
Detection and Prediction of Absence Seizures  
Based on Nonlinear Analysis of the EEG  in 
Wag/Rij Animal Model

Saleh Lashkari1, Ali Sheikhani1*, Mohammad Reza Hashemi Golpayegani2, Ali Moghimi3, Hamidreza Kobravi4

1Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
3Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 
Mashhad, Iran
4Biomedical Engineering Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Abstract

Background: Epilepsy is a common neurological disorder with a prevalence of 1% of the world 
population. Absence epilepsy is a form of generalized seizures with Spike wave discharge in EEG. 
Epileptic patients have frequent absence seizures that cause immediate loss of consciousness.
Methods: In this study, it has been tried to explore whether EEG changes can effectively detect 
epilepsy in animal model applying non-linear features. To predict the occurrence of absence 
epilepsy, a long-term EEG signal has been recorded from frontal cortex in seven Wag/Rij rats. After 
preprocessing, the data was transferred to the phase space to extract the brain system dynamic and 
geometric properties of this space. Finally, the ability of each features to predict and detect absence 
epilepsy with two criteria of predictive time and the accuracy of detection and its results were 
compared with previous studies.
Results: The results indicate that the brain system dynamic changes during the transition from free-
seizure to pre-seizure and then seizure. Proposed approach diagnostic characteristics yielded 97% 
accuracy of absence epilepsy diagnosis indicating that due to the nonlinear and complex nature 
of the system and the brain signal, the use of methods consistent with this nature is important in 
understanding the dynamic transfer between different epileptic seizures.
Conclusion: By changing the state of the absence Seizures, the dynamics are changing, and the 
results of this research can be useful in real-time applications such as predicting epileptic seizures.
Keywords: Component; Absence epilepsy, Electroencephalogram, Phase space, Nonlinear attractor, 
Geometric properties
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Introduction
Epilepsy is one of the most common neurological disorders 
with a prevalence of 1% of the world’s population. About 
80% of people with epilepsy live in developing countries.1 
Today, people with epilepsy and their families suffer from 
social discrimination and social stigma in many parts of the 
world. Epileptic seizures can be associated with impairment 
or loss of consciousness.1,2

Absence seizures are a form of generalized seizures with 
Spike wave discharge (SWD) in EEG.2 These rapid and 
sudden seizures are transient symptoms and/or signs of 
abnormal, excessive or synchronous neuronal activity in 
the brain.3 People with absence epilepsy have repeated 
seizures that cause momentary lapses of consciousness.4 
The period of short-lived absence seizures usually lasts 
from several seconds to about a minute, and may be 

repeated more than 100 times a day.5
Since these sudden and rapid seizures often occur in 

childhood or adolescence, and may have significant 
impact on the educational development of patients.6,7 

Therefore, understanding the transition of brain activity 
to the absence seizure, called the pre-seizure, is a very 
difficult goal and is still under discussion.8,9  

The EEG, which records spontaneous electrical 
activity in the brain, was first measured in humans by 
Hans Berger in 1929. Since then, EEG is one of the most 
useful tools for studying cognitive processes and brain 
physiopathology,9,10  especially the processes involved in 
epileptic seizures.11,12 

In the recent decade, dynamics from free-seizure to 
seizure status has been investigated with different linear 
or nonlinear methods.10-12 To some extent, these results 
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showed that the change in EEG features during the 
seizure could be detected several minutes before the onset 
of a seizure in focal epilepsy.13-15  However, the prediction 
of sudden and rapid seizures with dynamic EEG changes 
in people with absence epilepsy is still open problem.16,17 

Additionally, understanding the transition of brain 
activity to epileptic seizures and the identification of some 
pioneering tasks is challenging.8,9,18 

Sitnikova and van Luijtelaar et al showed that SWD 
activity in albino rats was associated with the precursor 
delta and theta short activities in cortex and thalamus.18-20  
These EEG precursors in rat models provide clues for the 
prediction of human absence epilepsy. Signal analysis 
and its trajectory in the phase space can lead to a better 
understanding of the system’s dynamics and provide 
valuable information about attractors and system behavior. 
In particular, nonlinear time series analysis methods 
are presented to identify epileptic seizure states.16,21-26 

To a certain extent, these methods mainly include the 
Lyapunov exponent and the correlation dimension, which 
is able to extract the properties of the useful EEG data to 
provide evidence to confirm the existence of a previous 
state of seizure in temporal lobe epilepsy.21-24 

Ouyang et al used recurrent quantification analysis to 
distinguish between states in GEARS genetic model of 
absence epilepsy and show that certainty in seizure periods 
is higher than in two other states.27  Multiscale permutation 
entropy (MPE) was used to describe the dynamic properties 
of EEG on various human absence epilepsy and the ability 
to classify MPE by linear discrimination analysis (LDA) 
was evaluated. Comparison with the conventional entropy 
methods with a classification accuracy of 86.1%, the 
classification rate was 90% with a MPE index.28 Similarly, 
in Li et al study using permutation entropy, an examination 
was implemented to determine whether EEG data changes 
can detect various states of human absence epilepsy.1 The 
average PE values have been shown to gradually decrease 
from no seizure to seizure state and provide evidence that 
three different phases of seizure in absence epilepsy can be 
detectable.

Despite numerous studies conducted on human 
EEG and animal models, it has been largely attributed 
to the extraction of global features. The evolutionary 
characteristics of the EEG signal based on the dynamics 
of turbulence is still an open issue.27 Using geometric 
features, regardless of any assumptions about the type 
of dynamics of the basis, provides studies independent 
of the hypothesis of chaos and therefore independent of 
the analysis of alternative data.29 This study attempts to 
apply features based on phase space geometry to discover 
whether EEG changes can effectively identify absence 
seizures.

Materials and Methods
Surgery and Recording System
EEG epochs were obtained from 7 of genetic absence 

epilepsy Wag/Rij rats (Male, weight 300 ± 5 g) with a 
minimum age of 5 months. Animals were anesthetized 
with ketamine 100 mg/kg and xylazine 10 mg/kg. In all 
animals, dipole EEG stainless steel electrodes were placed 
in the frontal cortex area (1 mm above Bregma and 3 
mm from Lambda) and the reference electrode was also 
placed in the temporal region. Each animal was kept in a 
separate box for recovery in the animal house. The EEG 
electrode signal was directly connected to the BioAmp 
ML 136 amplifier and stored using LabChart software. 
The EEG data was recorded for a long term of 48 to 72 
hours at a sampling rate of 1 kHz using a 16-bit ADC and 
a filter with frequency band of 0.5-100 Hz (Figure 1).

Feature Extraction
Based on the well-known theory of phase space and 
embedding, Takens states that system behavior in state 
space can be estimated by a vector of observation, such as 
EEG. A variety of new concepts and time series analysis 
techniques have been developed to allow the description 
of the behavioral dynamics of the system for an indefinite 
system. Proposed geometric properties can be calculated 
in accordance with equation (1) to the trajectory x (t) in 
dimension d. In practice, all d states are not accessible in 
the phase space, and only the vector of observations x (t) is 
available.30
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Figure 1. EEG Segment of absence seizure with Spike Wave discharge. 

B. Feature Extraction 
 Based on the well-known theory of phase space and 
embedding, Takens states that system behavior in state space 
can be estimated by a vector of observation, such as EEG. A 
variety of new concepts and time series analysis techniques 
have been developed to allow the description of the behavioral 
dynamics of the system for an indefinite system. Proposed 
geometric properties can be calculated in accordance with 
equation (1) to the trajectory x (t) in dimension d. In practice, all 
d states are not accessible in the phase space, and only the 
vector of observations x (t) is available 30. 
 

x⃗ (t)=[x1(t), x2(t), ... ,xd(t)]      (1) 
The Takens method 19, is used frequently to embedded the time 
series x (t) into the d-dimensional phase space: 
 

𝑥𝑥 (𝑡𝑡) = [𝑥𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) …  𝑥𝑥(𝑡𝑡 − (𝑑𝑑 − 1)𝜏𝜏)]  (2) 
 
Where d is the embedding dimension and τ is the lag 
estimated by the false nearest neighbor algorithm 31 and the 
mean of mutual information 32. Table 1 lists the features list, 
some of which are presented below. 
Center of Gravity 
The center (gx,gy) is equal to: 

{
 

 𝑔𝑔𝑥𝑥 =  
1
𝑁𝑁∑ 𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑔𝑔𝑦𝑦 =  
1
𝑁𝑁∑ 𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

    (3) 

Where N is the number of points in the 2-D phase space. 
Axis of Least Inertia 

The least inertia axis, the ALI, is used as a unique reference 
line to maintain the shape orientation, and is defined in such 
a way that the square integral of the distances from the 
boundary points is minimal. 

                                                  (1)
The Takens method,19 is used frequently to embedded the 

time series x (t) into the d-dimensional phase space:

seizures with dynamic EEG changes in people with absence 
epilepsy is still open problem 16,17. Additionally, 
understanding the transition of brain activity to epileptic 
seizures and the identification of some pioneering tasks is 
challenging 8,9. 

Sitnikova and Luijtelaar showed that SWD activity in 
albino rats was associated with the precursor delta and theta 
short activities in cortex and thalamus 18-20. These EEG 
precursors in rat models provide clues for the prediction of 
human absence epilepsy. Signal analysis and its trajectory in 
the phase space can lead to a better understanding of the 
system’s dynamics and provide valuable information about 
attractors and system behavior. In particular, nonlinear time 
series analysis methods are presented to identify epileptic 
seizure states 16,21-26. To a certain extent, these methods 
mainly include the Lyapunov exponent and the correlation 
dimension, which is able to extract the properties of the 
useful EEG data to provide evidence to confirm the 
existence of a previous state of seizure in temporal lobe 
epilepsy 22-25. 

Gaoxiang et al used Recurrent Quantification analysis to 
distinguish between states in GEARS genetic model of 
absence epilepsy and show that certainty in seizure periods is 
higher than in two other states 26. Multiscale permutation 
entropy (MPE) was used to describe the dynamic properties of 
EEG on various human absence epilepsy and the ability to 
classify MPE by Linear Discrimination Analysis, LDA, was 
evaluated. Comparison with the conventional entropy methods 
with a classification accuracy of 86.1%, the classification rate 
was 90% with a MPE index 2. Similarly, Li Jing et al using 
permutation entropy, an examination was implemented to 
determine whether EEG data changes can detect various states 
of human absence epilepsy 1. The average PE values have been 
shown to gradually decrease from no seizure to seizure state 
and provide evidence that three different phases of seizure in 
absence epilepsy can be detectable. 

Despite numerous studies conducted on human EEG and 
animal models, it has been largely attributed to the 
extraction of global features. The evolutionary 
characteristics of the EEG signal based on the dynamics of 
turbulence is still an open issue 27,28. Using geometric 
features, regardless of any assumptions about the type of 
dynamics of the basis, provides studies independent of the 
hypothesis of chaos and therefore independent of the 
analysis of alternative data 29. This study attempts to apply 
features based on phase space geometry to discover whether 
EEG changes can effectively identify absence seizures. 

II. MATERIALS AND METHODS 

A. Surgery and Recording System 

EEG epochs were obtained from 7 of genetic absence 
epilepsy Wag/Rij rats (Male, weight 300±5 g) with a 
minimum age of 5 months. Animals were anesthetized with 
ketamine 100 mg/kg and xylazine 10 mg/kg. In all animals, 
dipole EEG stainless steel electrodes were placed in the 
frontal cortex area (1 mm above Bregma and 3 mm from 
Lambda) and the reference electrode was also placed in the 
temporal region. Each animal was kept in a separate box for 
recovery in the animal house. The EEG electrode signal was 

directly connected to the BioAmp ML 136 amplifier and 
stored using the Labchart software. The EEG data was 
recorded for a long term of 48 to 72 hours at a sampling rate 
of 1 kHz using a 16-bit ADC and a filter with frequency 
band of 0.5-100 Hz. 

All animal experiments were conducted in compliance 
with the international ethical and animal-laboratory 
regulations and the Code of Ethics for Laboratory and also 
according to Human and animal research ethics committee 
rules of Ferdowsi University of Mashhad. 

 

 
Figure 1. EEG Segment of absence seizure with Spike Wave discharge. 

B. Feature Extraction 
 Based on the well-known theory of phase space and 
embedding, Takens states that system behavior in state space 
can be estimated by a vector of observation, such as EEG. A 
variety of new concepts and time series analysis techniques 
have been developed to allow the description of the behavioral 
dynamics of the system for an indefinite system. Proposed 
geometric properties can be calculated in accordance with 
equation (1) to the trajectory x (t) in dimension d. In practice, all 
d states are not accessible in the phase space, and only the 
vector of observations x (t) is available 30. 
 

x⃗ (t)=[x1(t), x2(t), ... ,xd(t)]      (1) 
The Takens method 19, is used frequently to embedded the time 
series x (t) into the d-dimensional phase space: 
 

𝑥𝑥 (𝑡𝑡) = [𝑥𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) …  𝑥𝑥(𝑡𝑡 − (𝑑𝑑 − 1)𝜏𝜏)]  (2) 
 
Where d is the embedding dimension and τ is the lag 
estimated by the false nearest neighbor algorithm 31 and the 
mean of mutual information 32. Table 1 lists the features list, 
some of which are presented below. 
Center of Gravity 
The center (gx,gy) is equal to: 

{
 

 𝑔𝑔𝑥𝑥 =  
1
𝑁𝑁∑ 𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑔𝑔𝑦𝑦 =  
1
𝑁𝑁∑ 𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

    (3) 

Where N is the number of points in the 2-D phase space. 
Axis of Least Inertia 

The least inertia axis, the ALI, is used as a unique reference 
line to maintain the shape orientation, and is defined in such 
a way that the square integral of the distances from the 
boundary points is minimal. 

                (2)

Where d is the embedding dimension and τ is the lag 
estimated by the false nearest neighbor algorithm31 and 
the mean of mutual information.32 Table 1 lists the features 
list, some of which are presented below.

Center of Gravity
The center (gx,gy) is equal to:

seizures with dynamic EEG changes in people with absence 
epilepsy is still open problem 16,17. Additionally, 
understanding the transition of brain activity to epileptic 
seizures and the identification of some pioneering tasks is 
challenging 8,9. 

Sitnikova and Luijtelaar showed that SWD activity in 
albino rats was associated with the precursor delta and theta 
short activities in cortex and thalamus 18-20. These EEG 
precursors in rat models provide clues for the prediction of 
human absence epilepsy. Signal analysis and its trajectory in 
the phase space can lead to a better understanding of the 
system’s dynamics and provide valuable information about 
attractors and system behavior. In particular, nonlinear time 
series analysis methods are presented to identify epileptic 
seizure states 16,21-26. To a certain extent, these methods 
mainly include the Lyapunov exponent and the correlation 
dimension, which is able to extract the properties of the 
useful EEG data to provide evidence to confirm the 
existence of a previous state of seizure in temporal lobe 
epilepsy 22-25. 

Gaoxiang et al used Recurrent Quantification analysis to 
distinguish between states in GEARS genetic model of 
absence epilepsy and show that certainty in seizure periods is 
higher than in two other states 26. Multiscale permutation 
entropy (MPE) was used to describe the dynamic properties of 
EEG on various human absence epilepsy and the ability to 
classify MPE by Linear Discrimination Analysis, LDA, was 
evaluated. Comparison with the conventional entropy methods 
with a classification accuracy of 86.1%, the classification rate 
was 90% with a MPE index 2. Similarly, Li Jing et al using 
permutation entropy, an examination was implemented to 
determine whether EEG data changes can detect various states 
of human absence epilepsy 1. The average PE values have been 
shown to gradually decrease from no seizure to seizure state 
and provide evidence that three different phases of seizure in 
absence epilepsy can be detectable. 

Despite numerous studies conducted on human EEG and 
animal models, it has been largely attributed to the 
extraction of global features. The evolutionary 
characteristics of the EEG signal based on the dynamics of 
turbulence is still an open issue 27,28. Using geometric 
features, regardless of any assumptions about the type of 
dynamics of the basis, provides studies independent of the 
hypothesis of chaos and therefore independent of the 
analysis of alternative data 29. This study attempts to apply 
features based on phase space geometry to discover whether 
EEG changes can effectively identify absence seizures. 

II. MATERIALS AND METHODS 

A. Surgery and Recording System 

EEG epochs were obtained from 7 of genetic absence 
epilepsy Wag/Rij rats (Male, weight 300±5 g) with a 
minimum age of 5 months. Animals were anesthetized with 
ketamine 100 mg/kg and xylazine 10 mg/kg. In all animals, 
dipole EEG stainless steel electrodes were placed in the 
frontal cortex area (1 mm above Bregma and 3 mm from 
Lambda) and the reference electrode was also placed in the 
temporal region. Each animal was kept in a separate box for 
recovery in the animal house. The EEG electrode signal was 

directly connected to the BioAmp ML 136 amplifier and 
stored using the Labchart software. The EEG data was 
recorded for a long term of 48 to 72 hours at a sampling rate 
of 1 kHz using a 16-bit ADC and a filter with frequency 
band of 0.5-100 Hz. 

All animal experiments were conducted in compliance 
with the international ethical and animal-laboratory 
regulations and the Code of Ethics for Laboratory and also 
according to Human and animal research ethics committee 
rules of Ferdowsi University of Mashhad. 

 

 
Figure 1. EEG Segment of absence seizure with Spike Wave discharge. 

B. Feature Extraction 
 Based on the well-known theory of phase space and 
embedding, Takens states that system behavior in state space 
can be estimated by a vector of observation, such as EEG. A 
variety of new concepts and time series analysis techniques 
have been developed to allow the description of the behavioral 
dynamics of the system for an indefinite system. Proposed 
geometric properties can be calculated in accordance with 
equation (1) to the trajectory x (t) in dimension d. In practice, all 
d states are not accessible in the phase space, and only the 
vector of observations x (t) is available 30. 
 

x⃗ (t)=[x1(t), x2(t), ... ,xd(t)]      (1) 
The Takens method 19, is used frequently to embedded the time 
series x (t) into the d-dimensional phase space: 
 

𝑥𝑥 (𝑡𝑡) = [𝑥𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡 − 𝜏𝜏) …  𝑥𝑥(𝑡𝑡 − (𝑑𝑑 − 1)𝜏𝜏)]  (2) 
 
Where d is the embedding dimension and τ is the lag 
estimated by the false nearest neighbor algorithm 31 and the 
mean of mutual information 32. Table 1 lists the features list, 
some of which are presented below. 
Center of Gravity 
The center (gx,gy) is equal to: 

{
 

 𝑔𝑔𝑥𝑥 =  
1
𝑁𝑁∑ 𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑔𝑔𝑦𝑦 =  
1
𝑁𝑁∑ 𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

    (3) 

Where N is the number of points in the 2-D phase space. 
Axis of Least Inertia 

The least inertia axis, the ALI, is used as a unique reference 
line to maintain the shape orientation, and is defined in such 
a way that the square integral of the distances from the 
boundary points is minimal. 

                                                                                               (3)

Where N is the number of points in the 2-D phase space.

Figure 1. EEG Segment of Absence Seizure With Spike Wave 
Discharge.
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Axis of Least Inertia
The least inertia axis, the ALI, is used as a unique reference 
line to maintain the shape orientation, and is defined in 
such a way that the square integral of the distances from 
the boundary points is minimal (Figure 2).

Average Bending Energy
The average bending energy, BE, is defined as:
 
                                                                                              (4)

 
Figure 2. Least Inertia. The yellow point shows the center of gravity 33. 

Average Bending Energy 

The average bending energy, BE, is defined as: 
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K(s) is the Curvature function, s is the parameter of the arc 
length and N is the number of contour points 34. 
Eccentricity 

This criterion measures the aspect ratio, and in fact the ratio 
of the axis to the small one. It can be calculated using the 
principal axis method or the Minimum bounding rectangle 
method 33. 

 
Figure 3. centrifugal centered ellipse 35. 

Circularity ratio  
The Circularity ratio explain how the shape is similar to a 
circle 37: 

Cva = σR
μR

   (5) 

μ and σ are the mean and standard deviation of the radial 
distance from the center of gravity of the basin of attraction 
relative to the boundary points. 
Ellipse variance 

This criterion is equivalent to mapping error to fit to the 
ellipse with a similar covariance matrix 33. 
Rectangularity 

The rectangularity states how and to what extent the 
minimum rectangle fills the boundary: 

Rectangularity = AS
AR

   (6) 

Where AS is the area of the shape and AR, the area of the 
minimum rectangle is the range 33. 

Convexity 

The ratio of the perimeter of the convex cortex to the contour 
environment 36: 

Convexity = OConvexhull
O    (7) 

Complex Coordinate 

The complex coordinate function is the simplification of 
complex numbers generated from the coordinates of the 
boundary points 33: 

{ Pn(x(n),y(n)),       n∈[1,N]
z(n)=[x(n)-gx]+i[y(n)-gy]    (8) 

Area Function 

By changing the boundary points along the boundary, the 
area of the triangle formed with two border points and the 
center of gravity also changes 33. 

 
Figure 4. Area function, S(n) is the area  

between the boundary points Pn, 𝑃𝑃𝑛𝑛+1 and the center of gravity, G 33. 

Triangle Area Representation 

The triangle area representation, TAR, is calculated by the 
area of the triangle formed by points on the boundary of the 
shape 33. For sequential points Pn(xn,yn), Pn(xn ts,yn ts) and  
𝑃𝑃𝑛𝑛(xn+ts,yn+ts), N is even. 

TAR(n,ts)= 1
2 |
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|   (9) 

 
Table 1. Geometric Features of phase space 35. 

Feature Symbol Description 
1 A Area 
2 𝐺𝐺𝑋𝑋  Horizontal Center of Gravity 
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µ and σ are the mean and standard deviation of the 
radial distance from the center of gravity of the basin of 
attraction relative to the boundary points.
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Rectangularity
The rectangularity states how and to what extent the 
minimum rectangle fills the boundary:
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Complex Coordinate
The complex coordinate function is the simplification of 
complex numbers generated from the coordinates of the 
boundary points33: 
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Area Function
By changing the boundary points along the boundary, the 
area of   the triangle formed with two border points and the 
center of gravity also changes (Figure 4).33

Triangle Area Representation
The triangle area representation, TAR, is calculated by the 
area of the triangle formed by points on the boundary of 
the shape.33 For sequential points Pn (xn,yn), 
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Feature Evaluation
Chaotic a n d nonlinear dynamics features have two 
important characteristics:
• is sensitive to the dynamic changes of the system.
• is invariant to the initial conditions change.

So, firstly, the proposed features were evaluated with 
the Lorenz system trajectory, Equation 10.

Chaotic and nonlinear dynamics features have two important 
characteristics: 

• is sensitive to the dynamic changes of the system. 

• is invariant to the initial conditions change. 

So, firstly, the proposed features were evaluated with the 
Lorenz system trajectory, Equation 10. 

Lorenz system: 

{
 
 

 
 dX

dt = σ(Y − Z)
dY
dt = rX − Y − XZ
dZ
dt = XY − βZ

   (10) 

 
Figure 5. The trajectory of the Lorenz system for σ = 16, r = 50 and β = 4. 

To evaluate the features, each was calculated for different 
parameters of Lorenz system and 10 iterations. If the 
distribution is different from each other for different values 
of the parameter, the feature will be invariant. This 
significant separability is tested by two-sample t-test method. 

 

III. RESULTS 
Table 2 represents the p-values of the Jarque-Bera test for 
feature values for each of the parameters. The values of 
p>0.05 show that the values of features follow the normal 
distribution. As it can be seen in most cases the p-value is 
greater than 0.05, so that the t-test can be applied to the 
values of the features. 

Table 2. The p-values of features values for normality test. The bold values 
are greater than 0.05 that means feature values come from normal 
distribution. 

Feature Lorenz System 
A 0.50 0.50 0.01 0.30 0.13 
𝐺𝐺𝑋𝑋  0.27 0.50 0.50 0.18 0.20 
𝐺𝐺𝑦𝑦  0.42 0.21 0.07 0.005 0.50 
I 0.23 0.50 0.27 0.41 0.50 
E 0.50 0.07 0.35 0.05 0.50 
𝐶𝐶𝑣𝑣𝑣𝑣 0.002 0.50 0.01 0.33 0.50 
E 0.50 0.07 0.35 0.05 0.50 
𝐸𝐸𝑣𝑣𝑣𝑣 0.2 0.50 0.28 0.3 0.1 
R 0.50 0.004 0.50 0.14 0.37 

TAR 0.50 0.50 0.34 0.11 0.1 
CD 0.004 0.50 0.37 0.17 0.001 
CC 0.40 0.21 0.002 0.50 0.50 

Figure 6. The result of t-test between all pair of parameters for each of the 
features which are extracted from Lorenz trajectories. The black color shows 
that the feature values for pair parameter are independent. 

Figure 6 present results of two-sample t-test at the 5% 
significance level. Each black pixel shows feature values that 
causes pixels are independent. This means that the two sets 
of parameter values are meaningfully separated. It is 
observed that the properties of the Lorenz system are highly 
sensitive to parameter variations and are invariant due to 
initial conditions variations. After evaluating the features, 
phase space analysis and their calculation on the EEG signal 
of the animal model were made. 

 
Figure 7. The Mean phase-space contour of the 1500 EEG segments in an 
animal model for free-seizure, pre-seizure, and seizure states. 

As it can be seen, the geometry of the phase space of the 
EEG in the transition from seizure-free to seizure state is 
changing. The phase space symmetry is lost in transit from 
seizure free to seizure state, in such a way that the phase 
space has become asymmetrical from the ellipse shape. 
Additionally, the contraction and expansion in the phase 
space of the seizure state is the signs of the stretching and 
folding of the EEG in this state, which confirms the 
existence of chaotic degrees even in seizure mode. 
Figures 8 to 12 show values of some of the features for 5 
seconds before the seizure and 10 seconds after for 1500 
EEG segments. 

 

                                                                                                    (10)

To evaluate the features, each was calculated for 
different parameters of Lorenz system and 10 iterations. If 
the distribution is different from each other for different 
values   of the parameter, the feature will be invariant. 
This significant separability is tested by two-sample t test 
method (Figure 5).

Results
Table 2 represents the P values of the Jarque-Bera test for 
feature values for each of the parameters. The values   of 
P > 0.05 show that the values of features follow the normal 
distribution. As it can be seen in most cases the p-value is 
greater than 0.05, so that the t test can be applied to the 
values of the features.
Figure 6 present results of two-sample t test at the 5% 
significance level. Each black pixel shows feature values 
that causes pixels are independent. This means that the 
two sets of parameter values are meaningfully separated. 
It is observed that the properties of the Lorenz system are 
highly sensitive to parameter variations and are invariant 
due to initial conditions variations. After evaluating the 
features, phase space analysis and their calculation on the 
EEG signal of the animal model were made. As it can be 
seen, the geometry of the phase space of the EEG in the 
transition from seizure-free to seizure state is changing 
(Figure 7). The phase space symmetry is lost in transit 
from seizure free to seizure state, in such a way that the 
phase space has become asymmetrical from the ellipse 
shape. Additionally, the contraction and expansion in the 
phase space of the seizure state is the signs of the stretching 

Figure 5. The Trajectory of the Lorenz System for σ = 16, r = 50 and 
β = 4.

Figure 6. The result of t test between all pair of parameters for each of 
the features which are extracted from Lorenz trajectories. The black 
color shows that the feature values for pair parameter are independent.

Table 2. The P Values of Features Values for Normality Test

Feature Lorenz System

A 0.50 0.50 0.01 0.30 0.13

Gx 0.27 0.50 0.50 0.18 0.20

Gy 0.42 0.21 0.07 0.005 0.50

I 0.23 0.50 0.27 0.41 0.50

E 0.50 0.07 0.35 0.05 0.50

Cva 0.002 0.50 0.01 0.33 0.50

E 0.50 0.07 0.35 0.05 0.50

Eva 0.2 0.50 0.28 0.3 0.1

R 0.50 0.004 0.50 0.14 0.37

TAR 0.50 0.50 0.34 0.11 0.1

CD 0.004 0.50 0.37 0.17 0.001

CC 0.40 0.21 0.002 0.50 0.50

The bold values are greater than 0.05 that means feature values come 
from normal distribution.

and folding of the EEG in this state, which confirms the 
existence of chaotic degrees even in seizure mode.

Figure 8A-E shows values of some of the features for 5 
seconds before the seizure and 10 seconds after for 1500 
EEG segments.
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Figure 7. The Mean Phase-Space Contour of the 1500 EEG Segments 
in an Animal Model for Free-Seizure, Pre-seizure, and Seizure States.

Figure 8. (A) Representation of Area feature, A. (B) Horizontal Center of Gravity, GX. (C) Axis of Least Inertia, I. (D) Perimeter, P. (E) Centroid 
Distance, CD.

(D) (E)

(A) (B) (C)

According to the results of the counter area, the phase 
space in the transition from free-seizure state to a seizure 
state is increasing (Figure 8A).

In addition to changing the geometry of the phase 
space, changing the position of the phase space on the 
phase space can reveal the dynamic changes of the EEG 
signal, which in this transition the position of the center 
of gravity of the phase space is being displaced (Figure 
8B). With regard to the significant changes in the Axis of 
Least Inertia (Figure 8C), it is proved that the orientation 
of the phase space in the transition to the seizure varies 
considerably. Other features also showed significant 
changes (Figures 8C-E).

In order to achieve the optimal threshold, the detection 
accuracy curve was calculated in terms of threshold 
for each of the features and the optimal threshold was 
determined. Figure 9 shows this curve for the Axis of 

Table 3. Average Accuracy of Geometric Features for 1500 EEG 
Segments

Feature Mean ACC %

A 97

Gx 91

Gy 82.5

I 97

E 25

Cva 66

Eva 64

B 81

P 95.5

R 47

TAR 10.5

CD 97

CC 94

Least Inertia feature.

Discussion
In this Research, it was attempted to determine whether 
EEG changes could effectively identify the free-seizure, 
pre-seizure and seizure states in the animal model of 
absence epilepsy by applying features based on phase-
space geometry (Table 3). Unlike traditional time series 
analysis, nonlinear dynamics describes the nonlinear 
relation of system variables by examining variables only in 
phase space. The main strength of this method is to provide 
information in accordance with the basic dynamics of the 
system without having information of all the evolution 
parameters in the system. Hence, in this approach, the 
dynamics of the system in the reconstruction phase space 
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and then the reconstructed attractors were quantified.
Table 4 compares the results of the proposed approach 

and previous studies in the detection of absence seizures. 
As the results suggest, the performance of the proposed 
method has improved in comparison with other previous 
studies. One of the highlights of this study is generalization, 
so that 1500 segments were used for evaluation, however, 
with a 97% accuracy.

In addition, in previous studies, it has often used linear 
approaches to quantification of the EEG signal, while 
the nature of the EEG signal is particularly nonlinear 
and it is necessary to provide an approach to detect the 
dynamics of this signal. The shape clearly confirms the 
appropriateness of the dynamic variation of the phase 
space with the transition of the EEG signal from free-
seizure to the seizure phase.

In this study, it was shown that simple, yet meaningful 
features such as the area and the environment can be found 
to provide best detection. Certainly, the application of 
more complex pattern identification systems will improve 
the detection results. Dynamic changes during multiple 
seizures and the prognosis of the disease are among the 
issues discussed in examining absence epilepsy with the 
use of the EEG signal.
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Figure 13. Determination of the optimal threshold by calculating the 

seizure detection accuracy for different thresholds. 
 

Table 3. Average Accuracy of Geometric Features for 1500 EEG 
Segments. 
Feature Mean ACC 

% 
Feature Mean 

ACC% 
A 97 B 81 
𝑮𝑮𝑿𝑿 91 P 95.5 
𝑮𝑮𝒚𝒚 82.5 R 47 
I 97 TAR 10.5 
E 25 CD 97 
𝑪𝑪𝒗𝒗𝒗𝒗 66 CC 94 
𝑬𝑬𝒗𝒗𝒗𝒗 64   

IV. DISCUSSION 
In this Research, it was attempted to determine whether EEG 
changes could effectively identify the free-seizure, pre-seizure 
and seizure states in the animal model of absence epilepsy by 
applying features based on phase-space geometry. Unlike 
traditional time series analysis, nonlinear dynamics describes the 
nonlinear relation of system variables by examining variables 
only in phase space. The main strength of this method is to 
provide information in accordance with the basic dynamics of the 
system without having information of all the evolution 
parameters in the system. Hence, in this approach, the dynamics 
of the system in the reconstruction phase space and then the 
reconstructed attractors were quantified. 

Table 4 compares the results of the proposed approach and 
previous studies in the detection of absence seizures. As the 
results suggest, the performance of the proposed method has 
improved in comparison with other previous studies. One of the 
highlights of this study is generalization, so that 1500 segments 
were used for evaluation, however, with a 97% accuracy. 

 
Table 4. Performance comparison with some existing methods that use the same 
data sets. 
 Seizures  ACC% Year Reference 

314 21 & 54 2007 16 
Not reported 94 2008 37 

202 Accuracy higher than 90 2009 38 
Not reported 85 2009 39 

73 94.8 2014 40 

205 
91.8 
94.9 
89.9 

2015 41 

For three absence genes 

In addition, in previous studies, it has often used linear 
approaches to quantification of the EEG signal, while the nature 
of the EEG signal is particularly nonlinear and it is necessary to 
provide an approach to detect the dynamics of this signal. The 
shape clearly confirms the appropriateness of the dynamic 
variation of the phase space with the transition of the EEG signal 
from free-seizure to the seizure phase. 

In this study, it was shown that simple, yet meaningful features 
such as the area and the environment can be found to provide best 
detection. Certainly, the application of more complex pattern 
identification systems will improve the detection results. 
Dynamic changes during multiple seizures and the prognosis of 
the disease are among the issues discussed in examining absence 
epilepsy with the use of the EEG signal. 
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