
ANALYZING THREE DIFFERENT TUNING STRATEGIES FOR RANDOM FOREST

HYPERPARAMETERS FOR FRAUD DETECTION

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Kulwinder Kaur Sarao

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

November 2021

Fargo, North Dakota

North Dakota State University

Graduate School

Title

ANALYZING THREE DIFFERENT TUNING STRATEGIES FOR

RANDOM FOREST HYPERPARAMETERS FOR FRAUD DETECTION

 By

Kulwinder Kaur Sarao

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Simone Ludwig

 Chair

Dr. Saeed Salem

Dr. Maria Alfonseca

 Approved:

 11/12/2021 Dr. Simone Ludwig

 Date Department Chair

iii

ABSTRACT

Technology is advancing rapidly, and more tasks are becoming online than ever. Along

with the benefits comes the disadvantages of this great advancement. While online services

relieve from the struggle of in person activities, it also puts you on the risk of getting deceived by

the fraudsters. This paper aims to detect the fraudulent transactions made online from a bank

using a synthetically produced dataset. A random forest model has been trained to predict the

fraudulent transactions. To achieve the best performance, the hyperparameters of the model have

been tuned using three different tuning methods. As it turns out, grid search proved to be the best

tuning strategy in terms of the mean cv score, precision, recall, f1-score and accuracy. It only

lacked in providing the best run time, where Bayesian Optimization scored well than the others.

iv

ACKNOWLEDGMENTS

I would like to thank all the people who in some way have contributed to the work done

in this paper. Firstly, I would like to thank my advisor, Dr. Simone Ludwig, for the immense

support she has provided me during my journey of master’s program. I would also like to thank

my committee members Dr. Saeed Salem and Dr. Maria Alfonseca for their interest in my work

and serving as my committee members.

I would like to thank my parents for their constant love and affection that encouraged me

to work hard. Finally, I would like to thank a big time to my mentor, my brother, for always

being there for me and putting all the faith in me.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION .. 1

2. RELATED WORK ... 3

3. APPROACH ... 6

3.1. Random Forest Classifier ... 6

3.1.1. Hyperparameters of Random Forest .. 7

3.2. Hyperparameter Optimization .. 8

3.2.1. Grid Search .. 8

3.2.2. Genetic Algorithm ... 9

3.2.3. Bayesian Optimization .. 12

3.3. Dataset .. 13

3.3.1. Class Imbalance ... 14

3.3.2. Cross-Validation .. 15

3.4. Evaluation Metrics ... 16

3.4.1. Confusion Matrix... 16

3.4.2. Precision .. 17

3.4.3. Recall ... 18

3.4.4. F1-Score .. 18

3.4.5. ROC-AUC ... 18

vi

4. EXPERIMENTS AND RESULTS ... 20

4.1. Experiment ... 20

4.1.1. Data Preparation .. 20

4.1.2. Set the Base Model .. 20

4.1.3. Tune the Hyperparameters .. 21

4.1.4. Evaluate the Performance .. 21

4.2. Results .. 21

4.2.1. Base Model .. 21

4.2.2. Bayesian Optimization .. 23

4.2.3. Genetic Algorithm ... 24

4.2.4. Grid Search .. 25

4.2.5. Summary.. 26

5. CONCLUSION ... 29

6. REFERENCES ... 30

vii

LIST OF TABLES

Table Page

1. Results of Base Model. ... 22

2. Results of Bayesian Tuning. ... 23

3. Results of Genetic Algorithm. .. 25

4. Results of Grid Search. ... 26

5. Best Values of Hyperparameters Suggested. .. 27

6. Summary of the Evaluation Metrics. .. 28

viii

LIST OF FIGURES

Figure Page

1. Working of Random Forest [10] ... 6

2. Grid Search Tuning [11] ... 9

3. Working of Evolutionary Algorithms [12] ... 10

4. Genetic Algorithm Terminologies [13] .. 11

5. Class Balance: Under sampling vs Oversampling [16] .. 15

6. K-fold Cross Validation [17] .. 16

7. Confusion-matrix [18] .. 17

8. ROC-AUC [19] ... 19

9. Base Model Confusion-matrix .. 21

10. Bayesian Optimization Confusion-matrix .. 23

11. Genetic Algorithm Confusion-matrix ... 24

12. Grid Search Confusion-matrix .. 26

1

1. INTRODUCTION

The banking sector is the most common sector, as every single human has or is going to

interact with a bank in their lifetime. Banking has made it very easy for humans to manage their

finances. With the advancement in technology, most of the people tend to use online banking

rather the physical one. Online banking has great benefits, skipping the hectic wait in lines for

physical banking. Thus, making the processes much easier and faster. It does not matter, if you

must pay your bills, buying something, pay tuition etc., everything can be done online.

There is always a risk of getting deceived by fraudsters when browsing online. Fraud is

increasing at a rapid rate day by day. Fraudsters are looking for a way to deceive anyone they

can find. It happens both offline and online and in almost all the business sectors. But the

banking sector is more prone to fraud, as people tend to save a huge portion of their money in the

bank rather than at home. There have been a lot of work going on to solve this issue.

Governments and private companies are spending tons of money to invent a permanent solution

to this problem. But fraudsters tend to evolve alongwith the technologies. They are coming up

with new methods and tricks to fool the people and loot their money. It is analogous to a police

man chasing the thief. Fraud detection is a hot topic in the computer science world. More and

more techniques have been developed to catch the fraud behaviour in a service.

Machine learning (ML) has played a huge role in this domain. Researchers have

developed really smart machine learning models that are able to detect the fraud transactions to a

great extent. But due to lesser data available in this domain, these models are far from being

perfect, although they do quite a good job. Researchers are always coming up with new

strategies to enhance the performance of their machine learning model. Almost every machine

learning model has hyperparameters associated with it.

2

Hyperparameters are the parameters that need to be set before training the machine

learning model. The values of these hyperparameters cannot be altered after the model has been

trained. They play a vital role in the performance of the model. To understand it in an easy way,

let us take an example of the radio. Assume the radio as a machine learning model and the

frequency setting knob of the radio as the hyperparameter of the model. You can achieve the best

sound quality of the radio by adjusting the knob to a specific setting. A slight change in either

direction of the knob will distort the sound quality of the radio. Similar is the case with the

machine learning models. Only by setting the optimal value of the hyperparameters, you can

achieve the best performance of the machine learning model. Selecting even a slightly higher or

lower value than the optimal value, can provide us a poorly working machine learning model.

There is ton of research going on in this domain as well. Machine learning

hyperparameters can have a wide range of domain. Therefore, it is impossible to achieve the best

results from the model by manually changing the parameters each time. This becomes even

harder when the ML model has multiple hyperparameters. Because an optimal combination of

the hyperparameter values is extremely hard to find manually. There are various methods that

scientists have developed to automatically find the best set of hyperparameters for a ML model.

But not all the methods work to tune each and every model. Therefore, one must have a good

understanding of both the tuning strategies and the model they are going to train, in order to

achieve the best results possible.

3

2. RELATED WORK

There have been ton of research on detecting fraud cases beforehand, so that the losses to

the banks and the individuals can be minimized. Frauds happen in most of the sectors of the

business: telecom, bank, medical etc. There is an urgent need to develop more and more ways to

stop the fraudsters playing with the people’s hard work and their money.

Sarma et al. proposed a community detection algorithm to identify the patterns that could

catch the fraud attempts [1]. A web application was built to detect the fraud using agile

methodology that acted as a central hub between the customers and the bank. A graph database

system, Neo4j, was used to search and filter the fraud cases. Finally, the test experiments were

detected successfully by the built application and then represented to the user graphically.

Another paper by John [1] used the data mining techniques to address the fraud detection

in banking. This paper talks about using the data mining techniques: clustering, association,

classification and forecasting to find the patterns by analyzing the customer data, that could lead

to detecting the fraud.

The paper in [2] proposed a smart approach, using optimized light gradient boosting

machine (OLightGBM), to detect the credit card fraud. The hyperparameters of this model were

tuned by Bayesian-based optimization. To test the performance of the developed model, two

real-world publicly available transaction data set for credit cards were used. The above-

mentioned method outperformed the other approaches by achieving the highest accuracy

(98.40%).

Chomiak [3] tried to detect fraud in the telecom industry. They used deep learning

techniques for this purpose, on a real mobile communication carrier data. They evaluated the

performance of different deep learning algorithms against each other. Deep convolutional neural

4

networks turned out to be the best technique with an accuracy of 82% as compared to other

algorithms (Support vector machines, random forest, gradient boosting).

In [4], a new generative adversarial network (GAN) that calculates the probability of a

large transfer which could be fraudulent was proposed. If the probability exceeds a threshold, the

bank can get notified and potentially stop the transaction. This model used a deep denoising

autoencoder to learn the probabilistic relationship between the input features and then plays a

minmax game between a generator and a discriminator to classify the positive and negative

samples accurately.

The above mentioned were some of the research papers published in the fraud detection

domain. Now, let us discuss some of the papers that shows the work done on tuning the

hyperparameters of a machine learning model and how the tuning benefits the model.

Wu in 2019 [5] used the gaussian process to construct the relationship between the

performance of a machine learning model and their hyperparameters. This way, the problem of

tuning the hyperparameters was considered an optimization problem and was solved using

Bayesian optimization, that is based on the bayes theorem. The results of the experiments for the

proposed method were successful in finding the best hyperparameters for various machine

learning algorithms, including random forest and neural networks.

The paper in [6] introduced a generic approach to utilize the knowledge from previously

performed experiments while tuning the hyperparameters of ML model that is working on new

problems. They demonstrated a surrogate-based collaborative tuning (SCoT) technique in two

experiments. SCoT is a combination of surrogate-based ranking and optimization methods. The

proposed technique outperformed the standard practices.

5

A Simple and Robust Hyperparameter Tuning Algorithm (ASHA) [7] was introduced in

this paper. This algorithm is said to exploit the features like early-stopping and parallelism,

making it outstand the state-of-the-art hyperparameter optimization techniques. This algorithm

have a linear relationship with the distributed number of workers. Moreover, it is efficient as

compared to Vizier (internal hyperparameter tuning service by google), as it takes only half of

the time to process.

There is a problem of time constraint while performing hyperparameter tuning jobs, as it

increases the financial cost associated with it. In order to address this problem, researchers have

created a framework called Rubberband [8]. It is claimed to be the first framework that provides

elastic and cost-effective execution of the hyperparameter jobs in the cloud. This framework has

successfully and efficiently reduced the financial cost by the factor of 2 as compared to the static

allocation baselines.

With the massive increase in the data, hyperparameter tuning methods needs to be

applicable to the big data as well. A novel framework was introduced to optimize the

hyperparameters for the big data [9]. Big data was divided into smaller pieces and then Bayesian

optimization was considered to generate the different configurations for the hyperparameters of

the model. After being tested with two machine learning algorithms, it was evaluated that the

framework reduced the computational time in comparison to the modern tuning strategies.

6

3. APPROACH

For this project, a Random Forest Classifier model has been trained for detecting fraud.

To get the best results possible, the hyperparameters of the model have then been tuned using

various strategies. Below is a detailed description of the terminologies used in this project.

3.1. Random Forest Classifier

Random forest (RF) comes under the classification of supervised learning algorithms.

Supervised learning is a subclass of machine learning that uses a predefined training set to train

the model, such that it could predict the desired output.

As the name suggests, random forest builds a forest of random decision trees. It is used to

solve both classification and regression problems. It is an ensemble learning model, that means it

uses many classifiers to obtain solutions for many complex problems. It takes the average/mean

of multiple trees to predict the output.

Figure 1. Working of Random Forest [10]

7

3.1.1. Hyperparameters of Random Forest

A hyperparameter is a parameter whose value is set before training the model and cannot

be determined from the data. Only by specifying the specific value of hyperparameters for a

problem, one could achieve the best performance of the model. Therefore, it becomes truly

important to determine the best hyperparameters of a model for a given problem to achieve the

best results possible. The hyperparameters of random forest in consideration for this project are

as follows:

3.1.1.1. N_estimators

This hyperparameter decides the number of decision trees generated for the random forest

model. Increasing the number of trees might help achieve the best results, but that is not always

true. Increasing the value of this parameter do not contribute to overfitting but might increase the

time complexity.

3.1.1.2. Max_depth

This is one of the most important hyperparameter for the RF model. It decides the

threshold of the height, the trees inside the RF model could grow. With the increase in value for

this parameter, the accuracy increases up to a certain limit and then starts decreasing gradually

because of the overfitting.

3.1.1.3. Min_samples_split

This hyperparameter decides the number of minimum samples a decision tree inside the

RF can hold before splitting into a new tree. Keeping the value low for this parameter means that

the tree will continue to grow and can end up getting over-fitted. On the other hand, higher

values for this parameter can cause underfitting.

8

3.1.1.4. Min_samples_leaf

It is the minimun number of samples a decision tree must hold in order to split.

Extremely higher or lower values of this parameter could cause over-fitting or under-fitting of

the model.

3.1.1.5. Max_features

This parameter helps in finding the number of features needed to form the best split of the

trees possible. It can take four values: auto, sqrt, log2 and None. Auto and sqrt are mostly same

as they take the square root of the n estimators. While log2 takes the log2 of the n estimators and

none considers taking the n estimators as is.

3.2. Hyperparameter Optimization

Hyperparameter tuning or optimization is the process of choosing optimal value for a

hyperparameter of the machine learning algorithm. Only with selecting the optimal value for the

hyperparameters of a machine learning algorithm, RF in our case, we can achieve the best

performance of the model. There are various techniques available to tune the hyperparameters.

For the scope of this project, we will be focusing on the following three techniques:

3.2.1. Grid Search

This could be considered as one of the simplest algorithms for tuning the

hyperparameters. As the name suggests, the whole domain of the possible values of the

hyperparameters are divided into discrete grids. Then, the performance metrics are evaluated

using different combinations of the grid using cross-validation. The optimal combination of the

values of the hyperparameters is the point where the average of the cross-validation is the

maximum.

9

Figure 2. Grid Search Tuning [11]

Grid search evaluates all the possible combinations of the grid and usually finds the best

set of hyperparameters. Because of spanning across all the combinations, it becomes an

exhaustive search and takes larger processing times.

3.2.2. Genetic Algorithm

Genetic algorithm (GA) is a classic evolutionary algorithm which is inspired by the

natural process of evolution. It is considered a stochastic search algorithm because it applies

random changes to the current solutions to generate the new solutions. The following diagram

depicts the cycle process of an evolutionary algorithm:

10

Figure 3. Working of Evolutionary Algorithms [12]

3.2.2.1. Basic Terminologies of GA

• Population is the subset of all the possible solutions of the problem we are

trying to solve.

• Chromosome is one of the candidate solutions out of the population. It can be

mutated and altered as per needs.

• Gene is further an element of the chromosome.

• Genetic operators help changing the composition of the next generation.

• Fitness function is a function that takes specific inputs to produce

child/offspring which is better than its parents.

11

Figure 4. Genetic Algorithm Terminologies [13]

3.2.2.2. Working of GA

GA follows this process to work on optimization problems:

• Initialization: the first step in the process is to generate an initial population that

comprises of the possible solutions to the problem in hand.

• Fitness assignment: All the individuals in the population are assigned a fitness

score by the fitness function. The fitness score determines the probability of being

selected for reproduction. The higher the fitness score, the higher is the

probability of getting selected.

• Selection: This is the phase where individuals are selected to produce the

offspring. The individual who has been chosen are then arranged in a pair of two

in order to enhance the reproduction, where they pass their genes on to the next

generation (offspring).

• Reproduction: A population of children is created in this step. The two main

operators of this phase are crossover and mutation. Crossover swaps the genetic

12

information between two parents to produce the offspring. Whereas, new genetic

information is added to the newly created child population in mutation.

• Replacement: in this step the old population is replaced with the new population

that consists of higher fitness scores than their parents, thus, improving the

results.

• Termination: this is the last step, used to terminate the algorithm. Once, a

threshold fitness score has been achieved after the replacement, then the algorithm

terminates itself. The best solution obtained is then provided.

3.2.3. Bayesian Optimization

Black box is an approach, where we can give an input and observe the output without

having knowledge of internal workings of the system. In machine learning, the problems where

objective function ƒ(x), acts as a black box, are considered as black box problems [14].

Bayesian optimization (BO) techniques tend to work around this terminology. The goal

of BO is to find the global optimal solution in the least number of attempts possible. In BO, a

prior belief is built around ƒ, that gets updated using the samples that are drawn from ƒ. This is

done in order to achieve a posterior that could better approximate ƒ. The model used for this

purpose, is known as surrogate model. Another terminology, acquisition function, is used to

direct the sampling to the areas where there is a chance of improvement over the current best

observation.

3.2.3.1. Surrogate Model

One of the most popular surrogate models is the Gaussian Process (GP). GP is a random

process to assign a random variable to the objective function ƒ(x). The variable can be any

random variable chosen from x ∈ ℝd.

13

 GPs define the prior functions that can be used to incorporate prior beliefs of the ƒ(x)

such as smoothness. It is comparatively cheaper to evaluate the posterior of GP. It can be used to

propose the sampling points in the search space, where there is a chance for improvement.

3.2.3.2. Acquisition Function

This function proposes the sampling points in the search space. They work on two

terminologies: exploitation, the sampling point where surrogate model predicts the higher value

of objective and exploration, is the sampling location where there is high uncertainty for

prediction.

The objective function ƒ, is sampled at

Xt = argmaxx u(x| Ð1: t-1)

Where u represents the acquisition function and Ð1: t-1 are the t-1 samples that have been drawn

from the objective function.

3.3. Dataset

It is quite obvious that we need some dataset to work on for detecting fraud. The dataset

used for this project is taken from Kaggle [15]. The dataset created is a synthetic dataset that was

generated by a simulator called PaySim. The size of the data is about 0.5 GB consisting of more

than 6 million rows and 10 columns which contains 9 feature and 1 label column.

The label column is a Boolean type, that represents if the transaction made was fraud or

not (0 represents no and 1 represents yes). As it is very normal that most transactions that happen

in daily life are usually normal and only a small number of them are fraud (as compared to the

authentic ones). The same is the case with this synthetic dataset. Out of the 6 million

transactions, about 8 thousand were labelled as fraud. Since, this is a classification problem and

we need to train our RF model accordingly, the problem that arises is class imbalance.

14

3.3.1. Class Imbalance

In comparison to 6 million authentic transactions, the number of fraud transactions

becomes negligible. This is known as class imbalance as the data for the labels become skewed.

This affects the performance of the machine learning model, as it will not be able to make sound

predictions from this data. Therefore, there is a need to balance the data. There are various

techniques to balance the imbalance of the data and reduce the bias of the machine learning

algorithms. The techniques are discussed as follows:

3.3.1.1. Under-sampling

This technique is useful for the larger datasets. Under-sampling reduces the size of the

majority class to match the size of the minority class in the data to balance the dataset. It does so

by keeping the samples of the minority class as is and selecting random samples from the

majority class.

3.3.1.2. Over-sampling

As the name suggests, this technique is the opposite to under-sampling. It works best

when the dataset is smaller in size. To balance the dataset, it increases the size of the minority

class to match the size of majority class. To generate more samples of the minority class,

different techniques: bootstrapping, repetition, or Synthetic Minority Over-Sampling Technique

(SMOTE) are used.

15

Figure 5. Class Balance: Under sampling vs Oversampling [16]

3.3.2. Cross-Validation

Cross-validation (CV), also known as k-fold CV, is an approach to evaluate the

performance of machine learning models. In this procedure, the training set is split into k smaller

sets. K here signifies the number of groups that a dataset can be split into. If the value of k is set

to 2, we can call it 2-fold CV, k=10 is 10-fold CV and so on.

To start with k-fold CV, the whole dataset is first shuffled randomly and then split into k

smaller groups. For each unique group, one group is taken as a hold on the side while the rest of

the groups work as a training data. Then, the machine learning model is trained on the training

data and evaluated on the test data. Finally, the evaluation score is stored, and the model is

discarded. This process repeats k number of times. At the last, we get a CV for each fold and the

average of all the CV scores is considered the final result.

16

Figure 6. K-fold Cross Validation [17]

3.4. Evaluation Metrics

After the model is trained, the next step is to evaluate how well the model has performed.

For this purpose, various performance metrics can be used. The RF model, for the scope of this

project, has been evaluated on the following six metrics.

3.4.1. Confusion Matrix

A confusion matrix is a performance metrics that is useful in determining the

performance of machine learning models for classification problems. It is N * N matrix, where N

represents the number of class labels. In our case, N = 2, as we have two class labels 0 and 1.

Following diagram shows how a 2 * 2 confusion matrix would look like.

17

Figure 7. Confusion-matrix [18]

Let us understand what all the values inside the matrix represents.

3.4.1.1. True positive (TP)

If you predict a value to be true and it is actually true, that is considered as a true positive.

3.4.1.2. False positive (FP)

If you predict a value to be true but it is actually false, then you have a false positive.

3.4.1.3. True negative (TN)

You predicted a value to be false and it is infact false, then you have a true negative.

3.4.1.4. False negative (FN)

You predicted a value to be false, but it is actually true, then you have a false negative.

3.4.2. Precision

This measure tells us out of all the classes that our model has predicted as positive/true,

are actually true. Basically, this measure tells us how many positive classes has been correctly

predicted by our model. We can calculate the precision by the following formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

18

The higher is the precision, the better the model performs.

3.4.3. Recall

This measure gives us the number of correctly predicted positive classes out of the all the

positive classes.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

The higher is the recall, the better the model performs.

3.4.4. F1-Score

Above, we learned about precision and recall and that the higher values are the better.

But what if the model has higher precision and lower recall or vice versa. This is the situation,

where F1 score helps in the evaluation.

F1-score, also called F-measure, is the harmonic mean of the precision and recall and can

be calculated by this formula:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

3.4.5. ROC-AUC

Receiver operating characteristic (ROC) curve is a graph based on TP and FP values. It

selects the best classifications models that have good rates of TP and FP. ROC curve is used for

the models that could predict the class probabilities. The area under the curve characterizes the

performance of the classification model. The more the area under the curve, the better is the

performance of the model.

19

Figure 8. ROC-AUC [19]

20

4. EXPERIMENTS AND RESULTS

4.1. Experiment

To start with the experiment, the first step is to load and manipulate the data if needed.

Then set the base model for the class prediction. As we want to see if the hyperparameters can

provide better performance of the model, therefore the next step is to tune the hyperparameters.

Finally, after tuning is done, evaluate the performance of the model using various performance

metrics. The experiment is split into four parts, which are described in the detail below.

4.1.1. Data Preparation

First, import all of the required libraries and then load the dataset. Count the number of

labels for each class. The data is skewed with higher number of samples for the authentic class

and lower samples for the fraud class. Therefore, we need to resample the data in order to

balance the classes. Because of the large size of the dataset, I have used under-sampling

technique to balance the data.

Once, the data has been balanced the next step is to look for numerical vs categorical

columns in the data. As categorical variable does not work quite well with the RF classifier, we

need to encode them using numbers.

After encoding the categorical variables, finally our data is ready to be used to train the

machine learning model. I have used 70:30 ratio to split the training and testing data.

4.1.2. Set the Base Model

After the splitting the dataset into test and train data, the next step is to prepare the base

model without any hyperparameter tuning. For doing this, first call the RF classifier and then fit

the train data on to the model. This model will serve as the base model for classification with

default set of hyperparameters.

21

4.1.3. Tune the Hyperparameters

After the base model is ready, we will now tune it using three optimization strategies we

have discussed before. I have used grid search, Bayesian optimization and genetic algorithm to

find the best set of hyperparameters that could provide the best performance of the RF classifier.

Thus, having a higher rate of success in detecting fraud.

4.1.4. Evaluate the Performance

Once all the tuning methods have been used to tune the model, the final step is to

evaluate how well our model has performed. Also, determine the impact of tuning the

hyperparameters and compare it with the base model. As discussed before, we will be using

metrics like precision, recall, f-1 score, confusion matrix, roc-auc to evaluate the performance.

4.2. Results

4.2.1. Base Model

The below diagrams shows the confusion matrix for the base model. From the diagram,

we can see that, out of total 16,426 samples 14,958 have been predicted correctly. It successfully

predicted 8,117 true positives and 6,841 true negatives. This gives us an accuracy of 91.06%.

Figure 9. Base Model Confusion-matrix

22

The following table shows the results for each of the performance metrics analyzed for

the base model. Accuracy for the base model turned out to be quite good. For the bigger dataset,

CV score becomes more reliable measure, as it gives you the mean of accuracy across the k-

folds.

Our base model, shown in Table 1, was successful in achieving an accuracy of 91.06%

and a mean CV score of 88.58%. The CV score has a standard deviation of 10.56%. It also

achieved close values for recall, precision, and F1-score measures, along with a great area under

the ROC curve value of 99.97%. This model had a run time of 15.89 seconds.

Table 1. Results of Base Model.

Metrics Value

Mean CV Score 0.8858

CV Score Standard Deviation

Precision

Recall

F1-Score

ROC

Accuracy

Duration of run (seconds)

 0.1056

0.92

0.91

0.91

0.9997

0.9106

15.89

23

4.2.2. Bayesian Optimization

Figure 10. Bayesian Optimization Confusion-matrix

The confusion matrix for the Bayesian optimization as shown in Figure 11, correctly

predicted 8,140 true positives and 6,349 true negatives. This gives us an accuracy of 88.20%. All

the other measure also achieved lesser success rate as compared to the base model (results shown

in Table 2). Therefore, in contrast to our expectation, it turned that BO did not improve the

performance of our base model even with hyperparameter tuning.

Table 2. Results of Bayesian Tuning.

Metrics Value

Mean CV Score 0.8820

CV Score Standard Deviation

Precision

Recall

F1-Score

ROC

Accuracy

Duration of run (seconds)

 0.1680

0.90

0.88

0.88

0.9998

0.8820

263.04

24

4.2.3. Genetic Algorithm

The results of the genetic algorithm were also comparable to that of Bayesian

optimization. There was only a slight difference in the values achieved for the performance

metrics. The confusion matrix (Figure 11) for the GA, was able to correctly predict 8,125 true

positives and 6,361 true negatives, providing the accuracy of 88.18% (which is slightly lesser

than the prediction of BO). All the other measures (Table 3) also achieved lesser success rate as

compared to the base model. Therefore, in contrast to our expectation, it turned that BO did not

improve the performance of our base model even with hyperparameter tuning.

It was able to achieve a mean CV score of 88.26% with a standard deviation of 16.82%.

It had similar recall and F1-score of 0.88 along with the precision of 0.90. this method took a run

duration of 23,975.11 seconds, which is much higher as compared to the above discussed

methods.

Figure 11. Genetic Algorithm Confusion-matrix

25

Table 3. Results of Genetic Algorithm.

Metrics Value

Mean CV Score 0.8826

CV Score Standard Deviation

Precision

Recall

F1-Score

ROC

Accuracy CV

Duration of run (seconds)

 0.1682

0.90

0.88

0.88

0.9998

0.8818

23975.11

4.2.4. Grid Search

The confusion matrix for Grid Search in Figure 13 shows a prediction of 8,028 true

positives and 7,419 true negatives, that is an accuracy of 94.03%. This approach achieved the

highest accuracy of all the other methods. It also achieved a mean CV score of 94.90% with a

very less standard deviation of 4.22%.

Grid search had the same score for the precision, recall and F1-score measures (Table 4).

Clearly, this method produced the best performance of all the above-described methods.

Unfortunately, it was not that good in terms of the run duration, as it was only able to beat the

GA. It had a run duration of 12,557.45 seconds, which is nearly half of that of GA, but it is

significantly greater than the run duration of BO.

26

Figure 12. Grid Search Confusion-matrix

Table 4. Results of Grid Search.

Metrics Value

Mean CV Score 0.9490

CV Score Standard Deviation

Precision

Recall

F1-Score

ROC

Accuracy CV

Duration of run (seconds)

 0.0422

0.94

0.94

0.94

0.9995

0.9403

12557.45

4.2.5. Summary

We can see the best hyperparameter values suggested by each tuning method in Table 5.

While the best value of N_estimator suggested by GA and BO was close, 140 and 150

respectively, Grid Search provided the best results of the model with only 40 N_estimators. On

the other hand, Grid search suggested a higher value for Max_features as compared to GA and

27

BO. For Max_samples_split, Grid search and GA’s best values were quite close, whereas BO

chose the value to be extremely less (2).

Table 5. Best Values of Hyperparameters Suggested.

Hyperparameter Grid Search Genetic Algorithm Bayesian

Optimization

N_estimators 40 140 150

Bootstap

Max_features

Min_samples_split

Min_samples_ leaf

True

1.0

12

1

False

0.6012

11

6

False

0.6605

2

1

Table 6 summarizes the results of all the methods of experiments for tuning the

hyperparameters for fraud detection. From the table below we can see that the highest mean

value of the CV score was achieved by Grid Search, 0.94, which is significantly higher than the

other methods. Grid Search again performed better than the rest of the techniques in terms of

recall (0.94) and F1-score (0.94), with a noticeable difference in the value. All the tuning

methods showed comparable results in terms of precision. Grid search outperformed the other

methods in terms of accuracy (94.03%) as well, while GA and BO achieved nearly closed

accuracies, 88.18% and 88.20%, respectively. The last factor to analyze was the duration of run.

BO performed the best in terms of run time, as it only took 263.04 seconds to finish processing,

while Grid Search took 12,557.45 seconds and the highest run time was for GA, 23,975.11

seconds.

28

Table 6. Summary of the Evaluation Metrics.

Metric Base Model Grid Search Genetic

Algorithm

Bayesian

Optimization

Mean CV Score 0.8858 0.9490 0.8826 0.8820

CV Score Std. Dev.

Precision

Recall

F1-Score

ROC

Accuracy

Run Duration (sec)

0.1056

0.92

0.91

0.91

0.9997

0.9106

15.89

0.0422

0.94

0.94

0.94

0.9995

0.9403

12557.45

0.1682

0.90

0.88

0.88

0.9998

0.8818

23975.11

0.1680

0.90

0.88

0.88

0.9998

0.8820

263.04

29

5. CONCLUSION

This paper has tried to enhance the performance of the RF model in order to better detect

the fraudulent transaction. It used a synthetic dataset of the size of nearly half a GB to train and

test the random forest model. To compare if tuning the hyperparameters of the model can

provide better performance in fraud detection, we used three techniques to tune the

hyperparameters of the model.

Before getting started with the experiments for tuning the hyperparameter, first the

dataset was manipulated. Since this dataset represents whether a transaction made online was

fraud or not, it is common to have an imbalance between the class labels. This caused the model

to be biased in predicting the class labels correctly. Therefore, in order to balance the dataset,

under-sampling class rebalancing was used. It was noticed that after the class was balanced, the

model was unbiased in predicting the class labels.

All of the three hyperparameter tuning techniques: grid search, genetic algorithm and

Bayesian optimization were run to get the results from the random forest classifier. The results

showed that the grid search outperformed the rest of the methods in terms of the performance

measures except the run time.

Grid search was able to achieve an accuracy of 94.03% and a mean CV score of 94.90%,

which is significantly higher than the other tuning methods. It also outperformed in terms of

precision, recall and F1-score. The other two methods, GA and BO decreased the accuracy and

mean CV score of the base model. On the other hand, they had a better precision, recall and F1-

score than the base model. Lastly, grid search did better in all the measures except the run

duration but was still better than GA.

30

6. REFERENCES

[1] S. John, "Realtime Fraud Detection in the Banking Sector Using Data Mining

Techniques/Algorithm," IEEE, 2016.

[2] A. A. Taha, "An Intelligent Approach to Credit Card Fraud Detection Using an Optimized

Light Gradient Boosting Machine," IEEE, 2020.

[3] A. Chouiekh, "ConvNets for Fraud Detection analysis," Procidia Computer Science, 2018.

[4] Y.-J. Zheng, "Generative adversial network based telecom fraud detection at the receiving

bank," Elsevier, 2018.

[5] X.-Y. C. Jia Wu, "Hyperparameter Optimization for Machine Learning Models based on

Bayesian Optimization," Journal of ELECTRONIC AND TECHNOLOGY, 2019.

[6] R. Bardenet, "Collaborative hyperparameter tuning," Proceedings of Machine Learning

Research, 2013.

[7] L. Li, "A System for Massively Parallel Hyperparameter Tuning," Conference on Machine

Learning and Systems 2020, 2020.

[8] U. Misra, "RubberBand: Cloud-based Hyperparameter Tuning," Association for Computing

Machinery, 2021.

[9] T. T. Joy, "Hyperparameter tuning for big data using Bayesian optimisation," IEEE, 2016.

[10] W. contributors, "Random forest," Wikipedia, The Free Encyclopedia., 2021.

[11] G. MALATO, "Hyperparameter tuning. Grid search and random search," Your Data

Teacher, 2021.

[12] Pico, "How does a Genetic Algorithm work?," Knowledgebase , 2021.

31

[13] V. Mallawaarachchi, "Introduction to Genetic Algorithms — Including Example Code,"

Towards Data Science, 2017.

[14] M. Krasser, "Bayesian optimization," Github, 2018.

[15] E. A. Lopez-Rojas, "PaySim: A financial mobile money simulator for fraud detection," The

28th European Modeling and Simulation Symposium-EMSS, 2016.

[16] R. Agarwal, "The 5 Most Useful Techniques to Handle Imbalanced Datasets," KDnuggets,

2020.

[17] F. Pedregosa, "Scikit-learn: Machine Learning in {P}ython," Journal of Machine Learning

Research, 2011.

[18] S. Narkhede, "Understanding Confusion Matrix," Towards Data Science, 9 May 2018.

[19] V. A. Ferraris, "Commentary: Should we rely on receiver operating characteristic curves?

From submarines to medical tests, the answer is a definite maybe!," Plum X Metrics, 2019.

[20] D. Sarma, "Bank fraud Detection using Community Detection Algorithm," IEEE, 2020.

[21] X. Zhuo, "A state of the art survey of data mining-based fraud detection and credit

scoring," EDP Sciences, 2018.

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	2. RELATED WORK
	3. APPROACH
	3.1. Random Forest Classifier
	3.1.1. Hyperparameters of Random Forest
	3.1.1.1. N_estimators
	3.1.1.2. Max_depth
	3.1.1.3. Min_samples_split
	3.1.1.4. Min_samples_leaf
	3.1.1.5. Max_features

	3.2. Hyperparameter Optimization
	3.2.1. Grid Search
	3.2.2. Genetic Algorithm
	3.2.2.1. Basic Terminologies of GA
	3.2.2.2. Working of GA

	3.2.3. Bayesian Optimization
	3.2.3.1. Surrogate Model
	3.2.3.2. Acquisition Function

	3.3. Dataset
	3.3.1. Class Imbalance
	3.3.1.1. Under-sampling
	3.3.1.2. Over-sampling

	3.3.2. Cross-Validation

	3.4. Evaluation Metrics
	3.4.1. Confusion Matrix
	3.4.1.1. True positive (TP)
	3.4.1.2. False positive (FP)
	3.4.1.3. True negative (TN)
	3.4.1.4. False negative (FN)

	3.4.2. Precision
	3.4.3. Recall
	3.4.4. F1-Score
	3.4.5. ROC-AUC

	4. EXPERIMENTS AND RESULTS
	4.1. Experiment
	4.1.1. Data Preparation
	4.1.2. Set the Base Model
	4.1.3. Tune the Hyperparameters
	4.1.4. Evaluate the Performance

	4.2. Results
	4.2.1. Base Model
	4.2.2. Bayesian Optimization
	4.2.3. Genetic Algorithm
	4.2.4. Grid Search
	4.2.5. Summary

	5. CONCLUSION
	6. REFERENCES

