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NEW DIMENSIONS OF INDUCTIVE LEARNING FOR CREDIT
RISK ANALYSIS

Abstract

The paper presents two new dimensions of inductive learning for credit risk

analysis. The first new dimension points out the specific impact of type I and type

II errors on the accuracy of the inductive learning process. A Dynamic Updating

Process is proposed to refine the credit granting decision over time and therefore

improve the accuracy of the learning process. The second new dimension takes

advantage of the decision tree representation to solve the problem of instability in

classification results. A global tree interpretation method (GTip) is proposed which
globalizes the relevant content of a set of original trees while reducing noise and
overfitting effects. Both new dimensions are aimed at improving the inductive

learning approach when applied in credit risk analysis.
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NEW DIMENSIONS OF INDUCTIVE LEARNING FOR CREDIT
RISK ANALYSIS!

Introduction

Evaluating credit risk is one of the most important activities of a commercial bank.

When assessing an applicant's creditworthiness, the credit officer must take into consideration the

credit terms, the applicant's characteristics and the lending bank characteristics in order to meet the

bank's risk-return objectives [14]. For that purpose, the credit investigation process is aimed at

acquiring enough information to determine the applicant's abihty and willingness to service the

requested credit. However, a balance has to be struck between credit investigation costs and return

probabilities. Cohen, et al. observe that "//le loan evaluation process generally seems to be Iiandled

by particular sets of heuristics. These heuristics lead to a 'satisfying' behavior, i.e., choosing the

best alternative which lias beenfound after a limited period ofsearch" [10].

Several decision support tools are currently used in credit management in order to

reduce the time and costs spent during investigation and assessment. For several years, the ability

of computei-s to process numerical data has been used to rapidly search for financial information in

large data bases and to process this information in a concise and easy to assess format. However,

as non-fmancial and often qualitative information prevail in the assessment of small size credits,

common credit scoring tools appear less adapted to process this type of data. Research conducted

in the field of artificial intelligence propose an alternative approach, called expert systems. These

"intelligent" tools have already been used to support several business or management problems.^

A specific knowledge acquisition method, called inductive learning, have already given positive

results which suggest the need to further investigate how this artificial intelligence approach may

help to design a decision support tool in credit analysis

This paper briefly reviews the inductive learning methodology that has already been

compai-ed with success to well known statistical classification tools.^ Without innovating the

methodology itself, a promising dimension is proposed, which emphasizes the use of type I and

type II errors to improve the inductive process. As they are located very close to the limit between

accepted and rejected credits, type I and type 11 errors may nudge the inductive process towards a

more accurate definition of the concept to be learned. A Dynamic Updating Process is proposed to

refine the credit granting decision over time and, therefore, improve the accuracy of the learning

process. The paper also focuses on the symbolic representation of the results obtained by

induction. The decision tree is presented as a highly explicit representation that offers a new



dimension to the interpretation of the classification results. This new dimension extends a sole

evaluation based on accuracy, which was usually used in the literature.^ In the framework of credit

risk analysis, the results obtained by induction may give relevant insights about the underlying

structure of the data [7] as well as about a fmancial theory justifying the credit analysis. However,

experiments show how inductive results may be negatively influenced by noise and overfitting

effects, and, therefore, may be highly unstable. This paper proposes and illustrates a new global

interpretation process that reduces noise and overfitting effects and helps to discover a stable and

relevant underlying structure of the data

Part I briefly presents the inductive learning approach. Starting with a presentation

of the research environment in which the inductive learning methodology has emerged, the

historical evolution and the terminology of the inductive approach are reviewed. Part II proposes

the new dimensions of the methodology m the framework of a credit risk analysis: the impact of

specific credit decisions in induction and a specific knowledge representation, the decision tree.

Part III develops the impact of specific credit decisions and proposes an innovative process to

update the credit decision over time. Finally, Part IV discusses a way to interpret the results

obtained by induction and proposes a new method to interpret the decision trees and to globalize

the insights about the predictive structure of the data [7].

I Review of the Inductive Learning Methodology

Artificial Intelligence and Expert Systems

"Artificial Intelligence is the part of Computer Science concerned with designing

intelligent computer systems, that is, systems that exhibit the characteristics we associate with

intelligence in human behavior" [2]. There are four distinct research areas regarding the typical

human behavior they address: robotics, language, vision, and reasoning. Artificial intelligence

research in reasoning is the field that is addressed in this paper. Reasoning mvolves several

knowledge-related tasks such as problem solving and learning, which artificial intelligence tries to

emulate by computer. The main application of those techniques are the expert systems. They are

"intelligent" programs that mteract with the user in a "consultation dialogue," just as a human with

some type of expertise, explaining the problem, performing suggested tests, and justifying the

solutions [3].

Typically, an expert system is composed of three main modules: the knowledge

base, the inference engine, and the user interface, as shown in Exhibit 1. The main characteristic
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resides in the physical separation between the data or knowledge that the program processes (the

knowledge base) and the logic it follows to solve a problem (the inference engine). Artificial

intelligence research has been working on more and more sophisticated inference engines able to

deal with the most tricky problems and to process any kind of knowledge. The knowledge,

contained in the knowledge base, gathers the expertise related to a given domain of application.

The completion of a relevant knowledge base remains closely related to the domain in which the

expert system will be used. It also forms the main stage in the design of a successful system. The

expertise contained in the knowledge base may be expressed in several formats. The most

common format is the decision rule which expresses a condition-action relation in a very natural

language. For example, the following rule expresses a piece of expertise in a very simple way :

if the applicant asks a credit to take over a restaurant, and

if the previous owner decided to retire, and

if the restaurant is very popular, and

if the applicant has an experience of 10 years in a similar activity,

then the credit committee decides to accept the credit.

Several knowledge acquisition sa*ategies have been applied to the financial field.

For example, Bouwman proposes a Jiandcrafting acquisition method to try to identify the decision

making behavior of a financial analyst [4,5,6]. The sti^ategy consists of asking decision makers to

verbalize their reasoning during their financial analysis, tape-recording their verbalizations, and

using the resulting transcripts, called concurrent or thinking-aloud protocols, as input data for a

protocol analysis. Bouwman's research forms one of the most advanced knowledge acquisition

strategies by handcrafting. As a result, the author presents a detailed, descriptive analysis of the

decision making processes involved in screening companies for potential investment.

Another knowledge acquisition approach, which has been developed by the

artificial intelligence community as well, is proposed in some recent research in finance or

management. This method, called machine learning, does not require the long and tedious

interviews conducted in Bouwman's research. Instead, it relies on examples of previous decisions

to learn the decision maker's reasoning process. Carter [8], Chandler [9], Currim [11], Han [13],

Messier [18] and Shaw [21,22] have successfully applied the machine learning approach in the

fields of consumer choice, accountancy, bankruptcy prediction, and credit risk assessment. The

following sections review the historical evolution of the inductive learning approach and introduce

its terminology.



Inductive Learning: Historical Evolution

According to the dictionary [1]: 'Hn.duc.tion, n., the act or process of deriving

general principles from particular facts or instances'^ According to a computer scientist: ''The

ability ofpeople to make accurate generalizationsfrom afew scatteredfacts or to discover patterns

in a seemingly choatic collection of observations" [19] is achieved by a process called inductive

learning.

In 1933, Kenneth Smoke published the results of a famous conceptual learning

study which attempted to understand the learning process of a human being [23]. Smoke tried to

determine the contributions of "positives instances", where the required characteristics of the

concept are included in the stimulus, and "negative instances", where one or more of the required

characteristics are absent, in the acquisition of concepts. Smoke concluded that negative instances

do little to facilitate learning, which raised a controversy largely discussed in the psychology

literature [15,16] and started a continuous wave of research focusing on inductive concept

learning.

In a first interdisciplinary research project, dating of 1966, researchers in data

processing, psychology, and social sciences together tried "to learn more about how people solve

complex learning problems and to observe the performance of different varieties of a general

learning automaton designed to solve inductive problems which require some learning on the part

of the problem solver" [17]. This research project introduced the first paradigm of Concept

Learning System. Hunt defmes a Concept Learning System as "a device for creating a concept

corresponding to some partition of a sample of objects which have been categorized by a pre-

established rule for using a name. It is assumed that the Concept Learning System forms its

concept by observing examples of the use ofthe name, i.e., by observing a subset of objects of the

universe and being informed ofwhether or not the name is applicable to them" [17].

Subsequent research on the same paradigm has been conducted in several fields,

e.g., machine learning, pattem detection and recognition, statistics, or behavioral sciences, and led

to an implementation of Hunt's optimistic view of a Concept Learning System as a "complement to

Factor Analysis for nominal data" [17]. This concern has also been expressed by Michalski, in

1983: "the widely used traditional mathematical and statistical data analysis techniques [...] are not

sufficiently powerful for [the detection of conceptual patterns]. Methods for conceptual data A
analysis are needed, that generate not merely mathematicalformulas but logic-style descriptions,

cliaracterizing data in terms ofhigh-level human-oriented concepts and relationships" [19].
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Terminology

This section briefly presents the vocabulary frequently used in inductive learning.

As the terminology may be new for some readers, new terms are related to their counterparts in

credit risk analysis to facilitate the comprehension.

Inductive learning, also called induction, is a classification procedure that accurately

models the classes of known objects so that, when an object of an unknown class is encountered, a

plausible class label can be affixed to it. In its general form, an inductive process is structured into

three distinct elements: an instance space, an algorithm performing induction, and an output

describing a classification concept. Rendell [20] illustrates it as in Exhibit 2.

The instance space is a ^-dimensional space where each point, or example, is

described by a vector {x) composed of k independent variables called attributes, and a discrete or

continuous classification («). A typical discrete classification function has a value to represent

an example that does not belong to the concept, also called a negative example. A value of 1

represents an example that belongs to the concept, also called a positive example. If continuous,

the classification function gives the probability with which a given example represents the concept.

In the framework of a given run of the algorithm, the instance space is defmed in the input training

sample. Some examples of instance space are given in Exhibit 3 where the examples are defmed

with two attributes, atti and att2. A binary classification function is represented as a '+' for a

positive example and a '-' for a negative example.

The output concept represents the knowledge acquired by induction. Rendell [20]

expresses it as a function, u{x), mapping a /:-dimensional vector into a class membership discrete

value (0 or 1), when the concept is binary-valued, or into a class membership continuous value (in

[0..1]) for a graded or probabilistic concept. The concept is usually tested on a testing sample,

independent of the input training sample. In Exhibit 3, the concept to be learned corresponds to the

boundaries which separate the positive examples from the negative examples.

The outlook of the concept in the instance space is defined by its size and its

concentration [20]. The size refers to the relative frequency of positive examples in the training

sample. The concentration is determined by the number of boundaries appearing in the space or, in

other words, by the degree of localization of the concept in the instance space. Exhibit 3 illustrates

four possible outlooks: a large concept (3a), a scattered concept (3b), a concentrated concept (3c),

and a widespread concept (3d). In each situation, the inductive process tries to discover the most



accurate boundary between positive and negative examples and gives the characteristics of both

classes of points.

In the framework of a credit risk assessment process, a positive point (+)

corresponds to a credit that has been previously accepted by the credit committee. A negative point

(-) corresponds to a credit that has been previously rejected by the credit committee. The instance

space is thus a set of past credit decisions on which the induction is performed. Each past decision

is described by a set of quantitative or qualitative pieces of information, which are the attributes.

The "credit granting" concept is positive or negative, no intermediate value is possible. Therefore,

the concept to be learned is binary (1 or 0). The objective of the inductive process is to discover

the boundary separating the accepted and rejected credits and to give the characteristics of both

groups of points.3

II New Dimensions Offered by the Methodology

As explained in the previous chapter, the knowledge acquisition by induction relies

on past credit decisions, i.e., positive and negative points of the instance space, and generates a

description of the intra-group similarities and inter-group dissimilarities of those past decisions.

The presence of positive or negative points being very close to the boundary between groups, i.e.,

the presence of positive and negative past credit decisions being very similar, may be important for

the induction process. That similarity is the first new dimension explained in the following

section. Moreover, the quality of the knowledge description generated by induction determines

how understandable and usable a knowledge base containing this description will be. The

advantages of a concept representation that is called the decision tree forms the second new

dimension that is discussed in the next two sections.

Specific Examples or Near Misses

Suppose that the concept that we are trying to learn consists of only one boundary

in the instance space and that a large number of examples are located close to that boundary, as

shown in Exhibit 4. It looks obvious that the discovery of the correct boundary, and therefore the

defmition of the correct characteristics of positive and negative examples, will be facilitated in a

hypothesis space as illustrated in Exhibit 4. As a matter of fact, the positive and negative examples

very close to the boundary are nudging the inductive process toward the correct location of the

boundary.



In the literature, those specific examples, either correctly or incorrectly classified,

that are very close to the boundary are referred to as near misses , which are ''examples [..] quite

like the concept to be learned but which dijfer from that concept in only a small number of

significant points'' [24]. The near miss is an example that is very close to the concept, but some

elements make it incorrect to be considered as a member of the concept. For example, in Exhibit 4,

they are the negative examples close to the boundary. Alternatively, a near miss is an example that

is very close to a negative example, but some elements make it correct to be considered as a

member of the concept. For example, in Exhibit 4, they are the positive examples close to the

boundary. The small but significant differences given by near misses allow the inductive algorithm

to localize some parts of its current position about a concept and to improve it. Important qualities

of the concept to be learned can be suggested by carefully selecting representative near misses.

The near misses thus offer the possibility of conveying quite directly some particular ideas to the

algorithm. The detection and a relevant defmition of near-misses is not a straightforward task and

has to be found in relation with the field of application. The relevance of this definition is

primordial as the literature maintains that the presence of near-misses in the training sample may

have a dramatic impact on the accuracy of the output concept [20].

In the framework of a credit risk assessment process, the near-misses can be given

an interesting interpretation. As those specific examples are very close to the boundary, their

description, in terms of the chosen attributes, is very close to the attribute values of the examples

belonging to the opposite class. In other words, some previously accepted credits (positive

examples) may show most of the characteristics of a rejected credit (negative example). As a

result, the decision to grant or not to grant the credit may have been uncertain and confused.

Therefore, it may be supposed that that sub-set of positive credits contains credit errors, i.e., type I

errors, which will be called positive near-misses. In the same way, some previously rejected

credits (negative examples) may actually show most of the characteristics of an accepted credit

(positive example) and therefore may contain commercial errors, i.e., type n errors, which will be

called negative near-misses.

The detection of near-misses corresponds therefore to the detection of type I and

type n errors. Type I errors are possible to trace, as the evolution of an accepted credit will

determine its positive (weU-running credit) or negative (failed credit) outcome. Unfortunately, type

n errors are not so obvious to discover. Supposing however that the credit department is able to

provide the necessary information concerning type I and type II errors, the instance space of the

corresponding concept looks as in Exhibit 5, in which type I errors (+') and type II errors (-')

remain very close to the boundary.



Such a specific impact of type I and type 11 errors on the output results is unique

and has never been approached by any statistical classification tool commonly used in credit risk

analysis. Therefore, the use of type I and type II errors as near-missed examples presents a

promising contribution to the problem of designing a decision support tool in credit risk analysis.

The contribution of near-misses is further discussed in part HI.

Explicit Representation of the Acquired Knowledge

The second new dimension concems the format in which a concept may be

expressed. There exist several formats [20], each of them offering a more or less detailed and

explicit way of expression to define the characteristics of the acquired knowledge. For example,

the boundary representation, which is typically encountered in the statistical tools, represents the

acquired knowledge in the equation of a straight line separating the instance space into sub-spaces.

The illustration given in Exhibit 6 shows the similarity with a linear regression.

In contrast with the statistical tools, research m machine learning is oriented

towards other representations that better describe the acquired knowledge. The boundary

representation, as shown in Exhibit 6, gives the equation of a line which splits positive and

negative examples. No detail is given on the characteristics of the points below or above the line.

A representation able to clearly define the characteristics of positive and negative examples offers

far more information about the groups of points and therefore allows a more relevant interpretation

of the concept. For example, in the logic or classical view, the classification function u is

described in terms of conditions about the attributes. A new example belongs to the concept if its

attribute values satisfy those conditions. As shown in Exhibit 7, the classification function is

described in terms of conditions about the attributes attl and attl. The logic or classical view tries

to characterize the points of the instance space present in the boundaries in terms of attl and att2.

As illustrated in Exhibit 7a, an example belongs to the concept if its attl value is between a and b

and its att2 value is between c and d.

The decision tree representation may be considered as an extension of the logic or

classical view. Exhibit 8 expresses on a decision tree the same concept as described m Exhibit 7b.

The decision tree representation offers the advantage of showing a hierarchical structure among the

attribute values. For example, the splitting of att2 on a (top of the tree) appears decisive for the

subsequent tests of the tree, whereas the splitting on m of this same attribute (bottom of the tree) is

less likely to be considered in the classification of a new example. The decision tree representation

has largely contributed to the success of the inductive learning method in numerous fields of



application.^ The next section is devoted to decision trees in order to explain and illustrate this

concept representation as it relates to credit analysis.

Representation of the Acquired Knowledge in a Decision Tree

Consider the tree presented on Exhibit 9. This tree is composed of 6 nodes, each of

them concerning an attribute, and 10 leaves or final nodes giving a final decision concerning the

granting (+) or non-granting (-) of a credit. Each branch gives the attribute value to be considered

in order to follow the correct path towards a final decision. A final leaf can be reached by one and

only one path. In other words, a node has at most one parent node, but as many children as

required by the final decision.

A decision tree is read from the top to the bottom and each path may be expressed in

the form of a decision rule. For example, the final node marked '*' on Exhibit 9 corresponds to

the following decision:

if there has been no appraisal of the project to be financed (attl=0) and

there is no information about the marketing prospect (att2=0) and

the credit applicant is active in the hotel-restaurant industry (att3=l) and

the applicant is male (att4=l),

then the credit is accepted (fmal leaf=+).

Each path represents an alternate line of reasoning and may be related to the

rectangles in Exhibit 7. Exhibit 7a presents a widespread concept where each path of the tree

represents one boundary in the instance space (1 rectangle of the instance space). Whereas Exhibit

7b illustrates only one boundary expressed into several paths (5 rectangles of the instance space).

Each path of the decision tree represents a conjunction that approximates a portion of the total

concept (one rectangle). The complete concept expressed in the tree corresponds to the set of all

the decision paths leading to an altemate final classification.

Such a symbolic representation of the acquired knowledge in a decision tree

provides the designer of a knowledge base with an explicit and intelligible tool. Each node

symbolizes a test on a given attribute,"* whether this attribute is quantitative or qualitative (i.e.,

symbolic). Each branch subsequent to a non-final node symbolizes the outcome of the test and

symbolically leads the interpretation, according to the appropriate outcome. Each path symboUzes

a complete Une of reasoning and leads to a final decision. The entire tree symbolizes altemate lines

of reasoning with their corresponding final decision. The position of an attribute is fixed on the

tree and symbolizes a hierarchy among the set of attributes. Moreover, the final tree may be used
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directly as a decision support tool for classifying new unknown examples. The interpretation of a

decision tree learned by induction is further discussed in part IV.

in A New Dimension for a Dynamic Updating of the Credit Granting

Decision

The first new dimension emphasized in the previous chapter points out the specific

impact of type I errors and type II errors as near-missed examples, on the accuracy of the learning

process. As near-misses are located very close to the concept boundary, they nudge the inductive

process towards the correct location of the boundary, as shown in Exhibit 5. It may, however, be

argued that the credits that were initially accepted by the Credit Committee but failed in the

aftermath (type I errors) should not have been accepted, or should not have been contained in the

concept. In the same way, it may be argued that the credits that were initially rejected by the Credit

Committee but eventually happened to be profitable for a competing financial institution (type 11

errors) should not have been rejected, or should have been contained in the concept.- Exhibit 10

illustrates how, over time, the outcome of an initially accepted^rejected credit may change. An

accepted credit at time ti may turn failed at time /;+, (type I error). Similarly, a rejected credit at

time ti may become a profitable credit in a competing financial institution at time /;+, (type n error).

Therefore, the unique impact of type I and type II errors on the learning process

results in their informative content that allows an updating of the credit decisions over time and

therefore, an updating of the initial concept boundary. Exhibit 1 1 illustrates this updating process

by showing the position of the updated concept boundary among near-misses. The updated

boundary contains correctly accepted credits (+), as well as type 11 errors (-'), i.e., the shaded

groups of Exhibit 10. Type I errors (+') are now outside the boundary, together with the correctly

rejected credits (-). The updated boundary represents a more informed granting decision which

does not repeat the errors initially made by the Credit Committee. The type I and type n errors still

remain very close to the updated boundary and keep playing their role of near-misses, i.e., they

nudge the learning process towards a more informed and therefore more accurate concept

definition.
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Dynamic Updating of the Boundary Position over Time

The repositioning of the near-misses according to an updated credit granting

decision over time requires the detection of type I and type n errors.

Type I errors are observable as they represent previously accepted credits that

finally failed. The initial decision, as illustrated in Exhibit 5, positions these errors as positive

examples very close to the boundary (+'), while the Dynamic Updating Process excludes them

from the boundary and keeps them among the negative examples, as shown in Exhibit 11. The

detection of type n errors is more problematic as such credits are almost impossible to trace.

However, the Dynamic Updating Process should follow the same method as for type I errors, but

in the opposite sense: during updating, they should be included in the boundary, i.e., among the

positive examples, as shown in Exhibit 11.

As a matter of fact, the characteristics that exclude the type I errors from the

boundary may be learned by induction in order to discover what differentiate these failed credits

from the other positive examples. In this context, the conceptual difference between credits is

considered, which is different from a mathematical difference between points in a multidimensional

space. The same difference can then be assessed on the rejected credits which will be included in

the boundary if they are recognized as similar enough to be positive examples. Exhibit 12

illustrates that learning and shows the minimum difference {d) that should exclude an example from

the positive group. The difference d is then used as a cut-off point to make a decision concerning

the rejected credits. A rejected credit that is very similar to the positive examples (difference <d)is

considered as a type II error and is contained in the boundary. As a result, a new boundary is

defined according to which an updated decision may be modeled.

As the new boundary represents a more informed credit granting decision, the

resulting concept learned by induction should be more accurate and more stable. Further

experiments should be conducted on real data to confirm that hypothesis.

IV A New Dimension for a Global Interpretation of the Results

The tree-based inductive leaming approach appears as an altemative in the design of

a decision support tool in credit risk analysis. The literature concemmg the application of the

inductive approach in various management classification problems successfully compares the
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accuracy of a decision tree with the accuracy of common statistical tools, such as logit, probit, or

MDA.3 Accuracy evaluation appears particularly important when researchers try to compare the

performance of various classification models. Although it is considered as a relevant and

necessary evaluation parameter, it is not the only criterion to take into consideration. As Breiman

points out, "an important criterion for a good classification procedure is that it not only produces

accurate classifiers (within the limit of the data) but that it also provides insight and understanding

into the predictive structure of the data "[7]. As a matter of fact, the learning approach describes

the knowledge related to the credit granting decision in a comprehensive and complete formalism

that offers a unique advantage over the results commonly provided by a statistical classification

tool. An interpretation of the output decision tree in terms of credit risk elements provide insights

about an underlying predictive structure ofthe data [7] as well as about a financial theory justifying

the credit assessment process.

The instability of the classification results is, however, a major problem when

applying the inductive learning approach to real data. Experiments prove that decision trees

generated by induction are greatly influenced by the characteristics of the training sample. A
slightly different training sample may generate a markedly different decision tree. The differences

concern not only the occun^ence of specific attributes in the trees, but also the positions of the

attributes in the trees. In other words, a decision tree generated by induction quickly overfits the

training sample and is influenced by noisy input data.

These observations raise the problem of selecting a single decision tree which

would offer the most relevant insights about the underlying predictive structure of the data. A
selection based on accuracy does not assure that the chosen tree will reflect the global fmancial

theory justifying the credit assessment process. Moreover, one of the unique observations of our

experiments shows that one can never be certain that the most accurate tree is contamed in a given

set of induced trees. Therefore, it becomes apparent that a global interpretation process be

developed in order to summarize and concentrate the relevant information provided by a set of

original trees, while reducing noisy and overfitting negative effects. The global tree interpretation

proposed in the following section is used for that purpose.

The Global Tree Interpretation: Insights about the Predictive Structure of the
Data

As illustrated in Exhibit 13, the Global Tree Interpretation Process (GTip) is

performed on a set of i original trees {treei, treei, ..., tree^), each of them generated from a

different training sample randomly selected from the same original data set. The origbml ti*ees are
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unstable not only regarding their accuracy (error rate on testing sample), but also regarding their

general outlook (position of the attributes on the tree). GTip summarizes and concentrates the

relevant information provided m the original trees. As a result, a. final global tree is generated

which reduces noise and overfitting negative effects present in the original trees.

At first, GTip retains the most frequendy appearing attributes in the original trees.

The attributes appearing with a frequency higher than 50% are called primary, the attributes

appearing with a frequency lower than 50% but higher than 25% are called secondary, an attribute

appearing with a frequency lower than 25% is considered as a noise effect. The 50% and 25%

cutoff values were determined through Jackknife experimentation.

Secondly, the horizontal position ofan attribute is considered. Consider Exhibit

14, where two situations are proposed: a concept widespread over the hypothesis space (14a) and

a concentrated concept (14b). In both cases, one may assume that the shaded surface is the easiest

portion of the concept that will be discovered by the inductive process. As a matter of fact, the

points of the instance space are most likely concentrated on those surfaces. As explained earlier

concerning Exhibit 7, one path of the tree represents one boundary as in Exhibit 14a, or one

rectangle approximating a portion of the total concept, as in Exhibit 14b. The shaded surfaces will

thus correspond to the path of the tree followed by the largest portion of the training examples. We

call such a path, the main path of the tree. The other surfaces of the hypothesis space not covered

by the main path (non-shaded surfaces in Exhibit 14a and 14b) will be considered as alternate

paths. Attributes appearing on the main path are called major attributes, as they help in

discriminating the largest part of the examples. Attributes belonging to an altemate path are called

minor attributes. The root node implicitly belongs to the main path.

In the framework of a credit risk assessment process, the main path may be

considered as the usual analysis procedure followed for the majority of the credit applications. The

attributes taken into consideration for those routine credit applications would cover common

financial criteria used in credit analysis. Therefore, these attributes are recognized as major

elements in a normal credit analysis. The altemate paths would involve analytical processes used

for unusual credit applications. The attributes taken into consideration for this minority of credits

may be less common and more dependent on case-by-case analyses. Therefore, these attributes are

recognized as minor elements in a routine credit analysis.

Finally, GTip calculates the average level on which primary and secondary

attributes appear among the original trees.
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By compiling, for each attribute, its positions in each tree according to the criteria

mentioned above, a global pattern emerges. The final global tree retains this global pattern, while

avoiding as much noise and overfitting effects as possible. The resulting global tree may reveal,

therefore, relevant insights about the global underlying predictive structure of the data. The

algorithm followed by GTip is detailed in Appendix A.

For instance, consider a set of 10 trees induced from the same original set of

examples. Each example is defined in terms of 23 attributes. Those attributes are classified by

family (Fl to F7), which reflects their conceptual relationships. The position of each attribute in

each tree is given in the first 10 rows of Exhibit 15: a value 1 informs that the attribute is the top

node in the corresponding tree; a bold value corresponds to a main path position.

The row entided occurrence, which gives the number of times an attribute appears

in the original trees, allows the compilation of the attribute status as primary {P if occurrence >5) or

secondary (S if 2<occurrence<5). The attributes appearing 2 times or less are considered as noise

and disregarded (*). The next row, entitled main path, gives the percentage of time an attribute

appears on a main path which, in turn, allows the definition of the attribute status as major (M if

main path >= 50%) or minor (m if main path < 50%). Finally, the row entitled aver, level informs

about the attribute's average position on the trees.

As a result, the last row (status) is considered in order to build a final global tree, as

shown in Exhibit 16. Four major attributes are used to build the main path (F17, F42, F61, F72),

with the primary attributes prevailing over the secondary attributes. The root position is occupied

by attribute F61. Attribute F42 stands on the second level of the main path. Attributes F16, and

F72 are in conflict for the third level of the tree: as attribute F72 is primary, it is kept on the main

path; an alternate path, on which F16 appears, is built from attribute F42. Attribute F16 is

followed by its "conceptual fellow," attribute Fl 1, whUe attribute F17 completes the fourth level of

the main path. The final global tree has a size comparable to the average of the original trees

(length = 4 and width = 2), as shown m Exhibit 16.

The final global tree given in Exhibit 16 concerns the credit risk analysis of small

Belgian businesses. Although the purpose of this paper does not concern the details of an

application of the GTip method to small Belgian businesses. Exhibit 16 gives a final global tree

generated from real data and shows an interesting underlying strucmre of the data. The main path,

which is followed in the majority of the cases, reveals a hierarchical structure of attributes related to

the applicant's capacity to repay the credit (F61), the guarantees (F42), the marketing prospect that

the bank may expect from the credit (F72), and the applicant's industry (F17). The alternate path
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considers the same first two attributes (F61 and F42), then concentrates on the previous activities

(F16) and the type of the applicant (Fl 1) . This underlying structure of the data was presented to

the bank's credit officers, who recognized it as a relevant representation of their risk analysis

process. As financial information provided by small size applicants is almost inexistant, the credit

analysis process relies on other qualitative information which were discovered by the GTip

method, such as the guarantees, the applicant's industry, or the type of the applicant.

Conclusion

The tree-based inductive learning approach has been presented as an alternative to

statistical methods for designing a decision support tool in credit risk analysis. A brief review of

the learning methodology allowed the emphasis of two new dimensions of the approach that have

not been previously considered in the literature.

The fu-st new dimension points out the specific impact of the type I and type II

errors, as near-misses, on the accuracy of the inductive learning process. The literature contends

that near-misses nudge the learning process towards a more accurate defmition of the boundary

between positive and negative examples. Such a specific impact of type I and type II errors is

unique and has not been examined in credit analysis. A Dynamic Updating Process is proposed

which relocates the boundary between type I and type n errors in order to define a more informed

credit granting decision and learn a more accurate concept.

The second new dimension takes advantage of the representation of the results in a

decision tree in order to solve the problem of instability in classification results. The decision tree

representation used by the inductive learning approach offers a unique hierarchical structure of the

attributes taken into consideration in credit analysis. However, unstable results raise the problem

of selecting one decision tree from a set of different trees. The global tree interpretation that is

proposed globalizes the relevant content of a set of original trees while reducing sources of

instability, i.e., noise and overfitting effects. Thus the global interpretation process allows a better

understanding of the underlying structure of the data.

These new dimensions, which have been defined in theory, present some

promising contributions to the problem of designing a decision support tool in credit risk analysis.

However, experimental results are necessary to further define the exact impact of type I and type II

errors and to further improve the efficiency of the Dynamic Updating Process and the GTip

method. Several applications on real data are currently under process to investigate this
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challenging subject [12]. Moreover, an automated version of the GTip method will allow the

application on large data sets. Following the results of these experiments, an improvement and

completion of the basic principles defined in this paper will be reported in a forthcoming

publication.

Footnotes

1 Research sponsored by a Doctoral Fellowship of the Intercollegiate Center for Management Science, Brussels,

Belgium

2 See 4, 5, 6, 8, 9, 1 1, 13, 18, 21. 22

3 Several measures are used to select the attributes that classify positive and negative examples in the best way.

For a review of these measures, see [7]. The most commonly used measure, called entropy, was
introduced by Quinlan in 1983 [Quinlan, J.R., "Learning Efficient Classification Procedures and their

Application to Chess End Games," Machine Learning. An Artificial Intelligence Approach, R.S, Michalski,

J.G. Carbonell, and T.M. Mitchell (Eds.), Morgan Kaufmann Publishers, Inc., Palo Alto, CA, 1983].

4 Advanced learning algorithms are now able to relate a node of the tree to a higher reladon among several

attributes. The "constructive" learning approach is currently being investigated in the framework of credit risk

assessment and bankruptcy predictioi. Quite unexpected multivariate relations are learned which give relevant

insights about uncommon ways to understand some aspects of a firm's financial risk.
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Appendix A

The Global Tree Interpretation Process

Algorithm

Given
- a set of examples described with a list of n attributes

- a set ofm trees generated by induction from a subset of examples selected at random
- / = 1 ,...,« and j = l,...,m

Step 1. For each attribute,- , compile

a. the level on which it appears on each tree^

b. its presence on a main path or on an alternate path of each tree^

Step 2. Define the final status of attribute,- as

a. a primary (secondary) attribute if it appears in more than 50% (between 50% and 25%) of the

original trees

b. a major (minor) attribute if it appears in more (less) than 50% of the main paths of the original

trees

and calculate the average level on which the attribute appears.

Step 3. The resulting underlying structure of the data is built per level, starting from the root node of the

tree, and according to the following rules:

- primary attributes prevail on secondary attributes;

- major attributes appear on the main path;

- minor attributes appear en alternate paths;

- an alternate path is started from a given node, as soon as several attributes are in conflict for the

subsequent level.

The final global tree should match the average width (number of final nodes) and length (number of

nodes on the longest path) of the original trees.

i
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