
Finding Related Entities by Retrieving Relations:
UIUC at TREC 2009 Entity Track

V.G.Vinod Vydiswaran, Kavita Ganesan, Yuanhua Lv, Jing He, ChengXiang Zhai
Department of Computer Science

University of Illinois, Urbana, IL, USA
{vgvinodv, kganes2, ylv2}@illinois.edu, peaceful.he@gmail.com, czhai@cs.uiuc.edu

ABSTRACT
Our goal in participating in the TREC 2009 Entity Track
was to study whether relation extraction techniques can help
in improving accuracy of the entity finding task. Finding
related entities is informational in nature and we wanted
to explore if inducing structure on the queries helps satisfy
this information need. The research outlook we took was
to study techniques that retrieve relations between two en-
tities from a large corpus, and from those, find the most
relevant entities that participate in the given relation with
another given entity. Instead of aiming at retrieving pages
about specific entities, we tried to address the problem of di-
rectly finding the entities from the text. Our experimental
results show that we were able to find many related entities
using relation-based extraction, and ranking entities based
on further evidence from the text helps to a certain extent.

1. PROBLEM FORMULATION
The TREC 2009 Entity Track concentrated on finding re-
lated entities. Given an entity of focus, the nature of relation
between this entity and other entities, and some information
of the type of other entities, the goal was to find all the re-
lated entities.

Instead of taking a search perspective looking for homepages
of related entities, we wanted to explore the information
seeking aspects of the query. Our general goal for the Entity
track was to study the usefulness of information extraction
techniques in improving the accuracy of the entity finding
task. In particular, we focused on investigating whether
we can improve accuracy by formulating such entity-finding
queries as a relation query, which can be answered through
relation extraction. We formulated the query, described by
the narrative, as [entity - relation - entity] triplet,
where relation and the first entity are given, and the type of
the other entity is known. The task is to then find instances
of the other entity that satisfy the relation. Such a formu-
lation also reflects many other semantic search applications
such as redacting (anonymizing) sensitive information, ques-
tion answering, and intelligence gathering applications.

This formulation was similar to a relation retrieval problem,
explored earlier in [7]. A relation is assumed to be binary
verb predicate over entities, where the entities can poten-
tially have roles in which they participate in the relation.
For example, the relation of touring a new city can be mod-
eled as a person visiting a location. Here, the person always
fills in the first slot and the location fills in the second. Spe-

cial filters can additionally be applied on the two slots to
restrict specific subsets of persons or locations (such as a
city or a country). In this year’s task at TREC, one entity
(usually the “first slot”) is deterministic and fixed and the
second entity is restricted by the type of the named entity.
The relation was specified in the narrative, or had to be
derived from there.

In the next sections, we describe our approach in detail. We
start with an overall system architecture in section 2, detail-
ing the core modules in sections 2.1, 2.2, and 2.3. We explain
the parameters of our submitted runs in section 3 and briefly
summarize our preliminary evaluation in section 4. Finally,
we discuss some challenges we faced in section 5.

2. SYSTEM ARCHITECTURE
Our basic approach can be summarized by the following
stages:

1. Formulate a structured query based on the given entity
and the relation expressed by the narrative.

2. Retrieve relevant snippets that match the relations
specified in the query.

3. Identify named entities in the resultant snippets using
state-of-the-art NE taggers (for persons and organiza-
tions) and product identifiers.

4. Rank retrieved entities and find homepages for the en-
tities.

We further extend this basic approach in two ways:

• Before the retrieval step, we expand the relation ex-
pressed in the given query with semantically similar
and related words, derived from WordNet and other
linguistic resources such as distributional similarity;
resulting in an expanded query for retrieval.

• After retrieval, we explore techniques to improve the
accuracy of extraction by searching for more relations
that link the two entities in similar contexts, from the
corpus. This is expected to help us improve our entity
identification task and improve the relative ranking of
relevant entities.

The following sections explain the three steps in our model,
viz. query formulation and retrieval, entity recognition, and
entity filtering and re-ranking.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4836442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Screen shot of a sample search system [7]
that searches for related entities given the relation
and one of the entities.

2.1 Relation Retrieval
As we described earlier, we model the information need as a
structured query. We identify three parts to the structure:
the relation, the entity of focus, and the entity of interest. A
sample snapshot of the query interface from a demo system
is shown in Fig. 1. This formulation does not describe an
arbitrary relation, but we postulate that any long-distance
relation could be modeled as a series of multiple binary re-
lations. For example, the task of finding “all team-mates
of Michael Schumacher” could be addressed by formulat-
ing two related relation queries: “[Michael Schumacher]

[drives for] [ORG-1]”and“[PER] [drives for] [ORG-1]”,
to find related entities through ORG-1 (the team), which is as
yet unknown, but would hopefully get filled in by “Ferrari”
during execution. Such a formulation would still not capture
all pieces of information or relations, such as co-occurrence
relation or ”is-a” (sub-class) relation (e.g., sportspersons,
German nationals, etc.). We plan to treat these as filters
that would need external “world knowledge” to solve.

One of the primary challenges is to recognize the relation.
For all TREC queries, we use the narrative to derive what
the intent of the query is, and hence decide on the rela-
tion. In most cases, we could parse the narrative to identify
the verb directly or indirectly, when the verb is present in
nominalized form (i.e. in noun form). In cases where pars-
ing failed to recognize the relation, simple rewrite rules such
as converting the “headline-style” narrative into a grammat-
ical sentence helped. For example, the narrative for query
number 1 in test topics, “Carriers that Blackberry makes

phones for.” was preceded by “There are many” to con-
struct a valid grammatical sentence and help parse the nar-
rative better. We restricted our model to a single relational
query in the current runs.

Once the relation predicate was identified, we augment it
with its synonyms from WordNet [4]. We also incorporated
similar words found using distributional similarity computed
over a large text corpus. Other works in literature [3, 5] have
shown that words belonging to word-classes built in such an
unsupervised fashion have high similarity and relatedness
among them.

Finally, the given entity is used to restrict the searches to
pertain to a primary entity. This way, we hope to retrieve
all relations expressed in different surface forms, but related
to the specific entity; thereby improving recall without los-
ing too much on precision. We also add other noun phrases
from the narrative to the final query as optional keywords.
We built a retrieval system over the ClueWeb09 corpus using
the Indri toolkit [8], and utilized the rich IndriQuery query-
ing language to query the index. The final query formulation
had the primary entity, the relation word with its synonyms,
optional noun phrases from the narrative, and the type in-
formation of the desired entity, combined in such a way that
the retrieval system enforces matching of the primary entity
and one of the relation words in all retrieved documents.

2.2 Identifying Entities
The next step is to find the entities participating in the re-
lation of interest. From the relevant documents returned
by the retrieval system, we first identify relevant snippets.
A snippet is primarily a passage of 2–3 sentences around
the words that match the query. Since our queries have
both entity and relation components, we hypothesize that
the snippets would also contain the second entity that is re-
lated to the given entity. The retrieved snippets are passed
through state-of-the-art NER taggers and product extrac-
tors to identify the entities in the snippets.

2.2.1 Names and Organizations
Researchers have been dealing with named entities for over a
decade now, and have proposed and evaluated many models
to this effect [2, 6]. Like most NLP tasks, these models
derive local and global features based on the actual named
entity itself and the context in which it appears; and train
a classifier to recognize and classify an entity from free text,
using external resources when available. Recognizing named
entities is now considered one of the pre-processing steps to
analyzing text for deeper semantics, and many NLP toolkits
are available for entity recognition.

We used the LBJ-based Named Entity Tagger1 to tag the
retrieved snippets with named entities, viz. person names
(PER), organizations (ORG), locations (LOC), and other classes
(MISC). This state-of-the-art tagger [6] uses non-local fea-
tures, external knowledge such as gazetteers derived from
Wikipedia, and features based on word cluster hierarchy de-
rived using distributional similarity over a larger text corpus.
The tagger has also been shown to perform well on Web-
pages, where most named entities have less context around
them.

2.2.2 Products
For the TREC task, we were primarily concerned with per-
son names, organizations, and product names. Since the
state-of-the-art named entity recognizer that we used only
identified entities such as person, locations, and organiza-
tions, we implemented a fairly simple tool to recognize prod-
ucts. Our product recognizer uses a rule based approach and
is context independent. It mainly relies on a dictionary of
company names and a pre-defined set of patterns for product
recognition.

1From http://L2R.cs.uiuc.edu/∼cogcomp/software.php

The search for product names starts with the generation of
a set of candidate phrases. Candidate phrases are phrases
that match a pre-defined set of regular expression patterns.
These candidate phrases could eventually turn out to be
true product names. Applying a regular expression pat-
tern, such as “find capitalized phrases containing some num-
bers with length greater than two”, on the text “The Nokia

6600 was one of the oldest models.” will result in “The
Nokia 6600” being tagged as a potential product name.

To be certain that candidate product names found through
regular expression matches are indeed true product names,
further analysis is needed. For the example provided, the
candidate phrase, “The Nokia 6600” will be further ana-
lyzed with validation and refinement steps, as follows:

• Removal of stop words at the beginning of a candidate
product name

• Phrase length validation (varies based on matched pat-
tern)

• Occurrence of company name within a candidate phrase

Various regular expression patterns were defined to capture
different types of products with the most specific pattern
being at the top. If two patterns match overlapping can-
didate phrases, the longer phrase is always chosen although
this phrase is subject to further validation. Although regular
expression matches alone may be sufficient in identifying a
product name, to avoid false positives or wrong start and end
boundaries it is necessary to validate them through checks
like the ones mentioned above. In our implementation, the
types of refinement and validation checks performed depend
on the regular expression patterns matched.

The product class, in itself, is a heterogeneous mix of mul-
tiple classes, depending on the categories they belong to.
A music album could have any generic name, whereas a
laptop model has a more generalizable name. A pharma-
ceutical product name, such as “Synagis R©”, is not a com-
pany name but is simply a capitalized word ending with a
symbol. Such a name will not be correctly identified as a
true product name if the above refinement steps are used.
Thus, different types of products will need different forms
of validation. This is one of the major problems that we
faced in recognizing products. Products of different genres
have very different ways of being defined – common con-
sumer products often contain model numbers or company
names within them, pharmaceutical products tend to be sin-
gle word names, names of music albums are simply plain text
often capitalized, and so on. Thus, we feel that a better ap-
proach would be to first identify the origin domain of the text
to be tagged (e.g., pharmaceutical, music, journal, etc.), and
then apply tagging rules that are specific to that domain.
Extending state-of-the-art NE taggers to new classes is in-
deed a potential research direction to be explored, as has
been done in bio-medical and chemical domains. However,
for this task, we decided to go with the simpler approach
of applying a general set of rules that would capture most
common product names with refinement steps specific to the
matched regular expression pattern.

2.3 Filtering and re-ranking entities

Once the entities are identified, we try to find which entities
are relevant to the query. As of now, the only filter we
have applied is that the candidate entities identified are co-
located with the entity of interest. We apply the following
filter rules to shorten the list of candidate entities.

1. We first drop the entity that has high lexical overlap
with the given entity in the query.

2. We look at the type of the desired entity from the
query topic and remove all entities that are not of that
type. The queries looking for persons and organiza-
tions directly correspond to PER and ORG classes of the
NE tagger. But for products, we consider input from
Product identifier and the“other”MISC class tagged by
the LBJ-based NE tagger. This way, we hope to cover
a broader class of product names.

3. We also try to prune candidates based on semantic
structure of the sentences. The idea is to include can-
didates from only those sections of the sentences that
are part of the SRL predicate-argument structure cor-
responding to the relation word. However, we found
that this rule was very restrictive, in that it implic-
itly assumed that all entity-relation matches occurred
in well-formed sentences (which was not the case for
many queries). So, the rule ended up removing many
valid occurrences.

4. Finally, we compute string edit-distance between re-
maining entities; and merge candidates that have high
similarity. This heuristic also tries to merge candidate
people names that specify only the last name. For ex-
ample, this assimilation was important in case of Karen
Spärck-Jones, an “ACM Athena Award winner” (query
number 2 in test topics). This way, we could han-
dle slight variations in her name, like Karen Spärck-

Jones, Karen Sparck Jones, and Sparck-Jones, and
treat them all as one.

The next step was to score the candidate entities and get a
ranked list of candidates. We could try out two measures
for scoring and re-ranking in our runs. These are explained
below.

1. Support in the retrieved snippets. Support was com-
puted by simply counting the number of times a can-
didate name appeared in the retrieved snippets. If two
candidate names were merged because of small spelling
variations, their counts were added up.

2. Relatedness with the given entity. We issue multi-
ple queries, one per candidate, that look for possibly
other relations between the two entities (i.e. the given
entity and one candidate entity per query). We cal-
culated support based on documents retrieved by such
a query. The intuition behind this measure is that if
there are many documents that mention the two enti-
ties together in close proximity, then this evidence of
high co-occurrence may indicate some relationship be-
tween the two entities, even if there is no explicit men-
tion of the relation asked for. A good example here is
query number 3 in test topics, that looked for all “stu-
dents of Claire Cardie”. In this case, DBLP pages,
and other university pages came out as valid sources to

Particulars ⇓ Run ID ⇒ UIauto UIqryForm UIqryForm3

Type of run Automatic Manual Manual
Type of manual input None Removed “digressing synonyms”

from the relation queries
Number of candidates returned As many As many Only top 3
Number of relevant documents considered 100 20 10
Re-ranking rules

• Support Yes Yes Yes
• Relatedness Yes No No

Special processing of Wikipedia pages No No No
External Resource used

• Distributional similarity Yes Yes Yes
• WordNet No Yes Yes

Handling Named Entities LBJ-Named Entity tagger and Product recognizer

Table 1: Parameters of the submitted runs

justify relation between Claire Cardie and her stu-
dents, even though it did not mention the advisor-
student relationship on the page.

We combined the two scores using a simple weighted sum,
with the relative weight of importance manually set to prefer
support over relatedness in the ratio of 2:1.

As the final step, we searched the corpus for homepages of
the final, ranked list of candidate entities. This was done
using a simple IndriQuery that weighted the occurrence of
the candidate name in the title and headings higher than
the body (in the ratio of 5:4:1, respectively). We pruned
the retrieved set of results to only consider the top 3 doc-
uments as homepages, as per the submission guidelines. If
one of the top 3 pages returned was a Wikipedia page, then
we assigned that document id to the optional “Wikipedia
homepage” field and continued up to the top 4 documents
instead of 3. A shortcoming of this approach was that a doc-
ument might come as a top-ranked result for many entities
if it is significant for multiple candidates. For example, the
DBLP page of one of the co-authors might have multiple oc-
currences of other candidate entities, and hence might come
as a top retrieved document for many entities. Since finding
homepages was not the primary focus of the research ideas
we wanted to explore, we applied simple rules to check that
the resultant pages do not repeat under one query topic,
again to follow the submission guidelines.

The process of finding homepages also acted as the final
pruning step. If we could not find any document returned for
a candidate entity, we dropped that candidate from the final
list. This was also mandated by the submission guidelines.

Once the final ranked list of candidates was decided, we col-
lected all documents that supported these candidates from
the original list of documents returned for the relation query.
This subset was mentioned as the list of supporting docu-
ments in the submitted runs.

3. DETAILS OF THE SUBMITTED RUNS
We submitted three runs, viz. UIauto, UIqryForm, and UIqry-

Form3; and they are summarized in Table 1. None of the runs
handled Wikipedia sub-collection in any special way. The
details about the runs are explained below.

3.1 UIauto
This was an automatic run. We constructed the relation
query with only the words in the narrative. We did not
use WordNet, but considered only the closest word from
the distributional similarity-based word cluster as the syn-
onym. The top 100 documents were retrieved and the rel-
evant snippets were passed through the named entity rec-
ognizers. Then, the candidate entities were re-ranked based
on both support and relatedness metrics.

3.2 UIqryForm
This run was manual. We first applied WordNet based syn-
onym expansion to the relation word. However, we found
that it added many words that drifted the intent of the
query. So, we have to manually prune out the other ir-
relevant senses from the expansion list. We considered the
top 20 documents and identified entities from the snippets
as described earlier. The entities were ranked only on the
support metric. All the short-listed entities were returned.

3.3 UIqryForm3
This run was also manual. It was basically the same setup
as UIqryForm, except that only the top 10 documents were
considered while finding related entities, and only top 3 en-
tities were returned for each query.

4. EVALUATION
As per the official results released, the UIauto run seemed to
perform the best among the runs we submitted. The results
are summarized in the first row of Table 2.

Since our primary focus was to check if we are able to re-
trieve the related entities, and not on finding homepages
corresponding to the related entities, we also evaluated our
performance on recognizing relevant named entities alone.
For this, we considered all the name strings identified in
the released qrel file for this track and computed the re-
trieval measures over the names of the entities. It must be
noted that a name was judged correct if it matched up with
something else in the record, even if the record was neither
primary nor relevant for the topic [1]. This means that, for
the purpose of evaluating names alone, the qrel file may in-
clude spurious entries. We were not aware of this anomaly

Particulars ⇓ Run ID ⇒ UIauto UIqryForm UIqryForm3

nDCG (official) 0.0575 0.0302 0.0189
Named Entities (NEs) returned 624 510 57
relevant NEs returned 139 89 28
Micro-averaged precision 0.2228 0.1745 0.4912
Macro-averaged precision 0.3876 0.3671 0.5083
Precision @ 5 0.5400 0.4200 0.2800
Precision @ 10 0.4050 0.2350 0.1400
Precision @ R (R: # retrieved NEs) 0.3876 0.3671 0.5083
Precision @ 5 (adjusted for R) 0.6083 0.5083 0.5083
Precision @ 10 (adjusted for R) 0.5158 0.4018 0.5083

Table 2: Summary of results

till the TREC workshop and we could not find an automated
approach to easily overcome this.

Table 2 summarizes our performance on retrieving relevant
named entities. In the table, micro-averaged precision is
calculated by accumulating counts of relevant and retrieved
entities over all query topics, and then finding the precision
over the accumulated counts. In contrast, macro-averaged
precision is calculated by first computing the precision for
each query topic and then taking their average.

As shown in Table 2, we get a macro-averaged precision of
over 0.36 for both UIauto and UIqryForm. In UIqryForm3,
since we restricted our results to only top 3 named entities
for each topic query, the macro-averaged precision was sig-
nificantly higher at 0.51, but at the cost of lower number
of returned entities. This probably suggests that we were
more successful in finding the relevant entities, but could
not get valid homepages for most of the entities we found.
The Precision at 5 and Precision at 10 measures also show
that UIauto run performed better over the other runs. It is
able to achieve an average of 60% precision, computed at 5
results, adjusted for number of entities retrieved.

In our experiments, when we added WordNet based syn-
onyms, we added too many digressing words, leading to poor
results. In the submitted runs UIqryForm and UIqryForm3,
we manually pruned the expansion list to only retain valid
synonyms. So, the main reason for poor performance of the
manual runs probably comes from the fact that these use
fewer documents to find related entities. Additionally, these
two runs did not use relatedness measure to further improve
confidence of the extracted entities.

5. DISCUSSION
Large corpora often test the existing tools and system imple-
mentations to the core, for both scalability and robustness.
This was the case also with the ClueWeb09 corpus. During
the initial stages, we wanted to explore if we could parse the
corpus with NLP tools such as the Named Entity tagger and
co-reference resolver. This way we could use special indexes
over the named entities for better retrieval, we hoped. But
processing the large corpus took inordinate time, so we had
to revert to applying NLP tools only on the smaller snippets,
increasing the query time.

Another important issue was to overcome the errors of ex-

isting NE taggers and filters. On analyzing the candidates,
we saw that the two main classes of errors that the tag-
gers produced were erroneous classification (identifying the
wrong named entity type) and to a lesser extent, identifying
partial entities. We tried to overcome these by also includ-
ing entities marked as MISC to overcome the type-naming
errors. This was especially important for the product class
of queries. We tried to overcome the partial entity recogni-
tion problem with edit-distance based clustering of similar
candidate names.

6. CONCLUSIONS
To find the related entities from text, we have tried to in-
corporate NLP resources to analyze deeper semantics of text
rather than surface matches. Our experiments validated our
assumption that it is possible to find related entities us-
ing NLP techniques such as relation identification. Further,
the results show that ranking related entities is improved
by finding other supporting relations between entities from
text. However, the manual improvements to the relation
extraction stage does not show improvement; and further
experimentation and analysis would be required to better
understand the reason. The performance can be further im-
proved with better techniques to filter false-positive entities
and improve the ranking based on external corpora, such
as Wikipedia. We believe that IR methodologies can help
from deeper natural language processing and hope to con-
tinue this direction of research of combining NLP tools and
techniques for improving focused searches.

7. REFERENCES
[1] K. Balog, A. P. de Vries, P. Serdyukov, P. Thomas, and

T. Westerveld. Overview of the TREC 2009 Entity
Track. In Proceedings of the Eighteenth Text REtrieval
Conference (TREC 2009), 2010.

[2] D. M. Bikel, R. Schwartz, and R. M. Weischedel. An
Algorithm that Learns What’s in a Name. Machine
Learning Special issue on Natural Language Learning,
34(1-3):211–231, 1999.

[3] P. F. Brown, V. J. D. Pietra, P. V. deSouza, J. C. Lai,
and R. L. Mercer. Class-Based n-gram Models of
Natural Language. Computational Linguistics,
18(4):467–479, 1992.

[4] C. Fellbaum. WordNet: An Electronic Lexical Database.
MIT Press, 1998.

[5] D. Lin. Automatic Retrieval and Clustering of similar
words. In COLING-ACL, pages 768–774, 1998.

[6] L. Ratinov and D. Roth. Design Challenges and
Misconceptions in Named Entity Recognition. In
Proceedings of the Thirteenth Conference on
Computational Natural Language Learning
(CoNLL-2009), pages 147–155, Boulder, Colorado,
June 2009. Association for Computational Linguistics.

[7] D. Roth, M. Sammons, and V. Vydiswaran. A
Framework for Entailed Relation Recognition. In
Proceedings of the ACL-IJCNLP 2009 Conference Short
Papers, pages 57–60, Suntec, Singapore, August 2009.
Association for Computational Linguistics.

[8] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: A language-model based search engine for
complex queries. In Proceedings of the International
Conference on Intelligent Analysis, 2005.

