

UNIVERSITY OF
ILLINO ^ IBRARY

T URi- ''
• AMPAV

UNIVERSITY OF
ILLINOIS LIBRARY
URBANA-CHAMPA'^

Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/introductiontofo13eyto

f

f

1

f

i

y r T

%

.00 58 .41 .89

1.00.63 .76

1.00 .64

1.00

Occasional Publications of the

DEPARTMENT OF GEOGRAPHY
UNIVERSITY OF ILLINOIS
at Urbana-CHampaign

^0.G
X*/

^6.

&

''rX

^'tu
o/
%<

'H
y

"o,.

23.2 .71 1002 8.7

39.4 .29 996 9.2

51.3 .31 1291 3.1

• « • •

• • • •

• • • •

28.1 .66 771 2.1

AN INTRODUCTION

TO FORTRAN AND
THE PROGRAMMING

OF SPATIAL DATA

by

J. Ronald Eyton

Curtis C. Roseman

PAPER NUMBER 13

July, 1979

Editor of Occasional Papers: Rick Mattson

GEOGRAPHY GRADUATE STUDENT ASSOCIATION
UNIVERSITY OF ILLINOIS at Urbana-Champaign

I

An Introduction to

FORTRAN

and the

PROGRAMMING OF SPATIAL DATA

by

J. RONALD EYTON
Department of Geography
University of South Carolina

and

CURTIS C. ROSEMAN
Department of Geography
Uni versi ty of I 11 inois

Occasional Publication Number 13
Department of Geography
Uni versi ty of 111 inois
Urbana, Illinois
July, 1979

TABLE OF CONTENTS

PREFACE IV

SECTION I: FORTRAN PROGRAMMING

INTRODUCTION

LESSON TOPIC STATEMENTS EXERCISE

1 Basic Fortran State- READ, V/RITE, FOR- Reading and Writ-

ments MAT STOP, END ing

Reading, Writing
and Punching

(New Format Com-
mands

Punched Output 8

Messages and Calcu-
lations

(Algebraic Expres-

sions)

Numerical Calcula-

tions

12

Loops, Counters and
Summi ng

Logical IF, GO

TO, CONTINUE
Bas ic Statistical
Man! pul at ions

16

Storing Data In-

ternal ly

DIMENSION Lesson k Assign- 22

ment Using Internal

Storage I

Do Loops

Data Matrices

DO

(Nested DO)

Simple Linear Cor- 25

relation and Re-

gress ion

Calculating a Z- 30

Standardization
Matrix

\

8 Subprograms FUNCTION, SUB-
ROUTINE, CALL,

RETURN

Calculating a Corre- 3^

lation Matrix

SECTION II FORTRAN PROGRAMMING OF SPATIAL DATA

INTRODUCTION 40

LESSON TOPIC

Data Manipulation

STATEMENTS

DATA

EXERCISE

Linear Trend Sur- 4l

face Analys is

10

11

Additional Topics

Spatial Data Sets

INTEGER, REAL, LOG- Mapping Subroutine 50

ICAL, IF, Computed for 1st Degree
GO TO, DOUBLE PRE- Trend Surface
CIS ION

None Perimeter and Sk

Area of a Closed
Figure from Digi-

tized Coordinates

12 Introduction to

Li ne PI ott i ng

CALL PLOT, CALL
FACTOR, CALL
SYMBOL

Simple Outline Map 77

APPENDICES

A. STATISTICAL FORMULAE AND TESTS 88

B. SAMPLE PROGRAMS USING DO LOOPS 97

C. MATRICES AND VECTORS 102

D. GENERALIZED REGRESSION MODELS 123

E. LISTING FOR SUBROUTINE DMAN I P 135

I I I

PREFACE

This manual was written as an introduction to the basics of

FORTRAN programming and as an introduction to the computer analysis

of spatial data. It contains very concise explanations and therefore

is intended to be used either as a reference work or as a framework

and supplement for class room lectures. In the classroom this manual

might be used in conjunction with statistical or quantitative methods

courses in geography or other fields, or with courses in spatial analy-

sis or spatial programming.

The eight lessons of Section I contain all that is needed to per-

form basic manipulations of data matricies spatial or non-spatial. The

lessons also employ programming examples and exercises based on simple

statistics and a summary of statistical formulae and tests are in-

cluded in Appendix A for reference. Section II introduces the student

to a range of computer procedures necessary for the manipulation and

display of spatial data, including trend surface analysis, line printer

mapping, digitizer utilization, and the programming of a line plotter.

ACKNOWLEDGEMENTS

We would like to thank the many persons who have contributed in

one way or another to the completion of this document, including

several students in our classes over the last six years. Special

thanks goes to Howard G. Roepke who helped critique the programming

sections, to Elizabeth Mercer Roseman who wrote the first draft for

portions of Section I, and Jerome D. Fellmann and Marc Armstrong who

provided editorial assistance.

i V

SECTION I

FORTRAN PROGRAMMING

INTRODUCTION

Section I consists of eight basic lessons on Fortran IV, a com-

puter language based on mathematical logic. It is used to instruct

the computer how and where to read data, how to manipulate these data,

and how to arrange the results of the calculations on the printout

sheets.

Card Deck

The original data and programmed instructions are normally fed

into the computer on computer cards (tapes and discs may also be used).

There are three types of computer cards: (1) Job Control Cards, (2) For-

tran Statement Cards, and (3) Data Cards. Each type conveys different

information to the computer and must be arranged in a certain order.

1. Types and Purposes of Cards:

a. Job Control Cards - instruct the computer to look at

the Fortran Statement Cards, stop, look at data

cards, stop, etc.

b. Fortran Statement Cards - instruct the computer to

perform a particular set of instructions.

c. Data Cards - contain original data.

2. Order of Cards:

a. Job Control

b. Fortran Statements

c. Job Control

d. Data Deck

e. Job Control

Fortran Statements

The programming portion of the deck consists of three parts:

(1) statements to READ data; (2) statements for CALCULATIONS and MAN-

IPULATIONS, and (3) statements to WRITE results. In the program there

can only be one statement per card and this must be punched in col-

umns 1-11. Statement numbers which ^x'& used to identify certain

statements throughout the program can range in value from 1-9999 and

must be punched in columns 2-5.

Statements must be arranged a certain way. The computer will exe-

cute each statement (i.e., do what the statement instructs it to do) in

the order in which it is found in the deck. (Later, however, it will

be shown that there are ways of instructing the computer to transfer

control, i.e., "skip around," to different statements in different

locations within the deck.)

The following is a list of the column uses for a Fortran state-

ment on a standard 80-column card. Instructions in the use of all of

these columns will be presented as the need arises.

Col umns

1 Comment Card Indication
2-5 Statement Numbering

,.

6 Card Continuation Indication
7-72 Fortran Statement

73-80 Card Sequencing

LESSON 1: BASIC FORTRAN STATEMENTS

Focus: How to read in data and write it out

New Statements: READ, WRITE, FORMAT, STOP, END

Exercise: Reading and writing data

Introduction

The statements introduced in this lesson are usually used in the

first and last parts of a Fortran Program. The READ statement directs

the computer to read the data. The WRITE statement tells the computer

what to print out. The FORMAT statement assigns the form in which the

data are to be read in and printed out. Finally, the STOP and END

statements- tell the computer the program is done.

Basic Fortran Statements

READ Statement

Card COLS 123^56?
Fortran READ (5,aaaa) variable name, variable name . . .

Statements aaaa FORMAT ()

Explanat ion:

5 = indicates that a card will be read

a = statement number that identifies the format card for reading

in the data

variable name = each variable in the original data must have its

own identification name. Each name must satisfy the follow-

ing convention:

1. the name must have six or fewer characters

2. the name may be alphabetic or numeric but the

first character must be alphabetic

3. there are two types of names corresponding to numerical

data types:

INTEGERS . I-N (whole numbers)

FLOATING POINT A-H; 0-Z (decimals)

Correct Examples: B292 (floating point)

RATE (floating point)

MQ73 (integer)
A (floating point)

ID (integer)

Incorrect Examples: ATIKOKAN (more than 6^ characters)

65A (starts with a number)

C$/ (can only use letters and numbers)

WRITE Statement

Card COLS 123^567
Fortran WRITE (6, aaaa) XX, ZERO, JT, CLYDE, MARY, I I , RATE
Statements aaaa FORMAT ()

Where:

a = statement number that identifies format card for writing out

the data

6 = unit number for printed output (on lister sheet)

FORMAT Statement

FORMAT statements describe the arrangement of data on cards so

the computer may correctly read them, or specify the arrangement of data

output on the printed page.

Data input and output are arranged in "fields." A field is a group

of columns which contain a single piece of data.

Example 1: Formats for READ Statements

1. If data are in integer form use la; if data

are in floating point form use Fa.b.

Where: a = size of field (includes numerals,

decimal points, and plus and minus

signs)

b = number of digits to the right of

the decimal

2. If skipping a space between fields use IX ;

two spaces use 2X; etc.

3. Example:

TO READ THIS DATA CARD

Card Column
}_ ^ }3_ }]_ ^ 35

^ ^ ^ ^ ^ ^

2k. 5 2.6 9 100.00 -56.896 78

USE THESE READ AND FORMAT STATEMENTS

Card Column 123^567
READ (5. 500) XX, ZERO, JT, CLYDE, RATE, MARGE

500 FORMAT (F4.1 ,3X,F3.1,2X,I 1,3X,F6.2,2X,F7.3,3X,

These statements will instruct the computer to read a number with

the name XX and a value of 24.5, skip 3 spaces, read a number with the

name ZERO and a value of 2.6, skip 2 spaces, etc.

Example 2: Formats for WRITE Statements

1. The form used in WRITE Statements is the same used in

READ, except:

a. leave at least one additional space in each field

for a plus or minus sign

b. must use carriage control which tells the computer

how to print on the page

"1" = start at top of new page

" " = s ingl e space

"0" = double space

"_" = triple space

"+" = overprint

2. Example:

Card Column 123^567
Fortran WRITE (6, 600) ZZ, ZERO, JT, CLYDE, RATE, MARGE
Statements 600 FORTRAN("0", F5. 1 ,3X, F^ .

1
,2X, I 2 ,3X, F7.2,2X,

F8.3,3X,I3)

This format will instruct the computer to double space (skip one

line) and print out a value for the floating point variable ZZ in a

field of size 5, skip 3 spaces, print a value for the variable ZERO, etc

NOTE : There are 132 spaces per line available for written output.

Termination Statements

Every program needs termination statements to indicate to the com-

puter that the program is ended.

Card Column 123^56?
Fortran STOP
Statements END

Exerci se

This problem deals with reading in some data and writing it out.

Read in seven numbers which are punched on one card in fields spaced in

any manner on the card. Include various sized numbers--some floating

point numbers and some integer numbers. Have the data written out in

reverse order. 7

LESSON 2: READING, WRITING AND PUNCHING

Focus Skipping cards or lines, standardized formats,
punched output and literal messages

New Statements: None

Exercl se: Reading, writing and punching data

I nt roduct ion

This lesson discusses new format commands that are useful tools when

formatting READ and WRITE statements. This allows the user to read in

data from more than one card, write out results on more than one line,

and punch out results on more than one card.

Further Formatting

Skipping Cards or Lines

The / is utilized In READ formats to instruct the computer to read

the next data card while in WRITE formats it indicates a movement to the

next line or card. The / takes the place of a comma in the format state-

ment. / = go to next card or skip a line

// = ski p two 1 ines

/// = skip three lines, etc.

Example:

READ (5, 501)ZZ, ZERO, JT, CLYDE, ART, MARGE

501 F0RMAT(F4.1,3X,F3.1/2X,11,3X,F6.2/2X,F7.3,3X,12)

This will direct the computer to read the value of ZZ, skip three

spaces, read ZERO, go to next card, skip two spaces, read JT, skip three

spaces, read CLYDE, go to next card, etc.

WRITE(6,601)ZZ,ZER0,TJ,CLYDE,ART,BARGE
60 1 FO RMAT { " r

'
, F8 . 4 , 2X , F8 . 4 , 2X , F8 . 4/ 1 X , F8 . 4 , 2X , F8 . 4 , 2X , F8 . ^)

In this case, the computer will begin on a new page, write the value

of ZZ, skip 2 spaces, write a value for ZERO, skip 2 spaces, write a val-

ue for TJ , skip a line, skip 1 space, write a value for CLYDE, etc.

Standardized Formats

I f the data are punched in regularly sized and spaced fields on a

card or if the results are to be all written in regular form, the formats

can be aggregated.

Example:

READ (5, 502) ZZ,ZERO,TJ, CLYDE, ART, BARGE
502 FORMAT(3{F7.3,3X)/3(F7.3,3X))

Here the computer will alternately read three fields of F7.3 and skip

three spaces, go to the next card and repeat. Thus, the three preceding

any commands in parentheses indicates that those commands should be done

three times.

In the remainder of the lessons, card columns will not be specif ied--

but remember that Fortran Statements cannot begin before column 7 and
that statement numbers are in column 2-5.

Other Examples:

503 F0RMAT(2F3.2,5F7.3,3(I2,5X))

NOTE ; Parentheses are not needed to repeat a single command— 2 F3.

2

504 F0RMAT(3(2X,F4.1,I3/),F3.2)

NOTE : A / may also be repeated.

Exampl e:

WRITE(6,602)T1,T2,T3,ART1,ART2,ART3
602 F0RMAT("0",3(F8.4,2X)/1X,3(F8.4,2X))

NOTE : Carriage control skipped for the second line.

Punched Output

To obtain punched output, replace the 6^ in the WRITE statement with

a ']_. For punched output there a^re. 80 columns available per card. A

carriage control is not needed in the accompanying FORMAT for punched

output

.

Exampl e:

WR I TE (7, 700) ZZ , ZERO , TJ , CLYDE , R292 , BARGE
700 F0RMAT(5F10.2/510.2)

Literal Messages

A message, title or header can be written on the output sheet by

including the message in the WRITE format statement. The message is

contained between a pair of quotes and all characters including blanks

can be used to write the message.

10

Example: (message only)

WRITE(6,101)
101 F0RMAT("1", "WHILE ART IS AWAY, THE MICE WILL PLAY")

Exercise

READ in 10 numbers from 3 cards. Mix integer and floating point

numbers. Write out a message (header) and the numbers on two rows of

print-out paper. Punch the numbers out on k cards.

11

LESSON 3: MESSAGES AND CALCULATION

Focus

:

New Statements:

Exercl se:

Reading in literal statements and basic calculations

Fortran algebraic expressions for addition, sub-
traction, division, multiplication, exponentiation,
and square root

Reading in a title and reading in data for calcula-
tions

I nt roduct ion

Letters and numbers used only as symbols may be read in or written

out using an Alphanumeric format. This is useful for titling or labeling

output. The second half of the lesson introduces the user to the Fortran

equivalent of basic algebraic manipulations.

Alphanumeric Formatting (A Formats)

A formats are used when reading in words or numbers that are only

used as symbols. Numbers read in under an A format cannot be manipulated

algebraically. The following message: "Lesson #3 - Exercise in Simple

Calculations" punched in columns 10-53 of the first data card can be read

in as follows; first designate a variable name for each set of four letters

and blank spaces.

Exampl e:

T1 T2 T3 Jk T5 T6 T7 T8 T9 TIO Til

LESS ON # 3
- EXER CISE IN SIMP LE C ALCU LATI ON

12

To format this message, utilize the A Format which is the letter

A followed by a digit representing the number of letters and spaces in

each set. In this case, the digit would be k except for the last char-

acter set which would be 2. (Allowable A Formats are Al , A2, A3, A4)

Example:

READ(5, 507) T1,T2,T3,T4,T5,T6,T7,T8,T9, 110,111
507 F0RMAT(9X,A^,A4,A^,A4,A4,A^,A4,A4,A4,A4,A2)

Or, better:

507 F0RMAT(9X,10A4,A2)

To write out the above title (header) on the top of a new page use

the fol lowing:

WRITE(6,508)T1 ,T2,T3,T^,T5,T6,T7,T8,T9,T10,T11
Title left justified 508 F0RMAT("1 ", 10A4, A2)

Title centered 508 F0RMAT("1",^0X , 10A4, A2)

Cal culat ions

Calculations are carried out in the main body of the Fortran Program.

Each calculation consists of 3 parts: a left-hand side which consists of

a single variable name to which the result of the calculation is assigned,

an equals sign and a right-hand side consisting of one or more variables

and the appropriate Fortran calculation symbol. The general form is

shown below followed by the Fortran calculation symbols.

Assigned Variable Name = Variable Name, Calculation Symbol, Variable

Name

This will vary with computer systems

13

The Fortran calculation symbols are;

Operat ion

addi t ion

subtraction

mul t i pi icat ion

division

exponentiation

square root

Calculation Symbol

+

/

SQRT (variable)

Examples:

Addition, subtraction, multiplication, division

SUM = A+B
ISUM = N1+N2
DIF = A-B
PROD = A'-^B

DIV = A/3.0

Exponentiation, square root

CUBE = A^'^'-^S

SQUARE = A'-^^'^Z

R00T3 = A''"'0./3

R00T2 = A^'^'^S

R00T2 = SQRT(A)

Mathematical operations may be combined in many ways, using paren-

theses to separate various combinations. All operations are performed

in a hierarchial sequence, exponentiation takes place first, then multi-

plication and division, then the addition and subtraction. Operations

within parentheses are completed first.

Exampl e:

A = (B+C)/3.0
Bl = SQRT(B+C/A))
SUMT = (C^'KA+B))^'c'V2

14

Exercise

Read in a title for this problem from a data card. Read in some

data and add, subtract, divide, multiply, square, and take the square

root of some of the numbers. Write out the title. Write out answers

in column or table form, being sure to label them.

15

LESSON h: LOOPS, COUNTERS AND SUMMING

Focus: Assigning the computer to perform the same set of
operations over and over for a number of iterations

New Statements: CONTINUE, IF, GO TO

Exercise: Calculate mean and standard deviation of a data set

I ntroduc t i on

The calculating advantage of a computer lies in its ability to per-

form a large number of tasks repeatedly and quickly. The concept of

repeated operations is fundamental to programming and allows for the

counting and summing operations necessary for sophisticated mathematical

man i pul at ion

.

New Statements

CONTINUE Statement

The CONTINUE statement is a "convenience" statement allowing the

programmer to transfer control to part of the program and then continue

at that point. When the program encounters a CONTINUE statement, the

program will simply go on to the next statement immediately following

the CONTINUE. In this sense, it is a dummy statement that is used only

as a reference point.

16

IF Statement

IF statements check to see if a certain condition is met by elements

of the data, e.g., is A1 greater than A5? This is written:

IF(A1 .GT.A5) a

Where a^ is an executable Fortran statement and GT signifies the

condition "greater than." If the condition is met, a^ wi 1 1 be executed,

if not, the next Fortran statement (following the IF statement) will be

executed.

Other possible conditions are:

1

.

.LT. = less than
2. .EQ. = equals to

3. .NE. = not equal to

4. .LE. = less than or equal to

5. .GE. = greater than or equal to

These conditions can be combined using AND or OR as follows:

IF(A1 .EC).A4.AND.A2.EQ.A3) A = B

IF(A1 .EQ.AA.0R.A2.EQ.A3) 1=1+1

NOTE : Be sure to put a period before and after every condition.

GO TO Statement

GO TO is a branching mechanism that directs the computer to a new

statement located anywhere in the program.

Example:

IF(A1 .GT.A5) GO TO 10

GO TO 11

10 A6 = 10.0
GO TO 12

11 A6 = 5.0
12 CONTINUE

Here, if Al is in fact greater than A5, the computer will go to

statement #10 and A6 will be set equal to 10.0; if not, it will go to

statement #11 and A6 will be assigned the value 5-0.

17

Loops

The general form of a loop is as follows

Loop

> 8 READ
FORMAT

(Fortran Statements)

WRITE
FORMAT

GO TO 8

10 STOP
END

Here, a series of statements is executed repeatedly. In other words,

the loop tells the computer to read the first card, do certain calcula-

tions, and write out the results. Then it returns to the beginning of

the program (GO TO 3), this time reading, calculating, and writing for

the second card (observation). This process will continue indefinitely

as there is no mechanism to exit the loop.

Incremental Counters

In the previous example of a program with a loop, the program will

iterate indefinitely (or until the data cards run out). To end the loop

the program must be able to keep track of the number of times the loop

iterates and then exit the loop at the appropriate count. This is done

by creating an incremental counter.

NOTE: In the Fortran language a variable name can be assigned a

value using a simple algebraic statement.

Integer variables set to one and zero:

1=0

J = 1

18

Also in Fortran a variable can be redefined in terms of itself. A

series of statements such as shown below are legitimate Fortran statements.

1 1=0
2 1 = 1 + 1

3 1 =
1 + 1

After the program has executed statement 1, 1=0; after executing

statement 2, 1=0+1 and, therefore, 1=1; and after executing state-

ment 3, I =
I + 1 or I = 2. Note that in statements 2 and 3 the I on

the right-hand side of the equation takes on the value of the previously

defined I before assigning a value to the left-hand side I. A statement

in which an integer variable name is set equal to itself and some con-

stant value is called an incremental counter. This statement can be used

to control the exit from a loop.

Example:

Write a program to read in 100 data cards with one number

per card and write out these numbers.

I = 1 «- (COUNTER INITIALIZED OUTSIDE OF LOOP)—> 10 READ(5,11) A1

11 F0RMAT(F10.2)
WRITE(6,21)A1

21 F0RMAT(1X,F10.2)
IF(I .EQ.IOO) GOTO 30 -^(CHECK TO EXIT FROM LOOP)
1=1+1 -<- (COUNTER)
GO TO 10

30 CONTINUE

Loop

(will i terate 100

t imes)

This is the standard structure for creating a loop with a GO TO

statement. Note the following in the example:

19

r

I

1. The counter (l) must be initialized (given an integer value)
outside of and before the top of the loop.

2. The counter is incrementing (SUMMING) as it keeps redefining
its value in terms of itself +1.

3. After the 100th card is read, I = 100 and the looping will
cease as the program transfers to statement 30.

k. If the statement 1=1+1 preceded the IF statement, only 99
cards would be read.

Summi ng

The fact that a variable may be redefined in terms of itself in the

Fortran language allows for incrementing or summing. If this procedure

is used for determining the number of times a loop iterates, it is

called a counter. However, the same procedure can be used to sum a

group of numbers.

Example:

Using the previous program to read in and write out 100 number, also

total the 100 numbers and write out the sum.

i
«ft

I

Loop

SUM = 0. <

—

1 = 1

-> 10 READ(5,11) A1

11 F0RMAT(F10.2)
WRITE(6,21) A1

21 F0RMAT(1X,F10.2)
SUM = SUM + A1 -^— (SUMMING)

IF(I .EQ.IOO) GO TO 30
1 = 1+1
GO TO 10

(SUM INITIALIZED TO ZERO)

30 CONTINUE
WRITE(6,31) SUM .^— (WRITE AND FORMAT

31 FORMAT (1X,"SUM=",F10.2)STATEMENTS FOR SUM

OCCURS OUTSIDE AND
AFTER LOOP TERMINATED)

Exercise

Read in the 30 observations of weather information from the data

table. Read in the observation year under an alphanumeric format.

20

Write out the information in a list along with the mean and standard

deviation of the observations.

N.D. January Average Temperatures (°F.)

1951 0.9
1952 -0.2

1953 9.9
195^ -3.2

1955 6.9

1956 k.k

1957 0.7
1958 15.1

1959 -0.9
i960 7.1

Grand Forks,

1931 16.2

1932 9.^

1933 9.4
193^ 10.6

1935 -2.2

1936 10.1

1937 -9.7
1938 3.7

1939 7.6
19^0 3.0

19^1 7.2

19^2 16.6

1943 -3.4

]Skh 18.0

1945 8.8
19-46 5.6

1947 12.6

19^8 1.8

1949].k

1950 -11.3

21

LESSON 5: STORING DATA INTERNALLY

Focus: How to store data in the computer so it can be used
by the program

New Statement: DIMENSION

Exerci se: Repeat of previous exercise with the use of internal
storage

I ntroduct ion

The use of internal program storage of data allows for the separa-

tion of a program into logical steps. Separate loops for reading, cal-

culating and writing lessens the confusion in the logical construction

of a useful algorithm.

Single Subscripted Variables

Data may be read into a single subscripted variable (vector) for

storage in the computer.

Example: A(l) B(l) C(l) D(l)

A(2) B(2) C(2) D(2)

A(3) B(3) C(3) D(3)

• • • •

A(N) B(N) C(N) C(N)

Here we have k vectors each of length N and each with one variable

name. Individual elements of each vector are assigned a subscript.

Data stored in this form can be accessed by designating the variable

name plus the integer that corresponds to the subscript [example: A(5)]

22

i

or by designating the variable name plus an Integer name that has been

assigned the appropriate value of the subscript [example: A(l) where I

has been assigned the value of 5] .

Use of the subscripted variable is shown in the following examples.

First, all the data can be read and stored in the computer, then all

the calculations can be done and stored, and then all the results can

be written out. Thus, three loops are used. The general form of such

a routine is as follows:

DIMENSION X(IOO)
READ(5,11)N0BS -«- NOBS IS THE NUMBER OF DATA

11 FORMAT (1 3) CARDS TO BE READ IN

J=1

> 100 READ(5,111) X(J)
111 F0RMAT(1X,F10.2)

IF(J.EQ.NOBS) GO TO 150
J=J+1

GO TO 100

READ
LOOP

SUMMING
LOOP

150 CONTINUE
SUM=0
J=1

200 SUM=SUM+X(J)
IF(J.EQ.NOBS) GO TO 250
J=J+1

GO TO 200

WRITE
LOOP

250 CONTINUE
J=1

300 WRITE(6,111) X(J)

IF(J.EQ.NOBS) GO TO 350
J=J + 1

GO TO 300
350 CONTINUE

DIMENSION Statements

This statement directs the computer to reserve storage space for a

subscripted variable. The DIMENSION statement is usually the first

statement of a program.

23

¥

Example: DIMENS I ON A(20) ,B (20) , C(20) , SUM(20)

In this example, each of four subscr i pted variables is given 20

storage locations.

Exerc i se

Do the previous assignment over again using three loops: loop 1

for reading in and storing the data, loop 2 for calculating the sums,

and loop 3 for writing out the data and the results.

m

LESSON 6: DO LOOPS

Focus: How to simplify loops by using DO statements

New Statement: DO

Exercise: Simple linear regression and correlation program

Introduction

The use of a DO statement eliminates the need for directly estab-

lishing an incremental counter and a GO TO statement for looping. The

DO statement is the "workhorse" statement of FORTRAN programming.

DO Loops

The DO statement is placed at the beginning of a loop and specifies:

(l) the location of the bottom of the loop and (2) the number of times

the statements within the loop are to be executed.

The simplest form of the DO loop is:

DO a I = 1 ,

N

Where a_ is the statement number that identifies the bottom of the

loop, I is the counter, 1 is the initial value of the counter, and N

designates the number of times the loop will iterate. All statements

down to and including the one numbered "a" will be executed N times.

Each time through, "I" will be incremented by one. The last time

through the loop "I" will have the value of N and the loop will terminate,

25

Example: Finding the mean of data vector B (n=20)

SUMB =

f > DO 10 I = 1,20
> 10 SUMB = SUMB + B(l)

XMEANB = SUMB/20.

In this example, statement 10 will be executed 20 times resulting

in the sum of the twenty numbers. After the loop terminates the next

statement (calculating the mean) immediately following the bottom of

the loop will be completed.

The above case shows a counter (l) incrementing by 1 . To consider

every 2nd or 3rd value, etc., of a subscripted variable the counter can

be incremented by 2 or 3, etc. The full form of a DO loop is:

DO 10 I = a,20,b

Where: a = initial value of the counter

b = counter increment each time the computer goes

through the loop (iterates).

Exampi e:

^ DO 10 I = 2,20,2

— 10 CONTINUE

Here, the computer will first consider the second value of a sub-

scripted variable. Then the second time it goes through the loop, it

will increment by 2 and consider the 4th value and so on until the 20th

value is used in the loop.

Example: Write a program to calculate the mean and standard

deviation of a variable having up to 100 observations.

26

Formulae:

EX
Mean =

N

Standard Deviation =
\f N

2
To use both of these formulae, the EX and the EX are needed. An

additional requirement Is to make the program general and able to handle

up to 100 observations, assuming one observation per data card.

The program using DO loops is broken into three parts:

1. Reads the necessary information
2. Calculates EX, EX^, X", a

3. Writes out data and results

C PROGRAM TO CALCULATE MEAN AND STANDARD DEVIATION
DIMENSION X(100)

C READ IN NO. OF OBS.

READ(5,21) NOBS
21 FORMAT (13)

XNOBS=NOBS
C READ IN DATA

> DO 30 J=1 , NOBS

30 READ(5,31) X(J)

31 F0RMAT(F10.2)
C CALCULATE SUMX AND SUMX2

SUMX=0.

SUMX2=0.
>D0 kO J=1 , NOBS

SUMX=SUMX + X(J)
-40 SUMX2=SUMX2 + X(j)-'"'^2

C CALCULATE MEAN AND STD. DEV.

XMEAN=SUMX/XNOBS
STDEV=SQRT(SUMX2/XN0BS-XMEAN''"'^2)

C WRITE OUT DATA
>D0 50 J=1, NOBS

50 WRITE(6,51j X(J)

51 F0RMAT(1X,F10.2)
C WRITE OUT MEAN AND STD. DEV.

WRITE (6.6l)XMEAN, STDEV
61 F0RMAT(////1X,"MEAN=",F10.2,//1X,"STDEV =",F10.2)

STOP
END

Several other programs showing the use of DO loops are found in

27

Appendix B. Note that "comment" cards (those with C in column 1) are

used in this program to identify different parts of the program. These

are nonexecutable statements included solely for the progranmers future

reference.

Exerci se

Write a program to calculate the simple linear correlation coeffi-

cient and regression coefficients for N pairs of observations. A guide

to the structuring of such a program is shown below.

Regression and Correlation Formulae

Y = a+bX

NEXY - (ZX) (EY)

r =

\l [NZX^ - (eX)^] [NEY^ - (EY)^]

a = (^Y) (^X^) - (EX) (eXY)

NEX^ - (EX^)

. NEXY - (ex) (eY)
b = —

NEX"^ - (EX)'^

Program Steps

1

.

Read in data X(j) , Y(j)

2. From the formula above you will need:

EXY = SUMXY
EX = SUMX
EY = SUMY
EX2 = SUMX2
Ey2 = SUMY2 .

PROGRAM VARIABLE NAMES

Do a summing loop for all N observations where N = # of pairs of

observations

.

28

SUMX2=0.
SUMXY = 0.

SUMX = 0.

SUMY =0.
SUMY2 =0.
DO 10 J=l ,N

SUMXY = SUMXY + X(j)-'''Y(j)

SUMX = SUMX + X(J)

SUMY = SUMY + Y(J)

SUMX2 = SUMX2 + X(j)"''^2

10 SUMY2 = SUMY2 + Y(j)-''"''-2

2
3. Calculate r(R), r (R2) , a(A), b(B) from the formulae (single line

Fortran statements)

.

h. Loop for predicting Y and determining residuals.

DO 20 J=1,N
YP(J)=A+B>'>-X(J)

20 RS(J)=Y(J)-YP(J)

Where: YP = Y predicted
RS = residuals

5. Find the means and standard deviation of the residuals [RS(j)

array]. Standardize the residuals.

DO 30 J=l ,N

30 RZ(J)=(RS(J)-RM)/RSD

Where: RZ = standardized residuals array
RM = mean of the residuals RS(J)

RSD = standard deviation of the residuals RS(j)

6. Calculate the F-Ratio from the following formula:

P
_ r^(N-2)

l-r^

7. Write out information with labels

A. Table of X, Y, YP, RS, RZ

B. S i ngl e va 1 ues of

r(R), r^(R2),a{A),b(B),F

29

LESSON 7: DATA MATRICES

Focus

:

Using double subscripted arrays for internal data

storage

New Statements: None

Exercise: Calculating a Z-standardl zed matrix

Introduct ion

This lesson introduces the programmer to manipulations required for

the analysis of data tables. This involves the use of nested PO loops

and implicit DO loops for the reading, writing, and the calculations

used in matrix operations.

Double Subscripted Arrays

In computer storage a matrix can be defined as follows.

A(1,1),A(1,2), A(1,M)

A(2,1),

A(N,1), A(N,M)

A single entry of the matrix may be accessed by calling, for A(3,6),

for example, or for A(l,J), where I and J are previously defined values.

A given row may be worked on by incrementing J wh i 1 e holding I con-

stant and a column may be worked on by incrementing I and holding J con-

stant.

30

DIMENSION Statement for Double Subscripted Arrays

To reserve storage space in the computer, both the number of rows

and the number of columns of the matrix must be dimensioned.

Example:

DIMENSION A(20,10) ,J0HN(20,100)

This instruction reserves space for a matrix (designated A) of 20

observations and 10 variables, and a matrix (JOHN) of dimensions 20 by

100. Remember that al

1

subscripted variable data, whether read in or

computed, must be dimensioned.

DO Loops and Matrices

Nested DO Loops

Using double subscripted arrays require that two subscripts be in-

cremented using "nested" DO Loops.

Example 1: Adding a constant (2.0) to all the entries of a

ma t r i X

:

DIMENSION A(20,10)
-> DO 10 1=1 ,20F-> DO 10 J=l,10
10 A(l,j)=A(l,j)+2.0

In this example, the computer will add 2.0 to all the entries across

the rows (treating one row at a time) because the outer loop will set I

(the row number) at 1 and J wi 1 1 be incremented in the inner loop until

it reaches 10. In this way, all rows are treated in turn and 2.0 will

be added to each entry until the 20th row (l=20) is completed. Note that

both DO loops have the same bottom--statement number 10.

31

Example 2:

DIMENSION A (20,10)
DO 20 J=1,10
DO 20 1=1,20

20 A(l,j)-A(l,j)+2.0

In this example, the addition of the constant will occur down the

columns. The column will be set at 1 , and I (the row) will be Incre-

mented to 20. Then J will be set at 2, and I incremented to 20. This

continues until the entire matrix is treated.

Summing a Row or Column of a Matrix

Summing a row or a column is similar to adding a constant.

Example: DIMENSION SUMC (50) ,A(100,50)
DO 30 J=l,50
SUMC(J)=0.0
DO 30 1=1,100

30 SUMC(J)=SUMC(J) + A(I,J)

Here the column number is set at one in the outer loop. SUMC(J),

a new variable representing the sum of the columns, is set at 0.0. In

the inner loop, row 1 is designated and the calculation carried out

until J = 100. The result is that the first column is summed and that

sum is assigned to SUMC(l). Then the computer returns to the outer

loop and the second column is worked on, and SUMC(2) is defined. This

continues until all the columns have been added and the new vector

SUMC(J), defined.

32

Imp] ici t DO Loops

Regular nested DO Loops cannot be used in READ or WRITE Statements.

A special loop Kas been developed for these cases— an "implicit" DO

loop with which the inner loop of the nested DO loops appears in the

READ or WRITE Statements.

Examples:

DO 10 1=1,100
10 READ(5,555)(A(I,J),J=1,50)

555 FORMAT

OR

DO 20 1=1,100
20 WRITE(6,666)(A(I,J),J=1,50)

666 FORMAT

In these cases the computer would READ or WRITE an entire matrix by

scanning across the rows, one at a time.

Exercise

Read in a data table consisting of at least k variables and 20 ob-

servations. Store the data in a double subscripted array with each col-

umn representing one variable. Print out the original data in this form

with appropriate labels. Calculate the mean and standard deviation for

each column and then standardize each column. Print out the standard-

ized data table along with the mean and standard deviations for each

col umn.

33

LESSON 8: SUBPROGRAMS

Focus: Generating and using FUNCTION and SUBROUTINE sub-

programs

Hevj Statements: FUNCTION, SUBROUTINE, CALL, RETURN

Exercise: Calculating a correlation matrix

I ntroduct ion

FUNCTION and SUBROUTINE subprograms are complete self-contained

Fortran programs that can be used (called) by a main program as needed.

FUNCTIONS and SUBROUTINES have the following advantages in structuring

large complex programs:

1. Help break a large complicated task into several smaller
programs that are used in an orderly fashion by the main
program.

2. Saves redundant programming. If a routine (i.e., finding

the mean of a vector or sorting a vector) will be used

over and over again in a program, the FUNCTION or SUBROUTINE
need only be programmed once and called as needed.

3. The programmer can generate a library of commonly used

routines or rely on routines available in SUBROUTINE
libraries at the local computer center.

General Rules for Generating FUNCTION and SUBROUTINE Subprograms

1. Each FUNCTION or SUBROUTINE is a self-contained program and

will contain DIMENSION statements, DO loops, and END state-

ment .

2. The main program makes an implicit call to a FUNCTION and an

explicit call to a SUBROUTINE. The main passes information

(constants, vectors, arrays) to the subprogram and the sub-

program returns value(s) (constant only for a FUNCTION and

constants, vectors, or arrays from a SUBROUTINE) which have

been generated by the subprogram.

3^

3. In place of the STOP statement (used in the main program),
a RETURN statement is used in FUNCTION and SUBROUTINE pro-

grams immediately preceding the END statement.

k. FUNCTION and SUBROUTINE elements such as statement numbers,
counters, variable names can be used without regard to

duplication of the same numbers or names within the main
program.

5. All vectors and arrays used in the main program and sent
to the FUNCTION or SUBROUTINE must be dimensioned in both
the main program and in the FUNCTION or SUBROUTINE.

6. All vectors and arrays generated In the SUBROUTINE and re-

turned to the main program must be dimensioned in both
the main program and the SUBROUTINE.

FUNCTION Subprograms

A FUNCTION is a subprogram that is capable of returning a single

value stored in the function name. The calling statement in the main

program is implicit and has the following form:

A = function name (list of arguments)

The FUNCTION subprogram begins with a FUNCTION statement and ends with

RETURN and END statements. A FUNCTION to calculate the mean of a vector

of values and a main program illustrating how the FUNCTION is called

are shown in the example below.

EXAMPLE:

Main Program

DIMENSION X(IOO)

C READ IN 100 OBSERVATIONS
DO 10 J=l ,100

10 READ(5,11)X(J)
1

1

FORMAT (F10.2)

C CALL FUNCTION XMEAN
XM=XMEAN(X,100)

C WRITE OUT MEAN
WRITE(6,21)XM

21 FORMAT ("1", "THE MEAN OF THE VECTOR=" , Fl 0. 2)

STOP
END

35

FUNCTION Subprogram

FUNCTION XMEAN(A,N)
DIMENSION A(IOO)

XN=N
SUM=0.

DO 10 J=1,N
10 SUM=SUM+A(J)

XMEAN=SUM/XN
RETURN
END

NOTE : 1. The name assigned to the FUNCTION must be in accord
with the naming convention for variable names (i.e.,

must begin with an alphabetic character denoting
floating point or integer mode and contain no more
than 6 symbol s)

.

2. The calling arguments, or arguments sent to the

FUNCTION do not need to agree in name with the argu-
ments listed in the FUNCTION Statement, but must
agree in type (integer or floating point).

3. In a card deck, the usual placement of the FUNCTION
cards would be immediately after the main program
cards. No special JCL is necessary.

SUBROUTINE Subprograms

A SUBROUTINE is a subprogram that is capable of returning any num-

ber of single values and/or vectors of values and/or arrays of values

to the main program. The calling statement in the main program is ex-

plicit and has the following form:

CALL subroutine name (list of arguments)

The SUBROUTINE subprogram begins with a SUBROUTINE Statement and ends

with RETURN, END Statements. A SUBROUTINE to calculate the mean and

standard deviation of a vector of values and a main program illustrating

how the SUBROUTINE is called are shown in the next example.

36

Exampl e:

Main Program

DIMENSION X(100)

READ IN 100 OBSERVATIONS
DO 10 J=1 ,100

10 READ(5,n)X(j)
11 F0RMAT(F10.2)

CALL SUBROUTINE STATS
CALL STATS(X,100,XM,SX)
WRITE OUT MEAN AND STANDARD DEVIATION
WRITE(6,21)XM,SX

21 FORMAT ("1","MEAN=",F10. 2/1 X, "STANDARD
DEVIATION= ",F10.2)

STOP
END

SUBROUTINE

SUBROUTINE STATS(A,N,XMEAN ,STDEV)

DIMENSION A(100)
XN=N
SUMX=0.
SUMX2=0.

DO 10 J=1,N
SUMX=SUMX+A(J)

10 SUMX2=SUMX2+A(j)-'^''^2

XMEAN=SUMX/XN
STDEV=SC)RT(SUMX2/XN-XMEAN''"'^2)

RETURN
END

NOTE: 1. In the CALL statement X and 100 are the "sending
arguments" and XM and XS are the "returning argu-
ments." These arguments need not be in any par-
ticular order but the order of the list of argu-
ments in the SUBROUTINE statement must match the
order of the list of arguments in the CALL state-
ment.

2. The arguments in the CALL statement do not need to

be named the same as in the SUBROUTINE statement.
However, they must match in type (integer and float-

ing point) and must have the equivalent dimension
of the vectors or arrays used in the main program.

37

Exercise

Using some simple matrix manipulations, the standardized matrix

derived in exercise 7 can be used to calculate a correlation matrix of

linear correlation coefficients between all pairs of variables. The

mathematical notation is shown below and the student will need only to

use the correct sequence of matrix manipulation subroutines (Appendix

C) to program the mathematics. Make this addition to the program de-

veloped in Exercise 7 and write out the results with appropriate labels.

Calculation of a correlation matrix'"

R = 1 • Z^Z
n-1

where R = correlation matrix i

Z = standardized matrix

Z = standardized matrix transposed

n = number of observations

1

, i

Reference: An I ntroduct ion to Stat i st ical Model s in Geology

W. C. Krumbein and F. A. Graybill

McGRAW HILL BOOK CO. N.Y. 1965, pp. 383-391.

i

38

SF.CTION I I

FORTRAN PROGRAMMING OF SPATIAL DATA

INTRODUCTION

These four lessons constitute a broad introduction to the pro-

gramming of spatial data. The intent of this section is to show

geography students the usefulness of various aspects of machine pro-

cessing. The lessons cover the numerical methods of a simple linear

trend surface; the use of a line printer for mapping; an introduction

to electronic digitization and the associated calculations of areas

and perimeters; and the basic programming of a line plotter for

drawing map outlines.

Included in the lessons is some advanced FORTRAN programming.

Not all of the FORTRAN presented in each lesson may be directly appli-

cable to the exercise, but it is organized in useful groups of tech-

niques. In some cases the FORTRAN is an extended review of methods

which were introduced in the first eight lessons.

kO

LESSON 9: DATA MANIPULATION

Focus: Flags, variable formats, internal data generation,
and DATA statements.

New Statement: DATA

Exercise: Programming a linear trend surface.

Introduct ion

This lesson introduces methods for reading in data using a flag,

variable formats, techniques for generating data internally, and the

utility of DATA statements. All of these data-handling procedures are

aimed at providing a means through which programs can be made more

general or "universal."

Reading in Data

Programming to Read in Data Using a Flag

A user often has a large data set but does not know the exact

number of observations. A flag can be placed on the last card and the

data read in with the number of observations (cards) automatically

counted. The flag is simply a number greater than zero which is

punched only on the last card. The program on the next page will read

up to 700 cards terminating the read when it encounters a card with a

number greater than zero punched in column 80

.

k\

DIMENSION X(700)
C INITIALIZE COUNTER AND START READ LOOP

1=1

10 READ(5,11) X(l) ,NFLAG
11 F0RMAT(F10.2,69X ,1 I)

IF(NFLAG.GT.O) TO TO 20

1=1+1

GO TO 10

20 NOBS=l

C COMPLETION OF READ LOOP AND COUNTING OF

C CARDS (NOBS)

Another type of flag is discussed under Logical Formating in Lesson 10

Variable Format :

Often the data to be read into a general program is not in the

same format as specified for the READ statement in the program. To

overcome this problem, a format can be read in from the data deck and

then used to read in the data.

DIMENSION X(500), F0RMl(20)
C READ IN # OF OBSERVATIONS

READ(5,11) NOBS

11 FORMAT (13)

C READ IN DATA FORMAT
READ(5,21) (FORMl (J) ,J=1 ,20)

21 F0RMAT(20A4)
C READ IN DATA ACCORDING TO FORMAT
C STORED IN ARRAY FORMl

DO 30 J=l ,NOBS

30 READ(5, FORMl) X(j)

C CONTINUE REST OF PROGRAM

The first three cards of the data deck would look like this:

COLS 123^56789
CARDl 30 ^NO. OF OBS.

CARD2 (F10.2) -FORMAT
CARD3 19.613 -FIRST DATA VALUE

42

Internal Data

Generating Data Internally

Often the programmer needs to design a program which will generate

its own data internally rather than have it read in. This is particu-

larly true of programs which produce tables of information. As a sim-

ple example, suppose we wished to generate a table of squares, cubes,

square roots, cube roots, reciprocals and logs (base 10) of integer

values ranging from 1-100. The program calculating portion is done in

two parts:

1 . Generate a vector of numbers

2. Generate new vectors of the square, cube, square

root, etc., of the values in the first vector.

D IMENS ION NX(100) , XS (100) , XC(100) , XSR(100

)

* ,XCR(100),RX(100),XL(100)
C GENERATE THE VALUES 1-100 AND
C STORE IN ARRAY xNX (INTEGER VECTOR)

DO 10 J=l,100
10 NX(J)=J

C GENERATE THE TABU:: VALUES
DO 20 J=l,100
X=NX(J)
XS(J)=X**2
XC(J)=X**3
XSR(J)=SQRT(X)
XCR(J)=X**(l./3.)

RX(J)=1./X
20 XL(J)=ALOG10(X)

C WniTl^ HEADER FOR TABLE AND OUTPUT 50 VALUES TO A PAGE
DO 50 KK=1,2
WRITE (6,31)

31 F0RMAT("1",///1X," X-VALUE SQUARE CUBE"
1 ,T40, "SQUARE ROOT CUBEROOOT RECIPROCAL LOG(IO)")
N1=(KK-1)*50+1
N2=KK*50
DO 40 J=N1,N2

40 WRITE(6,41)NX(J),XS(J),XC(J),XSR(J),XCR(J) ,RX(J),XL(J)
4

1

FORMAT (6X , 14 , SX , FG . , 5X , F8 . , 5X , F7 . 3 , GX , F7 . 3 , 6X , F6 . 4 , 8X , F5 . 3

)

50 CONTINUi;
STOP
END

^3

If you wish to expand this program to make tables of functions of

numbers beyond 1-100 (i.e., for 1-1000), do the following (note that the

current program will only operate on 100 numbers at a time, therefore

all we need to do is loop the current program 1000/100 or 10 times.):

DIMENSION NX (100) ,XS(lOO) , XC(100) , XSR(100)

,

''-XCR(IOO) ,RX(100) , XL (100)

C START MAIN PROGRAM LOOP
DO 50 JJ=1 ,10

C GENERATE 100 VALUES 1-100 TOR JJ=1 , 101-200 FOR

C JJ=2,ETC. AND STORE IN NX ARRAY (INTEGER VECTOR)
DO 10 J=1 ,100

10 NX(J) = (JJ-1)''0 00+J
C GENERATE THE TABLE VALUES

f

a'xaathj the same as the above program.
\

50 CONTINUE
STOP
END

DATA Statements

Values such as constants or symbols may be established for the

program without reading in the values as symbols from data cards or

using an algebraic expression to set a variable name equal to some

value. This is accomplished through the use of a DATA Statement.

Example 1

:

Setting constants equal to some value.

COL 7

DATA H!T/7./
DATA IT/7/

The variable name HIT will have the value 7. assigned to it

and the variable name IT will have the value 7 assigned to it. I

kh

Example 2:

Setting a vector of constants equal to a series of values.

DIMENSION FIT(5) ,NIT(5)

DATA FIT/7., 8., 9. 5, 2. 1,3-0/
DATA NIT/7,8,9,21 ,30/

FIT(1) through FIT(5) will be assigned the values 7. through

3.0 and NIT(1) through NIT(5) will be assigned the values 7 through 30.

Example 3:

Setting a variable equal to some symbol.

DATA AST/"--'-'/

The symbol is placed between quotes.

Example 4:

Setting a vector equal to a series of symbols.

DIMENSION ISX(5)

DATA ISX/"--'-","+","A","2","/y'7

Each symbol is placed between the quotes and separated by

a comma

.

Example 5:

Setting a matrix equal to some values

A=

2.1 3.^ 5.6
7.8 9.2 11.1

13-2 4.3 1.1

6.2 3-9 9.6

The matrix (A) of numbers can be placed in a data statement

by writing the matrix as a vector containing the columns one behind each

other.

DIMENSION A(4,3)

DATA A/2.1,7.8,13.2,6.2,3.4,9.2,4.3,3.9,5.6,11.1,1.1,9.6/
• yr —

•
• V • ' ^ '

Col 1 Col 2 Col 3

45

Exerc 1 se

Develop a linear trend surface program from the guide given in the

next several pages.

The necessary SUBROUTINE programs for the matrix operations are

given in Appendix C and a review of the mathematics involved is given

in Appendix D. A data set consisting of the precipitation values for

100 climate stations for Illinois is given in map form (Figure 9-1).

LINEAR TREND SURFACE PROGRAM
(GENERAL STRUCTURE)

1. Read in a title card l-80 cols and store in a vector ID

(20A4) .

2. Loop to read in one (1) dependent variable (Z) and

two (2) independent variables (X,Y) per card (obser-
vation). Store each In a vector, i.e., Z(j), X(j),Y(J)

for J=1,N0BS.

3. Generate the necessary sums for the S-Matrix of coef-
ficients and fill in S-Matrix. (For a review of the

math operations see Appendix D)

.

S =

EY

EX^ EXY where Z = E

J = l

NOB!

N

EX

EY EXY EY'

From the S-Matrix shown above five (5) sums are required

C SET SUMS=0
SX=0.

SY=0.

SXY=0.
SX2=0.
SY2=0.

C CALCULATE SUMS

DO 10 J=1,N0BS
SX=SX+X(J)
SY=SY+Y(J)
SXY=SXY+X(j)-"-Y(j)

SX2=SX2+X(j)-''-'--2

iO SY2=SY2+Y(j)-'^-'^2

C FILL IN S-MATRIX
S(1,1)=N0BS
S(l ,2)=SX

46

S(l,3
S(2,l

S(2,2
S(2,3
S(3,1

S(3,2
S(3,3

=SX
=SX2
=SXY
=SY

=SXY
=SY2

h. Generate the necessary sums and fill in g vector,

ZZ

Where g = ZZX

ZZY

C SET SUMS=0
SZ=0.

SZX=0.

SZY=0.

C CALCULATE SUMS

DO 20 J=l ,NOBS

SZ=SZ+Z(J)
SZX=SZX+Z(J) "X(J)

20 SZY=SZY+Z(J)"Y(J)
C FILL IN G VECTOR USING 4TH COL OF S MATRIX

S(l ,4)=SZ

S(2,4)=SZX
S(3,^)=SZY

Solve the set of simultaneous equations (see Appendix C)

.

C CALL EQUAT TO SOLVE EQUATIONS
CALL E(1UAT(5,3,^)

Calculate pred icted Z- Vol ues and residuals and store in vectors,
ZP(J) ,RZ(J).

C CALCULATE ZP AND RESIDUAL VECTOR
DO 30 J-1 ,NOBS

ZP (J) =S (1 ,^) +S (2 , ^) --'^X (J) +S (3 ,^) ''-Y (J)

30 RZ(J)=Z(J)-ZP(J)

e. ,

^7

7. Calculate standardized residuals

C SET SUMS =0.

SRZ=0.
SRZ2=0.
DO kO J=1,N0BS
SRZ=SRZ+RZ(J)

ho SRZ2=SRZ2+RZ{j)-'-''-2

C CALCULATE MEAN AND STANDARD DEVIATION OF RESIDUALS
RZM=SRZ/NOBS
RZS=SQRT(SRZ2/N0BS-RZM-'^-'^2)

STANDARDIZE RESIDUALS
DO 50 J=1 ,NOBS

50 RS(J)={RZ(J)-RZM)/RZS

8. Write out the following in a table with labels:

X(J), Y(J), Z(J), ZP(J), RZ(J), RS(J).

9. Calculate the variation measures.

C CALCULATE TOTAL VARIATION
C UNEXPLAINED VARIATION WAS PREVIOUSLY CALCULATED

C AS THE SUM OF THE RESIDUALS SQUARED (SRZ2)
C THE EXPLAINED VARIATION = TOTAL VARIATION - UNEXPLAINED VARIATION

ZMEAN=SZ/XNOBS
SUMT=0.

DO 60 J=1 ,N0BS
60 SUMT=SUMT+(ZMEAN-Z(j))-'-^'-2

EXP=SUMT-SRZ2
C CALCULATE R AND R2

R2=EXP/SUMT
R=SQRT(R2)

C CALCULATE F

F=(R2--'-(N0BS-3.))/(2^'-(l .-R2))

10. Write out variation measures.

Write out, R, R2 and F with labels.

48

n^H.H ?^'^ ^H'

32.3
. 1

—1— #^—.

Jo Dav'°ss I Sfep.Scnson VV/rnebogo iSoone] K':Her,r

32 .H
^
De Kotb iKane C^xjk

n/T ~,3!.?

7-
1 ^ ^ lio Soi'e .

Henry
I

^ Burecu
' ^ ^ Z* I

3"*,^
; 33.6.M ^,^,; jz^J,t«U-.^3.^

!3^-'i^^^:!^3...^

I ';^z_ L_ A _

7 Worsho'/

I W
H.5

" .K nr.koff

i.-x^Ji^d^

'rorK'OlS

.^
M Leu'

jhancock ISahuyler !

Tozewe/M 3g.^
33

J.
3r.r

:vL_:

'V^r^ 35^7 I Moron
.

Coss

^hawpotgn 1 'X O^ O

Morgon

\

K^

35*7

36.7

\35:6\
_Scotlj

1
Sar.Qamcni^ •" r\

reene |Mc mup'r' ^ 1 7J» /

Moulif.o

Verm, lion

Doug 'as I

17.:2^ 37.7
I Co/es

• I 'JOU ^ HO. I ^Cumberland] "i4 •

3».S She/by

Foyof'e

I

Monfgomer
>J— T^flond 1

• '^W.?
Craw/o7d\

Efl:ngham

312
y^0,0

I

I rM^.on I t|/ J J
.Clinton

I /I I 'J , ^ .11,"
Sf r/o,r|

HO.S'

Rirhlord 11. owrenre

3^7 _1 IWoSSg'o^o
;

•
I

^.I±1L

I
Jefferso

p ui L, dZ nar-inon

Jocltson
I .,

I jSo'/ne Gallatir

/a) LW.i/.o-^son I

_J___J '"^"-^

VB.'^

30
'-'—IP 20

milps

40 60

Fig. 9~1 Illinois Annual Precipitation (inches)

^9

LESSON 10: MISCELLANEOUS TOPICS

Focus

:

Type specification, further formatting, additional
branching statements, double precision and line

printed maps.

New Statements

:

INTEGER, REAL, LOGICAL, IF computed GO TO, DOUBLE
PRECISION

Exerc i se: Mapping subroutine for 1st degree trend surface

Introduction

This lesson consists of miscellaneous topics that are useful or

necessary aspects of the FORTRAN language needed for advanced programming.

An attempt should be made by the programmer at this stage to Incorporate

these statements in order to develop breadth in his or her programming

capability. The exercise, a line printed mapping subroutine, intro-

duces the student to a fairly complex program which makes use of some

of these new statements.

Type Specification

Type specification statements are used to indicate variable types.

Type specification overrides the naming convention of A-H, 0-Z first

letter for floating point and l-N first letter for integer. The general

form for type declaration is:

type-'-n, variable name, variable name,

where type may be INTEGER
REAL
LOGICAL
COMPLEX

50

n^ is the size of the variable in bytes

The size (n) is usually omitted: INTEGER, REAL and

LOGICAL default to --'"^ and COMPLEX to ''-8. If n is sped

fied, options other than --k may be REAL-'S, I NTEGER"2,

LOGICAL'^ , and COMPLEX'-! 6

variable name is the single variable name, vector, or array

to be specified as 3 particular type.

Examples

:

REAL A,B,N,

INTEGER l,J,X,Y,Z

Further Formatting

Previous! y

Di scussed

Formats

Float i ng Poi nt

I nteger

A1 phanumer i c

General Form

Fa.b

la

Aa

Added

Where:

- Exponent ial

^ Genera

- Log i ca

1

a = field width

b = decimal positions

Ea-b

Ga.b

La

51

Exponential Example

The number 123^56789000 can be written in exponential notation as

.123^56789x10^^, 1 .23456789X10^\ 12.3^56789x10^° etc. To write out

this number on the computer the following formats could be used:

E14.8 producing .

1

23^5678E+1 2

El^.7 producing 1

.

23^5678E+1 1

E14.6 producing 1 2

.

3^5678E+1

Note that the six columns of the field width are reserved for the

decimal point, the four characters of E notation (i.e. E+IO) and

the negative sign (if required).

General Example

A general format specification may be available on some computers

allowing for the substitution of a G format for F, I, E and L formats.

To read an integer, floating point and exponential number from a data

card a G format can be used with all three values as shown below.

COL 1 10 20 30
-% "^ -^

986 736487 1 .2E+7

READ(5,11) IVAL,FVAL,EVAL
11 FORMAT(3G10.3)

Then:

IVAL = 986
FVAL = 736.487
EVAL = 1 .2x10''

Logical Example

A variable may be declared logical (see type declaration section)

and can assume one of two values--true or false. For example, a vari-

able LASTPT can be declared logical in the following ways:

LOGICAL-'! LASTPT
LOGICAL-'-^ LASTPT
LOGICAL LASTPT

If declared LOGICAL-1, the value T or F (for True or False) can be

52

assigned to LASTPT, If declared LOGICAL-''^, words beginning with T or F

(for True or False) can be assigned to LASTPT.

The logical variable can be used as a flag in reading In data and

provides a method for counting the number of cards read. The program

below shows the use of a logical flag.

DIMENSION X(IOO)

LOGICAL--'-l LASTPT
1=1

10 READ(5,n) X(l) , LASTPT
11 F0RMAT(F10,2,69X,L1)

IF(LASTPT) GO TO 20

1
= 1+1

GO TO 10

20 NOBS=l

A T punched In column 80 of only the last data card would flag the

end of the data set. On all other cards, LASTPT would read a blank

and would assume a value of False.

Branching Statements

In previous lessons we learned the use of a logical IF Statement

coupled with the unconditional branching GO TO statement to provide a

mechanism for conditional branching. A typical example would be:

IF(A.GT.B.AND.C.LT.D) GO TO 10

Several other statements exist which provide conditional branching.

These are discussed below.

IF Statement

(This is not a logical IF Statement.) The general form of the IF

statement acts like three GO TO statements.

53

IF(EXPRESSION)#,#,#

^statement # for positive result of
express! on

^statement H for zero result of expression
•statement § for negative result of expression

constant or operation between several variables

Example:

IF(A-B) 10,21,32

If the result of A-B is negative, the program will branch (GO TO

statement number 10; if the result of A-B is zero, the program will

branch to statement number 21; and if the result is positive, the pro-

gram will branch to statement number 32.

Single value variables (constants) may be used alone:

IF(A) 10,21,32

will produce the same results for a negative, zero, and positive A.

Computed GO TO

The general form of the computed GO TO i s

:

GO TO iff JJ J J) ,K ^integer position indicator

L«—• statement # for K=5
— statement # for K=4

statement # for K=3
I— statement ff for K=2

'— statement ff for K=l

Examp 1 e:

GO TO (111, 93, 92, 22, 34),

K

54

If K=3 the program will branch (GO TO) to statement tt^l. Often

the Integer position indicator is a calculated value when using a

computed GO TO. For example, if the following statements occurred in

a program, the results would be those shown in the table.

L=X/100 +1

GO TO (11,21,31 ,^1 ,51) ,L

The program wi 1 1 branch to

If X is Between (GO TO) statement ft

0-100 11

100 - 200 21

200 - 300 31

300 - 400 41

400 - 500 51

Double Precision

DOUBLE PRECISION is a floating point variable type with which num-

bers may be stored in a longer memory location, thus allowing for greater

precision in the digital representation of a number. Singe precision

values (the automatic default for a named floating point variable) will

have between 7 and 11 significant digits stored, dependi ng on the type of

computer. DOUBLE PRECISION will allow between \h and 25 digits to be

stored. The rules for using DOUBLE PRECISION are:

1. Type declaration:

DOUBLE PRECISION X,Y,Z,

or REAL--'-8 X,Y,Z

2. In a FORTRAN algebraic expression, if the left-hand side

is declared a DOUBLE PRECISION variable, the computer

will temporarily convert those right-hand side variables

not declared DOUBLE PRECISION t£ DOUBLE PRECISION.

55

3. If a FORTRAN supplied function (SQRT, TAN) is being used

with arguments that have been declared DOUBLE PRECISION,

then the function must be type declared as a DOUBLE PRECISION

usually by preceding the function name with the letter D.

REAL-''-8 X,Y . ,1 J

X=:SQRT(Y) ^"°^ "'^°^^^

REAL-'^8 X,Y ,, .

X=DSQRT(Y)
{allowed

Line Printed Maps

Crude but useful maps of spatial variables can be made on the line

printer. This section will introduce you to the principles of line

printer mapping, using a first degree trend surface as an example.

A source map of such as the one from Exercise 9 may be used to fit

a 1st degree trend surface (Z=aQ+ai X+a2Y) to a sample of data points.

The equation can then be evaluated for any number of points by simply

substituting the requisite X,Y coordinates and solving for Z. If a

large number of systematically chosen points are evaluated, we can map

the distribution using symbols to represent the Z value class into

which each point falls.

The process is quite simple. Starting with a source map and set of

sample points, fit a surface Z = a + a]X+ 32^ to the sample points.

56

7.25

SOURCE MAP

(0.0,0.0)= Origin

7.25" = XMAX
9.75" = YMAX

YDIF=XMAX-
XMIN = 7.25"

YDIF - YMAX-
YMIN = 9.75"

Sample points

9.75

Fig. 10-1 Source Map Dimensions

The equation is then systematically evaluated for a large number of points

corresponding to printing positions on the computer lister sheet as fol-

lows. Each printing position has a corresponding X,Y position on the

original source map. The X,Y coordinates are substituted into the trend

surface equation and a Z value calculated. A symbol is assigned to the

print position according to the class or level within which the calcu-

lated Z val ue fal 1 s .

57

V

Across Lister Sheet (X)-

130 columns

COMPUTER MAP

130 Cols = 129 CoU

Widths

ROW 1, COL 1 = Ori

COL 130 = XMAX
COL = XMIN

1 COL = .6 ROWS

(or 1 COL = .8 ROW:

on some printers

Fig. 10-2 Output Map Dimensions

To produce the computer map, the relationships indicating the corre-

spondence between the source map' and computer map need to be calcu-

lated. This involves two steps: scaling and positioning. The third

step is map production or printing.

Seal ing

If we let the map width (X) for the computer map = 130 COLS or 129

YD I F 9 75
COL WIDTHS, the map length (Y) is ydTf

"
7^25" " ^ " ^^^ ^ ^^^ ^

'

^"^^

'

Since there are 10 COLS per inch across on the printout and 6 ROWS

per inch down on the printout then the map length in ROWS is:

1.3^5 X 130. X Tj|- = 104.91 ROWS

Or the number of ROW WIDTHS (RW)

58

= 10^.91 ROWS -1

= 103.92 ROW WIDTHS

Since we need an integer # of ROW WIDTHS, the floating point ft of

ROW WIDTHS above is rounded and truncated by converting to an integer

val ue:

NROWS = RW + .5

= 10^.91 + .5

= 105 (Truncated)

Pos i t ion i ng

Now we need to determine the position of ROW 1, COL 1 (computer map)

on the source map. These map coordinates are then used in Z = ao+aiX+a2Y

to determine the Z at ROW 1, COL 1 of the computer map. If ROW 1, COL 1

on the computer map is considered the origin, the coordinates on the

source map are YMIN, XM I N or (0,0). To determine the position of ROW 1,

COL 2 (computer map) on the source map, an X increment is needed. 129

COL WIDTHS on the computer map is equal to 7-25 inches on the source

map. 1 COL WIDTH on the computer map is equal to 7-25 inches on the

7 2S"
source map. 1 COL WIDTH on the computer map =

'

= .056" = XI.
^ ^ 129

The coordinates on the source map for ROW 1 = YMIN. The coordinates

on the source map for COL 2 = XM I N + XI, or = + .056 = .056" .

The coordinates on the source map corresponding to ROW 1, COL 2 on

the computer map are (0,.056). These are entered into Z = a^-,+aiX+a2Y to

determine Z. As a final example, consider the location COL 2, ROW 3 on

the computer map.

ROW 3 will have a location of XM I N + 2-'-XI = .112" on the source map.

59

COL 2 wl 1 1 have a coordinate location of YMIN + Yl, where Yl

determined as follows:

y. _ 9.75" 9.75"
Yl - = = .093"

ROWS 105

COL 2 = YMIN + Yl

= + .093"

= .093

The source map coordinates for COL 2, ROW 3 = (.112, .093). Z

will then be:

Z = ao + a^(.112) + a2(.093)

Mappi ng

Once the Z has been determined for a print position on the computer

map, the data class it falls into must be determined. A reference con-

tour is determined (e.g., 40" for the Illinois precipitation map of

Exercise 9) and a contour interval chosen (e.g., 2"). The map will then |

have contour lines of:

3^", 36", 38", 40", 42", 44", 46"

If our program has symbols to represent 21 classes such as:

1
(#11)

A, B, C, D, E, F, G, H, I. J, $, 1, 2, 3, 4, 5, 6, 7, 8, 9,

and we number them from left to right, then the $ symbol is the eleventh

symbol. Then any calculated Z value can be assigned a symbol by:

Z -REF
NSP =

CON
+ 11

here the eleventh symbol is always the reference contour and NSP is the

number left or right of the symbol.

60

For a calculated Z value of 39-9"

NSP =I9i9:i!^-+ 11 = 111 + 11

2 2

= 11-. 05

= 10.95

= 10 (Truncated)

Symbol /^lO = J

For a calculated Z value of 40.0'

NSP =
^Q-Q-^Q- +11 = a+11

2

= 11

Symbol #11 = $

For a calculated Z value of Al.9"

41 .9-^0. + 1 .9
NSP = -^

• 1 1 = -^ + 1

1

2 2

= .95 + n

= 11.95

= 11 (Truncated)

Symbol #11 = $

For values of Z all between AO.O" and 41.999". NSP = 11 correspond-

ing to the $ symbol. The class (10) represented by symbol J has values

of 38.0" - 39.999".

Use a data statement to assign the symbols to a vector ISX as

shown below.

DATA ISX/"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "$",

"1", "2", "3", "4", "5", "6", "7", "8", "9", "0"/

A vector representing one row of the map can be filled with symbols

defined by ISX(NSP). The row can then be printed and another row filled

61

and printed until the map is complete. SUBROUTINE MAPI on the next page

is a 1st degree trend surface mapping program.

Exercise

Add SUBROUTINE MAPI to the program developed in Lesson 9. The

CALL statement should be placed just before the STOP, END Statements.

The call is as follows:

CALL MAPT (C,ID)

Where C = vector of coefficients

ID = title vector

NOTE : MAPT reads in control card of floating point numbers

COLS 1-10 XMIN OF SOURCE MAP
11-20 XMAX OF SOURCE MAP
21-30 YMIN OF SOURCE MAP
31-40 YMAX OF SOURCE MAP
41-50 REFERENCE CONTOUR
51-60 CONTOUR INTERVAL

61 LINE PRINTING (6^ lines per inch or 8^ lines per inch)

nUBPOTJT INE MAPT (C , ID

)

DIML'NSION C(3) , MAP (130) , I?:X(45) , IP(20) , NCOUNTC 45)

P.EAL*8 AX,A^^
DATA TS^''/" — " " " "T" •» " ItTIt It IT "]['• " " ttpll M II IIT?II M If M'pll

I II II »»'n" " " llrill II II llpll II 11 II All II II llCfll II M 11-1 II It 11 ItOM It II

^ > ^' t » ^ J » ^* » > '' > > ^^ > . -'- » > ^ . >

M noil II II It /I 1 1 II It iir. II It It iir:ii it it iioii ti it it on »» n iir»ii n n ii*i'/

D/^TA MINUS/"-"/
C RliAD MAP PARAMETERS FROM SOUCE MAP

READ (0,11)XM IN , XMAX , YM IN , Y]^PCA , REF , CON , 1,1 NPR
11 FORMAT (GFIO.2,11)

C SET LISTER SHEET MAP PARAMETERS
XDIF--=XMAX-XI\IIN
YDIF=VMAX-y:,!IN
n::=13o
NDErT=l
XLP=LINPR/10.
XNY= (YD I F/ XD I F * 130 .) *XLP+ . :3

XI=XDIF/129.
YI=YDIF/(XNY-1.

)

NY=XNY
c v:rite t{1':adi:r and map information

\Vr ITE (C , J 1) (ID(J) ,
,1=1 , 20)

3 1 FCPJ TAT (
" 1 " , 20A4 ,////)

62

W'RITI', (G , ?,2)XMIN , XMAX , YfllN , YMAX , NDKG , RTF ,
CON

32 rORMAT(lX,"XMIN= "
, FIO . li

,
/IX , ":aiAX= " ,F10 . 2 ,

/IX , "YMIN= ",

1 F10.2,/1X, "YMAX= ",F10.2,/1X, "DEORFF OF FIT= ",I2,/1X
2 /'RFFI^RFNCF CONTOUR= " ,F10 . 1 ,

/I X, 'TONTOUR TN'^ERVAL= ",

3 FlO.l,////)
C. r,FT COUNTER TO ZL'RO

DO 35 1=1,45
35 NCOUNT(I)=0

C WRITE OUT TOP P.OPtDER

WRITE(G, 41) (MINUS, J=l, 130)
41 FORMAT(1X,130A1)

C START LOOP TO GENERATE iMAP

DO GO JJ-1,NY
40 AY=YMIN+(JJ~1)*YI

DO 50 J=1,NX
AX='S^IIN+(J-1)*XI

C CALCULATE Z-VALUE
ZZ=C(1)+C(2) *AX+C(3) *AY

C DETERMINE SYMBOL ff IN ISX VECTOR
NSP=(ZZ-REF)/CON+23.

C CHECK FOR LIMITS ON NSP
IF(NSP.LT.l) NSP=1
IF(N?P.GT.45) NSP=45

C COUNT EACH SY^.IBOL

NCOUNT (NSP)=NCOUNT (NSP) +

1

C FILL IN ONE ROW OF MAP
50 MAP(J)=ISX(NSP)

C WRITE OUT ONE ROW OF MAP
WRITE(G,41) (MAP(J),J=1,130)

GO CONTINUE
C WRITE OUT BOTTOM OF MAP BORDl'R

WRITE (G , 4 1) (MINUS , J=l , 130

)

CALL LEGl^ND (T.'COUr^T , I SX , JIT.T , CON)

RETURN
END
SUBROUTINE LEGEND (NCOUNT , ISX , REF , CON)
D I MENS I ON NCOUNT (4 5) , I SX (4 5

)

J = 1

10 IF(NCOUNT(J) .GT. 0)GO TO 20
J=J+1
GO TO 10

20 MIN=J
K=45

30 IF(NCOUNT(K) . GT . 0) GO TO 40
i:=K-l
GO TO 30

40 MAX=E
WRITE(G,41)

41 FORMAT (IX, "SYMBOL" , lOX, "CLASS" , lOX , "FREQUENCY"/

)

DO 100 I=MIN,MAX
XI=I
XLCV=REF4-(XI-23.)*CON
XUCV=XLCV+CON

100 WRITE(G , 11 1) ISX(I) , ISX(I) , ISX(I) , irX(I) ,XT,CV,XUCV,NCOUN'T^(I)

111 FORMAT(2X , 4y\l , 7X , FG . 1 ,
"-"

, EG . 1 , r,X , 17 , / / /)

RETLllN
END

63

I

LESSON 11: SPATIAL DATA SETS

Focus

New Statements

Exerci se

Digitizing and manipulating spatial data sets.

None

Perimeter and area of a closed figure from digitized
coordi nates

.

Introduction

Spatial locations as determined by Cartesian coordinates are more

readily and accurately obtained with the use of a digitizer. This les-

som introduces students to electronic digitizing and some fundamental

manipulations of spatial data.

Di gi t izi ng

A son i c d i gi t i zer

A digitizer pen is shown in Figure 11-1. This particular instrument

(Graf-Pen) operates on a sonic principle using a noise generating pen

and two microphones to pick up the pulses. Figure 11-2 shows the se-

quence for digitizing a single point. The steps are as follows:

1. The pen is placed at the desired point and pressed down.

to the electronics

switch

ball point ink filler

penholder

spark gap

Fig. 11-1 Digitizer Pen

6^+

STEP 1 thermistor

^ Electronic Package

•^ X MICRO v^ Controller
Data

Coupler
CRT Computer

O
U

>-

^^"^ """^^ y^'^

(,ir

STEP 2

1

X 1 1

,^"^ 'Z^/ y^—
//j^ -«^^\. \
' frj^0\\ N

\mb) 1

^\S>^y J !\\^—^/ /
vN^^ y /

' ' s """"—'^ y
1^--_-^ 1

X CLOCK

t^ (stops)

Y CLOCK

(still running)

STEP 3
X CLOCK

Y CLOCK

t2 (stops)

STEP 4

1

1V
1

*i

'2

\
X

)

Conversion of time to distance

Fig. 11-2 Digitizing Sequence

65

This activates a switch which causes a current to jump the

spark gap creating a high frequency noise which then travels

toward the microphones. The activated switch also starts

two clocks in the electronics package at the same time the

spark initiates.

2. The wave front initiated by the spark travels through the

air (velocity of sound is dependent on the temperature of the

air and changes due to fluctuating temperatures are compensated

for by a thermistor incorporated in the digitizer arms) and

eventually impinges on the X microphone causing the X clock

to stop. The elapsed time is used to calculate the distance

the sound travels and hence the X-coord i nate. The Y clock

continues to run.

3. The wave front eventually reaches the Y microphone and stops

the Y clock. The elapsed time is used to calculate the

Y-coordi nate

.

k. For this particular system seven coordinate pairs are stored

on a line in the following format:

70050,0063/0053,0068/00^6,01 19/007^,0089/0121 ,0091/0009,0023/0360,0295

The first coordinate pair /0050,0063 is X=.50 inches and Y=.63

inches. After each line is filled, the line is sent to the computer

by a carriage return initiated by the Graf-Pen controller. The

controller also determines the Cartesian configuration for the

digitizer (origin, size, etc.).

66

Entering Z-values

Usually the location (X,Y coordinates) and some data value (Z-value)

associated with that particular location are desired. The digitizer can

only be used to obtain the X,Y coordinates and perhaps Indirectly the

Z-values. There are three basic alternatives for entering Z-values as

part of the data file.

1. The Z-values are entered on the CRT terminal after

the X,Y coordinates are obtained. The Z-values must

be in the same sequence as the X,Y coordinates. This

involves numbering the points on the source map and

being extremely careful not to get out of order when

digitizing or entering Z-values. For small data sets

(definitely under 100 points) this is the simplest

approach.

2. A special pen or cursor may be obtained which has a key

board (usually only numeric) for entering the Z-value

after the coordinates have been obtained. This setup

usually requires a more expensive controller and may

present some formatting problems on some systems.

3. A third option is to use a paper keyboard (usually

referred to as a menu) and to enter in the Z-values as

a digitized point. Figure 11-3 is a menu for entering

Z-values. The source map and the paper keyboard (or

menu) are both placed on the digitizer tables. A program

uses two reference points to locate the menu and deter-

mine the coordinates of each square on the menu.

67

1 2 3 k

5 6 7 8

9 PUNCH PRINT

ERASE ERASE END
LAST LAST DATA

X,Y COORD. Z-VALUE SET •

ENTERED ENTERED

A typical sequence for digitizing X,Y,Z data sets mi ght be as follows:

1. Digitize menu reference coordinates CI and C2.

2. Digitize the appropriate switch (by placing digitizer cursor in ap-

proximate center of square) to PUNCH and/or PRINT data.

3- Digitize X,Y coordinate pair from map or graph etc.

k. Enter the corresponding Z-value by digitizing the appropriate
number keys (squares) and decimal point.

5- Repeat steps 3 and k as necessary.

6. When all X,Y and Z values for one data set are entered digitize the

END DATA SET key. Another data set may be digitized by starting at

step 1

.

7- Note that corrections can be made by digitizing the ERASE keys im-

mediately after making an error.

Fig. 11-3 Digitizer Menu

68

To digitize a Z-value following the digitizing of an

X,Y coordinate, the pen is placed anywhere in the

square for each numeral (and decimal point) required

to make up the Z-value.

Manipulation of Spatial Data

Although a digitizer removes most of the drudgery of obtaining

Cartesian coordinates for geographical locations on a map or diagram,

the data usually must be further processed (or preprocessed) before

using it in a mapping routine. Appendix E contains the listing for a

subroutine (DMANIP) to read in and manipulate spatial data. The in-

structions for the program are shown on the next page, followed by an

explanation of the options allowed.

69

Instructions for Subroutine OMAN I

P

The subprogram reads 2 or 3 control cards and then the XYZ data

cards

.

CARD 1

:

COLSl-80

CARD 2:

COL 1

2

3

k

5

6-15

16

17-26

27
28-37
38

39
ko
41-50
51-60
61-70
71-80

TITLE CARD
ANY TITLE

OPTIONS CARD (1=YES, 0+NO ON OPTIONS WITH ?)

STANDARD FORMAT? (SEE EXAMPLE)
INVERT X AXIS?
INVERT Y AXIS?
INTERCHANGE X AND Y AXIS
MANIPULATE X VALUES^
X CONSTANT^
MANIPULATE Y VALUES
Y CONSTANT^
MANIPULATE Z VALUES
ZC0NSTANt2
ZERO THE X,Y COORDINATES?
PUNCH A NEW DATA SET?
ECHO CHECK THE DATA SET?
XMIN OF SOURCE MAp2
XMAX OF SOURCE MAP^
XMIN OF SOURCE MAP^
YMAX OF SOURCE MAP^

1

1

MANIPULATE COMMANDS
=SKIP
'=+CONSTANT
^=-CCNSTANT
]"=-"- CONSTANT
=/ CONSTANT

F10.3 FORMAT

CARD 3: VARIABLE FORMAT CARD
(USE ONLY IF COL 1 OF CARD 2=0)

COLS 1-80

example:

ENTER THE FORMAT FOR READING IN X,Y AND Z

VALUES ONE OBSERVATION SET PER CARD. START

IN COL 1 WITH A LEFT PARENS AND THEN CLOSE WITH
A RIGHT PARENS. THE FORMAT MUST INCLUDE AN LI

FIELD TO READ IN A LOGICAL FLAG ON THE LAST
DATA CARD.

(3(F10.2,5X),34X,L1)

THIS FORMAT WILL READ X,Y,Z, IN COLS 1-10,

70

16-25,31-^0 AND A LOGICAL FLAG IN COL 80

.

A T (FOR TRUE) MUST BE PUNCHED IN COL 80

OF THE LAST DATA CARD.

IF THE VARIABLE FORMAT OPTION IS NOT USED
THE STANDARD FORMAT IS (3F1 . 3 ,^9X, LI

)

Options in OMAN I

P

l) Axis inversion: The digitizer has a lower left origin for the

X and Y axis. Many line printed mapping programs assume an upper left

origin to conform to the mechanical aspects of line printing.

•—
'

1

(3

X

Y

'
>

Fig. 11-4 Digitizer Origins

To obtain an upper left origin, the Y axis must be inverted. This can be

done by redefining each Y-value as follows.

Ynew = Yold -(YMAX + YMIN)

The X values may be inverted by the same method. By selection of either

or both X and Y axis inversion, the origin can be placed at any of the

four corners of the Cartesian quadrant.

2) Interchange X and Y axis: Some data sets may also be defined

with axes not conforming to the standard Cartesian configuration.

This switch will cause the interchange of the X and Y values.

71

3) Manipulate X,Y or Z values: Any of these switches allows the

addition, subtraction, division or multiplication of a constant to be

accomplished with any of the X,Y or Z values. This is particularly

useful if two adjacent data sets need to be combined but each was

acquired on separate Cartesian coordinate systems. A constant X and

or Y value could be added or subtracted from either data set to make

it conform to the other (assuming the X axes were parallel to each

other; i.e., no rotation is required).

4) Zero the X,Y coordinates: Measurements obtained from a map may

be more desirable if referenced to a local origin or map origin rather

than to the digitizer origin. This switch will cause the X and Y values

to be zeroed to the data minima (XMIN, YMIN). Often the first point digi

tized on the map may be the desired map origin in the lower left corner.

If this is the case and this switch is used, the X and Y values will be

referenced to the first point digitized which will then become 0.0,0.0

for the X and Y values. The extremes (XMIN, XMAX, YMIN,YMAX) for a

source map can be obtained by digitizing the lower left corner of the

map and the upper right corner of the map.

XMAX.YMAX

XMIN,YMIN

Fig. 11-5 Source Map Extremes

72

Exercise

Write and implement an algorithm for determining the perimeter and

area of a closed figure using digitized coordinates to define the fig-

ure. A discussion of the mathematics involved follows this paragraph

and should be used as a guide to developing the program.

Perimeter

The perimeter of a closed area is the sum of the straight line seg-

ments bounding the area (see Figure 11-6); each segment is calculated

from the Pythagorean theorem.

Example: length of the first segment (Sl) is obtained

as fol lows

:

Sl = (W'^'W'
The sum of the straight line segments (perimeter) for a

closed area defined by n points is given by:

n
2 2 ^

Perimeter = E [(X.-X. J + (Y.-Y. J]

J J+1 J J + 1

j = l

Where: X , = X,
n+1 1

Y = Y
n+1 1

The last (n+l) point is a duplication of the first point in

order to close the area. The perimeter of figure 11-4 is:

P = [(1-2)2 + (4-5)2]^ +[(2-6)2 + (5-4)2] +

[(6-4)2 + (4-1)^]^ + [(4-3)^ + (1-2)^]%

[(3-2)2 ^ (2-2)2]' ^ [(2-1)2 ^ (2-/^)2]'

1 J- 1111
= 2^ + 17' + 13' +2^+1^+5'

73

(U
1_

<
(U

Q.
E
(T3

C/)

o
(U

N

I

cn

m <N

7^

= 1 .4 + 4.1 + 3.6 + 1 .0 + 2.2

= 12.3 uni ts

Area

The area of a closed figure can be found by application of the

Coordinate Rule: The area of a closed figure is equal to one-half the

sum of the products obtained by multiplying each X-coordinate by the

difference between the adjacent X-coordinate taken in the same order

around the figure.

Area of Figure 11-6 by the Coordinate Rule

A = i X^(Y^-Yg) . Xg(Y^-Y^) . X^(Y^-Y^) . X^(Y^-Y^) ^ X^(Y^-Y^)

- X^(Y^-Y^)

= i [1(2-5) + 2ik-k) + 6(5-1) + 4(4-2) + 3(1-2) + 2(2-4)]

= i [-3+0+24+8-3-4]

= i [22]

= 11 sq . units

Area of Figure 11-6 by Matrix Solution

Positive ("4^ Negative (^)

Cross Cross
Poi nt _Y X^ Mul t ipl icat ion Mul t i pi i cat ion

A 4 ^ 1X
B 5 \.^ 2 4x2 = 8 1x5 = 5

C ^Z^^ 6 5x6 = 30 2x4 = 8

D 1 -^ J^^ 4x4 = 16 6x1=6

E 2 ^"^^^3 1x3 = 3 4x2 = 8

F 2^ ^^2 2x2 = 4 3x2 = 6

A 4
'^^^^

1 2x1=2 2x4 = 8

63 41

75

A 63-41 22
Area = = = 11 sq . units

76

LESSON 12: INTRODUCTION TO LINE PLOTTING

Focus

:

CALCOMP Programming.

New Statements: CALL PLOT, CALL FACTOR, CALL SYMBOL

Exercise: S impl e outi i ne map.

Introduction

The CALCOMP output device is capable of drawing pen and ink dia-

grams, graphs, etc., to a resolution of ,001" per pen move. Although

there is a large selection of pen movements and routines from which to

choose for drawing, it is only necessary to understand a few to accom-

plish most drawings.

The introductory lesson in CALCOMP programming is focussed on

the simple problem of drawing an outline map. This will introduce the

programmer to the coordinate system of the CALCOMP, to the basic pen

movement for plotting, and to the programming approach to the design

of an algorithm for plotting an outline map.

77

Basic CALCOMP Programming

paper movement

3

o
u
_J

<

a>
-Q
E
3Z
-Q
O

0.0

90'

180* e
270'

y^ reference

X

0.0

Fig. 12-1 CALCOMP Coordinate System

REF = Current reference point (initialized at beginning of

plot)

Y Dimension Maximums: 11" paper YMAX = 10 inches

30" paper YMAX = 29 inches

Angles are measured counter-clockwise from X axis.

Basic Pen Movements

CALL PLOT (X,Y, IC)

or CALL CCP1PL (X,Y, IC)

Where: X is the X-coordinate location to which the pen will

move

Y is the Y-coordinate location to which the pen will

move

78

IC is the integer control of the pen mode and the

(0.0,0.0) reference coordinate

IC = 2 The pen is down (inking) during move to X,Y

IC = -2 The pen is down during move to X,Y and the current

reference point (0.0,0.0) is reset to X,Y

IC = 3 The pen is up (not inking) during move to X,Y

IC = "3 The pen is up during move to X,Y and the current

reference point (0.0,0.0) is reset to X,Y

The current reference point is initialized at the beginning of the plot

but may be reset using a negative IC.

Example:

-S
E
3z

^ 1.0

0.0^

—
{

f

y reset to zero

_ V

Reference A^^OTO ^'^

Fig. 12-2 Resetting the Reference Point

A. The system will initialize the reference point for a plot near the

bottom of the paper. The Y direction maximum Is 10 inches for 11

inch paper.

B. The programmer may reset the reference point with the following

statement: CALL PLOT (1.0,1.0,-3). This causes the pen to move

(in the ujp position) to 1.0, 1.0 and then reset to zero. The Y

direction maximum is now 9-0 inches.

79

Using the Full Coordinate System

The coordinate system shown, up to this pointy is the positive quad-

rant of the Cartesian coordinate system. It is possible to use the

entire system. For example, if we reset the reference (Figure 12-3)

to 5.0,5.0 we could cause the pen to move in the other 3 quadrants.

CALL PLOT (5.0,5.0,-3)

1

|Y

(-X,+Y) i (+X,+Y)

^f t**
New Reference

(0.0,0.0)

Job

Number

/^

(-X,-Y)
^A

(hX,-Y)

0.0 <

0.

J^ Initial Reference X

5.0

Fig. 12-3 Drawing a Square About the 0.0 Reference

The X and Y coordinates indicated in parentheses show the signs of

the coordinates in each quadrant.

Example: To draw a 5" square centered on the new reference, the

following calls to plot would be made:

1. To move from the new reference to point A,

CALL PLOT (2.5,-2.5,3)

2. To move from point A to point B, CALL PLOT (2.5,2.5,2)

3. To move from point B to point C, CALL PLOT (-2.5,2.5,21

80

k. To move from point C to point D, CALL PLOT

(-2.5,-2.5,2)

5. To move from point D to point A, CALL PLOT

(2.5,-2.5,2)

Most of the time it is more convenient to draw within the positive

quadrant. Drawing the same 5 inch square from the previous example in

the positive quadrant could be done as follows:

1

,Y

D C
'

o

E
3z

c »

1

>

o

A
'

D

0.0

* 5 • 1

"

X

.0

Fig. 12-^ Drawing a Square in the Positive Quadrant

1. To move from reference point to point A and reset

reference point, CALL PLOT (2.5,2.5,-3)

2. To move from point A to point B, CALL PLOT (5-0,0.0,2)

3. To move from point B to point C, CALL PLOT (5.0,5-0,2)

4. To move from point C to point D, CALL PLOT (0.0,5-0,2)

5. To move from point D to point A, CALL PLOT (0.0,0.0,2)

31

Additional Subroutines

Subroutine FACTOR

FACTOR is used to expand or contract all pen moves with respect to

the current reference point. All those pen moves made after a call to

FACTOR will be altered by FACTOR.

The CALL statement takes the form: CALL CCP1FR (factor)

or

CALL FACTOR (factor)

Where factor is the muliplier by which the pen moves are to be

increased or decreased.

Multiple calls to FACTOR are not cumulative. Some general uses

for FACTOR are shown below:

CALL FACTOR (.39^) converts coordinate values in centimeters to

plot in inches

CALL FACTOR (2.30) plots ten inch job on 29 inch paper

CALL FACTOR (.33) plots 29 inch job on ten inch paper

Subroutine SYMBOL

The SYMBOL subroutine is used to plot a sequence of alphanumeric

information and/or special characters.

The calling sequence takes the forms:

CALL SYMBOL (X,Y,SIZE, EBCDI C,THETA,N)

or

CALL CCP2SY (X, Y,S IZE, EBCD I C,THETA,N)

or

CALL CCP2SB (X, Y, S IZE,EBCD I C ,THETA,N)

82

Where: X,Y - are the coordinates of the lower left corner of the

first character to be plotted. The coordinates are

given with respect to the current reference point.

SIZE - is the height of the characters in inches. The width

of each character and spacing is 6/7''' SIZE.

EBCDIC - is the string of characters to be plotted.

THETA - is the angle in degrees at which the characters are

to be plotted. (See Figure 12-5)

N - is the number of characters to be plotted.

X-Axis

Fig. 12-5 THETA Directions

The ebcdic character string is usually placed in quotes although

other alternatives are available (see CALCOMP Manual).

Example:

CALL SYMBOL (O .0,9 • 5, .25"l LL I NO I S",0.0,8)

will write a title (ILLINOIS) at the top of the paper

in i inch high letters parallel to the X axis.

83

Exercise

A Simple Outline Map

To construct a simple outline map from data as shown below.

Xi,Yi

c

Xjjj

Digitizer

Tablet

Fig. 12-6 Digitized Outline

1. Digitize minimum (X,,Y.) and maximum (X-,Y^) of rectangular border confin-

ing the outline map.

2. Digitize X,Y coordinates of outline points.

3. Read X, ,Y, and X^,Y^ and the number of outline points.

READ(5,11) X1,Y1,X2,Y2,N0BS
11 FORMAT (4F10.2,13)

84

k. Read X,Y outline points and zero them to X,,Y..

DO 20 J=l ,NOBS

READ(5,21) X(J),Y(J)
21 F0RMAT(2F10.2)

X(J)=X(J) - XI

20 Y(J)=Y(J) - Yl

5. Calculate factor to fit map on 10" CALCOMP paper

YDIST=Y2-Y1

To allow for titles use a maximum map plotting distance of 9 inches

FACT=9.0/YDIST
CALL FACTOR (FACT)

6. Duplicate last coordinate so the outline will be closed.

N=N0BS+1
X(N)=X(1)
Y(N)=Y(1)

7. Plot outl ine.

a. Move to first point with pen up

CALL PLOT (X(l) ,Y(1) ,3)

b. Loop to plot outline with pen down.

DO 30 J=2,N

30 CALL PLOT (X(J) ,Y(j) ,2)

8. Restore original scale.

FACT=YD I ST/9.0
CALL FACTOR (FACT)

9. Title the outl i ne

CALL SYMBOL (0. 0,9- 5 , • 25 ," I LL I NO I S ," 0.0,8)

85

The complete main program is shown below, and the resulting plot is

shown in Figure 12-7.

DIMENSION X(200) ,Y(200)

READ(5,11)X1 ,Y1,X2,Y2,N0BS
11 F0RMAT(4F10.2,13)

DO 20 J=l ,NOBS

READ(5,21)X(J),Y(J)
21 FORMAT (2.F10.2)

X(J) = X(J) - XI

20 Y(J) = Y(J) - Y1

YDIST=Y2-Y1
FACT=9.0/YDIST
CALL FACTOR (FACT)

N=N0BS+1
X(N)=X(1)
Y(N)=Y(1)
CALL PLOT (X(1) ,Y(1) ,3)

DO 30 J=2,N
30 CALL PL0T(X(J),Y(J) ,2)

FACT=YDIST/9.0
CALL FACTOR(FACT)
CALL SYMBOL (0.0, 9. 5,. 25, "ILL I NO IS", 0.0, 8)

STOP
END

As part of the exercise add the necessary statements to the above pro-

gram to plot the location (use a it sign) and label a few of the larger

cl t ies in I 1 1 i nois

.

86

ILLINOIS

Fig. 12-7 Illinois Outline Plot

87

APPENDIX A

STATISTICAL FORMULAE AND TESTS

88

i

Symbols Used

Variable names: X,Y etc

Number of observations in a sample: n

Number of samples: k

Total number of observation in all samples N

Population mean: y

Sample mean: X

Population variance:

Population standard deviation:

c 1 •
2

Sample variance: s

2

Sample standard deviation

Standard error the mean: o-
X

Pooled estimate of population standard
deviation: s

P

Nul 1 Hypothes is H

Alternate hypothesis: H^

89

Basl c Statistics

Mean (X)

X =

n

EXj

i=l

n

Standard Deviation (s)

s =

\l

-.2
E (X^-X)

i1

n-1

or

r^

s

\l

ZXj

i=1
- (X) (computational formula)

Z- Score

s = variance of the sample

Z- Score =
X - X

Standard Error of the Mean [o'^)

a- =
,

-^ Jri

90

Single Sample Test

X - ^

2 or t =

a-
X

Decision: If calculated Z or t exceeds table value of Z or t

the null hypothesis is rejected (see Hypotheses)

.

Standard Error of the Difference Between Means (ad)

Unpooled estimate: Use when assumption of similar population variances

cannot be met

.

ad =
, a-, + a-%
y xl x2

r 2
+

2

Pooled estimate: Use when assumption of similar population variances

can be met.

ad =
^ 2 _^

- 2
a-, + a--
xl x2

where

[^] 'Epi]

n^si + n2S2^

n] + n2 - 2

91

Means Difference Test

Z or t =

ad

Decision: If calculated Z or t exceeds table value of Z or t

the null hypothesis is rejected (see Hypotheses)

.

Hypotheses

Hypothes is Single Sample Test Means Difference Test

Null Ho: X" = y Ho: Y^ = 7

Alternate (no direction) Hi : X /- y Hi : X^ j^ X
2

Alternate (direction - _ _ _
greater than) Hi : X > y Hi : X > X2

Alternate (direction - _ _ _
less than) Hi : X < y Hi : X^ < X^

See Table A-1 for significance levels used for large sample testing

(Z) . Significance levels for small sample testing (t) must be looked

up In a t-table.

92

TABLE A-1

PROBABILITY FOR TESTING SAMPLES

Two Tail Test (No Direction)

Probability that sample is drawn

from population.

Probabi 1 i ty

n

^o%

15%

50^

15%

100^

%

r^

Observations
in Each Ta i

1

.5

2 .5

5

12 .5

25

37 5

50

± Z Value

2.53

1 .96

1.6A

1.15

.67

.32

0.00 (X)

One Tail Test (Direction)

Probability that sample is drawn from population and sample X is

greater or less than the population X

ty

%

i r

Observat
S i ngl

e

ions

Tail +Z Val

(

ue (

)

Probabi 1

i

or -1 Val ue

U 1 2.33

5% 5 1.6^

\Q% 10 1 .28

25% 25 .67

50°^ 50 .00 (X)

93

Analysis of Variance

Hypothes i s

Ho: X^ = X^ = X =

Hi :
X] ^ X2 ^ h ^ X.

Total Sum of Squares (TSS)

N

(Z X.)

TSS = Z X .
- i=1

i = 1

where

N = n. + n^ + n- . .

k = number of samples

Between Sum of Squares (BSS)

"1 2 "? 2 "^ 2

BSS = i=l ' + i=1 ' + i=l '

1

n. n.

n 2 ^"^ 2

,+ i=l ' - i=l

n. N

Within Sum of Squares (WSS)

WSS = TSS - BSS

ANOVA Table

Var iat ion

Degrees of
Freedom

Estimated
Variance

TSS

BSS

WSS

n-1

k-1

n-k

BSS/(k-l)

WSS/(n-k)

Sh

F-statistic

Between Estimate of Variance
F =

Within Estimate of Variance

Decision: If calculated F exceeds table F (at k- 1 and n-k

degrees of freedom) then the null hypothesis is

rejected.

95

Linear Regression and Correlation

Regression Equation

Y = a + bX

where

Y = dependent variable

X = independent variable

(SY) (ZX^)-(EX) (EXY) (Y-intercept)

a
NZX^ - (EX)2

NEXY - (EX) (EY) (slope)

b =

NZX^ - (EX)^

Coefficient of Correlation (r)

_ + /explained variation

total variation

+ NEXY - (EX) (EY)

>J
[N Ex2 - (EX)2] [NEy2 - (EY)^]

2
r = coefficient of determination

I es t i ng r

Ho: r =

Hi : r ^

^ ^ r^ (n-2)

1 - r^

Decision: If calculated F exceeds table F (l and n-2 degrees of

freedom) then the null hypothesis is rejected.

96

APPENDIX B

SAMPLE PROGRAMS USING DO LOOPS

97

Program to find Minimum and Maximum
of a Vector

I

DIMENSION X(500)
C READ IN ^ OF OBSERVATIONS

READ(5,21) NOBS
21 F0RMAT(I3)

C READ IN DATA
DO 30 J=l, NOBS

30 READ(5,31) X(J)
31 FORMAT (FIO. 2)

C INITIALIZE MIN AND MAX VALUES
XMIN= X(l)
XMAX= X(l)

C START LOOP FOR FIITDING EXTREMES
DO 40 J=2, NOBS

IF(XJ.LT.XMIN)XMIN=XJ
40 IF(XJ.GT.XMAX)}CMAX=XJ

C WRITE OUT EXTREME VALUES OF VECTOR
WRITE(G,51) XMAX, XMIN

51 F0RMAT("1",///1X, "MAXIMUM VALUE= ",

1 F10.2//1X, "MINIMUM VALUE= ",F10.2 ,//"l")
STOP
END

98

Program to Sort a Vector in Ascending
or Descending Order

Ascending Order

DIMENSION X(500),XS(500)
RLAD IN ^ OF OBSERVATIONS
READ (5, 21) NOBS

21 FORMAT (13)
READ IN DATA
DO 25 J=1,N0BS

25 READ(5,2G) X(J)
26 FORMAT (Fl0.2)

START LOOPS FOR SORT
DO 50 1=1, NOBS
INITIALIZE SMALL
SMALL=X(1)
DO 40 J=1,N0BS

45 IF(X(J).LE. SMALL) GO TO 30
00 TO 40

30 K=J
SMALL=X(J)

40 CONTINUE
XS(I)=SMALL

50 X(K)=9990999999.
WRITE OUT HEADER
WRITE(6,G1) NOBS

61 FOR!lATC'l","ARRAY OF ",I3, " OBSERVATIONS",
1 " SORTED IN ASCENDING ORDER",//)
WRITE OUT SORTED ARRAY
DO 70 I=l,xNOBS

70 WRITE (6, 71) XS(I)
71 FORMAT(1X,F10.2)

SKIP TO NEW PAGE
WRITE (6, 72)

72 FORnAT("l")
STOP
END

Descending Order

TO MODIFY THE ASCENDING ORDER PROGRAM TO SORT THE ARRAY
X INTO THE ARRAY XS IN DESCENDING ORDER , REPLACE THE
FOLLOWING STATEMENTS AS FOLLOWS:

45 IF(X(J).GE. SMALL) GO TO 30

50 X(K)=-999999999.
61 FORMATC'I", "ARRAY OF", 1 3,"0BSERVAT IONS SORTED IN DESCENDING ORDER",//)

99

Descriptive Statistics

GENERAL PROGRAM TO DETERMINE THE DESCRIPTIVE STATISTICS OF A DATA SET.

THE STATISTICS INCLUDE THE MEAN, STANDARD DEVIATION, SKEWNESS AND KURTOSIS,
ESTIMATES OF THE STANDARD ERROR FOR EACH OF THESE STATISTICS ARE INCLUDED
ALONG WITH THE CONFIDENCE LIMITS CALCULATED FROM A USER SPECIFIED SIGNIF-
ICANCE LEVEL. T-TESTS ARE CALCULATED FOR SKEWNESS AND KURTOSIS IN ORDER
TO ASSESS THE NORMALITY OF THE DATA.

Instructions

CARDl : TITLE CARD
COLS 1-80 ANY DESIRED TITLE

CARD2: FORMAT AND SIGNIFICANCE LEVEL CARD

COLS 1-72 FORMAT FOR DATA CARDS

EXAMPLE: TO READ ONE OBSERVATION LOCATED IN COLS 21-30 OFF
OF EVERY CARD AND TO PLACE AN INTEGER FLAG IN

COL 80 OF THE LAST DATA CARD THE FORMAT WOULD
LOOK LIKE THIS:

(20X,F10.2,i49X, II)

COLS 73-76 SIGNIFICANCE LEVEL AS A PERCENTAGE I.E.

5 OR 1 MUST BE RIGHT JUSTIFIED
COLS 77-80 SIGNIFICANCE LEVEL FROM T-TABLE I.E.,

1.96 OR 2.58, ETC.

CARD3: DATA CARDS WITH ONE OBSERVATION PUNCHED PER CARD ACCORDING
TO THE FORMAT SPECIFIED IN CARD2. NOTE THAT THE LAST DATA
CARD SHOULD HAVE AN INTEGER (1-9) PUNCHED IN THE II FIELD
SPECIFIED IN THE FORMAT (CARD2)

.

Reference: Statistical Methods , G. W. Snedecor, The Iowa State
University Press, Ames, Iowa, 1956, pp. 199-202.

C

C

DIMENS ION X(1000) , FORMl (18) , ID(20

)

READ IN TITLE
READ(5,11)(ID(J),J=1,20)

11 FORMAT (20A4)
READ IN FORMAT FOR DATA AND SIG. LEVEL
READ(5,21)(F0RM1(J),J=1,18),PER,SIG

21 FORMAT(19A4,F4.2)
INITIALIZE COUNTER (I) AND SUMX
1=0
SUMX=0.
READ IN DATA, COUNT AND SUM

20 READ(5,F0RM1)X(I),IFLAG
SUMX=SUMX+X(I)
IF(IFLAG.GT.O) GO TO 30
1=1 + 1
GO TO 20

30 NOBS=

I

XNOBS=NOBS
100

C LOOP TO r,UM FIRST FOUR MOMENTS
XMEAN=SUMX/XNOBS
SUMX2=0

.

SUMX3=0.
SUMX4=0.
DO 40 J=1,N0BS
D=X(J)-XMEAN
SUMX2=wSUMX2+D**2
SUMX3=SUMX3+D**3

40 SUMX4=SUMX4+D**4
C CALCULATE REMAINING DESCRIPTIVE STATISTICS

STDEV=SQRT(SUMX2/XN0BS

)

SKEW=(XN0BS*SUMX3/((XN0BS-1.)*(XN0BS-2.)))/ (J^QRT((SUMX2/(XN0BS-1 . :

XKURT=(XN0BS*(((XN0BS+1.)*SUMX4)-(3 . *(XN0BS-1 .
) *SUMX2**2/XN0BS)) /(

(XN0BS-1.)(XN0BS-2.)*(XN0BS-3.))) / (SUMX2/(XN0BS-1 .)
) **2

C CALCULATE STANDARD ERRORS
XMEANE=STDEV*SQRT(XN0BS/(XN0BS*(XN0BS-1.))

)

STDEVE=STDEV*SQRT(XN0BS/(2. *XN0BS*(XN0BS-1.))

)

SKEWE=S0RT(6.*XN0BS*(XN0BS-1.)/((XN0BS-2.)*(XN0BS+1.) (XNOBS+3 .))

!

XKURTE=SQRT(24.*XN0BS*(XN0BS-1.)**2/((XN0BS-3.)*(XN0BS-2.)*(XNOBSh
3.)*(XN0BS+5.)))

C CALCULATE UPPER CONFIDENCE LIMITS
XMEANU=XMEAN+S IG*XMEANE
STDEVU=STDEV+SIG*STDEVE
SKE\VU=SKEW+SIG*SKE\VE
XKURTU=XKURT+S IG*SKEWE

C CALCULATE LOWER CONFIDENCE LIMITS
XMEANL=XMEAN-S IG*}CMEANE
STDEVL=STDEV-S IG*STDEVE
SKEWL=SKEW-SIG*SKEWE
XKURTL=XICURT-S IG+XICURTE

C CALCULATE DIMENSIONLESS SKEWESS AND lOJRTOSIS
SKEVro=SKEW/SKE^VE
XKURTD=XiaJRT/XKURTE

C WRITE OUT HEADER FOR TABLE
WRITE(C,r,l)(ID(J),J=l,20)

Gl FORMAT("1"

,

20A4////9X

,

"STATISTIC" , IIX , "VALUE" , 8X , "STANDARD ERROR"

,

*19X,"UCL",13X,"LCL",10X,"Z OR T TEST" /9X ,"*********", IIX, "*****" ^

j

*x /'**************" ^ lOX, "***"^13X,"***",10X, "***********" /)
VmiTE(6,71) XMEAN,?3fEANE,X?lEANU,XMEANL'

71 FORMAT (9X, "MEAN " ,F10 . 4 , 8X,F10. 4 , 8X, FIO . 4 ,6X,F10 . 4 , /

)

WRITE (6,72) STDEV , STDEVE , STDEVU , STDEVL
72 FORMAT (OX , "STD . DEV

.

" , FIO . 4 , 8X , FIO . 4 , 8X , FIO . 4 , 6X , FIO . 4 , /

)

WRITE (6,73) SKEW , SKEV/E , SKEWU , SKEWL , SICEWD
73 FORMAT (OX , "SKEWNESS " , FIO . 4 , 8X , FIO . 4 , 8X , FIO . 4 , 6X , FIO . 4 , 7X

,

*F10.4,/)
VmiTE (6 , 74) XKURT , X?:URTE , XKURTU , XKURTL , XKURTD

74 FORMAT(9X , "I-OJRTOSIS "
, FIO . 4 , 8X , FIO . 4 , 8X , FIO . 4 , 6X , FIO . 4 , 7X ,

*F10.4,////)
WRITE(6,75) NOBS, PER, SIG

75 FORMAT (OX, "SAMPLE SIZE(N)= ", 14
,
/OX, "SIGNIFICANCE LEVEI^" , A4 , "?f ,

'

*,F4.2," STANDARD DEVIATION UNITS",////)
RETURN
END

101

m

APPENDIX C

MATRICES AND VECTORS

102

An elementary understanding of the language and manipulation of

matrix algebra is important for several reasons:

1. matrix algebra is used to express and understand advanced

statistical techniques;

2. geographic data frequently can be arrayed or expressed

in matrix form;

3. computer programs rely on matrix techniques.

Here, then, Is a summary of a few matrix algebra concepts and the method-

ology used for manipulation. The following topics will be covered:

1. Matrix Definitions and Notations

2. Algebraic Manipulations

3. Special Matrices

k. Matrix Inversion

5. Solving Simultaneous Equations

6. FORTRAN Matrix Manipulations

Matrix Definitions and Notations

A matrix is a rectangular array of elements. The array, when writ-

ten, is enclosed by brackets. Letters (A,B) are usually used to Identify

the matrix as shown below.

A =
^1 ^2

^3 ^k

B =
3 1 2

2 h e

The sets of horizontal elements are called rows and the sets of vertica

elements in the array are called columns.

103

I
A matrix may be designated by its size or order which is expressed as the

number of rows by the number of columns. Matrix A is of size (or order)

2x2 and Matrix B is of size 2x3- A matrix containing only one row

or column is called a row or column vector. Matrix C is a 1 x 3 row

vector

C = [k 2 3]

In the discussion throughout this appendix it should be noted that

the 2x2 matrix (the smallest, non-vector matrix) is considered a spe-

cial case. Methods involving 2x2 matrices can not usually be applied

to larger size matrices in many instances and therefore in most cases

methods are given for the 2x2 matrix and then for matrices of larger

s i ze.

Determinants and Co factors

The determinant of a matrix Is the single scalar value represent-

ing a matrix and can be found as follows:

2 X 2 matrix:
A =

a b

c d

3 X 3 ma t r i X

DET A = ad - c

"1 '^l
"1

B = a^ b^ c^

'3 S '3

DET B = a.b^c- + aJo^c + a^b^c-

^^^^2 - ^l^^'-i - ^3^2^1

104

The determinant for the 3x3 matrix (and larger) can be found more eas-

ily using the cofactor method.

Where a. b g

B -
.J

bj Cj

33 bj C3

The cofactor of each element of matrix B can be found by "crossing out"

the row and column to which the elenent l« common andi finding the deter-

minant, then the determinant can easily be found.

The cofactor of a. = DET

^=2 ^1

"2 '^3

The cofactor of a^ = DET

"3 "=3

Each element of a matrix has a cofactor.

The determinant of B can be found as follows

DET B = a^ (cof. a^) - b (cof. b) + c (cof. cj

or

a DET

^2 ^2

'3 ^3

b^ DET

"2 "2

3 3

+ c, D€T

"2 ^2

^3 '3

Example: find the determinant of matrix Y

2 -3 -^

Y = -4 2

1 -1 5

105

DET Y = (2)DET
-h 2

-1 5

- (3)DET
2

1 5

+(-4) DET

-A

1 -1

= (2) (-18) - (3) (-2) + (-i|) ik)

= -36 + 6 - 16

- -kG

Matrix Equal i ty

Two matrices are equal if they are the same size and all corre-

sponding elements are equal.

A =
2 1

3 ^

B =
2 1

3 ^

C =
2 1

3 3

A = B ?^ C

Transpos i t ion

Matrices may be transposed by replacing each row by its correspond-

ing column; such a transportation is designated by a prime sign or T.

A =

3 6

k 7

5 8

A^ =
3 ^ 5

6 7 8

Note that A is a 3 x 2 matrix and the transpose of A (A) is a 2 x 3

matrix. Column and row vectors may be transposed in the same way.

106

Algebraic Manipulation

Addition and Subtraction

Two matrices may be added together or subtracted from each other

only if they are of the same order and size. Addition and subtraction

are accomplished by either adding or subtracting elements of one matrix

from the corresponding elements of another. Consider two matrices A and

B, below: their sums and differences are shown as two new matrices X

and Y.

A =
-1 2

3 h

B =
-6

5 2

X = A + B

X =
(-1)+ 2 + (-6)

3 + 5 k + 2

Y = A - B

Y =
(-1) - 2 - (-6)

3-5 k - 2

-1 -k

8 6

-1

-2

It should be noted for addition and subtraction of the transpose of

matrices the following is true:

a"^ + b"^ = (A + B)"^

a"^ + b"*" = (A - B)"^

107

Multiplication of Matrices

When the number of columns of matrix A is the same as the number

of rows for matrix B, A is said to be conformable to B for multiplica-

tion or the multiplication is said to be defined for A x B (usually

written AB) . To see if matrices are conformable for multiplication,

place their order values side by side, and if the two inside terms are

the same, they are conformable for multiplication and the answer matrix

will be of the order of the two outside terms.

Example: (^,5) x (5,3) = (4,3) (3,2) x (1,5) = (3,5)

Multiplication of matrices is NOT cumulative.

AB does not always equal BA.

Multiplication of matrices IS associative.

(AB)C = A(BC)

The following three fundamental properties from scalar algebra DO NOT

carry over to matrix algebra:

1

.

AB = BA

2. AB =

3. AB = AC so B = C

To multiply matrices:

1. check for conformabi 1 i ty

2. multiple each row of A by each column of B

a. the sun of the products form (first row of A) x (first

column of B) will be the element of the answer matrix

in the first row and first column.

108

I

Example

sum of products (second row A) x (first column of B)

will be the element in the answer matrix located in

the second row, first column

The above procedure is continued until all combina-

tions are completed.

A =
1 k

-3 2

(2 X 2)

B =
-5 1 2

5 2 1

(2 X 3)

1 . Conformab i 1 i ty

1

(2 X 2) (2 X 3)

J

conformable for

mul t i pi icat ion

-^answer matrix
will be a 2 X 3

2. X = AB

(l)(-5) + (4)(6) (1)(1) + {k){2) (1)(2) + (Md)

(-3)(-5) + (2)(6) (-3)(1) + .(2)(2) (-3)(2) + (2)(l)

-5+24 1+8 2 + k

15+12 -3 + 4 -6 + 2

19 9 6

27 1 -4

Similarly, row vectors and column vectors can be multiplied if they are

of the same order, and matrices can be multiplied by column or row

vectors if they are conformable.

109

Special Matrices

Square Matrix

A matrix containing the same number of rows and columns is a square

matrix. In Matrix A below, the elements 2 and 4 are called the diagonal

elements. All other elements are called off-diagonal elements.

k

A =
2 3

1 k

Identity Matrix

If in a square matrix all diagonal elements are equal to one and

all off-diagonal elements are equal to zero, the matrix is called an

identity matrix and is designated by an I.

1

1

or

1

1

1

When an identity matrix is involved in multiplication, the results are

the same as if the identity matrix were replaced by the scalar 1.

lA = A or Al = A

Zero Matrix

A matrix containing all elements equal to zero is called a zero

matrix and behaves as if it were scalar zero.

Diagonal Matrix

A diagonal matrix is a square matrix containing all off-diagonal

elements of zero. A is a diagonal matrix.

110

1

A = 2

3

Symmetric Matrix

If matrix A is equal to the transpose of A (A) , then the matrix

is said to be symmetric. The matrix A below is equal to A
,

1 2 3

A = A" = 2 9

3 8

Matrix Inversion

A matrix A may be inverted (A) so that AA =1. Not all matrices

can be inverted. The matrix has an inverse if the determinant does not

equal zero.

A. 2x2 Matrix Inversion

(1) find the determinant of the matrix

(2) interchange the elements of the diagonal

(3) multiply the other two elements by -1

{k) divide each element by the determinant

Example: Find the inverse of A,

A =
2 3

4 5

111

1. DET A = (2 X 5) - (^ X 3)

=10-12

= -2

DET ?^ (matrix can be Inverted)

2. Interchange the diagonal elements

5 3

k 2

3. Multiply off diagonal elements by -1

5 -3

-k 2

A. Divide each element by the determinant

5/-2 -3/-2

-k/-2 2/-2

A
-1

-5/2

2

3/2

-1

B. 3x3Matrix

(1) find the determinant of the matrix

(2) find the adjoint of the matrix where the adjoint is de-

f i ned as fol lows

:

ADJ A =

^1 -^^^ "l

-(a^) b, -(c,)

^3 -^V '3

112

where a,b,c are the cofactors of the elements of the original

matrix. Note the negative multiplication of certain cofac-

tors in the adjoint.

(3) divide each element of the adjoint by determinant A

{k) transpose the result

Example;

A =

1 2 3

2 1 2

3 1 2

1. DET A = (1)(0) - (2)(-2) + (3)(-l)

= + 4-3
= 1 DET A 7^ (matrix can be inverted)

ADJOINT

Matrix of

Cofactors

-2 -1

1 7 -5

1 -k -3

Adjoint =

2-1
-1 -7 5

1 k -3

DIVIDE BY DETERMINANT
(DET A=l)

TRANSPOSE
-1

-2 -1

-1 -7 5

1 k -3

-1 1

2 -7 k

-1 5 -3

113

Check: AA
-1

1 2 3

2 1 2

3 1 2

J u

-1 1

2 -1 k

-1 5 -3

1

1

1 I
Solving Simultaneous Equations

Linear equations may be expressed in matrix notation and solved

using matrix techniques. As an example the three equations in three un-

knowns shown below can be solved using the techniques of matrix algebra.

System of three equations in three unknowns:

2X + Y - Z = 5

X + Y - Z = 3

X -2Y -3Z =

In matrix notation the equations can be written as follows:

An S matrix of coefficients

2 1 -1

1 1 -1S =

1 -2 -3

A B column vector of unknowns

B =

11^

A g column vector of constant

g
=

The equations can then be written in matrix form as:

SB = g

To find the uni<nowns (solve the equations) we multiply both sides of the

matrix equation by the inverse of S.

S ^SB = S ^g

where S S= I (the identity matrix)

/. I B = S~^g

since I acts as scaler one (l)

B = S"^g

-1

-1/5 1

V5 -1

-3/5 1

3/5

3/5

•1/5

= S-'g

2/5 5

-3/5 3

-1/5

-1/5 1

4/5 -1

-3/5 1

5(-l/5) + 3(1) + 0(2/5)

5(4/5) + 3(1-1) + 0(-3/5)

5(-3/5) - 3(1) + 0(-l/5)

115

I

X (-1 + 3+0)

Y =
(4 -3+0)

Z (-3 + 3+0)

X = 2

Y = 1

Z =

A Regression Analysis Example

In the case of simple linear regression, the line of best fit is de-

scribed by the slope Y-intercept form for a straight line (Y = a + bX) .

The constants a and b are derived from the normal equations which were

given in Appendix A of this handbook as:

an + bZX = ZY

(normal equations derived from the calculus)

aZY + bZX^ = ZXY

and when solved for a and b yield the familiar computational formulae

for the regression coefficients

_ (IY)(ZX) - (EX)(zXY)

nZX^ - (ex)

b =
nZXY - (ZX) (ZY)

nZX^ - (ZX)^

The normal equations shown above when written in matrix notation

are as fol lows

:

116

S-MATRIX OF COEFFICIENTS

S =

n ZX

ZX ZX'

B-VECTOR OF UNKNOWNS

g-VECTOR OF CONSTANTS

ZY

g
=

EXY

The normal equations can then be written as SB = g and the solution of

this set of simultaneous equations is B = S g.

The inverse of S is done in the following steps:

1. Find the determinant of S

DET S = nZX^ - ZXZX

2. Interchange main diagonal elements of S

then S =

EX ZX

ZX

3. Multiply the off diagonal elements by -1

then S =

ZX -ZX

-ZX n

117

k. Divide each element by the determinant to obtain inverse of S

.2

.-1

SX -zx

nZX^ - (EX)^ nSX^ - (ZX)^

-IX

nZX^ - (ZX)^ nZX^ - (ZX)^

-1
The system B = S g can now be solved:

.-1
B

ZX' -ZY

nZX^- (ZX)^ nZX^ - (ZX)^

ZX

nZX^ - (ZX)^ nZX^ - (ZX)^

g

ZY

ZXY

I

Then

:

ZX ZY + -ZXIXY

nZX^ - (ZX)^ nZX^ - (ZX)
^

-ZXZY + nZXY

nZX^ - (ZX)^ nZX^ - (ZX)^

(ZY)(ZX) - (ZX)(ZXY)

nZX' (ZX)

nZXY - (ZX)(ZY)

nZX^ - (ZX)^

118

FORTRAN Matrix Manipulations

Transpos i tion

DO 10 I = 1,N

DO 10 J + 1,M

10 B(J, I) = A(I ,J)

Where:

N = number of rows in matrix A

M = number of columns in matrix A

B = aT

Addi tion

DO 10 I
= 1,N

DO 10 J = I ,

M

10 C(l, J) = A(i,J) + 8(1, J)

Where:

N = number of rows in matrix A or B

M = number of columns in matrix A or

C = A + B

Multiplication of Two Matrices

DO 10 I
=

1 ,NA

DO 10 J = 1,MB

C(I,J) = 0.

DO 10 K =
1 ,MA

10 C(I,J) = C(I,J) + A(l ,K)'VB(K,J)

Where:

NA = number of rows in matrix A

MB = number of columns in matrix B

MA = number of columns in matrix A

C = A>'-B

Vector-Matrix Multiplication

Premul t
i
pi icat ion of a matrix by a row vector

119

DO 10 J = 1,M

PV(J) = 0.

DO 10 I =
1 ,

N

10 PV(J) = PV(J)+V(1)-'<A(I ,J)

Where:

M = number of columns in matrix A or number of
columns in product vector PV

N = number of rows in matrix A or number of
columns in vector V

PV = V-'^A

Postmul tipl i cat ion of a matrix by a column vector:

DO 10 I = 1,N

PV(I) =0.
DO 10 J = 1,M

10 PV(i) = PV(l)+A(l ,J)^'^V(J)

V/he re

M = number of columns in matrix A or
number of rows in vector V

N = number of rows in matrix A or
number of rows in product vector PV

PV = A'W

Simultaneous Equations

In the previous section the solution of a set of simultaneous equa-

tions was carried out using matrix inversion. A simpler approach is to

use a method that eliminates terms. A subroutine (EQUAT) is given below

which solves a set of simultaneous equations that are given in matrix

form. In order to see the relationships between the set of equations

and the matrix form of the equations a simple example is given to illus-

trate the use of subroutine EQUAT.

120

Set of simultaneous equations

2X + Y -Z = 5

X + Y -Z = 3

X - 2Y-3Z =

Matrix form of the equations:

2 1 -1 X 5

1 1 -1 Y = 3

1 -2 -3 Z

SxB = g

Augmented S Matrix:

The S matrix can be augmented by adding the g vector as the fourth

column. The new matrix (SA) is now a 3 x k matrix.

2 1-15
SA = 1 1-1 3

1-2-3

Solving the Equations:

CALL EQUAT (SA, NROWS, NCOLS)

The equations will be solved by elimination and the answer vector

will be found in the fourth column of SA returned from the subroutine.

2

SA = 1

121

SUBROUTINE EQUAT (SA, NROWS, NCOLS)
DIMENSION SA (NROWS, NCOLS)

C SA = AUGMENTED S MATRIX
C ANSWER VECTOR WILL BE NCOLS COLUMN OF SA

C NROWS = NUMBER OF ROWS IN SA

C NCOLS = NUMBER OF COLUMNS IN SA

C

C SOLVE EQUATIONS BY ELIMINATION
DO 20 I = 1 , NROWS
11=1+1
DO 20 J = I I , NCOLS
SA(I,J) = SA(I ,J)/SA(I,I)
DO 20 K = 1 , NROWS
IF (l-K) 10,20,10

10 SA(K,J) = SA(K,J)-SA(K, I)^'-(I,J)

20 CONTINUE
RETURN
END

122

APPENDIX D

GENERALIZED REGRESSION MODELS

123

Simple linear regression provides the researcher with a powerful

technique by which the relationship between two variables may be assessed.

However, in many instances the explanatory power of a simple linear model

may be insufficient to deal with complex problems involving several var-

iables. The linear model can be extended to encompass more than one in-

dependent variable (multiple regression model) or it can be expanded to

include non-linear terms (curvilinear regression model) and a combination

of these two models (multiple-curvilinear model) is of particular use to

geographers. In actuality the regression models discussed in this appen-

dix are all from the same family of polynomial regression models (see

Fig. D-1), but for purposes of discussion they have been broken down

into the three categories: mul t
i
pi e, curvi

1

inear and multiple-curvilin-

ear.

This appendix is intended to serve as a guide for the construction
[

of regression models in a format suitable for implementation as a com-

puter algorithm. Three principal topics are covered:

1. Derivation of the normal equations (in matrix notation) by in- j

spection for any regression model.

2. The general form of the normal equations for the curvilinear,

multiple and multiple-curvilinear regression models.

3- A summary of variance measures associated with the re-

gress ion model s.

Derivation of Normal Equations by Inspection

The normal equations for regression models are determined through

application of the calculus. However, the normal equations can be more

readily derived by inspection of the regression model and directly de-

scribing the normal equations in matrix form. An example using a Sfd

12^

11
C I/I— I/)

._ o

U Oe:

</>

«
a.

X
X •^

N

N-~'^—>- tsl

3u
Q.

X|

XI
o

c
o

l/l

CU
1-

en
0)
a:

I

Ol

CM

S3~iavmvA iN3aN3d3aNi

125

degree curvilinear regression model illustrates the procedure applicable

to any model

.

Regression equation :

Y = a + a.X + a^y} + a X^

Generating the S matrix :

2
Step 1: Using the right side of the regression equation a- + a,X + a„X

3 2 3
+ a-X write the variables (X, X ,X) as the first row of the S matrix

in columns 2, 3 and k. The total number of sample observations (n) oc-

cupies the first row, first column position.

S=

Step 2: Transpose this row and write the first column of the S-Matrix

S=

2 3
n X X X^

Step 3: Fill in the remaining elements by cross multiplication, i.e.,

for the 2nd row, 2nd column value multiply the 2nd row value of column

2
(X) by the 2nd column row 1, value (X) X .

S=

2 3
X X X^

2 3 4
X X^ X

3 4 5
X^ X X^

126

Step h: Place summation signs Z in front of each of the variables

j = l

and their cross products. For the sake of clarity Z alone is used

assuming j =
1 ,n.

S=

EX ZX

ZX ZX ZX"

2 3
ZX ZX^^

3 ^
ZX"^ ZX

ZX

zx-

zx-

zx

ZX'

ZX

Generating the B vector of unknowns :

This is simply written as column vector with the regression coef-

ficients written in ascending order down the vector.

B=

Generating the g vector of constants :

Step 1. This Is a column vector consisting of the dependent variable

(Y) and the cross products of the dependent variable (Y) and the inde-

pendent variables in the order they appear in the regression equation

{x,x^x^).

g=
YX

YX

YX-

127

Step 2: Place a summation sign E ignoring the counter j = l,n in

j = l

front of each vector element

ZY

ZYX

ZYX

ZYX-

The Normal Equations in Matrix Form

S

sx

EX

ZX'

EX

EX

EX-

EX

EX

EX-

EX

EX-

EX-

EX

EX-

EX

M m

a
o

•
^1

^2

/3_

Curvilinear Regression

General form of the regression equation

:

g

EY

EYX

EYX'

EYX-

Y = a + a^X + a2X^ + a X^ + a^X + a X
n

Description of the normal equations:

S=

EX

EX-

EX

EX

EX EX-

EX

EX

EX-

EX

EX-

EX-

EX

EX-

EX

EX'^ EX"--^ EX"'-^ EX"-'^

EX'

EX

EX

n+'

n+2

EX
n+3

EX
2n

128

B=

g=

EY

EYX

2
ZYX

ZYX^

SYX"
•• —

Solution of norma] equations :

B = S"^g

Multiple Regression

General form of the regression equations

Y = a + a,X, + a^X^ + + a X
n n

Description of the normal equations:

S =

EX.

EX EX
'

EX, EX.

ZjA.A„ /L.A..X-

EX,^ EX , X~ E X_ EX^X

LA- L A , A _ LA„a_ EX_

EX EX.X EX^X EX^X
n In 2 n 3 n

EX

EX,X
1 n

EX_X
2 n

EX^X
3 n

EX

129

B=

g=

ZY

EYX^

ZYX,

ZYX.

ZYX

Solution of the normal equations

B = S"^g

Multiple-Curvilinear Regression

The more general polynomial regression model is one In which the

number of independent variables vary and the degree of the polynomial

may be raised. Although there are an indefinite number of such models,

geographers have a particular interest in two of them:

1. A Trend Surface model of 1 dependent and two independent vari-

ables with the "degree varying."

2. A Hypersurface model of 1 dependent and three independent vari-

ables with the "degree varying."

The normal equations for a trend surface analysis are discussed below.

130

Genera] form of the equations:

1st degree: Z = a + a,X + a„Y

2 2
2nd degree: Z = a_ + a.X + a„Y + a-,X + a.XY + a^Y

^ 12 _3 H 3

3rd degree: Z = a + a,X + a^Y + a X + a.XY + a^Y^ + a,X^ + a X^Y

+ agXY^ -H a^Y^

The underlined portion shows the group of terms added to the prev-

ious equation to generate the model of the next highest degree. This

is unlike the curvilinear or multiple case where the next higher order

(higher degree of additional independent variables) is generated by

simply adding one extra term. In the multiple-curvilinear case a group

of terms is added to generate the next highest order regression equation.

Description of the normal equations :

Because the general case is complex, a description of the normal

equations in matrix form for a second degree trend surface is given as

an example

S =

zx EY ZX ZXY EY

EX ZX^ EXY EX^
2

EX Y
2

EXY

EY EXY ZY^
2

EX Y
2

EXY EY^

zx^ EX^
2

EX Y zx" EX^Y
2 2

EX Y

EXY
2

EX Y
2

EXY EX^Y
2 2

EX Y EXY^

ZY^
2

EXY EY^
2 2

EX Y EXY^ ZY^

B =

131

g
=

sz

ezx

ZZY

ZZX^

ZZXY

ZZY^

Solution of the normal equations

B = S g

Variation and Correlation Measures

A general approach to the correlation measures for any regression

model can be made through an analysis of variance.

Variation and variance can be defined as follows:

Variation or sum of squares (SS) = sums of squares of deviations

Variance or mean square (MS) = sums of squares of deviations
degrees of freedom

For any regression model the specific measures of variation are obtained

as fol lows

:

- 2
z(Y - Y) = unexplained variation (USS)

Z(Y - Y) = explained variation (ESS)

_ 2
e(Y - Y) = total variation (TSS)

Y = sample value of the dependent variable

Y = estimate of predicted value obtained from the regression equa-

tion using sample values of the independent variable(s).

where;

132

Y = the mean of the sample values of the dependent variable

2
The coefficient of determination (r) and coefficient of correlation (r)

can then be determined for any regression model from the variation esti-

mates.

2
Coefficient of determination (r)

explained variation
total variation

Z(Y - Y)^

Coefficient of correlation (r):

I
- |explained variation

total variation

kjy - Y)^

lz(Y - Y)^

An analysis of variance (F-test) can be applied as a validity check on

the coefficient of correlation to determine whether the coefficient of

correlation occurred by chance or not. The following ANOVA table can

be used for all regression models.

Variation Degrees of Variance
(Sum of Squares) Freedom (Mean Square)

Total (TSS) n -
1 TMS = TSS/(n-l)

Explained (ESS) m EMS = ESS/m

Unexplained (USS) n - m -
1 UMS = USS/(n-m-l)

Where n = number of sets of observations

m = number of terms in regression equation

133

F-Stat 1 Stic:

Ho: r =

H^ : r ?^

F = EMS/UMS

Decision: If F calculated exceeds F table (at m and n-m-

degrees of freedom) then Ho is rejected and H

accepted.

134

APPENDIX E

LISTING FOR SUBROUTINE OMAN I

P

I

135

SUBROUTINE DMANIP(X , Y , Z , SMX , DvSX ,NOBS , ID)
DIMENSION X(1),V(1),7(1),S?TX(4),DSX(6)
DIMENS ION FORMl (20) , ID(20) , STX(4

)

LOGICAL*! LAST
K=l

C
C READ TITLE CARD

READ(5,101)(ID(J),J=1,20)
101 FORMAT(20A4)

^ i
C READ OPTIONS CARD

READ(5 , 111) ISF , IX , lY , IXY , MX , XCOIiST , TTY , YCONST , MZ , ZCONST , IZERO,]

*CII , lEClIO
, (SMX(J) , J=l , 4)

111 FORMAT(5I1,3(F10.3,I1),2I1,4F10.3)
DC 120 J=l,4

120 STX(J)=SMX(J)
C
C CHECK FOR VARIABLE FORMAT CARD

IF(ISF.EQ.1)G0 TO 125
READ(5 , 101) (FORMl (J) , J=l , 20

)

GO TO 150
C
C READ IN DATA USING STANDARD FORMAT

125 READ(5,131)X(K),y(K) ,Z(K),LAST
131 rOR^IAT(3F10.3,49X,Ll)

IF (LAST)GO TO 140
K=K+1
GO TO 125

140 NOBS=K
GO TO 170

C
C READ IN DATA USING VARIABLE FORMAT

150 READ(5,F0RM1)X(K),Y(K),Z(K),LAST
I F(LAST) GO TO IGO
K=JC+1
GO TO 150

160 NOBS=K
C
C SUM XMIN+XMAX AND SUM YMIN AND YMAX

170 SUMX= SMX (1) + SMX (2

)

SUMY=SMX(3)+SMX(4)
C
C CHECK FOR INVERSION OF X AXIS

IF(IX.EQ.0)GO TO 190
DO 180 J=1, NOBS

180 X(J)=SUMX-X(J)
C
C CHECK FOR INVERSION OF Y AXIS

136

I

190 IF(IY.KQ.0)GO TO 210
DO 200 J=1,N0BS

200 Y(J) = SUiMY-Y(J)
C
C CHECK FOR INTERCHANGE OF AXES

210 IF(IXY.EQ.0)GO TO 300
DO 220 J=1,N0BS
TEMP1=X(J)
X(J)=Y(J)

220 Y(J)=TEMP1
TF?^1=SMX(1)
SMX(1)=SMX(3)
SMX(3)=TFMP1
TEMP1=SMX(2)
SMX(2)=SMX(4)
SMX(4)=TEMP1

C
C CHECK FOR MANIPULATION OF X-COORDINATFS

300 IF(MX.EQ.0)CtO to 400
CALL MANIP (X , XCONST , MX , GMX (1) , SMX (2) , NOBS

)

C
C CHECK FOR MANIPULATION OF Y-COORDINATES

400 IF(MY.EQ.0)GO TO 500
CALL MANIP(Y,YCONST,MY,SMX(3),SMX(4),NOBS)

C
C CHECK FOR MANIPULATION OF Z-COORDINATES

500 IF(MZ.EQ.0)GO TO 505
CALL MANIP (Z , ZCONST ,MZ ,0.0,0.0, NOBS)

C
C CHECK FOR ZEROING COORDINATES

505 IF(IZERO.EQ.0)GO TO 600
DO 510 J=1,N0BS
Y(J)=Y(J)-SMX(3)

510 X(J)=X(J)-SMX(1)
SMX(2)=SMX(2)-SMX(1)
SMX(1)=0.0
SMX(4)=SMX(4)-SMX(3)
SMX(3)=0.0

C
C SORT THE DATA VECTORS FOR MIN AND MAX VALUES

GOO CALL HIL0(X,N0BS,DSX(1),DSX(2))
CALL HIL0(Y,N0BS,DSX(3),DSX(4))
CALL HI L0(Z , xNOBS , DSX (5) , DSX (G))

C
C CHECK FOR PUNCHING A NEW DATA DECK

IF(IPUNCH.EQ.0)GO TO 700
WRITE(7,G01)(ID(J) ,J=1,20)

GOl FORMAT (20A4)

137

DO GIO J=1,N0BS
610 WRITE(7,r)ll)J,X(J),Y(J),Z(J)
611 F0RMAT(I4,5X,3F10.3)

r
C WRITE OUT STATUS OF ALL OPTIONS

700 WRITE(6,691)(ID(J),J=1,20)
691 FORMATC'l", "*****************", /ix/'*OPTIONS LISTING*" 2X 20A4 /IX

*^t.*****************„^//4X^..(l=YES,0=NO)" //)
» . ^ ,/-«-A

WRITE(6,692)ISF,IX,IY,IXY,IZERO,IPUNCn,IECHO,MX,XCONST.MY YCONST M
*Z,ZCONST,(STX(J),J=l,4),(SMX(J),J=l,4),(DSX(J),J=l,6),NOBS

692 FORMATC IX, "STANDARD FORMAT= ", I1//1X, "INVERT X AXIS= " I1//1X "TNV
*ERT Y AXIS= ", 11// IX, "INTERCHANGE X AND Y AXES= ",Il//ix "ZERO X A*ND Y AXES= ",I1//1X, "PUNCH A NEW DATA SET= " , I1//1X. "ECHO THE DATA
* SET= ", I 1//1X, "MANIPULATE THE X, Y, OR Z VECTORS" //3X "1=VE*CTOR + CONSTANT", /3X,"2=VECTOR - CONSTANT", /3X," 3=VECTOR * CONSTAN
*T",/3X, "4=VECTOR / CONSTANT"

, //3X, "MANIPULATE X-VECTOR= " II /12X
*"X-CONSTANT= ", FIG. 3, //3X , "MANIPULATE Y-VECTOR= ".I1/12X "Y-CONSTA
*NT= ",F10. 3, //3X, "MANIPULATE Z-VECTOR= " , II

,
/12X, "Z-CONSTANT= " Fl

*0. 3, ///IX, "ORIGINAL SOURCE MAP EXTREMES"
,
//3X, "XMINSM= " FIG 3 /3X

*,"XMAXSM= ",F1G.3,/3X,"YMINSM= "
, FIG . 3, /3X, "YT,!AXSM= " ,Fl6. 3 . ///IX"MODIFIED SOURCE MAP EXTREMES",// 3X,"XMINMS= ",F1G.3 /3X "XMAXMS=

* ",F10.3,/3X,"YMINMS= " ,F1G. 3 ,
/3X, "YMAXMS= " ,Fl6 . 3 ,

///IX
*"DATA VECTOR EXTREMES"

,
//3X, "XMINDV= " ,F10. 3 ,

/3X, "XMAXDV= " FIO 3
*/3X,"YMIiroV= ",F10.3,/3X,"YMAXDV= ",F10.3, ' •

»

*/3X,"ZMnTDV= ",F1G.3,/3X,"ZMAXDV= ", FIG . 3 ,
///IX, "NUMBER OF OBSERVA

*TIONS= ",I4)
C
C CHECK FOR DATA ECHO

IF(IECHO.EQ.0)GO TO 800
WRITE(6,693)(ID(J),J=1,20)

693 F0RMAT("1", "************•****", /ix,"*DATA ECHO CHECK*" 2X 2GA4 /IX*^..***************** ••,///lX, "OBSERVATION X-COORDINATf' Y-CO
ORDINATE Z-VALUE",/)
DO 710 J=1,N0BS

710 WRITE(6,711)J,X(J),Y(J),Z(J)
711 FORMAT(1X,I4,10X,F10.3,7X,F10.3,8X,F10.3)
800 RETURN

END
SUBROUTINE MANIP (A , ACONST , MA , AMIN , AMAX , NOBS

)

C GENERAL ROUTINE FOR MANIPULATION (+.-*./) OF A VECTOR
DIMENSION A(l)

v
» »

w^
GO TO (11, 11, 12, 12), MA

11 IF(MA.EQ.2)AC0NST=-1.*AC0NST
DO 20 J=1,N0BS

20 A(J)=A(J)+ACONST
AJ.IIN=AMIN+ACONST
AMAX=AMAX+ACONST

138

GO TO 100
12 IF(MA.EQ.4)AC0HST=1./AC0NST

DO 30 J=1,N0BS
30 A(J)=A(J)*AC0NST

AMIN=AMIN*ACONST
AMAX=AMAX*ACONST

100 RETURN
EPTD

8UBR0UTI NE HI L0(A , NOBS , AfTIN , AMAX)

C
C GENERAL ROUTINE FOR FINDING MINIMUM AI7P 'TAXI^fUM OF A VECTOR

DIMENSION A(l)
C
C INITIALIZE MIN AND MAX VALUES

AMIN=A(1)
AMAX=A(1)

C
C LOOP FOR EXTREMES

DO 10 J=2,N0BS
AJ = A(J)
IF(AJ . LT. AMIN) AMIN=AJ

10 IF(AJ.GT.AMAX)AMAX=AJ
RETURN
END

139

i

