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ABSTRACT 
      
      An accurate potential function is essential for protein folding problem and structure prediction. 
Two different types of potential energy functions are currently in use. The first type is based on the 
law of physics and second type is referred to as statistical potentials or knowledge based potentials.  
In the latter type, the energy function is extracted from statistical analysis of experimental data of 

known protein structures. By increasing the amount of three dimensional protein structures, this 
approach is growing rapidly. There are various forms of knowledge based potentials depending on 
how statistics are calculated and how proteins are modeled. In this review, we explain how the 
knowledge based potentials are extracted by using known protein structures and briefly compare 
many of the potentials in theory. 
 

Keywords: Knowledge Based Potentials; Reference State; Accessible Surface; Protein Structure; 

Decoy Structure. 

 

 

INTRODUCTION            

       Proteins are macromolecules that are 
formed by amino acids and linked together 
with peptide bonds. These biological 
macromolecules perform a wide variety of 
functions in organisms such as catalysis 
reactions and transporting. Also, almost all 
diseases can be related to the function or 

malfunction of proteins. The function of 
proteins is a consequence of their unique three 
dimensional structures and through their 
binding to other molecules such as DNA, 
RNA or proteins. 
       In 1973, Anfinsen [1] showed that the 
structure of protein is dictated by its amino 

acid sequence. In fact, he showed that an 
unfolded protein could refold to its 
biologically active conformation. Therefore, 
the main problem in protein research is 
modeling and predicting the relationship 
between sequence and structure. Anfinsen’s 
results led to the thermodynamic hypothesis of 

folding, which demonstrates that the native 
structure of proteins fold in the lowest 
potential energy function. Therefore, based on 
this hypothesis all studies of proteins 
including structure prediction, folding 
simulation and protein design depend on an 
accurate energy function.   
     Two different types of potential energy 

functions are currently in use. The first type is 

based on the law of physics. In physical 
energy function, a molecular mechanics force 
field is used. Molecular mechanics force fields 
such as AMBER [2-6], CHARMM [7-8], 
GROMOS [9], ECEPP [10-12] and OPLS [13-
14] are parameterized from ab-initio 
calculation and small molecular structural 

data. They are essentially summation of pair 
wise electrostatic and Vander Waals 
interaction energies, bonds, angles and 
dihedral angles terms. In addition, terms such 
as entropy and solvent effect are implicitly 
included [15-16]. These potential functions are 
very time consuming, so these functions have 

been out of favor in protein structure 
prediction [17]. 
     To reduce computational complexity, 
second type of potential energy function is 
used. These types are referred to as statistical 
potentials, knowledge based potentials, 
scoring functions or empirical potentials [17]. 

In this type, the energy function is extracted 
from statistical analysis of experimental data 
of known protein structures [18-25]. In the last 
decades, this approach was rapidly growing as 
a consequence of the increasing amount of the 
experimentally determined three dimensional 
protein structures. There are various forms of 
statistical energy functions depending on how 

statistics are calculated and how proteins are 
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modeled [26], e.g. distance independent 
contact energies[27-35], solvent accessible 
surface potential[22,25,31], packing density 
potentials, distance dependent 

potentials[20,27,36-50] and angular 
dependence[31, 51-54]. Recently, combination 
of these statistics such as distance and 
orientation are widely used [55-64]. Initially, 
statistical potentials were based on statistical 
mechanics and Boltzmann law [27,55,65], but 
recently employ many other ideas, such as 
conditional probabilities [39], linear and 

quadratic programming on various decoy sets 
[66-68] and information theory [69-72]. The 
dependence of statistical potentials on 
structural data base is also studied [73-74]. 
     Most often, statistical potentials use the 
Boltzmann law to convert the observed 
frequencies into potentials. These potentials 

are obtained as the ratio of observed and 
expected frequencies, where the observed 
frequencies are the number of occurrence in 
known protein structures and expected 
frequencies are the number of occurrence in 
the absence of any interaction which serve as 
reference states. Therefore, depending on this 

consideration, there are various forms of 
statistical potential functions.  
     In this review, we explain how the 
statistical potentials are extracted by using 
known protein structures and briefly compare 
many of the potentials in theory. 
 
Derivation of knowledge based potentials 

     For derivation of knowledge based 
potentials, at first, the structural representative 
of protein reduced to the coordinates of Cα, Cβ 
or side chain centers or all atoms. Once the 
amino acid sequence and reduced structure are 
given, the protein descriptors are extracted. A 
descriptor can be, e.g. the distance between 

pair of atoms, solvent accessible surface area, 
backbone or side chain dihedral angle, packing 
density or any other features of protein. 
Therefore, a protein structure can be 
represented by a vector                

where each    is a descriptor. 

     Knowledge based potentials are a simple 
consequence of the Boltzmann distribution. 
According to the Boltzmann law, the 
distribution of protein molecules among the 
microscopic states at the equilibrium state is 
related to potential function that means for a 

microstate C (descriptor) the probability of 
occupancy P(c) connects to potential function 
E(c) as follows: 
 

     
      

    
  

 

 
        

 
Where R is Boltzmann constant and T is the 
absolute temperature measured in Kelvin and 
Z is the partition function: 
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From equation (1): 
 

                       
 
     The efficient knowledge based potential 
must consider the sequence-structure relation 
of protein, so the energetic interactions that 
are independent of the protein sequence and 
protein structure must be removed. This 

energetic contribution is referred to as 
reference state. That means 
 

                  
 

 So, the efficient potential energy is 

            (
    

     
)     (

 

  
) 

 

where,        is the probability of the 

descriptor c in the reference state. Z and Z’ are 
both constant and usually assumed that Z=Z’. 
So 

            
    

     
  

 
By assuming that the probability distribution 
to each descriptor is independent, we have:  
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Therefore: 
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where,       and        are the probability of 

the ith descriptor in native proteins and the 
reference state, respectively.       can be 

estimated by counting frequency of ith 
descriptor in data base of native protein 

structures and        is the probability of the 
ith descriptor in reference state. Therefore, the 

choice of reference state is critical and 
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effective for knowledge based potentials. The 
portion of ith descriptor energy     is 

          
     

      
      

 

Distance dependent potentials 
Descriptor for distance dependent potentials is 
distance of interactions such as distance 
between pair of atoms or residues. The 
distance of interactions is usually divided into 

a number of small intervals. We use (i,j,d) to 
represent the kth descriptor ck . The effective 
energy function is equal to 
 

      
           

           
 

 

where,             represent the observed 
number of (i,j,d) interacting pairs which can 

be estimated from database of known protein 
structures and             represents the 

expected number of (i,j,d)  interacting pairs in 
the reference state which typically results from 
calculations or simulations.  
     The major difference of these types of 
potentials is in the atom type definition and 
derivation of the reference state. Sippl [20] 
first proposed a model of reference state which 
is known as the “uniform density” [75]. He 
assumed that each pair of contacting atom 
types in reference state is uniformly 
distributed along the distance between them. 

Based on this assumption Samudrala and 
Moult [39] calculate the             as 

 

 
         

      
        

 
where,         is the number of occurrences 

of interacting of any atom type at distance d 
and        is the total number of interacting 
pairs observations.  

     Lu and Skolnick [40] employed a quasi-
chemical approximation and estimated 
            as 

 

                        

 
   where    is the mole fraction of atom type k. 

The higher population of hydrophobic residues 
than that of hydrophilic residues at the core of 
proteins led to unphysical long range repulsion 
between hydrophobic residues in statistical 

potential based on Sippl’s Assumption [76]. 
Zhou and Zhou [46] proposed a reference state  
 

                          
  

    
 

 
by assuming that atom types can be modeled 
as ideal gas molecules (called DFIRE for 
distance scaled finite ideal gas reference 
state). In fact in this model, it is assumed that 

the distribution of interaction pairs follows the 
uniform distribution in whole volume of the 
protein [75]. The DFIRE reference state is as 
where           and    is the volume of a 

spherical shell of width    at distance   from 

the center.  
      In 2006, Shen and Sali used no interacting 
atoms in a homogeneous sphere (called DOPE 
for Discrete Optimized Protein Energy) as 
reference state [48]. DOPE and DFIRE were 
derived from a non-interacting ideal gas 
reference state with the difference that in 

DOPE the size effect of proteins takes in to 
account.  
    Side chain packing is very important 
determinant for protein structure [77]. 
Described knowledge based potentials are 
limited in their ability to describe side chain 
packing. Recently, the orientation dependent 
and all atom potential (called OPUS-PSP) 

have been proposed. In this potential function 
a set of 19 rigid body blocks were extracted 
from the chemical structures of 20 amino acids 
to capture the feature of side chain packing. 
[63]  
    Protein is a continuous sequential chain of 
amino acids and reference state should 

correctly reflect and counteract the chain 
connectivity effect. The ideal gas reference 
state cannot be able to capture this feature 
[78]. Recently, Cheng etal, proposed a more 
physical reference state that is based on free 
rotating and self avoiding chain model [79].  
    In 2007, Rykunov and Fiser proposed a 

reference state which atoms assumed to be 
random [80]. Consequently, a good model to  
approximate such model would be a system 
with randomized particles. 
     Zhang and Zhang, proposed a random walk 
ideal chain as the reference state [78]. This 
reference state was derived from a linear 
freely jointed chain model, which can be 

considered as the segment of an ideal polymer 
chain performing a random walk in three 
dimensional spaces. 
Some other definitions, such as the use of 
decoys were also suggested [66-68]. 
Recently, Mirzaie et al introduced a 
knowledge based distance dependent force 
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extracted from knowledge based potentials 
[50]. 

 

Interaction center in statistical 

potentials 
    Various representations for interaction 
centers have been introduced. Two major 

representations are residue or atom level. In 
residue level, CA, CB or side chain centroids 
are used and then extended alphabet based on 
occurring amino acids extracted [27, 42-43, 
45, 81-82]. Side chain to backbone and side 
chain to side chain residue potential is also 
introduced [54]. 
     In successful energy function two 

interaction centers per residue namely CA 
atoms and the side chain center of mass (CA 
atom in Glycine) were considered [83]. CB 
atoms were also used for representation [84]. 
     Another representation is all heavy atoms. 
In a strict physicochemical point of view, all 
the atoms with different environments, 

connectivity and chemical nature would be 
different. Among all the 20 amino acids the 
total number of heavy atoms is 167 and the 
number of nonequivalent heavy atoms is 
98[50]. Some models such as DFIRE use 167 
residue specific atomic types [47], but to 
reduce this number and raise observed 

frequencies, various atom type definitions 
have been considered [44, 61, 50, 85]. For 
example, four atom types containing carbon, 
nitrogen, oxygen and sulfur were considered 
by Mirzaie, et al [50], a total of 19 different 
atom types were used by Ferrada and Melo 
[86], a total of 40 atom types were considered 
for all heavy atoms in the 20 amino acids by 

Melo and Feytmans [44]. All pairs of non-
hydrogen atoms in each of the 20 amino acids 
ignoring the N-terminal and C-terminal 
nitrogen and oxygen atoms containing 158 
residue dependent atom types were considered 
by Shen and Sali [48] and Mingyang, et al 
[63].   

    Also, a clustering algorithm was used to 
group atom types by similarity. In fact, from 
an initial 167 atom types, 12 different atom 
types were extracted [32]. 
 
Accessible surface potentials 

     Solvent effects and hydrophobic 

interactions are known as important 
characteristic for protein folding [87]. So, 
calculation of the solvent accessible surface 
area is very important to estimate solvation 
energies [88, 89]. Zarei, et al presented a 
method for prediction of protein surface 

accessible with information theory [90], and 
Naderi Manesh, et al presented a method 
based on residue type and conformational 
states [91]. 

     The accessible surface of an interaction 
center is defined as the number of interaction 
centers within a sphere around it and the 
radius of the sphere is the distance range of the 
potential. This type of potentials has been 
described by Sippl method [22, 25]. 
 

Contact potentials 
     Contact potentials are the simplest 
description of pair-wise potentials. They are 
similar to the distance dependent potentials. 
These types of potentials have two values; 
below the contact distance threshold, energy is 

assigned to interaction and above it energy is 
zero.  
     In the contact potential, the distance 
between the centers of interacting pairs are 
calculated and the observed frequency of 
contacts between residues converts to free 
energy using Boltzmann equation. In this way, 
two problems may be encountered. First, when 

an atom or center of mass is selected for each 
residue, calculated potential is independent of 
orientation of the side chains and when the 
distance between two atoms of two residues is 
equal to the distance of two atoms of other 
residues in other positions, the same potentials 
are assigned to them although the orientation 

of two residue side chains may be quite 
different. Second, the atoms of two residues 
may not have direct contact with each other 
and some atoms may be located in an interval 
close to them [92]. 
     Delaunay tessellation is a geometrical tool 
that is used in protein structure analysis. In 
fact, voronoi tessellation partitions the space 

into convex poly-topes called voronoi 
polyhedra. For a given protein, the voronoi 
polyhedra is the region of space around an 
atom, such that all points of this region are 
closer to this atom than to any other atoms of 
the protein. A group of four atoms, whose 
voronoi polyhedra meet at one vertex, forms 

another basic topological object called, the 
Delaunay tessellation simplex. So we can 
consider two atoms are in contact, if they are 
two vertices of an edge in a simplex [50].  
     In 2010, Arab et al [92] developed a new 
approach to calculate a knowledge-based 
potential energy using pair-wise residue 

contact area. They calculate the parts of each 
pair-wise residue area which are in contact in 
2Å by rolling a probe ball of different sizes 
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around the atoms of a residue to determine the 
contact area of each pair. This pair-wise 
contact area is used to determine statistical 
contact area preference between each residue 

pairs, when a contact area preference estimates 
a sum of energetic interactions and structural 
constraints. 
 

Composite potentials 
     Some potential combine various terms, 

including hydrogen bonding, torsion angle, 
solvation, pair-wise potential in residue level, 
or all atom level and some terms of physical 
energy function. For example, ROSETTA 
scoring function [93,94] combines sequence 
dependent and sequence independent features 
of protein. A composite residue level potential 

was introduced that combined contact and 
local sequence structure descriptions [95]. In 
2007, a hydrophobic potential of mean force, 
generalized Born function and Amber 99 force 
field were combined [96]. The distribution of 
pseudo-bonds, pseudo-angle, pseudo-dihedrals 
and distances between centers of interactions 
was converted into potentials of mean force in 

PC2CA model [83]. The QMEAN  scoring 
function is a successful composite potential 
which consist of 6 different terms; distance 
dependent pair-wise potentials, solvation 
potential, torsion angle potential, secondary 
structure specific and solvent accessibility[97-
98].Another composite potential, in residue 

level [62] and all atom version [63] combines 
distance dependent pair-wise potential with 
orientation preference, hydrogen bonding, 
packing, three body interactions and salvation 
terms. 
 

Validation of potentials functions 
     For assessing potential function, it must be 
able to distinguish protein native structure 
from protein-like decoys. In fact the energy of 
native structure must be lowest among energy 
of decoy structures. Another challenging test 
of energy function is discrimination of near 

native structures that means, in absence of the 
native structure, the energy of structure with 
minimum RMSD to native structure must be 
minimum. 
     In addition, the correlation coefficient 
between the energy of a model and RMSD 
should be close to 1, i.e., proteins with high 
RMSD have high energy. 

The Z-score of the native structure in the 
decoys set is equal to  
   

        
〈       〉        

       
               

In which         is the energy calculated for 

native structure and 〈       〉 and         are 

the average and the standard deviation of 
energy distributions of decoys proteins, 
respectively. For a good energy function, Z-

score should be high. 
One of the most popular decoy data sets is 
available in the Decoys'R'us database under 
the category 
'multiple'(http://dd.compbio.washington.edu). 
This data set contains the ig_structal_hires, 
4state_reduced, fisa_casp3, fisa, vhp_mcmd, 
semfold, hg_structal, lmds, ig_structal and 

lattice_ssfit. These decoys are obtained with 
different methods and are very appropriate for 
assessment of model. 
     The 4state-reduced decoy set contains 7 
different proteins. For each protein, 632 to 689 
native like conformations are present in the 
dataset. This decoy set was generated using a 

four-state off lattice model with a 
conformational relaxation method [99]. 
     The fisa and fisa_casp3 decoy sets with 
four and six targets (500–1400 models per 
target), respectively, were obtained using a 
combination of a Bayesian scoring function 
and a simulated annealing protocol [100,101]. 

The ig_structal, hg_structal and 
ig_structal_hires decoy sets contain 
immunoglobulins (ig) or globins (hg) created 
by homology modeling. 
     The largest lattice_ssfit decoy set, 
containing 2000 decoys for each of the eight 
targets, was generated using a tetrahedral 
lattice model with the all-atom ENCAD 

energy function [99]. The ranges of RMSD 
from native for all 8 proteins in the set are 
larger than 4Å. 
     The lmds set includes decoys with RMSD's 
less than 10 Å. lmds decoy set with 215–500 
models for each one of 10 primarily short 
targets, was obtained by a local optimization 

method and a reduced ENCAD energy 
function [103]. 
     The semfold set includes a very large 
number of decoys for each of the 6 proteins. In 
some cases RMSD from native are in range 3 
Å to 5 Å. This decoy set was generated by 
fragment insertion method. This decoy set is 

the most challenging, since it has more than 
10000 decoys for each of the six targets. The 
vhp_mcmd decoy set has been generated by 
molecular dynamics simulations. 
     The ROSETTA decoy set presented by 
Baker and coworkers [104,105] contains 20 

http://dd.compbio.washington.edu/
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random models and 100 lowest scoring 
models from 10,000 decoys, which were 
generated for 58 small proteins using 
ROSETTA de novo structure predictions 

followed by all-atom refinement. This data set 
is downloadable at 
http://depts.washington.edu/bakerpg. 
     The I-TASSER decoy set includes the 
atomic structure decoys generated for 56 non-
homologous small proteins. The backbone 
structures were first generated by the I-
TASSER ab initio modeling by Wu et al. 

[106], where for each protein target 12,500–
32,000 conformations were taken from the 
trajectories of 3 lowest-temperature replicas of 
the simulations. A full set of I-TASSER 
decoys is downloadable at 
http://zhanglab.ccmb.med.umich.edu/decoys. 
 

DISCUSSION 
     The results of energy functions depend on 
the presence or absence of the native structure 
[80]. Often, all atom potential on the presence 
of native structure have very good 
performance, but in the absence of native 

structure, residue based, all atom and 
composite potentials perform competitively 
[80]. For example, the composite potential 
QMEAN6 [97,98] and residue level potential 
[84] are the best performing potentials, where 
the native structure were absent while some 
potentials have better performance in the 

presence of native structure. 
     Recently, some different approaches for 
discrimination of native structure from decoys 
have been presented. For example, graph 
theoretic properties including average degree 
and clustering coefficient of protein graph 
have been used to perceive the difference 
between correctly folded proteins and decoys 

[107,108]. Decoy discrimination method using 
wavelet analysis [109] and a simple approach 
based on network pattern of conserved 
hydrophobic residues have been also presented 
[110]. An approach by using machine learning 
and neural network and evolutionary 
information [111], and a physical method 

based on force is also presented [50]. The 
majority of knowledge based potentials are 
pair-wise, but multi body potentials were also 
reported [112-117]. 
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