
Introduction
A brain-computer interface (BCI) system enables 
nerve and muscle free interaction of human with 
surrounding.1 Some recent and important research 
applications of BCI are human to human interface, 
neuroprosthetics, exoskeleton control, mobile and 
guided robotics, biometrics, neurogaming and Intelligent 
Transportation.2-5 Due to the wide range of applications, 
BCI systems have the potential to use by both normal 
and disabled individual.6 Using this technology, severely 
disabled, paralyzed or who have neuromuscular diseases 
such as amyotrophic lateral sclerosis, stroke or spinal cord 
injuries become self-sufficient in fulfilling their basic 
requirements and severe motor disabilities.7,8 Actually, 
BCI systems increase the quality of their life while reduce 
the burden and cost of care.9

Came the request in mind, creates a unique 
brain signal which is recognizable for an intelligent 
computational system.10,11 Various techniques have 
been developed to extract brain signals which include 

magneto electroencephalography (MEG), functional 
magnetic resonance imaging (fMRI), near infrared 
spectroscopy (NIRS), electrocorticography (ECoG) and 
electroencephalography (EEG).2 EEG has advantages over 
other techniques, the most important of which is its good 
temporal resolution.12 Systems for recording EEG signal 
are also non-invasive, inexpensive, free of any radiation, 
and can be simply implemented.2 Thus, in order to capture 
motor imaginary brain activities in a BCI system, the EEG 
signal is commonly used.13 An EEG-based BCI system 
uses EEG as the control signal in neural and muscular 
free interaction of human with surrounding.1 In different 
parts of the EEG-based BCI system, the user’s EEG signals 
captured by the electrodes and to decode and recognize 
the intended interactions are sent to the processor.14

The main purpose of EEG-based BCI is to translate 
EEG signal into a command for a computer.14 Generally, 
the design of such a system is very complex.9 In many 
researches that have been done so far on EEG-based 
BCI systems, actually the system is reduced to a classifier 
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Abstract
Background: Brain responds in a short timeframe (with certain delay) after the request for doing a 
motor imagery task and therefore it is most likely that the individual not focus continuously on the 
task at entire interval of data acquisition time or even think about other things in a very short time 
slice. In this paper, an effective brain-computer interface (BCI) system is presented based on the 
optimal timeframe selection of brain signals.
Methods: To prove the stated claim, various timeframes with different durations and delays selected 
based on a specific rule from electroencephalography (EEG) signals recorded during right/left hand 
motor imagery task and subsequently, feature extraction and classification are done.
Results: Implementation results on the 2 well-known datasets termed Graz 2003 and Graz 2005; 
shows that the smallest systematically created timeframe of data acquisition interval have had the 
best results of classification. Using this smallest timeframe, the classification accuracy increased up 
to 91.43% for Graz 2003 and 88.96%, 83.64% and 84.86% for O3, S4 and X11 subjects of Graz 
2005 database respectively.
Conclusion: Removing the additional information in which the individual does not focus on the 
motor imagery task and utilizing the most distinguishing timeframe of EEG signals that correctly 
interpret individual intentions improves the BCI system performance.
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of 2 or more motor imaginary EEG signals.15-19  The 
reduced system consists of 2 basic steps; EEG brain signal 
features extraction and their appropriate classification.20,21 
Assumed nature of the EEG signal on the one hand and 
how its impression from motor imaginary on the other 
hand, specifies what features of the EEG signal should 
be extracted and what an appropriate classifier should be 
used.22

So far, different assumptions were made about the EEG 
signal nature including stable and non-stable,20,22 Gaussian 
and non-Gaussian,23,24 linear and non-linear,20,21 time 
series (random process)1,17 and scalable patterns.18,19 It 
should be noted that a sophisticated looking to the signal, 
makes it difficult to follow the motor imagery effects on it, 
requiring complex features to be extracted and therefore 
using a complex classifier may seem to be reasonable. So 
it may be better to avoid such a sophisticated looking to 
the signal. In this study the basic simplifying assumptions 
have been supposed about the signal nature and how 
motor imagery influences it. Choosing the best time frame 
of EEG signal, extracting its most suitable independent 
features, using simple classification proportional to the 
signal nature and type of its extracted features have been 
considered in the proposed method.

Assuming that each motor imagery task creates a 
unique pattern at a specific timeframe of the brain signal, 
appropriate features describing the pattern at a specified 
timeframe should be selected. In addition it should be 
noted that irrelevant data should not be considered in 
early stages of the algorithm (feature extraction) so that 
not needed to hardly discarded or removed later.

Band power (BP) features have been mostly extracted 
from motor imagery task related signals.25 These features 
have been relatively good to distinguish left and right hand 
motor imagery. But their effectiveness in applications 
such as left or right motion detection of the same hand is 
debatable. It is conceivable that various time patterns with 
the same or even different time periods create the same 
BP features. So they are not suitable in the case of more 
than 2 classes. There is no guarantee that the increase or 
decrease in the alpha or beta frequency band is accurately 
detected when there is little difference between the long-
term or short-term patterns.

In some researches an analytical method is used to select 
the effective time frame.23,26 This selection has been based 
on changes of the BP features statistics. In fact, instead of 
including the effect of this time frame selection on true 
classification rate, the impact of changes on the features 
statistics included so little impact on the classification 
results improving is achieved.

Some researchers have focused on extracting better 
features in the first stage and then reducing them.19,20,22 
The use of better features and subsequently reducing them 
may not be sufficient to achieve the desired time frame 
of signal because of the signal nature or computational 
error. In other words, the task of removing additional 

time frames information should not be left just for feature 
reduction algorithm.

Probably it is not necessary that additional data be 
considered first then feature reduction algorithm forced 
to remove them. Using entire interval of data acquisition 
time, computational time and complexity will be increased 
while the correct classification rate decreases. In some 
recent algorithms, features are extracted from different 
time frames and then a feature reduction algorithm is 
applied to the collection of these features.1,17,18,21,24 This 
method also has the aforementioned problem. It is 
possible that feature reduction algorithms select features 
from areas that are not within the desired time frame. 
A better approach to avoid irrational computation is 
selecting the desired time frame by using the signal 
instead of its extracted features.

Although the idea of the timeframe selection had been 
raised by Zhong et al in 2008,23 the analytical method of 
this timeframe selection, needing analytically extraction 
of this timeframe for each individual and the type of 
features that were used led to lack of attention to the idea 
in subsequent researches. A data mining based timeframe 
selection method may create more attraction.

Materials and Methods
In this section, the proposed methodology and data sets 
used to examine the effectiveness of the proposed method 
are presented.

Database
The effectiveness of the proposed algorithm is studied 
using 2 well-known data sets of Graz 2003 (dataset III)27 
and Graz 2005 (dataset IIIB)28 that have been available by 
Graz University of Technology.

Dataset III signals were recorded from C3, Cz and C4 
brains areas of a normal subject (a 25-year-old female) 
during a feedback process. The experiment consisted of 7 
runs all in the same day with 40 trials in each. The duration 
of each trail was 9 seconds and all records sampled with 
a rate of 128 Hz. In the first 2 seconds nothing happens 
and at t = 2 s, an acoustic alarm specifies the start of the 
experiment and then at t = 3 s a visual cue to the right and 
left displayed and she was asked to move a feedback bar 
in the same direction, by doing motor imagination of her 
right and left hands.

Dataset IIIB signals were recorded from C3 and C4 
brains areas of 3 subjects (X11, S4, O3) during a cued motor 
imagery task with online feedback. Experiments were 
conducted in 3 sessions that each session includes 4 to 
9 runs. The duration of each trail was 8 seconds and all 
records were sampled at a rate of 125 Hz. In the first 2 
seconds nothing happens and at t = 2 s, an acoustic alarm 
specifies the start of the experiment and then at t = 3 s a 
left or right arrow (virtual reality for O3 or basket for S4 
and X11) was displayed as a cue, and the subject was asked 
to move a feedback bar in the same direction, by doing 
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motor imagination of her right and left hands. Details of 
the datasets are shown in Table 1.

Proposed Method
Proposed BCI system is mainly based on the selection of 
optimal timeframe containing useful information from 
the signal followed by extraction of appropriate features 
from this timeframe. Obviously, removing timeframes 
that do not contain useful information will have positive 
effects in reducing computational time and complexity 
and increasing system performance both for signal 
analysis or classification.

As mentioned in the previous section, however 
analytical methods have already been presented for the 
selection of the time frame but these further developed 
methods are based on statistical analysis of BP features 
which have major disadvantages such as computational 
complexity and data dependency. Furthermore the 
generalizability of the method for similar motor imagery 
tasks is low.

In this section, a new data mining based timeframe 
selection method to improve the efficiency of a BCI 
system is presented. Overall block diagram of proposed 
optimal timeframe selection is shown in Figure 1. The 
practical development and details of the procedure are 
described below.

Preprocessing
The main purpose of preprocessing in brain computer 
interfacing is to remove redundant parts which recorded 
during data acquisition. EEG signals can be easily and 
noninvasively obtained by electrodes placed on the 
scalp. But due to the increased number of electrode 
channels available include 14, 64, 128, and so only those 
which provide the most useful part of the data should be 
selected for acquirement of EEG signals. To control the 
right and left hand motor imagery-based BCI systems, the 
electrodes must be placed in C3 and C4 areas that are the 
right and left sides of motor cortex region respectively.18 
In the Graz 2003 database CZ channel is ignored because 
it showed its independence of the motor imagery tasks.18

To eliminate useless frequency content of EEG signals, 
a well-known third order Butterworth filter (8-30 Hz) 
used for its pass band smoothing. This frequency range 
is selected because the ERD/ERS patterns originated from 
sensorimotor brain cortex appear in alpha (8-13 Hz) and 
beta (13-30 Hz) bands which have been postulated to be 
good signal features for EEG-based BCIs.2,29 Moreover, 
in order to increase signal to noise ratio (SNR), some 
physiological artifacts such as electrooculogram (EOG) 
(2-5 Hz) or non-physiological artifacts such as AC noise 
(50 Hz) will be removed by this method of filtering.

Afterward, each filtered EEG signal is normalized to 
have zero mean and unity standard deviation. This kind 
of normalization leads to uniform scaling of all inputs.

Table 1. Details of the Datasets

Parameter

Database

Graz 2003
Graz 2005

O3 S4 X11

Number of trails 140 308 538 539

Number of classes 2 2 2 2

Feedback type Bar Bar Basket Basket

Feedback presentation (s) 3-9 4-8 4-7 4-7

 

Figure 1. Proposed effective brain-computer interface system block diagram. 

1.1.1. Preprocessing 

The main purpose of preprocessing in brain computer interfacing is to remove redundant parts 

which recorded during data acquisition. EEG signals can easily and noninvasively obtained by 

electrodes placed on the scalp. But due to increased number of electrode channels available 

include 14, 64, 128, and so only those which provide the most useful part of the data should be 

selected for acquirement of EEG signals. To control the right and left hand motor imagery-based 

BCI systems, the electrodes must be placed in C3 and C4 areas that are the right and left sides of 

motor cortex region respectively 18. In the Graz 2003 database CZ channel is ignored because it 

showed its independence of the motor imagery tasks 18. 

Preprocessing 
• Selection of appropriate channels 

• Filtering 
• Normalization 

 

Database 
EEG of Motor Imagery Tasks 

Systematic timeframe creation 
• Temporal segmentation of signal with 

variable start and end points 

Timescale features extraction 
• DWT for each segment 

• Selection of appropriate coefficients 
• PCA 

Classification 
• Classifying feature vectors of all segments 

using a recurrent Elman neural network 

Optimal timeframe Selection 
• Selecting the most distinctive EEG signal 

timeframe which leads to best CCR 

Figure 1. Proposed Effective Brain-Computer Interface System Block 
Diagram.

Systematic Timeframe Creation
In previous researches, features have been taken from 
a long interval of signals which is always the same and 
is not adaptable to each person. In fact brain thinks in 
a short timeframe with a certain delay after asking for 
doing a motor imagery task which is different for each 
person in various scenarios and situations. Considering 
this limited interval for feature extraction will result in 
reducing features dimensions, while increasing their 
discrimination capability. Thus providing a simple and 
practical algorithm for automatically determining the 
most significant and distinctive timeframes of EEG signal 
in which the motor imagery task performed properly and 
ignoring diversion and redundant information can be 
very beneficial.

To prove stated claim, each signal interval is divided 
automatically into smaller timeframes with variable 
starting point and duration before extracting features. 
By using this segmentation method, the most optimal 
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timeframe of the signal in which motor imagery is done 
properly can be identified.

An overall framework of the proposed timeframe 
creation algorithm and then the optimal timeframe 
selection can be in the form of the following pseudocode. 
Where tRP, tEND and CCR(t, Δt) are the reference period 
time, the end of signal acquisition time and the correct 
classification rate of (t, t + Δt) timeframe respectively.
Step 0: Initialize parameters (tRP = 3 and tEND = 9 for 
Graz 2003 database/ tRP = 4 and tEND = 8 for Graz 2005 
database)
Step 1: for Δt = 1 to tEND – tRP 
for t = tRP to tEND – tRP – Δt 
Calculate CCR(t, Δt) 
End Step 1
Step 2: Pptimal timeframe is (t, t + Δt) in which (t, Δt) = 
argt+Δt max (CCR(t, Δt)).

 
Feature Extraction
An EEG based BCI system uses captured EEG signals 
of selected channels as the control signal in nerve and 
muscle free interaction of humans with surroundings. 
After the preprocessing stage and systematic timeframe 
creation, it is necessary for each timeframe to decode 
and recognize the intended interactions. Translating EEG 
signal into a command for a computer is very complex; 
therefore as the many of previous researches, the system 
is reduced to a classifier of 2 or more motor imaginary 
EEG signals. The reduced system consists of 2 basic steps; 
EEG brain signal features extraction and their appropriate 
classification. EEG signal nature and how its impression 
from motor imaginary, specifies what features of the 
EEG signal should be extracted and what an appropriate 
classifier should be used.

As mentioned earlier, different assumptions concerning 
the EEG signal nature are considered by the researchers 
that includes stable and non-stable, Gaussian and non-
Gaussian, linear and non-linear, time series (random 
process) and scalable patterns. It should be noted that a 
sophisticated looking to the signal, makes it difficult to 
follow the motor imagery effects on it, requiring complex 
features to be extracted and therefore using a complex 
classifier may seem to be reasonable. So it may be better 
to avoid such a sophisticated looking to the signal. In 
this study the basic simplifying assumptions have been 
supposed about the signal nature and how motor imagery 
influences it.

Choosing optimal timeframe of EEG signal, extracting 
its most suitable independent features, using simple 
classification proportional to the signal nature and 
type of its extracted features have been considered in 
the method. Assuming that each motor imagery task 
creates a unique pattern at a specific timeframe of the 
brain signal, it is possible to use a fast unitary transform 
to properly describe the pattern and extract its features. 
Some appropriate discrete wavelet transform (DWT) 
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Figure 2. Frequency Range of Different Decomposition Coefficients 
for Graz 2003 Database.

coefficients describing the pattern at a specified timeframe 
can be selected. It should be noted that irrelevant data 
should not be considered in early stages of the algorithm 
(feature extraction) so that not needed to hardly discarded 
or removed later. In other words, a minimal set of DWT 
coefficients should be selected and the task of removing 
additional DWT coefficients should not be left just for 
feature reduction algorithm.

Two important factors in wavelet applications are 
determining the mother wavelet and the number of 
decomposition levels. Considering data sampling 
frequency and the fact that half of the signal frequency 
content will be removed at each filtering level, the number 
of decomposition levels can be determined (Figure 2). In 
the first and second databases which sampling frequencies 
are respectively 128 Hz and 125 Hz the first level details 
coefficients will be in the range of 32-64 Hz and 31.25-
62.5 Hz the second level details coefficients will be in the 
range of 16-32 Hz and 15.62-31.25 Hz and the third level 
details coefficients will be in the range of 8-16 Hz and 
7.81-15.62 Hz. So 3 levels of decomposition are required 
which according to earlier filtering of signals in the range 
of alpha and beta waves (8-30 Hz), the first level details 
coefficients can be ignored so that D2 and D3 details 
coefficients will form the feature vector.17

The appropriate selection of mother wavelet is 
significant as it should approximate a given pattern in the 
signal. After consecutive experiments "db4" which had 
demonstrated greater ability to detect EEG signal patterns, 
was used as the mother wavelet. Applying PCA algorithm 
to a set of DWT coefficients, new fewer uncorrelated 
orthogonal features obtained with better separation of 
different motor imagined task.

Classification
Assuming the appropriate minimal time-frequency 
description of the dynamic EEG signal discussed in 
the previous section, Elman recurrent neural network 
(ERNN) is more capable to recognize and distinguish 
signal transient (frequency content of the signal) and 
time-dependent patterns compared with traditional 
neural networks which are only able to create static 
mappings.30,31 Actually feedback connections of the ERNN 
lead to historical sensitivity and develop network ability 
to process, manage and modeling of temporal patterns 
without need to extreme training. ERNN architecture is 
generally similar to feed-forward neural networks.32 This 
means all neurons in each layer are connected to all the 
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neurons in the next one. But there is an exception in its 
architecture which is existence of a layer called context 
layer. Context layer, create a memory of a time delay by 
keeping a copy of hidden layer neurons output for the 
next time step.

ERNN has four layers including an input layer, hidden 
layer, context layer and output layer. Each external input 
passes the input layer to the hidden layer. Then multiplies 
by the weights of the hidden layer and the same thing 
occurs for the context layer. After calculating the sum 
of all multipliers outputs, it applies to sigmoid transfer 
function of the hidden layer and then the result will be 
sent to the output layer. After multiplication of entries in 
their corresponding weights in output layer, the sum of 
the values applies to a linear transfer function. To modify 
the network weights, the scaled conjugate gradient 
algorithm is applied as it can converge faster by exploring 
in all gradient directions.

Experimental Results
Performance of the proposed algorithm is evaluated by 
testing it on Graz 2003 and Graz 2005 public datasets. 
Each recorded signal during feedback process interval is 
systematically divided into different timeframes. Then, 
previously mentioned desired DWT coefficients are 
extracted from each timeframe and are compressed and 
projected by the PCA algorithm to reduce redundancy of 
features. The principal components of the PCA algorithm, 
which the sum of their variance is 99.9% of the total 
variance, are retained. Subsequently, these features applied 
to an ERNN classifier to select the optimal timeframe 
based on the BCI system maximum performance.

BCI system performance evaluation is performed based 
on commonly used correct classification rate (CCR) 
of the ERNN classifier. CCR over 20% of samples have 
been reported for different timeframes of each database 
in Tables 2-5. To ensure the over training does not occur, 
20% of samples were used for validation and the remaining 
60% of samples were used for the training process. Finally 
by comparing correct classification rates of all timeframes, 
the optimal one in which motor imagery task performed 
properly is selected.

The proposed system performance is evaluated in 
more details using 2 statistical criteria of sensitivity and 
specificity showing true positive rate (TPR) and true 
negative rate (TNR) respectively (Tables 2-5). Although 
the percentage of correctly classified target motor 
imagination tasks (sensitivity) is an important indicator 
for evaluating the performance of the BCI system, the 
percentage of non-target motor imagination tasks that 
are properly classified (specificity) is a more significant 
indicator since the occurrence of false positives (1-TNR) 
is the most undesirable event in the system.33

The results are totally meeting our expectations. Proper 
set of features along with a suitable classifier are able to 
distinguish between different stimuli using a pattern 

Table 2. Results for Database III

t
∆t

1 2 3 4 5 6

3

CCR 86.43 90.00 88.57 88.57 90.00 90.00

TPR 85.92 86.84 85.53 92.19 93.75 91.18

TNR 86.96 93.75 92.19 85.53 86.84 88.89

4

CCR 87.86 89.29 90.00 90.00 88.57

TPR 87.32 89.86 88.89 91.18 88.57

TNR 88.41 88.73 91.18 88.89 88.57

5

CCR 87.86 87.86 90.71 90.00

TPR 84.42 86.30 91.30 92.42

TNR 92.06 89.55 90.14 87.84

6

CCR 85.71 90.71 87.86

TPR 82.89 91.30 88.41

TNR 89.06 90.14 87.32

7

CCR 91.43 87.86

TPR 88.16 89.55

TNR 95.31 86.30

8

CCR 89.29

TPR 85.71

TNR 93.65

Abbeviations: CCR, correct classification rate; TPR, true positive rate; 
TNR, true negative rate.

Table 3. Results for Database IIIB (O3)

t
∆t

1 2 3 4

4

CCR 88.96 88.64 86.04 86.36

TPR 86.79 89.19 86.00 87.07

TNR 91.28 88.13 86.08 85.71

5

CCR 83.12 86.04 85.71

TPR 83.22 88.57 85.91

TNR 83.02 83.93 85.53

6

CCR 84.42 85.39

TPR 81.60 82.72

TNR 87.59 88.36

7

CCR 85.39

TPR 85.33

TNR 85.44

Abbeviations: CCR, correct classification rate; TPR, true positive rate; 
TNR, true negative rate.

Table 4. Results for Database IIIB (S4)

t
∆t

1 2 3

4

CCR 83.64 80.67 78.07

TPR 82.04 79.23 77.94

TNR 85.43 82.28 78.20

5

CCR 76.21 76.77

TPR 74.83 74.91

TNR 77.78 78.95

6

CCR 75.09

TPR 74.46

TNR 75.77

Abbeviations: CCR, correct classification rate; TPR, true positive rate; 
TNR, true negative rate.
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generated in any short timeframe of signal. 
In the next step, the more effective performance of the 

proposed BCI system in the optimal timeframe compared 
with existing methods for Graz 2003 and Graz 2005 are 
shown in Table 6 and Table 7, respectively. It should 
be noted that despite this effectiveness, the presented 
method needs less storage capacity in feature space and 
less computational complexity in the ERNN training and 
testing. Further analysis of the results is presented in the 
next section.

Discussion 
In this research, an effective method for determining the 
optimal timeframe of the EEG signal, which includes the 
pattern created by the motor imagery task, is presented. 

Table 5. Results for Database IIIB (X11)

t
∆t

1 2 3

4

CCR 82.75 83.30 82.93

TPR 81.21 81.40 82.18

TNR 84.44 85.43 83.71

5

CCR 80.71 83.67

TPR 80.67 82.91

TNR 80.74 84.47

6

CCR 84.86

TPR 82.60

TNR 87.45

Abbeviations: CCR, correct classification rate; TPR, true positive rate; 
TNR, true negative rate.

Table 6. Proposed BCI System CCR Compared With Existing Methods for Graz 2003

Study Feature Extraction Technique Classification Technique Correct Classification Rate

Xu et al DWT FSVM 80.71

Biag et al WT SVM 88.57

Wei et al EMD/IMF FCM 78.00

Zhou et al AR/PSD/bi-spectrum NN 90.00

Proposed Method DWT/PCA ERNN 91.43

Abbreviations: DWT, discrete wavelet transform; FSVM, fuzzy support vector machine; WT, wavelet transform; SVM, support vector machine; EMD, 
empirical mode decomposition; IMF, intrinsic mode function; FCM, fuzzy c-means; AR, autoregressive; PSD, power spectral density; NN, neural 
network; PCA, principal components analysis; ERNN, Elman recurrent neural network.

Table 7. Proposed BCI System CCR Compared With Existing Methods for Graz 2005

Study Feature Extraction Technique Classification Technique
Correct Classification Rate

O3 S4 X11

Rod et al PSD/Hjorth/AR/CWT LOO 68.95 77.78 67.18

Fang et al AFAPS/ARPS LDA 87.50 75.10 84.54

Chen et al AFAPS LDA 85.53 76.95 73.18

Bash et al Morlet MLP 83.65 82.22 76.67

Proposed Method DWT/PCA ERNN 88.96 83.64 84.86

Abbreviations: PSD, power spectral density; AR, autoregressive; CWT, continuous wavelet transform; LOO, leave one out; AFAPS, amplitude frequency 
analysis in phase space; ARPS, autoregressive modeling in phase space; LDA, linear discriminant analysis; MLP, multilayer perceptron; DWT, discrete 
wavelet transform; PCA, principal components analysis; ERNN, Elman recurrent neural network.

The proposed method is based on the assumption that 
during the entire interval of data acquisition time, 
individual may not continually focus on the request for 
doing the motor imagery task or even think about other 
things in a very short time slice. So distinguishing patterns 
which is essential to interpret individual intentions, exist 
only in a small timeframe of data and features obtained 
from other parts of the recorded signal are not suitable for 
training a BCI system.

To identify mentioned optimal timeframe, a novel data 
mining technique has been presented in this study. With 
a simple look at the signal and by the use of features that 
provide a complete time-frequency description of the 
motor imagery related pattern in the desired time and 
frequency range along with the appropriate classifier, 
the validity of the hypothesis is examined in the form of 
proposed experimental data mining work.

The results listed in the tables in the previous section 
shows that in all cases the best answer is obtained at the 
smallest timeframe. Also between the same length larger 
time intervals, those that include the optimal timeframe 
have made a better distinction. Therefore, it can be 
concluded that the request made a unique pattern in a 
short timeframe, and this timeframe is detectable by an 
empirical data mining algorithm. 

As duration of the time interval which includes the 
optimal timeframe increased, classification rate is 
decreased. This indicates that the motor imagery related 
pattern has not been dispersed throughout the overall 
data acquisition time.

The occurrence time for this optimal timeframe is not 
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identical for all 3 individuals in the IIIB dataset. This 
means that there may not any analytical method or definite 
formula for determining the location and length of the 
optimal timeframe for all individuals. In other words, for 
each person it is necessary to determine the location and 
length of the optimal timeframe using an experimental 
data mining technique. Instead of using the systematic 
method, an intelligent method can be used, and perhaps 
leads to smaller timeframes with better answers. In the 
optimum timeframe and the smallest intervals containing 
it, TPR and TNR are the highest. This also confirms the 
existence of a distinct pattern of request within a short 
timeframe. The TNR in other timeframes compared to 
the optimal timeframe is significantly lower, which is not 
desirable.

In addition to asserting our hypothesis (shortness 
of the brain response time to the request for doing the 
motor imagery task) using the comparison of results in 
different timeframes, superiority of the presented method 
to existing methods can also be concluded. The proposed 
method has basic characteristics that make it superior to 
existing researches. Some of them are simple looking to 
the signal, using the least suitable uncorrelated features 
that provide a complete description of desired time-
frequency content of the signal and utilizing a classifier 
compatible with a simple look at the signal which makes 
it possible to use simple features that provide a complete 
time-frequency description of the motor imagery related 
pattern.

Above mentioned items caused the proposed method 
to achieve a higher performance compared to existing 
methods despite its less computational complexity and 
storage space (Table 6 and Table 7).
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