equivalent to a queuing model with reneging jobs that

exit the queue after waiting a threshold period. The reneging probability r is given

by the following lemma, which follows from an analysis by Liu and Kulkarni [55].

Lemma 6.4.1 The reneging probability r in a M/M/s/∞ system is computed as

follows.

r = α · β · e−δ·b

s · µ
(6.5)

where

82

δ = (sµ− λ) (6.6)

β = sµp

1− p (6.7)

p = (λ/µ)s

s! ∑s
i=0

(λ/µ)i
i!

(6.8)

α =

[β(1

δ
− eδ·b · λ

δ·sµ) + 1]−1 ρ 6= 1

λ
λ+β·(λ·b+1) ρ = 1

(6.9)

As before, we need an expression for the mean utilization of the sth resource, as

in Equation 6.3, to solve for the optimal s that minimizes cost. However, in this

case, we replace Erlang’s B formula with r above when using s − 1 and s resources,

as shown below, since r represents the reneging probability under AJW-T, which is

akin to the blocking probability under AJW. We can again solve for the optimal s

that minimizes price numerically using a binary search, as ρs is still monotonically

decreasing as s increases, where a=λ/µ.

ρs = a× [rs−1 − rs] (6.10)

After determining the optimal s and r for a given threshold waiting time b, we

compute the mean waiting time of jobs. Liu and Kulkarni give the mean waiting

time under reneging as follows [55]. The first additive term represents the mean

waiting time for the jobs that execute on fixed resources, while the second additive

term represents the mean waiting time for jobs that execute on on-demand resources,

which is simply r×b as they all wait the maximum time b.

83

w =

(1− r)× (α×β(1−δbe−δ×b−e−δ×b)

(1−r)×δ2) + r × b ρ 6= 1

(1− r)× (α×β×b2

(1−r)×2) + r × b ρ = 1
(6.11)

Empirical Validation. Figure 6.4 shows the effective price P (a) and mean wait-

ing time w (b) as a function of fixed resources s under AJW-T for different threshold

maximum waiting times b, as well as the price under AJW and NJW. Once again, the

model’s predictions closely match the empirical results. As expected, as b increases,

the price approaches AJW, and as it decrease the price approaches NJW. The graph

also shows that as b increases, the optimal fixed resources s that minimizes price de-

creases. Figure 6.4 (b) shows that as b increases, the mean waiting time increases more

sharply as s→100. Thus, unlike AJW and NJW, AJW-T is configurable, enabling

users to set their own tradeoff between price and waiting time.

Key Point. AJW-T offers a configurable tradeoff between price and waiting time

by enabling users to set the maximum waiting time threshold b, unlike NJW, which

offers no tradeoff, and AJW, which offers a risky tradeoff.

6.5 Selective Waiting Policies
Unlike non-selective waiting policies, selective waiting policies do not apply to all

jobs, but only to selected jobs based on system or job characteristics. We define and

analyze two selective policies: Short Waits Wait (SWW) and Long Jobs Wait (LJW).

Since waiting policies are not mutually exclusive, we also analyze a compound waiting

policy that combines SWW, LJW, and the threshold waiting time from AJW-T.

6.5.1 Short Waits Wait

Model Analysis. Unlike AJW-T where jobs wait up to a threshold value before

they are scheduled on on-demand resources, in the Short Waits Wait (SWW) waiting

policy, incoming jobs estimate their waiting time upon arrival (based on the jobs

84

 0

 120

 240

 360

 480

 600

 720

 840

 960

 50 60 70 80 90 100 110 120

M
e

a
n

 W
a

it
 T

im
e

 (
s
e

c
)

Number of Resources (s)

SWW, b=900 AJW-T, b=900

Figure 6.5: Mean waiting time as a function of fixed resources under SWW and
AJW-T where b=900s=15m.

running and ahead of it in the queue) and only wait if the estimated wait time is

short, i.e., less than a threshold value. If the estimated wait time is long, i.e, exceeds

the threshold, then they immediately run on on-demand resources without waiting.

In queuing literature, this behavior is equivalent to a queuing system with balking

jobs. Importantly, as prior work shows, the same set of jobs that renege under AJW-

T, and in our case run on on-demand resources, will also balk under SWW [55]. Thus,

the fraction of jobs r that run on on-demand resources under SWW is the same as

under AJW-T (from Lemma 6.4.1), and thus the effective price for resources is the

same under AJW-T and SWW for the same b.

The only change with SWW relative to AJW-T is the mean waiting time w, since

under SWW jobs exit the system immediately and run on on-demand resources if

their waiting time would exceed the threshold waiting time b. In this case, the mean

waiting time w shown below is the same as in Equation 6.11 except that we remove

the r×b term, since the r fraction of jobs that run on on-demand resources incur no

waiting time rather than incurring b waiting time, as in AJW-T.

w =

(1− r)× (α×β(1−δbe−δ×b−e−δ×b)

(1−r)×δ2) ρ 6= 1

(1− r)× (α×β×b2

(1−r)×2) ρ = 1
(6.12)

85

Empirical Validation. Figure 6.5 plots the mean waiting time w for SWW

and AJW-T as a function of the fixed resources s, and a threshold waiting time

b=900s=15m. The mean waiting time for SWW approaches zero as s decreases (and

load increases) rather than b for AJW-T, as increasingly more jobs exit the system

without waiting and run on on-demand resources. Note that SWW’s mean waiting

time reaches its maximum at s=93, and is always less than that of AJW-T.

Key Point. SWW is strictly better than AJW-T for the same threshold b, yielding

same price at a lower mean waiting time.

6.5.1.1 Prediction Accuracy

The SWW analysis above assumes that arriving jobs are able to perfectly predict

their waiting time w. Doing so requires perfectly predicting the running time of

every job currently running and ahead of them in the queue. There is significant

prior work on predicting queue waiting times [28, 72] using statistical analyses and

machine learning classifiers. This prior work demonstrates that accurately predicting

queue waiting times can be challenging. As a result, we also model and analyze SWW

under inaccurate predictions of job waiting time. Importantly, the goal of our work is

not to develop a better waiting time predictor, but to reason about the effectiveness

of prediction methods

Given a threshold waiting time b, there are two misprediction cases to consider: the

scheduler either i) over-predicts a job’s waiting time and thus runs it on on-demand

resources when it should have waited for fixed resources, or ii) under-predicts a job’s

waiting time and thus forces it to wait for fixed resources when it should have run

immediately on on-demand resources. We consider each case separately based on

the fraction of jobs fover and funder that over- and under-predict their waiting time,

respectively.

86

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 90 95 100 105 110 115 120

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Number of Resources (s)

SWW, fover=0%
SWW, fover=3%

SWW, fover=5%
NJW

 0

 120

 240

 360

 480

 600

 720

 840

 90 95 100 105 110

M
e

a
n

 W
a

it
 T

im
e

 (
s
e

c
)

Number of Resources (s)

SWW, fover=0%
SWW, fover=3%

SWW, fover=5%
NJW

(a) Normalized price (b) Mean waiting time

Figure 6.6: Normalized price P (a) and Mean waiting time w (b) as a function of s
under SWW for different over-prediction errors fover and NJW.

Over-predicting Waiting Time. As the fraction of jobs that over-predict wait-

ing time approaches 100%, SWW approaches the behavior of using all on-demand

resources (plus the cost of the fixed resources), as jobs always immediately exit the

system (due to their high predicted waiting time) and run on on-demand resources.

For simplicity, our analysis here is not work-conserving, such that over-predictions

redirect jobs to on-demand resources even when fixed resources are available.

P = (1− r)× pf
ρf

+ (1− fover)× r × po + fover × po (6.13)

Figure 6.6 (a) shows the effective price P (normalized by the on-demand price as

before) on the y-axis as a function of s. As the graph shows, as fover increases to one,

the optimal value of s changes, and approaches that under NJW. Note that the price

of a work-conserving variant would be bounded by NJW as s increases, rather than

exceeding it, since it would utilize any idle fixed resources. Similarly, Figure 6.6 (b)

shows the mean waiting time w as a function of s. As expected, as fover increases,

the mean waiting time decreases (as fewer jobs wait).

Key Point. SWW is sensitive to over-predictions, as 3-5% over-predictions signifi-

cantly alters the price and mean waiting time.

Under-predicting Waiting Time. As the fraction of jobs funder that under-predict

their waiting time approaches 100%, SWW approaches the behavior of AJW-T, since

87

 0

 120

 240

 360

 480

 600

 720

 840

 960

 50 60 70 80 90 100 110

M
e

a
n

 W
a

it
 T

im
e

 (
s
e

c
)

Number of Resources (s)

SWW, funder=10%
SWW, funder=50%

AJW-T, b=900
SWW, funder=0%

Figure 6.7: Mean waiting time as a function of fixed resources s under SWW for
different under prediction rates funder.

jobs always wait for fixed resources up to threshold b before running on on-demand

resources. The effective price under SWW with under-predictions is the same as

that with AJW-T and SWW with perfect predictions, as the same set of jobs run on

on-demand resources in all cases. The only difference is the job waiting times.

Figure 6.7 shows the mean waiting time w as a function of s using our baseline

parameters for different values of funder, as well as for AJW-T with b=900s. As

expected, as funder increases, the mean waiting time increases until it matches that

of AJW-T.

Key Point. SWW is not highly sensitive to under-predictions, as they do not affect

the effective price and only affect the mean waiting time when fixed resources are

under-provisioned.

Our results are important in assessing and contextualizing the accuracy of new and

existing methods for predicting queue waiting times. Specifically, for cloud-enabled

schedulers, these prediction techniques should focus on minimizing over-predictions.

6.5.2 Long Jobs Wait

Model Analysis. Long Jobs Wait’s (LJW) intuition is that longer running jobs

should be willing to wait longer for fixed resources, since longer waiting times are a

88

smaller percentage of their overall running time compared to shorter jobs. For LJW,

we introduce a running time threshold t such that jobs shorter than t run immediately

on on-demand resources, while others wait for fixed resources. For simplicity, our

LJW policy is not work-conserving in that it runs short jobs on on-demand resources

even if fixed resources are available. This non-work-conserving variant will behave

similarly to a work-conserving one in the optimal case when fixed resources are not

over-provisioned (and thus rarely idle). For LJW, we separate the analysis for short

jobs and long jobs. As shown below, the effective price P is the weighted average of

the price to run short and long jobs. As before, r represents the fraction of jobs that

run on on-demand resources, while Pshort and Plong represent the price to run short

and long jobs, and µshort and µlong represent the mean service rate of short and long

jobs.

P = (1− r)× µ

µlong
× Plong + r × µ

µshort
× Pshort (6.14)

Thus, first and second additive terms represent the relative cost to execute long

and short jobs, respectively, based on their fraction of the total jobs, their proportion

of the service time, and their price. Note that, µlong > µ > µshort for any t > 0.

Similarly, the mean waiting time w is the weighted average of the waiting time to run

short and long jobs. Since, by definition, short jobs do not wait, w is only dependent

on the fraction of long jobs and their mean waiting time.

w = (1− r)× wlong (6.15)

Short Jobs. All short jobs (with running times <t) run on on-demand resources at

price po without any waiting time. Thus, Pshort=po, while r is the fraction of jobs

with running times less than t, which is equivalent to the CDF of the exponential

distribution for service times at x=t, as shown below.

89

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 120 240 360 480
 0

 100

 200

 300

 400

 500

AJW Waiting Time

AJW Price

NJW Optimal Price
N

o
rm

a
liz

e
d

 P
ri
c
e

 (
%

)

M
e

a
n

 W
a

it
 T

im
e

 (
s
e

c
)

Short Job Threshold (t)

Normalized Price (model)
Mean Wait Time (model)

Normalized Price (empirical)
Mean Wait Time (empirical)

Figure 6.8: Normalized price P and mean wait time w as a function of the short job
threshold t (in seconds) for s=101 under an LJW waiting policy.

r = 1− e−µt (6.16)

Long Jobs. Since long jobs always wait for fixed resources, the policy is similar to

AJW in 6.4.1 but applied to long jobs. The mean arrival rate for long jobs is λlong is

the product of the overall job arrival rate λ and the fraction of long jobs (1− r).

λlong = λ× (1− r) = λ× e−µt (6.17)

Similarly, we compute the mean service rate µlong for long jobs using its service

time PDF f(x, µ), as below. The PDF for long jobs is an exponential distribution

shifted by t units.

f(x, µ) = µe−µ(x−t), x ≥ t (6.18)

We find the expected value of the long jobs service time PDF to derive its mean

service time 1
µlong

by integrating from x=t→∞.

1
µlong

=
∫ ∞
t

xµe−µ(x−t)dx = t+ 1
µ

(6.19)

Note that we can derive µshort from µlong, r, and µ, since the mean service time

of the original distribution 1/µ is the weighted average of the mean service time of

90

short jobs 1/µshort and long jobs 1/µlong. Thus, we compute µshort by simply solving

the expression below.

1
µ

= r × 1
µshort

+ (1− r)× 1
µlong

(6.20)

The effective price Plong of running long jobs on fixed resources is simply the price

of fixed resources pf at full utilization divided by the actual utilization ρlong, where

ρlong = λlong/(s×µlong).

Plong = pf
ρf

= pf × s× µlong
λlong

(6.21)

Importantly, however, the distribution of jobs with service times greater than t is

not exponentially distributed. As a result, we cannot apply the same model as for

AJW to compute the waiting time. Instead, we use the well-known approximation

below for the waiting time of an M/G/s queue, where CV is the distribution’s coeffi-

cient of variation, i.e., the standard deviation divided by the mean. In this case, the

standard deviation of the long jobs’ service time distribution is 1/µ, and the mean is

1/µlong, so CV=µlong/µ.

w ∼ CV 2 + 1
2 × C(s, a)

s× µlong − λlong
(6.22)

Empirical Validation. Figure 6.8 shows the normalized price (left y-axis) and

waiting time (right y-axis) under LJW as a function of t for s=101, as well as AJW and

NJW, using our baseline parameters. As before, the graph shows that the empirical

values closely match the model’s waiting time approximation above. The graph shows

that as t increases the normalized price increases, as fewer jobs wait for resources.

However, LJW also significantly decreases the mean waiting time relative to AJW as

t increases, since the exponential service time distribution is weighted towards short

jobs, which experience no waiting time under LJW. In addition, since long jobs still

comprise a high fraction of the overall service time (and thus cost), the effective price

91

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60

LJW PriceN
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Error (%)

Normalized Price (Over) Normalized Price (Under)

 0

 120

 240

 360

 480

 0 20 40 60 80 100

LJW Waiting TimeM
e

a
n

 W
a

it
 T

im
e

 (
s
e

c
)

Error (%)

Normalized Price (Over) Normalized Price (Under)

(a) Normalized Price (b) Mean Job Waiting Time

Figure 6.9: Normalized price (a) and mean job waiting time (b) as a function of the
fraction of jobs with incorrect over- and under-predictions (%) of job running time
for s=101 and t=180 under an LJW waiting policy.

under LJW, especially for small values of t, increases at a much lower rate than the

waiting time decreases.

Key Point. LJW offers a nice tradeoff: as t increases, price increases modestly,

while waiting time decreases significantly.

6.5.2.1 Prediction Accuracy

Our LJW analysis above assumes that arriving jobs perfectly predict their running

time, which may not always be possible. As with predictions of queue waiting time,

there is significant prior work [59, 77] on predicting job running time, since it is an

important input for many common scheduling policies, such as SJF. As in §6.5.1.1,

our analysis provides a basis for contextualizing this prior work, and understanding

how inaccuracy can affect waiting policies. At a high level, similar to SWW’s analysis,

as fover—the fraction of short jobs that are predicted to be long (with running times

>t)—approaches one, LJW approaches the behavior of AJW, since all jobs wait.

In contrast, as funder—the fraction of long jobs that are predicted to be short—

approaches one, LJW approaches using all on-demand resources (plus the cost of

fixed resources).

92

 0.4

 0.44

 0.48

 0.52

 85 90 95 100 105 110
 0

 120

 240

 360

 480

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

M
e

a
n

 W
a

it
 T

im
e

 (
s
e

c
)

Number of Resources (s)

Normalized Price (Compound)
Mean Wait Time (Compund)

Normalized Price (LJW)
Mean Wait Time (LJW)

Figure 6.10: Normalized price P and mean wait time w as a function of fixed resources
s for our compound policy (b=900 and t=180) and LJW (t=180).

To understand how sensitive LJW is to over- and under-predictions of job running

time, we plot the normalized price and mean waiting time as a function of funder and

fover for s=101 and t=180. We only plot empirical results from our job simulator,

since we have no analytical model. Figure 6.9(a) shows that as the over-prediction

rate increases, the effective price decreases, but, since LJW’s price in this case is

already near the optimal price pf , the decrease is minimal. In contrast, as the under-

prediction rate increases, the effective price increases significantly. Figure 6.9(b)

shows the opposite effect: as the over-prediction rate increases, the mean waiting

time increases significantly, while as the under-prediction rate increases the mean

waiting time decreases, although since LJW’s mean wait time is already near zero,

the decrease is not significant.

Key Point. LJW’s effective price is robust to over-predictions and sensitive to under-

predictions, while its mean waiting time is robust to under-predictions and sensitive

to over-predictions. LJW is more sensitive to over-predictions, since they cause a

super-linear increase in waiting time for only a linear decrease in price.

93

6.5.3 Compound Waiting Policies

Model Analysis. Waiting policies, unlike scheduling policies, are not mutually

exclusive. That is, we can concurrently apply multiple waiting policies that select

jobs to wait based on different characteristics. Thus, we analyze a compound waiting

policy that combines the advantages of AJW-T, SWW, and LJW. In analyzing this

policy, we first apply LJW’s analysis from 6.5.2, since its waiting decisions are based

on job running time, and are thus load insensitive and not affected by other waiting

policies. Our LJW analysis yields a fraction r of short jobs that always run on on-

demand resources, which we label rshort. The remaining (1−rshort) long jobs run on

fixed or on-demand resources depending on their waiting time.

We next apply SWW’s analysis from 6.5.1 solely to the remaining long jobs.

In particular, we compute the fraction rsww of the remaining long jobs that run

on on-demand resources (due to long wait times) by applying Lemma 6.4.1 using

λlong and µlong from 6.5.2 for a given value of s and b. This is an approximation,

since Lemma 6.4.1 assumes exponentially distributed service times, and the long

jobs’ service time distribution is an exponential distribution truncated at t. This

approximation becomes more accurate as t→0 and the distribution approaches an

exponential. Given rsww, the effective price for our compound waiting policy is as

follows.

P = (1− rshort)× (1− rsww)× µ

µlong
× pf
ρf

+ (1− rshort)× rsww ×
µ

µlong
× po + rshort ×

µ

µshort
× po (6.23)

Here, ρf , shown below, is the mean utilization of the fixed resources, which is

simply the adjusted arrival rate of jobs to the fixed resources divided by their mean

service rate, and then normalized by s.

94

 0

 90

 180

 270

 360

 450

 85 90 95 100 105 110

O
p

p
o

rt
u

n
it
y
 C

o
s
t

($
)

Number of Resources (s)

AJW, b=∞

AJW-T,b=900
SWW, b=900

LJW, t=180 b=∞

LJW, t=180 b=900

 0

 90

 180

 270

 360

 450

 85 90 95 100 105 110

O
p

p
o

rt
u

n
it
y
 C

o
s
t

($
)

Number of Resources (s)

AJW, b=∞

AJW-T,b=900
SWW, b=900

LJW, t=180 b=∞

LJW, t=180 b=900

Figure 6.11: Opportunity cost as a function of fixed resources s under AJW, AJW-T,
SWW, LJW, and compound policy when using (a) FCFS scheduling and (b) SJF
scheduling

ρf = (1− rshort)× (1− rsww)× λ
s× µlong

(6.24)

We use the same approach as in LJW to approximate the compound policy’s mean

waiting time, but replace the waiting time under AJW with the waiting time under

SWW from Equation 6.12 as below, again using λlong and µlong as the input. The

coefficient of variation CV is the same as in LJW.

w ∼

CV 2+1

2 × (1− rsww)× (α×β(1−δbe−δ×b−e−δ×b)
(1−rsww)×δ2) ρ < 1

CV 2+1
2 × (1− rsww)× (α×β×b2

(1−rsww)×2) ρ = 1
(6.25)

Empirical Validation. Figure 6.10 compares our compound waiting policy with

LJW using our baseline parameters with b=900 and t=180. The primary advantage

of the compound policy over LJW is that it strictly lowers the overall waiting time,

since long jobs do not wait indefinitely, which is especially important when resources

are under-provisioned, for nearly the same effective price. As shown, the compound

policy’s mean waiting is less than or equal to that of the LJW policy.

Key Point. Our compound policy combines the advantages of AJW-T, SWW, and

LJW, and thus offers the best tradeoff.

95

6.5.4 Model Results Summary

Our analyses show that waiting policies offer a complex tradeoff between fixed

resource provisioning, cost, and waiting time. To summarize these tradeoffs, we define

a new metric, called the opportunity cost of waiting, which values a job’s waiting time

equal to its running time. The mean opportunity cost P×w and is in dollars, where

lower values of P and w are better. Figure 6.11 (a) shows the mean opportunity

cost of waiting for AJW, AJW-T (for b=900), SWW (for b=900), LJW (for t=180),

and our compound policy (for b=900 and t=180) using our baseline parameters. We

exclude NJW, as its opportunity cost is always zero, since its waiting time is zero.

As shown, for the remaining policies where a price-waiting time tradeoff exists, our

compound policy yields the lowest opportunity cost.

In addition, the general insights above also hold for different scheduling policies.

While the waiting policy is distinct from the scheduling policy, and both can be

defined independently, there is some interaction between them. Figure 6.11 (b) shows

the same experiment as Figure 6.11 (a), but with shortest job first (SJF) as the

scheduling policy instead of FCFS. The graph shows that the relative ordering of

waiting policies is the same when using SJF and FCFS, and also that the trends are

the same. Of course, the absolute opportunity cost when using SJF is significantly

less because SJF substantially decreases the waiting time for jobs that wait for fixed

resources.

6.6 Implementation
We implemented a waiting policy model analyzer based on our analysis, as well

as a trace-driven job simulator, in python.

Model Analyzer. Our model analyzer implements the analytical queuing model for

all the waiting policies we analyze. The analyzer enables what-if analyses to compare

and understand a workload’s expected cost and job waiting times under different

96

policies and parameter values. The analyzer takes as input a policy’s name and λ, µ,

s, pf , and po, as well as b for AJW-T, SWW, and the compound policy, and t for LJW

and the compound policy. The analyzer’s output is the policy’s mean waiting time

w, the effective price P , and the fraction of jobs that run on on-demand resources r.

Job Simulator. We implemented a trace-driven job simulator in python that mimics

a cloud-enabled job scheduler, which can acquire VMs on-demand to service jobs. The

simulator uses a FCFS scheduling policy, and also implements each of our waiting

policies. The simulator takes as input a trace of jobs, s, pf , the name of a waiting

policy, and the same waiting policy-specific parameters as above. Users must also

specify the number of cores and memory allotment for each fixed resource s. The

simulator’s output is the mean waiting time w, the effective price P , the fraction of

jobs that run on on-demand resources r, and the total cost C.

Real-world Data. In evaluation, we use our job simulator to quantify the impact of

different waiting policies on a real year-long job trace that includes 14M jobs from a

production high-performance computing cluster consisting of 14.3k cores. The cluster

is the University of Massachusetts (UMass) System Shared Cluster, and is available

for general use to researchers from all five campuses in the UMass system, including

its medical school [11]. Thus, the workload is a representative sample of job types

across the entire scientific, engineering, and medical research communities. Each job

entry in the log includes its submission time, user ID, maximum running time limit,

requested number of cores and memory, and running time.

6.7 Evaluation
We do not intend our models to be predictive, but instead evaluate their usefulness

in analyzing a real year-long batch workload. Specifically, we show that our models

both 1) accurately predict the relative price and waiting time between different wait-

97

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0-1 1-15 15-30 30-180 180-182694

P
ro

b
a

b
ili

ty

Job Inter-arrival Time (seconds)

Production Job Trace
Exponential (λ = 0.4527)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0-0.05 0.05-1 1-3 3-6 6-728

P
ro

b
a

b
ili

ty

Job Service Time (hours)

Production Job Trace
Exponential (µ = 0.0001606)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8
 0

 20

 40

 60

 80

 100

J
o

b
 F

ra
c
ti
o

n
 (

%
)

M
e

m
o

ry
-C

P
U

-H
o

u
rs

 (
%

)

Short Job Threshold t (hours)

Short Jobs Memory/CPU
Short Jobs Fraction

Long Jobs Memory/CPU
Long Jobs Fraction

(a) Job Interarrival Times (b) Job Service Times (c) Job Resource Requirements

Figure 6.12: Histograms of job inter-arrival times (a) and service times (b) for our
real production batch workload along with an exponential distribution using the same
mean, as well as the mix of long and short jobs (c).

ing policies in our real workload, and 2) enable reasoning about price and waiting

time by understanding the differences between our model’s and the real workload.

Workload. Figure 6.12 characterizes our real workload and our model’s ideal. Fig-

ure 6.12(a) is a histogram of job inter-arrival times for our trace and an exponential

distribution with the same mean, which is 0.4527 jobs/sec. Note that the bin size is

non-uniform, since our trace much more bursty than our model assumes. In particu-

lar, nearly 90% of job inter-arrival times are between 0 and 1 second compared with

less than 40% for an exponential distribution with the same mean. Both distributions

have a heavy tail with our job trace experiencing a few more extremely long inter-

arrival times, between 3 minutes and 50 hours. Figure 6.12(b) is a similar histogram

of job service times with a mean service time 1/µ of 6225 seconds (or 1.73 hours)

per job. Overall, the job service times in our trace have both a heavier head and tail

compared to the exponential distribution. To further illustrate, Figure 6.12(c) shows

that short jobs are a high fraction of jobs, even for large short job thresholds, but

account for only a small fraction of the resource usage.

6.7.1 Real-world Workload Results

Our simulations assume a large m5.16xlarge VM with 64 cores and 256GB mem-

ory to mitigate imperfect job packing on VMs. We contextualize our results by

comparing against the current fixed-size cluster, which consists of 14,376 cores and

98

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 125 150 175 200 225 250

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Number of m5.16xlarge VMs

AJW
SWW, AJW-T, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
NJW

 0

 6

 12

 18

 24

 100 125 150 175 200 225 250

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Number of m5.16xlarge VMs

AJW
SWW, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
AJW-T, b=24hrs

 0

 4

 8

 12

 100 125 150 175 200 225 250

O
p

p
o

rt
u

n
it
y
 C

o
s
t

($
)

Number of m5.16xlarge VMs

AJW
SWW, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
AJW-T, b=24hrs

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Figure 6.13: Normalized price (a), mean job waiting time (b), and opportunity cost
(c) as a function of m5.16xlarge VMs when executing our real production batch
workload under AJW, AJW-T, SWW, LJW, and our compound policy with FCFS
scheduling policy.

is equivalent to 225 m5.16xlarge VMs. Figure 6.13 shows the normalized price (a),

mean waiting time (b), and opportunity cost (c) for each of our waiting policies.

We select the maximum waiting time threshold b=24 hours for SWW and AJW-T,

or slightly less than double the current cluster’s mean waiting time using AJW. We

select the long job cutoff t=3m where 60% of jobs are short and 40% are long.

Price. As expected, Figure 6.13(a) shows that AJW yields the lowest price, since it

requires all jobs to wait for fixed resources. Interestingly, LJW yields nearly the same

price even though it executes 60% of the total jobs on on-demand VMs. Since these

60% of short jobs comprise only a small fraction of the overall job execution time,

executing them on on-demand VMs does not substantially increase the normalized

price. SWW, AJW-T, and our compound policy yield nearly the same price for the

same reason. When using AJW, our current cluster yields a normalized price of 0.6 at

x=225 fixed resources, while the minimum cost under the compound policy is 0.571

at x=150, or 5% less.

Waiting Time. As our model predicts, Figure 6.13(b) shows that the mean job

waiting time under AJW and LJW increases super-linearly as fixed resources decrease.

However, even though LJW’s cost is nearly the same as AJW’s, its mean waiting time

is substantially less because the large fraction of short jobs never wait. In contrast,

the mean waiting time under AJW-T, SWW, and the compound policy increases

99

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 125 150 175 200 225 250

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Number of m5.16xlarge VMs

AJW
SWW, AJW-T, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
NJW

 0

 0.5

 1

 1.5

 2

 125 150 175 200 225 250

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Number of m5.16xlarge VMs

AJW
SWW, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
AJW-T, b=24hrs

 0

 0.2

 0.4

 0.6

 0.8

 125 150 175 200 225 250

O
p

p
o

rt
u

n
it
y
 C

o
s
t

($
)

Number of m5.16xlarge VMs

AJW
SWW, b=24hrs

LJW, t=3min

Compund, b=24hrs, t=3min
AJW-T, b=24hrs

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Figure 6.14: Normalized price (a), mean job waiting time (b), and opportunity cost
(c) as a function of m5.16xlarge VMs when executing our real production batch
workload under AJW, AJW-T, SWW, LJW, and our compound policy with SJF
scheduling policy.

modestly as fixed resources decrease. Even at x=100, the mean waiting time of these

policies is less than the 13.3 hour mean waiting time in our current fixed size cluster

(AJW at x=225). At x=150, the compound policy has a mean waiting time of 1.74

hours, or 7× less than our current cluster (for 5% less cost).

Opportunity Cost. Figure 6.13(c) graphs the mean opportunity cost of waiting

P×w for each policy, and shows that, as our model predicts, the compound policy

offers the best tradeoff by a significant margin compared to the other policies. Note

that, even though our workload’s characteristics differ significantly from those as-

sumed by our model, the overall trends in opportunity cost match those from our

model in Figure 6.11.

Key Result. At the optimal, the compound policy decreases the cost (by 5%) and

mean job waiting time (by 7×) compared to the current cluster using AJW, and

decreases the cost (by 43%) compared to renting on-demand resources for a compara-

tively modest increase in mean job waiting time (at 1.74 hours).

SJF Scheduling. We next repeat the experiments above using the same parameters

but using the SJF scheduling policy instead of FCFS scheduling. Figure 6.14 shows

the results. As mentioned in §6.5.4, Figure 6.14(a) shows nearly the same normalized

price across all the waiting policies as in Figure 6.13(a). In some cases, as with AJW

and LJW, the price is the same, since these waiting policies are not sensitive to the

100

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Short/Long Job Prediction Error (%)

errorb=0% errorb=10% errorb=20% errorb=30%

 0

 1

 2

 0 2 4 6 8 10 12

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Short/Long Job Prediction Error (%)

errorb=0% errorb=10% errorb=20% errorb=30%

 0

 1

 2

 0 2 4 6 8 10 12

O
p

p
o

rt
u

n
it
y
 C

o
s
t

($
)

Short/Long Job Prediction Error (%)

errorb=0% errorb=10% errorb=20% errorb=30%

(a) Normalized Price (b) Mean Job Waiting Time (c) Opportunity Cost

Figure 6.15: Normalized price (a), mean job waiting time (b), and opportunity cost
(c) as a function of the long job prediction error when executing our real production
batch workload under a compound policy assuming 150 m5.16xlarge VMs.

scheduling policy. SWW is sensitive to the scheduling policy, and prioritizes short

jobs on fixed resources, since these jobs have a lower waiting with SJF. However, since

the vast majority of jobs in our real-world trace are already short, this only slightly

increases the normalized price. Since the compound policy includes SWW, there is a

similar impact on the normalized price.

Figure 6.14(b) shows that SJF significantly decreases the waiting time across all

waiting policies compared to Figure 6.13(b).SJF is well-known to optimize for waiting

time, often at the expense of starving longer jobs. However, in our case, long jobs

never starve when using AJW-T, SWW, or the Compound policy. Importantly, the

trends and relative ordering of the waiting policies under SJF is the same as under

FCFS based on our analysis from §6.5.4.

Finally, Figure 6.14(c) shows the opportunity cost of all waiting policies under SJF.

As with our model’s workload in §6.5.4, the opportunity cost decreases compared to

FCFS due to the substantial decrease in waiting time. As when using FCFS, the

relative ordering of opportunity cost when using SFJ remains the same with the

compound policy yielding the lowest opportunity cost.

6.7.2 Sensitivity Analysis

We perform a sensitivity analysis that varies errors in estimating job waiting time

and running time to understand their effect on the results. We chose the values above

101

for b=24h and t=3m arbitrarily to be reasonable, as 24h is roughly twice the mean

waiting time under AJW and t=3m categorizes a large fraction (60%) of jobs as

short. We also assume accurate estimates of job waiting and running time, e.g., using

historical data. Our sensitivity analysis assumes 150 m5.16xlarge’s when using the

compound policy, as noted above.

Error Sensitivity. Figure 6.15 plots price, waiting time, and opportunity cost as a

function of the short/long job prediction error, which is both the percentage of long

jobs we mispredict as short, and short jobs we mispredict as long. Similarly, each

line captures the waiting time threshold error, which is both the percentage of jobs

that should wait but do not, and that do not but should. The graph shows price

(a) is directly proportional to the short/long job prediction error, such that a 1%

increase in error causes a 1% increase in price. In contrast, waiting time threshold

errors are non-linear, with progressively lower price increases for each 10% increase in

error. The graph still shows large savings compared to using on-demand even under

high error rates. The mean waiting time (b) is much less affected by the short/long

job prediction error, since a similar number of jobs must still wait (it is just the long

jobs not waiting that increases the price). Finally, as above, the waiting time trend

dominates the opportunity cost (c), and thus shows a similar trend.

6.7.3 Effect of Prediction Accuracy

To understand the effect of prediction accuracy for our waiting policies, we vary

the errors in estimating job waiting time and running time in terms of their over-

and under-predictions as in our analysis from §6.5.1.1 and §6.5.2.1. We use the

baseline values of b=24h for the waiting time threshold and t=3m for the long job

threshold. As in our model analysis, we consider the case of over predictions and

under predictions separately based on the fraction of jobs fover and funder that over-

and under-predict their job waiting time and job running time for SWW and LJW,

102

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 125 150 175 200 225 250

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Number of m5.16xlarge VMs

SWW, fover=0%
SWW, fover=3%

SWW, fover=5%
NJW

 0

 6

 12

 100 125 150 175 200 225 250

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Number of m5.16xlarge VMs

SWW, fover=0%
SWW, fover=3%

SWW, fover=5%
NJW

(a) Normalized Price (b) Mean Job Waiting Time

Figure 6.16: Normalized price (a) and mean job waiting time (b) as a function of
fixed resources s when executing our real production batch workload under SWW for
different over-prediction errors fover and NJW.

respectively. In particular, we simulating each waiting policy using our job trace, we

explicitly control the percentage of jobs that over- and under-predict waiting times

and running times.

Over-predicting Waiting Time. Figure 6.16 plots the normalized price P and

mean job waiting time W as a function of fixed resources s for different prediction

errors fover under SWW, where fover is fraction of the jobs over-predicting their

waiting time and thus runs it on on-demand resources when it should have waited

for fixed resources. These graphs mirrors Figure 6.6 from §6.5.1.1 that uses our

analytical model to quantify the effect of over-predictions of waiting time on the

mean wait time and price. As the graph shows, the normalized price (a) increases

with the over-prediction error. Figure 6.16(b) shows that the mean job waiting time

decreases as fover increases and eventually approaches 0 (or the behavior of NJW).

As in our model, the mean wait time is monotonically decreasing and approaches 0 as

the number of fixed resources increases. Importantly, our empirical results on over-

predictions reinforce the key points from our models: that SWW is highly sensitive

to over-predictions.

Under-predicting Waiting Time. Figure 6.17 plots the mean job waiting time w

as a function of fixed resources s over different prediction errors funder using SWW,

103

 0

 4

 8

 12

 16

 20

 24

 25 50 75 100 125 150 175 200 225 250

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Number of m5.16xlarge VMs

SWW, funder=0%
SWW, funder=10%

SWW, funder=50%
AJW-T

Figure 6.17: Mean waiting time as a function of fixed resources s when executing
our real production batch workload under SWW for different over-prediction errors
funder.

where again funder is fraction of the jobs that under-predict their waiting time. Thus,

these under-predicting jobs wait for fixed resources when they should have run im-

mediately on on-demand resources. As expected, the mean waiting time w increases

as funder increases. Since the normalized price under SWW and AJW-T remains the

same regardless of the under-prediction error, we omit it here. The graph exhibits

the same trend as our model predicts from Figure 6.7 from §6.5.1.1. In addition,

our empirical results also emphasize the key point from our model: that it does not

alter the normalized price, and it only affects the mean waiting time when the fixed

resources are under-provisioned.

LJW Prediction Accuracy. Figure 6.18 plots the normalized price and mean

waiting time under LJW policy as a function of the fraction of jobs with inaccurate

runtime predictions. For over-predictions, the x-axis represents the fraction of jobs

with runtime less than the long job threshold t where we over-predict the running time

to be greater than t, while for under-predictions, the x-axis represents the fraction of

jobs with runtime greater than t where we under-predict the running time to be less

than t. The dotted line shows the price (a) and mean waiting time (b) from LJW

with perfect predictions of job running time. As above, our empirical results match

104

 0.4

 0.8

 1.2

 1.6

 2

 0 20 40 60 80 100

LJW Price

N
o

rm
a

liz
e

d
 P

ri
c
e

 (
%

)

Error (%)

Normalized Price (Over) Normalized Price (Under)

 0

 4

 8

 12

 16

 20

 0 20 40 60 80 100

LJW Waiting Time

M
e

a
n

 W
a

it
 T

im
e

 (
h

rs
)

Error (%)

Mean Wait Time (Over) Mean Wait Time (Under)

(a) Normalized Price (b) Mean Job Waiting Time

Figure 6.18: Normalized price (a) and mean job waiting time (b) as a function of the
fraction of jobs with over- and under-prediction errors (%) in job running time for
s=200 m5.16xlarge VMs and t=3 minutes when executing our real production batch
workload under LJW.

the trends shown by our analytical models in Figures 6.9(a) and 6.9(b) from §6.5.2.1.

In particular, our results show that increasing under-prediction errors has little-to-no

effect on the normalized price, but results in a linear increase in waiting time. In

contrast, increasing over-prediction errors result in a linear increase in price, but a

super-linear decrease in mean waiting time.

6.8 Related Works
This work is related to prior work in many different areas.

Cloud Computing. Prior work often assumes the workload is continuous and uni-

form, rather than composed of discrete jobs, which leads to solutions based on dy-

namic and integer programming [35, 46, 48, 67, 83, 84]. Thus, this work does not

apply to cloud-enabled job schedulers. Our work is also related to prior work on job

scheduling for hybrid clouds that run jobs on fixed resources but can also burst into

the cloud [41,57]. While hybrid cloud provisioning and scheduling is well-studied, we

know of no work that focuses on explicit waiting policies. As a result, the past works

does not explore the key tradeoff between price and job waiting time in hybrid cloud

provisioning and scheduling.

105

Queuing Theory and Marginal Analysis. Our work applies a number of previ-

ously developed queuing theory results to gain insights into key tradeoffs exposed by

different waiting policies. In particular, our work builds on classic marginal analy-

sis and queuing results by Erlang and others [38, 51, 75, 86], as well prior results on

reneging and balking [55]. Many of these models are probabilistic and assume an

increasing fraction of customers (or jobs) abandon the queue as their waiting time

increases based on diverse customer preferences. These customer-centric models do

not apply to our context, where the waiting policy determines whether jobs abandon

the queue (and run on on-demand resources).

Ski Rental Problems. Our problem is similar to the classic ski rental problem

in online algorithms [14]. However, these assume there is no knowledge of the fu-

ture, whereas our queueing analysis leverages a workload characterization. Ski rental

problems also typically focus on whether to buy or rent a single resource whereas our

problem focuses on provisioning, i.e., how many resources to buy versus rent, and

generally do not consider the cost and waiting time tradeoff.

6.9 Conclusion and Status
In this chapter, we introduced the concept of a waiting policy for cloud-enabled

schedulers, and defines, models, analyzes, and empirically validates multiple funda-

mental waiting policies. A key goal of this work is to provide a formal foundation

for future work on waiting policies both analytically and empirically, including on

more general distributions of job inter-arrival and service times, different scheduling

policies, and machine learning (ML) classifiers to accurately estimate job waiting and

running times. Specifically, our evaluation shows that real workload characteristics

differ from our model’s assumptions, which motivates analytical models based on

more general distributions of inter-arrival and service times.

106

Status. Waiting policies have been evaluated on a year-long trace from the MGHPCC

data center via simulation. Additional details on its design, implementation, and

evaluation are in [18,19].

107

CHAPTER 7

DATA-DRIVEN JOB SCHEDULING FOR
CLOUD-ENABLED SCHEDULERS

Cloud-enabled schedulers execute jobs on either fixed resources or those acquired

on demand from cloud platforms. Thus, these schedulers must define not only a

scheduling policy, which selects which jobs run when fixed resources become avail-

able, but also a waiting policy, which selects which jobs wait for fixed resources when

they are not available, rather than run on on-demand resources. As with schedul-

ing policies, optimizing waiting policies requires a priori knowledge of job runtime.

Unfortunately, prior work has shown that accurately predicting job runtime is chal-

lenging. In this chapter, we show that optimizing job waiting in the cloud is possible

without accurate job runtime predictions. To do so, we i) speculatively execute jobs

on on-demand resources for a small time and cost to learn more about job runtime,

and ii) develop a ML model to predict wait time from cluster state, which is more

accurate and has less overhead than prior approaches that use job runtime predictions.

7.1 Motivation
Batch job schedulers, such as Slurm [8] and LSF [12], execute a large fraction of

the workload in high-performance computing (HPC) and data centers. While these

schedulers were originally designed to manage a fixed set of servers, they are now

generally “cloud-enabled” and capable of autoscaling by programmatically acquiring

virtual machines (VMs) from cloud platforms on demand to execute jobs [7]. Thus,

these schedulers must not only schedule jobs on fixed resources, but also decide when

108

to acquire and release on-demand cloud resources. Hybrid clouds often use cloud-

enabled schedulers to “burst” into the cloud when their fixed private resources are

fully utilized [41].

Cloud-enabled scheduling differs from conventional scheduling on fixed resources

in that cost, in addition to job waiting time, is a critical metric. As a result, cloud-

enabled schedulers must not only define a scheduling policy, which selects which jobs

run when fixed resources become available, but also a waiting policy, which selects

which jobs wait for fixed resources, and for how long, when they are not available

before running on on-demand resources. Waiting policies often mirror traditional

scheduling policies, such as Shortest Job First (SJF). Prior work analytically models

simple waiting policies, including All Jobs Wait (AJW), No Jobs Wait (NJW), Long

Jobs Wait (LJW), and Short Waits Wait (SWW), and shows that combining LJW

and SWW offers a much better cost-waiting time tradeoff than the others [18].

Importantly, as with many scheduling policies, optimizing the waiting policies

above requires a priori knowledge of job runtimes. In particular, LJW directly re-

quires job runtimes, since it forces jobs with runtimes larger than some threshold to

wait for fixed resources, but runs shorter jobs immediately by acquiring on-demand

resources. Likewise, SWW indirectly requires job runtimes, since it forces arriving

jobs expected to wait less than some threshold for fixed resources to actually wait,

but runs jobs expected to wait longer immediately by acquiring on-demand resources.

Unfortunately, scheduling policies that require knowing job runtimes, such as SJF, are

often not widely used because accurately predicting job runtimes remains challenging.

Recent work highlights many reasons for the low prediction accuracy, including a lack

of sufficient features for training machine learning (ML) models and non-stationarity

in workloads that leads to inconsistent performance [53]. Directly implementing the

waiting policies above suffers from the same challenges.

109

The primary contribution in this chapter is showing that optimizing waiting poli-

cies for cloud-enabled schedulers is possible without accurate job runtime predictions,

and can come close to the cost and waiting time achievable given perfect knowledge of

job runtimes. To do so, we develop two techniques to optimize job waiting under LJW

and SWW, respectively. Intuitively, optimizing these waiting policies in the cloud is

simpler than optimizing scheduling policies for fixed resource because i) there is no

hard resource constraint, and ii) our waiting policy predictions require only binary

classification, i.e., where a job’s running or waiting time crosses a threshold, which

does not require absolute model accuracy.

• Speculative Execution. We first leverage the availability of on-demand cloud

resources to speculatively execute all jobs for some time to learn more about

each job’s running time before deciding whether to run it on fixed or on-demand

resources. This technique informs LJW, and is effective because, in many batch

workloads, most jobs are short, but the few long jobs account for most of the

computation. Thus, the additional cost of speculatively executing the few long

jobs incorrectly before restarting them on fixed resources is small.

• ML-based Waiting Time Predictions. We next develop a ML model for pre-

dicting job waiting time, which can inform SWW. Unlike prior work that uses

job runtime predictions to estimate waiting time, e.g., by simulating the sched-

ule based on the runtime predictions [28, 72], our ML model uses cluster state as

its input, e.g., cluster size, number of jobs running and waiting, how long jobs

have already run and waited, etc. We show that this approach i) has lower com-

putational overhead, ii) is much more accurate, mostly due to the law of large

numbers, and iii) is effective at achieving near the cost and waiting time of SWW

with perfect knowledge of waiting time.

110

Our hypothesis is that combining speculative execution and ML-based waiting

time predictions can achieve cost and waiting times that are close to optimal LJW

and SWW with perfect job running and waiting time predictions.

7.2 Background: Context and Baselines
In this chapter, our methodology is empirical, and focuses on optimizing the work-

load of a large production batch cluster (same workload trace as in previous chap-

ter§6.6) that services roughly 14 million jobs per year. The cluster currently consists

of ∼14.3k cores, uses the LSF job scheduler, and is not cloud-enabled. Our job trace

include each job’s submission time, user ID, maximum running time limit, requested

number of cores and memory, completion status, and running time. While the traces

do not record job waiting time, we estimate the average waiting time would be ∼8.1

hours using work-conserving FCFS scheduling, which schedules the first job near the

front of the queue capable of running on the available resource. The waiting time un-

der non-preemptive, work-conserving SJF would be much lower at ∼0.6 hours given

the workload’s large number of short jobs, but requires accurate predictions of job

running time.

We consider executing the workload above with a cloud-enabled scheduler on

EC2 using the SWW§6.5.1 and LJW§6.5.2 waiting policies combined with either

non-preemptive, work-conserving FCFS or SJF scheduling. For fixed resources, we

assume the use of 3-year reserved m5.16xlarge VMs, which each have 64 cores and

256GB memory. We choose larger VMs to mitigate the impact of imperfect packing

of variable-sized jobs onto VMs. Our scheduler packs jobs onto fixed resources using

a best-fit policy based on cores. When acquiring on-demand VMs to execute a job,

our scheduler selects the smallest and cheapest VM within the m5 family that satisfies

the job’s resource requirements.

111

 0

 10

 20

 30

 40

 50

 0 15 30 45 60 75 90 105 120
 0

 1

 2

 3

 4

%
 O

n
-D

e
m

a
n

d
 C

o
s
t

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Short Job Threshold (t)

% On-Demand Cost Mean Wait Time

Figure 7.1: On-demand cost, as a percentage of fixed resource cost, (left y-axis) and
average waiting time (right y-axis) as a function of LJW’s short job threshold t. As
t increases, waiting time drops steeply, while cost increases modestly.

For our baseline, we choose SWW’s waiting time threshold b to be 24 hours, and

LJW’s runtime threshold t to be 15 minutes. Our choice for b is subjective: a higher

b decreases cost, but increases waiting time, and there is no optimal value. We chose

a 24-hour maximum waiting time because it seems reasonable that no job should

wait longer than 1 day to run. Our choice for t=15m is based on Figure 7.1. The

graph shows that LJW’s cost is mostly flat, while the average waiting time initially

decreases sharply and then flattens out. After the initial decrease, LJW’s cost-waiting

time tradeoff remains relatively constant.

Assuming the waiting policies above with perfect knowledge of job running and

waiting times, we empirically determined that the optimal number of m5.16xlarge

reserved VMs that minimizes cost for our workload was 150 for both SJF (with perfect

knowledge of job running times) and FCFS scheduling. That is, adding another

reserved VM, as a fixed resource, would not be utilized more than 40% of the time,

and would not justify its cost. Thus, we set our baseline for fixed resources s=150.

For context, a cloud-enabled scheduler using LJW and SWW parameterized above

with s=150 would cost 5% less overall, when combining the amortized fixed resource

and on-demand cost, than the current fixed size cluster, which is equivalent to using

112

225 m5.16xlarge VMs, and yield an average waiting time of 0.85 hours when using

work-conserving, non-preemptive FCFS scheduling. Finally, while we choose b=24h,

t=15m, and s=150 as baselines, our general insights are applicable at any values of

these parameters, and especially for smaller s, since, as with scheduling, optimizing

job waiting become more important under constraint. Our evaluation varies b, t, and

s from our baselines.

7.3 Design
Directly implementing SJF, LJW, and SWW in practice requires predictions of

job runtime. To better understand their performance, we first trained and evaluated

multiple simple ML models, including linear regression, random forest, support vector

regression (SVR), and a neural net, to predict each job’s runtime from its character-

istics known at submission, as represented in our LSF batch traces. Our models’

input features included each job’s submission time, user ID, maximum running time

limit, and requested number of cores and memory, while the output was the job’s

running time. We trained the models on data from 10 million jobs over 9 months,

and evaluated them on a separate timeframe of 4 million jobs over 3 months.

 0

 25

 50

 75

 100

 125

 150

Linear

 Regression

Random

 Forest

Support Vector

 Regression

Neural

 Networks

x10

M
A

P
E

 (
%

)

Machine Learning Model

-0.2

-0.1

 0

 0.1

Linear

 Regression

Random

 Forest

Support Vector

 Regression

Neural

 Networks

B
in

a
ry

 C
la

s
s
if
ic

a
ti
o

n
 M

C
C

Machine Learning Model

(a) (b)

Figure 7.2: MAPE (a) and MCC (b) of multiple ML models for predicting job runtime
from features in our batch trace.

113

Figure 7.2(a) shows the results for each model, where the y-axis is the mean

absolute percentage error (MAPE) in predicting a job’s runtime at submission time.

As expected, the error is quite high for all models largely because our batch traces

record only a few features for each job, so the models have little data with which to

distinguish jobs. Of course, our LJW waiting policy only requires classifying jobs to be

above or below some threshold t. Thus, Figure 7.2(b) evaluates these models’ binary

classification accuracy using the Matthews Correlation Coefficient (MCC), which is

the best single measure of binary classification performance. The MCC’s values are in

the range −1.0 to 1.0, with 1.0 being perfect prediction, 0.0 being random prediction,

and −1.0 indicating the prediction is always wrong. The results show that the models

are not much better than random predictions, as the MCCs are all near 0.

To get a sense of how effective (or ineffective) such models are in practice, we

used the best model above to simulate SJF on our current fixed-size cluster. Recall

from §7.2 that the average job waiting time under SJF with perfect knowledge of job

runtime is 0.6 hours on the current fixed-size cluster (equivalent to 225 m5.16xlarge

VMs). However, simulating SJF using our ML model to predict job runtimes results

in an average waiting time nearly 3× higher at 1.71 hours. For context, a random job

next policy yields an average waiting time of 3.1 hours, so our job runtime prediction

model yields an average waiting time for SJF roughly mid-way between using per-

fect predictions and random predictions. Interestingly, despite our ML model’s poor

prediction accuracy, it does appear to have better accuracy with respect to ordering

jobs. Note that a random job next policy has a much lower waiting time than FCFS

(at ∼8.1 hours) because it is more likely to select one of the large number of short

jobs to run.

While the ML models above are simple, and may not be the most accurate, they

illustrate long-standing issues with predicting job runtime in batch workloads. As

we discuss, improving the accuracy of these models is not necessary to optimize job

114

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 60 120 180 240 300 360

P
ro

b
a

b
ili

ty
 (

jo
b

 r
u

n
ti
m

e
 ≤

x
)

Job Runtime (hours)

batch

google trace (cell a)

exponential (λ =1.73 hrs)

 0

 0.3

 0.6

 0.9

 0 0.25 0.5 0.75 1 1.25
3
 m

in

1
5
 m

in

1
 h

r

Figure 7.3: CDF of job runtime for our batch workload, a widely-used Google job
trace [76], and an exponential distribution with the same mean as our batch workload.

waiting for cloud-enabled schedulers. This is due, in part, to LJW and SWW’s use of

a threshold to make decisions. LJW classifies a job as long, if its running time exceeds

a threshold t, and as short otherwise, while SWW similarly classifies a job’s waiting

time as short if it is less than b. In both cases, the decision depends on whether the

estimated value is above or below a threshold. Thus, even when job runtimes cannot

be estimated (or even ordered) accurately, the waiting policy is correct as long as

the job (in LJW) or wait time (in SWW) is estimated accurately with respect to its

threshold.

7.3.1 Optimizing LJW using Speculative Execution

Cloud-enabled schedulers can always acquire on-demand resources at an additional

cost to execute jobs. We leverage this capability to optimize the LJW waiting policy

for a small additional cost. As with SJF, LJW requires a priori knowledge of job

running time to make decisions about which jobs wait, and which jobs run, on on-

demand resources. Instead of using a job runtime prediction model like those above

115

to make this decision, our approach is to acquire on-demand resources to run all jobs

immediately if no fixed resources are available when a job arrives. If a job’s running

time is less than t, then it will simply complete without incurring any additional

cost or waiting time compared to if the scheduler had perfectly predicted its runtime.

However, once a job runs on on-demand resources for t time, based on LJW, it

is classified as a long job and the scheduler kills the job, releases the on-demand

resources, and queues the job to run on fixed resources. We do not assume the

scheduler can checkpoint, migrate, and restore jobs, since most schedulers do not

support it.

The benefit of speculative execution for LJW is that it always handles short jobs

correctly, by running them on on-demand resources to completion (when fixed re-

sources are unavailable), but it incurs an additional cost of t×p for long jobs compared

to if the scheduler had perfectly predicted job runtimes. Cloud-enabled schedulers

can effectively leverage speculative execution to buy some information about job run-

ning time. The approach is cost-effective in practice if most of the jobs are short,

but most of the resources are used by long jobs. This is case for many batch work-

loads, including ours. Figure 7.3 shows a cumulative distribution function (CDF) of

job runtimes for our cluster’s workload and a widely-used publicly-available Google

trace [76] with dotted vertical lines at runtimes of 3 minutes, 15 minutes, and 1 hour.

The Google trace exhibits the same characteristics and general trend as our batch

workload. While this skewed runtime distribution makes it challenging to identify the

few long jobs, it also makes speculative execution cost-effective. Since both real-world

workloads above have a significantly higher fraction of short jobs than the exponential

distribution, speculative execution in practice is likely to be much more effective than

queuing models might suggest [18].

To illustrate, Figure 7.4 (a) plots the LJW threshold t on the x-axis, and the

increase in on-demand VM cost, as a percentage of the same cost when using LJW

116

 0

 25

 50

 75

 100

3 5 10 15 30 60

In
c
re

a
s
e

 i
n

 O
ra

c
le

 C
o

s
t

(%
)

Short Job Threshold (minutes)

LJW (errort=10%)
LJW (ML Model)

Speculative Execution
Speculative Execution (Spot)

 0

 1

 2

 3

 4

 0 15 30 45 60

M
e

a
n

 W
a

it
 T

im
e

 (
H

o
u

rs
)

Short Job Threshold (t)

LJW (Oracle)
Speculative Execution

LJW (errort=10%)

Speculative Execution (Spot)
LJW (ML Model)

(a) (b)

Figure 7.4: Percentage increase in cost compared to using LJW with a job runtime
prediction oracle (a) and average waiting time (b) for multiple LJW variants and and
multiple short job thresholds (x-axis).

with an oracle that has perfect knowledge of job runtime predictions. This graph uses

non-preemptible, work-conserving FCFS scheduling. The graph compares the oracle

with four different approaches: LJW using our best ML model from Figure 7.2, LJW

using a hypothetical ML model with 10% average error in job runtime predictions,

speculative execution on on-demand VMs, and speculative execution on spot VMs.

The graph shows that LJW using our ML model performs the worst, resulting in

a 50-75% increase in the cost of using on-demand VMs. In contrast, speculative

execution on on-demand VMs incurs a much lower cost, especially for small thresholds.

Speculative execution has a similar cost to using a hypothetical job runtime prediction

model with 10% average error at our baseline of t=15 minutes (and below). We can

further decrease the cost of speculative execution using spot VMs instead of on-

demand VMs (we use the spot revocation model as [52]). As t increases, speculative

execution’s cost also increases, as there are fewer jobs at these longer durations.

Figure 7.4 (b) similarly plots the corresponding average waiting time for each

scenario. The graph shows that the average waiting time decreases as the LJW

threshold t increases in all cases. LJW using our ML model has a near zero waiting

time because it predicts nearly all jobs are short, and thus always runs them on on-

demand VMs without waiting, which incurs a high cost. The other approaches yield

117

an average waiting time close to, but slightly higher than, LJW using an oracle. The

results above indicate that, for batch workloads with job runtime distributions skewed

towards short jobs, speculative execution mitigates the need to accurately predict job

runtimes, and that such predictions would need to have less than 10% error to yield

a similar cost and waiting time (for our baseline parameters). Achieving such low

model error in practice is unlikely.

7.3.2 Optimizing SWW using Machine Learning

We next focus on optimizing SWW using an ML-based model for predicting a job’s

waiting time. There is less prior work on predicting waiting times for conventional

schedulers, since these predictions typically serve only to inform users, but generally

do not improve scheduling for fixed resources. However, prior work has explored

predicting queue waiting times within the context of certain scenarios where it is

more than just informative, such as when users can choose between multiple queues

or clusters [28, 58], or when users can alter their requested resources post facto to

shorten waiting time [73]. This prior work focuses on conventional scheduling for

fixed resources, and not cloud-enabled scheduling.

A common approach for estimating queue waiting time is to use predictions of job

running time to simulate the schedule forward [59, 72]. This approach, of course, is

dependent on accurate job runtime predictions, which, as we discuss above, are often

not available. In addition, for “optimal” scheduling policies, such as SJF, these ap-

proaches also depend on future job arrivals that are not represented when simulating

a schedule. While, in this case, ML-based and other statistical approaches suffer from

the same limitation, waiting policies can mitigate the difference in waiting time be-

tween SJF and FCFS scheduling, which can motivate the use of a simpler scheduling

policy like FCFS. Below, we focus on estimating wait times using FCFS scheduling,

which are only dependent on the jobs currently in the system.

118

Feature Description
cluster-cpu-util Average CPU utilization of fixed resources
cluster-mem-util Average memory utilization of

fixed resources
runq-size Number of running jobs on fixed resources
waitq-size Number of jobs waiting for fixed resources
runq-mean-cpu Mean CPU resource demand of jobs

running on fixed resources
runq-mean-time Mean time running (up to now) for jobs

running on fixed resources
waitq-mean-cpu Mean CPU resource demand of waiting

jobs
waitq-mean-time Mean time waiting (up to now) for

jobs in queue
num-cores Number of CPU cores requested by

the new job

Table 7.1: Cluster state features used for training our ML-based waiting time predic-
tion models

Rather than rely on job runtime predictions, we instead train a ML model to

predict job waiting time based on cluster state, including the number of queued and

running jobs, average size of queued and running jobs, average time of running jobs,

etc. Our intuition is simple and derives from the law of large numbers: an ML model

for predicting job wait time should be more accurate than for predicting job runtime,

especially for large clusters, as the former depends on the average runtime of a large

number of jobs, while the latter depends on a single job. While any single job’s

runtime represents just one sample from a workload’s job runtime distribution, a

large number of queued jobs represents a much larger sample and thus their average

job runtime is more likely to be closer to the mean of the job runtime distribution,

which determines, in part, a job’s wait time.

We use the intuition above to train three different ML models using the features

in Table 7.1, namely linear regression, random forest, and gradient boosting. We

simulate execution of the batch trace on our cluster under SWW using our base-

line parameters, i.e., b=24h, s=150 m5.16xlarge VMs, with work-conserving, non-

119

 0

 0.5

 1

3 6 12 24

B
in

a
ry

 C
la

s
s
if
ic

a
ti
o

n
 M

C
C

Wait Time Thresold (hours)

Random Forest Linear Regression Gradient Boosting

Figure 7.5: MCC of different ML models for predicting job waiting time for different
waiting time thresholds b.

preemptive FCFS scheduling. For each job, we then record the features from Table 7.1

at submission time, and then record its waiting time once it is scheduled. Note that

runq-mean-time and waitq-mean-time are jobs’ running and waiting times, respec-

tively, up to the present, and so jobs’ final running and waiting time may be longer.

While our problem is a binary classification, i.e., is the waiting time longer than b,

we train multiple regression models using these features to avoid re-training for new

values of b.

 0

 15

 30

 45

 60

 75

6 12 24

%
 O

n
-D

e
m

a
n

d
 C

o
s
t

Mean Wait Time (hours)

Oracle ML Predictions Naive

 0

 1

 2

 3

 4

6 12 24

M
e

a
n

 W
a

it
 T

im
e

 (
h

o
u

rs
)

Wait Time Threshold (hours)

Oracle ML Predictions Naive

(a) (b)

Figure 7.6: On-demand cost, as a percentage of fixed resource cost (a) and average
job waiting time (b) for different approaches to predicting job waiting time under
SWW with different thresholds b (x-axis).

120

Figure 7.5 plots the MCC of our binary classification on waiting time for our

baseline b=24h under the different regression models for different values of b. The

graph shows that random forest and gradiant boosting have MCCs 0.25-0.7 with the

MCCs increasing as the threshold b decreases. By contrast, a naïve approach that

forces all jobs to wait yields an MCC of 0. Note that an approach that estimates

job waiting time by simulating the schedule forward using our job runtime prediction

model from §3.2 behaves similarly to such a naïve all-jobs-wait approach, since it

tends to under-predict each job’s waiting time.

We integrated the random forest model above into our simulator to predict job

waiting times, and compared its performance both to using an oracle with perfect

knowledge of job waiting times, and to the naïve approach above. Figure 7.6 (a)

shows the results for different values of the SWW threshold b along the x-axis, and

the additional on-demand cost, as a percentage of the cost of fixed resources, on the

y-axis. Here, we again use s=150 m5.16xlarge VMs as the number of fixed resources.

The graph shows that our ML-based model yields a cost within 2% of the oracle at

our baseline b=24h. Note that the naïve approach yields the same cost as the oracle,

by definition, but has a mean waiting time that is 14% higher than the oracle at our

baseline b=24h, as shown in Figure 7.6 (b). In contrast, our ML-based waiting time

predictions have a waiting time much closer to oracle, >1% at our 24h baseline, and

essentially equal at b=6h.

7.4 Implementation
We extend the trace-driven cloud-enabled job scheduling simulator from §6.6 to

implement speculative execution and integration of ML models in waiting policies.

The simulator supports either work-conserving SJF or FCFS scheduling, and the LJW

and SWW waiting policies. For SJF, LJW, and SWW policies, the simulator uses an

API to fetch job runtime and waiting time from a model. We can specify whether

121

this model is an oracle, or one of the ML-based models we describe in the previous

section. We can also specify the short job threshold t (for LJW) and waiting time

threshold b (for SWW) at startup. The simulator tracks statistics including average

job waiting time, on-demand cost, and average fixed resource utilization.

Our evaluation focuses on two large-scale traces that are representative of job

scheduling in academia and industry. Our academic job trace, which we describe

in §6.6, is from a shared cluster from a large university system that covers multiple

campuses, and thus encompasses the full spectrum of jobs submitted by the medical,

science, and engineering research communities. Our industry trace is an updated

release of the widely-used and publicly-available Google cluster trace, and is an order

of magnitude larger [76]. Google uses the Borg scheduler, and we use a portion

of the trace that includes 58 million jobs over one week run on a single Borg cell.

Note that the Borg scheduler manages both batch and service jobs, where the latter

are resource requests for interactive services which typically cannot be arbitrarily

delayed [81]. However, since the Google trace does not specify the type of job, we

treat them all as delay-tolerant.

 0

 25

 50

 75

 100

3 5 10 15 30 60

%
 O

n
-D

e
m

a
n

d
 C

o
s
t

Short Job Threshold (minutes)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

LJW (ML model) and SWW (Naive)

 0

 25

 50

 75

 100

6 12 24

%
 O

n
-D

e
m

a
n

d
 C

o
s
t

Wait Time Threshold (hrs)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

LJW (ML model) and SWW (Naive)

(a) (b)

Figure 7.7: On-demand cost, as a percentage of fixed resource cost, on the y-axis as a
function of both LJW’s short job threshold t (a) and SWW’s waiting time threshold
b (b) using our baseline parameters.

We reference a number of ML models in both the previous and next section, which

we have trained using the traces in conjunction with our simulator. We use python’s

122

 0

 0.5

 1

 1.5

3 5 10 15 30 60

M
e

a
n

 W
a

it
 T

im
e

 (
h

rs
)

Short Job Threshold (minutes)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

LJW (ML model) and SWW (Naive)

 0

 0.5

 1

6 12 24

M
e

a
n

 W
a

it
 T

im
e

 (
h

rs
)

Wait Time Threshold (hrs)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

LJW (ML model) and SWW (Naive)

(a) (b)

Figure 7.8: Mean wait time (hours) on the y-axis as a function of both LJW’s short job
threshold t (a) and SWW’s waiting time threshold b (b) using our baseline parameters.

scikit-learn [29] module for training, and focus on basic models. Our job runtime

prediction models are directly trained from the features known at submission time in

the trace data above. For our waiting time predictions, we use our simulator to gen-

erate a new trace that records the cluster state from Table 7.1 at each job submission,

and then records the job’s waiting time once it is scheduled. Of course, this waiting

time in the generated dataset is dependent on the number of fixed resources s we

configure for our simulator. To generate this new dataset, we use a work-conserving,

non-preemptive FCFS scheduling policy with LJW and SWW using our baseline pa-

rameters from §7.2. We use this as training data to learn our models of job waiting

time. For training our job waiting time ML model, we use 70% of the dataset and 30%

of the dataset for testing the models. In addition, we use simple hyperparameters for

tuning our ML models, specifically a tree depth of 114 and a random seed of 137 for

both random forest and gradient boosting trees.

7.4.1 Real Implementation

We describe an implementation of a prototype batch computing service that im-

plements various waiting policies. Our service would be implemented as a lightweight

and extensible wrapper to the Slurm workload manager. Interestingly, Slurm already

supports basic waiting policies like no jobs wait (NJW) and all jobs wait (AJW).

123

For example, NJW policy is similar to existing auto-scaling policies for cloud-enabled

schedulers, and Slurm already provides functions to support such auto-scaling poli-

cies. On the other hand, Slurm doesn’t directly support waiting policies like all short

waits wait (SWW) and long jobs wait (LJW) as they require predicting job runtimes

and wait times.

To implement the waiting policies in our prototype, we would utilize several of

Slurm’s in-built features like monitoring cluster state, monitoring job status, cluster

autoscaling, partitions, etc. In particular, we would define multiple partitions to

manage the cluster (where partitions can be considered as job queues, each of which

has an assortment of constraints such as job size limit, job time limit, users permitted

to use it, etc.). To start, we would have two partitions (with no explicit runtime limit)

– fixed partition (which runs jobs on fixed or reserved resources) and on-demand

partition (which executes jobs on on-demand VMs and autoscaling is enabled). Note

that our service would monitor cluster state, job completions, and failures through

the use of Slurm call-backs.

Speculative Execution. For implementing speculative execution, we would configure

the cluster to use three partitions. In addition to the above two partitions, speculative

execution requires a new partition that executes jobs on on-demand VMs immediately

with an explicit runtime limit (set to long job threshold). When all fixed resources

are exhausted, then new jobs will launch using this new partition. Our prototype

monitors the terminated jobs due to time limits and then re-queues or relaunches the

jobs using fixed partition.

SWW using ML-based wait time predicitions. To implement SWW using wait time

predictions, our prototype would monitor system state using Slurm call-backs and

uses this information to predict each job’s waiting time on arrival. If the predicted

wait time is lower than the wait time threshold, then we execute the job on the fixed

124

resources eventually. If not, we launch the job immediately on on-demand VMs (using

the on-demand partition).

7.5 Evaluation
Our evaluation focuses on i) combining the techniques from §3.2 to quantify how

close the cost and waiting time come in practice to that of an oracle; ii) quantifying

the effect of the number of fixed resources s on the magnitude of the results; and iii)

showing that these techniques also generalize to the Google trace, which has similar

job runtime characteristics.

7.5.1 Combining Techniques

Figure 7.7 shows the on-demand cost, as a percentage of fixed resource cost, on

the y-axis as a function of both LJW’s short job threshold t (a) and SWW’s waiting

time threshold b (b) using our baseline parameters. We compare three techniques:

SWW and LJW using an oracle with perfect knowledge of job waiting and running

time; a naïve approach that uses an ML model for predicting job runtimes for LJW

and SWW; and our techniques from §3.2 that use speculative execution and an ML-

based waiting time prediction model. In both graphs, our techniques come much

closer to the cost of the oracle compared to those using predictions of job runtime

across all short job thresholds t and waiting time thresholds b. Specifically, at our

baseline parameters of (t=15m, b=24h) the combined technique comes within 4% of

the oracle’s on-demand cost. By comparison, using job runtime predictions has a 70%

higher cost compared to the oracle. The cost advantage is similar across all parameter

settings.

Figure 7.8 similarly shows the mean wait time on the y-axis as a function of

both LJW’s short job threshold t (a) and SWW’s waiting time threshold b (b) using

our baseline parameters. This is the same experiment as in Figure 7.7. Again,

125

combining our techniques from §3.2 of speculative execution and ML-based waiting

time predictions results in a waiting time near that of the oracle across all short job

thresholds t and waiting time thresholds b. For our baseline parameters (t=15m,

b=24h) combining our techniques comes within 13% of the oracle’s mean waiting

time. In contrast, a policy that directly uses job runtime predictions for LJW and

SWW has nearly zero waiting time because it tends to under-predict job running time

due to the large number of short jobs. As a result, it runs most jobs on on-demand

resources at a high cost, but with low waiting time.

Recall from §7.2, that the waiting time on the current fixed-size cluster (equivalent

to 225 m5.16xlarge’s using SJF with perfect knowledge of job running time is 0.6

hours, but is 1.71 hours in practice, when using our job runtime prediction model from

§3.2. For this experiment, the average waiting time across all the parameters are less

than 1.71 hours, and many are less than 0.6 hours. Of course, the maximum waiting

time in our case is bounded by the waiting time threshold b, while the maximum

waiting time is unbounded under SJF. Recall also that the total cost, including both

fixed and on-demand resources, of using LJW and SWW under an oracle with our

baseline parameters is 5% less than the cost of current fix-sized cluster, and our

practical approach achieves near this cost. This shows how optimizing waiting policies

for cloud-enabled schedulers can mitigate some of the challenges with optimizing

scheduling policies.

7.5.2 Varying Fixed Resources

Up to this point, all of our experiments have used the same number of fixed

resources s of 150 m5.16xlarge VMs, which is optimal number of fixed resources

for our workload that minimizes the total cost of fixed and on-demand resources,

when amortized over the workload’s year-long duration. In this case, we assume the

cost of fixed resources is equivalent to the price of 3-year reserved m5.16xlarge VM.

126

 0

 2

 4

 6

100 125 150 175 200 225

T
o

ta
l
C

o
s
t

In
c
re

a
s
e

 (
%

O
ra

c
le

)

Number of m5.16xlarge VMs

Speculative Execution and SWW (ML model)

 0

 1

 2

 3

100 125 150 175 200 225

M
e

a
n

 W
a

it
 T

im
e

 (
h

rs
)

Number of m5.16xlarge VMs

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

(a) Cost (b) Wait time

Figure 7.9: Total cost of amortized fixed and on-demand resources (as a percentage of
the oracle) as a function of fixed resource capacity (a). Mean wait time as a function
of fixed resource capacity for our approach and the oracle (b).

Figure 7.9 shows the impact of varying the number of fixed resources on both the

cost and waiting time, where are other baseline parameters remain the same. In this

case, Figure 7.9(a) includes the total fixed and on-demand cost for executing the

workload under SWW and LJW, as a percentage of the oracle. The graph shows

that speculative execution and ML-based waiting time predictions achieves near the

same total cost, regardless of number of fixed resources. Note that our cost is closer

to the oracle at 150 VMs than above because the previous section only plotted the

on-demand cost assuming that fixed resources were a sunk cost.

Figure 7.9(a) shows that as we increase the number of fixed resources, the average

waiting time decreases, as expected, although the percentage difference between our

approach and the oracle increases. However, ultimately, the importance of waiting

policies decreases as fixed resources increase, since there is less resource constraint

and need to wait.

7.5.3 Generalizing to the Google Workload

Our illustrative examples in §7.3 and evaluation above are from a single workload.

To demonstrate the generality of our approach, we performed a similar evaluation

using the Google trace [76]. The trace includes data from 8 Borg cells over a single

127

-0.5

 0

 0.5

 1

3 6 12 24

B
in

a
ry

 C
la

s
s
if
ic

a
ti
o

n
 M

C
C

Wait Time Thresold (hours)

Random Forest Linear Regression Gradient Boosting

Figure 7.10: MCC of ML models for predicting job waiting time for different waiting
time thresholds b in the Google trace.

 0

 25

 50

3 5 10 15 30 60

%
 O

n
-D

e
m

a
n

d
 C

o
s
t

Short Job Threshold (minutes)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

 0

 25

 50

6 12 24

%
 O

n
-D

e
m

a
n

d
 C

o
s
t

Wait Time Threshold (hrs)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

(a) (b)

Figure 7.11: On-demand cost, as a percentage of fixed resource cost, on the y-axis as
a function of both LJW’s short job threshold t (a) and SWW’s waiting time threshold
b (b) for our Google trace using the baseline parameters.

 0

 0.5

 1

 1.5

 2

3 5 10 15 30 60

M
e

a
n

 W
a

it
 T

im
e

 (
h

rs
)

Short Job Threshold (minutes)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

 0

 0.5

 1

 1.5

6 12 24

M
e

a
n

 W
a

it
 T

im
e

 (
h

rs
)

Wait Time Threshold (hrs)

SWW and LJW (Oracle)
Speculative Execution and SWW (ML model)

(a) (b)

Figure 7.12: Mean wait time (hours) on the y-axis as a function of both LJW’s short
job threshold t (a) and SWW’s waiting time threshold b (b) for Google trace using
our baseline parameters.

128

month in May 2019. Since the number of jobs is massive, we focus on a single week

from a single cell, which includes 58 million job submissions. We further randomly

sample this down to 14 million job submissions, or 25%, to reduce the overhead of our

simulations. Note that our sampled trace has the same mean core/memory request

and job runtime as the original trace. The jobs in the Google trace have much larger

core/memory requirements than our academic trace, so we adjust the number and

size of our baseline fixed resources for this evaluation. We set our baseline number of

fixed resources s equal to 4000 VMs, each with 192 cores and 768GB memory.

We use the same per-core pricing as in the previous experiments, which is based on

the m5 family, i.e., $0.048 per core-hour. The N2 family of VMs in Google Compute

Engine (GCE) have a similar price. In this case, for on-demand VMs, we assume

the use of custom VMs from GCE with $0.031611 per core-hour and $0.004237 per

GB-hour, as the Google trace has many jobs with unbalanced core/memory ratios

that waste significant resources when using fixed-size VMs. These custom prices are

equivalent to $0.048 per hour for 1 core and 4GB memory, as above. As before, we

assume the amortized cost of the fixed resources has a 60% lower cost, equivalent to

that of a 3-year reserved VM. We use the same baseline parameters as in the other

analysis (t=15m, b=24h).

Recall from Figure 7.3 in §7.3 that the Google workload’s job runtime distribution

is remarkably similar in shape to that of our academic batch trace, where a significant

fraction of jobs are short, but where much of the computation comes from a small

fraction of long jobs. We also trained waiting time prediction models using the same

approach as in §6.5.1 by generating a dataset from a simulation run that recorded the

features listed in Table 7.1. Figure 7.10 plots the Matthews Correlation Coefficient

(MCC) for these models. The results for a random forest and gradiant boosting model

are similar to those in our academic workload, from Figure 7.5, while linear regression

129

actually exhibits a negative MCC. We use a random forest model, since it yields the

highest MCC.

Figure 7.11 shows the on-demand cost as a percentage of fixed resource cost, on the

y-axis as a function of both LJW’s short job threshold t (a) and SWW’s waiting time

threshold b (b) for our Google trace using the baseline parameters. Figure 7.11(a)

shows the same trends we observed in Figure 7.7(a) for speculative execution as the

short job threshold t changes. For small values of t, the difference in cost between the

oracle and speculative execution is minimal because a large fraction of jobs are short,

and thus should run on on-demand VMs. Similarly, Figure 7.11(b) also shows the

same trend observed in Figure 7.7(b) as we change the waiting time threshold b, where

slightly shorter thresholds have a cost closer to the oracle. Again, the observation

that the accuracy of waiting time predictions based on cluster state is aided by the

law of large numbers is general, and holds for the Google trace just as it does for the

academic trace.

Figure 7.12(b) shows the average waiting time for the same experiment as above.

We see similar trends as in Figure 7.8(b) using the academic workload, except that

the waiting time for our approach in the Google trace is actually slightly less than

when using an oracle. This occurs because our ML-based waiting time prediction

model performs slightly better compared to these models for our academic trace. As

a result, there are fewer jobs that actually end up waiting for fixed resources for

time b in the queue, and then also incur the high price of using on-demand VMs.

These waiting time mis-predictions are the reason our academic batch workload has

both a slightly higher cost and waiting time compared to the oracle. When using

an oracle, cost and waiting time are a tradeoff: using more on-demand VMs incurs

a higher cost, but should lower waiting time, since there is no reason to wait for

an on-demand VM with an oracle. However, mis-predictions can cause waiting for

on-demand VMs in practice, which can increase average waiting time. This happens

130

much less in the Google trace compared to the academic batch workload, and thus

higher cost compared to the oracle is compensated by a lower average waiting time.

7.6 Related Works
Conventional job scheduling on fixed resources has been studied for decades, and

continues to be an active area of research [50, 60, 78]. Prior work has examined the

problem in many contexts, e.g., with deadlines, priorities, fairness constraints, etc. As

more computation shifts to cloud platforms, conventional job scheduling is becoming

less important for cloud users, since clouds provide the illusion of infinite scalability.

Recent work introduced the waiting problem for cloud-enabled schedulers, and

analyzed it using a M/M/s queuing model [18]. However, that work focused on opti-

mizing fixed resource provisioning to minimize cost, and showed that the optimal was

dependent on the waiting policy. However, the work assumed waiting policies with

perfect knowledge of job running and waiting times. We, instead, show that we can

realize these waiting policies in practice without perfect knowledge by using specu-

lative execution and ML-based waiting time predictions. Despite its importance to

cloud scheduling, we have not seen any other prior work that directly addresses wait-

ing policies. Our work is related to prior work on scheduling for hybrid clouds, which

include fixed private resources, but can also burst into the cloud [41, 57]. However,

that work does not define the notion of a waiting policy.

The focus of this work is to demonstrate that we can realize waiting policies

in practice that are close to the optimal, given a priori knowledge of job running

and waiting time. There has been substantial prior work on predicting job running

and waiting time for cluster job schedulers, although much of it is not used in prac-

tice [36,37,40,59,77]. For example, [77] uses a clustering approach that groups jobs by

their attributes and then predicts job runtime within each group. Recent work details

the many reasons why cluster schedulers do not use job running time predictions [53],

131

including low accuracy due to insufficient data, non-stationarity, and unfair perfor-

mance. Our work echoes many of the same points, as standard ML models cannot

even accurately categorize job running times to be above or below a threshold.

There is much less work on predicting job waiting time because it does not directly

benefit conventional scheduling [28, 72]. Prior work generally builds on job runtime

predictions, and we know of no work that directly uses cluster state. None of this

work applies these prediction methods to waiting policies, but instead looks at various

other scenarios where jobs have a choice among multiple queues or can modify their

request to reduce waiting time. Our focus is not necessarily on developing the most

accurate waiting time prediction model, but instead to show that basic models can

do well in the context of waiting policies largely due to the law of large numbers.

7.7 Conclusion and Status
This chapter focuses on optimizing the tradeoff between cost and waiting time

for cloud-enabled schedulers, which can run jobs on both fixed resources and those

acquired on-demand from cloud platforms. This tradeoff is dependent on the sched-

uler’s waiting policy, and optimizing the waiting policy generally requires a priori

knowledge of job runtime. We present two techniques—speculative execution and

ML-based waiting time predictions—that enable implementing near-optimal waiting

policies in practice without accurate job runtime predictions. We evaluate these tech-

niques on two large job traces from academia and industry, and show they yield a

cost and waiting time near that of an oracle with perfect knowledge of job running

and waiting time.

Status. We have implemented both speculative execution and ML-based waiting

time predictions in a trace-driven job scheduling simulator and evaluated using an

academic workload trace and an industry workload trace. We have submitted the

work to the ACM SoCC conference in May 2021.

132

CHAPTER 8

CONCLUSION

Cloud platforms offer the same VMs under a variety of purchasing options that

specify different costs and time commitments, such as on-demand, reserved, transient,

and spot block. While these options provide opportunities for optimizing the long-

term cloud costs (and performance), but choosing from among these options can

be challenging. In this work, we focus on optimizing the long-term cloud cost by

judiciously selecting different VM purchasing options. As part of our work, we identify

multiple significant problems and design system-level solutions using classic statistics

when applicable and evaluate these solutions in a real-world scenario to illustrate the

benefits of proposed solutions.

8.1 Summary of Contributions
First, we presented TR-Kubernetes, a minimal extension of Kubernetes that exe-

cutes mixed interactive and batch workloads on unreliable transient VMs dynamically

acquired from cloud platforms. To achieve this, we design a greedy provisioning algo-

rithm that satisfies a capacity availability requirement at a low cost. We implemented

TR-Kubernetes prototype on EC2’s variant of transient VMs and evaluated its perfor-

mance, reliability, cost, and availability using publicly available benchmarking tools,

availability and cost data, and workload traces. Evaluation using Amazon EC2 spot

data shows that, when compared to running interactive services on on-demand VMs,

TR-Kubernetes is capable of lowering costs (by 53%) and providing higher availability

(99.999%).

133

Second, we analyze the speedup and cost of executing parallel batch jobs, such

as distributed ML jobs, on highly discounted transient cloud resources using many

different straggler mitigation techniques. Using this model, we derive the expected

running time and cost for straggler mitigation techniques proposed in prior work for

a simple parallel job with synchronization barriers. Our analysis shows that transient

VMs offer complex tradeoffs compared to using on-demand VMs, and can result in

higher overall costs despite their highly discounted price due to their probabilistic

performance.

Third, we design multiple policies to optimize long-term cloud costs by selecting a

mix of VM purchasing options based on short- and long-term expectations of workload

utilization with no job waiting. We evaluate our policies on a batch job trace spanning

4 years from a large shared cluster for a major state university system that includes

14k cores and 60 million job submissions and show how these jobs could be cost-

effectively executed in the cloud using our approach. Our results show that our

policies incur a cost within 41% of an optimistic offline optimal approach, are 50%

less than solely using on-demand VMs, and 79% less than using reserved VMs.

Finally, we introduce the concept of a waiting policy for cloud-enabled schedulers.

In this work, we defined, analyzed, and empirically validated multiple fundamental

waiting policies. Our analysis reveals key tradeoffs in designing waiting policies un-

der FCFS scheduling, and also captures the impact of inaccurate predictions of job

running time and waiting time on the fixed resource provisioning, price, and mean

waiting time. A key goal of this work is to provide a formal foundation for future

work on waiting policies both analytically and empirically, including on more gen-

eral distributions of job inter-arrival and service times, different scheduling policies,

and machine learning (ML) classifiers to accurately estimate job waiting and running

times. In addition, waiting policies are important in understanding how users value

and provision fixed and on-demand resources. Understanding these user valuations

134

is important for cloud providers in determining how to set the price of fixed and

on-demand resources to maximize their revenue.

The optimal waiting policies generally requires a priori knowledge of job runtime

which is a complex and non-trivial task using the publicly available dataset on job

scheduling. To address this, we present two techniques—speculative execution and

ML-based waiting time predictions—that enable implementing near-optimal waiting

policies in practice without accurate job runtime predictions. We evaluate these

techniques on two large job traces from academia and industry and show they yield

a cost and waiting time near that of an oracle with perfect knowledge of job running

and waiting time.

8.2 Directions for Future Research
Our dissertation focused on selecting different VM purchasing options for opti-

mizing the long-term cloud costs from a cloud user’s perspective. Here, we identify

several research directions to extend our work.

Combining Waiting Policies with Resource Overcommit. In the recent past,

multiple papers [20,26] propose different techniques to improve the resource utilization

in datacenters from cloud platform’s perspective using resource harvesting, resource

overcommit, etc. In these works, authors address the issue of low resource utilization

by either overcommitting the resources i.e., the sum of resources allocated to the

tasks on a machine exceeds its physical capacity, or by harvesting idle resources

using dynamically sized harvest VMs. Recall, waiting policies yield a nice trade-

off between cost and waiting time, whereas overcommit algorithms typically yield

high resource utilization and lower operating cost. Certainly, combining overcommit,

waiting policies, and even resource harvesting could potentially gain the benefits of

all three. The challenge would be if there are any conflicts between the policies.

135

Another interesting aspect would be quantifying the relative importance of each one

in assessing cost and waiting time.

Energy Efficient Resource Provisioning. Given the importance of building green

and energy-efficient data centers for reducing the carbon impact, a natural direction

for future work would be to incorporate energy effecieny as another constraint while

provisioning resources in several of our works. We can directly extend our work on

waiting policies, where we can design a carbon-aware scheduler that implements the

waiting policies. In this case, using renewable energy is the equivalent of using a

cheap fixed resource (which represents a sunk cost), and using grid energy is the

equivalent of using expensive on-demand servers. Certainly, having jobs wait for

renewable energy is going to lower their carbon footprint. Of course, a key difference

is that, in this case, our cheap fixed resource has a variable capacity, and we replace

cost with carbon. If the carbon footprint of grid energy is also variable, then it might

be beneficial, in terms of carbon, to wait some for it as well.

Optimal VM Pricing from Cloud Provider’s Perspective In general, cloud

providers set VM prices based on various factors like hardware cost, operation cost,

provider benefit, uncertainty in demand, etc. (e.g., reserved VMs are cheaper because

they have a better guarantee). An interesting problem about VM pricing from a

cloud provider’s perspective is – how to set VM prices so that they can optimize

(or maximize) their benefit assuming that rational users act optimally under a given

waiting policy?. To address the problem, we can model and solve with these variables

given – hardware cost, operational cost, waiting policy and its thresholds, number of

users, etc. The challenge here would be accounting for the hardware and operational

costs accurately as it is much harder for us to model from the outside.

136

BIBLIOGRAPHY

[1] Azure Kubernetes Service. https://azure.microsoft.com/en-
us/services/container-service/, Accessed August 2017.

[2] Amazon Elastic Container Service for Kubernetes.
https://aws.amazon.com/eks/, Accessed May 2018.

[3] Docker Swarm. https://docs.docker.com/engine/swarm/, Accessed April
2018.

[4] Kubernetes on AWS. https://kubernetes-incubator.github.io/kube-aws/, Ac-
cessed May 2018.

[5] Tributary: spot-dancing for elastic services with latency slos. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18) (Boston, MA, 2018), USENIX
Association.

[6] Google Kubernetes Engine. https://cloud.google.com/kubernetes-engine/, Ac-
cessed October 2019.

[7] Slurm Elastic Computing (Cloud Bursting). https://slurm.schedmd.com/
elastic_computing.html, Accessed October 2019.

[8] SlurmWorkload Manager. https://slurm.schedmd.com/, Accessed October 2019.

[9] Amazon Aws Ec2 Instance Type. https://aws.amazon.com/ec2/instance-types/,
Accessed January 2020.

[10] Cloud Computing Market by Service Model.
https://www.globenewswire.com/news-release/2020/08/21/2081841/0/en/Cloud-
Computing-Industry-to-Grow-from-371-4-Billion-in-2020-to-832-1-Billion-by-
2025-at-a-CAGR-of-17-5.html, August 2020.

[11] University of Massachusetts Green High Performance Computing Cluster. http:
//wiki.umassrc.org/wiki/index.php/Main_Page, Accessed August 2020.

[12] Load Sharing Facility. https://www.ibm.com/docs/en/spectrum-lsf/10.1.
0?topic=lsf-foundations, Accessed May 2021.

137

https://docs.docker.com/engine/swarm/
https://slurm.schedmd.com/elastic_computing.html
https://slurm.schedmd.com/elastic_computing.html
http://wiki.umassrc.org/wiki/index.php/Main_Page
http://wiki.umassrc.org/wiki/index.php/Main_Page
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-foundations
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-foundations

[13] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M.,
Yu, Y., and Zheng, X. Tensorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16) (2016), pp. 265–283.

[14] Ai, L., Wu, X., Huang, L., Huang, L., Tang, P., and Li, J. The Multi-shop Ski
Rental Problem. In SIGMETRICS (June 2014).

[15] Albrecht, J., Tuttle, C., Snoeren, A., and Vahdat, A. Loose Synchronization for
Large-scale Networked Systems. In USENIX ATC (June 2006).

[16] Alipourfard, O., Liu, H., Chen, J., Venkataraman, S., Yu, M., and Zhang, M.
CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data
Analytics. In NSDI (March 2017).

[17] Ambati, Pradeep, Bashir, Noman, Irwin, David, Hajiesmaili, Mohammad, and
Shenoy, Prashant. Hedge your bets: Optimizing long-term cloud costs by mix-
ing vm purchasing options. In 2020 IEEE International Conference on Cloud
Engineering (IC2E) (2020).

[18] Ambati, Pradeep, Bashir, Noman, Irwin, David, and Shenoy, Prashant. Waiting
game: Optimally provisioning fixed resources for cloud-enabled schedulers. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (2020).

[19] Ambati, Pradeep, Bashir, Noman, Irwin, David, and Shenoy, Prashant. Modeling
and analyzing waiting policies for cloud-enabled schedulers. IEEE Transactions
on Parallel and Distributed Systems 32, 12 (2021), 3081–3100.

[20] Ambati, Pradeep, Goiri, Inigo, Frujeri, Felipe, Gun, Alper, Wang, Ke, Dolan,
Brian, Corell, Brian, Pasupuleti, Sekhar, Moscibroda, Thomas, Elnikety, Sameh,
Fontoura, Marcus, and Bianchini, Ricardo. Providing slos for resource-harvesting
vms in cloud platforms. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20) (2020).

[21] Ambati, Pradeep, and Irwin, D. Optimizing the cost of executing mixed in-
teractive and batch workloads on transient vms. Proceedings of the ACM on
Measurement and Analysis of Computing Systems (2019).

[22] Ambati, Pradeep, Irwin, David E., Shenoy, P., Gao, L., Alieldin, A., and Al-
brecht, J. Understanding synchronization costs for distributed ml on transient
cloud resources. In 2019 IEEE International Conference on Cloud Engineering
(IC2E) (2019).

[23] Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y., Saha, B.,
and Harris, E. Reining in the Outliers in Map-Reduce Clusters using Mantri. In
OSDI (December 2010).

138

[24] Babcock, C. Amazon’s ‘Virtual CPU’? You Figure it Out, in InformationWeek,
December 23rd 2015.

[25] Barr, J. Amazon Ec2 Beta. AWS Official Blog, August 2006.

[26] Bashir, Noman, Deng, Nan, Rządca, Krzysiek Michał, Irwin, David, Kodakara,
Sree, and Jnagal, Rohit. Take it to the limit: Peak prediction-driven resource
overcommitment in datacenters. In EuroSys (2021).

[27] Beckman, P., Iskra, K., Yoshii, K., and Coghlan, S. The Influence of Operat-
ing Systems on the Performance of Collective Operations at Extreme Scale. In
Cluster Computing (September 2006).

[28] Brevik, J., Nurmi, D., and Wolski, R. Predicting Bounds on Queuing Delay for
Batch-Scheduled Parallel Machines. In PPoPP (March 2006).

[29] Buitinck, Lars, Louppe, Gilles, Blondel, Mathieu, Pedregosa, Fabian, Mueller,
Andreas, Grisel, Olivier, Niculae, Vlad, Prettenhofer, Peter, Gramfort, Alexan-
dre, Grobler, Jaques, Layton, Robert, VanderPlas, Jake, Joly, Arnaud, Holt,
Brian, and Varoquaux, Gaël. API Design for Machine Learning Software: Ex-
periences from the cikit-learn Project. In ECML PKDD Workshop: Languages
for Data Mining and Machine Learning (2013), pp. 108–122.

[30] Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and Wilkes, J. Borg, Omega,
and Kubernetes. ACM Queue - Containers 14, 1 (January-February 2016).

[31] Cui, H., Cipar, J., Ho, Q., Kim, J., Lee, S., Kumar, A., Wei, J., Dai, W., Ganger,
G., Gibbons, P., Gibson, G., and Xing, E. Exploiting Bounded Staleness to Speed
Up Big Data Analytics. In USENIX ATC (June 2014).

[32] Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., and Warfield,
A. Remus: High Availability via Asynchronous Virtual Machine Replication. In
NSDI (April 2008).

[33] Dean, Jeff, and Ghemawatt, Sanjay. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI (December 2004).

[34] Delimitrou, C., and Kozyrakis, C. HCloud: Resource-Efficient Provisioning in
Shared Cloud Systems. In ASPLOS (April 2016).

[35] den Bossche, R. Van, Vanmechelen, K., and Broeckhove, J. IaaS Reserved Con-
tract Procurement Optimisation with Load Prediction. Future Generation Com-
puter Systems 53 (December 2015).

[36] Di, S., Kondo, D., and Wang, C. Optimization and Stabilization of Composite
Service Processing in a Cloud System. In 2013 IEEE/ACM 21st International
Symposium on Quality of Service (IWQoS) (June 2013).

139

[37] Di, S., Wang, C., and Cappello, F. Adaptive Algorithm for Minimizing Cloud
Task Length with Prediction Errors. IEEE Transactions on Cloud Computing
2, 2 (2014), 194–207.

[38] Erlang, A. K. On the Rational Determination of the Number of Circuits (1924).
In Life and Works of A K. Erlang , E. Brockmeyer, H J. Halstrom and A. Jensen,
Danish Academy of Technical Science, 1948.

[39] Ghit, B., and Epema, D. Better safe than sorry: Grappling with failures of
in-memory data analytics frameworks. In HPDC (June 2017).

[40] Grandl, Robert, Chowdhury, Mosharaf, Akella, Aditya, and Ananthanarayanan,
Ganesh. Altruistic Scheduling in Multi-Resource Clusters. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation
(2016), OSDI’16.

[41] Guo, T., Sharma, U., Sahu, S., Wood, T., and Shenoy, P. Seagull: Intelligent
Cloud Bursting for Enterprise Applications. In USENIX ATC (June 2012).

[42] Harlap, A., Tumanov, A., Chung, A., Ganger, G., and Gibbons, P. Proteus:
Agile ML Elasticity through Tiered Reliability in Dynamic Resource Markets.
In European Conference on Computer Systems (EuroSys) (April 2017).

[43] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A., Katz, R.,
Shenker, S., and Stoica, I. Mesos: A Platform for Fine-grained Resource Sharing
in the Data Center. In NSDI (March 2011).

[44] Ho, Qirong, Cipar, James, Cui, Henggang, Kim, Jin Kyu, Lee, Seunghak, Gib-
bons, Phillip B., Gibson, Garth A., Ganger, Gregory R., and Xing, Eric P. More
Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. In
NIPS (2013), NIPS.

[45] Hoff, T. High Scalability, The Eternal Cost Savings of Netflix’s Internal Spot
Market. http://highscalability.com/blog/2017/12/4/the-eternal-cost-savings-of-
netflixs-internal-spot-market.html, December 4th 2017.

[46] Hong, Y., Xue, J., and Thottethodi, M. Dynamic Server Provisioning to Mini-
mize Cost in an IaaS Cloud. In SIGMETRICS (June 2011).

[47] Hsu, C.J., Nair, Vivek, Freeh, V.W., and Menzies, T. Low-Level Augmented
Bayesian Optimization for Finding the Best Cloud VM. In ICDCS (July 2018).

[48] Hu, M., Luo, J., and Veeravalli, B. Optimal Provisioning for Scheduling Divisible
Loads with Reserved Cloud Resources. In ICON (December 2012).

[49] Huang, B., Jarrett, N., Babu, S., Mukherjee, S., and Yang, J. Cumulon: Matrix-
Based Data Analytics in the Cloud with Spot Instances. Proceedings of the
VLDB Endowment (PVLDB) 9, 3 (November 2015).

140

[50] Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., and Goldberg, A.
Quincy: Fair Scheduling for Distributed Computing Clusters. In SOSP (October
2009).

[51] Jensen, A. Moe’s Principle: An Econometric Investigation Intended as an Aid
in Dimensioning and Managing Telephone Plant. The Copenhagen Telephone
Company, 1950.

[52] Kadupitige, J., Jadhao, V., and Sharma, P. Modeling the Temporally Con-
strained Preemptions of Transient Cloud VMs. In HPDC (June 2020).

[53] Kuchnik, Michael, Park, J., Cranor, C., Moore, Elisabeth, DeBardeleben,
Nathan, and Amvrosiadis, George. This is why ml-driven cluster scheduling
remains widely impractical.

[54] Li, Mu, Andersen, David, Park, Jun Woo, Smola, Alexander, Ahmed, Amr,
Josifovski, Vanja, Long, James, Shekita, Eugene, and Su, Bor-Yiing. Scaling
Distributed Machine Learning with the Parameter Server. In OSDI (November
2014).

[55] Liu, L., and Kulkarni, V. Balking and Reneging in M/G/s Systems: Exact
Analysis and Approximations. Probability in the Engineering and Informational
Sciences 22, 3 (July 2008).

[56] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and Abadi,
M. Naiad: A timely dataflow system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (New York, NY, USA, 2013), SOSP
’13, ACM, pp. 439–455.

[57] Niu, S., Zhai, J., Ma, X., Tang, X., and Chen, W. Cost-effective Cloud HPC Re-
source Provisioning by Building Semi-Elastic Virtual Clusters. In SC (November
2013).

[58] Nurmi, D., Brevik, J., and Wolski, R. QBETS: Queue Bounds Estimation from
Time Series. In JSSPP (June 2007).

[59] Omer, S., N.Yigitbasi, Iosup, A., and Epema, D. Trace-based Evaluation of Job
Runtime and Queue Wait Time Predictions in Grids. In HPDC (June 2009).

[60] Park, Jun Woo, Tumanov, Alexey, Jiang, Angela, Kozuch, Michael A., and
Ganger, Gregory R. 3sigma: Distribution-based cluster scheduling for runtime
uncertainty. In Proceedings of the Thirteenth EuroSys Conference (2018).

141

[61] Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury, James,
Chanan, Gregory, Killeen, Trevor, Lin, Zeming, Gimelshein, Natalia, Antiga,
Luca, Desmaison, Alban, Kopf, Andreas, Yang, Edward, DeVito, Zachary, Rai-
son, Martin, Tejani, Alykhan, Chilamkurthy, Sasank, Steiner, Benoit, Fang,
Lu, Bai, Junjie, and Chintala, Soumith. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing
Systems (2019).

[62] Petrini, F., Kerbyson, D.J., and Pakin, S. The Case of the Missing Supercom-
puter Performance: Achieving Optimal Performance on 8,192 Processors of ASCI
Q. In SC (November 2003).

[63] Sharma, P., Guo, T., He, X., Irwin, D., and Shenoy, P. Flint: Batch-Interactive
Data-Intensive Processing on Transient Servers. In European Conference on
Computer Systems (EuroSys) (April 2016).

[64] Sharma, P., Irwin, D., and Shenoy, P. Portfolio-driven Resource Management
for Transient Cloud Servers. In International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS) (June 2017).

[65] Sharma, P., Lee, S., Guo, T., Irwin, D., and Shenoy, P. SpotCheck: Designing a
Derivative IaaS Cloud on the Spot Market. In European Conference on Computer
Systems (EuroSys) (April 2015).

[66] Shastri, S., Rizk, A., and Irwin, D. Transient Guarantees: Maximizing the Value
of Idle Cloud Capacity. In SC (November 2016).

[67] Shen, S., Deng, K., Iosup, A., and Epema, D. Scheduling Jobs in the Cloud
using On-demand and Reserved Instances. In Euro-Par (August 2013).

[68] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The Hadoop Distributed
File System. In MSST (May 2010).

[69] Singh, R., Irwin, D., Shenoy, P., and Ramakrishnan, K.K. Yank: Enabling Green
Data Centers to Pull the Plug. In Symposium on Networked Systems Design and
Implementation (NSDI) (April 2013).

[70] Singh, R., Sharma, P., Irwin, D., Shenoy, P., and Ramakrishnan, K.K. Here
Today, Gone Tomorrow: Exploiting Transient Servers in Datacenters. IEEE
Internet Computing 18, 4 (April 2014).

[71] Singh, Rahul, Sharma, Prateek, Irwin, David, Shenoy, Prashant, and Ramakr-
ishnan, K.K. Here Today, Gone Tomorrow: Exploiting Transient Servers in Data
Centers. IEEE Internet Computing 18, 4 (July 2014).

[72] Smith, W., Taylor, V., and Foster, I. Using Run-Time Predictions to Estimate
Queue Wait Times and Improve Scheduler Performance. In JSSPP (April 1999).

142

[73] Souza, Abel, Pelckmans, Kristiaan, Ghoshal, Devarshi, Ramakrishnan, Lavanya,
and Tordsson, Johan. ASA - The Adaptive Scheduling Architecture. In HPDC
(June 2020).

[74] Subramanya, S., Guo, T., Sharma, P., Irwin, D., and Shenoy, P. SpotOn: A
Batch Computing Service for the Spot Market. In Symposium on Cloud Com-
puting (SoCC) (August 2015).

[75] Takacs, L. Introduction to the Theory of Queues. Oxford University Press, 1962.

[76] Tirmazi, M., Barker, A., Deng, N., Haque, M., Qin, Z., Hand, S., Harchol-Balter,
M., and Wilkes, J. Borg: The Next Generation. In EuroSys (April 2020).

[77] Tumanov, A., Jiang, A., Park, J., Kozuch, M., and Ganger, G. Jamaisvu: Robust
Scheduling with Auto-Estimated Job Runtimes, Accessed September 2016.

[78] Tumanov, A., Zhu, T., Park, J., Kozuch, M., Harchol-Balter, M., and Ganger,
G. TetriSched: Global Rescheduling with Adaptive Plan-Ahead in Dynamic
Heterogeneous Clusters. In EuroSys (March 2016).

[79] Valiant, L. A Bridging Model for Parallel Computation. CACM 33, 8 (August
1990).

[80] Venkataraman, S., Yang, Z., Franklin, M., Recht, B., and Stoica, I. Ernest: Efi-
cient performance prediction for large-scale advanced analytics. In NSDI (March
2016).

[81] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes,
J. Large-scale Cluster Management at Google with Borg. In European Conference
on Computer Systems (EuroSys) (April 2015).

[82] Wang, C., Urgaonkar, B., Nasiriani, N., and Kesidis, G. Using Burstable In-
stances in the Public Cloud: Why, When, and How? ACM on Measurement and
Analysis of Computing Systems 1, 1 (June 2017).

[83] Wang, W., Li, B., and Liang, B. To Reserve or Not to Reserve: Optimal Online
Multi-Instance Aquisition in IaaS Clouds. In ICAC (June 2013).

[84] Wang, W., Niu, D., Li, B., and Liang, B. Dynamic Cloud Resource Reservation
via Cloud Brokerage. In ICDCS (July 2013).

[85] Wang, Z., Gao, L., Gu, Y., Bao, Y., and Yu, G. FSP: Towards Flexible Syn-
chronous Parallel Framework for Expectation-Maximization based Algorithms
on Cloud. In SoCC (September 2017).

[86] Whitt, Ward. Erlang B and C Formulas: Problems and Solutions.
http://www.columbia.edu/ ww2040/ErlangBandCFormulas.pdf, 2002.

143

[87] Xu, Z., Stewart, C., Deng, N., and Wang, X. Blending On-Demand and Spot
Instances to Lower Costs for In-Memory Storage. In International Conference
on Computer Communications (Infocom) (July 2016).

[88] Yadwadkar, N., Hariharan, B., Gonzalez, J., Smith, B., and Katz, R. Select-
ing the Best VM across Multiple Public Clouds: A Data-driven Performance
Modeling Approach. In SoCC (September 2017).

[89] Yan, Y., Gao, Y., Guo, Z., Chen, B., and Moscibroda, T. TR-Spark: Transient
Computing for Big Data Analytics. In Symposium on Cloud Computing (SoCC)
(October 2016).

[90] Yang, Y., Kim, G., Song, W., Lee, Y., Chung, A., Qian, Z., Cho, B., and Chun,
B. Pado: A Data Processing Engine for Harnessing Transient Resources in
Datacenters. In European Conference on Computer Systems (EuroSys) (April
2017).

[91] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M., Shenker, S., and Stoica, I. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In NSDI (April 2012).

[92] Zaharia, M., Konwinski, A., Joseph, A., Katz, R., and Stoica, I. Improving
MapReduce Performance in Heterogeneous Environments. In OSDI (December
2008).

[93] Zhao, G., Gao, L., and Irwin, D. Sync-on-the-fly: A Parallel Framework for
Gradient Descent Algorithms on Transient Resources. In BigData (December
2018).

[94] Zheng, L., Joe-Wong, C., Brinton, C., Tan, C., Ha, S., and Chiang, M. On the
Viability of a Cloud Virtual Service Provider. In SIGMETRICS (June 2016).

[95] Zheng, L., Joe-Wong, C., Tan, C., Chiang, M., and Wang, X. How to Bid the
Cloud. In ACM SIGCOMM Conference (SIGCOMM) (August 2015).

144

	COST-EFFICIENT RESOURCE PROVISIONING FOR CLOUD-ENABLED SCHEDULERS
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Summary of Contributions
	Mixed Interactive and Batch Workloads on Transient VMs
	Distributed ML Workloads on Transient VMs
	Optimizing Long-term Cloud Costs by Mixing VM Purchasing Options
	Optimal Fixed Resource Provisioning for Cloud-Enabled Schedulers
	Data-driven Job Scheduling for Cloud-Enabled Schedulers

	Dissertation Outline

	Background
	Job Schedulers
	Cloud Purchasing Options
	Differences between Cloud Providers

	Workload Characteristics
	Container Orchestration Platforms (COPs)

	Executing Mixed Interactive and Batch Workloads on Transient VMs
	TR-Kubernetes Overview
	TR-Kubernetes Design
	Provisioning Algorithm
	Computing the Availability of a Target Capacity
	Greedy Algorithm
	Supporting Multi-Tier Services

	Implementation
	Evaluation
	Prototype Results
	Cost and Availability Analysis

	Related Works
	Conclusion and Status

	Understanding Synchronization Costs for Distributed ML on Transient VMs
	Motivation
	Model Overview
	Basic Model
	Representative Baseline Parameter Values

	Comparing Synchronization Models
	BSP on On-demand Servers
	BSP on Transient Servers
	BSP on Transient Servers with Backup Replica Tasks
	Bounded Staleness on Transient Servers
	Partial Barriers on Transient Servers
	Flexible Synchronization on Transient Servers
	Summary

	Conclusion and Status

	Optimizing Long-term Batch Workloads on Mixed VM Purchasing Options
	Policies Overview
	Optimistic Optimal Offline Approach
	Practical Online Approach
	Implementation
	Evaluation
	Batch Trace Characteristics
	Mixing VM Purchasing Options
	Removing Transient VMs

	Related Works
	Conclusion and Status

	Optimally Provisioning Fixed Resources for Cloud-Enabled Schedulers
	Motivation
	Introduce Waiting Policy
	Background: Marginal Analysis
	Non-selective Waiting Policies
	All Jobs Wait (AJW)
	No Jobs Wait
	All Jobs Wait - Threshold

	Selective Waiting Policies
	Short Waits Wait
	Prediction Accuracy

	Long Jobs Wait
	Prediction Accuracy

	Compound Waiting Policies
	Model Results Summary

	Implementation
	Evaluation
	Real-world Workload Results
	Sensitivity Analysis
	Effect of Prediction Accuracy

	Related Works
	Conclusion and Status

	Data-driven Job Scheduling for Cloud-Enabled Schedulers
	Motivation
	Background: Context and Baselines
	Design
	Optimizing LJW using Speculative Execution
	Optimizing SWW using Machine Learning

	Implementation
	Real Implementation

	Evaluation
	Combining Techniques
	Varying Fixed Resources
	Generalizing to the Google Workload

	Related Works
	Conclusion and Status

	Conclusion
	Summary of Contributions
	Directions for Future Research

	Bibliography

