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ABSTRACT 
   Many commonly used statistical methods require that the population distribution be nearly normal. 

Unfortunately, in some papers the one-sample Kolmogorov-Smirnov test has been used for testing normality 

while the assumptions of applying this test are not satisfied. To conduct this test, it is assumed that the 

population distribution is fully specified. In practical situation where the mean and SD of population 

distribution is not specified in advance, one can use a modification of the K-S test for checking the normality 

assumption which is called, Lilliefors test. In this paper, we explain the method of computing this test with 

some common statistical softwares such as SPSS, S-PLUS, R and StatXact and utilize a dermatology dataset 

from Skin Research Center of Shohada-e-Tajrish hospital to illustrate how the use of the one-sample K-S 

(with the mean and SD estimated from the sample) instead of its modification can be misleading in practice. 

We also use Monte Carlo simulation to compare the approximate power of the one-sample K-S test (with the 

estimated population mean and SD) with Lilliefors test in some common specified continuous distributions. 

The result indicates that one should not use the one-sample K-S test for assessing the normality assumption 

in practical situation. 

 

Keywords: one-sample Kolmogorov-Smirnov test; Lilliefors test; Monte Carlo simulation; testing normality 
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INTRODUCTION 

   Many statistical procedures are based on the 

assumption that the population is approximately 

normally distributed [1].When this assumption is 

violated, inference may not be reliable or valid 

[2]. If a normal distribution is tentatively assumed 

to be a plausible model, the investigator must still 

check this assumption once the sample data are 

obtained [3]. There are two methods of checking 

the normality assumption, Graphical and 

numerical methods, which are either descriptive 

or theory-driven. Graphical methods are used to 

visualize the distributions of random variables and 

compare the distribution to a theoretical one using 

plots. Numerical methods present descriptive 

statistics or conduct statistical tests of normality. 

The descriptive methods are based on the 

empirical data, whereas the theory-driven 

methods consider both empirical and theoretical 

distributions. Although graphical methods are 

based on subjective visual examination of the 

data, they are helpful in detecting serious 

departures from normality and are easy to 

interpret. Numerical methods provide objective 

ways of assessing normality [2]. 

A Stem-and-leaf plot, box plot, dot plot and 

histogram are descriptive graphical methods, 

while The Q-Q and P-P plots are theory driven 

ones. Skewness and kurtosis are descriptive 

numerical methods, whereas the Shapiro-Wilk, 

Shapiro- Francia, Kolmogorov- Smirnov 

(Lilliefors test), Anderson-Darling, Cramer-von 

Mises, Jarque-Bera, Skewness- Kurtosis tests are 

some of the theory-driven numerical methods that 

provide a diagnostic check for possible departure 

from a normal distribution [2]. 

Unfortunately, in some papers the one-sample 

Kolmogorov-Smirnov test (K-S test) has been 
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used for testing normality while the assumptions 

of applying this test are not satisfied. To conduct 

this test, it is assumed that the population 

distribution is fully specified (i.e. it assumes that 

you know the mean and Standard deviation (SD) 

of the overall population perhaps from prior 

work). When analyzing data, you rarely know the 

overall population mean and SD. You only know 

the estimated mean and SD from your sample. In 

addition, this test tends to be more sensitive near 

the center of the distribution than at the tails and it 

appears to waste information by using only the 

largest discrepancy between cumulative 

distribution of the sample and a cumulative 

normal distribution [4]. 

This test (K-S test) is used to decide if a sample 

comes from a population with a completely 

specified continuous distribution [4,5]. The null 

hypothesis of this test is that the data follow a 

specified distribution and an alternative 

hypothesis tells that the data do not follow it. The 

test statistic is based on the maximum distance 

between the empirical distribution function (EDF) 

of the sample and the cumulative distribution 

function (CDF) of the reference distribution [4]. 

In the special case of testing for normality, the 

EDF is compared with the CDF of the normal 

distribution and the normality hypothesis is 

rejected if the test statistic exceeds the critical 

value obtained from tables may be found in 

conover (1999) or in many of general statistical 

tables [4,5]. When the mean and SD of population 

distribution are unknown and are estimated from 

the sample (practical situation), the power of the 

test to detect departures from the normal 

distribution may be seriously reduced. So for this 

situation, a modification of the Kolomogorov-

Smirnov test, Lilliefors test, is used [6]. 

The null hypothesis for Lilliefors test is that the 

data is normally distributed with unknown mean 

and standard deviation and the alternative 

hypothesis tells that the data is not normally 

distributed. The critical region of the K-S test is 

no longer valid when mean and SD of the 

population is estimated from sample [6].It is 

suggested that the probability of a type I error will 

be smaller than as given by tables of the K-S 

statistic [7,8]. 

Lilliefors used the Monte-Carlo method to 

compute an approximation of the sampling 

distribution of the test statistic. For this procedure, 

a large number of samples are selected from a 

normal population and the values of the test 

statistics are calculated for each of these samples. 

An approximation of the sampling distribution of 

the test statistic under the normality assumption is 

obtained by the empirical distribution of the 

values of the test statistics [4]. 

In order to conduct the Lilliefors test of normality, 

first, one can estimate the population mean and 

variance from the sample data. Then the 

maximum discrepancy between the EDF and the 

CDF of the normal distribution can be found with 

the estimated mean and estimated variance, this 

will be the test statistic. Finally, finding out 

whether the test statistic is large enough to be 

statistically significant is of interest, this is where 

this test becomes more complicated than the K-S 

test [4]. Since the hypothesized CDF has been 

moved closer to the data by estimation based on 

those data, the maximum discrepancy has been 

made smaller than it would have been if the null 

hypothesis had singled out just one normal 

distribution. Thus the ”null distribution” of the 

test statistic, i.e. its probability distribution 

assuming the null hypothesis is true, is 

stochastically smaller than the 

KolmogorovSmirnov distribution. This is the 

Lilliefors distribution [9]. 

In this paper, we point out the way of checking 

the normality assumption by the lilliefors test in 

most widely used statistical software packages 

such as SPSS, S-PLUS, R and StatXact. We use a 

dermatology dataset to illustrate how the use of 

the one-sample K-S test instead of Lilliefors test 

can be misleading. Also through Monte Carlo 

simulation, we can find out which tests are more 

powerful. So a brief Monte Carlo investigation is 

made to compare the approximate power of the 

one-sample K-S test (with the estimated 

population mean and SD) with Lilliefors test in 

some common specified distributions. 

 

MATERIAL AND METHODS 
Applied example 

A dermatology data gathered by Shohada-e-

Tajrish Skin Research Center is applied to 

illustrate how wrong is the use of the K-S test 

(with the estimated population mean and SD) 

instead of its modification. This study was 
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performed to compare the serum Antioxidant 

levels in 30 patients with pemphigus vulgaris, an 

auto-immune blistering disorder, and 30 healthy 

individuals referred to two major Hospitals of 

Shahid Beheshti University of Medical Sciences 

named Shohada-e-Tajrish and Loghman-e-Hakim 

Hospitals. 

Simulation 

For Monte Carlo simulation, ten thousand 

samples of sizes 30 and 50 are drawn from each 

of several distributions. These distributions are of 

different shapes where some look like the normal 

distribution while others are substantially 

different. A Uniform (0,1) distribution; a 

Lognormal (1,1.3) distribution; a Logistic (0,1) 

distribution; a Normal (0,1) distribution; two t 

distributions and two chi-square distributions with 

degrees of freedom 3 and 30 are included in this 

power investigation and Results for type-one error 

(Alpha)=0.05 is reported. 

The computation of the approximate power is 

done as follows. A random sample of size n is 

generated from a given non-normal distribution 

and it has seen how many times the null 

hypothesis of normality has been rejected. For 

applied example and simulation study the SPSS 

16.0.0 and R 2.10.1 were used, respectively. 

Statistical softwares 

The way of computing the Lilliefors test in SPSS, 

S-PLUS, R and StatXact softwares is as follows: 

SPSS: Analyze Descriptive Statistics  

Explore Plots normality plots with tests (For 

testing against a normal distribution with 

estimated parameters) 

S-PLUS: Statistics  Compare Samples  One 

Sample Kolmogorov-Smirnov GOF (if the mean 

and SD of the population are not specified by the 

user) 

R software: lillie.test (), one should install the 

package nortest in advance. 

StatXact: Statistics  One Sample Goodness of 

Fit  Lilliefors 

It is worth mentioning that StatXact 8 is 

professional software (now with 140 exact tests 

and procedures) for conducting many of 

nonparametric tests. 

 

RESULTS 
     We assess the normality assumption of the two 

variables, Direct Bilirubin and Serum Selenium, 

in the case group by using the one-sample 

Kolmogorov-Smirnov (with estimated population 

mean and variance) and Lilliefors tests. The 

results are shown in table 1. As it can be seen in 

table 1, for both variables the one-sample 

Kolmogorov-Smirnov test dose not rejects the 

normality assumption while the Lilliefors test 

dose. Also graphical methods mentioned before, 

show the non-normality of the two variables. 

 
Table 1: P-values obtained by one-sample K-S (with 

estimated population mean and Variance) and Lilliefors tests 

for checking normality of the two variables 

variables K-S test Lillifors 

Direct Bilirubin 0.155 0.002 

Serum Selenium 0.336 0.024 

 

Table 2:  Probability of rejecting hypothesis of normality using K-S (with estimated population mean and Variance) and lilliefors 

test when sample sizes are 30 and 50.the numbers are result of Monte Carlo calculations with 10000 samples for each distribution. 

 n=30 n=50 

distribution K-S test Lilliefors K-S test Lilliefors 

Normal(0,1) 0.0001 0.0505 0.0003 0.0508 

Lognormal(1,1.3) 0.7019 0.9848 0.9727 0.9998 

Logistic(0,1) 0.0012 0.0894 0.0014 0.1100 

t(3) 0.0538 0.3382 0.1085 0.4905 

T(30) 0.0003 0.0594 0.0002 0.0554 

)3(2
 

0.0441 0.5749 0.1482 0.8245 

)30(2
 

0.0011 0.1026 0.0012 0.1333 

Uniform(0,1) 0.0004 0.1500 0.0007 0.2515 
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Figure 1: Serum selenium histogram chart Shapiro-Wilk: p-value=0.0494      Figure 2: Direct bilirubin histogram Shapiro-Wilk: p-value=0.0003 

Figure 3: Normal quantile plot of Direct bilirubin Figure 4: Normal quantile plot of serum selenium 

 

The p-value obtained by the Shapiro-wilk 

checking normality assumption of Serum 

Seleniume and Direct Bilirubin are 0.0494 and 

0.0003, respectively. as we can see, these values 

are in the direction of Lilliefors test results. 

Also,Q-Q plots and histograms of the two 

variables suggest the non normality of data (figure 

1-4 ). The results of the simulation study are 

shown in table 2. From this table we can see, for 

two tests the power was quite large for lognormal 

distribution. The power of Lilliefors test is better 

than Kolmogorov-Smirnov test for all 

distributions that assumed. For the chi-square 

distribution with 3 degree of freedom, the 

Kolmogorov-Smirnov test has a much lower 

power than the Lilliefors test. When sample size 

of simulation was 30, it was 0.04 and 0.57 for K-S 

and Lilliefors test, respectively and those were 

0.15 and 0.82 when sample size was 50. 

 

DISCUSSION 
     In this paper, different distributions were used 

to compare the powers of Lilliefors and 

onesample K-S test (with the estimated population 

mean and SD). For all the distributions and two 

sample sizes mentioned in the table 2, the power 

of the Lilliefors test is consistently better than the 

one-sample K-S test. 

For these two tests, detecting non-normality is 

difficult when the observed distribution looks like 

to normal distribution and this difficulty increases 

with larger degrees of freedom. We can see from 

table 2 that with increasing the degrees of 

freedom of the t and chi-square distributions, the 
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power of two tests decreases. In theory, with 

increasing degrees of freedom, the t-distribution 

behaves like the normal distribution. So the K-S 

test has much lower power than Lilliefors test 

when the distribution gets closer to normal. 

Although the Lilliefors test is more powerful than 

one-sample K-S (with the estimated population 

mean and SD) but, there are more powerful tests 

for checking the normality assumption such as 

Shapiro-Wilk test and Anderson-Darling test[10]. 

No matter which normality test is used, it may fail 

to detect the actual non-normality of the 

population distribution if the sample size is small 

and with large sample sizes, a small deviation 

from normality will lead to rejection of the 

normality hypothesis. As a guideline, for sample 

sizes smaller than 30, one can always assume 

non-normality of the distribution. For large 

samples (n>100) If formal test is not significant, 

one can accept normality otherwise double-check 

the assumption using graphical methods. For 

moderate sample sizes (30-100), if the test is 

significant, one can accept non-normality 

otherwise double-check using graphs [11]. 

 

CONCLUSION 
     In practical situation where the mean and SD 

of population distribution is not specified in 

advance, one should use a modification of the K-S 

test (Lilliefors test) for checking the normality 

assumption and specially in SPSS package, one 

should be aware of not using the nonparametric 

one-sample K-S option. 
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