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ABSTRACT 

A simple model is developed to study the compressive failure strength of woven compos­

ite laminates. Two different configurations, a flat plate under in-plane compression and a thin­

walled cylindrical tube under external pressure, are considered. Two micromechanisms observed 

in experiments, delamination of thin layers at the inner surface for the tube and fonnation of kink­

ing bands for the flat plate, are used to develop the model. An energy criterion is employed to 

determine the failure strength of cylindrical tube. Three nondimensional parameters, related to 

interlayer surface energy, initial misalignment of fibers, and the delaminated layer thickness as 

well as the radius of curvature of the tube, are identified as governing parameters for different fail­

ure modes. The model predictions agree well with experimental results. 
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1. INTRODUCTION 

It has been widely observed that, in long fiber composite laminates such as unidirectional 

and woven composites, the compressive failure strength is usually lower than the tensile failure 

strength. However, compressive strength is often the design limiting criterion in many applica­

tions. It is well established that compressive failure of composite laminates can be attributed to 

one of many different micromechanisms, including: elastic microbuckling [1], formation of kink 

bands or plastic microbuckling (2-6], fiber collapse [7-9], and inter-layer delamination [10-15, 6]. 

Whichever of these mechanisms gives the lowest compressive failure stress will dominate the fail­

ure process. 

What makes the problem more complicated is that the failure stresses due to different 

mechanisms will not only depend on the intrinsic properties of composites such as constituents 

properties and microstructures, but also on the external conditions such as loading types, speci­

men geometries, and boundary conditions [16]. Wang and Socie [6] made an interesting observa­

tion that, in woven composites, the compressive failure stress of a thin-walled tube under external 

pressure is only about one half of that of a flat plate under in-plane compression. A detailed study 

of failure surfaces revealed that the failure mechanism of the flat plate was formation of kink 

. bands, whereas the mechanism of the cylindrical tube was delamination caused by buckling of 

layers at inner surface. 

In the present paper, based on the mechanisms of the compressive failure of composite 

laminates, we will develop a simple model for delamination failure of cylindrical tubes. We will 

concentrate on unidirectional and woven composite laminates without macroscopic stress concen­

trators such as notches and holes. A number of non-dimensional parameters which determine the 

final compressive strength of woven composite tubes will be identified. Models of the compres­

sive strength of flat composite plate due to formation of kink bands will also be reviewed. The 

results will be compared with the experimental measurements. 

2. DELAMINATION FAILURE OF CYLINDRICAL TUBES 

Delamination failure of a cylindrical tube under external pressure is often caused by buck­

ling of one or several layers at the inner surface of the composites, as those shown in Fig. 1. It was 
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also shown by Tamopl'skii and Kincis [12] that buckling could occur progressively layer by layer 

at the inner surface in a thick-walled tube, apparently due to nonuniform stress distribution in the 

tube (the compressive stress is higher at the inner radius). In the following, we consider only a 

thin-walled cylindrical tube under external compression. Instead of analyzing the detailed process 

of delamination which requires interfacial fracture analysis, we study only the states before and 

after the buckling occurs, and calculate the total energy of these states by assuming an approxi- · 

mate deflection shape for the post-buckling mode, thus to provide an estimate of the driving force 

for delamination. 

In the current analysis, we assume that the width of the buckled layer along axial direction 

of the tube is sufficiently large so that a stripe of unit width in the middle region of the buckled 

layer can be considered as a curved beam with an initial radius of curvature Ro, where Ro is the 

inner radius of the tube plus one half of the height of the buckled layer. A curvilinear coordinate 

system, s, shown in Fig.I is chosen. we denote the height of the buckled layer by t, length of the 

buckled portion by l, and consider only unit width. 

To simplify the mathematical derivation, some approximations are made. The deformation 

is assumed to be small so that the change of radius due to axisymmetrical compression is consid­

ered to be negligible compare to the radius itself, i.e., RsR.0. 

Strain energy a(stay in plane de,fnrmntinn. When the deformation of the layer stays in the original 

plane of the cylindrical tube, the total strain energy of a curved beam of unit width (see Fig. 1) 

under compressive stress O' is given as 

(1) 

where Eis the Young's modulus in the direction parallel to the compressive stress. 

Tntnl energy af bucJded ln:ye,; The total energy of the buckled layer consists of two parts, 

(2) 

where U1 is the energy per unit width due to generation of new surfaces, and u2 is the strain 

energy per unit width of the deflected beam. It is easily seen that 

U1 = 2yl , (3) 
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where y is the interlaminar surface energy in units of Jlm2• 

To estimate the strain energy, U2, we assume that the strain energy due to extensional 

deformation is negligible compared to the strain energy due to bending. i.e., 

(4) 

where l=f/12 is the moment of inertia of the beam cross-section. M(s) is the bending moment in 

the curved beam, and is related to the deflection v(s) by (see Oden [17]), 

M · d2v v 
-- =-+-

EI di R2 
(5) 

The deflection of the buckled layer, in the direction normal to the original neutral axis of the beam 

and pointing inward, can be assumed to take the form, 

v0 21ts 
v(s) = 2 (cos(-1-) +l) +v1 (6) 

where v1=aRofE is the uniform displacement of the tube due to the uniform compressive stress a. 

The amplitude v0 can be determined by the compatibility condition between the buckled and 

unbuckled portion of the tube, i.e., the displacement at the end (s=l/2) of the buckled beam along 

s-direction must be the same as that of the unbuckled beam, and the length of the delaminated sec­

tion remains unchanged. This condition leads to 

or, 

l/2 
al I f dv 2 
-- = - (-) ds 
E2 2 ds ' 

0 

a 21 2 
v~ = - (-) 

E 1t 

(7) 

(8) 

Using the deflection function v(s) in (6), and equations (2-8), the total energy of the buckled layer 

per unit width can be obtained as 
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where we define the non-dimensional parameters as, 

_ cr_ Y 1- l J:. t 
cr = E' 'Y = Et' = t' and .., = R 

0 

(9) 

(10) 

Criterion for delamfnation. It is conceivable that delamination will occur when the total energy of 

the buckled layer is smaller than or equal to the strain energy of the stay in plane layer, which first 

happens when Ubuckle=Usray- Therefore, the critical stress at delamination, crc, is determined by 

equating (1) to (9), which gives, 

[ 
2]2 2 - cr 2 

-2 l ( 1 J: i 21t - 1 j:4 ~ l C) 4-
(jc = - 21t':,) ---2(jc + 12':i (,Jcrci + s + 'Y (11) 

3 (l) 

It should be noted that the delamination length i in (11) is not specified. Obviously, a 

length which gives a minimum value of delamination stress is preferred. Therefore, the critical 

delamination stress in (11) can be defined as the lowest stress for any delamination length i. Once 

delamination occurs, it is assumed that the load bearing capacity of the tube is nearly exhausted. 

Thus the critical de lamination stress can be considered as the compressive strength of the compos­

ite tube. 

A typical normalized stress a vs. normalized length i curve is shown in Fig. 2, which dem­

onstrates that a minimum stress exists. In this plot, nondimensional parameters t!Ro=0.02, y/ 
(Et)=I0-5 were used. For typical values of £=20 GPa, t/Ro=0.02, and yl(Et)=lO -5 and IO 4, the 

delamination stresses are 128 MPa and 400 MPa, respectively. 

3. FAILURE OF FLAT PLATE DUE TO FORMATION OF KINK BANDS 

Another common failure mechanism of composite laminates is the formation of kinking 

bands, as shown schematically in Fig. 3. It has been shown by Fleck and Budiansky [9] that the 

mechanism of kinking failure in unidirectional fiber composites is usually plastic microbuckling. 

Efforts have been made to calculate the critical stress at which kinking occurs. Assuming a 

rigid-perfectly plastic behavior in shear for unidirectional long fiber composites, Argon [2] 
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obtained a critical compressive stress as 

't 
(J = ~ 

C <l> ' 
(12) 

where 'ty is the shear yield strength in the direction parallel to the fibers, and <l> is the angle of ini­

tial misalignment of fibers. This result was later extended by Budiansky [3] to an elastic-perfectly 

plastic composite, for which the critical kinking stress is 

(13) 

where G is the shear modulus in the direction parallel to the fibers which is often about In of the 

corresponding Young's modulus, 'Yy is the shear yield strain. Typical value of <j>lyy ranges from 2 

to 8 for unidirectional fiber composites (see Budiansky and Fleck [4]). 

Taking G=::£/a. (a.=-7), the normalized compressive strength due to kinking is given as, 

- 1 
(J = -----

c a. ( 1 + <j>/yy) • (14) 

Obviously, for any given material with given shear modulus G and initial waviness <j>/yY' the com­

pressive strength along the fiber direction of the composite is a constant. 

Failure by forming of kinking bands has also been observed by Wang and Socie [6] in 

their flat plate specimens. They found that under bi-axial stress in woven composite flat plate, 

regardless of the level of secondary compression (the stress with a lower magnitude), the com­

pressive failure stress is always about 320 MPa. This result is consistent with the predictions by 

the models of kinking failure described above, since kinking failure criterion requires only that 

local shear yielding condition be reached in one direction (along fiber direction) regardless of 

stresses in other directions. 

4. RESULTS AND DISCUSSION 

With the two failure mechanisms of composite laminates analyzed, the failure stress for a 

given long fiber composite and a given specimen geometry can then be determined. The failure 

stress due to delamination given by equations (11) is a function of the normalized surface energy, 

y, and the ratio of the delaminated layer thickness to the radius of curvature, t/R0 • Whereas the 
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failure stress due to formation of kink bands given by equation (14) will only be dependent on the 

initial waviness of fibers and the yield strength of matrix, and independent of y and t/R0 . 

The normalized delamination stress is shown in Fig.4 as a function of the normalized 

interlaminar surface energy for typical values of tlR0=0.1 and 0.01. As expected, the delamination 

stress increases with the fracture surface energy, i.e., a higher surface energy requires a larger 

stress to reach the delamination condition. On the other hand, the delamination stress has a rela­

tively weak dependence on the thickness-to-radius ratio t/R0 • The results also indicate that the 

delamination stress increases with increasing t/R0 , i.e., the thicker the relative thickness t/R0 , the 

higher the delamination stress will be. 

Fig.5 shows the normalized kinking failure stress verses the normalized misalignment 

parameter, <Pl'Yy, where the shear modulus G is taken to be E/7. The plot shows that kinking failure 

strength is very sensitive to the initial misalignment, particularly when the misalignment angle is 

small. In real material, there exists a statistical distribution misalignment angle. Therefore, kink­

ing failure usually initiates at locations where misalignment angle peaks. 

Plotting the compressive strengths due to two different mechanisms together, Fig. 6, we 

can see that the two failure mechanisms compete with each other. When interlaminar surface 

energy is low, delamination failure is likely to be the failure mode; but when interlaminar surface 

energy is beyond a critical value (shown in Fig. 6), kinking failure is preferred. The critical value 

of interlaminar energy is dependent on both the thickness-to-radius ratio t/R0 and the misalign­

ment parameter <Pl'Yy· Fig. 6 shows that, for a fixed ratio t/R0 , critical interlaminar energy increases 

with decreasing misalignment. It can be easily shown that critical interlaminar energy would 

decrease with increasing t/R0 • Kinking failure strength, determined by the parameter !p/yY' sets the 

ultimate ceiling of composite compressive strength regardless of the specimen geometry. 

Based on the current model, a failure mechanisms map can be constructed in a space char­

acterized by material properties, i.e., <PIYy - y space. Such a map is shown in Fig. 7, which shows 

that materials with large misalignment and high interfacial energy tend to fail by formation of 

kinking bands, whereas those with small misalignment and low interfacial energy are likely to fail 

by delamination. The effect of the geometrical parameter, t/R0 , is to shift the dividing curve of 

dominant failure modes. 

As a special case, our model predictions are compared with the experimental results 
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obtained by Wang and Socie [6J. The material tested by them is a glass fiber, NEMNASTM G-10 

grade woven composite laminates. The material properties are given in Table 1. The only 

unknown material parameter for this material is the interlayer surface energy y. However, it was 

measured by other people on some similar polymeric matrix materials that the interlayer surface 

energy was reported to be around 130-150 J/m2 for regularly cured laminates [18, 19]. 

The critical failure stresses measured by Wang and Socie for two test configurations, a flat 

plate and a cylindrical tube, were 320 MPa and 170 MPa, respectively. The compressive failure 

mechanism of the flat plate was found to be formation of kink bands and that of the cylindrical 

tube was delamination of one or a few layers on the inner surface. The initial misalignment angle, 

<I>, of the woven composite was reported to be less than 10°. Using equation (14) and the kinking 

failure stress of 320 MPa together with the measured material properties, we can determine that 

the initial misalignment angle is about q,=4.5° for the tested composite. 

The delamination stresses for the observed layer thickness t=0.5 mm were calculated 

based· on the present model. For the typical range of the surface energy y.=130-150 J/m2, the 

delamination stresses are in the range of 155-167 MPa, which agree very well with the measured 

value of the delamination stress 170 MPa. 

5. CONCLUDING REMARKS 

A simple model has been developed in this paper based on the failure mechanisms 

observed in experiments. Both the compressive failure mode due to formation of kink bands and 

the mode due to delamination are considered. Despite the approximations, the results show that 

the model can explain the effects of specimen geometry on the compressive failure stress of long 

fiber composites. The model predictions agree with the experimental results of Wang and Socie 

[ 6] rather well. 

Three non-dimensional groups are identified by the model as governing parameters for 

compressive failure mechanisms of composite laminates: the normalized interlayer surface 

energy, y/Et; the ratio of the delaminated layer thickness to the initial radius of curvature, t!R0; and 

the ratio of the initial misalignment angle to the matrix shear strain at yielding, q>l"f y• Our results 

indicate that the two mechanisms, delamination and kinking, compete with each other to deter­

mine the final failure strength of the composite. If delamination is the dominant failure mecha-

8 



nism, the interlayer surface energy y is the key parameter which controls the delamination stress. 

On the other hand, when kinking failure dominates, the way to improve the composites compres­

sive strength is to reduce the initial misalignment angle <l> and increase the material's shear yield 

strength. The upper bound to the compressive strength is set by the kinking failure stress. 

Real failure processes of composites are not as ideal as we considered here. Neither 

delamination nor kinking failure will occur instantaneously over the whole specimen. They usu­

ally initiate from some processing defects within the material (interlayer bubbles, dirt, or heavily 

misaligned regions) and then propagate through the specimen to result in final failure. Therefore, 

an effective way to control the propagation of kink bands and delamination may also raise the 

compressive failure strength. On the other hand, failure process in composites is never a clear-cut 

process. Even for the flat plate, a close examination of specimens tested by Wang and Socie [6] 

reveals that while major portion of the failure plane is kinking failure, some portion still shows 

traces of delamination. Furthermore, uniform stress distributions are rarely encountered in engi­

neering applications. Holes and notches are inevitable in engineering components. Since the 

mechanical behaviors of composite materials are geometry sensitive, problems of composite 

materials with stress concentrators must be considered with special care as was done by Suo, et al. 

[20] for ceramic-matrix fiber composites. 
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Table 1: Material Properties and Geometry of G-10 Composite Specimens 

Properties Values 

Young's Modulus E 2_2.8 x 103 (MPa) 

Shear Modulus G 2.9 x 103(MPa) 

Shear Yield Strain Yy 0.01 

Compressive Strength - 332 (MPa) 

Compressive Failure Strain -0.016 

Inner Radius of the Tube 22.5 (mm) 

Thickness of the Buckled Layer 0.5 (mm) 
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FIGURE CAPTIONS 

Fig. 1 Delamination failure mode of a thin-walled tube under external pressure. 

Fig. 2 A typical curve of the normalized stress versus the normalized buckling length. exhibit­
ing the existence of a minimum stress. 

Fig. 3 Schematic illustration of the formation of kinking bands of flat plate under compression. 

Fig. 4 The normalized delamination stress as a function of the normalized interlaminar surface 
energy for thin-walled tube. 

Fig. 5 The normalized kinking stress versus the normalized initial misalignment angle. 

· Fig. 6 The failure strength due to two different mechanisms. the formation of kinking bands 
and interlaminar delamination. The two failure processes are competing against each 
other. 

Fig. 7 Failure mechanisms map showing regions dominated by different failure modes. 
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