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1, Introduction

Most econometric ventures are experiments in non -experimental model build-

ing, and most economic observations are generated by a system where everything

depends en everything else, and variables tend-to move together over time. At-

tempts to capture the parameters of economic relations from these passively gen-

erated data means that in many cases the investigator must work with highly but

not perfectly correlated sample information for the explanatory variables in con-

ventional linear statistical models. The multicollinear characteristics of some

fion-experimental economic data imply that society's experimental design is such

that the sample data in many cases are not rich enough to support a statistical

search of the parameter space and permit the unknown parameters to be accurately

estimated. Given this situation emphasis in the literature has centered on (i)

detecting the existence, measuring the extent, and identifying the cause of multi

collinearity [9, 17], and (ii) mitigating its impact through for example, the use

of principal components [14] and factor analysis [16], or through procedures for

enriching the sample information by say ccir.bining san.ple :rTiri external informa-

tion, in the form of linear restrictions [20,21].
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Against this background of work, we are interested in the impact of the

incidence of near collinearity on the performance of and the choice among esti-

mators for the general (non -orthogonal) regression model. As a basis for

analyzing this choice problem, we broaden the family of estimators considered

, beyond the class of linear unbiased estimators, use squared error loss as the

measure of goodness, and review and present new analytical results relative to

the performance of conventional, restricted [22] , preliminary test [1,2,5] , and.

Stein-rule estimators [11] . In particular, we generalize the conditional

omitted variable specifications of Feldstein piO] and Toro-Vizcarrondo and

Wallace [20] , Ashar [i], and Wallace [21], as they relate to the multicollinearity

problem , develop the analytical risk function for a ^variety of new Stein-

James estimators [15], and explore hov; the incidence and extent of substantial

collinearity conditions the performance of these estimators.

The plan of the paper is as follows. In section 2 the statistical models ,

*5stimators, and measures of goodness are specified. In section 3 the perfor-

jaance of the alternative estimators under the prediction goal is reviev;ed. In

section 4 the risk functions for the estimators under the estimation goal are

developed and a basis for how near collinearity conditions estimator choice is

specified. Last, section 5 contains a si :miary of results and concluding re^narkc.

2. The Statistical Models, Estimators and Measures of Goodness

Assume the linear statistical model

(2.1) y « X§ + e,

where y is a CT x 1) vector of observations, X is a known (T x K) matrix of

non-stochastic variables of rank K, S is a (K x 1) vector of unkno\\Ti parameters

Said e is a (T x 1) vector of unobservable normal random variables with mean

2

and covariance o l'»
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The conventional estimators

The unrestricted least squares estimator based on the sample information

contained in (2.1) is

(2.2) b - (X'X)" X'y = S X'y,

where b is distributed normally with mean 3 and covariance a S . As is well

known for the model (2.1), b is the maximum likelihood estimator, is unbiased,

and under a quadratic loss measure is minimax.

When there is almost a perfect linear relation between two or more of the

regressors in this linear statistical model, the S matrix is almost

singulai; and the smallest characteristic root approaches zero. One way tradi-

tionally used to cope with near collinearity is to enrich the sample data by

taking into account other information. If we do this, following Toro-Vizcarrondo

and Wallace [20], Chipman and Rao [7], Wallace [21], and Feldstein [10] , in the

form of J linear restrictions or general linear hypotheses about the unknown

parameters in 3, we may specify this information as

(2.3a) 6=0, with R§ - r = 5,

where r is a (J x 1) vector of knouTi elements, R is a (J x K) Iuiov.ti matrix with

rank J, and is a (J x 1) null vector, 5 is a (J x 1) vector representing spec-

ification errors in the external information and J < K. Since our focus is on

multicollinearity we will for expository ourposes assame the conventional null

hypothesis case R=I.,, and J=K, and r=0. Carrying through the more general case,

as in [4,22], presents no complications but increases the algebra and decreases

the expository sharpness of the results. Under this specification we can now

write (2.3a) as

(2.3b) 5 = §• "

In each case in terms of the estimators, test statistics, etc., v/e will give

both the general and special case.
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The restricted least squares or general linear hypothesis estimator,

which makes use of both the sample and exact prior information or linear hy-

potheses, (2.1) and (2.3), is

f111
(2.4) e = b - S R'(RS R') (Rb - r) = 0.

where 3 has mean square error E(3-3)(S-3)' =66*.

In applied work there is generally Lincertainty concerning the statistical

model that generated the data, and from the standpoint of multicollinearity

there is a question concerning the linear restrictions or hypotheses to use.

In cases such as this the investigator usually proceeds by statistical testing

of the hypotheses followed by estimation. Thus, it is conventional when decid-

ing questions concerning the truth or falsity of the general linear hypotheses

or restrictions (2.3) to use likelihood ratio procedures of the traditional or

Toro-Vizcarrondo and Wallace [20] variety and test the hypothesis H:R3 = r or

$ s= O^against not H, by using the test statistic

(2.5) u= (Rb-r)'(R5 R') (Rb-r)/i^ = b'Sb/Ko .

H is rejected if u is greater than some critical value c, where u is distributed

as the noncentral F distribution with J and T-K degrees of freedom and nonccn-

trality parameter 11 2 2

(2.6) (RB-r)'(RS' R')' (R6-r)2a = 3'S3V2o .

The value of c is determined, for a given level of the test, a, by

(2.7) /~ dF(u) = a,

c

where F is a central F distribution with K and T-K degrees of freedom. By

accepting H, we take B as our estimate of B, and by rejecting H, we use b the

unrestricted least squares estimate.
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In this conventional two stage testing or conditional oir.itted variables

procedure, estimation is dependent on a test of significance, which implies

the use of the preliminary test estimator [2^5],

where 1 ,^ ^(ix) and I, ^ (ul are indicator functions which are one if u falls
(0,c)^ [c,«)

in the interval subscripted and zero otherwise. Thus, when one makes use of

preliminary tests of significance in post data model evaluation in the case of

a highly correlated set of regressors, this is the actual estimator used by

researchers. The mean and covariance for this estimator has been derived by

Bock, et.al. [5].

The Stein-rule estimators

As an alternative to the above conventional estimators, one extension of

Stein-James estimator [11] , for the K means of a multi normal distribution with

identity covariance, to the regression model, results in the following Stein

rule for combining the least squares and restricted least squares estimators [12]

C2.9)
* B* = Cl-cVu)Cb-S) + § = (l-c*/u)b,

where c* is a positive number.

Baranchik [3] and Stein [18] have modified the Stein-Janes estimator into a

positive part version which may be extended for the statistical model (2.2) and

(2.3) in the following way,

(2.10) B* = (l-c*/u)''Cb-6) -^ g = I^^^^^^(u)Cl-c*/u)b,

which has the form B = g.= Oifu<c*,

and a* = a-c*/u1b if u > c*

.
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Building on this work, Sclove, et.al. [15] have developed a modified version

of the Stein-Jar.es estimator which may be extended to our specification in the forn

C2.ll) 3** = I. ^.Cu)(l-cVu)"'(b-3) + 3 = Ir^ .Cu)Cl-c*/u}b

^\

which has the form B** = 3 = ifu<c,

and 3** = (l-c*/a)b, if u > c.

When c = c*, the modified version (2.11) is the same as the extension of the

positive part estimator (2.10).

The measure of goodness

Given this set of estimators we will evaluate the irfipact of multicol line-

arity on the choice of estimator by making use of the quadratic loss function

(2.12) L(3,3) = (3-3) '(3-3) =
| |i-3|

|

where 3 i^ any particular estimator with risk

(2.13) P(3.3) = E[L(3,3)] = E(6-3)'(3-3).

In comparing the risk function of tv/o estimators we will say that the estimator

B is superior to 3 if

(2.14) E(3-3)'(3-3) - E(|-6)'(§-3) < 0, for all 3,

i.e. if the risk of the estimator ^ is less than 3 over the region of the para-

meter space considered. In general, risk functions for alternative estimators

cross. In other words, the difference in the risk of the estimators change sign

for different regions of the paraiiictcr space. Vihen this haj/pens for the esti-

mators considered in this paper we will identify the point (s) in the paraineter

space where the risk functions cross.
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* The reparametrized model

Although we are concerned with a situation where a near linear relation (s)

exists between the explanatory variables, we have assumed that the X'X matrix

' is of full rank. Since it simplifies the algebra, we perform a canonical

reduction on the statistical model (2.1) and the restrictions (2.3) and work

with the following reparametrized model:

^(2.15) y = XS"'%'^3 + e = Ze + e

and

• (2,16) 6=6,
~o —

where S - is a positive definite s>Tnmetric matrix with S S = S, Z'Z- Ij^,

e -* S'^3 and Z'Z = S ^(X'X)S ^ = I„. An estimator 8 for 6 yields an esti-

mator S 9 - B for 3. This equivalent model leads to the least squares or

maximum likelihood estimator for 6,

1

(2.17) u) = (Z'Z)~ Z'y = Z'^,

and the restricted least squares estimator

(2.18) = ?•

The likelihood ratio test statistic becomes

(2.19) u = tji'W (T-K)/K(y-Z(£)' (y-Zo)) = a.>'u3/Ka

which has a non-central F(X, K, T-K) distribution with K and T-K degrees of

freedom with
2

(2.20) X = e'0/2a ,

and its use implies the preliminary test estimator for 6

(2.21) 9 = w - I . s (u}aj.
^ ^ - - (o,c)
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In terms o± tne reparametrized model the extension of the Stein-Jaj?es

estiitator (2.10^ becojnes

(2.22) e* = (l-c/u)(J,

, with the corresponding changes nade for the extension of the positve part and

the modified Sclove estinators (2.10) and (2.11).

3. Choice of Estimator under the Prediction Goal

In this section we consider the impact of multicollinearity on estimator

choice when the objective is one of conditional mean forecasting. Our interest

centers on comparing the risk functions

(3.1) E(X3 - XB) '(XB - X3) = E(3 - 3) •X'X(3 - 3),

which weights the quadratic form E(5-3)'(3-6) with the cross product matrix

S = X'X, where 3 is any of the six estimators for B that were developed in

the previous section.

Since for the reparametrized model

(3.2) P(0,e) = £(?-?) '(?-&) = E(|-B)'sV'^(B-§)

- E[(X^-XB)'CX§-X3)],

we can make our comparisons xv'ith an unweighted risk function in terms of 9.

Since the explanatory variables, Z, are orthogonal, multicollinearity is not

a problem, and therefore, in the conditional mean forecasting case, conventional

results regarding the risk of the alternative estimators hold and..::iay, from the

work of [11, 15, 18, 21, 22, 24], be summarized as follows:



I

1
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i) In terms of (3.2) the risk of the unrestricted least squares

estimator m is p(u),e) = a K, and the risk of the restricted least

squares estimator 6 is p(e,e) = §'? . If the restrictions are

correct, 6=0, P(e,ej < PCoj,^). If 9 ?^ 9» ^^ order that

p(^,e) - p(a3,6) < 0, then a K - G'G must be non-negative and this

implies the conditior. G'e /a < K or in terms of the noncentrality

parameter for the test statistic, A < K/2, must be satisfied. The

risk for the restricted estimator, in terms of 6 is unbounded,

and we have the t>'pical situation when the risk functions for the

two estimators cross.

ii) Under (3.2), with a weighted squared error loss measure of

goodness in terms of 3, from the work of Cohen [8], Sclove, et.al.

[IS], and Bock, et.al. [5] on the preliminary test estimator 0, if

the restrictions are correct, ? = p» and p(^,e) < p(u),e). If

e ^ 0, then it is necessary that 0^9 /a > K/2 or X> K/4 in

order for the risk of the preliminary test estimator to be smaller

than that of the least square estimator. Alternatively for PCS. 6) >

p(u),8) then, 6' 9 /a > K or X > K/2. Although there are conditions

xinder which the pre test estimator has a smaller risk than the con-

ventional least squares estimator, the pre test estimator is in-

ferior to the least squares estimator over an infinite interval of

the parameter space of X = 9'8/2a

iii) In terms of the measure of goodness reflected by (3.2) and

from the work of James and Stein[ll], if K > 2 and < c < 2(K-2)/

(T-K-»-2) , then the Stein-James estimator G* is uniformly superior •

to the least squares estimator ca. The optimal choice of c is

c^ - (K-2)/(T-K+2).

iv) Under (3.2) the Stein-Ja::ies positive part estimator

C3.3)
6'*"

c. (l/c*/u)"*'w = If * ^. (u) (l-c*/u)cj, where o < c* <

2(K-2)/(T-_K+2) or < c* < 2c is uniformly superior to the Stein-
— o

,

James estimator (2.24) and thus, demonstrates its inadmissibility

under squared error loss [11,18]. In addition as Bock has shown [4],

if c < c* and K > 3, for comparable values of c, the positive part

estimator doniinates the preliminary test estimator.
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v) The positive part version of the Sclove, et.al. [IS] modified

Stein-James estimator is

(3.4) e** = I. ^. Cu)(l-c*/u)* 0), where o < c* < 2 CK-2)/ (T-K+2)

.

If c < 2(K-2)/(T-K+2) let c* = c, then 9** = 9"^ = 6 - c/u I^ ^ ^ (u)a}.

Alternatively, if c > 2CK-2)/ (T-K+2) let c* < 2 (K-2)/ (T-K+2) /
Then 6** = 6 - cVu Ir

«;)
^^^^•

If the value of c is equal to or less than c*, then (3.4) is the con-

ventional positive part estimator, and this estimator is uniformly su-

perior over the range of the parameter space to the least squares (2. IS),

pre test (2.23) and Stein-James (2.24) estimators. If c > c* the modi-

fied Sclove positive part estimator (3.4) is' uniformly superior to the

conventional preliminary test estimator (2.23). UTien c"< 2c. the modi-

fied Stein-James estimator (3.4) provides a minimax substitute for the

conventional preliminary test estimator (2.23). The estimator given in

(3.4) is in reality a preliminary test estimator with the outcome of the

of the preliminary test, at a level of significance dictated by the

value of c, resulting in either a selection of the Stein-James posi-

tive part estimator or the restricted least squares estimator.

In summary, in the prediction case, although the X's may be "almost col-

linear", as long as X is of rank K the conventional results for estimator

choice under quadratic loss hold. The Stein-James positive part estimator

(3.3) dominates and thus provides a minii:iax counterpart for the conventional

(2.18), Stein-James (2.24), and pre test (2.22) estimators, when K > 3 and

< c < 2c , and the Sclove estimator (3.4) dominates the conventional pre-

liminary test estimator over the whole range of c. It would appear that with

or without multicollinearity, if we are willing to leave the class of unbiased

estimators, for prediction purposes a version of the Stein-James prelim.inary

test estimator should be our choice. It should be remarked here that although

the pre test Stein-James estimator is minim^ax, when the conditions K 5*- 2 and

< 2c < (K-2)/(T-K+2) are fulfilled, this estimator alo;ig with others using
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Stein rules, are not acrrjlssible. Strawderir.an [19] has developed an estimator

of this general form, that is both minimax and admissible, when certain con-

ditions are fulfilled (one being that K > 5).

4. The Choice of Estimator Under the Estiriation Goal

If we are interested in a measure of goodness involving an unweighted risk

function in terms of the originial parameters p, then under squared error loss

and the reparametrized model of the last section

(4.1) p(§,B) = E[(3-e)'C3-3)] = E[C6-e)'D(e-9)] = P^(6,e)

where D = S and 6 = S'^S . An unweighted risk function for p implies a

weighted risk function for 6 in the reparametrized sr.odel and indicates vchy the

X'X = I case traditionally analyzed in the statistical literature is not suffi-

cient for gauging estimator perform.ance for the general (usual) case vs'hen the

emphasis is on estimation and X'X is some positive definite S)'mmetric matrix.

From the standpoint of nulticollinearity this focus on parameter esti-

mation is relevant since we are concerned with the inplications or incidence

of nulticollinearity on the comparative sampling performance of the alter-

native estimators of B.

Risk of traditional estimators

Using the measure of performance reflected by (4.1) the risk for the con-

ventional least squares estimator is

1

(4.2) P(b,§) = E[(b-Bj'(b-P)] = E[(a)-S)'D'(u;-9)] = E[(a)-e)'S' (q-B)]

2 1

= p (a),C) = a trS .

In contrast the risk for the restricted least squares estimator,, in the

context of Wallace [21], and Yancey, et.al. [22] is
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(4.3) p(§,3) = E[C3-3)'C§-2)] = E[(e-e)'Dce-e)] = p^(e,e)12 1 I

= P Cw,8) + e'S" - a trS" = 6'S" 9.

The difference in the risk of the least squares estimator (4.2) and

' the risk of the restricted estimator (4.3) is

(4.4) P(b,6) - P(p,e) = a trS" - O'S' 6

t^ich is non negative if

2 1 1

(4.5) G trS > e'S 0.

From the work of Wallace [21], and Yancey, et.al. [22] is

2 1 2

(4.6) a trS > cJl S'G = dL2Xa

_ *

where the d. are the roots of S' , ^vdth d, being the largest, and t = d /E d .

1 L J- ^±sl

From (4.6) the difference in the risk? (4.4) will be non -negative if

K 1

(4.7) X < l/2t =Cl/2)Id./dj^ = a/2)trS /d^ .

1=1

Alternatively equation (4.6) will be non positive and the risk of the

conventional estimator less than the restricted estimator if

K 1

(4.8) X > l/2t^ =(1/2) I d-/d„==(l/2)trS" /d^ = X
b

i^l ^ ^ i> 1

where d is the smallest root of S . Therefore, the risk functions of the

unrestricted least squares and restricted least squares estimators crosG for

some value of X in [X ,X ] where
• o 1

(4.9) l/2t, < X < X < l/2t_
Jj— O" l" v><»
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Since the incidence of collinearity between the explanatory variables

means that the smallest root of X'X = S approaches zero, the largest root

of S approaches infinity. As the degree of collinearity increases the largest

_ 1

root d. of- S increases and the range of the parameter space, in terns of

X, over v/hich the risk of the restricted least squares estimator is less

than that of the least squares estimator, approaches one half. The interval of

uncertainty in terir.s of the equality of the risk functions depends of course on

the relative sizes of the roots, d and d . Therefore, the degree of collinearity

in the explanatory variables affects, for a given X, the location in the parair.eter

space where the risk for one estimator is equal to less than or greater than that

of another estir.ator, and thus, the choice of the estimator.

Risk of the pre test estiirator

Alternatively following Wallace [21], Feldstein [10], and others in using

either a new or conventional test statistic along with a preliminary test of sig-

nificance rule, we now ccnipare analytically using C^-i)^ the risks for the re-

sulting pre test estimator with that of the least squares estimator and ana-

lyze the impact of collinearity on estimator choice.

The risk for the pre test estimator from the work of Bock, et.al. [6] is

(4.10) p (3,3) = E[(5-3)' (3-3)1 = E[ (6-6) •D(6-e]

2 1
~

'

1

= p (co,e) - cr p trS + (2p - p ) S'S" 9
I - - I 12-

where p is the probability of a randor.; variable with a non-central f distribu-

tion being smaller than a constant, i.e., p. = Pr[x ,^ ,r -,.^/X r^ uy< cK/T-K],
J 2CA,k+23J 2C1-KJ-

and all other symbols were previously defined in connection with (5,6) and (4.5).
_i

Since the risk depends on both X and 9'S~ 6 the risk for the pre test es-

timator may be bounded by
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(4.11) p (3,3)/a < CI - p.)trS - 2t.XtrS~ (p -2p )1— — —
1 L 21

and ^2 _i 1.

(4.12) p iB,^)/o > (1 - p )trS - 2t^XtrS (p -2p )

,

1-- -
1 o 21

where t- and tr are defined as in (4 .6) >
' ('^ • 7) , and (4.8).

The difference in the risk of the pre test and conventional least squares

estimators (4.2) and (4.10) is

^21 121
(4.13) .

p(b,3) - p(f^,$) = a trS" [p + 2(p - 2p )]0'S" 0/2a trS" .__ __
J 2 1--

This difference in the risk functions (4.13) will be non-negative if

A < 4t and non-positive if X > l/2t . Therefore the risk fuiictions for the

preliminary test and least squares risk estimators cross for some values of

A in the interval
2

(4.14) l/4t, < X = e'G /2a < l/2t^.

It is not possible to be more precise about the relation between the risk

functions unless more information exists about ^ or 6

.

-o

This outcome reflected by (4,14) contrasts to tlie range of uncertainty

for A in the pre test prediction case of J/4 < X < J/2. Thus again, the degree

_i
of col linearity, as reflected by the size of the roots of the S" matrix, con-

ditions the range of X over which the risk of the pre test estimator is less

than that of the least squares estimator. In the face of multicollinearity

this range of uncertainty may be very large since the smallest root of S ap-
1

proaches zero and the largest root of S approaches infinity. Thus, the interval

of the parameter space where there is a gain from testing, may be very small
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indeed, and the losses for the pre test estimator relative to the least squares

estimator may be positive and large over a significant interval of the parameter

space. The Monte Carlo results of Feldstcin [10] appear consistent with the

analytical results presented above.

Risk of the Stein Rule estimators

Let us now consider the impact of col linearity on the choice between the

conventional least squares and the extensions of the Stein-James estimators.

The risk of an extension of the Stein-James estimator, 3* = (l-c/u)b =

(l-c/u)S"\^ ^ S"^8* , is

2 12 1

(4.15) p (3*, 3) = E[(0*-e)'DCe*-e)] = a trS" + a trS" c*(T-K)

1' 1

E{(l/(K+2H)(K-2-2H))[c*(T-Kn2)-2(K-2) + (6'S" e/9'3(trS" ))2H

1 1

(c*CT-K+2)-2(S'9CtrS* /9'S' 6 -2))]}

where H is a Poisson random variable with parameter (X/2)

.

In order for the expression between the brackets to be zero or negative

and thus the risk of the Stein-James estimator to be equal to or less than the

risk of the least squares estimator over the range of the parameter space (i.e.

be uniformly superior) then

K 1

(4.16a) E d. / d, = trS" /d, > 2,

i=l ^ ^ ^
-

and

1 1

(4.16b) c < 2d" (trS" - 2d, )/ CT-K+2)

.
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Thus the uniform superiority of this extension of the Stein-James estima-

tor to the conventional estimators for the general regression model depends not

only on the number of explanatory variables or hypotheses, as was the requirement

_i
for the orthonormal or prediction case, but also on whether or not trS divided

-1 _i
by the largest root of S is equal to or larger than 2. ^ trS /d < 2/

then for no value of c > does this extension of the Stein-James dominate the

least squares estimator. Since the degree of collinearity is related to the mag-

nitude of the roots of S it therefore affects whether or not the risk functions

cross at some point in the parameter space and thus has a direct impact on the

choice of estimator. In addition, if multicollinearity exists, then at least

one of the roots of X'X will approach zero, and thus d. , the largest root of

S~ , will approach infinity and trS /d may well be less than 2. That this

situation may often occur in econometric work can be seen from the following

first order correlation matrix for four explanatory variables of sample size 10,

which was initially generated to reflect, the characteristics of economic time

series data and used in a Monte Carlo study [23]:

(4.17)

1.00

.58

.76

.44

1.00

.28 1.00

.29 .87 1.00

This correlation matrix, which is certainly not atypical of that reflected by

much passively generated economic sample data, has one root for the X^X matrix

which is .000006 and small relative to the other roots. Thus trS /d. < 2

and in fact is very close to one.
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_i
These sairie conditions or requirenents (trS /d, > 2) also hold in order

for this particular extension of the Stein-Janes positive part estimator, 3 ,

and the extension of the Sclove-Stein-James preliminary test estimator, 3**>

to dominate the least squares and conventional preliminary test estimators

respectively. This means that when we are concerned with the risk for the esti-

mation case the appearance of 3 or more regressors and a suitable small c do

not insure, as they did in the prediction case, that the risk of these various

extensions of Stein lule estimators, will be less over the entire parameter

space than conventional and pre test estimators. As a consequence we have a new

rule (4.16a) for determining the degree of ccllinearity that is permissible to

permit these extensions of the Stein rule estimators to dominate the other sam-

pling theory estimators,

5. Concluding Remar!;s

In terns of ii.ipact on and choice among estimators, for the orthor.orr.al

and general regression models under a squared error loss measure of goodness,

multicollinearity appears to have che following affects when all or a subset

of the regressors are almost perfectly col linear, but when the X regression

matrix has full column rank:

i) If the objective is conditional mean forecasting, conventional

results for the choice between estir.-iators hold; i.e. (a) under con-

ditions normally found in practice the Stein or modified Stein rule

dominate the conventional least squares and preliminary test estinia-

tors and (b) al though the risk o f th e pre te s t estimator is smaller

than that of the least squares estimators' over a r^art of the nara-

meter snace there is an in'.nrval of infinite len{:th of the space

where this superioritv does not hold.
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ii) If the objective or emphasis is on estimation, the incidence

of multicol linearity (a) conditions the interval of the parameter

• space when the risk of the conventional pre test estimator can be

said to be less than or exceed that of the least squares estimator,

(b) means that in the case when the X regressor matrix is "border-

. line" full rank, and thus at least one root of the relevant weight

matrix approaches infinity, the range of uncertainty as to estima-

tor choice between the pre test and least squares estimator goes

over almost the entire range of the parameter space, (c) means the

appearance of 3 or more regressors and a small c does- not insure

that these extensions of the Stein-James estimators will dominate

the least squares and conventional preliminary test estimators,

(d) means that in order for these extensions of the Stein-James

estimators to be uniformly superior to conventional estimators,

the ratio of the sum of the characteristic roots of the S matrix

' (4.5), to the largest root of this matrix must be equal to or

greater than 2, rather than the traditional condition K > 2, (e) means

that if this ratio is not greater than two then some members of the fam-

ily of potential risk functions for the extensions of the Stein-James es-

. timators in a given problem cross the risk function for the least squares

estimator, and (f) means that if the conditions (4.16a and b) are fulfilled,

the extension of the Stein rule pre test estim.ator (2.11), for the

general model, is uniformly superior to the conventional pre test

estimator over the parameter space, but like the conventional

pre test estimator its risk function crosses that of the least

squares estimator for large values of the critical value c or small

values of a, the level of the test; (2.11) is only a minimax esti-

mator for smaller values of c or larger values of a than are ordi-

narily used.

These anal>^ical results suggest that when multicollinearity is present

to the extent that the trS < 2d , under a squared error loss measure of

goodness the restricted, pro test and the family of Stein rule estimators are

superior (smaller risk) to the least squares estimator only over a very small
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interval of the parameter space and are inferior (larger risk) over a large

and in some cases infinite range of the parameter space. Unless the re-

searcher has great confidence that his linear hypotheses RS - r = 6 = are

true^ under the risk measure we have employed when multicollinearity is

present, he has much to lose and very little to gain by broadening the class

of estimators and using the two stage procedure.
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