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 Background: Bone marrow stromal stem cells (BMSCs) are non-hematopoietic, 

stromal cellsthat can differentiate into mesenchymal and other type of tissues. 

The BMSCs have properties that make them ideal candidates for tissue 

engineering. The present study aimed to investigate the effect of deferoxamine 

(DFO) on homing of bone marrow-derived mesenchymal stem cell, and to 

examine if DFO can increase migration and subsequent homing of mesenchymal 

stem cells (MSCs) in vitro. 

Methods: BMSCs were isolated from the long bones of NMARI rats through 

density gradientcentrifugation and adherent cell culture. Next, they were treated 

using DFO in Dulbecco’s modified eagle medium (DMEM) for 24 h. The 

expression of chemokine receptor 2 (CCR2) were assessed using RT-PCR. 

Results: BMSCs expressed CCR2 on a large proportion of cells. In DFO-treated 

BMSCs,expression of CCR2 (P<0.005) significantly increased compared to that 

in control groups. Elevation and up regulation of CCR2 in DFO-treated MSCs 

were observed. 

Conclusion: Preconditioning of BMSCs using DFO prior to transplantation could 

increasehoming of BMSCs through affecting some chemokine receptors as well 

as proteases involved and thus improve the efficacy of cell therapy. 
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Introduction 

Bone Marrow Stromal Stem Cells 

(BMSCs)are non-hematopoietic stromal cells 

capableof differentiating into and contributing 

to theregeneration of mesenchymal tissues, 

including bone, cartilage, muscle, ligament, 

tendon, adipose, and neuron and glial cells [1, 

2]. They can also express Chondrogenic 

phenotypes [3] and are able to differentiate 

into neural elements in vitro [4].  

MSCs are capable of expanding many-fold in 

culture and still keeping their growth and 

multilineage potentials. The previous studies 

have shown immunosuppressive properties for 

MSCs [5]. They are regarded as non-

immunogenic agents; therefore, transplantation 

of MSCs into an allogeneic host may not 

require immunosuppression [6]. These 

properties make MSCs ideal candidates for 

tissue engineering as well as cellular and gene 

therapy. More-over, MSCs are shown to be 

able to migrate into damaged or diseased 

tissues when transplanted systemically [7, 8], 

including ischemic brain [9, 10], infarcted 

myocardium [11], and injured lung [12], where 

they have proven clinical value. These studies 

suggest that MSCs possess migratory capacity, 

yet the mechanisms underlying the migration 

of these cells have remained unknown. 

Chemokine receptors and their ligands 

together with adhesion molecules play an 

important role in tissue-specific homing of 

leukocytes [13]; they have also been 

implicated in trafficking of 

hematopoieticprecursors into and through 

tissues [14]. Chemokine presented on 

endothelial cells trigger integrin activation and 

arrest of those leukocytes carrying the 



2  Sadeghi M. et al. 

 

This open-access article distributed under the terms of the Creative Commons Attribution Non Commercial 3.0 License (CC BY-NC 3.0). 
Copyright © 2017 Shahid Beheshti University of Medical Sciences. All rights reserved. www.journals.sbmu.ac.ir/otolaryngology 

 

corresponding receptors [15]. The 

extravasation of a leukocyte is tightly 

controlled by the range of chemokine receptors 

and adhesion molecules expressed on the 

leukocyte cell surface, which are known as the 

cell’s address code [16]. The literature review 

points the functional expression of various 

chemokine receptors on human MSCs [17-22]. 

The results of these studies are sometimes 

inconsistent and the full panel of chemokine 

receptors is overlooked in many of these 

studies. Furthermore, various adhesion 

molecules are known to be expressed on 

human MSCs; some of these may be 

functionally important in the adhesion of 

MSCs to the endothelium [23, 24]. In the 

present study, we demonstrated the functional 

presence of chemokine receptors on rat MSCs, 

and showed that their expression profile 

exhibited similarities to that of human MSCs. 

 

Patients and Methods 

 

Isolation and expansion of rat BMSCs 

Female NMARI rats (Razi Institute, Tehran, 

Iran), weighing 200-250 g, were housed under 

standard conditions; the experimental 

procedures were approved by the Ethics 

Committee for Laboratory Animals at Shahid 

Beheshti University of Medical Sciences, 

Tehran. Bone Marrow was shortly re-moved 

from the long bones and cells plated out in cell 

isolation media (DMEM (SIGMA, UK) with 

10% FBS) at 37°C, and 5% CO2. Nonadherent 

cells were then removed after 24 hours. Next, 

cells were replated after 4 weeks at 100 cells 

per cm2 in complete expansion media with 

10% FBS to expand BMSCs. Afterwards, cells 

were passaged and then replated at a density of 

approximately 2×10
3
 cells per cm2 for further 

expansion. 

 

Flowcytometric analysis 

For the purpose of membrane receptor 

expression, rat BM-SCs were analyzed using a 

three-step labeling procedure. The cells were 

incubated at 4°C for 30 minutes with the 

relevant primary anti-mouse antibodies. After 

washing, the cells were incubated along with a 

biotinylated anti-rat Ig, anti-mouse Ig, anti-

rabbit Ig or anti-goat Ig antibody, and then 

with Streptavidin-PE conjugate. Also, as a 

negative control, the cells were incubated with 

the same species isotype controls as the 

primary antibodies. For each analysis, a 

minimum of 10,000 events were recorded 

making use of a FAC Scan flow cytometer and 

then analyzed using Cell Quest software (BD 

Biosciences, UK). The antibodies used in the 

present study were as follows: anti-rat CCR2 

(1 in 200), and anti-mouse CD105 (all from R 

& D Systems, UK), CD45 (all from BD 

Pharmingen, UK), anti-muse CD105 FITC (1 

in 50), CD34 (1 in 100), CD45 (1 in 100) and 

anti-mouse CD34 (1 in 100) (Immunotools, 

Germany). 

 

Differentiation assays 

For osteogenic differentiation, rat MSCs were 

incubated in CEM using ascorbate-2-

phosphate (88 ng/ml), dexametha-sone (10−8 

M, Sigma-Aldrich, UK), and β-

glycerophosphate (10 mM, Sigma-Aldrich) 

and for adipogenic differentiation, MSCs were 

incubated in CEM using ITS (Insulin, 

Transfer-rin, Selenium), Premix (Gibco, UK), 

dexamethasone (10−6 M), 3-isobutyl-1-

methylxanthine (0.5 µM, Sigma-Aldrich), and 

indomethacin (100 µM, Sigma-Aldrich). After 

three weeks, cells were fixed and stained using 

Fast Red TR/naph-thol (Sigma-Aldrich) for 

alkaline phosphatase activity (osteoblastic 

differentiation), or using Oil Red O for 

adipogenic differentiation [25]. 

 

RT-PCR 

To check the expression of Oct-4, 

glyceraldehyde 3-phos-phate dehydrogenase 

(GAPDH), and CCR2 genes, the BMSC at the 

end of the fourth passage and treated cells 

were evaluated by DFO. Making use of the 

RNX plus Kit (Fer-mentas Inc., Maryland, 

USA), 2 µg of total RNA was treatedfrom 

each sample with DNase I (Fermentas Inc., 

Maryland, USA). The extracted RNA was 

evaluated for the purity and integrity by 

optical density measurements and 

electrophore-sis on 1% agarose gel. The First 

Strand cDNA Synthesis Kit (Ferments Inc. 

Maryland, USA) was used to convert the ex-

tracted RNA (1 µg) to cDNA. A total of 50 ng 

of cDNA was added to the PCR reaction for 

35 cycles with denaturation at 95°C for 45 

seconds, annealing at 58°C for 45 seconds, and 

elongation at 72°C for 30 seconds. After 

amplification was performed, the products 

were separated on 2% agarose gel and 

visualized making use of ethidium bromide 

under UV light. To ensure reproducibility, 

each experiment was repeat-ed for a minimum 

of 3 times [26]. 
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Statistical analysis 

Data were analyzed running 1-way analysis of 

variance (ANOVA), Turkey test, and 

Student’s t test. 

 

Results 

After the fourth passage of the isolated BMSC 

from the rat bone marrow, the viability of the 

cells was 96.23 ± 1.18% (mean±SEM) (Figure 

1). The cellular phenotype was char-acterized 

by immunocytochemistry for fibronectin, 

CD90, and CD106. Assays were performed on 

primary cells from 

the fourth passages. All BMSC cultures were 

observed to be CD34−, CD45−, and CD105+ 

and demonstrated the po-tentials of osteogenic 

and adipogenic differentiation. The BMSCs 

were previously shown to differentiate along 

the osteogenic, adipogenic, and chondrogenic 

pathways as well as having 

immunosuppressive properties similar to those 

of bone marrow-derived primary human 

BMSCs. 

 

 

 
Figure 1. Morphology of BMSC and BMSC after treatment by defroxamine 

 
Figure 2. The expression of Oct-4, GAPDH, CCR2+DFO,CCR2-DFO from right to left. 
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Characterization of BMSCs using 

flowcytometry 

The cell surface expression of chemokine 

receptors 2 (CCR2) was assessed in BMSC 

cultures at the fourth pas-sage and DFO 

treated using flowcytometry as described. The 

cell surface expression of CCR2 was also 

assessed in BMSC cultures using flow 

cytometry. A high percentage of BMSCs 

treated by DFO (89±14%) were observed to 

express CCR2 on the cell surface. In addition, 

a smaller proportion of both BMSC cell types 

was shown to express CCR2 (28±12% of 

primary cells). 

 

RT-PCR 

The results obtained from RT-PCR of 

GAPDH, Oct-4, and CCR2 revealed that 

CCR2 was expressed in induced cells, Oct-4 in 

BMSCs and BMSC-DFO, and GAPDH in All 

groups (Figure 2). 

 

Discussion 

An increasing number of recent studies have 

reported the functional expression of different 

chemokine receptors on human BMSCs [17-

22]; nevertheless, the reported results have 

been contradictory. BMSCs show a huge 

increase in proportion to the cells expressing 

chemokine receptors on their surface when 

removed with EDTA alone rather than trypsin; 

this fact indicates the sensitivity of some or 

possibly all chemokine receptors to trypsin 

digestion.Ample expression of CCR2 on 

human BMSCs was found in the current 

investigation, which is in accordance with the 

findings reported in several other studies [17, 

23], where chemotactic responses to CXCL12 

were shown, too. However, other studies have 

reported little or no expression of this receptor 

on BMSCs [24, 25], which may have been due 

to different use of trypsin or other 

experimental conditions. We have also 

demonstrated functional expression of CCR2 

on a large proportion of BMSCs and 

interestingly, expression of all these four 

receptors was demonstrated on a proportion of 

BMSCs. Other groups, too, demonstrated 

functional expression of one or more of these 

receptors on human MSCs [26-27].All these 

four receptors (CCR6, CCR9, CXCR3, and 

CXCR6) are shown to be involved in 

recruitment of immune cells to areas of 

inflammation. CCR6 is involved in mucosal 

humeral immunity and intestinal T cell homing 

[28], and it has recently been reported that 

Th17 cells expressing CCR6. 

are preferentially recruited to inflamed joints 

via its ligand CCL20 in an animal model of 

rheumatoid arthritis [29]. In other words, both 

CXCR3 and CXCR6 have also been im-

plicated in the recruitment of T cells to 

inflamed tissues in autoimmune arthritis [28], 

as well as other inflammatory conditions. 

CCR9 is known to be involved in homing of T 

cells and plasma cells to the intestine, playing 

a role in inflammatory diseases of the gut, 

such as Crohn’s disease [30]. 

Considering the known functions of these 

receptors in relation to recruitment and homing 

of immune cells to in-flamed tissues, it is 

reasonable to hypothesize that these re-ceptors 

may also be involved in the recruitment and 

homing of rat and human BMSCs to inflamed 

tissues, either to re-generate tissue or 

contribute in immunosuppressive activitySome 

differences were apparent between the spectra 

of chemokine receptors expressed by human 

and murineMSCs. CCR3, CCR5, CXCR4, and 

CXCR5 were present abundantly on human 

cells while only low levels of these receptors 

occur on murine cells. 

 

Conclusion: 

The present study reported that rat BMSCs 

demonstrate selective expression of functional 

chemokine receptors. Thus, these BMSCs 

would be a useful model to further study the 

role of particular chemokine receptors in in 

vivo models of disease and injury, for example 

in cell therapy. 
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