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ABSTRACT 
Nowadays, developements in nanotechnology have leeds an increased application of this newborn 

technology in cancer treatment. In this study, a stabilized micelle was developed to load HpD in order to be 

used in photodynamic treatment of cancer in an animal model. To construct micelles, Pluronic P-105 was 

used and stabilized to encapsulate HpD. This process includes a 24 h polymerization in which the first 3.5 h 

was in the presence of N2 purge and was continued at 65°C. In this reaction, NNDEA and benzoil peroxide 

(BP) were used for stabilization of micelles and initiation of reaction, respectively. DLS analysis of micelles 

revealed that the size of them before and after drug encapsulation was 14 nm and 23.5 nm, respectively. To 

assess drug loading, drug standard curve was obtained and its loading was obtained as 2 mg/ml. To extract 

free drug from complex, it was dialyzed against water and its stability profile was measured up to one month 

which was more than 80%. According to obtained results, this complex could be used to reduce side effects 

in photodynamic therapy. Besides, according to tumor characteristics and physical properties of micelles, it 

is possible to enhance drug release and uptake at tumor site. 
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INTRODUCTION 
Application of nanotechnology and 

nanoparticles in medicine is continuously being 

improved especially in cancer diagnosis and 

treatment [1-6]. Although significant advances in 

the definition of cancer, the problem of targeting 

cancer cells still exists. Nanotechnology has the 

capability to target cancer cells and reduce side 

effects to normal tissues [7-9]. Among several 

modalities in treatment of cancer, one with 

targeting potential is photodynamic therapy in 

which it is possible to enhance treatment 

efficiency using nanotechnology [10]. In this 

method, a photosensitizer drug is injected 

systemically or locally to patient and due to drug 

biokinetics and tumor physiology, drug is 

accumulated in tumor tissue and then tumor tissue 

is exposed to laser light which leads to production 

of cytotoxic agents and destruction of tumor 

tissue [11, 12] which is being used in a wide 

range of cancers [11, 13, 14]. The main problem 

in this method, is hydrophobicity of 

photosensitizer drugs which after injection and 

before reaching tumor tissue, disassemble and 

exits body via several pathways [12, 15, 16]; this 

causes a reducion in drug uptake by tumor and 

reduced treatment efficiency.  

To overcome this problem and increase drug 

retention in vivo, one way is to use nanocarriers 

such as liposomes, micelles and polymeric 

nanoparticles [6, 17-22] which depend on drug 

type and its chemical properties [1, 2, 5, 23-26].  

In this work, due to wide range of HpD 

applications in photodynamic therapy, HpD  

loaded nanomicelles were synthesized and their 

size and stability were assessed. This complex has 

the merit of its hydrophobic-hydrophilic structure 

which enables an enhanced circulation time [16, 

18, 27, 28] and has the capability to be used in 

treatment of a wide range of cancers.  

 

MATERIALS AND METHODS 
Chemicals 

Hematoporphyrin (HpD) was obtained from 

Merck (Merck KGaA, Darmstadt, Germany). 

Pluronic P-105 was provided by the BASF Corp. 
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(Mount Olive, NJ, USA). N-NDiethylacrylamide 

(NNDEA) was obtained from Polysciences 

(Warrington, USA). N,N
’
-Bis(acryloyl)cystamine 

(BAC) was obtained from Fluka (Sigma–Aldrich, 

UK), and benzoyl peroxide (BP) was obtained 

from Merck (Merck KGaA, Darmstadt, 

Germany). 

Methods 

Polymeric micelles were prepared using Pluronic 

P-105, which is a triblock copolymer consisting 

of blocks of poly propylene oxide (PPO) and poly 

ethylene oxide (PEO) in the form PEO37–PPO56–

PEO37. A solution of NaCl and 10 wt.% Pluronic 

P-105 in distilled water was added to a round-

bottom balloon, which was stirred for 20 min 

while immersed in a water bath under a nitrogen 

purge at a temperature of 65°C. A mixture of 

BAC, BP and NNDEA (26:1:55 weight ratio) was 

added to above solution and it was allowed to stir 

at this temperature under a nitrogen purge for 3.5 

h. After turning off nitrogen flow, the mixture 

was allowed to polymerize for 19.5 h. The size 

distribution of the micelles was measured by 

dynamic light scattering (DLS) (Malvern 

Instruments Ltd., Malvern, UK). 

To load HpD into nanomicelles, diluted solution 

of drug in distilled water was mixed with solution 

of stabilized nanomicelles and stirred gently to 

form a uniform solution. The resultant solution 

was dialyzed against water for 3 h (5 kDa cut off) 

to extract free drug from encapsulated drug 

solution. Finally, using flourimetry (Jasco FP-

6200, Tokyo, Japan), a standard curve for 

encapsulated drug was ploted; to do so, excitation 

and emission wavelength were set at 320 nm and 

480 nm respectively and by adding known 

amounts of drug to micellar solution, this standard 

curve was obtained; so it is possible to measure 

drug loading in nanomicelles (29). Size 

measurements of complex were similar to size 

measurements of nanomicelles. Finally, stability 

profile of complex was obtained for 30 d at 4 °C.  

 

RESULTS 
      Figure 1 shows DLS results of nanomicelles. 

As it is observed, the mean diameter of 

nanomicelles is 14 nm. In this graph, vertical axis 

shows the intensity of scattered laser light and the 

horizontal axis shows size of nanomicelles and 

light intensity at each size is a measure of number 

of particles in that size. Figure 2, shows the 

fluorescence spectrum of HpD; to obtain this 

spectrum, flourimetric measurements were done 

from 300 nm to 600 nm which covers drug 

excitation wavelength (320 nm) and drug 

emission wavelength (480 nm). 
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Figure 1. DLS results of micelles without drug in 

which mean diameter is 14 nm.  
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Figure 2. Fluorescent spectrum of 

Hematoporphyrin with its excitation and emission 

peaks.  

 

According to these flourimetric characteristics of 

HpD, it is possible to draw a drug standard curve 

in nanomicelles as figure 3 and measure drug 

loading. In this graph, horizontal axis shows the 

amount of fluorescent emission of sample and 

vertical axis shows micellar drug concentration in 

mg/ml and linear regression equation of these data 

is presented on this graph. Using this standard 

curve, each time after complex synthesis, it is 

possible to find out drug concentration in 

nanomicelles from its fluorescent emission. As it 

is shown in this figure, maximum loading of drug 

in micelle is 2 mg/ml. 
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Figure 3. Standard curve for drug loading into 

micelles with its linear regression equation.  
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Figure 4. DLS results of complex in which mean 

diameter is at 23.5 nm.  
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Figure 5. Stability profile of complex normalized 

to first day for one month .  

 

 

 

 

 

 

After measurement of micellar drug loading, their 

size distribution was determined using DLS 

which results are presented in figure 4 and mean 

diameter of complex was obtained as 23.5 

nm.Another important characteristic of complex is 

its stability versus time; to do so, fluorescent 

emission of drug was measured at different times 

from its synthesis up to one month at 4 °C and the 

amount of fluorescent emission was normalized to 

first day. Because drug release from complex 

leads to a decrease in fluorescent emission at the 

above mentioned emission wavelength, it is 

possible to use this parameter as a measure of 

complex stability which is shown in figure 5. In 

this figure, the percentage complex stability is 

shown on vertical axis and measurement time is 

presented on horizontal axis up to one month. As 

it is obvious from this graph, complex stability 

reaches a level of 80% after one month. 

 

DISCUSSION 
      A polymeric drug carrier for HpD to be used 

in photodynamic therapy was presented. One of 

the merits of this family of polymeric drug 

carriers is their hydrophilic-hydrophobic structure 

which enables one to enhance delivery of 

hydrophobic drugs; besides their PEO-PPO-PEO 

structure, forms a self-assemble platform that 

collapses by sonication and releases their drug 

loading and makes them good candidates for 

treatment of a wide range of cancers [11-13, 30].  

 

CONCLUSION 
      The presented HpD complex has the 

possibility of using in photodynamic therapy of 

several tumors such as GI tumors in experimental 

animal models. Besides, it is possible to use this 

complex in targeted therapy in which local 

sonication causes drug release in deeply sited 

tumors without any worry about side effects 

similar to ionizing radiation. Because of tumor 

vasculature, drug is accumulated in tumor 

passively and local sonication of tumor causes an 

enhanced drug uptake due to sonoporation. 
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