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Abstract: Background and Method: Recurrent Pregnancy Loss (RPL) is defined as the occurrence of two or more consec-
utive miscarriages within the first 20 weeks of pregnancy. The key challenge remains to be what it is that has to
be done with couples experiencing RPL. Infections, endocrine disturbances, a suboptimal uterine environment,
advanced maternal age, and genetic influences are some of the factors which may increase the chances of RPL
occurrence. Despite all medical and research efforts, approximately 40 percent of RPL cases are categorized as
unexplained. This is while amongst all the various factors which may lead to such condition, fathers’ genetic in-
fluences have often been ignored in the past. In fact, parental chromosomal anomalies, gene mutations such as
the microdeletion of chromosome Y, and/or some polymorphism of HLA-G have shown to contribute and lead
to miscarriage. Result: Furthermore, high levels of Reactive Oxygen Species (ROS) can cause DNA damage in
spermatozoa. Meantime, sperm DNA damage has been closely linked with indicators such as fertilization, em-
bryo quality, implantation, spontaneous abortion, congenital malformations, and childhood diseases. Sperm
Chromatin Structure Assay (SCSA) is a test to measure DNA fragmentation. Moreover, the other SCSA param-
eter that needs to be considered is high DNA stainability (HDS). It is worth mentioning that HDS is associated
with frequency of aneuploidy in spermatozoa. In addition, high HDS can be associated with an increased risk
of early abortion in IVF and ICSI cycles. Conclusion: Additionally, increasing paternal age and varicocele can
increase the risk of miscarriage. Advanced Paternal Age (APA) can also increase the relative risk of offspring neu-
rocognitive defects. In saying that, the microsurgical varicocelectomy effectively increases the odds of natural
pregnancy, the rate of high-quality embryos, and the success rate of in vitro fertilization.

Keywords: Male; Miscarriage; Reactive Oxygen

Cite this article as: Abedi A R, Rahavian A, Rahmani F, Shariatpanahi S, Aliakbari F. The role of men in recurrent miscarriage; a Narrative

Review. Mens Health J. 2019; 3(1): e7.

1. Introduction

In academic terms, RPL is a heterogeneous condition and is

defined as the occurrence of two or more consecutive preg-

nancy losses before 20 weeks of pregnancy (1). Between

6.5% and 21% of all clinically diagnosed pregnancies result in

spontaneous abortion. In fact, higher rates are reported in in-

fertile couples (2). The factors which may increase the risk of

pregnancy loss are infections, endocrine disturbances, a sub-

optimal uterine environment, advanced maternal age, and

other primarily genetic-based factors (3). It is worth men-
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tioning that approximately 50% of RPLs are caused by chro-

mosomal abnormalities, particularly aneuploidy (4). In addi-

tion, about 40 percent of RPL cases are categorized as unex-

plained, despite the extensive work that is employed by med-

ical experts and researchers (5). In reality, the role of cou-

ples has proven to be a challenging task in the search for an-

swers and potential methods to tackle this condition. This

is while amongst all the various factors which may lead to

such condition, fathers’ genetic influences have often been

ignored in the past. In other academic studies, aneuploid sets

of chromosomes were seen in 0.6% of sperm in normal ejac-

ulates, 6% in severe oligospermia, and 14% in nonobstructive

azoospermia (6).

Spermatozoa with abnormal morphology not only affects fer-

tilization, but also may result in a higher percentage of ab-

normal embryos which are aborted early in gestation. This
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observation emphasizes that sperm DNA integrity plays an

important role in embryogenesis. Furthermore, sperm DNA

damage may lead to pre- and post-implantation losses, early

pregnancy loss, and congenital malformations (7). Karyotype

cannot detect small chromosomal deletions which might re-

sult in pregnancy loss. In which case, Array Comparative Ge-

nomic Hybridization is necessary for the detection of these

small chromosomal cuts. Recent evidence also proposes that

the epigenetic changes of the sperm such as altered chro-

matin packing, and telomeric shortening, can play an impor-

tant role in the etiology of RPL. It is also worth noting that pa-

ternal aging can also influence on embryonic development

(8).

During normal spermatogenesis, most nuclear histones are

replaced by protamines 1 and 2, creating a highly compacted

nucleus containing the two protamines in an approximate

1:1 ratio. An abnormal P1-to-P2 ratio is also associated with

reduced sperm concentration, abnormal sperm morphology,

increased sperm DNA fragmentation, and reduced fertiliza-

tion and implantation rates (9, 10). Human spermatozoa

are also vulnerable to free radical attack by reactive oxygen

species, this process destabilizes the DNA structure resulting

in DNA strand breaks (11). Although the egg cytoplasm has

the ability to repair damaged DNA, this ability may vary be-

tween individual eggs and amongst women of different age

(12). In this review article, the male partner’s role in preg-

nancy loss is to be presented and discussed.

2. Methods and Discussion

2.1. Chromosomal Abnormalities

Parental chromosomal anomalies were seen in 4% and 0.7%

of couples with miscarriage and those from the general pop-

ulation, respectively (13). The genetic evaluation usually

consists only of the karyotypes, and the most common find-

ing is missing or additional chromosomes (3). Chromoso-

mal abnormalities detected by karyotypes include abnormal

structures of the individual chromosomes with the correct

number of chromosomes (23 pairs or 46 chromosomes) or an

abnormal total chromosome number (additional or missing

chromosomes. e.g. 45, X or 47, XXY) (14) . Structural chro-

mosome abnormalities are reported in about 3-6% of spon-

taneous abortions (15). In the study of human bodies, tri-

somy 21 and Klinefelter’s syndrome have been shown to be

20% and 40% paternal in origin, respectively (15).

Individuals with balanced translocations will have no clin-

ical or physical findings upon which to make the diagno-

sis, rather they can only be detected through a karyotype.

Balanced translocations have a role on future pregnancy

outcomes as they may produce balanced or unbalanced

gametes. Balanced translocations consist of reciprocal or

Robertsonian translocations or inversions. They are associ-

ated with reduced pregnancy rates and increased abortion

(3). The incidence likelihood of Robertsonian translocation

is about 0.1% in the general population (16) while is reported

as high as 8% in couples with RPL (17).

2.2. Sperm Factors

Sperm DNA Damage
The most important change that occurs in spermatid is the

exchange of 85% of the histones with protamine protein. Af-

ter replacement, the protamine proteins cause folding of the

DNA into a series of toroids, which allow for a high level of

DNA compaction. This replacement and compaction not

only reduce the head size of the sperm to enhance their hy-

drodynamics but also decrease the probability of DNA dam-

age. However, about 15% of DNA is bound to histones. It

is peripherally located in the nucleus and is susceptible to

various environmental insults, especially oxidative damage

(18, 19). It is obvious that any changes in genetic material

of sperm may affect the zygote (20). Sperm DNA integrity

is an important requisite for the correct transmission of ge-

netic material to the offspring, and its impairment increases

the risk of abortion (21). Sperm DNA or chromatin damage

can be due to unrepaired DNA breaks, abnormal or incom-

plete chromatin packaging during spermatogenesis, abortive

apoptosis, and oxidative stress induced by releasing of Reac-

tive Oxygen Species (ROS) (22). The oxidative stress occurs

when there is an imbalance between ROS and antioxidants. A

small amount of ROS is necessary for the physiological func-

tion of sperm, including capacitation, hyperactivation, and

acrosomal reaction. However, high levels of ROS can cause

DNA damage in spermatozoa. Moreover, Oxidative Stress

(OS) is mainly caused by factors associated with lifestyle

(23). Sperm DNA damage has been closely linked with in-

dicators such as fertilization, embryo quality, implantation,

spontaneous abortion, congenital malformations, and child-

hood diseases (21). The assessment of the sperm quality

based on the World Health Organization (WHO) guidelines

are poor predictors of reproductive outcomes (24, 25). Differ-

ent assays have been developed to assess sperm DNA dam-

age, which are more clinically informative and relevant. The

most used techniques for the analysis of sperm DNA frag-

mentation have traditionally been TUNEL test, Sperm Chro-

matin Structure Assay (SCSA), and Sperm Chromatin Disper-

sion (SCD) test. The TUNEL assay detects both single- and

double-stranded DNA breaks by labeling the free 3’-OH ter-

minus with the large terminal deoxynucleotidyl transferase

(TdTA) enzyme. The SCSA test determines the percentage of

sperm stained with AO in a semen sample that fluoresces red

(broken DNA) or green (intact DNA) following an acid denat-

uration step (26). This is the only sperm DNA fragmentation

test that simultaneously measures both DNA strand breaks

and chromatin structure (27). The SCD test is based on the
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principle that DNA fragments of sperm cannot produce a

"halo" of dispersed DNA rings after acidic denaturation and

nucleoprotein removal. The number of sperm without DNA

fragments is assessed by microscopy (26). A significant neg-

ative correlation between sperm DNA damage and embryo

quality has been elucidated in vitro and in vivo (27). The high

degree of DNA fragmentation may not necessarily affect fer-

tilization rates, while may result in subsequent miscarriage

(5). Carlini et al. investigated 112 men from RPL couples,

114 infertile men with 1 or more impaired semen parameters,

and 114 fertile men with high-quality semen, by analyzing

the SDF using TUNEL. They found that the DFI was higher

in the RPL group than that in the fertile controls (18.8% ±
7.0% vs 12.8% ± 5.3%, P < 0.001), and similar to that in in-

fertile patients (28). Two recent cohort studies found SDF,

measured with sperm chromatin dispersion test, is signifi-

cantly higher in couples with unexplained RPL (URPL) com-

pared to a control group of fertile men (29, 30). Therefore,

it seems reasonable to offer SDF (Spermatozoa DNA Frag-

mentation) testing to couples with otherwise URPL. Besides

advanced paternal age, many environmental factors, such as

cigarette smoking, obesity, exogenous heat, and exposure to

toxins, have been associated with increased SDF (30). Oth-

ers, in contrast, reported that there was no significant corre-

lation between DNA fragmentation and RPL. Thus, they con-

cluded that DFI was not an important cause and predictive

factor for RPL. Gil-Villa et al. evaluated the DFI in a control

group (18.5% ± 4.2%) and a RPL group (16.3% ± 4.0%) using

the SCSA test and found no significant difference between 23

couples with history of RPL and 11 men with recent fertility

(31). Bellver et al. found that there was no statistically signif-

icant difference in the DFI (using the SCD test method) be-

tween a group of 30 patients with RPL and the 30 controls,

and Coughlan et al. came to the same conclusion using the

SCD test in 16 RPL patients (32). Menezo et al. reported that

the use of oral antioxidant therapy could reduce the sperm

DFI, especially in the setting of oxidative DNA damage, and

significantly improve sperm DNA quality (33).

Another factor that has a possible role in RPL with high

sperm fragmentation is the repair mechanism of the oocyte

on sperm DNA damage. Hamatani et al. reported that sperm

DNA may be repaired by oocytes up to a threshold of female

age ≤35 years, thereby maternal age is an important factor

in miscarriage (34). A study by Evenson and Wixon (2006)

indicated a trend towards increased spontaneous abortions

when the DFI was > 30%. DFI score > 30% was associated

with increased miscarriage rates and a higher rate of sponta-

neous abortion at 12 weeks of gestation (P < 0.01) (35). lower-

ing the DFI values to below the threshold of 13.59% through

lifestyle management or medication is expected to increase

the success rate of pregnancy in patients with repeated abor-

tions (36).

2.3. Sperm chromosome: structural abnormality

The other SCSA parameter that needs to be considered is

high DNA stainability (HDS) which expresses the fraction of

sperm with higher level of green fluorescence due to a lack

of full exchange of histones for protamines. Flow cytomet-

ric sorting demonstrates that the sperm with high HDS has

a more rounded morphology than normal sperm, and lacks

DNA strand breaks (37, 38). It is believed to characterize the

immature sperm in the sample (38). Some studies suggest

that semen samples with a high HDS level may lead to early

embryo loss; however, the results are somewhat conflicting

(39-41). HDS >15% was correlated with an almost 5% in-

crease in the risk of early miscarriage (42).

Lin et al. (40) found that a high HDS was associated with an

increased risk of early abortion in ICSI cycles, but not in IVF.

Wyrobek et al. (43) found that HDS is associated with fre-

quency of aneuploidy in spermatozoa (44). This is not sur-

prising as immature sperms have an increased rate of aneu-

ploidy and other chromosomal abnormalities (44). A higher

proportion of immature spermatozoa (45, 46) as well as ane-

uploid gametes (47) have been linked to an increased risk of

miscarriage after ART. It can therefore be speculated that the

increased risk of miscarriage seen in couples with HDS >15%

might be due to high aneuploidy rate in spermatozoa. It can

also be speculated why the impact of high HDS on the risk of

early miscarriage was only seen in ICSI cycles. One plausible

explanation might be the difference in the mode of fertiliza-

tion. In IVF, due to the competition between spermatozoa,

it is likely that mature spermatozoa have a higher chance of

binding to the zona pellucida and penetrating the oocyte. In

ICSI, on the other hand, when using samples with high HDS,

there is an increased risk of immature spermatozoa being in-

jected into the oocyte, and therefore those pregnancies are

at a higher risk of miscarriage (44). In support of this hy-

pothesis, Lathi and Milki (48) found that a higher proportion

of early aborted embryos with aneuploidy was seen in ICSI

pregnancies compared with those resulting from IVF.

2.4. Gene Mutation

HLA-G
Mothers are anticipated to produce antibodies and a cyto-

toxic T lymphocyte response to foreign paternal HLA or other

antigens expressed by the fetal cells (49). HLA Class Ia (A, B

and C) are not expressed by trophoblasts to maintain preg-

nancy. A special set of HLA Class (Ib: E, F and G) is expressed

on the fetal cells, which are thought to have an inhibitory

effect on the maternal immune system. The expressions of

class Ib antigens are organ-specific and conditional (50, 51).

Several polymorphisms are present in the 3 prime untrans-

lated region (30UTR) of the HLA-G gene. The polymorphisms

in this region may have impact on the level of HLA-G ex-
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pression and on pregnancy outcome (51, 52). The 14bp in-

sertion/deletion polymorphism affects the stability of HLA-G

mRNA and thereby the expression of HLA-G (53, 54). Aldrich

and colleagues found that the HLA-G_ 0104 or HLA-G 0105N

carrier in either partner was associated with recurrent mis-

carriage. These polymorphisms contribute to recurrent mis-

carriage (55).

2.5. Microdeletion of the Y Chromosome

Three AZF regions on the long arm of Y chromosome are

necessary for normal spermatogenesis. AZF deletions have a

negative influence on the sperm quality that may contribute

to RPL. Y chromosome microdeletion is known to cause sper-

matogenetic failure and male infertility (56, 57). Y chromo-

some microdeletions occur in at least three regions, called

azoospermia factor (AZFa, AZFb, and AZFc) (58). Recurrent

deletions in the three AZF regions have been described in

detail (59) which may lead to varying degrees of spermato-

genic failure. Y chromosome microdeletions are detected in

approximately 7% of men with oligozoospermia (59). De-

wan et al. (60) found that the Y chromosome microdele-

tions are associated with RPL in severely oligospermic or

azoospermic men. In this population, the prevalence of Y-

chromosome microdeletions is estimated to be 8–18% (24,

61). In saying that, couples with unexplained recurrent preg-

nancy loss need to be tested to determine the Y-chromosome

microdeletions.

2.6. Paternal age

In recent years, the cultural shift in delaying marriage and

formation of families has risen concerns in regards to the ef-

fects of age on fertility. Currently, the effects of advanced

maternal age are better understood than that of a father.

Advanced Paternal Age (APA) is associated with declines in

sperm quality which has impact on the rate of pregnancy and

incidence of pregnancy loss (62). There is currently no agreed

figure as to when the risks of adverse reproductive outcomes

are significantly increased for men. Various studies defined

different thresholds for advanced paternal age, the threshold

> 30 years, or > 45 years, or 50 years are proposed (63). The

American College of Medical Genetics (ACMG) has defined

APA as 40 years or older at the time of conception (64). In a

systematic review and metaâĂŘanalysis of 90 studies, John-

son et al reported that increasing paternal age contributes to

the decline in semen volume, total sperm count and motility,

percentage of morphologically normal sperm, and increased

DNA fragmentation rates (65). Several studies show that DNA

fragmentation increases with male age (43, 66). Several stud-

ies demonstrated that APA may negatively impact ART out-

comes. In mostly retrospective studies, APA was associated

with poor embryo quality (67), reduction of fertilization and

implantation rates (68), and reduction in pregnancy and live

birth rates (68, 69). For APA couples undergoing IVF with

ICSI, the negative impact appears to be limited to men with

oligospermia (67, 70).

The risk of miscarriage was much greater for couples com-

posed of a woman > 35 years and a man > 40 years. An

association between paternal age and fetal loss strengthens

the idea that paternal age influences the health of offspring

via mutations of paternal origin (62). APA also increases the

relative risk of offspring developing conditions such as neu-

rocognitive defects, some forms of cancers such as leukemia,

and syndromes related to aneuploidies (63). The effect of

advanced paternal age on Klinefelter syndrome is also con-

troversial. The frequency of XY spermatozoa, which would

cause a 47, XXY condition in offspring, is higher in older men

than in those who are younger (71).

2.7. Varicocele

The incidence of varicocele in men differs between 10% and

20% (72). Varicocele can cause sperm DNA damage, and el-

evated ROS and apoptosis rate (73). Excess ROS can cause

pathological impairment in sperm DNA (73). Seminal an-

tioxidant capacity significantly decreased in men with varic-

ocele (74). Excessive levels of DNA damage contribute to a

decrease in several fertility indices, including embryo cleav-

age rate, implantation rate, pregnancy rate, and live birth rate

(75).

The risk of early miscarriage after varicocelectomy is about

15%. It is very similar to that reported in the general pop-

ulation. It has been shown that varicocelectomy decreases

ROS levels and increases the antioxidant capacity of semi-

nal plasma from infertile men with varicocele (75, 76). The

microsurgical varicocelectomy effectively increased the odds

of natural pregnancy, the rate of high-quality embryos, and

the success rate of in vitro fertilization (75,77). If spon-

taneous pregnancy is not achieved within twelve months’

post-surgery, an alternative approach such as ART treatment

should be considered (78).

3. Conclusion

In terms of recurrent miscarriage, male factors such as chro-

mosomal abnormalities, gene mutation, sperm DNA dam-

age, paternal age, and varicocele, need to be taken in ac-

count. In fact, it seems reasonable to offer SDF testing and

karyotype to couples with URPL. Furthermore, DNA frag-

mentation index and HDS are useful parameters in choos-

ing the best treatment option. It is also worth noting that pa-

ternal age is an important factor especially in those couples

where the female is older than 35 years of age. Lastly, micro-

surgical varicocelectomy increases the odds of live birth rate

after ART.
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