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ABSTRACT

Design and Implementation of Algorithms for

Traffic Classification

SEPTEMBER 2021

Fatemeh Rezaei

B.Sc., SHARIF UNIVERSITY OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Amir Houmansadr

Traffic analysis is the practice of using inherent characteristics of a network flow such
as timings, sizes, and orderings of the packets to derive sensitive information about it.
Traffic analysis techniques are used because of the extensive adoption of encryption
and content-obfuscation mechanisms, making it impossible to infer any information
about the flows by analyzing their content. In this thesis, we use traffic analysis to
infer sensitive information for different objectives and different applications. Specifi-
cally, we investigate various applications: p2p cryptocurrencies, flow correlation, and
messaging applications. Our goal is to tailor specific traffic analysis algorithms that
best capture network traffic’s intrinsic characteristics in those applications for each
of these applications. Also, the objective of traffic analysis is different for each of
these applications. Specifically, in Bitcoin, our goal is to evaluate Bitcoin traffic’s
resilience to blocking by powerful entities such as governments and ISPs. Bitcoin
and similar cryptocurrencies play an important role in electronic commerce and other
trust-based distributed systems because of their significant advantage over traditional
currencies, including open access to global e-commerce. Therefore, it is essential to
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the consumers and the industry to have reliable access to their Bitcoin assets. We
also examine stepping stone [?] attacks for flow correlation. A stepping stone is a
host that an attacker uses to relay her traffic to hide her identity. We introduce two
fingerprinting systems, TagIt and FINN. TagIt embeds a secret fingerprint into the
flows by moving the packets to specific time intervals. However, FINN utilizes DNNs
to embed the fingerprint by changing the inter-packet delays (IPDs) in the flow. In
messaging applications, we analyze the WhatsApp messaging service to determine
if traffic leaks any sensitive information such as members’ identity in a particular
conversation to the adversaries who watch their encrypted traffic. These messaging
applications’ privacy is essential because these services provide an environment to dis-
cuss politically sensitive subjects, making them a target to government surveillance
and censorship in totalitarian countries. We take two technical approaches to design
our traffic analysis techniques. The increasing use of DNN-based classifiers inspires
our first direction: we train DNN classifiers to perform some specific traffic analysis
task. Our second approach is to inspect and model the shape of traffic in the target
application and design a statistical classifier for the expected shape of traffic. DNN-
based methods are useful when the network is complex, and the traffic’s underlying
noise is not linear. Also, these models do not need a meticulous analysis to extract
the features. However, deep learning techniques need a vast amount of training data
to work well. Therefore, they are not beneficial when there is insufficient data avail-
able to train a generalized model. On the other hand, statistical methods have the
advantage that they do not have training overhead.
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Chapter 1

INTRODUCTION

The Internet has made life easier for every one of us. We shop online, connect to
our friends and families, pay our bills, study. This saves a lot of time and makes our
life much more convenient, but it comes at the price of our privacy. We share too
much information online, and our most sensitive information is passing through the
Internet, and this poses a new threat to our privacy.

To ensure the privacy of the Internet users, network traffic gets encrypted to make it
harder to infer sensitive information from the traffic. Despite the use of encryption,
network traffic leaks sensitive information. The wide use of encryption and similar
content-obfuscation mechanisms inspires the modern techniques to infer sensitive in-
formation from the network flows, which is to solely rely on using traffic patterns
that are not significantly impacted by encryption and network perturbations, such as
packet timings and sizes, as opposed to packet contents or headers; such an analysis
is broadly referred to traffic analysis [42, 116, 22].

In this thesis, we investigate traffic analysis for different applications and objectives,
in particular, p2p cryptocurrencies, messaging applications, and stepping stone de-
tection. In p2p cryptocurrencies, we study Bitcoin traffic to find its distinguishing
attributes. Our objective is to evaluate its resilience to blocking by powerful enti-
ties such as governments. In messaging applications, we study WhatsApp messaging
service to evaluate if there is privacy leakage on one-to-one communications. In anony-
mous communications, we study flow correlation and design algorithms that enable
us to link network flows. Linking network flows is used to compromise the anonymity
of Tor and similar anonymous communications.

We use two primary approaches to design our algorithms. First, we use statistical
approaches in which we observe the traffic patterns of the flow or perturb some of its
patterns to infer sensitive information from it. Second, we use deep learning models
to extract the distinguishing features of the flows or perturb some of its patterns like
timings. In the following, we explain the applications and the approaches in more
detail.
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Figure 1.1: Internet communications are increasingly encrypted.

1.1 Applications of Traffic Analysis

In this thesis, we focus on several applications of traffic analysis: p2p cryptocurrencies,
the security of messaging applications, and anonymous communications. We study
Bitcoin traffic and evaluate its resilience to blocking by powerful entities such as ISP
and government. Moreover, we analyze the WhatsApp messaging service to find out
if its traffic leaks any sensitive information. The security of messaging applications is
a vital issue because of the prevalence of their widespreading usage. Also, we examine
flow correlation for anonymous communications. Flow correlation is to correlate the
network flows entering and exiting a network in order to find the linking flows, and
therefore break its anonymity. Table 1.1 shows an overview of this thesis.

Flow Correlation

One of the applications of traffic analysis that we study is to link encrypted network
flows when they pass through obfuscating proxies. In flow correlation, we attempt
to link the network flows entering and existing a network. Linking network flows is
an important problem in various security and privacy applications. Particularly, it
is widely known [116, 70] that linking network flows can be used by adversaries to
compromise anonymity in Tor [45] and other anonymity systems [42, 82, 128, 127, 138,
72, 71, 70] by correlating the traffic patterns of ingress and egress flows. Alternatively,
linking network flows has been suggested [70, 72, 71, 29, 142, 121, 130, 137, 46, 113] as
a mechanism to trace back to cybercriminals who relay their traffic through previously
compromised machines, known as stepping stone proxies [142]. Figure 1.2 shows these
two applications.
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(a) Stepping stone scenario
(b) Anonymity scenario

Figure 1.2: Example application scenarios of network flow fingerprints. (F I
∗ and FE

∗
represent ingress and egress flows)

Bitcoin Identification

Furthermore, Bitcoin traffic classification is another application of traffic classifica-
tion that we examine. This is important for evaluating Bitcoin resilience to blocking
by powerful network entities, including ISPs and governments. Bitcoin and similar
blockchain-based currencies [98] have seen rapid adoption by consumers and industry
because of their many applications in electronic commerce and other trust-based dis-
tributed systems. Bitcoin supports $1–$4.2B worth of transactions per day, growing
steadily. Bitcoin and similar virtual currencies offer significant advantages compared
to traditional electronic currencies, which include open access to a global e-commerce
infrastructure, lower transaction fees, cryptographically supported contracts [20] and
services [95], and transnational operations.

Given this significant importance of electronic currencies, they need to be resistant to
embargoes by governments. That is, people investing in cryptocurrencies (by running
businesses that rely on such currencies) should be assured that their Internet providers
or governments are not able to prevent them from using their cryptocurrencies if they
decide too. For the sake of argument, consider what happens if the Great Firewall of
China decides to block all Bitcoin traffic overnight.

In this thesis, we investigate if and how Bitcoin’s traffic can be identified through
traffic analysis despite being tunneled through an encrypted channel. First, we char-
acterize Bitcoin’s traffic patterns such as rates, timings, and sizes. Comparing with
other protocols, we show that Bitcoin has traffic patterns that are unique, because of
the specific types of messages sent by Bitcoin peers. Leveraging such unique features
of Bitcoin traffic, we design a toolset of classifiers in order to distinguish Bitcoin traffic
over encrypted channels. Particularly, we use more than two month of Bitcoin and
other protocols traffic over Tor [45] and three Tor pluggable transports [111], namely,
FTE [48], meek [94], and obfs4 [136] to evaluate our classifiers.

Traffic Analysis Attacks on WhatsApp

Instant messaging applications have become a primary method of communication with
the massive adoption of smartphones and the increase of Internet connectivity around
the world. Also, they are even more prevalent in parts of the world that sending an

3



Table 1.1: Overview of Thesis

Applications Approaches
Flow Fingerprinting (TagIt) Statistical Active Analysis
Bitcoin-Hunter Statistical and DNN-based Passive Analysis
WhatsApp Privacy Measurements Statistical and DNN-based Passive Analysis
Flow Fingerprinting (FINN) DNN-based Active Analysis

SMS using mobile carriers is expensive. Specifically, WhatsApp has 300 million daily
active users and a total of 1.5 billion users [12]. These services enable users to send
various types of messages, including video, text, voice, and files. More importantly,
they provide an environment to exchange politically and socially sensitive topics,
which makes them susceptible to surveillance by powerful entities like the government.

WhatsApp and similar services provide end-to-end encryption to ensure the security
of their users. Despite that, it has been shown that they have security breaches. In
particular, WhatsApp became a target of surveillance [9] when an attacker could use
voice calling function to ring a target device and install a spying app, even if the target
did not pick up the phone. Also, the call would often disappear from the device’s
call log. In 2019, WhatsApp reported that human rights activists and journalists
were the targets of surveillance using Israeli spyware Pegasus. The spyware allowed
the attackers to access passcodes and text messages in services like WhatsApp [11].
Moreover, WhatsApp was vastly blocked in China due to the Communist Party’s
increasing surveillance [1].

Here, we take a new direction to evaluate the privacy of users in WhatsApp messaging
service. Specifically, we use traffic analysis tools to evaluate if an attacker can infer
any sensitive information by monitoring the traffic of WhatsApp users.

1.2 Approaches

We apply two primary approaches to our applications. First, the statistical approach
in which we manually extract the traffic features to obtains sensitive information.
Second, we use DNN-based methods to find intrinsic features of the flow automat-
ically. One of the advantages of the DNN-based technique is that it eliminates the
need for an expert to select the features because it automatically extracts the fea-
tures through training. Also, deep learning is useful when the pattern of old classes
change, or new types of traffic emerge. They can be applied to complex traffic to
extract the non-linear features [118]. The main disadvantage of DNN-based methods
is that they need sufficient data and adequate computation power. Therefore, when
the structure of the data is simple, or there is not enough data, it is better to use
more straightforward techniques. On the other hand, using the statistical approach,
we gain a better understanding of traffic since we select them manually, and we do not
have the overhead of training. In the following, we explain each of these approaches
in more detail.
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Statistical Traffic Analysis

In the statistical approach, we attempt to infer sensitive information from traffic pat-
terns either by observing the traffic flow (passive approach), or by slightly perturbing
(e.g., by slightly delaying packets) in a way to embed an artificial pattern into network
flows.

Previous flow correlation techniques used passive approaches [42, 142, 121, 130, 137,
46] to link network flows. Using this approach for flow correlation requires collecting
long flows in order, which makes it not useful when such long flows are not available.
More recently, researchers have investigated an active type of traffic analysis.In this
approach, traffic patterns are slightly perturbed (e.g., by slightly delaying packets)
in a way to embed an artificial pattern into network flows. This method is mainly
used in flow correlation problem [128, 127, 138, 72, 71, 70]. The majority of existing
works on active traffic analysis is devoted to what is called flow watermarking [71, 72,
113, 127, 138, 129]. Recently, Houmansadr et al. [70] proposed an alternative type
of active traffic analysis called flow fingerprinting. While flow watermarks aim at
tagging flows with a single bit of information, flow fingerprints aim at tagging flows
with several bits of information. This enables one to apply different tags on different
flows, therefore perform a finer-grained traffic analysis as discussed by Houmansadr et
al. [70]. Intuitively, designing flow fingerprints is more challenging than watermarks
as they aim at embedding multiple bits of information. We further distinguish flow
watermarks and fingerprints in Section 2.1. Figure 1.2 shows the setting of a flow
fingerprinting mechanism.

Previous flow fingerprinting schemes [70, 50] are non-blind, i.e., the fingerprinters
and fingerprint extractors need to establish a control channel to continuously com-
municate information about the flows they intercept. This is a significant obstacle
to the scalability of such systems. In this thesis, we introduce TagIt, the first blind
flow fingerprinting mechanism. Blind mechanisms are significantly more practical
and scalable than non-blind mechanisms. In a fingerprinting scenario with n ingress
and m egress flows (shown in Figure 1.2), a non-blind scheme requires O(n) commu-
nication between the fingerprinting parties, compared to O(1) in blind mechanisms.
Additionally, a non-blind mechanism imposes an O(nm) computation overhead due
to the pairwise-correlation of the flows observed by the fingerprinting parties. A
blind scheme, however, imposes an O(m) computation overhead since the extraction
is performed on the individual egress flows observed by the extractor.

Deep Neural Network-based Traffic Analysis

In this approach, instead of using human-engineered features, deep learning meth-
ods are used to extract the distinguishing features of network flows through training.
These methods are great in capturing the complex behavior of different traffic and do
well in finding the non-linear relationship between the raw input and corresponding
output and eliminate the need to have a separate feature selection and classifica-
tion [118]. Note that DNN-based methods need sufficient amount of labeled data
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to train well. Therefore, they are not used when there is not enough data available
for training, or the traffic is simply learned by machine learning techniques that can
capture the linear relationship between the input and corresponding output.

Many of previous work on traffic classification and identification use deep learn-
ing [131, 125] with a passive approach. We use a deep learning framework to dis-
tinguish Bitcoin traffic from others when there is background traffic, or traffic is
tunneled through Tor or other obfuscating channels. We also use deep learning to
analyze WhatsApp traffic to infer sensitive information from WhatsApp one-to-one
communications. Moreover, we apply active deep learning on the flow correlation
problem and introduce an active DNN-based approach for the problem of flow cor-
relation. Our system uses a deep learning framework to embed messages within the
inter-packet-delay (IPD) in a network flow and extracts the embedded message using
a DNN-based decoder.

1.3 Thesis Overview

Tagging Network Flows using Blind Fingerprints — TagIt

Chapter 3 introduces the first blind flow fingerprinting system called TagIt. Our
system works by modulating fingerprint signals into the timing patterns of network
flows through slightly delaying packets into secret time intervals only known to the
fingerprinting parties. Using our blind approach, we only share a secret key between
the fingerprinting entities and remove the computation and communication overhead
in prior work. The fingerprinting is performed to enable reliable fingerprint extraction
despite natural network jitter, packet loss, reordering, and invisible to an adversary
who does not possess the secret fingerprinting key. Invisibility and robustness are two
sides of a coin. Thus, it is not possible to reach perfect invisibility and robustness at
the same time. We show this trade-off through experiments and show that we can
adjust TagIt’s parameters according to the importance of each metric in our problem.
TagIt makes use of randomization to resist various detection attacks such as multi-flow
attacks. We evaluate the performance and the invisibility of TagIt through theoretical
analysis as well as simulations and experimentation on live network flows.

Flow Fingerprinting using Neural Networks — FINN

Chapter 4 introduces the first deep learning-based fingerprinting, which uses the
inter-packet-delays (IPDs) to fingerprint the network flows. Deep-learning models
can automatically learn the underlying features in a flow and remove the manual
feature extraction phase. We design our neural network-based model to have reliable
fingerprint extraction in the presence of network jitters by learning network jitters
and removing them from the fingerprinted flows.

We use Laplace distribution with different standard deviations as the jitter distri-
bution. Network jitter was modeled as a Laplace distribution in the previous stud-
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ies [102]. We evaluate the invisibility of our system and make sure that our model
generates small delays making the system invisible to the adversary. Moreover, we
use a Generative Adversarial Network to enforce FINN to generate fingerprinting de-
lays that follow a Laplace distribution. Developing fingerprinting delays in a Laplace
distribution improves invisibility. The small delay that we added gets lost in the
network jitter and makes it challenging for an adversary to distinguish between the
fingerprinting delay and the jitter. We evaluate the performance and invisibility of
our model using extensive experiments and simulations on network flows. Also, we
develop a real-time fingerprinting system to assess our performance on Amazon EC2
and Digitalocean nodes located worldwide.

Detecting Bitcoin Traffic Over Encrypted Channels —Bitcoin
Hunter

In chapter 5, we investigate the resilience of Bitcoin to blocking by powerful network
entities such as ISPs and governments. By characterizing Bitcoin’s communication
patterns, we use deep-learning and statistical approaches to design classifiers that
can distinguish (and therefore block) Bitcoin traffic. Our classifiers can detect Bit-
coin even if it is tunneled through an encrypted channel like Tor and even if there is
significant background traffic, e.g., due to browsing multiple websites simultaneously.
We perform extensive in-the-wild experiments to demonstrate the reliability of our
classifiers in identifying Bitcoin traffic even despite using obfuscation protocols like
Tor pluggable transports. We conclude that standard obfuscation mechanisms are
not enough to ensure blocking-resilient access to Bitcoin (and similar cryptocurren-
cies). Therefore cryptocurrency operators should deploy tailored traffic obfuscation
mechanisms.

Traffic Analysis Attacks on WhatsApp

In chapter 6, we analyze WhatsApp communication patterns to deduce sensitive
information in one-on-one messaging. Messaging applications are a target for surveil-
lance and censorship by governments because they provide a “secure” environment for
communication between people discussing sensitive political or social subjects. The
popular messaging applications utilize state-of-the-art encryption mechanisms to pro-
tect their clients. However, we argue that despite encrypting, these applications are
susceptible to traffic analysis attacks. We do extensive experiments to evaluate What-
sApp messaging applications to see if one-on-one communications leak information
about the member in the chat. More specifically, we want to see if an adversary who
has access to one side of the conversation (either wiretapping an identified client’s
traffic or having access to her device) can find the other side of the chat by looking
into his traffic. We use the algorithm used in [23] to identify admins or members of
channels in the Telegram application.
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Chapter 2

BACKGROUND AND RELATED
WORK

We study traffic analysis for different applications: stepping stone detection, p2p cryp-
tocurrencies, and messaging applications by investigating the statistical and learning-
based models to infer information from their traffic. In this section, we learn about the
previous techniques which solved similar problems. First, we look into flow correlation
methods used for stepping stone detections. Then, we investigate traffic classification
techniques to detect different applications/protocols (Bitcoin detection). Last, we
study previous attacks on messaging applications.

2.1 Flow Correlation

One of the problems studied in this thesis is to link encrypted network flows when
they pass through obfuscating proxies. In particular, this problem has been extensively
studied in two contexts. First, an adversary may aim at de-anonymizing connections
made through an anonymization system like Tor by linking the ingress and egress
flows observed at various vantage points controlled by the adversary. For instance,
the adversary shown in Figure 1.2b can de-anonymize a Tor connection by linking
the corresponding ingress and egress flows observed on compromised guard and exit
relays (or the network routers intercepting those flows). Note that such linking can
not be done by comparing packet contents due to anonymization and onion routing.

A second widely studied scenario for linking network flows is to identify stepping
stone attackers [29, 142, 121, 130, 137, 46, 113], which is the focus of our work.
A stepping stone attacker is one who relays her attack traffic through previously
compromised machines, called stepping stone proxies. Figure 1.2a shows an example
scenario. Similar to the anonymity scenario, the use of encryption by stepping stone
proxies prevents linking flows through packet content. Linking network flows has been
studied in other scenarios as well, for instance, for detecting botmasters who control
botnets trough low-latency, interactive C&C channels [115, 16].
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Figure 2.1: A flow correlation technique.

Here, we overview the existing work on linking network flows using traffic analysis.
Figure 2.1 shows the two traffic analysis techniques.

Passive Analysis

The traditional approach for linking network flows is mainly based on observing net-
work traffic and trying to link network flows by correlating their inherent character-
istics such as packet timings, counts, and sizes [100, 68, 69, 141, 42, 142, 121, 130,
137, 46]. Chen and Heberlein [121] used thumbprints which is the short summary of
the content of connections for correlation.

However, due to the wide use of encryption, techniques that depend on the content
are no longer applicable. Zang and Paxson [142] model a network flow as a sequence
of ON/ OFF intervals and used the pattern to link the flows. They used the number of
consecutive OFF periods and their distance to detect stepping stones. Alternatively,
Blum et al. [29] used ideas from Computational Learning Theory and analysis of a
random walk to detect stepping stones. They correlated flows based on the number
of packets received at any given point in time. They declared two flows to be linked
if their counts of packets correlate over time. They also considered the attacker that
inserts bounded chaff packets to evade detection. They are also the first to give an
upper bound on the number of packets needed to detect stepping stones with a given
level of confidence.

He et al. [69] studied detecting the stepping stones subject to the attacker’s pertur-
bations with constraints on the host memory or bounds on the packet delay. They
compared their algorithm with previous methods, DA and DAC proposed by Blum
et al. [29], and showed that their approach outperformed for fast flows. They also
considered the case that the attacker adds chaff packets to evade detection. They
compared their results with previous methods and showed that their approach toler-
ates chaff packets growing linearly by the flow’s size compared to the constant chaff
packets in Blum et al. [29], and Zhang et al. [141].
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Such passive linking algorithms suffer from needing large numbers of packets before
being able to make a reliable decision. Elices et al. [51] recently proposed a mecha-
nism based on the Neyman-Pearson lemma that could link flows with fewer numbers
of packets. Nasr et al. [102] introduced a new direction to traffic analysis called com-
pressive traffic analysis to improve the scalability and apply it to the flow correlation
problem. Their method used projection algorithms from signal processing to compress
traffic features and perform traffic analysis on compressed features instead of the raw
traffic. They reached similar performance compared to traditional approaches while
providing scalability. Also, Nasr et al. [100] introduce a deep learning framework to
correlate network flows, which outperforms the previous techniques and reach more
than 90% true positive in linking flows that pass the Tor network using only 300
packets.

Active Analysis

The major limitation of passive analysis is not being scalable to real-world appli-
cations. For a scenario with n ingress flows and m egress flows, passive analysis
requires O(n) communication and O(nm) computation overheads, since the col-
lected patterns need to be cross-correlated. Active traffic analysis reduces com-
munication and computation overheads to O(1) and O(m), respectively, by embed-
ding imperceptible tags into the flows being inspected. Most active analysis tech-
niques [71, 50, 70, 72, 113, 127, 138, 129] work by modifying packet timings, i.e., by
adding artificial delays to network packets to insert invisible timing tags.

There are two types of active analysis mechanisms.

Flow Watermarking. The main body of work on active flow linking is what is
known as flow watermarking. In this approach, a traffic analysis party perturbs traffic
patterns in such a way to reliably encode a single bit of information into network
flows. Wang et al. [130] were the first to propose a flow watermarking mechanism by
modulating the watermark signal into the inter-packet delays (IPDs), and used four
correlation functions, each with certain advantage. Wang and Reeves [129] adjusted
the selected IPDs such that the quantization of the adjusted IPD had remainder of
w (1 or 0) when modulus 2 was taken. To make their system robust, they embedded
the watermark to m number of IPDs, and called m as redundancy number. They
also give a bound on the maximum tolerable Perturbation to detect the watermark.
RAINBOW [72] also used IPDs for watermarking but used a non-blind architecture.
It achieves a higher detection accuracy by using a side-channel to communicate the
observed packet timings among traffic analysis parties.

An alternative approach to flow watermarking is the interval-based approach in which
packets are delayed into specific time intervals for watermark insertion. Most of the
recent proposals for watermarking have used an interval based design [71, 113, 138,
127] due to its better resistance to packet perturbations, like packet re-ordering and
drops, compared to the IPD-based approach. For instance, Yu et al. [138] used
spread spectrum pseudo-noise codes to modulate the watermark signal into the rate
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of packets in specific time intervals. Wang et al. [113] adjusted the packet timings
to manipulate the packet counts of selective interval pairs to encode a watermark
bit. If the packet count difference of a selected pair were more than a threshold, the
watermark bit would be 0; otherwise, 1.Wang et al. [127] used an interval centroid
based scheme to embed the watermarks to the flows. The centroid is the average
distance of the packets from the start of the interval. They divided the flow into
intervals, assign each interval to groups A and B, and manipulated the packets’ timing
to make the difference of aggregated centroid of group A and B positive or negative
depending on the bit they intend to embed.

These interval-based watermarks are susceptible to a multi-flow attack (MFA) [80],
which workd by aggregating multiple flows watermarked using the same key. Houmansadr
et al. designed Swirl [71] to be resistant to MFA by making the watermarking process
dependent on the network flows. Houmansadr divided the flows into two groups of
base and mark intervals and used the base intervals’ centroid to decide on the pattern
to use for watermarking the mark intervals.

Flow Fingerprinting. Flow fingerprinting aims at embedding multiple bits of in-
formation on each network flow, as opposed to a single bit of information in the flow
watermarking. This enables the use of flow fingerprints in scenarios with significantly
larger scales than that of watermarks. For instance, while an anonymity adversary
(Figure 1.2b) can use a watermark to de-anonymize a single target connection, she can
use fingerprints to de-anonymize a large number of connections (e.g., by embedding
distinct fingerprint tags on different ingress flows she is intercepting).

Since fingerprints embed multiple bits of information, the design of a reliable finger-
printing system is significantly more challenging than watermarking techniques. We
refer the reader to Houmansadr et al. [70] for a detailed comparison of flow water-
marking and fingerprinting.

Fancy [70] is the first flow fingerprinting mechanism. It extends the Rainbow [72]
watermarking system through the use of various coding mechanisms to enable reli-
able insertion of multiple bits of fingerprints. Fancy is a—non-blind—fingerprint, i.e.,
the fingerprinting entities need to constantly communicate the information about the
network flows they intercept through a side-channel. Non-blind fingerprinting (also
non-blind watermarking) suffers from similar scalability issues of passive traffic anal-
ysis mechanisms, i.e., an O(n) communication overhead and an O(nm) computation
overhead. This is because the non-blind fingerprinting entities need to communicate
some information about the flows they intercept continuously. In Fancy, for instance,
the fingerprinters send the IPDs of the flows they have fingerprinted to the fingerprint
extraction entities.

Elices et al. [50] used a game-theoretic analysis to identify optimal strategies for
non-blind fingerprinting and compare their performance with Fancy.
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2.2 Bitcoin Identification

To the best of our knowledge, the work in this category is using passive analysis.
Therefore, we only consider this approach.

Passive Analysis

There is extensive work in the literature trying to classify different applications/protocols
in the network. Previously, researchers were focused on classifying the applications
according to port numbers [77, 76, 88, 120] and payload [120, 36, 67, 96]. There were
some problems in the previous methods, which made them change their approach.
For example, many applications use uncertain port numbers or some applications
may not have their port numbers registered in the Internet Assigned Numbers Au-
thority (IANA) [112]. Some applications also use ports other than their “well-known”
ports to avoid operating systems access control restrictions. Using the payload of the
packets adds significant complexity and processing load. Also, it becomes impossible
when the traffic is encrypted.

Moore and Papagiannaki [96] learned that using the IANA list cannot reach better
than 70% byte accuracy. They also use the combination of port and payload (first
KByte of each flow) and realize that they can increase their accuracy to almost 79%.
They could increase the accuracy by using the rest of the flow (not just the first
KByte). Sen et al. [120] studied the Kazaa P2P traffic and realized that the known
port numbers could only classify 30% of the traffic. They show that using the payload
can reduce the false positive and negative to 5% for most of the P2P traffic that they
investigated. Another study by Madhukar and Williamson [89] states that using port
numbers, they are unable to identify 30− 70% of their traffic dataset.

Modern techniques use statistical characteristics of the flows to classify the applica-
tions. These statistics include the packet timing, sizes, flow duration, packet inter-
arrival time, flow idle times, etc., to distinguish between the applications. For exam-
ple, [109, 44] observed distinct statistical patterns between number of applications in
terms of byte, duration, arrival periodicity [109], flow duration, packet inter-arrival
times and packet sizes and byte profile [44]. The authors in [38, 66, 81] also noticed
different patterns such as packet inter-arrival times and packet length distribution for
several applications studied. These studies started a new way of traffic classification
based on traffic flow statistical properties. Note that ML techniques emerged to deal
with the multi-dimensional spaces of the flow attributes. We can divide the work on
IP traffic classification using ML into three categories: clustering approaches, super-
vised learning approaches, hybrid approaches. Note that there are some survey and
comparison work in the literature [105, 78, 123, 85, 52, 67, 132, 53], authors survey the
use of machine learning techniques on Internet traffic classification, or apply multiple
techinques, and compare their results. We use the work of Nguyen and Armitage [105]
to overview these approaches.
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Clustering. Clustering algorithms were studied on [92, 140, 26, 27, 52, 56, 41] to
group the traffic into number of clusters. These studies utilized clustering techniques
such as Expectation Maximization algorithm [43], AutoClass, K-Means, DBSCAN,
or GMM, used flow features such as byte count, idle time, packet length, duration,
number of bytes, and number of packets, packet orderings, etc. For example, Mc-
Gregor et al. [92] used EM algorithm to divide traffic into traffic types such as bulk
transfer, small transactions, multiple transactions, etc. Zander et al. [140] separated
different applications such as Half-Life online game. Bernaille et al. [26] clustered the
traffic into a number of TCP applications using only the first few packets in the flow.

Supervised Learning Approaches. Roughan et al. [119] used the nearest neigh-
bors (NN), Linear Discriminant Analysis (LDA), and Quadratic Discriminant Anal-
ysis (GDA) to classify different network applications. They use five possible cate-
gories of features: packet level, flow level, connection level, intra-flow/connection,
and multi-flow connections. According to their results, flow duration (flow level) and
the average packet length (packet level) were the most valuable features. They con-
sider three classification cases: three-class classifies based on traffic type: Bulk data,
Interactive, Streaming. The four-class divides into four types of applications: Bulk
data, Streaming, Interactive and Transactional. Finally, the seven-class maps the
traffic to HTTPS, DNS, FTP, Kazaa, RealMedia, Telnet, and WWW. Their results
show that error rates increases as the number of classes increases. The three-class has
the lowest error of 2.5% − 3.4% for different algorithms. The four-class error rate is
from 5.1% to 7.9%, and the seven-class has the highest error of 9.4%− 12.6%. Moore
et al. [97], used a Bayesian technique to classify other traffic such as P2P, WWW,
attack, games, bulk data, database, interactive, mail, services, and multimedia. They
showed that the simple Bayesian would not provide a good accuracy (65%), and to
improve their technique, they used two main refinements, Naive Bayes Kernel Es-
timation (NBKE) and Fast Correlation-Based Filter (FCBF), which improved the
accuracy to 95%. The best trust value for an individual class of applications was 98%
for WWW. The lowest was for service traffic with 44%. Moreover, in [21], authors ex-
tended the work by using the Bayesian neural network to classify Internet traffic using
just header-derived statistics. They show that using Bayesian neural networks can
achieve up to 99% accuracy when their train and test data are collected on the same
day. Their results degrade to 95% when traffic for training and testing is captured
eight months apart.

Nguyen and Armitage [104] proposed a method to classify a flow based on its last
N packets, which allows the timely and continuous classification. They take out
multiple sub-flows from the target flow, the one that they want to identify. Each
sub-flow is chosen in places that have statistical characteristics different from the rest
of the flow. Then, they train their algorithm with these sub-flows. The features
are extracted from these sub-flows to represent the training data. They use the
Naive Bayes algorithm and reach more than 95% recall and 98% precision using 25
packets. However, they only identify one application, UDP-based Person Shooter
game - Enemy Territory [133], from other Internet applications (Web, DNS, NTP,
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SMTP, SSH, Telnet, P2P, etc.).

Nguyen and Armitage [103] extended their work in [104] to address the problem of
directional neutrality. They trained their model with sub-flows generated by the
target application and their mirror-imaged replicas. They used Naive Bayes and
Decision Tree to identify the First Person Shooter game - Enemy Territory. They
showed training the algorithms with bi-directional flows would worsen the result of
both classifiers. However, using their synthetic sub-flows, their recall improved up to
99%, and the precision improved to 98%. Crotti et al. [41] used three features: packet
length, inter-arrival time, and packet arrival order, referred as protocol fingerprints, for
classification, and used an algorithm based on normalized thresholds for classification.
Their method reached 91% accuracy to classify HTTP, SMTP, and POP3 using the
first few packets in the flow.

Park et al. [107] used Genetic Algorithm (GA) to select the features and tested three
classifiers: Naive Bayesian with Kernel Estimation (NBKE), Decision Tree J48, and
Reduced Error Pruning Tree (REPTree). Their results show that two tree-based
algorithms reach better performance. Li and Moore [83] used C4.5 [114] decision
tree to classify Internet traffic such as mail, gaming, database, and browsing. They
reached an accuracy of 99.8, using 12 features collected at the start of the flow.

In [139] the authors used SVM to classify traffic flows into categories such as mail,
buck traffic, service. They extract statistics such as packet length, byte ratio of sent
and received packets, number of packets per flow, window size, and transport protocol
type as their feature and showed that their method reaches more than 95% accuracy
using these features. Also, in [35], the authors use SVM to classify traffic into different
applications such as WWW, mail, and FTP, and showed that their approach can reach
a good accuracy if they choose the classifier’s parameters cautiously.

Furthermore, there is some work on using deep learning for traffic classification. For
example, in [131], authors used autoencoders and neural networks to learn feature
representation of their dataset containing 0.3 million records, which included 58 dif-
ferent protocols (except HTTP). They applied deep learning to traffic identification
and anomaly detection and showed that they could identify the top 25 protocols with
an accuracy of more than 90%. Also, for anomaly detection, they could classify more
than 60% of the unknown traffic with a probability greater than 0.8.

Wang et al. [125] used a one-dimensional CNN to classify the ISCX VPN-nonVPN
dataset’s encrypted traffic. They proposed a framework that integrates the feature
extraction, feature selection, and classifier, which outperformed the state-of-the-art
methods in their 11 out of 12 evaluation metrics.

In [86], the authors used a deep learning approach called “Deep Packet” for the traffic
characterization and application identification task, which stacks an autoencoder and
CNN. They showed that their methods worked on encrypted traffic and achieved 98%
and 94% accuracy on application identification and traffic characterization.

Also, some works used deep learning for malware detection [126] or to classify the

14



traffic of mobiles or IOT devices [90, 18, 19].

Hybrid Approaches. Erman et al. [54] presented a semi-supervised approach.
They used K-Means with 64000 unlabeled flows. After clustering, they chose two
random flows in each cluster to label, and with K = 400, they achieve more than 94%
flow accuracy. The authors tried having five or more labeled data in each cluster and
notice marginal improvements [55].

To the best of our knowledge, we are the first to attempt to distinguish Bitcoin traffic
from other applications. We design several binary classifiers to detect Bitcoin traffic
in the presence of small background noises. Furthermore, we utilize Neural Networks
to detect Bitcoin traffic with more complex background noises such as browsing more
than one website (up to 5) or running applications from CAIDA (up to 5 number of
different applications).

2.3 Traffic Analysis Attacks on WhatsApp

WhatsApp and similar messaging applications are popular because they allow users to
send and receive unlimited free messages. SMS was the dominant way of communica-
tion untill 2012, when smartphones become widely available. Messaging applications
provided a free way of communication while SMS relied on paid telephone services [6].
According to the stats, there were 2 billion active WhatsApp and Facebook Messenger
users in October 2020, which makes it the most popular messaging application [5].
WhatsApp and similar messaging applications enable the users to send and receive
different messages such as audios, pdfs, images, texts, and videos in private chats, or
by creating public groups. Also, they are used extensively to exchange politically and
socially sensitive content, which makes them the target for surveillance by totalitarian
governments and repressive regimes.

The use of these messaging applications is more important in countries such as
Iran that have high surveillance on their communication. For example, during the
green movement in Iran, the government cut off the text messaging services of cell
phones [65]. The use of WhatsApp and similar messaging applications, which rely
upon the internet rather than phone services, provides a sense of safety to the ac-
tivists. Although the government can block these applications, as it occured in April
2018, when Iran blocked Telegram altogether, statistics show that majority of the
users connected to Telegram through various kinds of VPNs. These applications
provide security to their users through end-to-end or end-to-middle encryptions.

However, they leak sensitive data through their traffic metadata such as packet timing
and sizes to an adversary that is watching the encrypted traffic of clients. Using
traffic analysis low-cost techniques we can identify administrators, members of public
channels[23], and individuals involved in one-on-one chats. the main reason that
these traffic analysis techniques work is that these applications do not use obfuscation
techniques to hide user metadata. This is because using such techniques impacts the
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performance of the applications and their usability.

Using traffic analysis to infer sensitive information from messaging applications started
from [40], in which the authors showed that using the metadata in Apple iMessage
they could infer information about user actions (start, stop, text, attachment, and
read), the length of the messages, the language of the conversation with high accuracy
even in the presence of end-to-end encryption. In [108], authors used a supervised
machine learning technique to show that they could effectively identify user’s online
activities on the KakaoTalk service. In [61], the authors developed a system named
CUMMA to classify service usage of messaging applications despite traffic encryp-
tion. In [135], authors classified the in-App usage in WeChat. Their goal was to
identify the actions of red packet transactions and fund transfers from encrypted
network traffic. They characterized the red packet and fund transfers to distinguish
them from text and other regular messages. They segmented the traffic in different
bursts, each one representing a certain action such as sending/receiving a text or
picture, or sending/receiving a red packet or fund transfer, and designed a classifier
to distinguish the red packet and fund transfers. In [39], authors useed encrypted
WhatsApp Groups messages to find out the level of engagement of the users. More
specifically, they could determine in a certain time interval, which users were the most
engaged ones. This is very important in groups that discuss sensitive political topics
in countries with totalitarian regimes, puts those users in danger. In [23], authors
used traffic analysis to find the admins and members of a Telegram channel despite
the end-to-end encryption. They introduced a public countermeasure, IMProxy, that
Instant messaging application clients can use to have more privacy.

Another avenue of studying messaging applications looks into the security vulner-
abilities. In [122], the authors examined the current secure messaging solutions to
evaluate their usability, security, and ease-of-adoption. They identified three main
challenges in having a secure messaging solution: trust establishment, conversation
security, and transport privacy, and showed their trade-offs: having strong trust es-
tablishments results in less usability and adoption while a more usable approach does
not guarantee strong security. Johansen et al. [31, 74] comprehensively investigated
the security and privacy properties (usability and security) of current approaches for
end-to-end encrypted messaging. They showed that to what extent the current mes-
saging applications achieve these properties and provide recommendations to improve
them.
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Chapter 3

TagIt FLOW FINGERPRINTING

Flow fingerprinting is a mechanism for linking obfuscated network flows at large scale.
In this thesis, we introduce the first blind flow fingerprinting system called TagIt. Our
system works by modulating fingerprint signals into the timing patterns of network
flows through slightly delaying packets into secret time intervals only known to the
fingerprinting parties. We design TagIt to to enable reliable fingerprint extraction
by legitimate fingerprinting parties despite natural network noise, but invisible to
an adversary who does not possess the secret fingerprinting key. TagIt makes use
of randomization to resist various detection attacks such as multi-flow attacks. We
evaluate the performance and invisibility of TagIt through theoretical analysis as well
as simulations and experimentation on live network flows.

3.1 Design of TagIt Fingerprinting System

We first overview the main principles in the design of the TagIt fingerprinting system.

Timing-based fingerprinting: Similar to the large fraction of previous works on
active traffic analysis, TagIt is a timing-based mechanism. That is, a TagIt finger-
printer embeds fingerprints into an intercepted flow by modifying the timings of its
packets, i.e., by delaying some of the packets. This makes the fingerprints usable in
scenarios where the content of the flows being linked is modified in transition, e.g.,
Tor connections [45] and stepping stone connections [142].

Blind design: TagIt is designed to be a blind fingerprinting system; that is, the only
information shared between TagIt’s fingerprinter(s) and extractor(s) is a fingerprint-
ing key. This is unlike existing “non-blind” flow correlation designs [72, 70] where
they need to also share some information about the intercepted flows. Particularly,
in the Fancy non-blind fingerprint [70] the fingerprinter will need to continuously
send the inter-packet timings of all the flows it intercepts to the Fancy extractors for
the extraction mechanism to work. Figure 3.1 shows the general model of blind and
non-blind fingerprinting systems.
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Figure 3.1: General model of flow fingerprinting systems. A blind system does not
share any information about the flows between the fingerprinting parties. A non-blind
system shares some information about the flows.

Blind designs are significantly more practical in real-world applications. As discussed
above in Section 2.1, a blind active traffic analysis offers an O(1) communication and
O(m) computation in a scenario with n ingress and m egress flows intercepted by the
fingerprinting parties. This is while the orders of communication and computation
are O(n) and O(nm), respectively, for a non-blind system like Fancy. Note that when
comparing the orders of computation between two fingerprinting systems, one should
also factor in the computation overhead of every single correlation operation, as this
may differ for different systems (e.g., due to their use of different coding algorithms).
This is not included in our computation order analysis, since the same correlation
algorithms used in a blind system could be also used by a non-blind system.

Interval-based: There are two types of timing-based active traffic analysis systems:
interval-based and IPD-based systems. An IP-based system encodes the fingerprint
signal into the inter-packet delays of packets, i.e., by modifying IPDs individually. On
the other hand, an interval-based approach modulates the fingerprint signal in to the
counts of packets that arrive within specific time intervals. We use an interval-based
structure for TagIt. This is because interval-based systems offer significantly stronger
resistance to natural packet modifications, such as packet drops, repacketization,
packet reordering, etc., compared to IPD-based systems that are known [72, 73, 70]
to be fragile to such modifications. Therefore, a TagIt fingerprinter delays packets
into specific time intervals, which we call fingerprint intervals, in order to fingerprint
a flow. A TagIt extractor will count the ratio of the packets arriving in such intervals
in order to perform fingerprint extraction.

Randomized insertion: TagIt’s interval-based approach makes it robust to packet-
level perturbations, as discussed above. However, Kiyavash et al. [80] demonstrate
that interval-based schemes may be susceptible to an attack called the multi-flow
attack (MFA). In this attack, the adversary collects multiple flows fingerprinted using
an interval-based mechanism, and superimposes the flows to increase the chances of
identifying the fingerprint intervals. The attack is built on the statistical distribution
of packets in various intervals of an interval-based scheme.

We design TagIt in a way to be resistant the MFA attack despite its interval-based
scheme. Specifically, TagIt uses a random mechanism for selecting the fingerprinting
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intervals in a way that even inserting the same fingerprint into the same flow twice will
result in different fingerprinted flows. As we will show in our analysis of Section 4.5,
this makes TagIt resist the MFA by smoothing the statistical distribution of the
packets on the aggregation of multiple TagIt flows.

Coding to resist noise: As described earlier, designing a reliable fingerprinting
system is significantly more challenging than a watermarking system since a finger-
printing system aims to reliably transmit multiple bits of information across a noisy
communication channel, unlike watermarking’s single bit of information. We use two
types of coding to enable reliable fingerprint extraction despite the network noise.
First, we use a repetition code to resist noise due to normal network jitter. Second,
we make use of standard error correction codes (like Convolutional or Reed-Solomon
codes) to resist sparse, bursty channel errors that are not recoverable by normal rep-
etition codes. We will further discuss the specific choices of our coding parameters.
As will be shown in our analysis of Section 3.4, such codings result in a promising
reliability for TagIt’s fingerprint extraction.

Fingerprinting Scheme

In this section, we discuss the algorithm used by a TagIt fingerprinter to fingerprint
network flows. As discussed earlier, TagIt is a timing-based, interval-based scheme,
therefore, it works by delaying some of the packets of a flow to be fingerprinted into
specific timing intervals. In the following, we describe the details of TagIt finger-
printer; Figure 3.2 illustrates TagIt fingerprinting.

Dividing a flow into time intervals. The fingerprinter divides the time axis into
a series of consecutive time intervals of lengths of T with the first interval starting
at the time offset 0 ≤ o < T . That is, the ith interval includes the packets arriving
during the time period [o + (i− 1)T, o + iT ]. The fingerprinter uses the arrival time
of the first packet in the candidate flow as time zero.

Selecting fingerprint intervals. The TagIt fingerprinter embeds a flow fingerprint
by delaying packets within several time intervals of that flow, which we call them
fingerprint intervals. Suppose that the fingerprinter aims at inserting an `-bits long
fingerprint ID into a candidate flow. The fingerprinter converts the `-bits fingerprint
into `c = f/rc bits of encoded fingerprint bits using a Convolutional or Reed-Solomon
encoder, where rc is the coding rate of our encoder and its choice will be discussed
later in Section 3.4. The fingerprinter uses the first n time intervals of a flow as its
fingerprint intervals, and assigns the `c encoded fingerprint bits to these intervals in
order (as discussed later, we may insert multiple bits in one interval).

Dividing fingerprint intervals into slots. The fingerprinter divides each finger-
print interval (of length T ) into r sub-intervals of equal length T/r. It further divides
every sub-interval into m slots of length T/(rm). We refer to the jth slot of the ith
sub-interval as si,j (i = 1, .., r; j = 1, ..,m). Figure 3.2a shows a fingerprint interval.

Secret permutation functions. A fingerprinter generates two vectors of permuta-
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Interval (T)

Slot #       1 2 …     …  m-1   m     1      2     …     …   m-1   m     1      2     …     …   m-1   m

Subinterval 
(T/r)

Slot 
T/mr

1 … r

(a) An interval Illustration (b) Original flow

(c) Embedding bit 0 (d) Embedding bit 1

Figure 3.2: Embedding bits 0 and 1 with TagIt. To embed 1, packets should move to
darker subintervals, and to embed 0, they should be moved to lighter subintervals.

tion functions, Π0 = (π0
0, π

0
1, ..., π

0
r−1) and Π1 = (π1

0, π
1
1, ..., π

1
r−1), before starting the

fingerprinting process, and shares them secretly with the extractor(s) as part of the
secret fingerprinting key. Each πij is a permutation function on Zm = [0, ..,m − 1];
for instance, πij : [0, 1, 2, 3, 4, 5] → [3, 5, 1, 0, 2, 4] is an example permutation function
for m = 6.

Note that the Π0 and Π1 functions are generated once and used for fingerprinting
many flows. In Section 3.1 we will discuss the implications of the random selection
of Π0 and Π1.

Selecting fingerprint slots. For each fingerprint interval, the fingerprinter uses
the permutation functions Π0 and Π1 along with a seed to select its fingerprint slots.
That is, for the kth fingerprint interval, the fingerprinter selects the following set of
slots as the fingerprinting slots:

Zk = (πb0(dk), π
b
1(dk), ..., π

b
r−1(dk)) (3.1)

where b ∈ {0, 1} is the encoded fingerprint bit to be embedded in the kth interval, and
dk is a random seed (described later). Note that to improve resistance to exhaustive
key search attacks, we use different Π0 and Π1 functions for different fingerprint
intervals (this is analyzed in Section 3.5).

Embedding a fingerprint bit. Finally, the fingerprint bits are embedded by the
fingerprinter delaying packets into the fingerprint slots. That is, the kth encoded
fingerprint bit is embedded into the kth interval by delaying that interval’s packets
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1

(a) We can extract the embedded bit.
1

(b) We cannot extract the embedded bit.

Figure 3.3: To ensure invisibility, TagIt fingerprinter only moves Rmove fraction of
packets into fingerprint slots. Rmove depends on the rate of the flow being fingerprinted
(Rmove = 0.5 is illustrated in the figure).

into their nearest fingerprint slot in Zk (the packets are delayed forward, so packets
appearing after an interval’s last fingerprint slot are not delayed). This illustrated in
Figure 3.2.

As we will analyze in Section 4.5, for high-rate flows delaying all packets into finger-
print slots will weaken the invisibility property. We therefore only delay a fraction of
the packets into fingerprint slots, Rmove. Suppose that ∆ is the length between two
consecutive fingerprint slots; the fingerprinter only delays the packets arriving in the
last ∆×Rmove section of the inter-slot interval into the second fingerprint slot. This
is shown in Figure 3.3(a). Note that we need to select this parameter carefully to
be able to extract the fingerprint correctly. For example, in Figure 3.3(b), it is not
possible to extract the embedded bit. We discuss this parameter in Section 3.4.

Empty intervals For the intervals that we have no packet to fingerprint, we simply
ignore that interval, and therefore lose the bit corresponding to that interval. Note
that our choice of parameters are such that such empty intervals are rare. Also, our
use of coding compensates for some of such lost bits. Alternatively, one could use the
next non-empty interval to embed the corresponding bit; however, this increases the
chances of total de-synchronization between the extractor and fingerprinter, e.g., if a
single packets moves into an empty interval all the following bits will be lost at the
extractor.

Secret key of fingerprinting. Table 3.1 summarizes the parameters of our system.
Also, Table 3.1 shows the parameters that are part of the fingerprinting key. The
key parameters are secretly shared between the fingerprinter and extractor, while the
other parameters may be publicly disclosed.

Extension: inserting multiple bits per interval

As discussed above, TagIt uses Π0 and Π1 to embed bits 0 and 1, respectively. We
extend the set of permutation functions to Π0,Π1, ...ΠS−1 in order to be able to embed
S different message symbols, as opposed to only 2. In other words, TagIt can embed
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Table 3.1: Fingerprint Parameters.

System parameters
T Interval length
r Number of subintervals
m Number of slots per subinterval
n Number of intervals
τ Packet extraction threshold
ρ Fingerprint extraction threshold
` Fingerprint length

m` Slot length
nbit Num. of fingerprint bits embedded in each interval
Rmove Fraction of fingerprinted packets

Secret parameters
Π0 Permutation for embedding bit 0
Π1 Permutation for embedding bit 1
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Figure 3.4: Inserting multiple bits per interval.

nbit = log2 S bits of information per interval by using S numbers of permutation
functions.

As expected, using more permutation functions increases the extraction complexity as
the extractor will need to check more slot mappings. It also increases the chances of
extraction errors: as we increase the number of permutation functions, the probability
of their overlap also increases, which results in extraction errors. This can be seen in
Figure 3.4a, where increasing the number of bits inserted per interval also increases the
probability of error. Figure 3.4b shows the average number of bits reliably embedded
per second for various numbers of permutation functions. (Note that the performance
decreases with slot length as we keep the interval length fixed.)
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Figure 3.5: Empirical distribution of overlap between randomly generated permuta-
tion functions with length 6000.

Analysis of permutation functions

Each permutation function gives the fingerprinter m slot mappings for fingerprint
insertion (Π0(d) gives m slot mappings for bit 0 for a seed value d). However, since
the permutation functions are generated randomly, it is likely that two slot mappings
where one represents a 0 bit and the other represents a 1 bit have overlapping slots.
A high fraction of overlapped slots between two mappings that represent different
bits will increase the rate of false extractions, i.e., a 0 bit encoded into an interval
may be decoded as 1. Therefore, it is important to evaluate such overlaps for random
selections of Π0(d).

Let us compute the expected number of overlaps between two permutation functions.
The probability of having i ∈ [0, 1, · · · ,m− 1] overlaps between two randomly gener-
ated permutation functions is given by

Pi =

(
N

i

) N−i∑
j=0

(−1)j(N − i− j)!/N ! (3.2)

where N = m! is the possible number of permutation functions. Therefore, we derive
the expected fraction of overlaps between two permutation functions as

Roverlap =
1

m

m∑
i=0

iPi (3.3)

Therefore, for m = 6 (used in our experiments) we have Roverlap = 0.166 ' 1/6.
We confirm this analysis by randomly generating 40 vectors of permutation functions
each of length 6000 and measuring their overlaps. As can be seen in Figure 3.5 the
probability of overlap is close to 0.166.
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Fingerprint Extraction Scheme

In this section, we describe how a TagIt extractor can extract fingerprints from the
flows it intercepts. For a network flow intercepted by a TagIt extractor, it will either
declare the flow to be “not fingerprinted”, or will extract a fingerprint ID from that
flow.

The extractor knows the fingerprinting key used by fingerprinters. As described above,
the fingerprinter uses a random seed dk ∈ Zm to select a slot mapping for the kth
interval. Therefore, the extractor will need to use M = 2nbit ·m possible mappings,
e.g., m mappings for the bit 0 and m for the bit 1 when nbit = 1. For each of the
possible M slot mappings, the extractor evaluates the ratio of the packets appearing in
those mappings. For instance, RI(k) is the fraction of packets in interval I that appear
in the slots according to the kth mapping (0 ≤ k ≤ M − 1). Finally, the extractor
finds the mapping kmax that has the maximum fraction, i.e., kmax = argmaxRI(k) k.

If RI(kmax) > τ , the extractor declares the extracted bit to be the bit represented
by the mapping kmax. Otherwise, the extractor extracts no bit from the interval I,
i.e., returns a null bit. Note that τ is a parameter of the extractor and trade offs
between the false positive and negative rates. For the extraction to be successful, we
need to have τ ≤ Rmove, where Rmove is the fraction of packets moved into fingerprint
slots, as defined earlier. The final stage of extraction is to use coding to correct the
potentially corrupted bits. The goal of the fingerprinter is to be able to extract all
fingerprint bits from a fingerprinted flow, or to correctly declare a non-fingerprinted
flow as non-fingerprinted.

Extraction complexity. For each fingerprint interval, the legitimate extractor who
knows the fingerprinting key, i.e., the fingerprint mappings, will need to count only
M possible mappings (e.g., 2m for nbits = 1). An adversary will need to guess the
fingerprinting key to be able to detect the fingerprint; as we show in Section 3.5
TagIt’s key has an extremely high entropy. For each key, the adversary needs to try
the possible M mappings to see if any of them decode a fingerprint bit.

Another factor in the complexity of the extraction process is the complexity of the
coding scheme used by the fingerprinters. However, note that since an adversary
should also execute the same decoding algorithm, the coding complexity applies to
the adversary as well. The coding complexity of TagIt will depend on each specific
coding scheme used. For instance, a convolutional code can be decoded with a low-
complexity Viterbi decoder [84, 62, 91, 58], which performs only 2kL checks for each
decoding operation.

Extraction Synchronization. To extract the correct fingerprint bit, we have to
synchronize the received flow with the sent one. To do so, we try multiple offset values
in the range [0, T/r] using steps of length t, i.e., T/(rt) computations. We experimen-
tally find that setting t = m`/4 makes the right balance between computation and
synchronization accuracy. Figure 3.6 shows an extractor trying various offset values.

24



1800 1600 1400 1200 1000 800 600 400 200 0 200 400 600 800 1000 1200 1400 1600 1800

Offset value (ms)
0

5

10

15

20

25

30

N
u
m

b
e
r 

o
f 

e
x
tr

a
ct

e
d
 b

it

Max value

(a) Fingerprinted flow

1800 1600 1400 1200 1000 800 600 400 200 0 200 400 600 800 1000 1200 1400 1600 1800

Offset value (ms)
0

5

10

15

20

25

30

N
u
m

b
e
r 

o
f 

e
x
tr

a
ct

e
d
 b

it

Max value

(b) Non-fingerprinted flow

Figure 3.6: Offset synchronization of fingerprint extraction
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Figure 3.7: False positive according to the number of embedded bits in interval. Each
point in the figure is the average over 100 flows.

3.2 System Analysis

False Extraction of Fingerprints from Non-fingerprinted Flows

We evaluate the probability of extracting a fingerprint message from a non-fingerprinted
flow. In order to extract a fingerprint bit from the fingerprint interval of a non-
fingerprinted flow, a τ or higher fraction of the packets within that interval should
arrive within the fingerprint slots of some fingerprint mapping.

For a particular fingerprint interval, consider a specific fingerprint mapping (out of
M possible mappings). For that mapping, the interval is declared to be fingerprinted
with the corresponding bit if at least τ fraction of the packets in that interval arrive
within the fingerprint slots of that mapping. We assume packets described by a
Poisson process, i.e., the inter-arrival times are i.i.d. Therefore, for each packet, it
will arrive within a fingerprint slot with a 1

m
probability. Therefore, assuming P total

packets in a fingerprint interval, the chances of having τ × P or more packets within
the fingerprint slots is given by:

FP = 1− CDFBinomial
P,1/m (dτ.P e) (3.4)

where CDFBinomial
n,p (x) is the CDF function of a Binomial distribution with n number
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of trials and p probability of success. We have that

CDFBinomial
n,p (x) =

x∑
i=0

(
n

i

)
pi(1− p)n−i

We model the arrival times using a Poisson process with rate λ (λ is the flow rate).
Consequently, the number of packets in the interval follows a Poisson distribution
with mean λ.T (T is the interval length). Therefore, we average FP for different
values of P as follows:

FI = M
∞∑
P=1

e−λ.T (λ.T )P

P !
FP (3.5)

Note that we also multiplied FP with M , the number of all possible fingerprint map-
pings.

FI is the probability of extracting a fingerprint bit from an arbitrary, i.e., non-
fingerprinted, interval. Therefore, the chances of extracting ρ fraction of all fingerprint
bits (out of total n fingerprint intervals) follows a Binomial distribution, which gives
us the false positive extraction rate:

FP = 1− CDFBinomial
n,FI

(dρ.FIe) =
n∑

k=nρ

(n, k)(FI)
k(1− FI)n−k (3.6)

Fingerprint Error Rates

Remember that for a given fingerprint interval, the fingerprinter moves Rmove fraction
of its packets to the fingerprint slots corresponding to a particular mapping. For the
extractor to be able to extract this fingerprint bit, at least τ fraction of packets should
be still in the corresponding fingerprint slots. Therefore, an error happens when more
than Rmove−τ fraction of packets within the interval move out of the fingerprint slots.

An individual packet moving out of a fingerprint slot. Consider a finger-
printed packet pi, i.e., one that has been moved to a fingerprint slot by the fin-
gerprinter. Suppose that pi has a distance x from the center of its fingerprint slot
(− T

2mr
≤ x ≤ T

2mr
). We model network noise on packets with a Gaussian distribu-

tion as suggested in previous work [110, 72] and also confirmed in our measurements
shown in Figure 3.8. Therefore, the probability of pi moving out its slot due to noise
is:

P (pi shifted|x) = 1− Φ0,1(
T/2mr − x

σ
)

+ Φ0,1(−
T/2mr + x

σ
)

(3.7)

where Φ0,1(·) is the CDF of a Gaussian distribution with mean 0 and standard devi-
ation 1.
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Figure 3.8: Delay distribution for different rates on a link between two distant com-
puters (one in the U.S. and the other in Europe).

Given pi’s uniform distribution in the fingerprint slot, we have:

P (pi shifted) =
rm

T

∫ x=T/2mr

x=−T/2mr
P (pi shifted|x)dx (3.8)

Losing a fingerprint bit. The fingerprinter loses an interval’s fingerprint bit if
more than Rmove − τ fraction of its packets move out of the designated fingerprint
slots, i.e.,

Prloss = Pr{(Rmove − τ) or more frac. of packets shifted}

Assuming there are P packets in the interval, we have

PrPloss = 1− CDFBinomial
P,c (d(Rmove − τ)P e) (3.9)
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where c = P (pi shifted) in (3.8). By averaging across all possible P ’s we have

Prloss =
∞∑
P=1

e−λ.T (λ.T )P

P !
PrPloss (3.10)

which is the probability of the extractor losing one particular fingerprint bit. Note
that this is an upper bound for the error; for each bit there are multiple mappings
(e.g., M/2 for nbit = 1), and therefore the packets of the noisy interval may move into
slots that correspond to another mapping of the fingerprinted bits.

Flipping a fingerprint bit. A lost fingerprint bit may be decoded as an invalid
bit, e.g., a 0 bit may be extracted as a 1 by the extractor. This happens if the shifted
packets move to the slots corresponding to a mapping that represents an incorrect
bit. We can estimate the probability of a bit flip as:

Prflip = Prloss × (Mb

∞∑
P=1

e−λ.T (λ.T )P

P !
FP ) (3.11)

where FP is given in (3.4) and Mb is the number of possible mappings for the incorrect
bit.

Extraction error rate. Recall that TagIt uses an encoder, e.g., a convolutional
code, to transform ` fingerprint bits into `c coded bits. Suppose that our encoder
can correct c bits out of `c bits. Therefore, our extractor should be able to correctly
extract `c − c or more in order to be able to decode the ` fingerprint bits.

Therefore the probability of the extraction error is:

ErrorExtraction = 1− CDFBinomial
`c,P rloss

(c) (3.12)

As discussed in Section 3.4, we choose our parameters such that ErrorExtraction is
close to zero.

3.3 Simulations

In our simulations, we generate synthetic network flows with various rates based on
Poisson processes, as commonly used in the literature. We measure network jitter
between a node on our campus (which we will call “Campus”) and several Planetlab
nodes [25]. We pick three Planetlab nodes that represent various network conditions.
Table 3.2 compares the standard deviation of delay for the three links that we used in
our simulations. The delays are measured over 200 flows each containing 600 packets
sent over the links.

We additionally simulate more noisy conditions (higher delay standard deviations)
by adding artificial noise to the traffic using the Linux “tc” command. For each link,
we measure delays for three different flow rates of 10, 100, and 200 pkt/sec.
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Table 3.2: Comparing the network delay of the three links used in our simulations.

Nodes involved Standard deviation of delay
Link 1 Campus-Ireland 0.083− 0.478 (ms)
Link 2 Campus-Switzerland 9.773− 12.347 (ms)
Link 3 Campus-China 24.917− 30.762 (ms)

Table 3.3: Trade-offs in selecting different parameters of TagIt.

Parameter
Trade-offs

Increasing improves Decreasing improves
T Extraction rate Extraction time
r Delay, invisibility Extraction rate

m` Extraction rate Invisibility
m Invisibility, delay Extraction rate
nbit Invisibility False pos., Extract. time
τ False positive False negative
ρ False positive False negative
` Extract. performance Extraction time, delay

Rmove Extraction rate Invisibility

Note that we have excluded experiments on Tor. This is because our measurement
of delays on Tor suggests that they significantly deviate from that of typical Internet
traffic, therefore our earlier analysis does not hold. We leave deriving parameters
tailored to Tor for future work.

Parameter Choices

Table 3.3 shows how each of TagIt’s parameters impact its performance. For instance,
r makes a trade-off between false-negative and the added delay, since the maximum
inserted delay is bounded by T

r
(2− 2

m
).

We pick m = 6 throughout the thesis. As mentioned, m trade offs between extraction
performance and invisibility. The parameter T should be chosen based on the rate
of the flow, since false errors are proportional to Tλ. m` represents a trade-off
between extraction time and delay since having small length for m` will make the
synchronization step more time-consuming as discussed in Section 3.1. τ should be
used to control the rates of false positive and false negative. Increasing τ improves
the false positive, and decreasing it improves the false negative. Also, ρ represents
a trade-off between false positive and false negative rates. Figure 3.7 suggests a
maximum false extraction rate of 0.15, i.e., an expected number of 30 ∗ 0.15 = 4.5
false bits when n = 30. We therefore pick a conservative value of ρ = 10.

29



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Slot length (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
x
tr

a
c
ti

o
n
 r

a
te

Rate=10pkt/sec

Rate=100pkt/sec

Rate=200pkt/sec

(a) Link 1

]
(b)
Link
2

5 10 15 20 25 30 35 40
Slot length (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
x
tr

a
c
ti

o
n
 r

a
te

Rate=10pkt/sec

Rate=100pkt/sec

Rate=200pkt/sec

20 30 40 50 60 70 80 90 100
Slot length (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
x
tr

a
c
ti

o
n
 r

a
te

Rate=10pkt/sec

Rate=100pkt/sec

Rate=200pkt/sec

(c) Link 3

Figure 3.9: Extraction result for for various links (no coding).
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Figure 3.10: Comparing analysis and simulation results for rate= 10.

Discussion of the Results

To fingerprint a flow, we randomly choose a flow delay from our delay database, and
a flow from the Poisson distribution database. We embed the fingerprint on the flow,
and then add the delay to the flow. We finally use the extractor (who knows the
fingerprinting key) on the noisy flows. We embed various number of bits per interval
on various links as they have different noise standard deviations; specifically, nbit is
5, 2, and 1 for links 1, 2 and 3, respectively.

Figure 3.9 shows the extraction results for the 3 selected links. As expected, increasing
slot length increases the extraction rate. Also, higher packet rates result in better
extraction with the same parameters, as they offer more packets to be fingerprinted.

Comparing with analysis. Figure 3.10 compares our simulation results with that
of our analysis from Section 3.2. As can be seen, our analysis presents an upperbound
on the experimental extraction rate. This is due to the imperfection of our modeling
of network noise (as discussed earlier), and also artifacts not included in our model
such as bursty errors due to temporary network conditions. Note that our analysis
does not aim to tightly predict the performance; instead, it intends to 1) demonstrate
how various parameters trade off TagIt ’s features (like FP, invisibility, etc.), and 2)
enable picking the values of TagIt’s parameters to be used in the experiments for
various traffic rates and network conditions.
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Table 3.4: Running TagIt on live traffic.

Link 1
λ T (ms) r m` (ms) Rmove rc Ave. ext. Ave. ext. after coding
10 1800 600

0.5 1 2/3
0.946 1

100 270 90 0.951 1

Link 4
λ T (ms) r m` (ms) Rmove rc Ave. ext. Ave. ext. after coding
10 1800 15

20

1 2/3 0.82 0.996
10 1920 16 0.6

1/3
0.943 0.98

10 2160 18 1 0.96 1
100 2160 18 0.6 0.93 1

3.4 Real-World Implementation

We implement TagIt on Linux to fingerprint live network flows. Our implementation
is done in C++ using NFQUEUE and libnetfilter libraries [4]. We did our experiments
on two different links: Link 1 from simulations, and Link 4: Campus-California with
standard deviation of delay in the range 9.773− 12.347 ms. We use the communica-
tion system toolbox from Matlab to implement our coding algorithms. We use two
coding algorithms in our experiments: Reed-Solomon codes (RS) and Convolutional
codes [84].

On each of the links, we try various coding algorithms and rates to achieve an ex-
traction rate close to 1. Note that our choice of coding algorithms and parameters
are not optimal, but to demonstrate the possibility of compensating for remaining
network errors through coding. We leave the investigation of optimal codes to future
work.

In link 1, we embed nbits = 5 bits in each fingerprint interval. Therefore, we use an
Reed-Solomon code to correct the errors on this link. This is because RS codes are
best for correcting bursty errors. We aim at fixing 5 bits of errors; we therefore use
a rate 2/3 RS code with parameters (n = 31, k = 21).

On the other hand, in link 4 we embed nbits = 1 bit per interval. We therefore use
the Convolutional code on this link, which works better on sparse errors (however,
it works best on longer streams). Similarly aiming to correct 5 bits of errors, we try
two rates of 1/3 and 2/3 with constraint lengths of 3 and [5,4], respectively. We use
a Truncated termination mode for our decoder.

Table 3.4 summarizes the results on live traffic for various parameters and flow rates
on the two links. The results are averaged for 100 fingerprinted flows. We pick
various parameters for different tests to demonstrate the impact of parameters on
performance.
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Table 3.5: Kolmogorov-Smirnov with confidence level=95% (λ = 10, r = 10).

Link T (ms) m`(ms) Rmove
Pass rate

Ext. rate
n = 30 n = 20 n = 10

Link 2

360 6
0.6

1 0.52
480 8 0.99 1 1 0.688
600 10 0.92 0.98 1 0.745
360 6

0.8
1 0.56

480 8 0.94 0.99 1 0.71
600 10 0.60 0.85 0.98 0.819
360 6

1
0.87 0.99 1 0.68

480 8 0.25 0.53 0.91 0.85
600 10 0.0 0.15 0.64 0.89

3.5 Fingerprint Invisibility

Kolmogorov-Smirnov Similarity Test

The Kolmogorov-Smirnov test compares the empirical distribution of two samples
and based on their maximum distance decides if they are from the same distribution.
We use the KS test to distinguish between TagIt fingerprinted flows and their non-
fingerprinted versions. Table 3.5 summarizes our experiments for various parameters
and flow rates. For each set of parameters (each row of the table) we generate 100
fingerprinted flows and compare each fingerprinted flow with its non-fingerprinted
version using the KS test. The table shows the Table 3.5 shows the result of KS
test on different links with their confidence level. The “Pass rate” column shows the
fraction of fingerprinted flows (out of 100) that are declared to be from the same
distribution as their non-fingerprinted version by the KS test (a higher pass rate
means better invisibility). The table also shows various tradeoffs between invisibility
and extraction performance, e.g., for various interval lengths, number of fingerprint
bits, and the ratio of the moved packets.

Also, as described earlier, Rmove (the fraction of packets being delayed) trades off fin-
gerprinting performance with invisibility. Figure 3.11 shows the impact of Rmove. As
can be seen, increasing Rmove improves fingerprinting performance (increases extrac-
tion rate and reduces false positive) at the price of degrading invisibility (reducing
the KS statistic)

Single Flow Invisibility

We also use the delay imposed during fingerprinting as another metric to evaluate
invisibility. Such an attack can be performed by an adversary who feeds his flows into
the fingerprinting system in order to measure the difference. The worst-case delay
per packet inserted by TagIt fingerprinter is given by maxdelay = T

r
(2− 2

m
). Table 3.6

shows the average of maxdelay for different r.
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Figure 3.11: Impact of Rmove on invisibility and extraction rate (slot length= 8ms).

Table 3.6: Average and maximum fingerprint delay per packet for different r.

r T/r (ms) Average delay (ms) Maximum delay (ms)
10 180 84.11 300
20 90 40.55 150
30 60 28.15 100
60 30 14.44 50

Multi-flow Invisibility

We also evaluate TagIt’s invisibility to the MFA attack of Kiyavash et al. [80], dis-
cussed earlier. As mentioned before, TagIt uses randomization to defeat MFA. Be-
cause of TagIt use of randomization, fingerprinted flows will have different patterns
even when the fingerprint key is the same. Figure 3.12 shows the cumulative his-
togram for 10 flows in an interval before and after fingerprinting, for different slot
lengths. As can be seen, even the use of 10 flows can not leak the fingerprint since
TagIt’s randomization spreads packets evenly across various slots.

Fingerprinting Key Entropy

A trivial way to attack a fingerprinting system is to guess its fingerprinting key.
Therefore, the key should have a high-entropy making it practically infeasible to be
guessed. When TagIt embeds 1 bit per interval, the space of fingerprinting keys is the
set of all possible permutation functions Π0 and Π1. Thus, the number of possible
permutations is given by:

kspace = (((m)!)rn)2 (3.13)

log2 kspacem (3.14)

Evaluating this for the parameters of Table 3.4 results in a key with over 7552 bits of
uncertainty, which is significantly costly to be guessed.
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Figure 3.12: Cumulative histogram of 10 flows, non-fingerprinted and fingerprinted
with different slot lengths (quantization step in each figure is half of slot length). (a)
and (c) have 2000 points in the X axis because slot length is 2 vs. 20 in (b)and (d),
and interval length is 2sec.

3.6 Conclusion

We designed the first blind flow fingerprinting system called TagIt. We extensively
evaluated the performance and invisibility of TagIt through theoretical analysis. We
also evaluated TagIt through extensive simulations on network traces as well as
through experimenting over live network traffic.
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Chapter 4

FINN Flow Fingerprinting

In this section, we design a flow fingerprinting technique using neural networks. Flow
fingerprinting is a fundamental problem for enterprises that want to detect compro-
mised machines used as stepping stones to relay cybercriminal’s traffic. Our system
works by delaying packets in the flow to embed secret fingerprints. Previous meth-
ods use statistical approaches [71, 117, 72] for fingerprinting, which requires careful
selection of features to manipulate for embedding the fingerprints.

4.1 Design of FINN Fingerprinting System

We leverage neural networks in our design to avoid the limitation of using a manual
process for embedding and extracting fingerprints. Neural networks learn the traffic
and extract the complex features from it instead of using carefully engineered features.
In designing our system, we follow three main goals:

• Invisibility. Introducing small delays to the packets makes the system invisible
to the adversary, which has access to the fingerprinted flows and attempts to
see any difference in the traffic compared to the regular traffic. We use small
fingerprinting delays to the packets. Also, we use a Generative Adversarial Net-
work to generate fingerprinting delays that follow Laplace distribution, which
is known to be the distribution of network jitter [102].

• Robustness. A robust system can extract the fingerprint from the flows even
in the presence of large network jitter. We train our model with network jitter.
Our model learns network noise and can de-noise the flows and extract the
fingerprints.

• Scalability. We use a blind approach to lower the cost of computation and
storage to provide scalability. FINN uses a blind approach to fingerprint flows.
In a blind approach, we do not need to store or share any information about
the flow between the fingerprinting entities, which imposes no communication
and storage overhead. To extract the fingerprint from flows, we do not need to
compare it with all incoming flows (compared to non-blind approaches), which
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Figure 4.1: The network architecture of the FINN.

reduces the computation overhead significantly.
FINN’s low cost allows it to be implemented in a real-world setting.

• Speed. We want to use a small number of packets for fingerprinting since many
flows in real-word do not contain a few packets. Also, this helps in finding the
attacker early.

Next, we present the design of FINN, which consists of two main components: a
fingerprinter (encoder) and an extractor (decoder). The encoder embeds the secret
fingerprint into the flows. The decoder extracts the fingerprint from the flows.

Figure 4.1 shows the architecture of these two components.

We show the input of the model as following:

Input = [Fi,&i] (4.1)

Where Ti is the vector of inter-packet-delays (IPD) of the flow i, Fi is the fingerpint
that we intend to embed to the flow i, and &i is the network noise on the flow i. Note
the Ti and &i has the size of N , and the Fi has the length of `. Fi is an all zero vector
with a single one.

Encoder. is a fully connected network. It takes the Fi and &i, and passes it to a
fully connected network with four hidden layes to generate the fingerprinting delays.
This fingerprinting delay is used to delay the packets in the flow i to embed the secret
fingerprint of Fi. The fully connected network has layers of size 1000, 2000, 2000,
and 1000, and has a output layer of N , which is our fingerprinting delays. The detail
description of the layers is represented in Table 4.2. The fingerprinting delays are
added to the Ti and &i to create the noisy fingerprinted IPD, which would be the
input for the decoder.
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Table 4.1: FINN Parameters.

Parameter Definition
N Number of packets in each flow
` Length of inserted fingerprint
α Amplitude of the fingerprint
σ Standard deviation of noise
η Ratio of α to σ

Kw Weight of the decoder-loss to ensure robustness
Iw Weight of the encoder-loss to ensure invisibility

Decoder. The decoder receives the flow (IPDs) when it passes the network and
accumulates the network noise.

Our decoder consists of two parts: convolutional and fully connected. The convolu-
tional part is responsible for de-noising the flow and removing the extra network noise
added to the flow. The fully connected part is responsible for decoding the embedded
fingerprint.

The convolution layers have a kernel size of 10 and filter sizes of 50 and 10, respectively.
The output of the convolution part flattens (flatten layer) to feed the fully connected
network. The first fully connected layer’s size is 256, and the size of the second fully
connected layer is fingerprint length. We use a Softmax function to normalize the
output of the decoder. Softmax scales the output between zero and one. Each element
of the output vector is a probability that the corresponding element is 1. To get the
extracted fingerprint, which is in on One-hot format, we make the largest element
one and the rest to be zero. This output is the F ′i , which is the extracted fingerprint.

Training

As we mentioned earlier, FINN has two main components: encoder and decoder. The
encoder is responsible for generating the fingerprinting delays for each flow, and the
decoder is responsible for extracting the fingerprints from the fingerprinted flows. We
define two loss functions: decoder-loss and encoder-loss to control how well each of
these tasks work. For the first task, we use mean-absolute-error (MAE) that tries to
reduce the error in the fingerprint generation. For the second task, we use categorical-
cross-entropy to minimize the error in decoding the embedded fingerprints. The
encoder-loss is an MAE loss. Note that we tune the weights of these loss functions
(Kw and Iw) to reach required robustness and invisibility. As we increase the Kw, we
are giving more weight to reducing the fingerprint extraction error.

In the loss function, n is the size of the training data, K is the number of possible
fingerprints, y is a binary indicator that the observation o is of class c (1 or 0), and p
is the probability that the observation is of class c. We use an Adam optimizer [79]
to minimize the loss.
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K∑
c=1

−yio,c log po,c (4.2)

4.2 Experimental Setup

In this section, we discuss our dataset, hyperparameter selection, and evaluation
metrics.

Dataset

As we explained in Section 4.1, FINN consists of two main entities: encoder (finger-
printer) and decoder (extractor). The encoder takes IPDs and fingerprints to generate
fingerprinting delays. The decoder receives the fingerprinted IPD, which is generated
by adding fingerprinting delays to the IPDs and extract the embedded fingerprint.
Note that we have an additional input of network noise to make the robust extraction
of fingerprints from the fingerprinted flows possible. To train our model, we need
to feed our network with quintuples (IPD, fingerprint, fingerprinting delay, network
noise). In the following, we explain the dataset that we use for each of these quintuple
components.

IPDs. We use CAIDA’s 2016 and 2018 anonymized traces [93] to build our IPD
dataset. We use CAIDA because we want to have IPDs of real network traces to
simulate the actual network traffic. We extract the flows in this database based on
the IP addresses, port numbers, and protocol types of the end-hosts, which is enough
to separate the network connections. Note that we build each flow by considering
only one side of the traffic between two end-hosts because, in fingerprinting, we only
have access to one side of a connection.

Fingerprints. Fingerprints are the messages that we embed in each flow. There
are two options to consider for fingerprints: binary or One-hot representation. We
employ the one-hot encoding to build our fingerprint dataset. One-hot is a group
of K bits that only have a single one. Assume that we want to embed 2 bits of
information in each flow. Using a binary representation, we have following options as
secret message: 01, 00, 11, 10. For the one-hot representation, we have the following
options for the one-hot encoding: 0001, 0010, 0100, 1000. We choose the second format
for our fingerprints since it gives us better performance. It is because we are using
categorical-loss as the decoder loss, which works better when its data has a one-hot
representation. Note that in our above example for one-hot encoding, the fingerprint
length (K) is 4, enabling us to embed log2K bits in each flow.

Fingerprinting Delays. As discussed earlier, FINN is an IPD-based approach,
which means it embeds the secret fingerprints into the IPDs. FINN modifies the
timings of the packets in the flow in a way to embed the fingerprint into the IPDs.
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In order to train our model, we need to build fingerprinting delays for many pairs of
(flow, fingerprint). Here, we describe how we generate these fingerprinting delays.

Suppose that we have a network flow with the following timings: fi = {t0, t1, ...tn}.
We compute the inter-packet-delays as : ipdi = {t1 − t0, ..., tn − tn−1} and delays the
packets such that the jth element of the ipdi changes to ipdij = ipdij + αij. The
fingerprinting delay components are as following:

fingerprinting delayi = {αi0, αi1, ..., αi(n−1)} (4.3)

in which, αis are chosen from a Laplacian distribution with a standard deviation of
αi. Note that we choose αis according to the standard deviation of noise in each
network connection. To embed the fingerprint into the flow, the fingerprinter delays
the jth packet in the ith flow using the following formula:

n=(j−1)∑
n=0

αin (4.4)

We need to choose αi0 large enough to avoid having negative delays on packets. Also,
we have to choose αi as small as possible to avoid fingerprint detection by an adversary.
Note that we generate fingerprinting delays for every pair of (flow, fingerprint), as
mentioned above. We expect to achieve high invisibility since we are generating all
of the αi randomly for every pair.

Network Noise. Network noise is one of the main inputs of our fingerprinting
model. Since network jitter delays the packets and might eventually remove the
embedded message, we need to feed it to our model to de-noise it. Also, it is essential
to know the jitter since we need to generate the fingerprints according to it. If a
link has high jitter, we need to embed fingerprints with a higher amplitude to resist
the network jitter and vice versa. We estimate this jitter by sending several packets
through the link and use the standard deviation of jitter as the amplitude of our
fingerprint.

Evaluation Metrics

We use the following metrics to analyze FINN:

• Extraction Rate (ER): The ratio of fingerprints that we successfully extract
from fingerprinted flows to the number of all fingerprinted flows. This metric
shows how many of the fingerprinted flows lost their embedded fingerprint due
to the network noise.

• Bit Error Rate (BER): Bits of error that occurs for each wrongly extracted
fingerprint. We convert each fingerprint to its binary representation to compute
bit rate error. This metric shows the number of bits that have been altered due
to the fluctuations caused by the network noise.
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Table 4.2: FINN fingerprint model hyperparameters.

Layer Details

Encoder
Fully Connected 1 Size: 1000, Activation: Relu
Fully Connected 2 Size: 2000, Activation: Relu
Fully Connected 3 Size: 2000, Activation: Relu
Fully Connected 4 Size: 500, Activation: Relu

Decoder

Convolution Layer 1

Kernel number: 50
Kernel size: 10
Stride: (1, 1)

Activation: Relu

Convolution Layer 2

Kernel number: 10
Kernel size: 10
Stride: (1, 1)

Activation: Relu
Fully Connected 1 Size: 128, Activation: Relu

Choosing FINN’s Hyperparameters

Table 4.1 shows the main parameters of FINN. Here, we select our system’s hyper-
parameters, including Iw, and Kw. Iw is the weight of our encoder loss, and selecting
larger Iws enhances the invisibility of FINN. Kw is the weight of decoder loss, and se-
lecting larger numbers for this parameter improves the performance of FINN. Also, we
select our model’s learning rate, which controls how quickly a neural network model
updates its weight, and therefore learns the problem. Note that we train our model
with a standard deviation of noise (σ) in the range of (2, 10) msec. It is because the
nodes that we used in our experiments showed a standard deviation of noise in this
range. Also, in our experiments, for the value of α, we choose values in this range.

Model parameters. As we discussed in Section 4.1, our encoder consists of a fully-
connected network with three hidden layers. We tried [32, 64, 128, 256] for the size of
these layers and learned that [128, 32, 64] works the best on our data. The decoder
consists of two convolutional layers and one fully-connected layer. For the window
sizes, we tried values in [5, 10, 20, 40, 50, 80, 100], and we learned that [50, 10] works
the best. We tried values in [5, 10, 20, 50, 100, 200] for the kernel size and learned that
[10, 10] gives us the best performance. Table 4.2 shows the structure of the encoder
and decoder in detail.

Optimum learning rate: This is one of the hyperparameters of each neural net-
work model. It represents the rate at which weights are updated in each iteration.
Setting a large number for the learning rate may cause an unstable training process.
On the other hand, setting a very small number may result in a long training pro-
cess. To choose the optimum value for this hyperparameter, we try the values in
[1e− 2, 5e− 3, 2e− 3, 1e− 3, 1e− 4, 1e− 5] while fixing the other parameters: number
of training data = 500K, N = 100, and ` = 212. Through this experiment, we find
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that 1e− 3 works the best for our model. Therefore, in the following experiments, we
use 1e− 3 as the learning rate. Note that we use 5000 flows to evaluate our model in
all of the experiments in this section.

Selecting Iw and Kw: Two main things to consider when fingerprinting is robust-
ness and invisibility, and we define two loss functions to control them. We use a
mean absolute error for encoder-loss to force the system to avoid generating finger-
printing delays that are too large, resulting in low invisibility. The decoder-loss is
a categorical-cross-entropy that minimizes the difference between the extracted and
inserted fingerprint to ensure robustness. Iw and Kw are the weights that control the
impact of encoder-loss and decoder-loss on the total loss, respectively. We need to
choose these two values in a way to achieve optimum invisibility and extraction rate.
We try the values in [1, 5, 50] for Iw and values in [1, 5, 10, 50] for Kw while fixing
the ` = 212, N = 100. We get the optimum result when we set the pair of (1, 5) for
(Iw, Kw). Note that choosing larger values for Kw improves the extraction rate, but
at the same time lowers the invisibility. We use the pair (Iw = 1, Kw = 5) for the rest
of the experiments.

4.3 Simulations

In this section, we run simulations to evaluate the performance of FINN offline. We
show the impact of fingerprint length (`) and flow length (N) on the performance.
Note that we train our model using the 2018 CAIDA anonymized traces of equinix-
nyc link and test it using the CAIDA anonymized traces of 2016 equinix-chicago
link. This ensures that we do not tailor the model for a specific link, and it is
transferable to different network conditions.

Impact of Fingerprint Length (`) on Performance

One of the main parameters of FINN is the fingerprint length (`). To evaluate this
parameter’s impact on the performance, we fix the other parameters (N = 100) and
increase ` until the extraction rate drops significantly. Figure 4.3 shows the impact of
increasing ` and size of training data on the performance of FINN. The figure shows
our model’s performance for ` = 29, 210, 211, 212, 213, and 214. As the figure shows,
when the size of training data is 500K, we have a 96.6% extraction rate and 1.6% bit
error rate when ` = 29, and this result degrades to 94.9% and 2.8% when we increase
it to 212.

Also, we get similar results for ` of 212, and the performance of FINN drops when we
increase ` to 214 (14 bits). Note that although ` = 212 gives better performance than
212, we choose 212 since we can send more data on average when using ` = 212. The
following formula computes the number of bits that we can embed on average when
the N = 100 for ` = 29 and 212. We multiply the extraction rate by the number of
bits embedded in the flow to find the number of bits that are correctly extracted from
the flows on average.
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Figure 4.2: Result of increasing α on performance of FINN fingerprint in different
network conditions (flow length = 100, ` = 210).
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Figure 4.3: Result of increasing ` and number of training data on performance of
FINN fingerprint(flow length = 100).
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log2(2
12)× 0.949 = 11.38

log2(2
9)× 0.966 = 8.69

(4.5)

Also, as is expected, increasing the size of the training data improves our performance.
This is because having more samples in training results in having a more generalized
model, and therefore, better performance.

Impact of Fingerprint Amplitude (α) on Performance

In this experiment, we want to see how α impacts the performance of our model. We
fix the other parameters as: N = 100, ` = 212. Figure 4.2 shows the result of this
experiment. We train our model with α in the range [5, 10, 20, 30, 40] for three ranges
of the standard deviation of the noise. For the σ = (2, 10) msec, we have more than
94% extraction rate for all amplitudes. However, as the σ increases, we need to use
a fingerprint with a higher amplitude to get the same results.

Impact of Increasing the Flow Length

Flow length is another main parameters of FINN. As expected, increasing it improves
the performance of our system. Our goal is to find the optimum number of packets for
fingerprinting when fixing other parameters as following: fingerprint length = 1024,
σ ∈ (2, 10). Figure 4.4 shows the result of our experiment. Note that the number of
epochs is 100. As the figure shows, as we increase the flow length, our results improve.
For example, when we have 500K of training data, the extraction rate for flow length
of 50, 100, and 150 are : 79.5%, 94.9%, and 97%, respectively. Also, the bit error
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Figure 4.5: FINN watermarking system.

Table 4.3: Hyperparameters of FINN watermarking model.

Layer Details

Encoder
Fully Connected 1 Size: 128, Activation: Relu
Fully Connected 2 Size: 256, Activation: Relu
Fully Connected 3 Size: 512, Activation: Relu

Decoder Refer to Table 4.2

rate is 10.2%, 2.8%, and 1.5% for the flow length of 50, 100, and 150, respectively.
Moreover, it is evident from the figure that as we increase the size of training data,
our results improve. For example, for the flow length of 100, we improve from 88.4%
to 94.9% as we increase the size of training data from 200K to 500K.

Additionally, we increase the number of epochs to 200 to evaluate the model’s per-
formance with higher epochs and learn that the performance enhances as following:
85.3%, 96.1%, 97.4%, and the bit rate error enhances as following: 7.3%, 1.8% and
1.2% for the flow length of 50, 100, and 150, respectively. Since the model’s perfor-
mance does not change much in higher epochs when we increase the flow length (with
the fix parameters) from 100 to 150 (96.1% to 97.4%), we conclude that the flow
length of 100 is enough to embed 10 bits (fingerprint length of 1024) of information
and achieve good performance.

FINN as a Watermark

In this experiment, we want to evaluate our algorithm’s performance when used as a
watermark. As we explained before, a watermark carries a single bit of information,
which is if the flow is marked or not. Therefore, it is a more straightforward task
compared to fingerprinting, which conveys multiple bits.

Here, we train our model with two keys (0 and 1) to distinguish the watermarked (true
flow) and non-watermarked flows (false flow). When the key is 0, we do not watermark
the flow, and when the key is 1, we add a watermark to the flow. Figure 4.5 shows our
watermarking system. As the figure shows, the system consists of two components:
encoder and decoder, borrowed from the FINN fingerprinting system. We introduce
three parameters here: elector and fw and tw. The elector divides the model into
two parts: watermarking and non-watermarking. The Elector is a vector of all ones
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Figure 4.6: Performance of the FINN watermark for different flow length.
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Figure 4.7: Selecting weight of false class by fixing the weight of class of true (tw = 1
and flow length = 50, and fw is increasing).
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Figure 4.8: Performance of the watermark for different η. η is the ratio of watermark
amplitude to network noise (flow length=50).

or zeros depending on the type of corresponding flow. It would multiply into the
watermarking delays, and its result adds to the IPDs. It ensures that the true flow
adds to the watermarking delays to generate the watermarked IPDs by multiplying
it in an array of all ones, and the false flow adds to 0 to remain intact.

Two metrics that we use to evaluate the system are TP and FP, which is defined in
below. According to each application, one of these metrics might be more critical.
Therefore, we use two weights to specify the importance of each class. We weigh the
FP class with fw and the FP class with tw. Increasing each of these weights implies
that we care about the specific metric more.

Metrics: To evaluate the performance of the watermark, we use FP and TP:

• False Positive: fraction of unwatermarked flows that we wrongly flag as water-
marked.

• True Positive: fraction of the watermarked flows that we flag as watermarked.

Discussion

For a specific link, the error rate is a function of watermark amplitude (α) and the
flow length (`). Choosing an appropriate watermark amplitude depends on the jitter
of the link. We need to use a larger amplitude for a link with a high network jitter
and a smaller amplitude for a lower network jitter link. We define η as the ratio of
watermark amplitude to the SD of jitter on the link. We expect to get better TP and
FP by increasing this parameter. When choosing this parameter, we need to keep
in mind that increasing this parameter decreases the system’s invisibility. Figure 4.8
shows the result of having η in [2, 1, 0.75, 0.5, 0.25]. As the figure shows, we get better
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results as we increase this parameter. In particular, we get near 100% true positive
and lower than 10−3 FP when setting the η to 1. Houmansadr et al. show in the
Rainbow [72]; this value ensures that our system is invisible to the adversary.

In our experiments, we choose larger fw to decrease the false positive and try it with
the values in [1, 5, 10, 15, 20, 25, 30] while fixing the tw at 1. Figure 4.7 shows the
tradeoff of FP and TP as we increase this fp, which shows that as we increase the fw,
the false positive improves, and the true positive degrades.

4.4 Real-World Implementation

In this section, we implement FINN in real-time to evaluate it on actual network flows.
We implement FINN on Ubuntu Linux (version 5.4.0-58-generic) using iptables(version
1.8.4), and libnetfilter queue library (version 1.0.4) [4]. We add rules to the
iptables’s OUTPUT chain to keep the packets, and our program obtains them for
fingerprinting using the libnetfilter queue library. To evaluate the performance
of FINN, we set up an encoder on campus and a decoder, which is a digital ocean
node [3] located in Bangalore. The goal is to see if FINN works in a real-time setup.
Note that the network flows that we use are replayed SSH connections extracted from
the CAIDA dataset. To evaluate our system in different network conditions, we re-
place the Bangalore node with seven Amazon EC2 nodes worldwide, and perform the
same experiments. Also, we test FINN on a cellular network to ensure that it works
on different network settings.

Impact of Fingerprint Length on Performance

As we explained in Section 4.2, we can embed log2(`) bits in each flow. As expected,
increasing the fingerprint length (`) worsens the performance of the system. To
evaluate the impact of this parameter on performance, we set the N = 100 and
σ in range of (2, 10) msec, and choose ` from 29, 210, 212 and 214. Moreover, we use
500K as the training size since Section 4.3 showed that this training size was enough
to have a generalized model. Figure 4.10 shows the result of this experiment for eight
different nodes located worldwide. The encoder (fingerprinter) is on a PC on campus,
while the decoder locates in seven Amazon EC2 nodes and one digital ocean node in
Bangalore. Note that our decoder nodes are in South and North America, Australia,
Europe, and Asia. As shown in the figure, we can extract the fingerprints with a high
extraction rate for all eight links. Using N of 100, we see that we have more than
96% extraction rate when the fingerprint length is 212 and lower, which degrades to
around 75% as we increase the fingerprint length to 214 (14 bits). This result is better
than what we got from the simulations. We believe it is because the noise that we
faced in real-world experiments was lower than the noise that we introduced in our
simulations, which improved the results. we compute the number of bits embedded
in a flow as:

0.962× log 212 = 11.54 (4.6)
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Figure 4.9: Performance of the real-time FINN fingerprint experiment from campus
to various nodes (Wireless, flow length = 100).

Experiment on Cellular Network

To evaluate the performance of FINN in a different network setting, we implement it
on the cellular network. To do so, we hotspot a cellular phone network with 2.4GHz
bandwidth and connect the PC to it (encoder). The decoder is set up on the Bangalore
node. Figure 4.11 shows the result of our experiment for different ` for two nodes
located in Bangalore and Frankfurt. As the figure shows, we achieve lower extraction
rates on these experiments compared to the wireless network in Figure 4.10. More
specifically, for the Bangalore link, we get a 93% extraction rate and a 0.05 bit error
rate when the ` is 210. For the Frankfurt link, we gt 87% extraction rate, and 0.1 bit
error rate when the ` = 29. The reason for having lower performance is that the σ
in our links when we connect to the cellular network is (7.17, 64.65) msec, which is
much larger than the wireless network, which was in the range of (2, 10) msec. Note
that the model that we used here was trained on σ in the range of (2, 10) msec. To
improve the results, we should train our model with a larger range of σ , which as
Figure 4.3 shows, would improve the results.

Comparing FINN with Previous Methods

Here, we want to compare the performance of FINN with previous fingerprinting
systems. TagIt [117] is the most recent blind fingerprinting system that uses an
interval-based scheme. It embeds fingerprints on the flows by sending the packets to
specific intervals. To compare our system’s performance to TagIt, we implement it in
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Figure 4.10: Performance of the real-time FINN fingerprint experiment from Banga-
lore to various nodes (Wireless, flow length = 100).
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Figure 4.11: Performance of the real-time FINN fingerprint experiment from campus
to various nodes (Cellular, flow length = 100).
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Table 4.4: Performance comparison of TagIt and FINN.

Method ER BER Average # of bits # of flows
FINN 96.2 2.1% 11.54

190TagIt (T=1620) 90.1 2.2% 5.32
TagIt (T=2160) 96.8 1.4% 4.13

real-time on our Banglore link to evaluate its performance in the same condition. The
main parameter of TagIt is the interval length, and the packet rate is the main factor
to consider when choosing this parameter. We choose 190 flows with packet rates in
the range of [5, 25] and select the interval length accordingly. Table 4.4 shows the
result of TagIt for two different interval length. As the table suggests, we can embed
5.3 bits per-flow using TagIt, while this number is 11.54 for FINN. We compute the
average number of bits embedded in each flow and learn that FINN can embed 11.54
bits per flow, which is 2.18 of TagIt (5.3 bits per flow).

FINN as a Watermark

We implement FINN as a watermark, embedding one bit of data in the flows. We
use six different links to evaluate its performance on cellular and wireless network.
The links are from the Bangalore or campus node to 6 Amazon EC2 located world-
wide (Sao Paulo, Dublin, Ohio, Frankfurt, Mumbi, Tokyo). We send more than 100
watermarked and non-watermarked flows in each link. Note that we use 50 packets
in the watermarking flow. Table 4.5 and 4.6 show results of our experiment for the
wireless and cellular experiments, respectively. Our results show that we get a false
positive of 0 and a true positive larger than 90% for all links in both network condi-
tions. Note that the jitter’s SD in these links is in the range (0.05, 32.02) msec. The
Bangalore-Ohio link has a lower detection rate because the SD of noise was higher
compared to the other links with a comparatively smaller SD of noise. Remember,
we train our model to assume that the SD of noise is in ranger(2, 10 msec. We can
improve the results by training our model with a larger SD of noise.

Different bandwidths. To further investigate the FINN watermark’s performance,
we implement it on different bandwidths starting from 10KB to more than 10MB per
second. Figure 4.12 shows the result of our experiment on two links (Frankfurt-
Bangalore and Sao Paulo-Bangalore). We notice that the watermark detection rate
degrades in very low bandwidth. To be more specific, our system shows a low TP
when the bandwidth is lower than 50KB. A bandwidth of 500KB/sec is enough to get
the TP arbitrarily close to 1 and FP arbitrarily close to 0. We do not have similarly
good results on low bandwidth because we train our model with higher bandwidth.
Therefore, our performance degrades for the conditions that we have not trained our
model for. To improve our results, we need to train the model using samples for
different bandwidths.
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(a) Frankfurt-Bangalore link.
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(b) São Paulo-Bangalore link.

Figure 4.12: Performance of the real-time FINN watermark experiment on different
bandwidths (flow length = 50).

Table 4.5: Performance of FINN watermark experiment on wireless connection for
different links (False positive is fixed at 0).

Link True Positive False Positive
Campus - (Dublin, Ohio) 0.98

0

Campus - (Tokyo, São Paulo, Frankfurt) 0.96
Campus - (Mumbai) 0.94
Bangalore - (Dublin) 0.98
Bangalore - (Tokyo) 0.97
Bangalore - (São Paulo, Frankfurt) 0.96
Bangalore - (Ohio) 0.94

Comparing to previous work. We use FINN for the application of stepping stone
detection. For our scenario, we use network jitter with Laplacian distribution, and
for packet loss, we use Bernoulli distribution. The SD of jitter is between [2, 10] msec,
and we use the amplitude of 0.75σ and σ, and the loss rate of 2%. This is similar
to the setting of DeepCorr [100] in its stepping stone scenario. Our results show
that we get slightly better results than the DeepCorr by using much fewer packets
(50 packets compare to 300 packets in DeepCorr). Speed of correlation is one of the
main principles in designing our model and comparing it to the previous work, and
we reduce the number of packets needed to 1/6 of state of the art. Furthermore,
Fancy [70] is a non-blind fingerprinting approach. Therefore, it is not fair to compare
our work with it. Since non-blind techniques have access to more information, so they

Table 4.6: Performance of watermark on cellular connection for different links (False
positive is fixed at 0).

Link True Positive False Positive
Campus - (Tokyo) 0.98

0Campus - (São Paulo) 0.97
Campus - (Bangalore, Frankfurt) 0.93
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intuitively offer better performance.

FINN’s Scalability

We compute the resources required for a stepping stone detection scenario using FINN
for the CICS building at UMass. The number of graduate employees and staff in CICS
is around 450. The only thing that we store is the trained model, which has around
3 MB size. We compute the time it takes to decode the fingerprint from the flows in
the worst-case scenario that every person has one connection. Performing the FINN’s
decoding for N=100 and ` = 212 for 450 flows on a 3.5 GHz Ubuntu machine with
a 32 GB of RAM, takes 1.57 seconds. Note that this time linearly increases as the
organization becomes larger. For a larger organization, we might need a Commodity
PC. For a vast organization, every subnetwork can run its fingerprinting system. Our
system runs on a gateway, and the router connects to the gateway to send the IPDs.
Then, The gateway runs the encoder model and returns its output, the fingerprinting
delay, to the router. The router uses the fingerprinting delay that receives to delay
the current packet.

4.5 Fingerprint Invisibility

A useful fingerprint needs to be invisible to prevent being detected by an adversary
and eventually removed. Also, a fingerprint needs to be invisible to not interfere
with the activities of benign users. As we discussed earlier, we insert fingerprints by
changing the IPDs of the flows. We have to be careful not to add a significant delay,
which makes the fingerprint visible and easily removable. To study the invisibility of
our system, we use the Kolmogorov−Smirnov test, which has been used in [117, 72]
to detect watermarks added to IPDs in a flow.

Generative Adversarial Network

Generative Adversarial Network is a class of machine learning introduced by Ian
Goodfellow et al. [64]. In a GAN framework, two models contest to win a zero-sum
game. At the end of the learning, the model learns to generate new data with the
same statistics as the training data. A GAN framework consists of two contestants:
discriminator and generator. The discriminator gets trained with real and fake data.
Real data is the data that we are interested in generating. The fake data is a set
of randomly generated data. The discriminator attempts to distinguish between real
and fake data,. The generator attempts to generate data similar to the real data
to fool the discriminator. GANs have been used to generate real-looking images,
human faces,image-to-image translation, text-to-image translation, etc. Here, we use
GANs to create Laplace fingerprinting delays. This improves the invisibility of the
system since the fingerprinting delays added to the flow get lost in the network jitter
imposed on the flows, which also has Laplace distribution [101, 102]. This method
has been used in [101] to generate Laplace distribution. The generator and extractor
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Figure 4.13: Using GAN to improve invisibility.

Table 4.7: Discriminator model hyperparameters.

Layer Details
Fully Connected 1 Size: 100, Activation: Relu
Fully Connected 2 Size: 1, Activation: Sigmoid

are borrowed from our original model. The discriminator is a fully-connected network
with one hidden layer with size of 100. The discriminator uses a binary-crossentropy
as its loss function. Figure 4.13 shows the architecture of FINN while using GAN.

The detail of the architecture is as follows:

• Train the discriminator with Laplace and uniform data.
• Freeze the discriminator and train generator (fingerprinter) to generate Laplace

fingerprinting delays.
• Freeze Generator and discriminator. Feed the extractor with the noise and

IPDs. Have an Add layer to add IPDs, noise, and the output of generator.
Train the extractor.

Kolmogorov−Smirnov Similarity Test

Kolmogorov−Smirnov (K-S test) is used to determine if a flow is from a certain dis-
tribution, or if two flows belong to the same distribution by measuring the maximum
distance between the flows. In the second case, K-S statistics is:

Dn,m = sup
x
|F1,n(x)− F1,m(x)| (4.7)

F1,n and F1,m are the empirical distribution of the first and second flows. The null
hypothesis (two flows are from the same distribution) is rejected at level of α if

Dn,m > c(α)

√
n+m

nm
(4.8)

In which, n and m are the sizes of two flows and c(α) can be computed as following:

c(α) =
√
−0.5 lnα (4.9)
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Figure 4.14: K-S Test Difference for different methods (Fingerprint: flow length =
100, fingerprint length = 210, Watermark: flow length = 50).

experiment, we fix our parameters as flow length = 100 and fingerprint length = 1024,
and use 500 fingerprinted and non-fingerprinted flows to evaluate the invisibility of
our fingerprinting system. We do our investigation on the Bangalore node, where the
standard deviation of the noise is 2-10 milliseconds. Figure 4.14 shows the result of
the Kolmogorov-Smirnov test on our data. Using (4.8), we compute the KS threshold
for 0.95 confidence interval, which is 0.19205. As the Figure 4.14 shows, only 1 of our
flows(0.2%) fails to pass the K-S test.

Clustering

A clustering algorithm groups the data so that the samples in the same group are more
similar than those in other groups. We use clustering algorithms to see if the finger-
printed and non-fingerprinted samples can be clustered in two groups.We use three
prominent clustering algorithms from Python Scikit-learn packages: Distribution-
based, Centroid-based, and Density-based clustering.

The distribution-based clustering, samples most likely to belong to the same distribu-
tion would be clustered in the same group. This type of clustering generates complex
models that captures the correlation and dependence of attributes. The downside of
this technique is that there might not exist a concise mathematical model for many
real datasets. We use a prominent method that is known as Gaussian mixture models
to cluster our dataset. GMM assumes that data consists of a certain number of gaus-
sian distributions. For the centroid-based clustering, we use the K-Means algorithm.
K-Means represents each cluster with a single mean vector and has some interest-
ing theoretical properties: it partitions the data space into a structure known as the
Voronoi diagram. It can be considered a variation of distribution-based clustering.
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Table 4.8: Result of clustering the fingerprinted and non-fingerprinted samples.

Clustering Algorithm True Positive False Positive
GMM 0.63 0.6

K-Means 0.0002 0.0002
DBSCAN 0.90 0.91

DBSCAN is a density-based Spatial clustering that defines the clusters as connected
dense regions [2]. In this method, the data in sparse space are considered noise and
outlier, therefore, ignored. This clustering algorithm is suitable for the discovery of
clusters with arbitrary shapes. We use the inter-packet-delays as the feature vector
for the clustering task. The length of the feature vector is 100, which was used in our
experiments for fingerprinting. To represent the features in two dimensions, we use
the principal component analysis to reduce the dimensionality of the feature space.
Figure 4.15 shows the fingerprinted and non-fingerprinted samples. As the figure
shows, fingerprinted and non-fingerprinted flows are not easily separable. However,
we use the three mentioned clustering algorithms to see if it is possible to group the
fingerprinted and non-fingerprinted samples separately.

Note that we run the GMM clustering algorithm with the number of components as
2, which is the number of groups we expect to have. The random state is initial-
ized as 0 to make the results reproducible. For the K-Means, we set the number of
clusters to 2, and initialize the random state to 0. The DBSCAN algorithm takes
two main arguments: the number of samples and epsilon. The number of samples
is the required number of samples in the neighborhood of a point to consider it a
core point. Epsilon is the maximum distance between two points to be considered
neighbors. Table 4.8 shows the result of these clustering algorithms. All of these three
clustering algorithms fail to group the data correctly and offer a random grouping.
In other words, they could not find a clear pattern separating the fingerprinted flows
from the non-fingerprinted ones.

4.6 Conclusions

In this thesis, we introduced the first blind IPD-based fingerprinting system using
neural networks,FINN, which is robust to network noise. FINN learns the network
noise through training, and thus, it is able to de-noise the noisy fingerprinted flows to
decode the embedded message. We evaluate the performance of our system thorough
simulations and experiments over a live network. Our experiments evaluate the im-
pact of different parameters, and find the optimum for each one. Also, we compute
the capacity of FINN, which 0.96 bit in every ten packets and is near twice is the
state of the art.

Moreover, we show that FINN performs well in conditions where real-time noise is
different from what it is trained on. In particular, this is important since it prevents us
from re-training our model for every connection with different network jitter. Finally,
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Figure 4.15: We reduce the dimensionality of the samples using principal component
analysis (PCA) to represent it in two dimensions.

we measure the invisibility of our system using Kolmogorov−Smirnov test and show
that it is extremely hard for an attacker to detect the presence of fingerprint. Here,
we considered the situation that we know the incoming flows are fingerprinted and
attempted to extract the embedded messages. For the future work, we want to work
on scenarios that this is not the case.
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Chapter 5

Bitcoin Identification

Bitcoin and similar blockchain-based currencies are significant to consumers and in-
dustry because of their applications in electronic commerce and other trust-based
distributed systems. Therefore, it is of paramount importance to the consumers and
industry to maintain reliable access to their Bitcoin assets. In this thesis, we in-
vestigate the resilience of Bitcoin to blocking by the powerful network entities such
as ISPs and governments. By characterizing Bitcoin’s communication patterns, we
design classifiers that can distinguish (and therefore block) Bitcoin traffic even if it
is tunneled through an encrypted channel like Tor and even if Bitcoin traffic is being
mixed with background traffic, e.g., due to browsing websites. We perform exten-
sive experiments to demonstrate the reliability of our classifiers in identifying Bitcoin
traffic even despite using obfuscation protocols like Tor Pluggable Ttransports. We
conclude that standard obfuscation mechanisms are not enough to ensure blocking-
resilient access to Bitcoin (and similar cryptocurrencies), therefore cryptocurrency
operators should deploy tailored traffic obfuscation mechanisms.

5.1 Background on Bitcoin

Bitcoin is a decentralized peer-to-peer cryptocurrency based on a white paper pub-
lished in 2008 and pseudonymously signed Satoshi Nakamoto [99]. Unlike regular
digital money like credit cards and money wiring, Bitcoin does not depend on a
central authority for the validation of transactions. Instead, Bitcoin operates in a
peer-to-peer fashion. Bitcoin transactions transfer money between Bitcoin clients.
Each user is identified by an address. This address is a public key for which the user
has the corresponding private key. This allows only the owner of the key to sign
transactions that transfer funds out of her balance.

The transactions are broadcasted on Bitcoin’s p2p network. The right order of trans-
actions in a transactions series is crucial in order to thwart double spending and
similar attacks. One classical way to keep the order of transactions is using a central-
ized authority. Bitcoin does so in a p2p fashion on a public ledger called the block
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chain, which includes all Bitcoin transactions in batches called blocks. Each block is
a set of transactions and a proof of work. A proof of work is a piece of data which
is time-consuming and costly to generate. However, verifying proof of work is easy
and is done to check certain requirements. Each block is valid if and only if its trans-
actions and power of work are valid. The block then is distributed in the network
and receiving nodes update their ledgers accordingly. Currently, the maximum size
of each block is 1 MB.

In Bitcoin it is crucial that each peer’s ledger be up-to-date. The peer-to-peer net-
work has the responsibility of updating the public ledger. Only valid transaction are
inserted into the ledger. To keep all peers in sync, all new transactions and blocks
are continuously broadcast to all users.

Bitcoin’s P2P Network

Bitcoin nodes form a random network and they connect to each other over unen-
crypted TCP connections. Since connections are not authenticated, peers just keep a
list of their connection IP addresses. Blocks and transactions are propagated by gos-
sip. To avoid DoS attacks, Bitcoin nodes only forward valid blocks and transactions;
invalid blocks are discarded.

Bitcoin peers can be split into two types: routable and non-routable. The former are
capable of accepting incoming connections, and the latter are not able to do so, for
example they are behind NATs or firewalls. However, it is worth mentioning that the
official Bitcoind software does not precisely split its functionality between routable
and non-routable. Each node has up to 125 connection, up to 8 of which are outgoing.
A node stays connected to a neighbor until it restarts or drops, in which case the node
tries to replace it [28].

Bitcoin Protocol Messages

In this section, we introduce the key protocol messages in Bitcoin that are essential
in understanding the behavior of Bitcoin traffic. We have listed the comprehensive
roster of Bitcoin protocol messages in Table 5.1. We divide Bitcoin protocol messages
in two groups: synchronization messages and block-related messages. Synchroniza-
tion messages are referring to messages used for propagating user’s addresses and
transaction in the Bitcoin network. On the other hand, block-related messages focus
on how blocks are advertised and how they are sent into the network.

Synchronization Messages

These messages are aimed at keeping Bitcoin peers synchronized with the rest of the
Bitcoin network.

addr:Each peer advertises the information and IP addresses of other peers via addr

message in the network. addr message contains a count and list of other peers IP ad-
dresses. Each IP address is accompanied by a timestamp showing its freshness. When
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Table 5.1: The list of Bitcoin communication messages.

Message Description

version
Advertise the node’s version. No further communication
is possible until both peers have exchanged their version.

verack Reply to the version message.
addr Send information about the known nodes of the network.

inv
Sent to advertise the knowledge of the peer about the known
objects. It can be received unsolicited, or in reply to getblocks.

getdata
Sent in response to the inv message to retrieve information
about the content of an object.

notfound
If the receiver of getdata cannot return the requested information,
it respond with notfound

getblocks
It return an inv message with the list of block after the specified
block in getblocks request

getheaders
It return a headers message with the list of block after the
specified block in getblocks request

tx Sent to describes a Bitcoin transaction in response to a getdata message.
block block message is sent in response to a getdata message

headers Return a list of block headers, in respond to getheaders

getaddr A node sends getaddr to ask about the known peer from other peers
mempool It asks about the transaction in mempool of other peers
ping Show the TCP/IP connection is still valid.
pong Response to ping message.

reject It show a message has been rejected
sendheaders Let other peers to send headers without inv message
sendcmpct Let other peers to send compact blocks
cmpctblock It used in stead of block, to send cmpctblock
getblocktxn It indicate missing block in compact block transaction
blocktxn To send missing block in compact block transaction

a peer receives a list of addresses from other peers, it has the choice of forwarding
any number of them. The peer chooses the sending addresses based on the following
criteria: 1) The number of IP addresses in the received message should not exceed
10, and 2) the timestamps should not be older than 10 minutes. This mechanism is
applied for helping in peer discovery.

inventory(inv): Peers send inv to advertise their knowledge about the known
objects, like transactions and blocks. Each inv message consists of a number of
inventory entries and the inventory vectors itself. It can be received unsolicited, or in
reply to getblocks. Inventory vectors are used to notify other nodes about objects
they have or data which is being requested. Inventory vectors consist of the type of
objects and the hash of the object.
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Figure 5.1: Comparing different relaying in the Bitcoin network

getdata: A peer sends a getdata message in response to the inv to retrieve infor-
mation about the content of an object. This object could be a block or a transaction.

tx: This message describes a bitcoin transaction in response to a getdata message.
Each transaction is stored in a memory pool. If a received transaction is already in
the pool, or it is included in one of the blocks in the main block-chain, it get discarded.

Block-related Messages

Such messages are used to exchange Bitcoin blocks among the peers. The current
Bitcoin network supports two ways of blocks propagation, full block and compact
block propagation. Figure 5.1 demonstrates the flow of message communication in
these two ways.

Full block propagation. The sender node first validates the block completely and
then advertises its possession of the block by an inv message. A receiving peer that
doesn’t have the block, asks for it by sending getdata message. Finally, the sender
node sends the block via a block message. Sending full block in the network is
wasting network bandwidth since we are re-sending all of the transaction and nodes
have some of transaction in their memory pool. The messages transmitted in this
mode are:

block: It consist of block version information, previous block hash, root of a Merkle
tree collection which is a hash of all transactions related to this block. Sending the
new block forwarded through all the network.

Compact block propagation. From the middle of 2016 in 0.13.0 version, Bit-
coin protocol began to forward blocks as compact blocks which means instead of
forwarding full blocks in network, only sketches of blocks are sent. A sketch include a
80-byte block’s header, the short transaction IDs used for matching already-available
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transactions, and the missing transactions. After receiving the compact block, the
receiving peer tries to reconstruct the block at its end, from the previously received
transactions and the one just received in compact block. In this way the waste of
sending each transaction twice is reduced. The advantage of compact block relay-
ing is reducing the spikes in the bandwidth and also reduce propagation delay. The
messages transmitted in this mode are:

sendcmpct: This message is is used to inform the receiving peer about the commu-
nication mode the sending peer has chosen. If the first byte of the message is set to
1 the sender is indicating that it wants to receive blocks as soon as possible and is
working in a high-bandwidth mode. If the first byte of the message is set 0 the sender
is indicating that it wants to minimize bandwidth usage as much as possible and is
working in a low-bandwidth mode.

cmpctblock: This message is presenting a sketch of block.

getblocktxn: This message is used to request missing transactions by sending a list
of their indexes.

blocktxn: This message is used to provide some of the transactions in a block, as
requested.

Compact block relaying works in high and low bandwidth settings. When bandwidth
is high, the receiving peer doesn’t oblige the sending peers to ask for permission
first. So, multiple peers can send the compact block to receiving node. Then at last
the sender node sends the missing transactions by blocktxn message. It is worth
mentioning Bitcoin works in high bandwidth mode with up to 3 peers. However,
in low bandwidth mode, since bandwidth is its bottleneck, the receiving node oblige
other nodes to ask for permission first. So, the sender first advertises block possession
by an inv message. Then, the receiving node asks for the compact block by getdata

and the sender will send the compact block by cmpctblock message. At last, if there
is any missing transaction, the receiving node will ask for it by getblocktxn and the
sender will send those transactions via blocktxn.

5.2 Characterizing Bitcoin Traffic

In this section, we demonstrate the unique features of Bitcoin traffic. We will show
that such unique traffic patterns of Bitcoin makes it possible to reliably distinguish
it from those other protocols even despite encryption and mixture with background
traffic. We will use our characterization to design classifiers for Bitcoin in the following
sections. All of our experiments in this section follow the experimental setup and
datasets described in Section 5.4.

Proportion and Distribution of Messages

Bitcoin peers generate various kinds of messages. We show that the distribution and
sizes of such messages are unique to the Bitcoin protocol, distinguishing Bitcoin traffic
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Table 5.2: Number and percentage of each message in a 31 days Bitcoin traffic in
compact block relaying.

Message Packets per minute Proportion Min. size Max. size Ave. size
inv 173.17 27.240% 67 1514 791.87

getdata 13.16 2.070% 68 1514 700.33
block 0.94 0.330 % 74 1514 772.74

sendcmpct 1.60 0.253% 63 1514 782.88
cmpctblock 2.02 0.319% 67 1514 789.21
getblocktxn 0.02 0.003 % 90 1360 367.67
blocktxn 0.77 0.121% 67 1514 777.16

tx 277.72 43.688% 66 1514 790.00
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Figure 5.2: Packet size distribution of Bitcoin communication messages in compact
block relaying.

reliably from other protocols.

Table 5.2 demonstrates the proportion of different messages in the Bitcoin traffic we
collected for 31 days. As can be seen, tx and inv dominate with 43.6% and 27.2% of
all packets, respectively. Therefore, the characteristics of these messages will shape
the pattern of a Bitcoin peer’s traffic.

Distribution of packet sizes. Figures 5.2(a) to 5.2(h) illustrate the packet size
histogram of different types of Bitcoin messages in our collected Bitcoin traffic. As
can be seen, each type of message has a distinctive traffic pattern.

Histogram of packet sizes in aggregate traffic. Figures 5.3(a) and 5.3(b)
show the histogram of packet sizes in the upstream and downstream directions, re-
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(a) Compact block, up-
stream
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(b) Compact block, down-
stream
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(c) Full block, upstream
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(d) Full block, down-
stream
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(e) HTTP, upstream
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(f) HTTP, downstream

0 200 400 600 800 1000 1200 1400 1600

Packet Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
e
rc

e
n
ta

g
e

(g) FTP, upstream
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(h) FTP, downstream
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(i) SSH, upstream

0 200 400 600 800 1000 1200 1400 1600

Packet Size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
e
rc

e
n
ta

g
e

(j) SSH, downstream
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(k) VoIP, upstream
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(l) VoIP, downstream
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(m) BitTorrent, upstream
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Figure 5.3: Upstream and downstream packet size distribution of Bitcoin and several
popular protocols.

spectively, in compact block relaying. As mentioned before, tx and inv dominate
the messages sent by a typical Bitcoin peer, therefore, their sizes (shown in Fig-
ures 5.2(a) and 5.2(h)) strongly shape the histogram of Bitcoin traffic, making them
uniquely distinguishable from other protocols.

We also show histograms of Bitcoin traffic in the full block relaying mode in Fig-
ures 5.3(c) and 5.3(d). These histograms have a larger spike close to the MTU, unlike
the case of compact block relaying. These are because of sending the whole block
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(f) BitTorrent

Figure 5.4: Ratio of downstream to upstream traffic volume for 5 minutes of traffic.

instead of a sketch of it in the full block relaying.

Comparison to other protocols. Figures 5.3(e) to 5.3(n) show histograms of
other popular protocols, collected as described in Section 5.4. Note that we look at
the traffic after going through an encryption tunnel, e.g., a VPN or SSH tunnel, so
the histogram includes the (small) TCP ACK packets.

As we can see, the packet size distribution of Bitcoin is uniquely different from these
other protocols, since a Bitcoin connection is composed of unique messages with spe-
cific size distributions shown before. For instance, the large number of inv messages
shapes the overall distribution of sizes in Bitcoin traffic.

Ratio of downstream to upstream

We also measured the ratio of downstream to upstream traffic volume which is shown
in Figure 5.4(a). Unlike other protocols like HTTP (shown in Figures 5.4(b) to 5.4(f)),
Bitcoin traffic has a symmetric traffic volume in upstream and downstream. This is
due to the fact that Bitcoin peers broadcast most of the bulky protocol messages they
receive such as block and transaction announcements.

Shape of Traffic

Above we showed that the counts and sizes of packets in Bitcoin demonstrate a unique
behavior. In addition to that, the shape of traffic in Bitcoin and the volume of traffic
received over the time is distinguishable from other protocols.
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Figure 5.5: Comparing time of each block receive with time of blocks in the block
chain.

Full block relaying mode. Figure 5.5(a) shows the traffic of a Bitcoin client
operating in the full block relaying mode. As can be seen, the small protocol packets,
mostly corresponding to inv and tx messages appear uniformly over the time. On
the other hand, the Bitcoin full blocks appear as large spikes at specific points in
time, i.e., once a new block is generated in the network. As can be seen, in the full
block relaying mode, the blocks result in big spikes since the client will download the
whole block at once, which roughly 1MB.

Compact block relaying mode. In the compact block relaying mode, it would
be harder to notice the block spikes, since only a sketch of the blocks is transmitted.
In this mode, transmitting a compact block in the network results in smaller spikes
of 100KB. Spikes of such small sizes may also occur when unverified transactions are
transmitted, which will increase the detection’s false positive. Also, a Bitcoin client
may operate in the high bandwidth mode, in which the receiver node asks its peers to
send new blocks without asking for permissions first. This will lead to more than one
peer sending the same block at the same time. This and the large volume of missed
transactions result in spikes of more than 100 KB in the traffic.

Figure 5.5(b) illustrates when and how compact blocks appear on a peer’s traffic. As
can be seen, compact blocks appear at smaller amplitudes than the actual block size,
but the behavior is also nondeterministic, since it depends on whether the client has
previously received some of the transactions in that block. This intuitively makes
detection of compact blocks less reliable than full blocks, as shown later our experi-
ments. We also measure the size of compact blocks by measuring the length field of
cmpctblock messages, which is shown in Figure 5.6(a). As can be seen, most of the
compact blocks are as small as 15 KB (in contrast to 1MB full blocks).

We also measure the volume of transactions missing from an announced compact
block (we do so based on the payload length of blocktxn messages). As described
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(b) Histogram of the size of missing transactions

Figure 5.6: Histogram of compact block mode components.

earlier, a Bitcoin client operating in the compact block mode will download such
missing transactions. This is shown in Figure 5.6(b). As we can see most of the
transactions have volumes less than 100 KB.

Block propagation latencies. The propagation delay in the Bitcoin network is
defined as the sum of the transmission delay and the block verification in the receiving
node at each hop. The transmission delay is defined as the time to exchange of inv
and get data message and sending the block via block message.

We measure block propagation delay by subtracting the receiving time of block mes-
sage and the time stamp in the header of block message. Figure 5.7(a) and 5.7(b)
shows the histogram of 6000 blocks’ propagation delay in compact block and full block
relaying, respectively. We can model this empirical data using Beta distribution [47].
We choose a maximum for propagation delay such that 99% of beta distribution is
below that maximum. According to our measurements this value equals to 65 seconds.

5.3 Designing Bitcoin Classifiers

We use the features described above to build robust classifiers for Bitcoin traffic. We
aim for our classifiers to work even in the presence of encryption and background
traffic, e.g., when the machine running Bitcoin is used for web browsing and runs
other applications, or when the Bitcoin traffic is tunneled over Tor or VPN. For a
target connection, our classifiers extract specific features from it, using which decide
if the target traffic contains Bitcoin or not. Each of our classifiers extract certain
features as introduced below. We evaluate the performance of our classifiers using
false positive, true positive and accuracy.
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Figure 5.7: Histogram of block propagation delay.

Size-based Classifiers

As we said in section 5.2, the histogram of Bitcoin packet sizes has a specific pattern.
According to this fact, we designed classifiers to distinguish Bitcoin traffic from other
protocols traffic.

Size Histogram Classifier (SizeHist)

This classifier tries to correlate packet sizes of non-Bitcoin traffic with packet sizes
of known Bitcoin traffic, the baseline. The classifier first divides the upstream and
downstream directions in the given traffic. Then it calculates the histogram of packet
sizes in each direction. More precisely, by the histogram of packet sizes, we mean
the number of packets for sizes that range from 1 to MTU size. The baseline is also
divided into upstream and downstream directions.

In the next step, the classifier calculates the cosine similarity as the correlation metric
between the input trace and a series of Bitcoin traces in both upstream and down-
stream direction. Finally, to detect if the input trace is a Bitcoin traffic, classifier
compares the average of correlation values with a threshold. If both of the upstream
and downstream averaged correlation values are larger than their thresholds, the
input trace is classified as Bitcoin traffic. Thresholds are derived as shown in the
experiments section.

Tor-specific Classifier (SizeTor)

Some tunneling systems modify packet sizes to prevent information leakage. In par-
ticular, Tor reformats traffic into constant-sized segments called cells. However, as
the size of a cell is smaller than the MTU of IP packets, depending on traffic volume,
multiple cells can merge into single packets. This makes the number of single-cell
packets and multiple-cell packets specific to different protocols tunneled over Tor.
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Algorithm 1 Size Histogram Classifier

1: procedure Size Histogram Classifier
2: Bdwn, Bup ← Size histogram of a Bitcoin downstream and upstream traffic
3: Vdwn, V up← Size histogram of input downstream and upstream traffic
4: cordwn = Bdwn.V

|Bdwn|2×|Vdwn|2

5: corup = Bup.V

|Bup|2×|Vup|2
6: return cordwn, coreup
7: end procedure

Our SizeTor classifier aims at detecting Bitcoin traffic tunneled over Tor based on
the distribution of single-cell packets.

As shown in Section 5.2, Bitcoin traffic consists of a large number of small-size packets
(e.g., due to frequent inv) messages. Tor will add padding to these small packets to
form a cell. Therefore, the ratio of single-size packets in Bitcoin-over-Tor is larger
that regular Tor traffic, e.g., HTTP-over-Tor. Based on this, our classifier compares
the ratio of single-cell packets to all packets; if the ratio is smaller than a threshold,
the connection is flagged as a Bitcoin connection.

Note that while our SizeTor classifier is tailored for Tor, it can be adjusted for other
protocols that similarly change the size of packets.

Tailoring for Tor pluggable transports. Through our experiments on Bitcoin
traffic over Tor pluggable Transports, we noticed that fraction of packets that have a
specific size other than cell-size (for example, size 721 in FTE ) are much larger than
this value in normal traffic. Furthermore, this value is much larger than the fraction
of packets that are in cell size. Therefore, when implementing sizeTor on pluggable
transports, we compute the fraction of packets in these specific sizes to differentiate
between Bitcoin traffic and others.

Downstream to Upstream Traffic Volume Ratio (D2U)

As we discussed in Section 5.2, the ratio of downstream to upstream traffic volume
is unique in Bitcoin. This classifier looks at t windows of Bitcoin traffic. The t
parameter should be at least 10 minutes to include at least one block in it. Then the
ratio of downstream to upstream traffic volume is calculated for the target traffic.
If the calculated ratio is larger than a threshold, which is determined empirically,
the traffic will be classified as Bitcoin traffic. The threshold is defined in a way to
distinguish Bitcoin traffic from other traffic while minimizing false positive. This
detection scheme will be effective even in the situation that the underlying system
changes the packet sizes and packet timings, since the transmitted traffic volume in
both directions would stay the same.
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Shape-based Classifier

We demonstrated in Section 5.2 that the shape of Bitcoin traffic is distinct from
other protocols. We therefore design a classifier that try to identify (encrypted)
Bitcoin traffic based on its shape. The main intuition of our shape-based classifier is
looking for changes in the traffic volume of a target user around the times of block
announcements. Therefore, we assume that the classifier obtains the times and sizes of
Bitcoin blocks, e.g., from the public blockchain.info repository, or even by running
a local Bitcoin client.

Algorithm 2 illustrates our window shape correlation algorithm. For each confirmed
Bitcoin block, the algorithm analyzes the volume of the target traffic during the
broadcast time of that block. To do so, the algorithm defines two time windows of
size ωi around the block time, one before (tblocki − ωi, tblocki) and one after the block
time (tblocki , tblocki + ωi). The size of the window depends on the size of the block,
the target client’s bandwidth, etc., as evaluated later. Then, the algorithm evaluates
the change in traffic during the two time intervals. For actual Bitcoin traffic with

Algorithm 2 Shape-based Classifier

1: procedure Shape based Classifier
2: B ← Block-chain time trace extracted from blockchain.info
3: V ← Captured traffic volume in 1 second epochs
4: N ← Total number of Blocks
5: for each block bi ∈ B do
6: tbi ← Time of generation of block bi
7: ||bi|| ← Block’s size
8: ωi ← Window’s size
9: ∆Vi = V (tbi , tbi + ωi)− V (tbi − ωi, tbi)

10: if ||bi|| − J ≤ ∆Vi ≤ ||bi||+ J then
11: detected block+ = 1
12: end if
13: end for
14: return detected block

N

15: end procedure

no noise, the difference should be close to the size of the block. Therefore, the
algorithm evaluates the difference of traffic volumes in the two consecutive windows
and compares it to a threshold determined by the natural network jitter of the target
(as discussed later). If the difference falls within a bound, the algorithm considers
that block to be detected in the traffic of the suspected user. The algorithm attempts
to detect the blocks in the traffic and evaluates the ratio of such “detected” blocks.
If the ratio is above a threshold η, the target user is declared to be a Bitcoin client.

Choosing the threshold η. The threshold should be chosen based on the tar-
get user’s specific network conditions such as background traffic, network noise, and
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bandwidth. Therefore, the algorithm selects the η parameter according to the user’s
network condition.

To do so, the classifier generates N (e.g., N = 100) synthetic block series, which
we call ground falses. Each ground false is generated based on the known pattern
of Bitcoin blocks, e.g., by simulating blocks around 1MB roughly every 10 minutes
for the full block relaying mode. More specifically, we generate the timing between
blocks based on an exponential distribution with mean 10 minutes. The classifier
then correlates the target traffic with each of the N ground false instances using the
correlation function of Algorithm 2. Finally, the threshold η is chosen as

η > max(CF ) (5.1)

where CF is the set of correlation values against the N ground false instances. In
another words, we choose η to be larger than the largest correlation value.

Choosing other parameters. The window shape classifier also needs to choose
values of the parameters ω and J . Parameter ω needs to be large enough to contain
most of the traffic of a block during block propagation. Moreover, J is chosen to take
into account that some of the block propagation traffic might not be downloaded in
that time window. This parameters needs to be selected based on user’s bandwidth
and volume of background traffic , and therefore it needs to be chosen for each client
separately.

Neural Network-based Classifier (NN-based)

We also use neural network-based classifiers to detect Bitcoin in the presence of a more
complex background noise, e.g., browsing more than one website simultaneously. In
following, we explain the feature selection phase, and then describe the design of our
neural network.

Feature Selection

Again, we leverage the unique shape of Bitcoin traffic as discussed before to classify
Bitcoin traffic using our NN-based classifier. To create each sample data, we divide
time into time intervals of length l and, use the volume of traffic in each interval as
our features:

V = {v1, v2, ..., vn} (5.2)

Note that vi is the volume of traffic in interval i. We choose 10 minutes as the sample
size, which is the smallest length to have at least one peak of traffic. Furthermore,
to choose the interval length, we try different values of 1, 5, 10 and 20 seconds. From
our experiments, we find that the interval length of 10 seconds results in the best
performance. Therefore, we choose 10 seconds as the interval length (l). Since the
length of each sample is 10 minutes (600 seconds), using equation n = sample size/l,
we get an array of length 60 as our feature vector.
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Designing the Model

For our neural network model, we use a multi-layer perceptron that consists of an
input layer, an output layer, and two fully-connected hidden layers. The input layer
has n = 60 neurons, which is the size of each sample data, the hidden layers have
n1 = 32 and n2 = 16 neurons, respectively, and output layer has one neuron, which
represents if the sample data contains Bitcoin traffic or not. We use Relu as the
activation function of the hidden layers and sigmoid [63] for the output layer. Also,
we use binary cross-entropy as our loss function, and Adam optimization [79] to
minimize the loss.

5.4 Experimental Setup

We use Bitcoin Core software1 to run full node Bitcoin clients on multiple virtual
machines on a campus network. Each virtual machine is connected to the Internet
through a high bandwidth. Before starting the experiments, we leave our Bitcoin
clients for a few days to make sure they have downloaded up-to-date blockchain
ledgers. We capture Bitcoin traffic under three different scenarios on a Linux 16.0.4
virtual machine:

Datasets

Collecting Bitcoin traffic. We use Bitcoin version 0.12.0 to capture Bitcoin
traffic in the full block relaying mode and Bitcoin version 0.14.0 to capture traffic
in the compact block relaying mode. We capture Bitcoin traffic for each version for
a period of around a month. Specifically, we captured the Bitcoin traffic in the full
block relaying mode from August 28th to October 9th, 2016, and Bitcoin traffic in
the compact block mode from March 14th to April 18th, 2017.

Bitcoin tunneled through Tor. We captured Bitcoin traffic behind Tor [45] for
both compact and full block modes. We also captured Bitcoin traffic in the compact
block mode when traffic is tunneled through Tor and popular Tor pluggable transports
of obfs4 [136], FTE [48], and Meek-amazon [94].

Bitcoin with background traffic. We captured Bitcoin traffic in the presence of
HTTP background traffic by browsing the top 500 Alexa websites using the Selenium2

tool while running Bitcoin software. We also collected Bitcoin traffic with HTTP
background traffic for the same set of websites behind Tor and its three pluggable
transports using Selenium.

CAIDA background traffic. We use CAIDA’s 2018 anonymized traces3 as a
dataset for additional background traffic. We extracted the flows in this database

1https://bitcoin.org/en/bitcoin-core/
2http://www.seleniumhq.org
3https://www.caida.org/data/monitors/passive-equinix-nyc.xml

71



0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 p

o
si

ti
v
e

0.0 0.5 1.0 2.0

User Think Times (Minute)

0.00

0.05

0.10

0.15

0.20

Fa
ls

e
 p

o
si

ti
v
e

10 Minutes

20 Minutes

30 Minutes

(a) Compact mode

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e

0.0 0.5 1.0 2.0

User Think Times (Minute)

0.00

0.05

0.10

0.15

0.20

Fa
ls

e
 p

o
si

ti
v
e

10 Minutes

20 Minutes

30 Minutes

(b) Full mode

Figure 5.8: Result of sizeHist classifier on noisy Bitcoin traffic.

based on the protocol type, IP addresses and port numbers of the end-hosts. For
each IP address, we consider all traffic to and from that IP as the typical traffic
of that user. Table 5.3 shows the class breakdown of CAIDA dataset used in our
experiments.

HTTP traffic. We collected top 500 Alexa websites using Selenium Tool. Also,
we captureed these websites over Tor, and three pluggable transports (FTE, Meek,
Obfs4). Moreover, we use the dataset by [100], which has collected the top 50, 000
Alexa websites over Tor.

Table 5.3: Traffic Class Breakdown For CAIDA Dataset.

Traffic Class Port Numbers ] of Connections %of Total
http, https 80, 8080, 443 745262 0.318

dns 53 1073758 0.457
smtp 25 2646 0.001
telnet 23 6958 0.003

ssh/scp 22 4928 0.002
other − 511700 0.219

all 2345252 1.0

Metrics

We use following metrics to measure the performance of our classifiers:

• True Positive: True positive is the proportion of the data that our model
correctly identifies Bitcoin out of all the traffic that contains Bitcoin.

• False Positive: False positive is the proportion of the data which did not
contain Bitcoin traffic, and our model incorrectly classified as Bitcoin out of all
the traffic that did not contain Bitcoin.

• Accuracy: Accuracy shows the proportion of correctly classified data.
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Modeling Normal Users

In this section, we describe four different types of users’ profile that we use to evaluate
the performance of our Bitcoin classifiers against. Users may have some background
traffic while using Bitcoin or they can generate noisy traffic to evade detection. There-
fore, we attempt to model typical behavior of users in various scenarios to evaluate
the performance of our system.

• Simple User: A simple user is a Bitcoin client with no background noise. This
type of user does not generate any network traffic other than the Bitcoin client
application traffic. Therefore, all traffic of the simple user is Bitcoin traffic.

• Simple Noisy User: A simple noisy user is a Bitcoin client that browses one
webpage during the time that we attempt to collect the Bitcoin traffic of the
client.To control the background traffic, we introduce a parameter named think
time, T , representing the amount of time that the user spends on a particular
website. Note that, increasing T would decrease the background noise since
there is not much traffic after a website is loaded. Thus, if T is large and
the Bitcoin application is running, after the webpage is completely loaded, the
simple noisy user’s traffic would look like a simple user’s traffic.

• Complex Web (Complicated/Sophisticated) User: A complex user is a
Bitcoin client who simultaneously browses multiple websites. The complex
web user is a sophisticated version of the simple noisy user. To create sample
data for this user profile, we choose a Bitcoin traffic with length of sample size
and accumulate noise traffic using following algorithm:

1. Choose a random length of noise flow (k) in the range [0, sample size]
seconds.

2. Accumulate the noise flow to the p second of the traffic. p is selected
randomly, similar to the previous step.

3. Repeat 1.

We repeat this process for I number of times, which represents the number of
open tabs. The reason that we do not add noise from start to the end of the
flow is that we want to make the background noise nonuniform, thus prevent
the classifier from learning the noise and denoising the traffic.

• Complex CAIDA User: A complex CAIDA user is a Bitcoin client who is
running one to five number of CAIDA applications, which are introduced in
Table 2 simultaneously in the background. We use the same algorithm as above
to create this user profile.

We define four different user profiles from simple behavior to more realistic and com-
plicated ones. We apply each classifier on one or more number of these profiles to
evaluate their performance.
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Figure 5.9: Result of D2U classifier on noisy Bitcoin traffic.

5.5 Results

In this section, we implement our classifiers to evaluate their performance on user
profiles described in Section 5.4 writing more than a thousands lines of code in Python.
First, for each classifier, we declare the user profile(s) that we use for evaluation of its
performance and the false data that we use for computing its false positive. Second,
we describe the result of each classifier and give a summary and comparison of them
at the end of this section.

User Profiles and False Data

For each classifier, we use a specific user profile, and depending on that, we choose the
false data. As explained above, false data is the base traffic that we use to compute
false positive. In other words, it is the traffic that we compare our Bitcoin traffic
with. In the following, we describe these pairs for each classifier(s).

• For the window-based classifier, we use the simple user profile. Furthermore, we
use HTTP which is the typical user behavior as the false data. This experiment
evaluates if Bitcoin traffic can be differentiated from browsing an HTTP website.

• For the rest of the binary classifiers in this section, we use simple noisy user
profile and attempt to detect the presence of Bitcoin. Note that, similar to
the window-based classifier, we use HTTP for the false data. This experiment
attempts to evaluate if browsing an HTTP website is enough to hide the Bitcoin
traffic.

• For the neural network-based classifier, we use the complex web and complex
CAIDA user for training and testing.

Note that, for the neural network classifier, we evaluate our model using 10, 000
number of test data. For rest of the classifiers, we use 500 number of test data for
evaluation.
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Size-based Classifiers

SizeHist Classifier

For this classifier, we compute the histogram of packet sizes and using a correlation
algorithm we decide if the traffic contains Bitcoin or not. Because of the Bitcoin
specific packet sizes, we expect to have a good performance even in the presence
of background noise. We implement the sizeHist classifier on Bitcoin traffic in
compact and full block modes using the noisy user model described in Section 5.4.
Figure 5.8 shows the impact of traffic length and background noise on true positive
and false positive for this classifier. As explained before, we control the noise using
T . As expected, increasing T and therefore, decreasing noise enhances the classifier’s
performance. Figure 5.8 shows that we can reach more than 90% true positive and
0% false positive for both modes when we have 10 minutes of traffic and set T to 2
minutes. It is worth stating that we could reach similar results when we set T to 0.5
minutes and have 20 minutes of traffic.

D2U Classifier

We showed in Section 5.2 that downstream to upstream ratio of Bitcoin traffic can be
a distinguishing factor to distinguish Bitcoin from other traffic. The D2U classifier
attempts to use the symmetry between upstream and downstream of Bitcoin traffic
to distinguish it from other protocols. Figure 5.9 shows the result of this classifier on
noisy user profile for full and compact block modes. It indicates that increasing T and
thus decreasing the background noise on Bitcoin traffic would improve the detection
rate. More specifically, our true positive enhances from 0 to 80% when we increase T
from 0 to 2 minutes.

Shape-based Classifier

As we explained in Section 5.3, window-based classifiers attempt to detect Bitcoin
blocks using the volume of traffic downloaded at a time window around the block
announcements times, and using the block detection rate it computes the true and
false positive. To implement the window-based classifier, we set J and ω introduced
in Section 5.3 to 100 kilobytes and 20 seconds, respectively. To set η, we compute
block detection rate for Bitcoin using ground false shown in Figure 5.10.

As we explained in Section 5.3, η is the threshold that we use to differentiate Bitcoin
traffic, and it should be larger than all the Bitcoin detection rates for ground false: if
the block detection rate is higher than η, we classify the traffic as Bitcoin. Note that
each point for Bitcoin using ground false in the figure is the average for 25 different
ground false. Using this figure, we set η to 0.4. Moreover, Figure 5.10 shows the block
detection rate for HTTP using ground truth and block detection rate for Bitcoin using
ground truth too. Using η, we can reach detect all Bitcoin traffic through (August
28 - Oct 5) as Bitcoin. Also, we did not classify any of the HTTP traffic as Bitcoin,
which results in 0% false positive. Furthermore, the performance of window-based
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Figure 5.10: Block detection rate using window-based classifier.

classifier quickly diminishes in the presence of a small HTTP background noise since
HTTP noise dominates the Bitcoin traffic and destroys the results of the classifier.
Furthermore, we implement the window-based classifier on Bitcoin compact mode
and learn that this classifier fails to detect Bitcoin traffic in this mode because of
small block sizes, which makes it impossible to distinguish them.

Neural Network-based Classifier

In this section, we implement the NN-based classifier using Keras [37] with a Tensor-
flow [17] backend. We use complex web and complex CAIDA users to evaluate the
NN-based classifier. To run this classifier, we need to set two parameters: learning
rate and epochs. Learning rate is a hyper-parameter that controls how much we
adjust the weights of the neural network model in each iteration. Moreover, epochs
depict the number of times that the algorithm is run on the training data. We use
the default value of 0.01 for the learning rate of Adam optimizer (lr).

For the epochs, we run our model for values ranging from 50 to 2000 and realize
that using 1000 epochs allows us to obtain good performance from our classifier.
Having a small number of epochs keeps the model from learning the dataset. On the
other hand, having a very large number of epochs may cause over-fitting. Therefore,
we need to pick this value carefully. Furthermore, increasing the number of epochs
increases training time. For example, the training time increases from 20 seconds to
around 4 minutes when we increase the number of epochs from 50 to 1000 when the
size of the training data is 5000. Therefore, we need to take this into account when
the size of training data increases.

Table 5.4 shows the result of NN-based classifier for different sizes of training data.
As the table indicates, increasing the size of training data improves the results of this
classifier. The accuracy of the classifier improves from 62% to 97% when we increase
the size of training data from 1000 to 20, 000. Note that, true and false positive
improves from 44% to 96% and 20% to 2% respectively when we increase the size of
training data.
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Table 5.4: Result of Neural Network classifier.

Training
Size

False Positive
(%)

True Positive
(%)

Accuracy
(%)

1000 20 44 62
5000 11 80 85

10, 000 6 84 89
20, 000 2 96 97

Summary and Comparison of the Results

In the following, we summarize of results for size-based, shape-based and NN-based
classifiers and then, compare their performance.

• Shape-based Classifier: In this category, we have the window-based classifier,
which results in 100% true positive and 0% false positive for full block mode
when there is no background noise, but it fails to detect Bitcoin traffic on
compact block mode because of the small block sizes. The performance of this
classifier quickly diminishes in the presence of small noise such as simple noisy
user model described in section 5.4.

• Size-based Classifiers: In this category, we have SizeHist and D2U classifiers.
� SizeHist Classifier: Using 10 minutes of traffic with a think time of 1

minute, we can reach 0% FP and more than 90% TP in both compact and
full block modes. Note that it gets a similar result for both cases when we
have more than 20 minutes of traffic with a think time of 30 seconds.

� D2U Classifier: This classifier reaches around 80% TP and up to 5%
FP for both compact and full modes when there are at least 10 minutes of
traffic and the think time is 2 minutes.

Previous classifiers including D2U, SizeHist and window-based perform well
when the background noise is negligible (think time of 2 minutes). Therefore,
they are not useful when Bitcoin traffic has a large amount of background noise.
To distinguish Bitcoin traffic in the presence of larger noises, we employ NN-
based classifier.

• NN-based Classifier: To evaluate NN-based classifier, we use Complex web
and CAIDA users in both modes. Our NN-based classifier is able to reach near
perfect accuracy (97%) with less than 4% false positive when we increase the size
of training data to 20, 000. This classifier outperforms all previous ones since it
is able to detect Bitcoin traffic using Complex web and complex CAIDA user
explained in 5.4.

5.6 Conclusions

The reliable access to Bitcoin and similar cryptocurrencies is of crucial importance
due to their consumers and the related industry. In this thesis, we investigated the
resilience of Bitcoin to blocking by a powerful network entity such as an ISP or a gov-
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ernment. By characterizing Bitcoin’s communication patterns, we designed various
classifiers that could distinguish (and therefore block) Bitcoin traffic even if it is tun-
neled over an encrypted channel like Tor, and even when it is mixed with background
traffic. Through extensive experiments on network traffic, we demonstrated that our
classifiers could reliably identify Bitcoin traffic despite using obfuscation protocols
like Tor pluggable transports that modify traffic patterns. In order to disguise such
patterns, an obfuscating protocol needs to apply significant cover traffic or employ
large perturbations, which is undesirable for typical clients.
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Chapter 6

Traffic Analysis Attack on
WhatsApp

WhatsApp and similar messaging services are popular due to allowing users to send
unlimited free multimedia messages. These applications encrypt the users’ traffic,
either end-to-end or middle-to-end, to provide security. However, these applications
leak sensitive information through the traffic metadata, such as the timing and sizes
of the packets. In this thesis, we investigate the traffic analysis attacks on WhatsApp.
We utilize two previously introduced event-based and shape-based attacks and show
that we can infer sensitive information from user traffic in WhatsApp using these sim-
ple techniques. Then, we show that using a naive countermeasure like VPN reduces
the impact of these attacks. However, it does not obliterate it.

6.1 Background on Secure Instant Messaging Ser-

vices

A secure Instant Messaging service (IM) is defined with two main features: 1) it
deploys strong encryption, either end-to-end or end-to-middle. 2) it is not controlled
by an adversary, for example, Soroush in Iran or WeChat in China. If an IM service
operator cooperates with the surveillance government, there would be no need to
use complicated TA attacks to infer sensitive data. For example, Iran and Russia
attempted to get Telegram operators’ cooperation to surveillance their people, which
was unsuccessful today [8]. Note that an IM service that does not deploy strong
encryption can be trivially compromised. Our TA-based attacks aim to eavesdrop
the secure IMs since the non-secure ones are trivially surveilled with other trivial
attacks. We specifically study WhatsApp, which is the most popular secure IM.
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WhatsApp IM Architecure

Architecture. WhatsApp uses a centroid architecture. In a centralized architec-
ture, clients send their messages to the IM server, and the server forwards them to the
target client. All major messaging applications such as Telegram, Snapchat, Skype,
Viber, Signal, etc., use this type of architecture. There are various messaging proto-
cols for user communication, including Signal [57], Matrix [24], Off-the-Record [30],
and MTProto [7]. WhatsApp uses the Signal [57] protocol to provide end-to-end
encryption to voice calls, video calls, and user conversations. The signal protocol
provides integrity, confidentiality, authentication, forward secrecy, participant consis-
tency, destination validation, etc. Note that it does not offer anonymity preservation.

Security features. We discuss four main security features: integrity, confidential-
ity, Authentication, and Forward Secrecy.

WhatsApp provides forward and future secrecy by using Double-Ratchet protocol.
Ensuring these two features provides message confidentiality even when a key is com-
promised [34]. Forward secrecy implies that if an adversary compromises a key, he/she
cannot recover the previous keys. Similarly, future secrecy implies that compromis-
ing a key does not provide extra information about future keys. These properties
ensure the confidentiality of the messages. Moreover, WhatsApp provides end-to-end
encryption preventing the operators of the IM service from seeing users’ messages.
To ensure integrity, WhatsApp provides a method to authenticate the sessions be-
tween users by scanning a QR code [10]. Moreover, it uses standard authentication
techniques such as authorization keys and public key certificates.

6.2 Attack and Threat Model

Similar to [23], we consider an adversary who does not block all user access to the
message application or does not cooperate with the operators of the application. The
adversary only monitors the encrypted traffic of the target user to deduce sensitive
information from it. The information that we are interested in is the identity of
the people involved in one-on-one communications. In this attack, the adversary
intercepts a conversation that is believed to be politically or socially significant to find
the IP address of the target in the chat. Our attack only performs traffic analysis and
can be applied to all major messaging applications. Note that this is a fundamental
attack that is not due to a buggy software implementation to be fixed through software
updates.

Adversary

The Adversary is a surveillance party run by a repressive government. The ad-
versary’s goal is to find the IP address of a target individual involved in a specific
one-on-one communication to punish them. The target individual could be a jour-
nalist or protestor discussing sensitive political issues in one-on-one communication.
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Figure 6.1: Attack Scenarios. Adversary wants to find the person that is chatting
with client A.

The adversary needs to monitor the traffic of the target user by wiretapping the ISP
of the targeted users to perform the attack.

Threat Model

The attack is performed on a messaging application that encrypts any communication
between the clients and the servers with strong encryption and does not leak informa-
tion due to security flaws in the application. For example, the application does not
let hackers access the users’ phone [59], or leak their personal information [60] .Also,
the operators of the messaging application do not cooperate with the adversary to
identify the target user.

How the Attack Is Performed

Figure 6.1 is showing the setup of the attack. The adversary intercepts client A’s
traffic and attempts to find the other party involved in the conversation.

Adversary ground truth. Figure 6.1 shows the setup of the attack. Assume that
the adversary wants to find who the client A is speaking to. To do so, the adversary
needs to have certain ground truth about the chat. This can be done in:

• The adversary is the client A in the one-on-one communication, therefore, it
can record the messages and reply.

• The adversary is not the client A. She can intercept his encrypted traffic and
records its traffic pattern. The wiretapping can be performed by the adversary
who is controlling an ISP or IXP.
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The adversary uses the ground truth to correlate the traffic of client A to the traffic
of the target individual with the algorithm mentioned later in 6.3.

Adversary makes decisions. The adversary has the ground truth that is the client
A’s traffic and attempts to match it to the traffic of the wiretapped users (client B1

to client Bn) using a detection algorithm.

6.3 Attack Algorithm

Event-based Detector

Our detector is based on the event-based detector in [23], shown in Figure 6.3, with
small modifications to make it work on WhatsApp. The algorithm works by corre-
lating the events in the ground truth with the traffic of the target user.

An event is a burst of consecutive packets that have inter-packet-delays lower than
te seconds. It can be a single message or the number of messages sent with inter-
message-delay (IMD) less than te. Messages include file, pdf, image, video, text, and
audio. An event is defined as e = (t, s) in which t is the time and s is the size of the
event. The time is the timing of the last message received in the traffic burst, and
the size is the volume of the traffic burst.

Figure 6.2 shows the traffic volume of WhatsApp per second in a one-on-one com-
munication for 10 minutes. As the figure shows, there is a small traffic volume due
to the text messages, handshakes, updates, etc. A peak in the traffic occurs when a
comparatively large file (video, pdf, image, audio) is exchanged between the parties
involved in the chat.

Remember that the adversary does not see the traffic content due to the use of
encryption and only has access to the sizes and timings of the packets. The first step
in correlating the traffic is to extract the events from the bursts in the encrypted
traffic.

Event extraction. An event is a burst of packets in the traffic that have inter-
packet-delay lower than te. A messaging application generates small packets due to
updates, text messages, handshakes, and traffic bursts when a comparatively large
message is sent. Therefore, the bursts are distinguishable by an adversary who mon-
itors the traffic, even though she cannot see the packet contents due to encryption.
We look for packets with a distance lower than te and consider it a burst. For each
burst, an event is extracted. The sum of packet sizes in each burst gives the size of
the event, and the arrival time of the last packet in the burst provides the time of
the event. It is worth mentioning that if two messages are sent with IMD lower than
te, they would be considered a single event. At the same time, some messages get
divided into shorter bursts due to latencies in the network.

Detection algorithm. The adversary counts the number of the matched events
between the target user flow (f (U)) and the ground truth flow (f (C)). The event e

(U)
j
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Figure 6.2: Volume of WhatsApp traffic over time for 10 minutes. The spikes of
volume occur when a large message is exchanged.
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Figure 6.3: Event-based attacker.

is matched to the e
(C)
i in the ground truth if:

• |t(C)
i − t(U)

j | < ∆

• |s(C)
i − s(U)

j | < s
(U)
j × γ

We make a slight change in the event-based detector introduced in [23] in matching
the size of the events. They allowed the size of the burst to be a fixed offset smaller
or higher than the size of the corresponding event. Here we match a burst to an event
if its size is within a percentage of the event.

Assume that we want to find the event (ti, si) in our traffic. We iterate over all the
traffic bursts in our traffic in the time interval of ti−∆, ti+∆, and check to see if any
of them matches our event. For a burst to match our event, it has to have at least
1−γ of our event (γ is between 0 and 1). For example, if γ is set to 0.1 and the event
size is 1MB, and the ∆ is 5 seconds, we need to find a burst that has a size of at
least 900KB. Note that this burst matches our event if its timing is only 5 seconds
apart from the event’s timing. Note that the size threshold is proportional to each
event’s size, which improves the result compared to choosing a fixed size threshold.
Finally, the adversary computes the ratio of matched events as r = k/N , in which k
is the number of matched events, and n is the total number of events in the ground
truth. If r is above a certain threshold (η), it correlates the traffic with the ground
truth.
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Figure 6.4: Shape-based attacker.

Shape-based Detector

The shape-based detector is designed based on the event-based method. Our shape-
based detector is a combined version of the event-based and shape-based detector
introduced in prior work [23], shown in Figure 6.4. First, the events are extracted from
the traffic using the event-based detector’s extraction phase ( They only extracted
the bursts and did not match them to their corresponding events). Second, the events
are normalized, which we explain next, to reduce the user’s bandwidth impact.

Normalizing the traffic. The shape-based detector converts the events to traffic
bars. This is because the shape of the traffic is related to the user’s bandwidth, and
converting each event to a traffic bard removes the impact of the user’s bandwidth.

To perform the normalization, we replace each event with a traffic bar with a width
of te, and we select the height of the bar such that the area under the bar sums to
the size of the event.

Then, every bar is divided into several smaller bins with a width of ts and the height
of the corresponding bar. Note that we put bins with a height of 0 and width of ts
between the bins related to different events. The new shape of traffic is a vector of
the height of bins over time.

Correlating the normalized traffic. The shape-based detector correlates the
ground truth’s normalized traffic with the suspected users to know if they associate
with each other. The equation 6.1 is used for correlation, and the bC = {bC1 , ..., bCnc

} is
the respective height of bins associated with the target user, and the bU = {bU1 , ..., bUnu

}
is the one associated with the user being tested. We compute the correlation as:

2×
∑n

i=1 b
C
i b

U
i∑n

i=1(b
C
i )2 +

∑n
i=1(b

U
i )2

(6.1)

in which, n = min(nc, nu). This correlation returns a value of corr, which is between
0 and 1. We decide that two vectors are associated if the value of corr is above the
threshold of η.
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6.4 Experimental Setup

We collect our one-on-one conversation traffic on WhatsApp that is the most popular
messaging application with more than 2 billion users globally. WhatsApp handles
more than 10 billion messages daily, including 700 million photos and 100 million
videos [14]. Since it does not provide an API, we use Selenium Tool1 to send and
receive messages through the WhatsApp web portal [13]. We believe this method of
collecting data has an advantage over using an API to make the dataset more similar
to the interaction between real users since every message is being sent in the same
way a real user uses the application. Note that to simplify data collection, we send
the messages in only one direction. We argue that it does not impact the result of
the experiments since we will use only one side of the traffic (incoming or outgoing)
to correlate the target user traffic with the ground truth.

The types of messages that we send between users are audio, video, text, and photos.
The inter-message-delays between messages, which is the time between two consecu-
tive messages in a conversation, are extracted from the experiments in [23]. Whatsapp
does not allow one to create a profile using a fake number. Therefore, we used one
existing personal phone number as one side of the conversation. We also purchased
a phone number from Mint phone service to use as the other side of the chat. We
use our detectors to learn if WhatsApp one-on-one conversation traffic leaks infor-
mation above the conversation parties. Moreover, we collect data over a VPN for
different VPN server locations to study the impact of tunneling WhatsApp traffic
through VPN on the performance of the event-based detector. Finally, we capture
data for users with different bandwidths to see how it affects the performance of our
event-based detector.

6.5 Experiments

We present our experimental setup for the attack in Figure 6.1 for the first type of
adversary introduced in Section 6.2. In our attack scenario, two WhatsApp clients
exchange data. We have the ground truth from one side and capture the traffic on
the other side. The goal is to see if we can correlate the ground truth with the traffic.
The adversary cannot see the traffic content and only has access to metadata such
as packet timing and sizes. To simulate the conversation, we used Selenium on both
sides to send and receive the traffic since WhatsApp does not provide an API.

Parameter Selection

We have to decide on four parameters here: te, ts, γ,∆. Here te is set to 1 second
similar to the previous work in [23], and ts of the shape-based detector to 0.01 seconds.
γ and ∆ should be chosen based on traffic characteristics. For example, when the
traffic passes through a VPN, it is received with extra delay, which requires choosing

1http://www.seleniumhq.org
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(a) Event-based detector (b) Shape-based detector

Figure 6.5: Performance of our detectors on normal condition.

a larger value of ∆. Note that as we increase ∆ and γ, our false positive increases
along with the true positive. Therefore, it is important to choose a value that satisfies
the requirement of the problem for the false positive and true positive. To choose
the proper value for γ, we try values in [0.1, 0.15, 0.2, 0.25, 0.3], choose the value that
gives acceptable results for true and false positive. For the ∆, we try the values in
[30, 60, 100, 150] to find the proper value.

Normal Network Conditions

Figure 6.5 shows result for the event-based and shape-based detectors under normal
conditions. As the figure shows, increasing the traffic length used for correlation
improves the detection results. For the event-based detector, we fix the γ = 0.15 and
the ∆ = 30 seconds. Fixing the true positive at 0.9, we see that we have false positive
of 10−8.2, 10−4.2, 10−2, 10−1.8 for traffic length of 30, 15, 5, and 3 minutes, respectively.
We can reach 0.94 true positive and less than 10−3 false positive when we have 15
minutes of traffic. The shape-based classifier shows a similar result. In particular, we
obtain 0.94 true positive and 10−3 false positive when we have 30 minutes of traffic.
According to our results, we need twice as much data in event-based detectors to get
the shape-based detector’s similar results. For the rest of the experiments, we use the
event-based detector since it outperforms the shape-based detector. Similar to the
prior work in [23], the event-based detector is around two orders of magnitude faster
than the shape-based detector. It is because the event-based classifier uses a discrete
time-series of event metadata, while the shape-based uses the continuous measure of
histogram over time.

Different bandwidths

To evaluate the performance of event-based detector on different user bandwidths,
we use Wonder Shaper [15] (version 1.4.1) to change the upstream and downstream
bandwidths of the receiver node. We observe that when bandwidth is low and the
sender sends too many big files, the receiver does not receive them as bursts of events.
Instead, it gets them steadily with no peeks, which we observed when the bandwidth
was high. Because of that, the result of the detector immensely decreases as we
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Figure 6.6: Comparing the result of event-based detector in different network band-
widths.

decrease the user bandwidth.

VPN as a Countermeasure

They are different options to choose a countermeasure, such as:

1) using an active approach to delay the events [32, 33, 49, 124, 125]. 2) using an active
approach to add padding to the packets [49, 32, 33, 75, 124]. 3) using background
traffic [49, 87, 106, 125, 134]. 4) using obfuscation mechanisms such as VPN, Tor.

We suspect that the reason for the effectiveness of our attacks is that WhatsApp
does not use any mechanism to obfuscate its traffic. Therefore, we use multiple VPN
servers to tunnel our traffic through and record their results. Figure 6.7(a)-6.7(c)
shows results of our experiments over different VPN servers. As expected, our results
degrade when traffic passes through a VPN due to the extra latency on the packets,
but still, our results are acceptable. For example, when the traffic length is 30 minutes
for the Turkey server, we obtain the true positive of 0.94, and the false positive is
10−3. The false-positive becomes 10−2 if we aim at the same true positive, use 15
minutes of traffic. For the South Africa server, with a similar length of traffic, we
obtain the true positive of 0.82 when fixing the false positive at 10−3. Also, for the
Japan server, having 30 minutes of traffic is enough to get the true positive of 0.83
when fixing the false positive at 10−3.

Figure 6.7(d) compares the result of the experiment on different VPN servers and
without VPN. As the figure shows, passing through VPN degrades the result, and
depending on the server’s location due to imposing different latencies, the results
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(a) Turkey (b) South Africa

(c) Japan (d) Comparing the result for different VPN servers

Figure 6.7: Result of the event-based detector when traffic is passed through different
VPN servers.

differ. For example, the Turkey node shows better performance compared to the
other two. Note that we use ∆ = 150 seconds and γ = 0.15 in the experiments over
VPN.

6.6 Conclusions

In this chapter, we study the traffic analysis attacks on WhatsApp. Our work was
an extension of Bahramali et al. [23] that investigates the attacks on Telegram. We
changed their algorithms slightly to make it work on WhatsApp. We showed that
using our detectors, We can infer sensitive information from the parties involved in a
one-on-one WhatsApp conversation. We also showed that using VPN is not enough
to protect users’ privacy, and one needs to design meticulously designed obfuscations
mechanisms to avoid detection. Future work can implement IMProxy introduced in
Alireza et al. [23] on WhatsApp and evaluate its results.
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Chapter 7

Conclusions and Future Directions

Traffic analysis is the practice of using communication patterns such as packet tim-
ings and sizes, to infer sensitive information. In this thesis, we investigated some
applications of traffic analysis and designed and implemented algorithms for them.

Firstly, we studied flow correlation, which has applications in stepping stone detec-
tion and compromising of Tor and similar anonymous networks. We designed our
algorithms using two approaches. First, we used the statistical approach in which we
analyzed the traffic of the flow to infer sensitive information. Second, we applied deep
learning to derive this information through training. We took the statistical approach
to design an algorithm for flow correlation named TagIt. TagIt uses an interval-based
approch to fingerprint the flows. Throughout simulations and experiments on Planet-
lab, we show that our approch outperforms previous fingerprinting system [70]. Also,
we discuss the invisibility of our system using the K-S test, and Multi-flow attack,
and show that our approach provides enough invisibility.

Also, we designed a flow correlation technique, FINN, that uses deep learning to
fingerprint the network flows. Our system modifies inter-packet-delays to embed
a message in the flow. We attempt to model the network jitter using our DNN-
based framework to reliably extract our embedded message when it passes the jittery
network. We show the performance of our system through extensive experiments over
Amazon EC2 and digital ocean nodes.

We also studied the resilience of Bitcoin traffic to blocking by entities such as an ISP
or a government. We characterized Bitcoin traffic patterns to find its distinguishing
attributes to design a classifier that is tailored to identify Bitcoin. Through exten-
sive experiments, we show that our classifiers can distinguish Bitcoin in presence of
background traffic and despite being tunneled through obfuscation channels.

Finally, we measure the privacy of WhatsApp one-on-one communication, and its
potential leakage of sensitive user data. We do measurements on the WhatsApp mes-
saging service and analyze its potential data leakage through traffic analysis. We
collect data traces of one-on-one communication on WhatsApp and run statistical
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algorithms to evaluate its privacy. We also evaluate the performance of our classifier
when the WhatsApp traffic is passed through VPN and show that stronger counter-
measures are needed to avoid our traffic analysis attack.
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classification using multimodal deep learning. Computer Networks, 2019.

91



[20] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. In Proceedings of the 2014
IEEE Symposium on Security and Privacy, Washington, DC, USA. IEEE Computer Society.

[21] T. Auld, A. W. Moore, and S. F. Gull. Bayesian neural networks for internet traffic classifi-
cation. IEEE Trans. Neural Networks, 2007.
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