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Abstract. Built-in equality and inequality predicates based on com-
parison of canonical forms in algebraic specifications are frequently used
because they are handy and efficient. However, their use places algebraic
specifications with initial algebra semantics beyond the pale of theorem
proving tools based, for example, on explicit or inductionless induction
techniques, and of other formal tools for checking key properties such as
confluence, termination, and sufficient completeness. Such specifications
would instead be amenable to formal analysis if an equationally-defined
equality predicate enriching the algebraic data types were to be added
to them. Furthermore, having an equationally-defined equality predicate
is very useful in its own right, particularly in inductive theorem prov-
ing. Is it possible to effectively define a theory transformation E 7→ E '
that extends an algebraic specification E to a specification E ' where
equationally-defined equality predicates have been added? This paper
answers this question in the affirmative for a broad class of order-sorted
conditional specifications E that are sort-decreasing, ground confluent,
and operationally terminating modulo axioms B and have subsignature
of constructors. The axioms B can consist of associativity, or commu-
tativity, or associativity-commutativity axioms, so that the constructors
are free modulo B. We prove that the transformation E 7→ E ' preserves
all the just-mentioned properties of E . The transformation has been au-
tomated in Maude using reflection and it is used in Maude formal tools.

1 Introduction

It can be extremely useful, when reasoning about equational specifications with
initial semantics, to have an explicit equational specification of the equality predi-
cate as a binary Boolean-valued operator ' . For example, in theorem proving
where the logic of universal quantifier-free formulas is automatically reduced
to unconditional equational logic, the formula (u 6= v ∨ w = r) ∧ q = t be-
comes equivalent to the equation (not(u ' v) or w ' r) and q ' t = true, and
in inductionless induction where inductive proofs can be reduced to proofs by
consistency because any equation not holding inductively makes true = false.
An equationally-defined predicate can be useful in the elimination of built-in
equalities and inequalities that often are introduced in algebraic specifications
through built-in equality and inequality operators: such built-in equalities and
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inequalities are not defined logically but operationally by comparison of canon-
ical forms for both expressiveness and efficiency reasons, but their non-logical
character renders any formal reasoning about specifications using them impos-
sible. In particular, the use of formal tools such as those checking termination,
local confluence, or sufficient completeness of an algebraic specification is impos-
sible with built-in equalities and inequalities, but becomes possible when they
are replaced by the equationally axiomatized equality predicate ' .

In principle, the meta-theorem of Bergstra and Tucker [2] ensures that any
computable data type can be axiomatized as an initial algebra defined by a finite
number of Church-Rosser and terminating equations. This also means that such a
computable data type plus its equality predicate is also finitely axiomatizable by
a finite set of Church-Rosser and terminating equations. However, the Bergstra-
Tucker result is non-constructive in the sense that it does not give an algorithm
to actually obtain the equational specification of the data type with its equality
predicate. Therefore, what would be highly desirable in practice is a general
constructive theory transformation E 7→ E ' that adds equationally-axiomatized
equality predicates to an algebraic data type specification E .

Such a transformation should be as general as possible for it to be useful
in practice. For example, a transformation applying only to “vanilla-flavored”
specifications without support for types and subtypes, or that excludes con-
ditional equations and rewriting modulo axioms would be extremely limited.
Such a transformation should also come with strong preservation properties. For
example, if E is ground confluent, ground operationally terminating, and suf-
ficiently complete, then E ' should also enjoy these same properties that are
often essential for both executability and for various forms of formal reasoning.

These generality and property-preservation requirements on the transforma-
tion E 7→ E ' are a tall order. For instance, if f is a free constructor symbol,
then the equations f(x1, . . . , xn) ' f(y1, . . . , yn) = x1 ' y1 and . . . and xn ' yn,
and f(x1, . . . , xn) ' g(y1, . . . , ym) = false for each constructor g 6= f of same
type give a perfectly good and straightforward axiomatization of equality for f .
But how can the equality predicate be defined when f satisfies, e.g., associativity
and commutativity axioms? Also, how should sorts and subsorts be dealt with?
An even harder issue is the preservation of properties such as ground confluence,
operational termination, and sufficient completeness. The difficulty is that for
any given specification there are tools that can be used to prove such properties,
but we need a proof that will work for all specifications in a very wide class.
What we actually need are metatheorems that prove that the transformation
itself preserves these properties for any equational specification in the input
class.

We present in this paper an effective theory transformation E 7→ E ' that
satisfies the above-mentioned preservation properties. The class of equational
theories E accepted as inputs to the transformation is quite general. Modulo
mild syntactic requirements, it consists of all order-sorted theories E of the form
(Σ,E ] B) having a subsignature Ω of constructors and such that: B is a set
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of associativity, or commutativity, or associativity-commutativity axioms1; the
equations E can be conditional and are sort-decreasing, ground confluent, and
operationally terminating; and the constructors Ω are free modulo B, i.e., there
is an isomorphism TΣ/E]B |Ω ∼= TΩ/B of initial algebras.

Outline. In Section 2 we present a summary on order-sorted equational spec-
ifications. Section 3 includes the definition and fundamental properties of an
equality enrichment. In sections 4 and 5 we present the transformation E 7→ E '
and state its basic metatheorems. In Section 7 we summarize how the transfor-
mation has been implemented in Maude and some of its practical consequences.
The implementation of the transformation, and some examples are all publicly
available from http://camilorocha.info.

2 Preliminaries

We assume basic knowledge on term rewriting [14] and order-sorted algebra [6].

Order-Sorted Signatures and Terms. We assume an order sorted signature
Σ = (S,≤, F ) with a finite poset of sorts (S,≤) and a finite set of function sym-
bols F . We also assume that the function symbols in F can be subsort overloaded
and satisfy that if f ∈ Fw,s∩Fw′,s′ then w ≡≤ w′ implies s ≡≤ s′, where ≡≤ de-
notes the equivalence relation generated by ≤ on S and (w, s), (w′, s′) ∈ S∗×S.
We say that f : s1 · · · sn → s ∈ F is a maximal typing of f in Σ if there is no
other f : s′1 · · · s′n → s′ ∈ F such that si ≤ s′i and s ≤ s′. We let X = {Xs}s∈S be
an S-sorted family of disjoint sets of variables with each Xs countably infinite.
The set of Σ-terms of sort s is denoted by TΣ(X)s and the set of ground terms of
sort s is denoted by TΣ,s, which we assume nonempty for each s. We let TΣ(X)
and TΣ denote the corresponding order-sorted term algebras. The set of vari-
ables of a term t is written Var(t) and is extended to sets of terms in the natural
way. A substitution σ is a sorted mapping from a finite subset Dom(σ) ⊆ X to
TΣ(X) and extends homomorphically in the natural way; Ran(σ) denotes the
set of variables introduced by σ. The application of a substitution σ to a term t
is denoted by tσ and the composition of two substitutions σ1 and σ2 is denoted
by σ1σ2. A substitution σ is called ground iff Ran(σ) = ∅. Throughout this
paper we will assume that all order-sorted signatures are preregular [6], so that
each Σ-term t has a least sort ls(t) ∈ S such that t ∈ TΣ(X)ls(t).

Order-Sorted Equational Theories. A Σ-equation is an expression t = t′

with t ∈ TΣ(X)s, t
′ ∈ TΣ(X)s′ and s ≡≤ s′. A conditional Σ-equation is a

Horn clause t = t′ if C with t = t′ a Σ-equation and C =
∧
i ui = vi a finite

conjunction of Σ-equations. An equational theory is a tuple (Σ,E) with Σ an
order-sorted signature and E a finite set of conditional Σ-equations. For ϕ a

1 Identity axioms are excluded from our transformation. However, by using the trans-
formation described in [4] and subsort-overloaded operators, one can often extend
our transformation to specifications that also include identity axioms.
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conditional Σ-equation, (Σ,E) ` ϕ iff ϕ can be proved from (Σ,E) by the
deduction rules in [10] iff ϕ is valid in all models of (Σ,E) [10]. An equational
theory (Σ,E) induces the congruence relation =E on TΣ(X) defined for any
t, u ∈ TΣ(X) by t =E u iff (Σ,E) ` (∀X) t = u. We let TΣ/E(X) and TΣ/E
denote the quotient algebras induced by =E on the algebras TΣ(X) and TΣ ,
respectively. We call TΣ/E the initial algebra of (Σ,E) and call a conditional Σ-
equation ϕ an inductive consequence of (Σ,E) iff TΣ/E |= ϕ, i.e., iff (∀σ : X −→
TΣ)(Σ,E) ` ϕσ. A theory inclusion (Σ,E) ⊆ (Σ′, E′), where Σ ⊆ Σ′ and
E ⊆ E′, is called protecting iff the unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ
of the Σ-reduct of the initial algebra TΣ′/E′ is a Σ-isomorphism.

Executability Conditions. We assume that the set of equations of an equa-
tional theory can be decomposed into a disjoint union E ] B, with B a collec-
tion of axioms (such as associativity, and/or commutativity, and/or identity) for
which there exists a matching algorithm modulo B producing a finite number of
B-matching substitutions, or failing otherwise. Furthermore, we assume that all
axioms in B are sort-preserving, i.e., for each u = v ∈ B and substitution θ we
have ls(θ(u)) = ls(θ(v)). The conditional equations E can be oriented into a set
of (possibly conditional) ground sort-decreasing, operationally terminating [9],

and ground confluent conditional rewrite rules
−→
E modulo B. We let →E/B de-

note the one-step rewrite relation induced by
−→
E modulo B on TΣ(X), and let

→∗E/B denote its reflexive and transitive closure. A set of rewrite rules R modulo

B is: (i) ground sort-decreasing iff for each t = t′ if C ∈ E, and ground sub-
stitution θ we have ls(θ(t)) ≥ ls(θ(t′)); (ii) operationally terminating iff there
is no infinite well-formed proof tree modulo B in R; and (iii) ground confluent
if t, t′, t′′ ∈ TΣ , t →∗R/B t′, and t →∗R/B t′′, then there is u ∈ TΣ such that

t′ →∗R/B u and t′′ →∗R/B u. We let canΣ,E/B(t) ∈ TΣ,s denote the E-canonical

form of t modulo B, i.e. t→∗R/B canΣ,E/B(t) and canΣ,E/B(t) cannot be further

rewritten. Under the above assumptions canΣ,E/B(t) is unique up to B-equality.

Free Constructors Modulo. Given E = (Σ,E ] B) ground sort-decreasing,
ground confluent and operationally terminating modulo B, we say that Ω ⊆ Σ
is a subsignature of free constructors modulo B iff Ω has the same poset of sorts
of Σ and for each sort s in Σ and ground term t ∈ TΣ,s there is a u ∈ TΩ,s
satisfying t =E]B u and, moreover, canΣ,E/B(v) =B v for each v ∈ TΩ,s.

3 Equality Enrichments

In this section, the notion of equality enrichment [11] for an equational theory
is introduced. Intuivitely, an equality enrichment of E is an equational theory
that defines the equality in TE as a Boolean-valued function. An order-sorted
signature Σ = (S,≤, F ) and an order-sorted equational theory E = (Σ,E) with
initial algebra TE are fixed in this section.
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Definition 1 (Equality Enrichment). An equational theory E ' = (Σ ' , E ' )
is called an equality enrichment of E, with Σ ' = (S ' ,≤' , F ' ) and Σ =
(S,≤, F ), iff

– E ' is a protecting extension of E;
– the poset of sorts of Σ ' extends (S,≤) by adding a new sort Bool that

belongs to a new connected component, with constants > and ⊥ such that
TE ' ,Bool = {[>], [⊥]}, with > 6=E ' ⊥; and

– for each connected component in (S,≤), there is a top sort k ∈ S ' and a
binary commutative operator ' : k k −→ Bool in Σ ' such that, for any
ground terms t, u ∈ TΣ,k, then the following hold

E ` t = u ⇐⇒ E ' ` (t' u) = >, (1)

E 6` t = u ⇐⇒ E ' ` (t' u) = ⊥. (2)

An equality enrichment E ' of E is Boolean if it contains all the func-
tion symbols and equations making the elements of TE ' ,Bool a two-element
Boolean algebra.

The equality predicate ' in E ' is sound for inferring equalities and inequalities
in the initial algebra TE , even for terms with variables. The precise meaning of
this claim is given by Proposition 1.

Proposition 1 (Equality Enrichment Properties). Let E ' = (Σ ' , E ' )
be an equality enrichment of E. Then, for any Σ-equation t = u with X =
Var(t) ∪ Var(u):

TE |= (∀X) t = u ⇐⇒ TE ' |= (∀X) (t' u) = >, (3)

TE |= (∃X) ¬(t = u) ⇐⇒ TE ' |= (∃X) (t' u) = ⊥, (4)

TE |= (∀X) ¬(t = u) ⇐⇒ TE ' |= (∀X) (t' u) = ⊥. (5)

Proof. We prove Statement (3); a proof of statements (4) and (5) can be obtained
in a similar way.

TE |= (∀X) t = u
⇐⇒ { by definition of satisfaction in TE }

(∀θ : X −→ TΣ) E ` tθ = uθ
⇐⇒ { by (1) }

(∀θ : X −→ TΣ) E ' ` (tθ ' uθ) = >
⇐⇒ { by E ' being a protecting theory extension of E and sorts of t, u ∈ Σ }

(∀θ : X −→ TΣ ' ) E ' ` (tθ ' uθ) = >
⇐⇒ { by definition of satisfaction in TE ' }
TE ' |= (∀X) (t' u) = >.

ut

Note that by using an equality enrichment E ' of E , the problem of reasoning
in TE about a universally quantified inequality ¬(t = u) (or simply t 6= u)
can be reduced to reasoning in TE ' about the universally quantified equality
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(t' u) = ⊥. A considerably more general reduction, not just for inequalities but
for arbitrary quantifier-free first-order formulae, can be obtained with Boolean
equality enrichments, as stated by Corollary 1.

Corollary 1. Let E ' = (Σ ' , E ' ) be a Boolean equational enrichment of E.
Let ϕ = ϕ(t1 = u1, . . . , tn = un) be a quantifier-free Boolean formula whose
atoms are the Σ-equalities ti = ui with variables in X, for 1 ≤ i ≤ n, and whose
Boolean connectives are ¬, ∨, and ∧. Then, the following holds

TE |= (∀X)ϕ ⇐⇒ TE ' |= (∀X) ϕ(t1 ' u1, . . . , tn ' un) = >, (6)

where ϕ(t1 ' u1, . . . , tn ' un) is the Σ ' -term with sort Bool obtained from ϕ by
replacing every occurrence of the logical connectives ¬, ∨, and ∧ by, respectively,
the function symbols ¬ , t , and u in EBool, making TE,Bool a Boolean algebra,
and every occurrence of an atom ti = ui by the Bool term ti ' ui, for 1 ≤ i ≤ n.

Proof. It follows by considering all ground substitutions and reasoning by struc-
tural induction on the complexity of ϕ. Note that the base cases are covered by
statements (1) and (2). ut

A fundamental property of an equality enrichment E ' of E is that, if E ' is
extended with any set E′ of Σ-equations that are not satisfiable in TE , then
the resulting extension is inconsistent and can derive the contradiction > =
⊥. Conversely, if the set E′ of Σ-equations extending E ' is satisfiable in TE ,
then the resulting extension is consistent and therefore cannot yield a proof of
contradiction. Statements (7) and (8) in Corollary 2 account for these facts. We
use the following auxiliar result.

Lemma 1. Let E,E′ be two sets of Σ-equations. Then TΣ/E |= E′ iff TΣ/E ∼=
TΣ/E∪E′

Proof. The (⇐) direction is clear, since we always have TΣ/E∪E′ |= E′, and
therefore (since satisfaction is preserved by isomorphisms) TΣ/E |= E′. To see
the (⇒) direction, note that, since TΣ/E |= E, we have TΣ/E |= E ∪ E′. The
initiality of TΣ/E∪E′ then forces the existence of a unique Σ-homomorphism
h : TΣ/E∪E′ → TΣ/E , and the initiality of TΣ/E and the fact that TΣ/E∪E′ |= E
forces likewise a unique Σ-homomorphism q : TΣ/E → TΣ/E∪E′ . But then the
initially of TΣ/E forces q;h = 1TΣ/E , and the initiality of TΣ/E∪E′ forces h; q =
1TΣ/E∪E′ . Therefore, TΣ/E ∼= TΣ/E∪E′ , as desired. ut

Corollary 2. Let E ' = (Σ ' , E ' ) be a equational enrichment of E and let E′

be a collection of Σ-equalities. Then the following hold

TE 6|= E′ ⇐⇒ (Σ ' , E ' ∪ E′) ` > = ⊥, (7)

TE |= E′ ⇐⇒ (Σ ' , E ' ∪ E′) 6` > = ⊥. (8)
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Proof. Note that statements (7) and (8) are logically equivalent. The following
is a proof of (7). Without loss of generality assume that the Σ-equalities in E′

are unconditional2.
We first prove the (⇒) direction.

TΣ/E |= E′

⇐⇒ { by E ' being a protecting theory extension of E }
TΣ ' /E ' |= E′

⇐⇒ { by Lemma 1 }
TΣ ' /E ' ∪E′ ∼= TΣ ' /E ' .

Therefore TΣ ' /E ' ∪E′,Bool = {[>], [⊥]}, and hence (Σ ' , E ' ∪ E′) 6` > = ⊥.
To prove the (⇐) direction we reason by contradiction. Suppose that (Σ ' ,

E ' ∪ E′) ` > = ⊥. This means that TΣ ' /E ' � TΣ ' /E ' ∪E′ and therefore
by Lemma 1, TΣ ' /E ' 6|= E′, which by E ' being a protecting extension of E
forces TΣ/E 6|= E′. ut

4 Equality Enrichments of Theories with Free
Constructors Modulo

This section presents the effective theory transformation E 7→ E ' for enriching
with an equality predicate order-sorted equational theories having free construc-
tors modulo structural axioms (such as associativity, commutativity, and iden-
tity). Given an equational theory E as input, Definition 2 produces a Boolean
equality enrichment E ' of E with equality predicate ' . In this section, an
order-sorted equational theory E = (Σ,E ] B), with Σ = (S,≤, F ), is fixed. It
is assumed that Ω ⊆ Σ is a signature of free constructors modulo B, where B is
a union of associative (A), commutative (C) and associative-commutative (AC)
axioms3. Furthermore, the following convention is adopted: for x a variable and
s a sort, the expression xs indicates that x has sort s, i.e., x ∈ Xs.

On input E , a first transformation extends E with new sorts, the equational
theory EBool of Booleans with constructors > and ⊥ (and with the other usual
Boolean connectives equationally defined), some auxiliary functions, and the
predicate ' for each top sort in the input theory. A second transformation
generates a set of equations defining ' that depend on the structural axioms
of the symbols in Ω. More precisely,

Transformation 1: extends the input theory E by:

2 If the equations E′ are conditional, we can replace them by the set E′′ = {t = t′ |
E ∪ E′ ` t = t′}. It is then easy to prove that TE |= E′ iff TE |= E′′.

3 Note that combinations of the above axioms with identity axioms are excluded. How-
ever, using the variant-based semantic-preserving theory transformation presented
in [4], and choosing carefully the sorts in Ω, one can associate an equality predi-
cate to equational theories having any combination of axioms A and/or C and/or
identity.
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1. generating a fresh top sort for each connected component in Σ that does
not have it;

2. adding the theory EBool with sort Bool;
3. adding a Boolean-valued (binary) commutative operator ' for the top

sort of each conected component of E ;
4. adding the Boolean-valued unary operator rootkf and the Boolean-valued

binary operator inkf to the top sort of each f ∈ Ω with structural axioms
A or AC.

Transformation 2: for each f ∈ Ω, and depending on the structural axioms
of f , generate a suitable set of equations defining ' , rootkf , and inkf .

Auxiliary Boolean-valued operators rootkf and inkf are useful for checking if terms
are rooted by or contain the constructor symbol f , respectively.

Remark 1. This paper uses the Boolean theory EBool in [3, Subsection 9.1]. The
theory EBool has free constructors modulo BBool, it is sort-decreasing, confluent,
and operationally terminating modulo AC, and hence provides a Boolean deci-
sion procedure; its signature of free constructors is ΩBool = {>,⊥}, its set of
defined symbols isΣBool\ΩBool = { ¬ , u , t , � , ⊃ }, and also TEBool |= > 6= ⊥.

Definition 2 spells out in detail Transformation 1 and prepares the ground for
Transformation 2.

Definition 2 (Enrich). Given E, the transformation E 7→ E ' obtains the
smallest equational theory E ' = (Σ ' , E ' ]B ' ) satisfying:

– E ] EBool ⊆ E ' ;
– the poset of sorts of E ' extends that of E by adding a new connected com-

ponent {Bool}, and by adding a fresh top sort to any connected component
of the poset of sorts of E lacking a top sort;

– for each k which is the top sort in Σ ' of a connected component of Σ we
add an operator

( ' ) : k k → Bool,

B ' contains the structural axiom

xk ' yk = yk ' xk,

E ' contains the equation
xk ' xk = >,

– for each k which is the top sort in Σ ' of a connected component of Σ
• if f : s s′ → s′′ ∈ Ω has axioms A or AC, then Σ ' contains the symbol

rootkf : k → Bool,

• if f : s s′ → s′′ ∈ Ω has axioms AC, then Σ ' contains the symbol

inkf : k k → Bool,
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– for each function symbol f ∈ Ω, E ' contains the equations enrichE(f) (see
the upcomming definitions).

Function enrichE in Definition 2 corresponds to the formal definition of Transfor-
mation 2 and is defined for each constructor symbol depending on its structural
axioms. We start by giving the definition of enrichE for the case in which the
constructor symbol has no structural axioms; we call such a symbol absolutely
free. In the rest of the paper we use the acronyms C, A, and AC to qualify
a function symbol whose structural axioms are commutativity, associativity, or
associativity-commutativity, respectively.

Definition 3 (Absolutely Free Enrich). Assume f ∈ Ω is an absolutely free
symbol. Then, for each maximal typing f : s1 . . . sn → s of f ∈ Ω, enrichE(f)
adds the following equations:

– for g : s′1 . . . s
′
m → s′ ∈ Ω a maximal typing of g such that s ≡≤ s′ and f 6= g

f(x1s1 , . . . , x
1
sn)' g(y1s′1 , . . . , y

m
s′m

) = ⊥,

– for f itself

f(x1s1 , . . . , x
n
sn)' f(y1s1 , . . . , y

n
sn) =

l

1≤i≤n

xisi ' y
i
si ,

– for each 1 ≤ i ≤ n
f(x1s1 , . . . , x

n
sn)' xisi = ⊥.

In Definition 3, some equations use the Boolean operator u in EBool to obtain
a recursive definition of ' . Example 1 illustrates Definition 2 and Definition 3.

Example 1. Consider the following equational theory ENATURAL that represents
the natural numbers in Peano notation:

fmod NATURAL is

sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

endfm

An equality enrichment consist of ENATURAL extended with the equational the-
ory EBool and an equational definition of ' . The following equational theory
EEQ-NATURAL is an equational enrichment of ENATURAL. The last equation is not
essential, but it is useful for detecting a greater number of inequalities between
terms with variables.

fmod EQ-NATURAL is

protecting PEANO .

protecting BOOL .

op _==_ : Nat Nat -> Bool [comm] .
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vars N M : Nat .

eq N == N = true .

eq 0 == s(N) = false .

eq s(N) == s(M) = N == M .

eq s(N) == N = false .

endfm

Definition 4 presents the definition or enrichE for the case in which the input
symbol is commutative.

Definition 4 (C-Enrich). Assume f ∈ Ω is commutative. Then for each max-
imal typing f : s s→ s′ of f ∈ Ω, enrichE(f) adds the following equations:

– for g : s′1 . . . s
′
m → s′ a maximal typing of g ∈ Ω such that f 6= g

f(x1s, x
2
s)' g(y1s′1 , . . . , y

m
s′m

) = ⊥,

– for f itself

f(x1s, x
2
s)' f(y1s , y

2
s) = (x1s ' y1s u x2s ' y2s) t (x1s ' y2s u x2s ' y1s),

– and
f(x1s, x

2
s)' x1s = ⊥.

For the definition of enrichE in the case of an associative function symbol f
with maximal typing of sort s, it is assumed that its two arguments have also
sort s. Furthermore, a top typing for such an f is also assumed, i.e., a typing
f : s′ s′ → s′ satisfying that if f : s s→ s is another typing with s ≡< s′, then
s′ ≥ s (note that a top typing of f may not belong to Ω, as in Example 2 below).

Definition 5 (A-Enrich). Assume f ∈ Ω is associative. Then for each maxi-
mal typing f : s s→ s of f ∈ Ω, enrichE(f) adds the following equations:

– for f itself
rootkf (f(x1s, x

n
s )) = >,

– for each g : s′1 . . . s
′
m → s′ a maximal typing of g ∈ Ω such that f 6= g and

s ≡≤ s′:

rootkf (g(x1s′1 , . . . , x
m
s′m

)) = ⊥ and f(x1s, x
2
s)' g(ys′1 , . . . , y

m
s′m

) = ⊥,

– for f itself

f(x1s, x
2
s)' f(x1s, y

2
s) = x2s ' y2s ,

f(x1s, x
2
s)' f(y1s , x

2
s) = x1s ' y1s ,

f(x1s, x
2
s)' f(y1s , y

2
s) = ⊥ if ¬ (rootkf (x1s)) u¬ (rootkf (y1s)) u

¬ (x1s ' y1s) = >,
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– for each 1 ≤ i ≤ 2:

f(x1s, x
2
s)' xis = ⊥.

Example 2. Consider the following equational theory ELIST that specifies the
lists of natural numbers in Peano notation:

fmod LIST is

protecting NATURAL .

sorts NeNatList NatList .

subsorts Nat < NeNatList < NatList .

op nil : -> NatList [ctor] .

op _;_ : NeNatList NeNatList -> NeNatList [ctor assoc] .

op _;_ : NatList NatList -> NatList [assoc] .

var L : NatList .

eq L ; nil = L .

eq nil ; L = L .

endfm

Note that ; is a constructor symbol only when its arguments are non-empty
lists. Hence the signature of free constructors modulo B of ELIST is
{nil : -> NatList, ; : NeNatList NeNatList -> NeNatList}. In order to
have a recursive definition of equality for lists, enrichE(f) uses the auxiliar func-
tion rootkf . This function checks if a term is rooted by constructor symbol f . In
this case, a valid equality enrichment can be:

fmod EQ-LIST is

protecting LIST .

protecting BOOL .

op ;-NeNatList-root : NatList -> Bool .

op _==_ : NatList NatList -> Bool [comm] .

vars P Q R S : NeNatList .

var N : Nat .

eq ;-NeNatList-root(0) = false .

eq ;-NeNatList-root(s(N)) = false .

eq ;-NeNatList-root(nil) = false .

eq ;-NeNatList-root(P ; Q) = true .

eq P == P = true .

eq 0 == nil = false .

eq s(N) == nil = false .

eq (P ; Q) == 0 = false .
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eq (P ; Q) == s(N) = false .

eq (P ; Q) == nil = false .

eq (P ; Q) == P = false .

eq (P ; Q) == Q = false .

eq (P ; Q) == (P ; R) = Q == R .

eq (P ; Q) == (R ; Q) = P == R .

ceq (P ; Q) == (R ; S) = false

if (not(;-NeNatList-root(P)) and

not(;-NeNatList-root(R)) and

not(P == R)) = true .

endfm

In the case in which the input symbol of enrichE with maximal typing of sort s
is associative-commutative, it is assumed that its two arguments also have sort
s and there is a top typing for f , as in the associative case.

Definition 6 (AC-Enrich). Assume f ∈ Ω is associative-commutative. Then
for each maximal typing f : s s → s′ of f ∈ Ω, enrichE(f) adds the following
equations:

– for f itself
rootkf (f(x1s, x

2
s)) = >,

– for each g : s′1 . . . s
′
m → s′ a maximal typing of g ∈ Ω such that f 6= g and

s ≡≤ s′:
rootkf (g(x1s′1 , . . . , x

m
s′m

)) = ⊥,

– and
f(x1s, x

2
s)' g(y1s′1 , . . . , y

m
s′m

) = ⊥,

– for f itself

inkf (xs, yk) = ⊥ if rootkf (xs) = >,
inkf (xs, f(xs, ys)) = > if ¬ (rootkf (xs)) = >,
inkf (xk, f(y1s , y

2
s)) = (xk ' y1s) t inkf (xk, y

2
s)

if ¬ (rootkf (xk)) u ¬ (rootkf (y1s)) = >,
inkf (xk, yk) = xk ' yk if ¬ (rootkf (xk)) u ¬ (rootkf (yk)) = >,

– and

f(xs, ys)' f(xs, zs) = ys ' zs,
f(x1s, x

2
s)' f(y1s , y

2
s) = ⊥ if ¬ (rootkf (x1s))) u¬ (inkf (x1s, f(y1s , y

2
s))) = >,

– and
f(x1s, x

2
s)' x1s = ⊥.

Intuitively, if we identify a term rooted by an associative-commutative symbol
f as a multiset with union operator f , the function inkf in Definition 6 helps in
identifying the cases in which an element (a term not rooted by f) belongs to
the multiset.
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Example 3. Consider the following equational theory EMSET, which represents
multisets of natural numbers in Peano notation:

fmod MSET is

protecting NATURAL .

sorts NeNatMSet NatMSet .

subsort Nat < NeNatMSet < NatMSet .

op empty : -> NatMSet [ctor] .

op __ : NeNatMSet NeNatMSet -> NeNatMSet [ctor assoc comm] .

op __ : NatMSet NatMSet -> NatMSet [assoc comm] .

var T : NatMSet .

eq empty T = T .

endfm

Auxiliary functions rootkf and inkf are used to give a recursive comparison of
equality for constructors terms rooted by AC-symbols. In this case, the following
is a valid equality enrichment for MSET:

fmod EQ-MSET is

protecting MSET .

protecting BOOL .

op -NeNatMSet-root : NatMSet -> Bool .

op in--NeNatMSet : NatMSet NatMSet -> Bool .

op _==_ : NatMSet NatMSet -> Bool [comm] .

vars P Q R S : NeNatMSet .

var N : Nat .

vars T U : NatMSet .

eq -NeNatMSet-root(0) = false .

eq -NeNatMSet-root(s(N)) = false .

eq -NeNatMSet-root(empty) = false .

eq -NeNatMSet-root(P Q) = true .

ceq in--NeNatMSet(P,Q) = false

if -NeNatMSet-root(P) = true .

ceq in--NeNatMSet(P, (P Q)) = true

if not(-NeNatMSet-root(P)) = true .

ceq in--NeNatMSet(T, (Q R)) = (T == Q) or in--NeNatMSet(T,R)

if (not(-NeNatMSet-root(T)) and

not(-NeNatMSet-root(Q))) = true .

ceq in--NeNatMSet(T,U) = T == U

if (not(-NeNatMSet-root(T)) and
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not(-NeNatMSet-root(U))) = true .

eq P == P = true .

eq 0 == empty = false .

eq s(X5) == empty = false .

eq (P Q) == 0 = false .

eq (P Q) == empty = false .

eq (P Q) == s(X5) = false .

eq (P Q) == P = false .

eq (P Q) == (P R) = Q == R .

ceq (P Q) == (R S) = false

if (not(-NeNatMSet-root(P)) and

not(in--NeNatMSet(P, R S))) = true .

endfm

5 Executability Properties of E '

From a theoretical and practical point of view, it is quite convenient that if
our original theory satisfies some executability properties, the Boolean equality
enrichment E ' of E using the transformation E 7→ E ' inherits these executabil-
ity properties. In particular, if the original theory E is ground sort-decreasing,
ground confluent, and operationally terminating, then E ' is so as well. More-
over, the subsignature of constructors of E ' is an extension of the subsignature
of constructors of E and its function symbols are free (modulo the structural
axioms). Thus, the agreement between mathematical and operational semantics
is preserved.

Note that the domain of the transformation E 7→ E ' includes exactly equa-
tional theories whose structural axioms are any combination of A and/or C
axioms for some of its symbols. However, if the input theory E has symbols with
identity axioms, one could use the results in [4] to remove them and instead
add them as equations, provided that the constructors remain free after the
transformation. Note that, as illustrated by the LIST and MSET examples, where
identities for lists and multisets are specified as oriented equations and not as
axioms, this is often possible in practice.

In what follows, E = (Σ,E ] B) is an order-sorted equational theory with
signature of free constructors Ω ⊆ Σ modulo B and E ' = (Σ ' , E ' ] B ' )
is the Boolean equality enrichment E ' obatined by using the transformation
E 7→ E ' .

5.1 Preservation of Ground Sort-Decreasingness

Recall from Section 2 that the equational theory E = (Σ,E ] B) is ground
sort-decreasing iff for each t = t′ if C ∈ E, and ground substitution θ we have
ls(θ(t)) ≥ ls(θ(t′)). The key observation here is that since Bool is a fresh sort in
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a new connected component of E ' and all the equations in
⋃
f∈Ω

enrichE(f) are

of sort Bool, it is imposible that the equations in EBool or in
⋃
f∈Ω

enrichE(f) can

be applied to terms in TΣ .

Theorem 1. If E is ground sort-decreasing, then E ' is ground sort-decreasing.

Proof. Consider the following cases on the equations in E ' :

1. any equation in E is sort-decreasing by assumption,

2. if an equation is in E ' but not in E , then the left-hand and right-hand sides
of such an equation have least sort Bool because Bool has no proper subsorts
or supersorts.

ut

5.2 Preservation of Operational Termination

The key idea here is to use the information that the input theory E of the
transformation E 7→ E ' is operationally terminating to obtain a modular and
much simpler proof of operational termination for E ' . The notion of reductive
theory is key for proving E ' operationally terminating.

Definition 7 (Reductive Theory Modulo Axioms). An equational theory
E = (Σ,E ] B) is reductive modulo B iff there exists a reduction ordering �
and a symetric, stable, and monotonic relation ∼ such that:

1. l /∈ X for each equation l = r if
∧
i=1..n ti = ui ∈ E.

2. l � r for each equation l = r if
∧
i=1..n ti = ui ∈ E.

3. l(� ∪�)+ti and l(� ∪�)+ui for each equation l = r if
∧
i=1..n ti = ui ∈ E.

4. u ∼ v for each equation u = v ∈ B
5. ∼ ◦ �⊆�.

Lemma 2. If an equational theory E = (Σ,E]B) is reductive modulo B, then
it is operational terminating modulo B.

Proof. Note that a reductive theory is quasi-decreasing, and quasi-decreasingness
is equivalent to operational termination [9]. ut

Lemma 3 states that the equational subtheory of E ' that forgets the equations
in E is reductive. Note that EBool unconditional and terminating modulo BBool

and therefore is reductive. The following proof includes another verification of
this fact.

Lemma 3. The equational theory E ′ = ((Σ ' \Σ)∪Ω, (E ' \E)](B ' \BΣ\Ω))
is reductive.
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Proof. It is enough to prove that E ′ is reductive regardless of the sort informa-
tion. The symetric, stable, and monotonic relation ∼ is witnessed by =B ' \BΣ\Ω .

The (B ' \BΣ\Ω)-compatible simplification ordering is witnessed by � [1], that
can be obtained using an AC-RPO [16] with the following order precedence >
among symbols of the signature4:

⊃ > u > � > ⊥
⊃ > ¬ > >
⊃ > ¬ > � > ⊥
{f} > ⊥
{f} > >
{inkf} > ' > ¬ > >
{inkf} > ' > ¬ > � > ⊥
{inkf} > ' > t > u > � > ⊥
{inkf} > ' > {rootkf} > >

where f ∈ Ω and � = � ∪ =B ' \BΣ\Ω . It is routine to check by inspection on

the equations (E ' \ E) that E ′ is reductive modulo (B ' \BΣ\Ω). ut

We consider the following logic L (we can assume all rewrite systems are 3-
CTRS):

(Refl)
t→∗E/B u

where t =B u

(Tran)
t→E/B v v →∗E/B u

t→∗E/B u

(Cong)
ti →E/B ui

f(t1, . . . , ti, . . . , tn)→E/B f(t1, . . . , ui, . . . , tn)
where f ∈ Σ and 1 ≤ i ≤ ar(f)

(Repl)
t1σ →∗E/B u1σ · · · tm →∗E/B um

tσ →E/B uσ

where t→ u if t1 →∗E/B u1 · · · tm →∗E/B um ∈
−→
E and σ is well-sorted

First, we prove that if (Σ,E]B) and ((Σ ' \Σ)∪Ω, (E ' \E)] (B ' \BΣ\Ω))
are operationally terminating then, the extended theories (Σ ' , E ] B ' ) and
(Σ ' , (E ' \ E) ]B ' ) are so too.

Lemma 4 establishes some good properties of structural axioms in B. Note
that the relation →E/B is equivalent to =B ◦ →E ◦ =B . Let =1

B denote the one
step relation induced by =B .

4 this ordering can be obtained by existing automated tools for proving termination
of rewriting modulo AC. Simplification orderings imply � ⊆�.
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Lemma 4 (Property of Axioms). Let E = (Σ,E]B) be an equational theory
where B is a union of associative, commutative, and associative-commutative
axioms, u = v, u′ = v′ ∈ B and t1, t2, t

′
2, t3 ∈ TΣ(X). If t1 =1

u=v t2 =1
u′=v′ t3

and root(u) 6= root(v) then there exists a term t′2 such that t1 =1
u′=v′ t

′
2 =1

u=v t3,
where root(u) and root(v) denote the root symbols from u and v, respectively.

Proof. Consider that root(u) = f and root(u′) = g. We reason by case analysis

on the positions p, q of t1
p
=

1

u=v t2
q
=

1

u′=v′ t3:

1. if p > q, then we have two possibilities:
(a) u = v is a commutativity axiom so that t1 = D[f(t11, t

2
1)] and t2 =

D[f(t21, t
1
1)] for a (possibly empty) context D. Since f 6= g then t11 =1

u′=v′

t13 or t21 =1
u′=v′ t

2
3 and t3 = D[f(t21, t

1
3)] in the first case or D[f(t23, t

1
1)] in

the second case. Since axioms are linear and regular then t11 and t21 also
appear in t1 once, we can apply =1

u′=v′ to t1, obtaining t1 =1
u′=v′ t

′
2 and

t′2 = D[f(t13, t
2
1)] or t′2 = D[f(t11, t

2
3)]. We can apply then =1

u′=v′ to t′2
obtaining t3 = D[f(t21, t

1
3)] in the first case or D[f(t23, t

1
1)] in the second

case, as desired.
(b) u = v is an associativity axiom so that t1 = D[f(t11, f(t21, t

3
1))] or t1 =

D[f(f(t11, t
2
1), t31)] and t2 = D[f(f(t11,

t21), t31)] or t2 = D[f(t11, f(t21, t
3
1))] for a (possible empty) context D. Then,

we can reason as in the previous case since axioms are linear and regular.
2. The case q > p is entirely symetric to the case p > q.
3. if p||q then t1 = D[t11, t

2
1], t2 = D[t13, t

2
1] and t3 = D[t13, t

2
3] for a non-empty

context D. Then, we can get t1 = D[t11, t
2
1], t′2 = D[t11, t

2
3] and t3 = D[t13, t

2
3].
ut

Lemma 5 establishes properties for terms in TΣ ' (X).

Lemma 5 (Properties of Terms in E ' ). Let E = (Σ,E]B), Σ = (S,≤, F )
and s ∈ S. If E is ground sort-decreasing and operationally terminating, then
the following statements hold:

1. (∀t, t′ ∈ TΣ ' (X)s) t→E ' /B ' t′ ⇐⇒ t→E/B t′,
2. (∀t, t′ ∈ T(Σ ' \Σ)∪Ω(X)Bool) t →E ' /B ' t′ ⇐⇒ t →(E ' \E)/(B ' \BΣ\Ω)

t′,
3. (∀t, t′ ∈ TΣ ' (X)Bool)

(a) t→E/B ' t′ ⇐⇒ (∃t1 ∈ TΣ ' (X)Bool) t→E/B t1 and t1 =B ' \B t′,
(b) (t →(E ' \E)/B ' t′ ⇐⇒ (∃t1, t2 ∈ TΣ ' (X)Bool) t =B t1
→(E ' \E)/(B ' \BΣ\Ω) t2 =B t′.

Proof. 1. If t ∈ TΣ ' (X)s, it is trivial to prove by structural induction that t ∈
TΣ(X)s. Since t ∈ TΣ(X)s this means that each B ' axiom applied belongs
to B and the applied equation in E ' belongs to E. Hence, t→E/B t′.

2. If t ∈ T(Σ ' \Σ)∪Ω(X)Bool, we can only apply axioms from B ' \BΣ\Ω and
equation from E ' \ E. Hence, t→(E ' \E)/(B ' \BΣ\Ω) t

′.

3. For any well-defined term t ∈ TΣ ' (X)Bool, t = D[t11, · · · , tn1 ] where D is a
context such that D ∈ T(Σ ' \Σ)]]{2}(X)Bool and ti1 ∈ TΣ(X)si .
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(a) By multiple applications of Lemma 4, we have t =B t′1 =B ' \B ◦ →E

t′2 =B ◦ =B ' \B t′. Consider the sequence u1 =1
B ' \B u2 →E u3, where

u1 = D[u11, · · · , un1 ], D ∈ T(Σ ' \Σ)]{2}(X)Bool and ui1 ∈ TΣ(X)si . Since
each axiom in B ' \ B is linear, regular and sort preserving, we get
D[u11, · · · , ui1, · · · , un1 ] =1

B ' \B D′[u11, · · · , ui1, · · · , un1 ]→E D′[u11, · · · , ui2,
· · · , un1 ]. Therefore, we can change the order of application of the rule and
the axiom obtaining D[u11, · · · , ui1, · · · , un1 ] →E D[u11, · · · , ui2, · · · , un1 ]
=1
B ' \B D′[u11, · · · , ui2, · · · , un1 ]. By multiple applications of this result

and Lemma 4 to t =B t′1 =B ' \B ◦ →E t′2 =B ◦ =B ' \B t′, we get
t =B ◦ →E ◦ =B t1 =B ' \B t′, that is, t→E/B t1 =B ' \B t′.

(b) By multiple applications of Lemma 4, we have t =B t1 =(B ' \BΣ\Ω)

◦ →E ' \E ◦ =(B ' \BΣ\Ω) t2 =B t′.
ut

We assume that operational termination of (Σ,E ] B) is Σ-extensible, i.e., if
(Σ,E ]B) is operationally terminating then (Σ ∪∆,E ]B) is so too.

Lemma 6. Let (Σ,E ]B) be ground sort-decreasing, ground confluent and op-
erationally terminating, then (Σ ' , E ] B ' ) is operationally terminating and
ground confluent.

Proof. By contradiction, consider that there is an infinite well-formed proof tree
for t→∗E/B ' u or t→∗E/B ' u with t, u ∈ TΣ ' .

1. It cannot be a well-formed proof tree of the form:

t→∗E/B ' u

obtained using (Refl), since this proof tree is finite.
2. If the well-formed proof tree is of the form:

t1σ →∗E/B ' u1σ · · · tmσ →∗E/B ' umσ

tσ →E/B ' uσ

we know that ti, ui ∈ TΣ(X) and σ : X 7→ TΣ . Therefore, we have:

t1σ →∗E/B u1σ · · · tmσ →∗E/B umσ

tσ →E/B ' uσ

and every well-formed proof tree tiσ →∗E/B uiσ is finite since (Σ,E ] B) is
operationally terminating. Hence, the well-formed proof tree is finite.

3. If the well-formed proof tree is of the form (let t = f(t1, . . . , ti, . . . , tn) and
u = f(t1, . . . , ui, . . . , tn)):

ti →E/B ' ui

f(t1, . . . , ti, . . . , tn)→E/B ' f(t1, . . . , ui, . . . , tn)

we have to consider two cases:
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(a) If ti →E/B ui is of the form presented in Item 2, the well-formed proof
tree is finite.

(b) If ti →E/B ui is of the form presented in Item 3, then f(t1, . . . , ti, . . . , tn)�
ti.

Hence, recursively, either we arrive at a subtree of the form presented in
Item 2 or we have an infinite sequence f(t1, . . . , ti, . . .) � ti � · · · , leading to
a contradiction with the well-foundedness of � on finite terms.

4. If the well-formed proof tree is of the form:

t→E/B ' v v →∗E/B ' u

t→∗E/B ' u

we have to prove that both branches are finite. The left branch only fits with
Item 2 and Item 3, therefore the well-formed proof tree for t →E/B ' v is
finite. Hence, if the well-formed proof tree is infinite, the unique possibility
is an infinite application of Item 4 on the right branch, getting an infinite
sequence:

t→E/B ' v →E/B ' w →E/B ' · · ·

By applying recursively Lemma 5(3a) on the sequence, we get:

t
E/B '

//

E/B ##

v
E/B '

//

B '

w

B '

E/B '
// · · ·

v′
E/B

// w′
E/B
// · · ·

obtaining an infinite sequence over →E/B , which is a contradiction with the
operational termination of (Σ ' , E ]B).
Local confluence is straightforward since all terms in E do not involve any
of the new symbols in B ' \B and therefore no new critial pairs appear.

ut

Lemma 7. Let ((Σ ' \ Σ) ∪ Ω, (E ' \ E) ] (B ' \ BΣ\Ω)) be operationally
terminating, then (Σ ' , (E ' \ E) ]B ' ) is operationally terminating.

Proof. By Lemma 3, since AC-RPO proofs are Σ-extensible for AC-symbols. ut

Now, we can prove the main theorem.

Theorem 2. If E is ground sort-decreasing, ground confluent and operationally
terminating, then E ' is ground operationally terminating.

Proof. Consider the following relation R, such that t R u if:

t ⇒ u
t � u
t→E/B ' u
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where we define t ⇒ u if there is an oriented equation l → r if v1 →E ' /B '

w1 · · · vn →E ' /B ' wn ∈
−−−−−−−→
(E ' \ E) and a substitution σ such that t =B ' lσ,

and either u = rσ or u =B ' ujσ, where 1 ≤ j ≤ n. We know that �1=→E/B '

is a well-founded ordering by Lemma 6 and � ⊆�2 and ⇒⊆�2 by the reductive
ordering obtained by Lemma 7. Therefore, we have that if t R u then t �2 u or
t �1 u.

We prove that R is noetherian using the following result: if t R u then
canΣ ' ,E/B ' (t ↓E/B ' ) = canΣ ' ,E/B ' (u ↓E/B ' ) if t →E/B ' u, and
canΣ ' ,E/B ' (t ↓E/B ' ) �2 canΣ ' ,E/B ' (u ↓E/B ' ), otherwise. We proceed
by cases on a step t R u:

1. If t→E/B ' u, then

canΣ ' ,E/B ' (t ↓E/B ' ) = canΣ ' ,E/B ' (u ↓E/B ' )

because (Σ ' , E ]B ' ) is ground confluent and operationally terminating.
We get the following schema:

t
E/B '

//

!E/B ' ))

u

!

E/B '

��
canΣ ' ,E/B ' (t ↓E/B ' )

2. If t⇒ u, we know:
(a) t = D[t1, . . . , tn] where D ∈ T(Σ ' \Σ)]Ω]{2}(X)Bool and root(ti) ∈ Σ \

Ω,
(b) the redex l ∈ T(Σ ' \Σ)]Ω(X)Bool, where l → r if v1 →E ' /B ' w1 · · ·

vn →E ' /B ' wn ∈
−−−−−→
E ' \ E matches with a subterm in D,

(c) t = D[t1, . . . , tm] =B ' lσ and either u = rσ or u = vjσ, where u =
D′[u1, . . . , um′ ], 1 ≤ j ≤ n, ui =B v ∈ {t1, . . . , tn}, 1 ≤ i ≤ m′, and
D′ ∈ T(Σ ' \Σ)]Ω]{2}(X)Bool.

Therefore,
(a) canΣ ' ,E/B ' (t ↓E/B ' ) = canΣ ' ,E/B ' (D[t1 ↓E/B ' , . . . , tm ↓E/B ' ]); and
(b) canΣ ' ,E/B ' (u ↓E/B ' ) = canΣ ' ,E/B ' (D′[u1 ↓E/B ' , . . . , um′ ↓E/B ' ]).
We get the following schema:

t +3

!

E/B '

��

u

!

E/B '

��
canΣ ' ,E/B ' (t ↓E/B ' ) +3 canΣ ' ,E/B ' (u ↓E/B ' )

3. If t� u, we know:
(a) t = D[t1, . . . , tn] where D ∈ T(Σ ' \Σ)]Ω]{2}(X)Bool and root(ti) ∈ Σ \

Ω,
(b) either u = D′[t1, . . . , tn] and D[t1, . . . , tn] � D′[t1, . . . , tn] or ti � u for

some 1 ≤ i ≤ n (note that in the second case u ∈ TΣ and the term is
operationally terminating by Lemma 5(1)).
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Therefore, either
(a) canΣ ' ,E/B ' (t ↓E/B ' ) = canΣ ' ,E/B ' (D[t1 ↓E/B ' , . . . , tn ↓E/B ' ]), and

either
i. canΣ ' ,E/B ' (u ↓E/B ' ) = canΣ ' ,E/B ' (D′[t1 ↓E/B ' , . . . , tn ↓E/B ' ])

if u = D′[t1 ↓E/B ' , . . . , tn ↓E/B ' ], or
ii. canΣ ' ,E/B ' (u ↓E/B ' ) if ti � u.

We get the following schema:

t

!

E/B '

��

� u

!

E/B '

��
canΣ ' ,E/B ' (t ↓E/B ' ) � canΣ ' ,E/B ' (u ↓E/B ' )

By contradiction, if R is not noetherian, without loss of generality we can con-
struct an infinite sequence of the form:

t1 �∗1 t2 �2 t3 �∗1 t4 �2 · · ·

and, by applying the previous result, we obtain an infinite sequence of the form:

canΣ ' ,E/B ' (t1 ↓E/B ' ) �2 canΣ ' ,E/B ' (t3 ↓E/B ' ) �2 · · ·

leading to a contradiction with the well-foundedness of �2.
Now, we prove that E ' is ground operationally terminating by contradiction.

We assume that there is an infinite well-formed proof for t →E ' /B ' u or
t →∗E ' /B ' u with t, u ∈ TΣ ' . We choose among all ground terms, a term t
which is minimal in the R relation with the property of having the left-hand
side at the root of an infinite well-formed proof tree. Such a t exists by the non-
operational termination assumption and R being noetherian. We now reason by
cases to reach a contradiction:

– if t ∈ TΣ ' ,s and s ∈ S then t ∈ TΣ,s and by Lemma 6 no such infinite
well-formed proof tree can exist;

– if t ∈ T(Σ ' \Σ)∪Ω,Bool, by Lemma 7 no such infinite well-formed proof tree
exist;

– otherwise, t ∈ TΣ ' ,Bool and its only possible shape is t = D[t1s1 , · · · , t
n
sn ]

where D is a context such that D ∈ T(Σ ' \Σ)]Ω]{2},Bool and each tisi ∈
TΣ,si , si ∈ S, and root(tisi) ∈ Σ \ Ω. If the root of the infinite well-formed
proof tree is of the form t →E ' /B ' u, then it cannot be an unconditional
replacement step, so it must be either a congruence step or a conditional
replacement step. For a congruence step we have t = f(t1, . . . , ti, . . . , tn),
u = f(t1, . . . , t

′
i, . . . , tn) and there is an infinite well-formed proof tree rooted

at ti →E ' /B ' t′i, which is impossible by the minimality of t and t R ti.
The only remaining case is a conditional replacement step, with a rule of

the form l → r if v1 →E ' /B ' w1 · · · vn →E ' /B ' wn ∈
−−−−−→
E ' \ E (if

l → r if v1 →E ' /B ' w1 · · · vn →E ' /B ' wn ∈
−→
E , there is no infinite

well-formed proof tree rooted at t→E/B ' u since every viσ ∈ TΣ), so that
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there is an infinite well-formed proof tree rooted at viσ →E ' /B ' wi for σ
the matching substitution. This is again imposible by the minimality of t,
since t R viσ. If the infinite well-formed proof tree has a root of the form
t →∗E ' /B ' u, it cannot be a reflexive step, so it must be transitivity step.
We also have a well-formed proof tree t rooted at t →E ' /B ' v with t
an R-minimal left-hand side of an infinite well-formed proof tree. We have
already shown that no infinite well-formed proof tree with root t→E ' /B ' v
exists. Therefore, there must be an infinite well-formed proof tree rooted at
v →∗E ' /B ' u, but this is impossible, since t R v and t is R-minimal.

ut

5.3 Preservation of Ground Confluence

Recall from Section 2 that the equational theory E = (Σ,E]B) is ground conflu-
ent modulo B iff for all terms t, t′, t′′ ∈ TΣ , such that t→∗E/B t′ and t→∗E/B t′′,

there is u ∈ TΣ such that t′ →∗E/B u and t′′ →∗E/B u. If E is operationally

terminating, then it is enough to prove E ground locally confluent [5]. Namely,
that for all terms t, t′, t′′ ∈ TΣ , if t→E/B t′ and t→E/B t′′, then there is u ∈ TΣ
such that t′ →∗E/B u and t′′ →∗E/B u.

Ground local confluence can be established via ground joinability of the so-
called conditional critical pairs.

Definition 8 (Conditional Critical Pair). Given (Σ,E ]B) with Σ prereg-

ular, B sort-preserving and with
−→
E B-coherent, and given oriented conditional

equations l → r if C, l′ → r′ if C ′ ∈
−→
E such that (Var(l) ∪ Var(r) ∪ Var(C)) ∩

(Var(l′)∪Var(r′)∪Var(C ′)) = ∅ and l|pσ =B l′σ, for some nonvariable position
p ∈ Pos(l) and B-unifier σ of l|p and l′, then the triple

Cσ ∧ C ′σ ⇒ lσ[r′σ]p = rσ

is called a (conditional) critical pair.

Theorem 3. If E is ground sort-decreasing, operationally terminating, ground
confluent, then E ' is ground confluent.

Proof. First of all note that EBool has been chosen to be confluent, sort-decreasing
and operational terminating modulo BBool. Note also that E ' is ground sort-
decreasing by Theorem 1 and operationally terminating by Theorem 2. Hence,
it is enough to prove that E ' is locally ground confluent. Note that if f ∈ Ω,
then any equation f(t1, . . . , tn) = u if C ∈ E is such that f(t1θ, . . . , tnθ) /∈ TΩ,s
for any f : s1 . . . sn → s where f ∈ Ω and ground substitution θ satisfying
t1θ ∈ TΩ,s1 , . . . tnθ ∈ TΩ,sn , since otherwise Ω ⊆ Σ would not be a subsignature
of free constructors modulo B for E (e.g., as in examples 2 and 3). Therefore,
the set of conditional critical pairs of E ' is the union of the conditional critical
pairs of the theories E , EBool and the theory with the rest of rules in E ' that
are not in E and EBool in isolation. That is, the set of conditional critical pairs
of E ' consists of
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– the conditional critical pairs of E, which are ground joinable by assumption
– the critical pairs of EBool, which are joinable by the choice of EBool, and
– the conditional critical pairs of E ' \ (E ∪ EBool).

For the latter set of oriented equations the proof proceeds by case analysis on
the structural axioms of the constructor symbols in Ω. Throughout the whole
case analysis we need to worry about possibly different maximal typings of a
constructor f , i.e., f : s1 · · · sn → s and f : s′1 · · · s′n → s′.

– For the oriented equations defining ' , if f ∈ Ω is an absolutely free
symbol:

1. for xk1 ' xk1 → > and f(x1s12 , . . . , x
n
sn2

)' g(y1s′12
, . . . , yns′n2

)→ ⊥ do not

yield critical pairs;
2. for xk1 ' xk1 → > and f(x1s12 , . . . , x

n
sn2

)' xisi2 → ⊥ do not yield critical
pairs;

3. for f(x1s11 , . . . , x
n
sn1

)' xisi1 → ⊥ and f(x1s12 , . . . , x
n
sn2

)' g(y1s′12
, . . . ,

yms′m2
) → ⊥, for any B ' -unifier σ we obtain the trivial critical pair

< ⊥,⊥ >;

4. for f(x1s11 , . . . , x
n
sn1

)' f(y1s11 , . . . , y
n
sn1

) →
l

1≤i≤n

xisi1 ' y
i
si1

and

xk2 ' xk2 → > we obtain the joinable critical pair<
l

1≤i≤n

zisi3 ' z
i
si3
,> >

from the B ' -unifier σ(xisi1 ) = σ(yisi1 ) = zisi3 and σ(xk2) =

f(z1s13 , . . . , z
n
sn3

);

5. for f(x1s11 , . . . , x
n
sn1

)' f(y1s11 , . . . , y
n
sn1

) →
l

1≤i≤n

xisi1 ' y
i
si1

and

f(x1s12 , . . . , x
n
sn2

)' xisi2 → ⊥ we obtain the critical pairs:

(a) <
l

1≤j≤n,j 6=i

wis′i3
' zisi3 u (f(z1s13 , . . . , z

n
sn3

)' zisi3 ),⊥ > from theB ' -

unifiers satisfying σ(xisi1 ) = σ(xisi2 ) = f(z1s13 , . . . , z
n
sn3

), σ(xjsj1 ) =

σ(xjsj2 ) = wjs′j3
for j 6= i and σ(yisi1 ) = zisi3 . By applying the rule

f(x1s14 , . . . , x
n
sn4

)' xisi4 → ⊥ to f(z1s13 , . . . , z
n
sn3

)' zisi3 , the critical
pair is joinable;

(b) <
l

1≤j≤n,j 6=i

zisi3 ' w
i
s′i3
u (zisi3 ' f(z1s13 , . . . , z

n
sn3

)),⊥ > from theB ' -

unifiers satisfying σ(yisi1 ) = σ(xisi2 ) = f(z1s13 , . . . , z
n
sn3

), σ(yjsj1 ) =

σ(xjsj2 ) = wjsj3 for j 6= i and σ(xisi1 ) = zisi3 . By applying the rule

f(x1s14 , . . . , x
n
sn4

)' xisi4 → ⊥ to f(z1s13 , . . . , z
n
sn3

)' zisi3 , the critical
pair is joinable.

– For the oriented equations defining ' , if f ∈ Ω is a C-symbol:

1. for xk1 ' xk1 → > and f(x1s12 , x
2
s22

)' g(y1s′12
, . . . , yms′m2

) → ⊥ do not

yield critical pairs;
2. for xk1 ' xk1 → > and f(x1s2 , x

1
s2)' x1s2 → ⊥ do not yield critical pairs;
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3. for f(x1s1 , x
2
s1)' x1s1 → ⊥ and f(x1s2 , x

2
s2)' g(y1s12 , . . . , y

m
sm2

) → ⊥, for

any B ' -unifier σ we obtain the trivial critical pair < ⊥,⊥ >;
4. for f(x1s1 , x

2
s1)' f(y1s1 , y

2
s1) → (x1s1 ' y

1
s1 u x

2
s1 ' y

2
s1) t (x1s1 ' y

2
s1 u

x2s1 ' y
1
s1) and xk2 ' xk2 → > we have the B ' -unifiers:

(a) σ(xis1) = σ(yis1) = zis3 and σ(xk2) = f(z2s3 , z
1
s3), obtaining the join-

able critical pair:

< (z1s3 ' z
1
s3 u z

2
s3 ' z

2
s3) t (z1s3 ' z

2
s3 u z

2
s3 ' z

1
s3),> >,

(b) and σ(x1s1) = σ(y2s1) = z1s3 , σ(x2s1) = σ(y1s1) = z2s3 and σ(xk2) =
f(z2s3 , z

1
s3), obtaining the joinable critical pair:

< (z1s3 ' z
2
s3 u z

2
s3 ' z

1
s3) t (z1s3 ' z

1
s3 u z

2
s3 ' z

2
s3),> >;

5. for f(x1s1 , x
2
s1)' x1s1 → ⊥ and f(x1s2 , x

2
s2)' x1s2 → ⊥, for any B ' -unifier

σ we obtain the trivial critical pair < ⊥,⊥ >;
6. for f(x1s1 , x

2
s1)' f(y1s1 , y

2
s1) → (x1s1 ' y

1
s1 u x

2
s1 ' y

2
s1) t (x1s1 ' y

2
s1 u

x2s1 ' y
1
s1) and f(x1s2 , x

2
s2)' x1s2 → ⊥ we obtain the critical pairs:

(a) < (f(z1s3 , z
2
s3)' z1s3 u ws4 ' z

2
s3) t (f(z1s3 , z

2
s3)' z2s3 u ws4 ' z

1
s3),⊥ >

from the B ' -unifier σ which must satisfy σ(x1s1) = σ(x1s2) =
f(z1s13 , z

2
s23

), σ(x2s1) = σ(x2s2) = ws4 and σ(yisi1 ) = zisi3 . By applying

the rule f(x1s15 , x
2
s15

)' x1s15 → ⊥ to f(z1s13 , z
2
s13

)' zisi3 , the critical
pair is joinable,

(b) < (ws4 ' z1s3 u f(z1s3 , z
2
s3)' z2s3) t (w1

s4 ' z
2
s3 u f(z1s3 , z

2
s3)' z1s3),⊥ >

from the B ' -unifier σ which must satisfy σ(x2s1) = σ(x1s2) =
f(z1s3 , z

2
s3), σ(x1s1) = σ(x2s2) = ws4 and σ(yis1) = zis3 . By applying

the rule f(x1s5 , x
2
s5)' x1s5 → ⊥ to f(z1s3 , z

2
s3)' zis3 , the critical pair

is joinable,
(c) < (z1s3 ' f(z1s3 , z

2
s3) u z2s3 ' ws4) t (z2s3 ' f(z1s3 , z

2
s3) u z1s3 ' ws4),⊥ >

from the B ' -unifier σ which must satisfy σ(y1s1) = σ(x1s2) =
f(z1s3 , z

2
s3), σ(y2s1) = σ(x2s2) = ws4 and σ(x1s1) = z1s3 . By applying

the rule f(x1s15 , x
2
s15

)' x1s15 → ⊥ to f(z1s3 , z
2
s3)' z1s3 , the critical

pair is joinable,
(d) < (z1s3 ' ws4 u z

2
s3 ' f(z1s3 , z

2
s3)) t (z2s3 ' ws4 u z

1
s3 ' f(z1s3 , z

2
s3)),⊥ >

from the B ' -unifier σ which must satisfy σ(y2s1) = σ(x1s2) =
f(z1s3 , z

2
s3), σ(y1s1) = σ(x2s2) = ws4 and σ(xis1) = zis3 . By applying

the rule f(x1s15 , x
2
s15

)' x1s15 → ⊥ to f(z1s3 , z
2
s3)' zis3 , the critical

pair is joinable;
7. for f(x1s1 , x

2
s1)' f(y1s1 , y

2
s1) → (x1s1 ' y

1
s1 u x

2
s1 ' y

2
s1) t (x1s1 ' y

2
s1 u

x2s1 ' y
1
s1) and f(x1s2 , x

2
s2)' f(y1s2 , y

2
s2) → (x1s2 ' y

1
s2 u x

2
s2 ' y

2
s2) t (x1s2

' y2s2 u x
2
s2 ' y

1
s2) we obtain the joinable critical pairs:

(a) < (w1
s4 ' z

1
s3 u w

2
s4 ' z

2
s3) t (z1s3 ' w2

s4 u w
2
s4 ' z

1
s3), (z1s3 ' w

1
s4 u

z2s3 ' w
2
s4) t (z1s3 ' w

2
s4 u z

2
s3 ' w

1
s4) > from the B ' -unifier σ which

must satisfy σ(x1s1) = σ(y1s2) = w1
s4 , σ(x2s1) = σ(y2s2) = w2

s4 , σ(y1s1) =
σ(x1s2) = z1s3 , and σ(y2s1) = σ(x2s2) = z2s3 ,

(b) < (w1
s4 ' z

1
s3 u w

2
s4 ' z

2
s3) t (z1s3 ' w2

s4 u w
2
s4 ' z

1
s3), (z2s3 ' w

1
s4 u

z1s3 ' w
2
s4) t (z2s3 ' w

2
s4 u z

1
s3 ' w

1
s4) > from the B ' -unifier σ which
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must satisfy σ(x1s1) = σ(y1s2) = w1
s4 , σ(x2s1) = σ(y2s2) = w2

s4 , σ(y1s1) =
σ(x2s2) = z1s3 , and σ(y2s1) = σ(x1s2) = z2s3 ,

(c) < (w1
s4 ' z

1
s3 u w

2
s4 ' z

2
s3) t (z1s3 ' w2

s4 u w
2
s4 ' z

1
s3), (z2s3 ' w

2
s4 u

z1s3 ' w
1
s4) t (z2s3 ' w

1
s4 u z

1
s3 ' w

2
s4) > from the B ' -unifier σ which

must satisfy σ(x1s1) = σ(y2s2) = w1
s4 , σ(x2s1) = σ(y1s2) = w2

s4 , σ(y1s1) =
σ(x2s2) = z1s3 , and σ(y2s1) = σ(x1s2) = z2s3 ,

(d) < (w1
s4 ' z

1
s3 u w

2
s4 ' z

2
s3) t (z1s3 ' w2

s4 u w
2
s4 ' z

1
s3), (z1s3 ' w

2
s4 u

z2s3 ' w
1
s4) t (z1s3 ' w

1
s4 u z

2
s3 ' w

2
s4) > from the B ' -unifier σ which

must satisfy σ(x1s1) = σ(y2s2) = w1
s4 , σ(x2s1) = σ(y1s2) = w2

s4 , σ(y1s1) =
σ(x1s2) = z1s3 , and σ(y2s1) = σ(x2s2) = z2s3 ,

(e) < (w1
s4 ' z

1
s3 u w

2
s4 ' z

2
s3) t (z1s3 ' w2

s4 u w
2
s4 ' z

1
s3), (w1

s4 ' z
2
s3 u

w2
s4 ' z

1
s3) t (w1

s4 ' z
1
s3 u w

2
s4 ' z

2
s3) > from the B ' -unifier σ which

must satisfy σ(x1s1) = σ(x1s2) = w1
s4 , σ(x2s1) = σ(x2s2) = w2

s4 , σ(y1s1) =
σ(y2s2) = z1s3 , and σ(y2s1) = σ(y1s2 = z2s3 ,

(f) < (w1
s4 ' z

1
s3 u w

2
s4 ' z

2
s3) t (z1s3 ' w2

s4 u w
2
s4 ' z

1
s3), (w1

s4 ' z
1
s3 u

w2
s4 ' z

2
s3) t (w1

s4 ' z
2
s3 u w

2
s4 ' z

1
s3) > from the B ' -unifier σ which

must satisfy σ(x1s1) = σ(x1s2) = w1
s4 , σ(x2s1) = σ(x2s2) = w2

s4 , σ(y1s1) =
σ(y1s2) = z1s3 , and σ(y2s1) = σ(y2s2) = z2s3 ,

(g) < (w2
s4 ' z

1
s3 u w

2
s4 ' z

2
s3) t (z1s3 ' w2

s4 u w
2
s4 ' z

1
s3), (w2

s4 ' z
2
s3 u

w1
s4 ' z

1
s3) t (w2

s4 ' z
1
s3 u w

1
s4 ' z

2
s3) > from the B ' -unifier σ which

must satisfy σ(x1s1) = σ(x2s2) = w1
s4 , σ(x2s1) = σ(x1s2) = w2

s4 , σ(y1s1) =
σ(y2s2) = z1s3 , and σ(y2s1) = σ(y1s2) = z2s3 ,

(h) < (w1
s4 ' z

1
s3 u w

2
s4 ' z

2
s3) t (z1s3 ' w2

s4 u w
2
s4 ' z

1
s3), (w2

s4 ' z
1
s3 u

w1
s4 ' z

2
s3) t (w2

s4 ' z
2
s3 u w

1
s4 ' z

1
s3) > from the B ' -unifier σ which

must satisfy σ(x1s1) = σ(x2s2) = w1
s4 , σ(x2s1) = σ(x1s2) = w2

s4 , σ(y1s1) =
σ(y1s2) = z1s3 , and σ(y2s1) = σ(y2s2) = z2s3 .

– For the oriented equations defining ' , if f ∈ Ω is a A-symbol. B ' -
unification is infinitary in general, but by the form of the rules we can reason
as follows (for the sake of readability, we use the infix operator · to represent
the A-symbol f):
1. for xk1 ' xk1 → > and x1s2 · x

2
s2 ' g(y1s12 , . . . , y

n
sn2

) → ⊥ do not yield
critical pairs;

2. for xk1 ' xk1 → > and x1s2 · x
2
s2 ' x

i
s2 → ⊥ do not yield critical pairs;

3. for x1s1 ·x
2
s1 ' x

i
s1 → ⊥, with i ∈ {1, 2} and x1s2 ·x

2
s2 ' g(y1s12 , . . . , y

n
sn2

)→
⊥, for any B ' -unifier σ we obtain the trivial critical pair < ⊥,⊥ >;

4. for x1s1 · x
2
s1 ' x

i
s → ⊥ and x1s2 · x

2
s2 ' x

j′

s → ⊥, for any B ' -unifier σ we
obtain the trivial critical pair < ⊥,⊥ >;

5. for x1s1 · x
2
s1 ' x

1
s1 · y

2
s1 → x2s1 ' ys1 and xk2 ' xk2 → >, any B ' -unifier

σ is of the form: xis1 7→ ui, ys1 7→ v, xk2 7→ w and must satisfy that
u1 · u2 =B ' w =B ' u1 · v. Therefore, by the left cancelation property
of free semigroups we must have u2 =B ' v. Therefore, the critical pair
< >, u2 ' v > is joinable by using xk3 ' xk3 = >;

6. the case x1s1 ·x
2
s1 ' ys1 ·x

2
s1 → x1s1 ' ys1 and xk2 ' xk2 → > is symmetric

to case (5);
7. for x1s1 · x

2
s1 ' x

1
s1 · ys1 → x2s1 ' ys1 and x1s2 · x

2
s2 ' ys2 · x

2
s2 → x1s2 ' ys2

any B ' -unifier σ that yields a critical pair must satisfy:
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(a) σ(x1s1) · σ(x2s1) =B ' u · v =B ' v′ · u′ =B ' σ(x1s2) · σ(x2s2), and
σ(x1s1) · σ(y2s1) =B ' u · w =B ' w′ · u′ =B ' σ(y1s2) · σ(x2s2) or is of
the form

(b) σ(x1s1) · σ(x2s1) =B ' u · v =B ' v′ · u′ =B ' σ(y1s2) · σ(x2s2), and
σ(x1s1) · σ(y2s1) =B ' u · w =B ' w′ · u′ =B ' σ(x1s2) · σ(x2s2).

Pictorically, both cases (7a) and (7b) can be represented as follows:

u v ' u w
=B ' =B '

v’ u’ ' w’ u’

We discuss in detail case (7a) since case (7b) is entirely analogous. We
reason by subcases depending on the relative composition betweee |u|+
|u′|, |u ·v|, and |u ·w|, where |u| denotes the length of u as a word modulo
A.
(a) If |u| + |u′| = |u · v| and |u| + |u′| = |u · w| (there is no overlap

between u and u′ on both terms) then u · v =B ' u · u′ =B ' v′ · u′
and u · w =B ' u · u′ =B ' w′ · u′. We get < u′ ' u′, u' u >, which
is trivially joinable;

(b) if |u| + |u′| < |u · v| and |u| + |u′| < |u · w| (there is no overlap
between u and u′ on both terms) then u · v =B ' u · q ·u′ =B ' v′ ·u′
and u · w =B ' u · p · u′ =B ' w′ · u′. We get < q · u′ ' p · u′, u ·
q ' u ·p >. By cancelation property of free semigroups we must have
< q ' p, q ' p >, which is trivially joinable;

(c) if |u|+ |u′| < |u ·v| and |u|+ |u′| = |u ·w| (there is no overlap between
u and u′ on both terms) then u · v =B ' u · q · u′ =B ' v′ · u′ and
u · w =B ' u · u′ =B ' w′ · u′. We get < q · u′ ' u′, u · q ' u >.
Applying x1s3 · x

2
s3 ' x

1
s3 = ⊥ and x1s4 · x

2
s4 ' x

2
s4 = ⊥, the critical

pair is joinable: < ⊥,⊥ >;
(d) the case |u| + |u′| = |u · v| and |u| + |u′| < |u · w| is entirely similar

to case (7c);
(e) if |u|+ |u′| < |u · v| and |u|+ |u′| > |u · w| (there is overlap between

u and u′ on the second term) then u · v =B ' u · q · u′ =B ' v′ · u′
and u · w =B ' w′ · p · w =B ' w′ · u′. We get < q · u′ ' w, u ·
q ' w′ >. Since u′ =B ' p · w and u =B ' w′ · p, we have < q · p ·
w ' w,w′ · p · q ' w′ >=< ⊥,⊥ >, applying x1s3 · x

2
s3 ' x

1
s3 = ⊥ and

x1s4 · x
2
s4 ' x

2
s4 = ⊥;

(f) if |u|+ |u′| = |u · v| and |u|+ |u′| > |u · w| (there is overlap between
u and u′ on the second term) then u · v =B ' u · u′ =B ' v′ · u′ and
u · w =B ' w′ · p · w =B ' w′ · u′. We get < u′ ' w, u' w′ >. Since
u′ =B ' p ·w and u =B ' w′ ·p, we have < p ·w ' w,w′ ·p' w′ >=<
⊥,⊥ >, applying x1s3 · x

2
s3 ' x

1
s3 = ⊥ and x1s4 · x

2
s4 ' x

2
s4 = ⊥;

(g) the case |u| + |u′| > |u · v| and |u| + |u′| < |u · w| is entirely similar
to case (7e);

(h) the case |u| + |u′| > |u · v| and |u| + |u′| = |u · w| is entirely similar
to case (7f);
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(i) if |u|+ |u′| > |u · v| and |u|+ |u′| > |u · w| (there is overlap between
u and u′ on both terms) then u · v =B ' v′ · q · v =B ' v′ · u′ and
u · w =B ' w′ · p · w =B ' w′ · u′. We get < v ' w, v′ ' w′ >. Since
u′ =B ' q · v =B ' p ·w and u =B ' v′ · q =B ' w′ · p, we have three
cases:

i. If |p| = |q| then we have that p =B ' q, v =B ' w′, v′ =B ' w′,
and hence < >,> >.

ii. If |p| > |q| the unique possibility that fits with the restrictions is
that p =B ' q·q′·q, and hence u′ =B ' q·v =B ' q·q′·q·w, u =B '

v′ ·q =B ' w′ ·q ·q′ ·q. By left and right cancellation we get v =B '

q′ ·q ·w, v′ =B ' w′ ·q ·q′, and < q′ ·q ·w ' w,w′ ·q ·q′ ' w′ >=<
⊥,⊥ >, applying x1s3 · x

2
s3 ' x

1
s3 = ⊥ and x1s4 · x

2
s4 ' x

2
s4 = ⊥.

iii. the case |p| < |q| is symmetric to case (7(i)ii);
8. for x1s1 · x

2
s1 ' y

1
s1 · y

2
s1 → ⊥ if ¬ (x1s1 ' y

1
s1) u ¬ (rootkf (x1s1))

u ¬ (rootkf (y1s1)) = > and xk2 ' xk2 → >, any B ' -unifier σ which

yields a critical pair is of the form: xis1 7→ ui, yis1 7→ vi, xk2 7→ w and

must satisfy that u1 ·u2 =B ' w =B ' v1 ·v2. Therefore, ¬ (rootkf (u1)) u
¬ (rootkf (v1)) u ¬ (u1 ' v1) ⇒< ⊥,> >. Since ¬ (rootkf (u1)) u
¬ (rootkf (v1)), this means that |u2| = |v2|, and hence u2 =B ' v2 and

u1 =B ' v1 and ¬ (u1 ' v1) = ⊥, by applying xk3 ' xk3 = >. Therefore,
the critical pair is unfeasible [5];

9. for x1s1 · x
2
s1 ' y

1
s1 · y

2
s1 → ⊥ if ¬ (x1s1 ' y

1
s1) u ¬ (rootkf (x1s1))

u ¬ (rootkf (y1s1)) = > and x1s2 · x
2
s2 ' x

1
s2 · ys2 → x2s2 ' ys2 , any B ' -

unifier σ that yields a critical pair must satisfy:
(a) σ(x1s1) · σ(x2s1) =B ' u · v =B ' u′ · v′ =B ' σ(x1s2) · σ(x2s2), and

σ(y1s1) · σ(y2s1) =B ' u · w =B ' w′ · z′ =B ' σ(x1s2) · σ(ys2) or is of
the form

(b) σ(x1s1) · σ(x2s1) =B ' u · v =B ' u′ · v′ =B ' σ(x1s2) · σ(ys2), and
σ(y1s1) · σ(y2s1) =B ' u · w =B ' w′ · z′ =B ' σ(x1s2) · σ(x2s2).

Pictorically, both cases (9a) and (9b) can be represented as follows:

u v ' u w
=B ' =B '

u’ v’ ' w’ z’

This means that u = u′ · q · v = w′ · p · w. Since |u′| = |w′| = 1 then
u′ =B ' w′, and ¬ (u′ ' w′) = ⊥, by applying xk3 ' xk3 = >. Therefore,
the critical pair is unfeasible;

10. for x1s1 · x
2
s1 ' y

1
s1 · y

2
s1 → ⊥ if ¬ (x1s1 ' y

1
s1) u ¬ (rootkf (x1s1))

u ¬ (rootkf (y1s1)) = > and x1s2 · x
2
s2 ' ys2 · x

2
s2 → x1s2 ' ys2 , any B ' -

unifier σ that yields a critical pair must satisfy:
(a) σ(x1s1) · σ(x2s1) =B ' u · v =B ' u′ · v′ =B ' σ(x1s2) · σ(x2s2), and

σ(y1s1) · σ(y2s1) =B ' u · w =B ' w′ · z′ =B ' σ(y1s2) · σ(x2s2) or is of
the form

(b) σ(x1s1) · σ(x2s1) =B ' u · v =B ' u′ · v′ =B ' σ(y1s2) · σ(x2s2), and
σ(y1s1) · σ(y2s1) =B ' u · w =B ' w′ · z′ =B ' σ(x1s2) · σ(x2s2).
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Pictorically, both cases (10a) and (10b) can be represented as follows:

u v ' w v
=B ' =B '

u’ v’ ' w’ z’

This means that u =B ' u′ ·q and w =B ' w′ ·p. Applying x1s3 ·x
2
s3 ' y

1
s3 ·

y2s3 → ⊥ if ¬ (x1s3 ' y
1
s3) u ¬ (rootkf (x1s3)) u ¬ (rootkf (y1s3)) = > to the

resulting terms, we get < ⊥,⊥ >. Therefore, the critical pair is joinable;
11. for x1s1 · x

2
s1 ' x

1
s1 → ⊥ and x1s2 · x

2
s2 ' x

1
s2 · ys2 → x2s2 ' ys2 , any B ' -

unifier σ that yields a critical pair must satisfy:
(a) σ(x1s1) · σ(x2s1) =B ' u · v · w =B ' u′ · v′ =B ' σ(x1s2) · σ(x2s2), and

σ(x1s1) =B ' u · v =B ' u′ · z′ =B ' σ(x1s2) · σ(ys2) or is of the form
(b) σ(x1s1) · σ(x2s1) =B ' u · v · w =B ' u′ · v′ =B ' σ(x1s2) · σ(ys2), and

σ(x1s1) =B ' u · v =B ' u′ · z′ =B ' σ(x1s2) · σ(x2s2).
Pictorically, both cases (11a) and (11b) can be represented as follows:

u v w ' u v
=B ' =B '

u’ v’ ' u’ z’

Then, |u′| 6≥ |u · v|. Therefore, u · v =B ' u′ · z′ and we get the critical
pair < ⊥, z′ ·w ' z′ >. Again, applying the rule x1s3 · x

2
s3 ' x

1
s3 → ⊥ the

critical pair is joinable;
12. for x1s1 ·x

2
s1 ' x

1
s1 → ⊥ and x1s2 ·x

2
s2 ' ys2 ·x

2
s2 → x1s2 ' ys2 is symmetric

to case (11);
13. for x1s1 · x

2
s1 ' y

1
s1 · y

2
s1 → ⊥ if ¬ (x1s1 ' y

1
s1) u ¬ (rootkf (x1s1))

u ¬ (rootkf (y1s1)) = > and x1s2 · x
2
s2 ' x

1
s2 → ⊥, for any B ' -unifier

σ we obtain the trivial critical pair < ⊥,⊥ >;
14. for x1s1 · x

2
s1 ' y

1
s1 · y

2
s1 → ⊥ if ¬ (x1s1 ' y

1
s1) u ¬ (rootkf (x1s1))

u ¬ (rootkf (y1s1)) = > and x1s2 · x
2
s2 ' y

1
s2 · y

2
s2 → ⊥ if ¬ (x1s2 ' y

1
s2) u

¬ (rootkf (x1s2)) u ¬ (rootkf (y1s2)) = >, for any B ' -unifier σ we obtain
the trivial critical pair < ⊥,⊥ >.

– For the oriented equations defining ' , if f ∈ Ω is a AC-symbol (for the
sake of readability, we use the infix operator + to represent the AC-symbol
f):
1. for xk1 ' xk1 → > and x1s2 + x2s2 ' g(y1s2 , . . . , y

n
sn) → ⊥ do not yield

critical pairs;
2. for xk1 ' xk1 → > and x1s2 + x2s2 ' x

1
s2 → ⊥ do not yield critical pairs;

3. for x1s1 + x2s1 ' x
1
s1 → ⊥ and x1s2 + x2s2 ' g(y1s12 , . . . , y

n
sn2

) → ⊥, for any

B ' -unifier σ we obtain the trivial critical pair < ⊥,⊥ >;
4. for x1s1 + x2s1 ' x

1
s1 + ys1 → x2s1 ' ys1 and xk2 ' xk2 → >, any B ' -

unifier σ that yields a critical pair is of the form: xis1 7→ ui, ys1 7→ v,
xk2 7→ w and must satisfy that u1 + u2 =B ' w =B ' u1 + v. Therefore,
by the cancelation property of free commutative semigroups we must
have u2 =B ' v. Therefore, the critical pair < >, u2 ' v > is joinable;
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5. for x1s1 + x2s1 ' y
1
s1 + y2s1 → ⊥ if ¬ (inkf (x1s1 , y

1
s1 + y2s1)) u

¬ (rootkf (x1s1)) = > and xk2 ' xk2 → >, any B ' -unifier σ that yields

a critical pair is of the form: xis1 7→ ui, yis1 7→ vi, xk2 7→ w and must

satisfy that u1 +u2 =B ' w =B ' v1 +v2. Therefore, ¬ (rootkf (u1)) u ¬

(inkf (u1, v1 + v2))⇒< ⊥,> > where u1 + u2 =B ' w =B ' v1 + v2. We
now reason by cases. If u1 = g(t1, . . . , tm) then we have
¬ (inkf (g(t1, . . . , tm), v1 +v2)) =B '

¬ (inkf (g(t1, . . . , tm), g(t1, . . . , tm)+

v2)) →+
E ' /B '

¬ (>) →E ' /B ' ⊥, and the critical pair is unfeasi-

ble; otherwise, u1 = w1 + w2, but then ¬ (rootkf (w1 + w2)) →+
E ' /B '

¬ (>)→E ' /B ' ⊥ and the critical pair is again unfeasible;

6. for x1s1 + x2s1 ' y
1
s1 + y2s1 → ⊥ if ¬ (inkf (x1s1 , y

1
s1 + y2s1) u

¬ (rootkf (x1s1)) = > and x1s2 + x2s2 ' x
1
s2 + ys2 → x2s2 ' ys2 , any B ' -

unifier σ that yields a critical pair must satisfy:
(a) σ(x1s1) + σ(x2s1) =B ' u+ v =B ' u′ + v′ =B ' σ(x1s2) + σ(x2s2), and

σ(y1s1) + σ(y2s1) =B ' w + z =B ' u′ + z′ =B ' σ(x1s2) + σ(ys2) or is
of the form

(b) σ(x1s1) + σ(x2s1) =B ' u+ v =B ' u′ + v′ =B ' σ(x1s2) + σ(ys2), and
σ(y1s1) + σ(y2s1) =B ' w + z =B ' u′ + z′ =B ' σ(x1s2) + σ(x2s2).

Pictorically, both cases (6a) and (6b) can be represented as follows:

u v ' w z
=B ' =B '

u’ v’ ' u’ w’

Therefore, we have ¬ (inkf (u,w + z)) u ¬ (rootkf (u)) ⇒< ⊥, v′ ' w′ >.

If ¬ (inkf (u,w+ z)) then ¬ (inkf (u,w′)) and v′ =B ' u or v′ =B ' u+ p.
(a) If root(v′) 6= root(w′) then the critical pair is joinable: < ⊥,⊥ >.
(b) If root(v′) = root(w′) and ¬ (rootkf (v′)) then v′ =B ' u,

u' w′ →∗E ' /B ' ⊥, and the critical pair is joinable: < ⊥,⊥ >.

(c) If root(v′) = root(w′) and rootkf (v′) then v′ =B ' u+ p, and we can

apply x1s3 + x2s3 ' y
1
s3 + y2s3 → ⊥ if ¬ (inkf (x1s3 , y

1
s3 + y2s3) u

¬ (rootkf (x1s3)) = >, obtaining a joinable critical pair: < ⊥,⊥ >;

7. for x1s1 +x2s1 ' x
1
s1 → ⊥ and x1s2 +x2s2 ' x

1
s2 + y2s2 → x2s2 ' y

2
s2 , yield the

critical pairs:
(a) < ⊥, w2

s3 ' w
2
s3 + w3

s3 > with the B ' -unifier σ, x1s1 7→ w1
s3 + w2

s3 ,

x2s1 7→ w3
s3 , xi

′

s 7→ wis3 , y2s2 7→ w2
s3 + w3

s3 . We can apply the rule
x1s4 + x2s4 ' x

1
s4 → ⊥ to get a joinable critical pair,

(b) < ⊥, w2
s3 + w3

s3 ' w
2
s3 > with the B ' -unifier σ, x1s1 7→ w1

s3 + w2
s3 ,

x2s1 7→ w3
s3 , x1s2 7→ w1

s3 , x2s2 7→ w2
s3 + w3

s3 , and y2s2 7→ w2
s3 . We can

apply the rule x1s4 + x2s4 ' x
1
s4 → ⊥ to get a joinable critical pair;

8. for x1s1 + x2s1 ' y
1
s1 + y2s1 → ⊥ if ¬ (inkf (x1s1 , y

1
s1 + y2s1)) u

¬ (rootkf (x1s1)) = > and x1s2 + x2s2 ' y
1
s2 + y2s2 → ⊥ if ¬ (x1s2 ' y

1
s2) u

¬ (rootkf (x1s2)) u ¬ (rootkf (y1s2)) = >, for any B ' -unifier σ we obtain
the trivial critical pair < ⊥,⊥ >;
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9. for x1s1+x2s1 ' x
1
s1+y2s1 → x2s1 ' y

2
s1 and x1s2+x2s2 ' x

1
s2+y2s2 → x2s2 ' y

2
s2 ,

any B ' -unifier σ that yields a critical pair must satisfy:

(a) σ(x1s1) + σ(x2s1) =B ' u+ v =B ' u′ + v′ =B ' σ(x1s2) + σ(x2s2), and
σ(x1s1) +σ(y2s1) =B ' u+w =B ' u′+w′ =B ' σ(x1s2) +σ(ys2) or is
of the form

(b) σ(x1s1) + σ(x2s1) =B ' u+ v =B ' u′ + v′ =B ' σ(x1s2) + σ(y2s2), and
σ(x1s1) + σ(y2s1) =B ' u+ w =B ' u′ + w′ =B ' σ(x1s2) + σ(x2s2).

Both cases (9a) and (9b) can be represented as follows: u + v =B '

u1 + · · · + un + v1 + · · · + vm + w1 + · · · + wo + z and u′ + v′ =B '

u1 + · · ·+un + v1 + · · ·+ vm +w1 + · · ·+wo + z′ where u1 + · · ·+un are
the elements shared by u and u′, v1 + · · ·+ vm are the elements from u
not shared with u′ and w1 + · · ·+wo are the elements from u′ not shared
with u (can be empty sets). We can consider the following cases:

(a) if u1 + · · ·+ un is empty, we have two possible cases:

i. v1 + · · · + vm is not empty, w1 + · · · + wo is not empty, z is
empty, and z′ is empty then the critical pairs is of the form
< w1 + · · ·+wo ' w1 + · · ·+wo, v1 + · · ·+ vm ' v1 + · · ·+ vm >.
Using the rule x2k3 ' xk3 → > on both sides we get the joinable
critical pair < >,> >,

ii. v1 + · · · + vm is not empty, w1 + · · · + wo is not empty, z is
empty, and z′ is not empty then the critical pairs is of the form <
w1+· · ·+wo ' w1+· · ·+wo+z′, v1+· · ·+vm ' v1+· · ·+vm+z′ >.
Using the rule x1s3 + x2s3 ' x

1
s3 → ⊥ on both sides we get the

joinable critical pair < ⊥,⊥ >,
iii. v1 + · · ·+ vm is not empty, w1 + · · ·+ wo is not empty, z is not

empty, and z′ is empty the case is symmetric to (9(a)ii),
iv. v1 + · · ·+ vm is not empty, w1 + · · ·+ wo is not empty, z is not

empty, and z′ is not empty then the critical pairs is of the form
< w1 + · · ·+wo + z ' w1 + · · ·+wo + z′, v1 + · · ·+ vm + z ' v1 +
· · ·+ vm + z′ >. Using the rule x1s3 +x2s3 ' x

1
s3 + y2s3 → x2s3 ' y

2
s3

on both sides we get the joinable critical pair < z ' z′, z ' z′ >,

(b) if u1 + · · ·+ un is not empty, we have eight possible cases:

i. v1 + · · · + vm is empty, w1 + · · · + wo is empty, z is not empty
and z′ is not empty then the critical pairs is of the form <
z ' z′, z ' z′ > and is joinable,

ii. v1 + · · · + vm is not empty, w1 + · · · + wo is empty, z is not
empty and z′ is not empty then the critical pairs is of the form
< z ' z′, v1 + · · ·+ vm + z ' v1 + · · ·+ vm + z′ >. Using the rule
x1s3 + x2s3 ' x

1
s3 + y2s3 → x2s3 ' y

2
s3 on the right-hand side we get

the joinable critical pair < z ' z′, z ' z′ >,
iii. v1 + · · · + vm is empty, w1 + · · · + wo is not empty, z is not

empty and z′ is not empty then the critical pairs is of the form
< w1 + · · ·+wo + z ' w1 + · · ·+wo + z′, z ' z′ >. Using the rule
x1s3 + x2s3 ' x

1
s3 + y2s3 → x2s3 ' y

2
s3 on the left-hand side we get

the joinable critical pair < z ' z′, z ' z′ >,
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iv. v1 + · · ·+ vm is not empty, w1 + · · ·+wo is not empty, the cases
are symmetric to (9a).

10. for x1s1 + x2s1 ' x
1
s1 → ⊥ and x1s2 + x2s2 ' y

1
s2 + y2s2 → ⊥ if ¬ (x1s2 ' y

1
s2)

u ¬ (rootkf (x1s2)) u ¬ (rootkf (y1s2)) = >, for any B ' -unifier σ we obtain
the trivial critical pair < ⊥,⊥ >.

– For rootkf rules when f is an A or AC symbol, we have rootkf (f(x1s1 , x
n
s ))

= > and rootkf (g(x1s′1
, . . . , xms′m)) = ⊥ do not yield critical pairs.

– For inkf rules when f is an AC-symbol:
1. for inkf (xs1 , yk1) → ⊥ if rootkf (xs1) = > and inkf (xs2 , xs2 + ys2) → >

if ¬ (rootkf (xs2)) = >, we get the unfeasible critical pair rootkf (ws3) ∧
¬ (rootkf (ws3)) ⇒< ⊥,> > for the B ' -unifier σ: xs1 7→ ws3 , yk1 7→
ws3 + zs3 , xs2 7→ ws3 and ys2 7→ zs3 ;

2. for inkf (xs1 , yk1) → ⊥ if rootkf (xs1) = > and inkf (xs2 , y
1
s12

+ y2s12 ) →
(xs2 ' y1s12 ) t inkf (xs2 , y

2
s12

) if ¬ (rootkf (xs2)) u ¬ (rootkf (y1s12 )) = > the

case is symmetric to (1);
3. for inkf (xs1 , yk1)→ ⊥ if rootkf (xs1) = > and inkf (xs2 , ys2)→ xs2 ' ys2 if
¬ (rootkf (xs2)) u ¬ (rootkf (ys2)) = > is symmetric to (1);

4. for inkf (xs1 , xs1 + ys1) → > if ¬ (rootkf (xs1)) = > and inkf (xk2 , y
1
s12

+

y2s12 )→ xk2 ' y1s12 t inkf (xk2 , y
2
s12

) if ¬ (rootkf (xk2)) u ¬ (rootkf (y1s12 )) =

>, we get the following B ' -unifiers σ
(a) xs1 7→ w1

s3 + w2
s3 , ys1 7→ w3

s3 + w4
s3 , xk2 7→ w1

s3 + w2
s3 , y1s1 7→ w1

s3 +
w3
s3 and y2s1 7→ w2

s3 + w4
s3 yielding a unfeasible critical pair of the

form ¬ (rootkf (w1
s3 +w2

s3))∧ ( ¬ (rootkf (w1
s3 +w2

s3)) u ¬ (rootkf (w1
s3 +

w3
s3)) < >, w1

s3 + w2
s3 ' w

1
s3 + w3

s3 t inkf (w1
s3 + w2

s3 , w
2
s3 + w4

s3 >,
(b) xs1 7→ w1

s3 + w2
s3 , ys1 7→ w3

s3 , xk2 7→ w1
s3 + w2

s3 , y1s1 7→ w1
s3 +

w3
s3 and y2s1 7→ w2

s3 yielding a unfeasible critical pair of the form
¬ (rootkf (w1

s3+w2
s3))∧( ¬ (rootkf (w1

s3+w2
s3)) u ¬ (rootkf (w1

s3+w3
s3)) <

>, w1
s3 + w2

s3 ' w
1
s3 + w3

s3 t inkf (w1
s3 + w2

s3 , w
2
s3) >,

(c) xs1 7→ w1
s3 , ys1 7→ w2

s3 +w3
s3 , xk2 7→ w1

s3 , y1s1 7→ w1
s3 +w2

s3 and y2s1 7→
w3
s3 yielding a unfeasible critical pair of the form ¬ (rootkf (w1

s3)) ∧
( ¬ (rootkf (w1

s3)) u ¬ (rootkf (w1
s3 + w2

s3)) < >, w1
s3 ' w

1
s3 + w2

s3 t
inkf (w1

s3 , w
3
s3) >,

(d) xs1 7→ w1
s3 + w2

s3 , ys1 7→ w3
s3 , xk2 7→ w1

s3 + w2
s3 , y1s1 7→ w1

s3 and
y2s1 7→ w2

s3 + w3
s3 yielding a unfeasible critical pair of the form

¬ (rootkf (w1
s3 + w2

s3)) ∧ ( ¬ (rootkf (w1
s3 + w2

s3)) u ¬ (rootkf (w1
s3)) <

>, w1
s3 + w2

s3 ' w
1
s3 t inkf (w1

s3 + w2
s3 , w

2
s3 + w3

s3) >,
(e) xs1 7→ w1

s3 , ys1 7→ w2
s3 , xk2 7→ w1

s3 , y1s1 7→ w1
s3 and y2s1 7→ w2

s3 yielding

a joinable critical pair of the form ¬ (rootkf (w1
s3))∧( ¬ (rootkf (w1

s3)) u
¬ (rootkf (w1

s3)) < >, w1
s3 ' w

1
s3 t inkf (w1

s3 , w
2
s3) >,

(f) xs1 7→ w1
s3 , ys1 7→ w2

s3 + w3
s3 , xk2 7→ w1

s3 , y1s1 7→ w2
s3 and y2s1 7→

w1
s3 +w3

s3 yielding a joinable critical pair of the form ¬ (rootkf (w1
s3))∧

( ¬ (rootkf (w1
s3)) u ¬ (rootkf (w2

s3)) < >, w1
s3 ' w

2
s3 t inkf (w1

s3 , w
1
s3 +

w3
s3) >,
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(g) xs1 7→ w1
s3 , ys1 7→ w2

s3 , xk2 7→ w1
s3 , y1s1 7→ w2

s3 and y2s1 7→ w1
s3 yielding

a joinable critical pair of the form ¬ (rootkf (w1
s3))∧( ¬ (rootkf (w1

s3)) u
¬ (rootkf (w2

s3)) < >, w1
s3 ' w

2
s3 t inkf (w1

s3 , w
1
s3) >;

5. for inkf (xs1 , xs1 + ys1) → > if ¬ (rootkf (xs1)) = > and inkf (xk2 , yk2) →
xk2 ' yk2 if ¬ (rootkf (xk2)) u ¬ (rootkf (yk2)) = >, the unfeasible critical

pair ¬ (rootkf (w1
s3)) ∧ ( ¬ (rootkf (w1

s3)) u ¬ (rootkf (w1
s3 + w2

s3))) ⇒< >,
w1
s3 ' w

1
s3 + w2

s3 > is obtained with the B ' -unifier σ such that xs1 7→
w1
s3 , ys1 7→ w2

s3 , xk2 7→ w1
s3 and yk2 7→ w1

s3 + w2
s3 ;

6. For the rules inkf (xk1 , y
1
s1 + y2s1) → xk1 ' y1s1 t inkf (xk1 , y

2
s1) if

¬ (rootkf (xk1)) u ¬ (rootkf (y1s1)) = > and inkf (xk2 , yk2) → xk2 ' yk2 if
¬ (rootkf (xk2)) u ¬ (rootkf (yk2)) = >, yields the unfeasible critical pair

( ¬ (rootkf (w1
s3)) u ¬ (rootkf (w2

s3))) ∧ ( ¬ (rootkf (w1
s3)) u ¬ (rootkf (w2

s3 +

w3
s3))) ⇒< w1

s3 ' w
2
s3 t inkf (w1

s3 , w
3
s3), w1

s3 ' w
2
s3 + w3

s3 > with the B '

unifier θ such that xk1 7→ w1
s3 , y1s1 7→ w2

s3 , y2s1 7→ w3
s3 , xk2 7→ w1

s3 and
yk2 7→ w2

s3 + w3
s3 .

ut

5.4 Preservation of Free Constructors Modulo

In this section we check that Ω ' = Ω ] {>,⊥} ⊆ Σ ' is a signature of free
constructors (for E ' ) modulo B ' . The former one establishes that Ω ' is
indeed a subsignature of free constructors modulo B ' and the latter one that
the function symbols in Ω ' are free modulo B ' . We use the following auxiliary
lemma.

Lemma 8. Let the transformation E 7→ E ' , where E is ground sort-decreasing,
ground confluent, operationally terminating modulo B theory and Ω is the sig-
nature of free constructors modulo B of E. If t, t′ ∈ TΩ, then t' t′ →+

E ' /B ' >
iff t =B t′.

Proof. Consider (⇐) direction. If t =B t′, then xk ' xk → > applies modulo B
and we have t' t′ → >.

Consider (⇒) direction. Suppose t 6=B t′. Since B is a combination of C, A
and AC axioms, we may reason by structural induction. Note that, by ground
confluence, if t' t′ →+ > then t' t′ 6→+ ⊥.

1. If root(t) 6= root(t′) then t = f(t1, . . . , tn), t′ = g(u1, . . . , un), t 6=B t′ and
f(t1, . . . , tn)' g(u1, . . . , un)→ ⊥, as desired.

2. If root(t) = root(t′) = f and f is an absolutely free constructor symbol
then t = f(t1, . . . , tn), t′ = f(t′1, . . . , t

′
n), f(t1, . . . , tn)' f(t′1, . . . , t

′
n) →l

1≤i≤n

ti ' t′i. By induction hypothesis, ti ' t′i iff ti =B t′i, hence if there is a

ti, t
′
i such that ti 6=B t′i, t' t′ → ⊥, as desired. If for all i, ti =B t′i then

t' t′ → >, leading to a contradiction with t =B t′.
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3. If root(t) = root(t′) = f and f is a commutative constructor symbol then t =
f(t1, t2), t′ = f(t′1, t

′
2), f(t1, t2)' f(t′1, t

′
2) → (t1 ' t′1 u t2 ' t′2)

t (t1 ' t′2 u t2 ' t′1). By induction hypothesis, ti ' t′j iff ti =B t′j , and hence
f(t1, t2)' f(t′1, t

′
2) iff (t1 =B t′1∧ t2 =B t′2)∨ (t1 =B t′2∧ t2 =B t′1) = t =B t′,

as desired.
4. If root(t) = root(t′) = f and f is an associative constructor symbol then
t = f(t1, t2), t′ = f(t′1, t

′
2), root(t1) 6= f and root(t′1) 6= f . By the induction

hypothesis, t1 ' t′1 →+ > iff t1 =B t′1 and t2 ' t′2 →+ > iff t2 =B t′2. If
t1 =B t′1 then, applying f(x1s, x

2
s)' f(x1s, y

2
s) = x2s ' y2s we get t' t′ =

t2 ' t′2 and t2 ' t′2 = > iff t2 =B t′2, as desired. If t1 6=B t′1 then appying
f(x1s, x

2
s)' f(y1s , y

2
s) = ⊥ if ¬ (rootkf (x1s)) u ¬ (rootkf (y1s)) u ¬ (x1s ' y1s) =

> we get t' t′ = ⊥, as desired.
5. If root(t) = root(t′) = f and f is an associative-commutative construc-

tor symbol, we flatten the terms t = f(t1, . . . , tn), t′ = f(t′1, . . . , t
′
m) where

root(ti), root(t
′
j) 6= f . By the induction hypothesis, ti ' t′j →+ > iff ti =B t′j .

If t1 =B t′1 then, applying f(x1s, x
2
s)' f(x1s, y

2
s) = x2s ' y2s we get t' t′ =

f(t2, . . . , tn)' f(t′2, . . . , t
′
m) and f(t2, . . . , tn)' f(t′2, . . . , t

′
m) = > iff f(t2,

. . . , tn) =B f(t′2, . . . , t
′
m), as desired. If t1 6=B t′1 and inkf (t1, f(t′2, . . . , t

′
m))→+

⊥ (note that inkf can be unfolded as inkf (t, f(t1, . . . , tn)) =
⊔

1≤i≤n

t' ti and by

induction hypothesis it is equivalent to
⋃

1≤i≤n

t =B ti), then appying f(x1s, x
2
s)

' f(y1s , y
2
s) = ⊥ if ¬ (rootkf (x1s))) u ¬ (inkf (x1s, f(y1s , y

2
s))) we get t' t′ →+

⊥, as desired. If t1 =B t′j then inkf (t1, f(t′2, . . . , t
′
m))→+ > and t′ = f(t′1, . . . ,

t1, . . . , t
′
m) =B f(t1, t

′
1, . . . , t

′
m). Applying f(x1s, x

2
s)' f(x1s, y

2
s) = x2s ' y2s we

get t' t′ = f(t2, . . . , tn)' f(t′1, . . . , t
′
m) and f(t2, . . . , tn)' f(t′1, . . . , t

′
m) =

> iff f(t2, . . . , tn) =B f(t′1, . . . , t
′
m), as desired.

Theorem 4. If E is ground sort-decreasing, ground confluent, and operationally
terminating modulo B, then E ' has Ω ' ⊆ Σ ' as a signature of free construc-
tors modulo B ' .

Proof. First, we know that all constructor on TΩ ' are irreducible by E ' mod-
ulo B ' , so if we can show that for each t ∈ TΣ ' /E ' ∪B ' it (E ' /B ' )-
canonical form is a Ω ' -term, then we are done.

Suppose not, and let t be a term of minimum size such that canE ' /B ' (t) /∈
TΩ ' . Obviously t must be of sort Bool, and it top symbol cannot be a Boolean
connective (if so, by minimality all its arguments are ⊥ or > and ΩBool = {>,⊥}
is the subsignature of free constructors modulo BBool of EBool), so either is of
the form

1. rootkf (t), with t ∈ TΩ and f A or AC

(a) If t = f(t1, t2) ∈ TΩ , we have rootkf (t)→ >, against the hypothesis.

(b) If t = g(t1, . . . , tn) ∈ TΩ and g 6= f , we have rootkf (t) → ⊥, against the
hypothesis.

2. inkf (t, t′), with t, t′ ∈ TΩ and f AC
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(a) If root(t) = f , we have inkf (t, t′)→ ⊥, against the hypothesis.
(b) If root(t) 6= f ,

i. root(t′) 6= f , then inkf (t, t′)→ t' t′, against the hypothesis.

ii. root(t′) = f , then t′ = f(u1, u2) with root(u1) 6= f and inkf (t,

f(u1, u2))→ u1 ' t t inkf (t, u2), against the hypothesis.
3. t' t′, with t, t′ ∈ TΩ .

(a) If root(t) 6= root(t′) then t' t′ → ⊥, against the hypothesis.
(b) If root(t) = root(t′) = f and f is an absolutely free constructor then

f(t1, . . . , tn)' f(t′1, . . . , t
′
n)→

l

1≤i≤n

ti ' t′i, against the hypothesis.

(c) If root(t) = root(t′) = f and f is a commutative constructor then
f(t1, t2)' f(t′1, t

′
2)→ (t1 ' t′1 u t2 ' t′2) t (t1 ' t′2 u t2 ' t′1).

(d) If root(t) = root(t′) = f and f is an associative constructor symbol. Let
t = f(t1, t2), t′ = f(t′1, t

′
2), root(t1) 6= f and root(t′1) 6= f . By minimal-

ity t1 ' t′1 reduces to > or ⊥. If t1 ' t′1 reduces to > then t1 = t′1 by
Lemma 8 and f(t1, t2)' f(t1, t

′
2) → t2 ' t′2, against the hypothesis. If

t1 ' t′1 reduces to ⊥ then f(t1, t2)' f(t′1, t
′
2)→ ⊥, against the hypothe-

sis.
(e) If root(t) = root(t′) = f and f is an associative-commutative constructor

symbol. Let t = f(t1, t2), t′ = f(t′1, t
′
2), root(t1) 6= f and root(t′1) 6= f . By

minimality t1 ' t′1 reduces to > or ⊥. If t1 ' t′1 reduces to > then t1 = t′1
by Lemma 8 and f(t1, t2)' f(t1, t

′
2) → t2 ' t′2, against the hypothesis.

If t1 ' t′1 reduces to ⊥, by minimality inkf (t1, t
′
2) reduces to > or ⊥.

If inkf (t1, t
′
2) reduces to ⊥ then f(t1, t2)' f(t′1, t

′
2) → ⊥, against the

hypothesis. If inkf (t1, t
′
2) reduces to > then there is some subterm ti in

t′ such that t1 = t′ by Lemma 8, then t′ = f(t′1, t
′
2) =B f(t1, t

′′
2) and

f(t1, t2)' f(t1, t
′′
2)→ t2 ' t′′2 , against the hypothesis.

ut

6 E ' is an Equality Enrichment

In Section 5 the equational theory E ' obtained using the transformation E 7→
E ' was proved to inherit the good executability properties from E . In this
section it is proved that E ' is indeed an equality enrichment, that is, that the
equality function ' in E ' is a sound and complete equality predicate for TE .

Theorem 5. Let E = (Σ,E ] B) be an order sorted equational theory with
signature Ω ⊆ Σ of free constructors modulo B and let E ' = (Σ ' , E ' ]
B ' ) be the equational theory obtained by using E 7→ E ' . If E is ground sort-
decreasing, operationally terminating, and ground confluent modulo B, then E '
is a Boolean equality enrichment of E.

Proof. From the assumptions and by theorems 1, 2, and 3 if follows that E ' is
ground sort-decreasing, operationally terminating, and ground confluent modulo
B ' . Moreover, since Ω is a signature of free constructors modulo B, E ' has
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Ω ' = Ω]{>,⊥} as a signature of free constructors modulo B ' by Theorem 4.
We check E ' against Definition 1. Let s be a sort in Σ and let k be the topmost
sort in the connected component of s in Σ ' . The function symbols in Σ ' \Σ
have target sort Bool and because Bool is not a sort in Σ it follows that Σ '

adds no junk to the sort s. Also note that the equations in E ' \ E have as
left-hand side terms with sort Bool, and then E ' adds no confusion to the sort
s. Hence, E ' is a protecting extension of E . On the other hand, note that Σ '

extends the poset of sorts of Σ with the new sort Bool from EBool and Bool
belongs to a new connected component in Σ ' . It is also true that > and ⊥ are
the Bool constructor terms in Σ ' . By ground confluence of E ' and freeness
of Ω ' modulo B ' , it follows that > 6='E ⊥. Because s is in Σ it follows that
k 6= Bool and thus Σ ' has an operator C ' : k k −→ Bool. It reamins to
prove sentences 1 and 2, or equivalently, for any t, u ∈ TΣ,s:

E ` t = u ⇐⇒ E ' ` (t' u) = > ⇐⇒ E ' 6` (t' u) = ⊥.

Let t, u ∈ TΣ,s. First note that the second equivalence follows by the ground
confluence of E ' and the freeness of Ω ' . Also note that E ` t = u trivially
implies E ' ` (t' u) = > because of the equation xk ' xk = > in E ' . Then, it
is enough to prove that E ` t = u is a logical consequence of E ' ` (t' u) = >.
Without loss of generality assume t, u ∈ TΩ,s. If E ' ` (t' u) = > because of
the equation xk ' xk = > in E ' , then t =B ' u which implies t =B u and
hence E ` t = u. Otherwise, let t = f(t1, . . . , tn) and u = g(u1, . . . , um) and let
us proceed by structural induction on the complexity of t and u, and by cases
on the axioms B of f :

f is an absolutely free symbol: by Definition 3 it must be the case that f = g,
n = m, and (ti ' ui) = > for 1 ≤ i ≤ n, and thus t = u by the induction
hypothesis;

f is a C-symbol: by Definition 4 it must be the case that f = g, n = 2 = m,
and either (t1 ' u1) = > = (t2 ' u2) or (t1 ' u2) = > = (t2 ' u1), and thus
t = u by the induction hypothesis;

f is an A-symbol: by Definition 5 it must be the case that f = g, n = 2 = m,
and either t1 = u1 and (t2 ' u2) = > or t2 = u2 and (t1 ' u1) = >, and
thus t = u by the induction hypothesis;

f is an AC-symbol: by Definition 6 it must be the case that f = g, n = 2 = m,
and t1 = u1 and (t2 ' u2) = >, and thus t = u by the induction hypothesis.

Finally, E ' is Boolean because EBool ⊆ E ' . ut

7 Automation of the E 7→ E ' Transformation,
Applications, and a Case Study

The transformation E 7→ E ' is obviously constructive. This means that, us-
ing reflection, it can be automated as an equationally-defined function at the
metalevel, which takes the meta-representation of E as input and returns the
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meta-representation of E ' as its output. We have achieved this automation in
Maude by using the META-LEVEL module, thus making it available within the
Maude language. The transformation code, as well as a collection of examples,
is available at http://camilorocha.info.

The transformation itself has already been incorporated into several Maude
formal tools, including the Maude CRC-ChC, and the Maude Invariant Analyzer.
In the near future it should be added to other tools such as the Maude Termi-
nation Tool (MTT) and the Maude Sufficient Completeness Checker (SCC).
One obvious advantage of these additions is the possibility of systematically
transforming specifications making use of built-in equalities and inequalities,
which cannot be handled by formal tools, into specifications where such built-in
equalities and inequalities are systematically replaced by equationally-defined
equalities, so that formal tools can be applied. But this is not the only possible
application by any means. For example, the extended version [8] shows how the
addition of equationally-defined equality predicates also makes the specification
and verification of safety properties in the Invariant Analyzer tool considerably
easier.

It is also clear that adding an equationally-defined equality to Maude’s Induc-
tive Theorem Prover (ITP) would make this tool more effective in many ways,
and would also greatly reduce the complexities of dealing with arbitrary univer-
sal formulas as goals, since all such formulas would be reduced to unconditional
equality goals. It would also be very useful to explore the use of the E 7→ E '
transformation in inductionless induction theorem proving. Yet another very
useful field of application would be early failure detection in narrowing-based
unification. The idea is that E ∪ B-unification goals can be viewed as equality
goals, which can be detected to have already failed if they can be rewritten to
false with E' modulo B'.

We present now a case study involving the use of the E 7→ E ' transforma-
tion in the Maude Invariant Analyzer (InvA) tool [15], which is a tool to prove
deductively safety properties of a rewrite theory R.

InvA is based on an inference system that transforms all formal temporal
reasoning about safety properties of concurrent transitions to purely equational
inductive reasoning. InvA provides a substantial degree of mechanization and
can automatically discharge many proof obligations without user intervention.
We illustrate how equality enrichments can be used to support the deductive
verification task in the InvA tool.

A typical mutual exclusion protocol for processes, called QLOCK, uses a global
queue as follows:

– each process that participates in the protocol does the following:
• if the process wants to use the critical resource and its name is not in

the global queue, it places its name in the queue;
• if the process wants to use the critical resource and its name is in the

global queue, if its name is at the top of the queue then the process gains
access to the critical resource; otherwise it waits; and

• if the process finishes the critical resource, it removes its name from the
top of the global queue.
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– the protocol should start from the state where the queue is empty; and
– it is assumed that each process can use the critical resource any number of

times.

Consider the following equational theory EQLOCK-SYNTAX that represents the
states of QLOCK with terms of sort State. It protects the equational theory EMSET
presented in Section 4. Processes and names of processes are modeled with nat-
ural numbers of sort Nat in Peano notation. A term Pi | Pw | Pc | Q of sort
State describes the state in which Pi is the collection of processes whose name
is not in the global queue (or idle processes), Pw is the collection of processes
whose names that are waiting to gain access to the critical resource (or waiting
processes), Pc is the collection of processes that are using the critical resource
(or critical processes), and Q is the global queue of the system. Sorts MSet and
Queue are used to represent collections of processes and queues of processes’
names, respectively.

fmod QLOCK-SYNTAX is

protecting MSET .

sort Queue .

op nil : -> Queue [ctor] .

op _@_ : Nat Queue -> Queue [ctor] .

op _;_ : Queue Queue -> Queue .

eq nil ; Q:Queue = Q:Queue .

eq (N:Nat @ Q1:Queue) ; Q2:Queue = N:Nat @ (Q1:Queue ; Q2:Queue) .

sort State .

op _|_|_|_ : MSet MSet MSet Queue -> State [ctor] .

endfm

The behavior of a transition system in rewriting logic is specified by rewrite
rules that define how the individual transitions change the state of the system.
The specification of all transitions of QLOCK is described by six rewrite rules in
the rewrite theory RQLOCK as follows.

mod QLOCK is

protecting QLOCK-SYNTAX .

vars Pi Pw Pc : MSet . var Q : Queue . vars N N’ N’’ : Nat .

rl [to-wait-1] : N | Pw | Pc | Q => empty | Pw N | Pc

| Q ; (N @ nil ) .

rl [to-wait-2] : N Pi | Pw | Pc | Q => Pi | Pw N | Pc

| Q ; (N @ nil ) .

rl [to-crit-1] : Pi | N | Pc | N @ Q => Pi | empty | Pc N | N @ Q .

rl [to-crit-2] : Pi | Pw N | Pc | N @ Q => Pi | Pw | Pc N | N @ Q .

rl [to-idle-1] : Pi | Pw | N | N’ @ Q => Pi N | Pw | empty | Q .

rl [to-idle-2] : Pi | Pw | Pc N | N’ @ Q => Pi N | Pw | Pc | Q .

endm
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Rewrite rules to-idle-1 and to-idle-2 specify the behavior of a process that
finishes using the critical resource: it goes to state idle and the name on top of
the global queue is removed. Similarly, rewrite rules to-wait-1 and to-wait-2,
and to-crit-1 and to-crit-2, specify the behavior of a process that wants to
use the critical resource and of a process that is granted access to the critical
resource, respectively.

We want to verify that the QLOCK satisfies the following safety properties. It is
key that (i) it satisfies the mutual exclusion property, namely, that at any point
of execution there is at most one process using the critical resource. We also
want to verify that (ii) the name on top of the global queue coincides with the
name of the process using the critical resource, if any. Finally, we want to verify
that (iii) the global queue only contains the names of all waiting and critical
processes. State predicates mutex, priority, and cqueue, respectively, specify
properties (i), (ii), and (iii) in the following equational theory EQLOCK-PREDS.
State predicate init specifies the set of inital states of QLOCK, with auxiliary
function set? that distinguishes multisets having no repeated elements. State
predicate unique is an strengthening for mutex and priority. Auxiliary function
to-soup on input Q of sort Queue computes the multiset made from the natural
numbers in Q.

fmod QLOCK-PREDS is

protecting QLOCK-SYNTAX .

protecting EQ-MSET .

vars N N’ : Nat . var Q : Queue .

vars Pi Pw Pc : MSet . var NeS : NeMSet .

ops init mutex unique priority cqueue : State -> [Bool] .

eq init( Pi | empty | empty | nil ) = set?(Pi) .

eq mutex( Pi | Pw | empty | Q ) = true .

eq mutex( Pi | Pw | N | Q ) = true .

eq mutex( Pi | Pw | N NeS | Q ) = false .

eq unique( Pi | Pw | empty | Q ) = set?(Pi Pw) .

eq unique( Pi | Pw | N | N @ Q ) = set?(Pi Pw N) .

eq unique( Pi | Pw | N NeS | Q ) = false .

eq priority( Pi | Pw | empty | Q ) = true .

eq priority( Pi | Pw | N | N’ @ Q ) = N === N’ .

eq priority( Pi | Pw | N Pc | N’ @ Q ) = (N === N’) and

(Pc === empty) .

eq cqueue( Pi | Pw | Pc | Q ) = Pw Pc === to-soup(Q) .

....

endfm

Observe that EQLOCK-PREDS protects the equality enrichment EEQ-NAT-SOUP,
found in Section 4, for the connected component of sort MSet that defines the
equality enrichment for sorts Nat, MSet, and NeMSet. The equality enrichments
for these sorts are key in the specification of the state predicates. For instance,
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predicates priority and cqueue are directly defined in terms of the equality
predicate for sorts Nat and MSet, and also use the Boolean connective for con-
junction and that comes with the Boolean equality enrichment. Auxiliary func-
tion set? also makes use of the equality enrichment for sort Nat. Note that, in
general, defining from scratch the equality enrichment for an AC-symbol such as
the multiset union in EMSet, can be a daunting task. Instead, in EQLOCK-PREDS,
the definition of the state predicate cqueue was straightforward with the help
of the equality enrichment for multisets of natural numbers.

By using the InvA tool we are able to automatically prove that predicates
mutex and priority are invariants of RQLOCK for any initial state that sat-
isfies predicate init. For predicate cqueue some proof obligations cannot be
automatically discharged. In general terms, 22 out of 26 proof obligations were
automatically discharged. However, this is an encouraging result, because the
current version of the InvA tool does not have dedicated inference support for
Boolean equality enrichments which could greatly improve the degree of deduc-
tive automation.

8 Related Work and Conclusions

In [7], the author generalizes and simplifies the technique given in [12] for proving
induction hypothesis without induction (so-called inductionless induction) using
enriched theories with the equality. The notion of s-taut related with a sort s
can be seen as a initial approximation of what we called in this paper an equality
enrichment. The technique described in the paper is based in the result stated
in Corollary 2.

In [11], the authors define the notion of equality enrichment (without axioms)
as an explicit subrepresentation of an equational equality presentation. Our work
extends this notion of equality enrichment with axioms and also presents an au-
tomatic way to generate this equality enrichment modulo axioms. As the authors
of [11] also remark, an equality enrichment can be used for using inductionless
induction theorem proving technique.

In [13], the authors propose an equality predicate for algebraic specifications.
Unlike our work, the authors do not consider axioms and sufficient completeness
in their theories, hence they have to manage terms with define symbols. In the
positive cases, their equality predicate is equivalent to ours, but in the negative
cases, a false answer in [13] does not mean that both terms are distinct for any
possible instantiation (as we state in our work), because the negative rules are
based on a check of convergence between terms. The goal of this behavior is to
avoid false positives instead of capturing negative cases.

In conclusion, this paper solves an important open problem: how to make
the addition of equationally defined equality predicates effective and automatic
for a very wide class of equational specifications with initial algebra semantics.
That such a transformation should exists is suggested by the Bergstra-Tucker
meta-theorem [2], but such a meta-result is not constructive and gives no insight
as to how the transformation could be defined. We have shown that it can be
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defined for a very wide class of algebraic specifications with highly expressive
features such as ordered-sorted types, conditional equations, and rewriting mod-
ulo commonly occurring axioms. We have also shown that all the expected good
properties of the input theory E are preserved by the transformation E 7→ E ' .
Using reflection, this transformation has been implemented in Maude and has
already been integrated into several formal tools. As mentioned above, this opens
up many useful application to improve the state of the art in formal verifica-
tion of algebraic specifications in general, and the Maude formal environment in
particular.
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