
Mohammad Ali Ahmaditaba a, Mohammad Hassan Houshdar Tehrani a *, Afshin Zarghi a, Sorayya  
Shahosseini a and Sara Hariri b

a Department of Medicinal Chemistry, School of Pharmacy, and Protein Technology Research Center, Shahid Beheshti University of 
Medical Sciences, Tehran, Iran. 
b Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Keywords: 
Cytotoxic activity
Methyl sulfonyl group
MTT assay
Synthesis
Tetrapeptide scaffold

HIGHLIGHTS
•	 A group of tripeptides was reported as COX-2 inhibitors with antiproliferative activity.
•	 New tetrapeptides containing methyl sulfonyl group at the para position of a phenyl ring were synthesized.
•	 Some of novel compounds exhibited more potent cytotoxic effect than Celecoxib as the reference.
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ABSTRACT

New series of compounds based on a tetrapeptide scaffold containing methyl sulfonyl 
group at the para position of a phenyl ring were synthesized and their cytotoxic activities 
were examined against several human cancer cell lines including MCF-7 (breast 
cancer Cell Line), HepG2 (human liver cancer Cell Line), HT-29 (Human Colorectal 
Adenocarcinoma Cell Line) and A549 (adenocarcinomic human alveolar basal epithelial 
cells) using MTT assay. Based on the results, among the synthesized peptides, 5e, 5f, 1g, 
and 3g were the most potent cytotoxic compounds that were more toxic than the reference 
compound, Celecoxib, against the tested cell lines. These compounds could be candidate 
for	finding	cytotoxic	agents	with	new	peptide	scaffolds	which	show	COX-2	 inhibitory	
activity as well. 
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Introduction 

Cancer is known as an unrestrained division of cells 
with invasion to other tissues, producing vascularization, 
tumor lumps which may spread to all parts of the body. 
Cyclooxygenases (COXs) are essential enzymes in 
conversion of arachidonic acid to prostaglandins. COX-1 
is expressed in various tissues and plays some protective 
roles in digestive system, renal organ, and homeostasis. 
COX-2 enzyme isoform is expressed only when 
pathogenic conditions have been occurred and therefore 
inflammatory	 process	 is	 initiated	 by	 this	 enzyme	 (Vane	

et al., 1998; McAdam et al., 1999). There is a diversity 
of mechanisms which involve in tumor growth inhibition. 
These mechanisms include restriction of gene expression, 
angiogenesis, and signal transduction pathways, etc. 
Another way of anti-cancer peptides to show therapeutic 
activity	 is	 through	binding	 to	 specific	 receptors	 such	 as	
COX-2 enzymes (Yang et al., 1998; Chell et al., 2006). 
COX-2 is assumed to be expressed at great levels in 
various types of cancer cells, but not in normal tissues. It 
has been proved that when COX-2 is overexpressed, then 
PGE2 increases in cancer (Koki and Masferrer, 2002; Li et 
al., 2002) which prompts to develop metastatic invasion 
of	tumor	cells	(Ye	et	al.,	2004)	.	These	findings	have	been	
verified	 by	 the	 antiproliferative	 activity	 of	 Celecoxib	
as a known potent and selective inhibitor of COX-2 
(Kang et al., 2000; Thundimadathil, 2012). In one study 
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(LCMS) with an electrospray ionization (ESI) interface.

General procedure for attaching the first amino acid

The	 synthesis	 of	 modified	 tetrapeptides	 (1e-5h)	 was	
carried out according to the solid phase approach using 
standard Fmoc methodology in a manual reaction vessel. 
The	first	amino	acid,	Fmoc-Xaa-OH,	was	linked	onto	the	
Wang	 resin	 (100–200 mesh,	 1%	DVB,	 1 mmol/g)	 using	
HOBt (2 eq) and DIC (1 eq) as activating agents and a 
catalytic amount of DMAP. The Nα-Fmoc	 protecting	
group was removed by treating amino acid-resin with a 
10%	solution	of	piperazine	in	DMF	(30	min)	and	then	the	
resin was washed with DMF (5×).

General procedure for the preparation of modified 
tetrapeptides (1e-5h)

The following reactant materials, Fmoc-amino acids 
(2 eq, each), DIC (2 eq), HOBt (2 eq) were dissolved 
in DMF or DCM and added to the resin and shaken 
slowly. The coupling time lasted 2 hours. The peptide- 
resin was washed with DMF (3×) and then the Nα-Fmoc 
protecting groups were removed by treating the protected 
peptide-	 resin	 with	 a	 10%	 solution	 of	 piperazine	 in	
DMF (30 min), followed by washing with DMF (5×). 
The coupling process was repeated for attaching 
4-(Methylsulfonyl) benzoic acid, at the end. The 
completed peptide- resin was washed with DMF (3×) 
and DCM (3×), and methanol (3×). The peptides were 
final	 deprotected	 and	 cleaved	 from	 the	 solid	 support	
with	 trifluoroacetic	 acid/DCM/anisole	 /triisopropyl-
silane	 (50:	 45:	 2.5:	 2.5)	 for	 2	 h.	The	 resin	was	 filtered	
off and the crude peptide was precipitated by adding cold 
diethyl ether and washed with diethyl ether. The residual 
ether was removed by evaporation and the product was 
lyophilized.

General procedure for the preparation of 
4-(Methylsulfonyl) benzoic acid

4-(Methylthio) benzaldehyde (3 mL) was dissolved in 
THF (10 mL) to which, Oxone (10 g in 30 mL THF/water) 
was added. The mixture was stirred at room temperature 
for 24 h. After evaporation of THF, the residue was 
extracted	 with	 chloroform,	 washed	 with	 10%	 aqueous	
sodium bicarbonate and dried with anhydrous sodium 
sulfate and then the solvent was evaporated. In the most 
cases, off-white to pale yellow solid was formed. Yield: 
(70-94%).

Chemistry
p-MeSO2 Bz-Gly-Tyr-Asp (1e)  

Yield:	 78%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1737, 

some tripeptides were reported as COX-2 inhibitors. 
The tripeptides were checked by in-vitro experiments 
using surface plasmon resonance (SPR) technique. 
Among the tripeptides, one was recognized to be as a 
promising lead for another class of COX-2 inhibitors 
(Al Houari et al., 2008). Another study reported a series 
of	 fluorobenzoylated	 di-	 and	 tripeptides	 which	 showed	
COX-2 inhibitory action compared to Celecoxib (Najim 
et al., 2010). A recent study reported a series of tripeptides 
as COX-2 inhibitors in relation to indomethacin and 
diclofenac. In such study, the COX inhibitory activity 
of all 203 possible natural tripeptide sequences was 
tested. Based on the data acquired from virtual screening, 
just	 those	 peptides	 with	 better	 affinity	 were	 chosen	
which demonstrated strong recognition of COX-2 
whereas indicating a lower interaction towards COX-  1 
(Somvanshi et al., 2007). In recent years, peptides have 
been considered as therapeutic candidates in the treatment 
of various diseases such as cancer. Peptides can target 
cancer cells without disturbing normal cells (Sharma 
et al., 2012).  
     The aim of this study is to design, synthesize, and 
examine some new tetrapeptide analogues of the Cox-
2 inhibitors expected to exhibit anti-cancer activity as 
well.	 For	 designing	 the	 new	modified	 tetrapeptides,	 an	
acidic amino acid such as aspartic acid was chosen to be 
attached to an aromatic amino acid (i.e.,phenylalanine, 
tyrosine, tryptophan or histidine), then to be connected to a 
linear amino acid (i.e., glycine, alanine, valine, isoleucine 
and serine) and ended with a moiety containing a methyl 
sulfonyl group at the para position of a phenyl ring as a 
pharmacophoric entity characterized of Cox-2 inhibitors’ 
scaffold. The cytotoxic activities of synthesized 
peptides were evaluated against various human cancer 
cell lines including MCF-7, HepG2, HT-29, and 
A549. 

Materials and Methods
General

Nα	-Fmoc-protected	amino	acids,	Wang	resin	were	from	
Bachem, Swithzerland. HOBt, DIC, piperazine, and 
trifluoroacetic	acid	were	purchased	(from	Sigma	Aldrich,	
Italy). Peptide synthesis solvents, reagents, were analytical 
grade and acquired from commercial source (Merck, 
Germany)	and	used	without	further	purification,	otherwise	
noted. Infrared spectra were acquired on a Perkin-Elmer 
1420 ratio recording spectrometer. A Bruker FT-400 MHz 
instrument (Brucker Biosciences, USA) was used to 
acquire 1HNMR spectra; DMSO-d6 was used as solvent. 
Coupling constant (J) values were estimated in hertz (Hz) 
and spin multiples were given as s (singlet), d (double), 
t (triplet), q (quartet), m (multiplet), and br (broad). The 
mass spectral measurements were performed on a 6410 
Agilent LCMS triple quadrupole mass spectrometer 
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1732(C=O); 1305, 1161 (SO2);
 1HNMR (400 MHz, 

DMSO-d6):	 δ	 ppm	 	 2.55-2.62	 (m,	 2H,	 CH2, aspartic 
acid), 2.70-2.81 (m, 2H, CH2, benzyl), 3.2 (s, 3H, 
SO2CH3), 3.80 (s, 2H, CH2, Gly ), 3.83-3.86 (d, 1H, 
CH), 3.93-4.1 (d, 1H, CH), 4.60 (s, 1H, phenol), 7.31-
7.33 (d, J=7.8 Hz, 2H, phenol  H3&H5), 7.62-7.64 (d, 2H, 
J=7.8 Hz phenol H2&H6), 8.02-8.04 (d, 2H, J=8.6 Hz, 
4-methylsulfonylphenyl H2&H6), 8.06-8.08 (d, J=8.6 Hz, 
2H, 4-methylsulfonylphenyl H3&H5), 8.16-8.19 (d, 1H, 
NH), 8.48-8.5 (d, 1H, NH), 8.95-8.98 (d, 1H, NH), 10.83 
(s, 1H, COOH), 12.4 (br, 1H, COOH); 13C NMR (100.6 
MHz,	DMSO-d6)	δ	=	28.3,	36.4,	43.2	(CH2), 40.1 (CH3), 
43.5, 53.6 (CH), 110.3, 115.5, 118.6, 121.2, 127.4, 130.1, 
136.4, 143.4 (C–Ar), 165.6, 168.8, 171.8 (CONH), 172.1, 
172.8 (COOH)ppm; LC-MS (ESI) m/z = 535 (M-1).

p-MeSO2 Bz -Val-Tyr-Asp (2e)  

Yield:	 81%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1737, 
1732(C=O); 1305, 1161(SO2); 

1HNMR (400 MHz, 
DMSO-d6):	 δ	 ppm	 1.03-1.06	 (d,	 6H,	 CH3 ), 2.55-2.62 
(m, 2H, CH2, aspartic acid), 2.60 (d, CH, ipr ),  2.70-2.81 
(m, 2H, CH2, benzyl), 3.2 (s, 3H, SO2CH3), 4.26-4.37 (d, 
1H, CH), 4.60 (s, 1H, phenol), 4.63-4.75 (m, 1H, CH), 
4.77-4.79 (d, 1H, CH), 7.31-7.33 (d, J=7.8 Hz, 2H, phenol  
H3&H5), 7.62-7.64 (d, 2H, J=7.8 Hz phenol H2&H6), 8.02-
8.04 (d, 2H, J=8.6 Hz, 4-methylsulfonylphenyl H2&H6), 
8.06-8.08 (d, J=8.6 Hz, 2H, 4-methylsulfonylphenyl 
H3&H5), 8.16-8.19 (d, 1H, NH), 8.48-8.5 (d, 1H, NH), 
8.95-8.98 (d, 1H, NH), 10.83 (s, 1H, COOH), 12.4 (br, 
1H, COOH);13C	NMR	(100.6		MHz,	DMSO-d6)	δ	=	36.3,		
38.3 (CH2), 19.0, 43.5 (CH3),  30.4, 49,  53.8, 59.7 (CH), 
126.6, 127.3, 128.3, 129.0, 129.6, 138.0, 139.2, 143.3 (C–
Ar), 158.5, 165.6, 170.8 (CONH), 171.0, 172.0 (COOH) 
ppm; LC-MS (ESI) m/z = 576.1 (M-1).

p-MeSO2 Bz -Ile-Tyr-Asp (3e)  

Yield:	 79%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1737, 
1732 (C=O); 1305, 1161 (SO2); 

1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	0.84-0.86	(t,	3H,	CH3), 1.08 (d, 3H, 
CH3), 1.32 (m, 2H, CH2), 2.23 (m, 1H, CH), 2.55-2.62 
(m, 2H, CH2, aspartic acid), 2.70-2.81 (m, 2H, CH2, 
benzyl), 3.2 (s, 3H, SO2CH3 4.26-4.37 (d, 1H, CH), 4.60 
(s, 1H, phenol), 4.63-4.75 (m, 1H, CH), 4.77-4.79 (d, 1H, 
CH), 7.31-7.33 (d, J=7.8 Hz, 2H, phenol  H3&H5), 7.62-
7.64 (d, 2H, J=7.8 Hz phenol H2&H6), 8.02-8.04 (d, 2H, 
J=8.6 Hz, 4-methylsulfonylphenyl H2&H6), 8.06-8.08 (d, 
J=8.6 Hz, 2H, 4-methylsulfonylphenyl H3&H5), 8.16-
8.19 (d, 1H, NH), 8.48-8.5 (d, 1H, NH), 8.95-8.98 (d, 
1H, NH), 10.83 (s, 1H, COOH), 12.4 (br, 1H, COOH); 
13C	NMR	(100.6		MHz,	DMSO-d6)	δ	=	25.0,	28.1,	29.8	
(CH2), 11.0, 15.6, 44.4 (CH3), 26.4, 51.8, 53.9, 58.5 
(CH), 126.6, 127.0, 128.4, 129.0, 137.9, 139.1, 143.4,  
139.2, 143.3 (C–Ar), 165.6, 171.0, 172.2 (CONH), 

173.0, 173.3 (COOH) ppm; LC-MS (ESI) m/z = 576.2 
(M-1).

p-MeSO2 Bz -Ala-Tyr-Asp (4e)  

Yield:	 85%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1)1737, 
1732(C=O); 1305, 1161(SO2); 

1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	1.34	(d,	3H,	CH3), 2.55-2.62 (m, 2H, 
CH2, aspartic acid), 2.70-2.81 (m, 2H, CH2, benzyl), 3.2 
(s, 3H, SO2CH3), 4.39-4.46 (d, 1H, CH), 4.51-4.63 (q, 1H, 
CH), 4.60 (s, 1H, phenol),  4.64-4.67 (d, 1H, CH), 7.31-
7.33 (d, J=7.8 Hz, 2H, phenol  H3&H5), 7.62-7.64 (d, 2H, 
J=7.8 Hz phenol H2&H6), 8.02-8.04 (d, 2H, J=8.6 Hz, 
4-methylsulfonylphenyl H2&H6), 8.06-8.08 (d, J=8.6 Hz, 
2H, 4-methylsulfonylphenyl H3&H5), 8.16-8.19 (d, 1H, 
NH), 8.48-8.5 (d, 1H, NH), 8.95-8.98 (d, 1H, NH), 10.83 
(s, 1H, COOH), 12.4 (br, 1H, COOH); 13C NMR (100.6  
MHz,	DMSO-d6)	δ	=	36.4,		39.3	(CH2), 18.0, 43.9 (CH3), 
49.0, 49.5, 54.3 (CH), 115.2, 127.3, 128.9, 138.9, 139.2, 
143.4 (C–Ar), 156.2, 165.3, 171.3 (CONH), 172.1, 172.7 
(COOH) ppm; LC-MS (ESI) m/z = 548.1 (M-1).

p-MeSO2 Bz -Ser-Tyr-Asp (5e)

Yield:	 67%;	 White	 solid;	 IR	 (KBr):	 ν(cm-1) 1737, 
1732(C=O); 1305, 1161 (SO2); 

1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	2.12	(s,	1H,	OH),	2.55-2.62	(m,	2H,	
CH2, aspartic acid), 2.70-2.81 (m, 2H, CH2, benzyl), 3.2 
(s, 3H, SO2CH3), 4.26-4.37 (d, 1H, CH), 4.60 (s, 1H, 
phenol), 4.63-4.75 (m, 1H, CH),  4.77-4.79 (d, 1H, CH), 
7.31-7.33 (d, J=7.8 Hz, 2H, phenol  H3&H5), 7.62-7.64 (d, 
2H, J=7.8 Hz phenol H2&H6), 8.02-8.04 (d, 2H, J=8.6 Hz, 
4-methylsulfonylphenyl H2&H6), 8.06-8.08 (d, J=8.6 Hz, 
2H, 4-methylsulfonylphenyl H3&H5), 8.16-8.19 (d, 1H, 
NH), 8.48-8.5 (d, 1H, NH), 8.95-8.98 (d, 1H, NH), 10.83 
(s, 1H, COOH), 12.4 (br, 2H, COOH); 13C NMR (100.6  
MHz,	DMSO-d6)	δ	=	31.1,	39.3,	61.8	(CH2), 40.1 (CH3), 
43.7, 49.1, 54.0 (CH), 125.1, 127.2, 128.4, 128.9, 137.9, 
138.9, 139.2, 143.3 (C–Ar), 158.5, 165.6, 171.1(CONH), 
172.0,  172.7 (COOH) ppm; LC-MS (ESI) m/z = 564.1 
(M-1).

p-MeSO2 Bz -Gly-Phe-Asp (1f)

Yield:	 76%;	 White	 solid;	 IR	 (KBr):	 ν(cm-1)1737,	
1732(C=O); 1305, 1161 (SO2); 1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	2.63-2.74	(m,	2H,	CH2,	aspartic	acid),	
2.98-3.17 (m, 2H, CH2, benzyl), 3.2 (s, 3H, SO2CH3), 4.1 
(s, 2H, CH2, Gly), 4.63-4.75 (m, 1H, CH), 4.77-4.79 (d, 
1H, CH), 7.14-7.18 (t, 1H, Phenyl H4), 7.18-7.20 (d, 2H, 
J=7 Hz  phenyl H2&H6), 7.23-7.25 (d, 2H, J=7 Hz  phenyl 
H3&H5), 8.03-8.05 (d, 2H, J=8, 4-methylsulfonylphenyl 
H2-H6), 8.08-8.10 (d, 2H, J=8, 4-methyl sulfonylphenyl 
H3-H5), 8.30-8.33 (d, 1H, NH), 8.43-8.45 (d, 1H, NH), 
8.69-8.71 (d, 1H, NH), 12.6 (br, 2H, COOH); 13C NMR 
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(100.6		MHz,	DMSO-d6)	δ	=	28.3,	36.4,	43.2	(CH2), 40.1 
(CH3), 43.5, 53.6 (CH), 110.3, 115.5, 118.6, 121.2, 127.4, 
130.1, 136.4, 143.4 (C–Ar), 165.6, 168.8, 171.8 (CONH), 
172.1, 172.8 (COOH) ppm; LC-MS (ESI) m/z = 518.1 
(M-1).

p-MeSO2 Bz -Val-Phe-Asp (2f)

Yield:	 78%;	 White	 solid;	 IR(KBr):	 ν	 (cm-1) 1731, 
1740 (C=O);1324, 1154 (SO2); 

1HNMR (400 MHz, 
DMSO-d6):	 δ	 ppm	 1.03-1.06	 (d,	 6H,	 CH3 ), 2.63-2.74 
(m, 2H, CH2, aspartic acid), 2.60 (d, CH, ipr), 2.98-3.17 
(m, 2H, CH2, benzyl), 3.2 (s, 3H, SO2CH3), 4.26-4.37 
(d, 1H, CH), 4.63-4.75 (m, 1H, CH), 4.77-4.79 (d, 1H, 
CH), 7.14-7.18 (t, 1H, Phenyl H4), 7.18-7.20 (d, 2H, J=7 
Hz  phenyl H2&H6), 7.23-7.25 (d, 2H, J=7 Hz  phenyl 
H3&H5), 8.03-8.05 (d, 2H, J=8, 4-methylsulfonylphenyl 
H2-H6), 8.08- 8.10 (d, 2H, J=8, 4-methylsulfonylphenyl 
H3-H5), 8.30-8.33 (d, 1H, NH), 8.43-8.45 (d, 1H, NH), 
8.69-8.71 (d, 1H, NH), 12.6 (br, 2H, COOH); 13C NMR 
(100.6		MHz,	DMSO-d6)	δ	=	36.3,		38.3(CH2), 19.0, 43.5 
(CH3), 30.4, 49,  53.8, 59.7 (CH), 126.6, 127.3, 128.3, 
129.0, 129.6, 138.0, 139.2, 143.3 (C–Ar), 158.5, 165.6, 
170.8 (CONH), 171.0, 172.0 (COOH) ppm; LC-MS (ESI) 
m/z = 560.2 (M-1).

p-MeSO2 Bz -Ile-Phe-Asp (3f)

Yield:	 81%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1731, 
1740 (C=O);1324, 1154 (SO2); 

1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	0.84-0.86	(t,	3H,	CH3), 1.08 (d, 3H, 
CH3), 1.32 (m, 2H, CH2), 2.23 (m, 1H, CH), 2.63-2.74 (m, 
2H, CH2, aspartic acid), 2.98-3.17 (m, 2H, CH2, benzyl), 
3.2 (s, 3H, SO2CH3), 4.26-4.37 (d, 1H, CH), 4.63-4.75 (m, 
1H, CH), 4.77-4.79 (d, 1H, CH), 7.14-7.18 (t, 1H, Phenyl 
H4), 7.18-7.20 (d, 2H, J=7 Hz  phenyl H2&H6), 7.23-7.25 
(d, 2H, J=7 Hz  phenyl H3&H5), 8.03- 8.05 (d, 2H, J=8, 
4-methylsulfonylphenyl H2-H6), 8.08-8.10 (d, 2H, J=8, 
4-methylsulfonylphenyl H3-H5), 8.30-8.33 (d, 1H, NH), 
8.43-8.45 (d, 1H, NH), 8.69-8.71 (d, 1H, NH), 12.6 (br, 
2H, COOH); 13C	NMR	(100.6		MHz,	DMSO-d6)	δ	=25.0,	
28.1, 29.8 (CH2), 11.0, 15.6, 44.4 (CH3), 26.4, 51.8, 53.9, 
58.5 (CH), 126.6, 127.128.4, 129.0, 137.9,  139.1, 143.4,  
139.2, 143.3 (C–Ar), 165.6, 171.0, 172.2 (CONH), 173.0,  
173.3 (COOH) ppm ; LC-MS (ESI) m/z = 574.1 (M-1).

p-MeSO2 Bz -Ala-Phe-Asp (4f)

Yield:	 75%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1731, 
1740 (C=O);1324, 1154 (SO2); 

1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	1.34	(d,	3H,	CH3), 2.63-2.74 (m, 2H, 
CH2, aspartic acid), 2.98-3.17 (m, 2H, CH2, benzyl), 3.2 
(s, 3H, SO2CH3), 4.39-4.46(d, 1H, CH), 4.51-4.63 (q, 1H, 
CH), 4.64-4.67 (d, 1H, CH),  7.14-7.18 (t, 1H, Phenyl 
H4), 7.18-7.20 (d, 2H, J=7 Hz  phenyl H2&H6), 7.23-7.25 

(d, 2H, J=7 Hz  phenyl H3&H5), 8.03-8.05 (d, 2H, J=8, 
4-methylsulfonylphenyl H2-H6), 8.08- 8.10 (d, 2H, J=8, 
4-methylsulfonylphenyl H3-H5), 8.30-8.33 (d, 1H, NH), 
8.43-8.45(d, 1H, NH), 8.69-8.71 (d, 1H, NH), 12.6(br, 
2H, COOH); 13C	 NMR	 (100.6	 	 MHz,	 DMSO-d6)	 δ	 =	
36.4,  39.3 (CH2), 18.0, 43.9 (CH3), 49.0, 49.5, 54.3 (CH), 
115.2, 127.3, 128.9, 138.9, 139.2, 143.4 (C–Ar), 156.2, 
165.3, 171.3(CONH), 172.1,  172.7 (COOH) ppm; LC-
MS (ESI) m/z = 532.1 (M-1).

p-MeSO2 Bz -Ser-Phe-Asp (5f)

Yield:	 68%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1731, 
1740(C=O); 1324, 1154(SO2); 

1HNMR (400MHz, 
DMSO-d6):	δ	ppm	2.12	(s,	1H,	OH),		2.63-2.74	(m,	2H,	
CH2, aspartic acid), 2.98-3.17 (m, 2H, CH2, benzyl), 3.2 (s, 
3H, SO2CH3), 3.60-3.90 (m, 2H, CH2), 4.26-4.37 (d, 1H, 
CH), 4.63-4.75(m, 1H, CH), 4.77-4.79(d, 1H, CH), 7.14-
7.18(t, 1H, Phenyl H4), 7.19-7.21 (d, 2H, J=7 Hz  phenyl 
H2&H6), 7.23-7.25 (d, 2H, J=7 Hz phenyl H3&H5), 8.03-
8.05 (d, 2H, J=8, 4-methylsulfonylphenyl H2-H6), 8.08-
8.10 (d, 2H, J=8, 4-methylsulfonylphenyl H3-H5), 8.30-
8.33 (d, 1H, NH), 8.43-8.45 (d, 1H, NH),  8.69-8.71 (d, 
1H, NH), 12.6 (br, 2H, COOH); 13C NMR (100.6  MHz, 
DMSO-d6)	δ	=	31.1,	39.3,		61.8	(CH2), 40.1 (CH3), 43.7, 
49.1, 54.0 (CH), 125.1, 127.2, 128.4, 128.9, 137.9, 138.9, 
139.2, 143.3 (C–Ar), 158.5, 165.6, 171.1 (CONH), 172.0,  
172.7 (COOH) ppm; LC-MS (ESI) m/z = 5483 (M-1).

p-MeSO2 Bz -Gly-His-Asp (1g)

Yield:	82%;	White	solid;	IR	(KBr):	ν	(cm-1) 1742(C=O); 
1320, 1178 (SO2); 

1HNMR	(400	MHz,	DMSO-d6):	δ	ppm	
2.63-2.74 (m, 2H, CH2, aspartic acid), 2.63-2.74 (m, 2H, 
CH2, imidazole), 3.1 (s, 3H, SO2CH3), 4.07 (s, 2H, CH2 
Gly), 4.26-4.27 (d, 1H, CH), 4.77-4.79 (d, 1H, CH), 7.20-
7.22 (d, 2H, J=10 Hz, 4-methylsulfonylphenyl H2&H6), 
7.32 (s, 1H, CH, imidazole), 7.87-7.89 (d, J=10 Hz, 2H, 
4-methylsulfonylphenyl H3&H5), 8.38-8.39 (d, 1H, NH), 
8.38-8.39 (d, 1H, NH),  8.77-8.78 (d, 1H, NH), 8.93 (s, 
1H, CH, imidazole), 12.5 (br, 2H, COOH), 13.79 (s, 1H, 
NH, imidazole); 13C	NMR	 (100.6	 	MHz,	 DMSO-d6)	 δ	
= 27.9, 36.5,  39.2 (CH2), 43.7 (CH3), 49.1, 53.6 (CH) 
125.3, 127.4, 128.0, 128.9, 138.1, 138.9, 139.4, 143.2 (C–
Ar), 157.1, 163.2, 171.2 (CONH), 171.8,  173.3 (COOH) 
ppm; LC-MS (ESI) m/z = 508.0 (M-1).

p-MeSO2 Bz -Val-His-Asp (2g)

Yield:	76%;	White	solid;	IR	(KBr):	ν	(cm-1) 1742(C=O); 
1320, 1178 (SO2); 

1HNMR (400 MHz, DMSO-d6): 
δ	ppm	0.83-0.86	 (d,	6H,	CH3), 2.02 (d, 1H, ipr),  2.50-
2.68 (m, 2H, CH2, aspartic acid), 2.85-3.09 (m, 2H, CH2, 
imidazole), 3.1 (s, 3H, SO2CH3), 4.12-4.15 (d, 1H, CH), 
4.4-4.53 (m, 1H, CH), 4.56-4.68 (d, 1H, CH), 7.93-7.95 
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(d, 2H, J=8.69 Hz, 4-methylsulfonylphenyl H2&H6), 7.32 
(s, 1H, CH, imidazole), 8.00-8.02 (d, J=8.69 Hz, 2H, 
4-methylsulfonylphenyl H3&H5), 8.15-8.18 (d, 1H, NH), 
8.38-8.40 (d, 1H, NH),  8.54-8.63 (d, 1H, NH) , 8.87 (s, 
1H, CH, imidazole), 12.5 (br, 2H, COOH), 14.27 (s, 1H, 
NH, imidazole); 13C	NMR	(100.6		MHz,	DMSO-d6)	δ	=	
27.3, 36.3 (CH2), 19.4, 43.7 (CH3), 49.0, 51.6, 60.0 (CH), 
117.3, 127.3, 129.1, 134.0, 132.7,  139.0, 143.4 (C–Ar), 
158.7, 166.1, 170.1 (CONH), 171.4, 172.5 (COOH) ppm; 
LC-MS (ESI) m/z = 550.1 (M-1).

p-MeSO2 Bz -Ile-His-Asp (3g)

Yield:	 82%;	White	 solid;	 IR	 (KBr):	 1736,	 1704(C=O);	
1305, 1141 (SO2); 

1HNMR (400 MHz, DMSO-d6): 
δ	 ppm	 0.84-0.86	 (t,	 3H,	CH3), 1.08 (d, 3H, CH3), 1.32 
(m, 2H, CH2), 2.23 (m, 1H, CH), 2.50-2.68 (m, 2H, 
CH2, aspartic acid), 2.85-3.09 (m, 2H, CH2, imidazole), 
3.1 (s, 3H, SO2CH3), 4.12-4.15 (d, 1H, CH), 4.4-4.53 
(m, 1H, CH), 4.56-4.68 (d, 1H, CH), 7.93-7.95 (d, 2H, 
J=8.69 Hz, 4-methyl sulfonylphenyl H2&H6), 7.32 (s, 1H, 
CH, imidazole), 8.00-8.02 (d, J=8.69 Hz, 2H, 4-methyl 
sulfonylphenyl H3&H5), 8.15-8.18 (d, 1H, NH), 8.38-
8.40 (d, 1H, NH),  8.54-8.63 (d, 1H, NH), 8.87 (s, 1H, 
CH, imidazole), 12.5 (br, 2H, COOH), 14.27 (s, 1H, 
NH, imidazole); 13C	NMR	(100.6		MHz,	DMSO-d6)	δ	=	
15.7, 25.1, 36.7 (CH2), 11.0, 11.2, 39.9 (CH3), 36.3, 49.0, 
56.8, 58.2 (CH), 114.9, 117.8, 127.3, 129.0, 129.6, 139.2, 
143.3 (C–Ar), 158.6, 165.6, 170.1 (CONH), 171.1, 172.5 
(COOH) ppm; LC-MS (ESI) m/z = 564.1 (M-1).

p-MeSO2 Bz -Ala-His-Asp (4g)

Yield:	 68%;	White	 solid;	 IR	 (KBr):	 1736,	 1704(C=O);	
1305, 1141 (SO2); 

1HNMR	(400	MHz,	DMSO-d6):	δ	ppm	
1.34 (d, 3H, CH3), 2.63-2.74 (m, 2H, CH2, aspartic acid), 
2.22-3.04 (m, 2H, CH2, imidazole), 3.1 (s, 3H, SO2CH3), 
4.39-4.46 (d, 1H, CH), 4.51-4.63 (q, 1H, CH), 4.64-4.67 
(d, 1H, CH), 7.38 (s, 1H, CH, imidazole), 8.02-8.04 (d, 
2H, J=7.3 Hz, 4-methylsulfonylphenyl H2&H6), 8.10-
8.12 (d, J=7.3 Hz, 2H, 4-methylsulfonylphenyl H3&H5), 
8.18-8.20 (d, 1H, NH), 8.25-8.27 (d, 1H, NH),  8.36-8.38 
(d, 1H, NH), 9.00 (s, 1H, CH, imidazole), 12.5 (br, 2H, 
COOH), 14.21 (s, 1H, NH, imidazole); 13C NMR (100.6  
MHz,	DMSO-d6)	δ	=	25.1,		36.4	(CH2), 17.8, 40.1 (CH3), 
43.7, 49.4, 49.8 (CH), 127.3, 128.9, 129.0, 135.2, 139.0, 
143.4, 143.5 (C–Ar), 158.5, 165.2, 172.1 (CONH), 172.4,  
172.7(COOH) ppm; LC-MS (ESI) m/z = 522.1 (M-1).

p-MeSO2 Bz -Ser-His-Asp (5g)

Yield:	 77%;	White	 solid;	 IR	 (KBr):	 1736,	 1704(C=O);	
1305, 1141 (SO2); 

1HNMR	 (400	 MHz,	 DMSO-d6):	 δ	
ppm 2.12 (s, 1H, OH), 2.63-2.74 (m, 2H, CH2, aspartic 
acid), 2.22-3.04 (m, 2H, CH2, imidazole), 3.1 (s, 3H, 

SO2CH3), 3.60-3.90 (m, 2H, CH2), 4.39-4.46 (d, 1H, 
CH), 4.51-4.63 (q, 1H, CH), 4.64-4.67 (d, 1H, CH), 
7.38 (s, 1H, CH, imidazole), 8.02-8.04 (d, 2H, J=7.3 Hz, 
4-methylsulfonylphenyl H2&H6), 8.10-8.12 (d, J=7.3 Hz, 
2H, 4-methylsulfonylphenyl H3&H5), 8.18-8.20 (d, 1H, 
NH), 8.25-8.27 (d, 1H, NH), 8.36-8.38 (d, 1H, NH), 9.00 
(s, 1H, CH, imidazole), 12.5 (br, 2H, COOH), 14.21 (s, 
1H, NH, imidazole); 13C NMR (100.6  MHz, DMSO-d6) 
δ	=	40.5,	45.6,		60.1	(CH2), 40.1 (CH3), 43.7, 49.0, , 49.8 
(CH), 127.3, 128.9, 129.0, 135.2, 139.0, 143.4, 143.5 (C–
Ar), 158.6, 165.2, 172.1 (CONH), 172.7,  173.3 (COOH) 
ppm; LC-MS (ESI) m/z = 539 (M-1).

p-MeSO2 Bz -Gly-Trp-Asp (1h)

Yield:	 67%;	White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1738,1727 
(C=O); 1305, 1144 (SO2); 

1HNMR (400 MHz, DMSO-d6): 
δ	ppm	2.63-2.74	(m,	2H,	CH2, aspartic acid), 2.98-3.17 (m, 
2H, CH2, benzyl), 3.2 (s, 3H, SO2CH3), 4.1 (s, 2H, CH2 
Gly), 4.63-4.75 (m, 1H, CH), 4.77-4.79 (d, 1H, CH), 7.69 
(s, 1H, CH, indole), 8.002-8.005 (m, 4H, indole), 8.02-
8.04 (d, 2H, J=8.6 Hz, 4-methylsulfonylphenyl H2&H6),  
8.10-8.12 (d, J=8.6 Hz, 2H, 4-methylsulfonylphenyl 
H3&H5),  8.38-8.39 (d, 1H, NH), 8.38-8.39 (d, 1H, NH), 
8.77-8.78 (d, 1H, NH), 10.5 (s, 1H,  NH, indole), 12.4 
(br, 2H, COOH); 13C	NMR	(100.6	 	MHz,	DMSO-d6)	δ	
= 27.9, 36.5,  39.2 (CH2), 43.7 (CH3), 49.1, 53.6 (CH) 
110.6, 111.0, 119.6, 120.2, 125.1, 128.3, 129.9, 137.4, 
140.0,143.3 (C–Ar), 158.5, 165.4, 171.5 (CONH), 172.3,  
173.5 (COOH) ppm; LC-MS (ESI) m/z = 558 (M-1).

p-MeSO2 Bz -Val-Trp-Asp (2h)

Yield:	 61%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1738, 
1727 (C=O); 1305, 1144 (SO2); 

1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	0.83-0.86	(d,	6H,	CH3), 2.02 (d, 1H, 
ipr), 2.63-2.74 (m, 2H, CH2, aspartic acid), 2.83-3.05 (m, 
2H, CH2, indole), 3.1 (s, 3H, SO2CH3), 4.26-4.27 (d, 1H, 
CH), 4.5 (m, 1H, CH), 4.77-4.79 (d, 1H, CH), 6.6 (s, 1H, 
CH, indole), 6.8-7 (m, 4H, indole), 8.02-8.04 (d, 2H, J=8.6 
Hz, 4-methylsulfonylphenyl H2&H6), 8.10-8.12 (d, J=8.6 
Hz, 2H, 4-methylsulfonylphenyl H3&H5),  8.38-8.39 (d, 
1H, NH), 8.38-8.39 (d, 1H, NH),  8.77-8.78 (d, 1H, NH), 
10.5(s, 1H,  NH, indole), 12.4 (br, 2H, COOH); 13C NMR 
(100.6		MHz,	DMSO-d6)	δ	=	34.7,	44.4	(CH2), 19.1, 30.5,  
43.7 (CH3), 49.0, 53.4, 59.6 (CH), 110.3, 111.6, 114.8, 
117.7, 118.7, 121.2, 124.0, 127.3, 128.3, 136.3, 139.8, 
143.3 (C–Ar), 158.5, 165.8, 170.9 (CONH), 171.7,  172.6 
(COOH) ppm; LC-MS (ESI) m/z = 599.2 (M-1).

p-MeSO2 Bz -Ile-Trp-Asp (3h)

Yield:	 70%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1738, 
1727(C=O); 1305, 1144 (SO2); 

1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	0.84-0.86	(t,	3H,	CH3), 1.08 (d, 3H, 
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CH3), 1.32 (m, 2H, CH2), 2.23 (m, 1H, CH),  2.63-2.74 
(m, 2H, CH2, aspartic acid), 2.83-3.05 (m, 2H, CH2, 
indole), 3.1 (s, 3H, SO2CH3), 4.26-4.27 (d, 1H, CH ), 
4.51 (d, 1H, CH),  4.77-4.79 (d, 1H, CH), 6.6 (s, 1H, 
CH, indole), 6.8-7 (m, 4H, indole), 8.02-8.04 (d, 2H, 
J=8.6 Hz, 4-methylsulfonylphenyl H2&H6),  8.10-8.12 (d, 
J=8.6 Hz, 2H, 4-methylsulfonylphenyl H3&H5), 8.38-8.39 
(d, 1H, NH), 8.38-8.39 (d, 1H, NH),  8.77-8.78 (d, 1H, 
NH), 10.5 (s, 1H,  NH, indole), 12.4 (br, 2H, COOH); 13C 
NMR	(100.6	MHz,	DMSO-d6)	δ	=	22.3,	27.7,	60.1	(CH2), 
11.6,15.0,  41.7 (CH3), 24.1, 49.8, 53.7, 65.2 (CH), 106.2, 
110.0, 111.7, 115.5, 118.6, 121.3, 127.3, 128.0, 129.6, 
130.3 136.5 (C–Ar), 156.2, 168.5, 169.0 (CONH), 171.2, 
172.6, (COOH) ppm; LC-MS (ESI) m/z = 613.1 (M-1).

p-MeSO2 Bz -Ala-Trp-Asp (4h)

Yield:	 65%;	 White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1738, 
1727 (C=O); 1305, 1144 (SO2); 

1HNMR (400 MHz, 
DMSO-d6):	δ	ppm	1.34	(d,	3H,	CH3), 2.63-2.74 (m, 2H, 
CH2, aspartic acid), 2.83-3.05 (m, 2H, CH2, indole), 3.1 
(s, 3H, SO2CH3), 4.26-4.27 (d, 1H, CH ), 4.73 (q, 1H, 
CH), 4.77-4.79 (d, 1H, CH), 6.6 (s, 1H, CH, indole), 

6.8-7 (m, 4H, indole),  8.02-8.04 (d, 2H, J=8.6 Hz, 
4-methylsulfonylphenyl H2&H6),  8.10-8.12 (d, J=8.6 
Hz, 2H, 4-methylsulfonylphenyl H3&H5),  8.38-8.39 (d, 
1H, NH), 8.38-8.39 (d, 1H, NH), 8.77-8.78(d, 1H, NH), 
10.5 (s, 1H,  NH, indole), 12.4 (br, 2H, COOH); 13C NMR 
(100.6	MHz,	DMSO-d6)	δ	=27.9,	36.4	(CH2), 18.1, 39.3 
(CH3), 44.1, 49.0, 53.6 (CH), 110.3, 111.6, 118.6, 121.2, 
124.1, 127.3, 128.9, 136.4, 139.0, 143.3 (C–Ar), 158.5, 
165.4, 171.7 (CONH), 172.3, 172.7 (COOH) ppm; LC-
MS (ESI) m/z = 571.1 (M-1).

p-MeSO2 Bz -Ser-Trp-Asp (5h)

Yield:	 61%;	White	 solid;	 IR	 (KBr):	 ν	 (cm-1) 1738,1727 
(C=O); 1305, 1144(SO2); 

1HNMR (400 MHz, DMSO-d6): 
δ	ppm	2.12	(s,	1H,	OH),	2.63-2.74	(m,	2H,	CH2, aspartic 
acid), 2.83-3.05 (m, 2H, CH2, indole), 3.1 (s, 3H, 
SO2CH3), 3.85-4.2 (m, 2H, CH2), 4.26-4.27 (d, 1H, CH ), 
4.6 (m, 1H, CH),  4.77-4.79 (d, 1H, CH), 6.6 (s, 1H, CH, 
indole), 6.8-7 (m, 4H, indole), 8.02-8.04 (d, 2H, J=8.6 Hz, 
4-methylsulfonylphenyl H2&H6), 8.10-8.12 (d, J=8.6 Hz, 
2H, 4-methylsulfonylphenyl H3&H5),  8.38-8.39 (d, 1H, 
NH), 8.38-8.39 (d, 1H, NH),  8.77-8.78 (d, 1H, NH), 10.5 

Figure 1. Representative of our designed compounds.
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(s, 1H,  NH, indole),  12.4 (br, 2H, COOH); 13C NMR 
(100.6	 	MHz,	 DMSO-d6)	 δ	 =	 29.3,	 36.4,	 	 60.1	 (CH2), 
43.7 (CH3), 44.2, 48.0, 53.2 (CH), 111.2, 113.0, 119.1, 
122.4, 125.6, 128.1, 131.1, 132.7, 136.3, 137.1,  139.2, 
143.3 (C–Ar), 157.1, 165.4, 171.1 (CONH), 172.4,  173.3 
(COOH) ppm; LC-MS (ESI) m/z = 587.1 (M-1).

Molecular modeling (docking) studies

Docking analysis was operated by autodock vina software 
(Trott and Olson, 2010). The X-ray crystal structure of the 
selective COX-2 receptor Celecoxib bound to the human 
COX-2	 active	 site	 receptor	 α	 was	 obtained	 from	 the	
RCSB, PDB (6COX) and kollman charge was calculated 
and non-polar hydrogens were deleted. A grid box of 24-
24-24	A˚	with	the	central	X-Y-Z	coordinates	of	X:	23.6652	
Y: 23.3127 Z: 47.8268 were determined for calculation 
of the energy map. For docking validation, Celecoxib 
was docked in the active site of 6COX with absolutely 
identical conditions and the docked conformation having 
minimum docking energy was adjusted to Celecoxib in 
crystallography with (6COX), applying pymol software.

Cytotoxicity

To	determine	the	cytotoxicity	of	the	modified	tetrapeptide	
derivatives, four human tumor cell lines were used: 
MCF-7 (breast cancer Cell Line), A549 (adenocarcinoma 
human alveolar basal epithelial cells), HepG2 (human 
liver cancer Cell Line), and HT-29 (Human Colorectal 
Adenocarcinoma	Cell	Line).	Human	 skin	fibroblast	 cell	
line was also included for comparison.  The cell lines 
were purchased from Iranian Biological Resource Center 
(IBRC), Tehran, Iran [18-20]. The cells were grown in 
RPMI1640	medium	at	37	°C	under	5%	CO2 enriched with 
10%	fetal	bovine	serum	(FBS)	U/mL	penicillin	and	100	

µg/mL streptomycin. Cell viability was evaluated by using 
a MTT technique which is based on the transformation 
of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium 
bromide (MTT) dye to purple formazan crystals by 
mitochondrial succinate dehydrogenase enzyme in alive 
cells. The cells were cultured into 96-well plates at a 
concentration of 104cells/well and allowed to incubate 
for 24 h. The cells were incubated with increasing 
concentrations of the test compounds for 48h. At the 
end	 of	 each	 analysis	 period,	MTT	 (10	μL,	 5	mg/mL	 in	
PBS) was added to each well and the microplate was 
incubated at 37°C for 4 h. The medium was removed 
and	DMSO	(100	μL)	was	added	 to	each	well	 to	 liquate	
the inextricable formazan crystals. Plates were incubated 
for 30 min at 37°C and the optical densities were read at 
570	nm	using	a	spectrophotometer	plate	reader	(Infinite®	
M200, TECAN)(Mosmann, 1983). Celecoxib was also 
used as a positive control and DMSO as the solvent of 
the test compounds. The data are presented as the mean of 
triplicate number of living cells and IC50 was calculated 
by calibration curve using Prism software.

Results and Discussion

The cytotoxicity activities of products (1e-5h) were 
determined by their effects on four different cell lines 
such as A549 (human lung cancer cell line), MCF-7 
(breast cancer Cell Line), HT29 (Human Colorectal 
Adenocarcinoma Cell Line) and HepG2 (human liver 
cancer Cell Line). To indicate the anti-proliferative 
activities of the synthesized compounds, the cells were 
treated with increasing concentrations of synthesized 
compounds	 (1–100	 μM)	 and	 Celecoxib	 (1–100	 μM)	 as	
a reference drug. The results of MTT assay are shown 
in	 Table	 1.	 The	 results	 clearly	 indicated	 that	 modified	
tetrapeptides	 (3g	 and	 5f),	 showed	 significant	 cytotoxic	

 
 
Figure 2.

Figure 2. M Docking of 3g in the active site of 6COX. Hydrogen 
atoms have been removed to improve clarity.

Figure 3.

Figure 3. Good	superimposition	of	the	modified	tetrapeptide	
compound 3g with celecoxib.
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Table 1. In vitro antiproliferative activity of compounds 1e-5h based on MTT assay.

Compounds X Y MCF-7
IC50 (μM)a

HEPG2
IC50 (μM)

HT-29
IC50 (μM)

A549
IC50 (μM)

Human skin fibroblast
IC50 (μM)

1e Tyr Gly 11.36 ± 0.03 10 ± 0.04 41.98 ± 0.01 10.84 ± 0.08 35.12 ± 0.04

2e Tyr Val 10.79 ± 0.21 7.41 ± 0.02 >100 8.87 ± 0.08 85.14 ± 0.03

3e Tyr Ile 9.98 ± 0.04 10.38 ± 0.02 29.28 ± 0.02 33.44 ± 0.12 45.13 ± 0.05

4e Tyr Ala >100 >100 >100 9.41 ± 0.11 >100

5e Tyr Ser 11.29 ± 0.07 3.30 ± 0.03 11.39 ± 0.03 11.15 ± 0.11 78.16 ± 0.03

1f Phe Gly 10.33 ± 0.12 9.47 ± 0.03 37.87 ± 0.02 13.96 ± 0.01 31.15 ± 0.05

2f Phe Val >100 9.08 ± 0.01 10.65 ± 0.01 12.95 ± 0.21 >100

3f Phe Ile 13.54 ± 0.01 6.60 ± 0.02 >100 31.92 ± 0.18 48.17 ± 0.04

4f Phe Ala 31.44 ± 0.01 >100 31.34 ± 0.02 3.18 ± 0.06 >100

5f Phe Ser 9.06 ± 0.03 10.14 ± 0.02 6.756 ± 0.01 3.94 ± 0.14 >100

1g His Gly 9.11 ± 0.12 9.22 ± 0.02 10.22 ± 0.01 6.41 ± 0.12 >100

2g His Val 11.54 ± 0.09 >100 2.52 ± 0.03 11.26 ± 0.19 >100

3g His Ile 2.46 ± 0.03 5.28 ± 0.01 11.01 ± 0.06 11.85 ± 0.08 78.16 ± 0.02

4g His Ala 32.72 ± 0.20 8.73 ± 0.02 3.01 ± 0.02 >100 >100

5g His Ser >100 10.86 ± 0.04 8.82 ± 0.03 31.77 ± 0.26 >100

1h Trp Gly 9.58 ± 0.05 13.93 ± 0.02 >100 92.68 ± 0.15 81.12 ± 0.01

2h Trp Val 29.69 ± 0.16 12.23 ± 0.02 9.34 ± 0.02 31.54 ± 0.05 >100

3h Trp Ile 9.66 ± 0.21 >100 31.56 ± 0.02 7.30 ± 0.13 >100

4h Trp Ala 12.86 ± 0.04 9.21 ± 0.03 >100 9.09 ± 0.01 23.12 ± 0.03

5h Trp Ser 8.04 ± 0.19 8.11± 0.01 >100 29.50 ± 0.06 45.19 ± 0.07

celecoxib 19.3 ± 0.04 16.0 ± 0.03 18.2 ± 0.01 16.0 ± 0.02 >100
a: IC50:	drug	concentration	that	inhibits	cell	growth	by	50%.

activity against all chosen cell lines. Compound (2g) 
showed a great anti-cancer activity against MCF-7, 
HT-29, and A549 cell lines. Consequently, our results 
showed that the presence of amino acids such as histidine 
or phenylalanine increased cytotoxicity in comparison 
with compounds containing tyrosine and tryptophan. 
The cytotoxicity activity of the compounds on human 
fibroblasts	showed	no	significant	harmful	effects.	Based	
on the MTT assay and structure similarity between 
modified	tetrapeptide	compounds	(1e-5h)	and	Celecoxib,	
it could be assumed that one of the mechanisms for 
cytotoxic activity of these compounds on different cell 

lines are mediated through COX-2 receptors. 
     Therefore, the orientation of compound 3g as the most 
potent compound against MCF-7, in the COX-2 active 
site was examined by a docking experiment (Fig 2). This 
molecular modeling study showed that compound 3g 
was well bound into the active site of COX-2 receptor 
so that the N atom of the imidazole ring of His90 is in the 
vicinity of the oxygen of sulfonyl group (distance=3.78 
A˚)	and	is	capable	of	binding	to	this	moiety.	In	addition,	
docking showed the hydrophobic pocket surrounding 
the isoleucine side chain by the residues Leu531, 
and Leu359. In addition, molecular modeling studies 
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(Fig 3) showed the good superimposition of compound 
3g with Celecoxib as a crystallography compound in the 
COX-2 active site. These data together with biological 
results are in agreement that one of the mechanisms
 of cytotoxic activity of compounds (1e-5h) on these 
cell lines might be mediated through acting on COX-2 
receptor.

Conclusion

This study indicates that the most of the synthesized 
compounds showed moderate to good cytotoxicity against 
different	cell	lines.	In	addition,	modifications	on	the	basic	
side	chain	of	amino	acids	had	a	significant	 influence	on	
the cell cytotoxicity. 
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