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Numerial study of two dimensionalstohasti NLS equationsMar BARTON-SMITH�, Arnaud DEBUSSCHEy and Laurent DI MENZAz� : CERMICS, ENPC, Cit�e Desartes, 77455 Champ-sur-Marney : ENS Cahan, Antenne de Bretagne, Campus de Ker-Lann, 35170 Bruzz : Analyse Num�erique et EDP, Universit�e Paris-Sud, 91405 OrsayAbstrat: In this paper, we numerially solve the two-dimensional stohas-ti nonlinear Shr�odinger equation in the ase of multipliative and additive whitenoises. The aim is to investigate their inuene on well-known deterministi solu-tions: stationary states and blowing-up solutions. In the �rst ase, we �nd that amultipliative noise has a damping e�et very similar to di�usion. However, for smallamplitudes of the noise, the struture of solitary state is still loalized. In the seondase, a loal re�nement algorithm is used to overome the diÆulty arising for theomputation of singular solutions. Our experiments show that multipliative whitenoise stops the deterministi blow-up whih ours in the ritial ase. This extendsthe results of [15℄ in the one-dimensional ase.Keywords: Stohasti partial di�erential equations, multipliative and addi-tive noise, nonlinear Shr�odinger equations, �nite di�erene shemes, re�nementproedure.1 IntrodutionNonlinear Shr�odinger equations (NLS) play an important role for the understand-ing of many physial phenomena. For instane, NLS appears in wave propagation innonlinear media, uid and quantum mehanis or plasma physis. It is well knownthat in some ases { in partiular in the ase of a fousing power law nonlinearity {NLS equations possess solutions of speial form whih are loalized in spae, prop-agating at a �nite onstant veloity and keeping the same shape. These are alledsolitary waves and in the partiular ase of a vanishing veloity these are alledstationary waves (see [10℄ and [29℄ for a review on NLS). Depending on the power ofthe nonlinearity, these solitary waves are stable or unstable. Under a ritial valueof the nonlinear exponent, the nonlinearity is alled subritial and in this ase, thesolitary waves are stable. For larger values (that is in the ritial and superritial1



ases), the solitary waves beome unstable and the time evolution may exhibit blow-up. In this paper, we wish to investigate the inuene of di�erent kinds of noises onsolitary wave propagation and on the blow-up mehanism, in the two-dimensionalase. Noisy terms might represent the e�ets of inhomogeneities in the medium inwhih the waves propagate, as well as noisy soures or of negleted terms in themodelization yielding to NLS equations. They an also be onsidered as a model ofperturbation and it is natural to investigate if the qualitative behaviors desribedabove are robust or not and how noise an hange them. Here two di�erent typesof noises will be studied: additive noise and multipliative noise. The �rst one atsas an additive random foring term added to the NLS equation and has the formi�dWdt ; the ase of additive noise is studied in [18℄ where olletive oordinates andlarge deviation arguments are used to get information on the inuene of the noiseon the propagation of solitary waves. The seond one an be seen as a randompotential term of the form i�uÆ dWdt added to NLS equation. Multipliative noise hasbeen introdued in the ontext of Sheibe aggregates (see [5℄ and [27℄). Then NLSis written as du� i�du dt� ijuj2�u dt = 8><>: i�u Æ dWi�dW; (1)where u = u(t; x; w); t � 0 being the time variable, x the spae variable and ! therandom variable.There are several studies on noisy nonlinear dispersive equations. In [23℄ forexample, thanks to inverse sattering and perturbation tehniques, the authors de-rive some qualitative informations for small noise for di�erent equations like NLS,Korteweg-de Vries, Sine-Gordon or Klein-Gordon. The relevane of numerial sim-ulations is also pointed out to obtain some results for more general noises. Suhsimulations have been used in [16℄ and [28℄ to study the inuene of a white noiseon the Korteweg-de Vries equation. NLS equations with random terms are desribedin [1℄, [2℄ and [19℄ (see also the referenes therein). In these artiles, the noise is ei-ther a potential or a perturbation of the dispersive term or the nonlinear oeÆient,it has smooth paths and again an inverse sattering transform is used. A numerialstudy of the inuene of a noise on the blow-up for NLS has been performed in [15℄in the ase of a white noise in spae dimension one. Furthermore, many theoretialresults exist about the stohasti NLS (see for instane [11℄) but valid only for or-related additive or multipliative noises.In this artile, we want to do a similar study as in [15℄ in dimension two. We �rstreall, in Setion 2, some basi onepts suh as the stohasti framework and generalwell-posedness theoretial results. We also present the �nite di�erenes numerialmethod, emphasizing on the noise disretization. In Setion 3, we study the e�etsof both additive and multipliative noises on stationary waves in the subritial and2



ritial ases. Let us reall that, in the ase of spae dimension two onsidered here,the physial model orresponds to the ritial ase, � = 1, and the stationary waveis not stable. It results that the propagation an be studied only on a short timeinterval. Thus, we have hosen to simulate also a subritial nonlinearity - � = 1=2- allowing the propagation over long time interval. We �nd that multipliative noisehas a damping e�et that an be ompared for large times with the damping observedfor Ginzburg-Landau models. In Setion 4, we numerially investigate the noiseinuene on blow-up formation in the ritial ase. Only multipliative noise willbe onsidered here, sine additive noise has no real e�et on the blow-up. Even forthe deterministi ase, the numerial method has to be onsistent with small spatialsales of the blow-up struture. A loal re�nement algorithm is given, similar tothe one given in [15℄ in the one-dimensional ase, and tested �rst for deterministiblow-up. Re�nement riteria have to give reasonable omputational osts in ourtwo-dimensional experiments. Note that a lot of works for the omputation of theblow-up of deterministi NLS (see [3℄, [4℄, [29℄, [30℄ and [31℄) or Korteweg-de Vrieshave been done ([7℄, [8℄). Even if they onern deterministi equations and are basedon �nite elements, they are very helpful to �nd the orret tehniques to omputeblow-up in our stohasti ases. Stohasti tests are �nally performed with di�erentkinds of blowing-up solutions. The two dimensional ase studied here is muh morediÆult than the one dimensional ase studied in [15℄, espeially for the omputationof singular solutions. Indeed, the re�nement method is muh more diÆult to derivehere. Bad riteria for re�nements yield expensive omputational osts or very poorresults. In Setion 4, we try to give details on the diÆulties enountered and theremedies we found. Moreover, the blow-up is muh more severe in dimension twoand it is diÆult to detet the e�et of a noise. We expet that a multipliative noisealways prevents the formation of singularities. However, if the blow-up is too strongwe �rst have to simulate a strongly fousing solution reahing very high amplitudesand in some ases we have not been able to establish this fat.2 General onsiderations on the equations and onthe numerial sheme2.1 Set up of the problemThe equations whih will be studied here are the following:8>>>><>>>>: du� i�du dt� ijuj2�u dt = 8><>: i�u Æ dWi�dW;u(0) = u0: (2)Dirihlet boundary onditions will be onsidered on a square domain D of R2 , u0 isthe initial ondition, W is a real valued Wiener proess on L2(D) assoiated with a�ltered probability spae (
;F ;P; fFtgt�0). The �rst kind of noise is referred as the3



multipliative ase, where i�uÆdW has to be understood as a Stratonovith produt(see [5℄), whereas the seond one is referred as the additive ase. When the noise Wis a ylindrial Wiener proess, it an be written asW (t; x; !) = 1Xk=0 �k(t; !)ek(x); t � 0; x 2 D; ! 2 
: (3)where (�k)k2N are real independent brownian motions (�k)k2N and (ek)k2N is anorthonormal Hilbert basis of L2(D).More generally, for a linear operator � on L2(D), a Wiener proess with ovari-ane operator � is given by�W (t; x; !) = 1Xk=0 �k(t; !)�ek(x); t � 0; x 2 D; ! 2 
:In general, the series above do not onverge in L2(D). This is true only when � isa Hilbert-Shmidt operator.If � is de�ned through a kernel K�u(x) = ZDK(x; y)u(y)dy; for u 2 H;then the spatial orrelation funtion is given by:C�(x; y) = ZDK(x; z)K(z; y)dz:The spae and time orrelation of �W being formally given by E ���dWdt (t; x);�dWdt (s; y)��and, still formally, we have:E ���dWdt (t; x);�dWdt (s; y)�� = C�(x; y)Æt�s:We see that this type of noise is always unorrelated - or white - in time. If � = Id,i.e. if W is a ylindrial Wiener proess, the noise is also white in spae and thespatial orrelation C�(x; y) is the Dira mass Æx�y.The orrelation funtion is a physially measurable quantity; a orrelation whihis the Dira mass Æx�yÆt�s indiates a white noise both in time and spae.Let us also remark that it is often written _� = d�Wdt so that equation (2) beomes:dudt � i�du� ijuj2�u = 8><>: i�u Æ _�i� _�: (4)For NLS, the energy and mass are respetively de�ned by:H(u) = 12 ZD kru(x)k2dx� 12(� + 1) ZD ju(x)j2(�+1)dx;4



M(u) = ZD ju(x)j2dx:It is well-known (see for example [29℄) that these quantities are invariant for the de-terministi NLS. With an additive noise, none of them is onserved. For a Stratono-vith multipliative noise, only the mass is onserved.2.2 Main theoretial resultsWe think that it is important to reall the theoretial results on the NLS equation.Hopefully, this enables the reader to understand the issue at stake. We begin withthe deterministi NLS equation.Theorem 2.1. For u0 2 H1(Rd), the deterministi NLS equation (that is � = 0)on D = Rd is loally well-posed if 0 � � < 2d�2 for d > 2 or for any � if d = 1 or2. Besides the solution is global if �d < 2. Moreover, for �d � 2 and u0 2 H1(Rd)suh that H(u0) < 0 and xu0 2 L2(Rd), then the solution blows-up at a �nite time.The proof of this result as well as many improvements an be found in [10℄and [29℄. Note that if �d � 2 there also exist solutions suh that H(u0) > 0 butblow up in a �nite time. For evident reasons, it is not possible to simulate the NLSequation on Rd and we have to restrit our omputations to a bounded domain.However, if we only simulate spatially loalized solutions and the omputationaldomain D is suÆiently large, we expet that the numerial solution is very lose tothe solution on Rd . Another point is that in the ase d = 2 onsidered in this artile,it an be shown that in the subritial ase the NLS equation admits a unique globalsolution on bounded star-shaped domains (see [9℄). Moreover, Kavian has shown in[22℄ that an initial data with negative energy on a star-shaped domain with Dirihletondition also gives a blowing-up solution in the ritial and superritial ases.For the NLS equations with additive noise i��dW , with � a Hilbert-Shmidtoperator from L2(Rd) to H1(Rd), we have the following theorem, proved in [11, 12℄:Theorem 2.2. Assume that 0 � � < 2d�2 if d > 2 or 0 � � if d � 2. If u0 is a F0measurable random variable with values in H1(Rd), then there exists a unique solu-tion u(u0; :) to NLS with additive noise with ontinuous H1(Rd) valued paths. Thissolution is de�ned on a random interval [0; �(u0; !)�, where �(u0; !) is a stoppingtime suh that we almost surely have limt!�(u0;!) ju(t)jH1 = 1 or �(u0; !) = 1.If �d < 2 then �(u0; !) = 1 almost surely. Moreover, if �d � 2, then for anyu0 2 H1(Rd) suh that xu0 2 L2(Rd) and any t > 0P(�(u0) < t) > 0:For multipliative noise i�uÆ�dW , we have to assume that � a Hilbert-Shmidtoperator from L2(Rd) to H1(Rd) and also that � is -radonifying operator from Hto W 1;�(Rd) (with � > 2d), then we have the following theorem (see [11, 14℄):5



Theorem 2.3. Assume that 12 < � < 2d�2 or � < 1d�1 if d > 3, or 0 < � < 2 if d = 3,or 0 < � if d = 1 or 2, then there exist r � 2 and p be suh that 2r = d(12 � 1p) andfor any u0 with values in H1(Rd) there exists a stopping time �(u0; !) and a uniquesolution of NLS with multipliative noise starting from u0 whih is almost surely inC([0; T ℄; H1(Rd)) \ Lr((0; T );W 1;p(Rd)) for any T < � . Moreover we almost surelyhave: lim supt!�(u0;!) ju(t)jH1 = 1 or �(u0; !) = 1. If �d < 2 then �(u0; !) = 1almost surely. Moreover, if �d > 2 and � is Hilbert-Shmidt from L2(Rd) to H2(Rd),then for any u0 2 H2(Rd) suh that jxj2u0 2 L2(Rd) and any t > 0P(�(u0) < t) > 0:If �d = 2, for u0 as above with suÆiently negative energy, there exists �t > 0 suhthat P(�(u0) < �t) > 0:Again, these results do not orrespond with our situation sine our simulationswill be performed on a bounded domain. However, we think that the results pre-sented below give a good idea of the behavior of the solutions of NLS equations onR2 . Note that, the noise has a strong e�et on the blow-up mehanism. Contrary tothe deterministi situation, in the superritial ase, any initial data gives a singularsolution. This is also true in the ritial ase with additive noise. However, thisassumes a spatially smooth noise. We will see in Setion 4 that if the noise is whitein spae, the situation is ompletely di�erent.2.3 The numerial methodOur sheme is based on a Crank-Niolson �nite di�erene sheme in spae and timeon a uniform grid with (M+1)2 points on the square domain [0; xmax℄2. This impliitsheme was hosen beause the energy and the mass are onserved in deterministiase (see below for the de�nition of the numerial energy and mass). The time step isÆt and un is the numerial solution at the disrete time nÆt. The step of the squaregrid is h and uk j is the numerial solution at the point (kh; jh). The numerialsheme is the following:iun+1k j � unk jÆt + 12h2 �(un+1k+1 j � 2un+1k j + un+1k�1 j + unk+1 j � 2unk j + unk�1 j)+ (un+1k j+1 � 2un+1k j + un+1k j�1 + unk j+1 � 2unk j + unk j�1)�+NLn+ 12k j= ��W n+ 12k jwhere NLn+ 12k j = 12(� + 1)  jun+1k j j2�+2 � junk jj2�+2jun+1k j j2 � junk jj2 !�un+1k j + unk j�6



and
W n+ 12k j = 8>>>>><>>>>>:

12hpÆtwn+ 12k j (un+1k j + unk j) for multipliative noise1hpÆtwn+ 12k j for additive noise. (5)
The wn+ 12k j are independent real normal random variables. Atually, for additive andelta orrelated - or equivalently a spae-time white - noise, this numerial noiseW n+ 12k j should be the approximation of1h2Æt ZDk j Z (n+1)ÆtnÆt dWdx; (6)where Dk j is the elementary square domain around xk j given byDk j = �(k � 12)h ; (k + 12)h�� �(j � 12)h ; (j + 12)h� :Then with the de�nition (3) of Setion 2.1 we get,1h2Æt ZDk j Z (n+1)ÆtnÆt dWdx = 1h2Æt ZDk j Z (n+1)ÆtnÆt Xm2N em(x)d�m(s)dx= 1h2Æt Xm2N ZDk j em(x)dx!Z (n+1)ÆtnÆt d�m(s):Let us hoose the Hilbert basis suh that the em are the funtions ek j = 1h�Dk jvanishing outside Dk j, ompleted by an in�nite number of funtions in order tohave a Hilbertian basis. Then by orthogonality, we haveZDk j el;m(x)dx = 0if (l; m) 6= (k; j) and we get1h2Æt ZDk j Z (n+1)ÆtnÆt dWdx = 1h2Æt  ZDk j ek j(x)dx!Z (n+1)ÆtnÆt d�k j(s)= 1hÆt Z (n+1)ÆtnÆt d�k j(s) (7)= 1hÆt(�k j((n+ 1)Æt)� �k j(nÆt)): (8)7



Sine (�m((n+1)Æt)��m(nÆt))=pÆt is a random variable with normal lawN (0; 1), itan be set wn+ 12k j = (�k j((n+1)Æt)��k j(nÆt))=pÆt, so that the numerial stohastiterm beomes W n+ 12k j = 1hpÆtwn+ 12k j ;where the random variables wn+ 12k j are simulated thanks to an appropriate randomproedure. Thus, we see that, in the additive ase, the numerial noise is the exatprojetion of the spae-time white noise. However it is not delta orrelated and it isonly an approximation of the white noise. Indeed it is easily seen that the numerialnoise orresponds also to the projetion of ��numdW , where �num is the orthogonalprojetor onto the spae spanned by (ek j) (k;j)2[1;M�1℄2. In other words we also have:1h2Æt ZDk j Z (n+1)ÆtnÆt �numdWdx = 1h2ÆtXm2N ZDk j �numem(x)dx!Z (n+1)ÆtnÆt d�m(s)= 1h2Æt X(k;j)2[1;n�1℄2 ZDk j ek j(x)dx!Z (n+1)ÆtnÆt d�m(s):The numerial noise spae orrelation is Cnum(x; y) = 1h2 if x and y belong to thesame Dk j and Cnum(x; y) = 0 otherwise. This is only an approximation of the Diramass Æ(x� y).For multipliative noise the approximation of the numerial noise is similar.However the stohasti integral is alulated with two di�erent methods for Itonoise and Stratonovith noise. Starting from (7), we an approximate the stohastiIto integral by:Z (n+1)ÆtnÆt u(xk j; s)d�k j(s) ' u(xk j; nÆt)(�k j((n + 1)Æt)� �k j(nÆt))' unk jwnk jpÆt;whih follows the de�nition of an Ito produt, whereas for a Stratonovith integral,we haveZ (n+1)ÆtnÆt u(xk j; s) Æ d�k j(s) ' 12�unk j + un+1k j �(�k j((n+ 1)Æt)� �k j(nÆt))' 12�unk j + un+1k j �wn+ 12k j pÆt;whih orresponds to the approximation given in (5). It is well-known that theStratonovith produt u Æ dW has an Ito equivalent with a orretion term 12 iuF�,where F� only depends on the ovariane operator, see [11℄. But F� is not well-de�ned for a spae time white noise and what is more important, a disretization ofthis equivalent Ito equation would not keep the numerial massMn onstant (see the8



notation just below). Thus we have hosen to approximate diretly the Stratonovithprodut. The prie to pay is that the random term is impliit.If we denote by L the linear operator(Lu)k j = 12h2 (uk+1 j � 2uk j + uk�1 j + uk j+1 � 2uk j + uk j�1);the nonlinear systemiun+1 � 2unÆt + 12L(un+1 + un) +NLn+ 12 = ��W n+ 12has to be solved at eah time step. The system an be rewritten as� iÆtI + 12L� un+1 = � iÆtI � 12L� un � �W n+ 12 �NLn+ 12 (9)and will be solved using a �xed point method. The matrix M = 1ÆtI + 12L does notdepend on the unknown and is easy to invert. This is the reason for leaving thelinear ontribution of the noise in the right hand side in the multipliative ase. Ateah time step, a �xed point algorithm is used and the matrix M is inverted witha onjugated gradient method. Besides M is diagonally preonditioned before beinginverted, whih is often suÆient to fasten the alulation sine the next time stepsolution is quite lose to the previous time step solution. The iteration number forthe onvergene of the onjugated gradient remains small (less than 4 or 5 iterationsfor the gradient and the �xed point in all the subritial ases).It an be seen that system (9) has at least one solution un+1 (see [13℄ in the semidisrete ase). However, we do not know if it is unique and we have no guaranteethat the iteration onverges. In [24℄, it is proposed to avoid this problem by a ut-o� of the simulated random variables. Sine we never enountered any trouble ofthis type and the �xed point iteration always onverges, we deided not to use thisut-o�.The numerial mass and energy are respetively given byHn = 12Xk j (junk j+1 � unk jj2 + junk+1 j � unk jj2)� h22(� + 1)Xk j junk jj2(�+1)Mn = h2Xk j junk jj2It is well-known that these disrete quantities are also numerially onserved in thease of the deterministi NLS with the sheme (9). In the ase of a multipliativenoise the mass Mn also remains onstant (see [15℄).In our stohasti omputations, it is important to ompute several trajetoriesin order to have an idea of the generi behavior of the solutions and to omputeexpetations. To ompute an approximation of expetations of the solutions andother quantities, an average is made on 50 or 100 trajetories. This might seem not9



suÆient, but eah trajetory an take a ertain time of omputation. Therefore anaurate approximation of the expetation would require a very long omputationaltime. This explains why the di�erent urves of expetations shown below are not assmooth as they should be. Nevertheless an average omputed on 50 or 100 trajeto-ries gives a suÆient idea of what the expetation is. We use the notation < � > forthe empirial average whih approximates the mathematial expetation E (�). Forinstane, if N is the number of omputed trajetories, we have:< ju(t; xk;j)j >= 1N X1�`�N juk̀;j(t)j and j< u(t; xk;j) >j = 1N ����� X1�`�N uk̀;j(t)�����for the numerial approximation of the averaged amplitude E (ju(t; x)j) and the am-plitude of the average jE (u(t; x))j.This sheme was oded in a C++ language, all the operations are guaranteedto be optimum. More details about this ode, its UML diagram and the de�nitionsof its elements, an be found in [6℄. The Gaussian random variable wn+ 12k j are simu-lated thanks to a random generator routine whose period is 1026 ( 1993,4,6: R. B.Davies). For every n; k and j, the wn+ 12k j are independent. This length of the periodis suÆient to guarantee the independene of eah random draw. Indeed the gridhas a maximum of 500� 500 points and the maximum number of time iterations inour simulations is 5000 and there were never more than 200 trajetories alulatedto approah the average solution. In this worst ase, the number of random drawsis 250:109 whih is still very small ompared to the period.Let us remark that, in the deterministi ase, this sheme is known to be stableand onsistent. It keeps the energy and mass onserved and is onvergent of order 1in time and 2 in spae (see [21℄, [26℄). Convergene results for the stohasti shemeare deliate to obtain. For the stohasti Shr�odinger equation (see [13℄), it hasbeen proved that the numerial solution of the semi-disrete equation (time disreteequation) onverges in probability in di�erent spaes. The study of the fully disretesheme is under progress.Finally, we note that the strategy we use to simulate a white noise is not theonly possibility. For instane, it would be possible to use a Fourier basis to de�nethe Wiener proess W . Then a Fast Fourier Transform would give the values of thenoise in the spatial domain. In a forthoming work, we will study the inuene onthe disretization of the noise on the numerial solutions.Note also that a split step algorithm is often used to simulate NLS equations.However, it is known that these shemes do not respet the balane between di�ra-tive and nonlinear e�ets and thus perturbs the propagation. We think that withsuh a sheme it would be diÆult to understand the real e�et of a noise on thepropagation. We have preferred the Crank-Niolson sheme, for whih the problemdoes not our. 10



3 Noise e�ets on Shr�odinger stationary solitarywavesIn this Setion, we want to investigate the noise e�ets on stationary solutions indi�erent ases. As mentioned in the introdution, stationary waves play an impor-tant role in physis and the e�et of white noise on propagation is not well-known.Noise e�ets on solitary waves have already been studied for NLS equation and forKorteweg-de Vries equation (see [15℄, [16℄, [25℄, and [28℄), these are equations indimension one. Here we try to see if in dimension two a similar behavior is observed.Two di�erent types of solitary waves are going to be investigated: stationary(stable) waves in the subritial ase � = 0:5, and stationary (unstable) waves in theritial ase � = 1. The stationary waves are given by the time-periodi solutionsu(x; t) = u0(x)ei!t; ! > 0;where u0 is a real valued funtion and is expliitly known in the ase d = 1. Ford = 2, it an be omputed separately with a shooting method using Maple, assumingthat the solution u0 is radial (see [29℄ for further details). The period for this solutionis then T = 2�! and will be set to 2� (that is ! = 1) in the following (see �gure 1 forthe stationary pro�le obtained with d = 2, � = 0:5 and ! = 1). The numerial testswill be made with various noise amplitudes �.

0.0 2.0 4.0 6.0 8.0 10.0
r

0.0

0.5

1.0

1.5

2.0

2.5

Figure 1: The stationary wave in the ase d = 2, � = 0:5 and ! = 1.3.1 Stationary solution in the subritial ase (� = 12)The solution is stable and we an perform simulations on long time intervals. In ourdeterministi simulation, the solitary wave stays the same with a relative preision of10�2 during a period and a half. Consequently we an onsider that the deterministisolution is stationary for our simulations whose time alulations will not go overthis limit T = 3�. The omputations have been made on D = [0; 14℄2 with a uniform11



grid 140� 140, Æt = 5:10�3 and � = 12 , with a stationnary state u0 entered at thepoint (7; 7).We �rst look at the e�et of noise on one trajetory. Figure 2 shows the pro�le ofthe solution with multipliative (left) and additive (right) noise at di�erent instants.The �rst observation is that the pro�le is not destroyed by the noise. However, as wasalready observed in dimension one, the multipliative noise damps the pro�le: the�nal amplitude is learly muh smaller than the initial amplitude. On the ontrary,the amplitude of the solution seems to osillate with additive noise If the noise levelis inreased, we see on �gure 3 that the damping e�et in the multipliative aseis really strong and the wave has been ompletely destroyed at time 10. But, foradditive noise, even with this very high level, the wave is still learly there. Othersolutions orresponding to other paths of the noise have been simulated and eahtime a similar behavior was observed. We reover here the strong stability of thepropagation in the presene of an additive noise already observed in the ase of theKorteweg-de Vries equation (see [16℄).With these long omputations, the solution beomes non negligible at theboundary. Sine we do not want boundary reetions to hange the general behav-ior of the stationary wave, solutions in a larger domain (see �gure 4) and solutionswith periodi boundary onditions (see �gure 5) have also been simulated. No majordi�erene an be seen here for the solution of NLS with multipliative noise. Foradditive noise no omparison are shown, but also in this ase no real di�erene wereobserved. Moreover the omparisons of �gures 5 are done with the same path ofthe noise and the same irregularities on the pro�les an be observed. In addition tothat, a few simulations were also done to ompare Dirihlet and periodi boundaryonditions on averages - suh as E (maxx2D ju(t; x)j) or any other quantity studiedbelow - and no relevant di�erene in the solution behavior ould be observed. Forthese reasons, our next simulations will only be performed in the domain [0; 14℄2 withDirihlet onditions and we think that this partiular hoie of boundary onditionsdoes not have any e�et on the general behavior.Another way to understand the e�et of a noise on the solutions of the NLSequation is to simulate average quantities, whih orresponds to mathematial ex-petations. In order to keep a reasonable omputational ost, only 100 trajetorieswere used to simulate these averages. This is not suÆient to have a good preisionbut it gives a good idea of the inuene of a noise. In �gure 6, we show the setionaross the x axis of the averaged amplitude < juj > at time 0 and �=2. The shapeof the solitary wave is well onserved and the damping e�et of the multipliativenoise is on�rmed. Moreover, it is ampli�ed when the level of noise is inreased. Itseems that the additive noise also has a damping e�et however it is rather weakeven with a very high noise level. Figure 7 shows the same quantity at time T = 8,the damping e�et of the additive noise is now lear. This e�et has been alled"soliton di�usion" in the ontext of the Korteweg-de Vries equation (see [28℄) andan be justi�ed in some ases (see [23℄). 12
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X Figure 2: Evolution of the setions at times t = 2; 4; 6; 8; 10 for NLS with multi-pliative noise (left) and with additive noise (right), (� = 12 ; � = 0:03).13
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The injetion of energy annot be seen on E (ju(t; x)j), or on maxx2D E (ju(t; x)j),beause it is injeted at points whih are random. When a point is �xed, the energyis injeted there for very few trajetories so that it has no inuene on the average.This explains why we obtain dereasing urves whih only reet the damping e�et.
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to see if the damping due to the multipliative noise is omparable to the dampingdue to a di�usive term. In other words, we ompare the solutions of the NLS equationin the multipliative ase and the CGL equation,�u�t � (�+ i)�du+ (� � i)juj2�u = 0; (10)where � and � are small nonnegative parameters.
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We ompute solutions of (10) starting from the same Cauhy data as the onetaken in stohasti simulations of NLS. We have hosen the various parameters , �,�, �, so that the solution are as lose as possible. The pro�les of the CGL solutionand of one path of the stohasti NLS with multipliative noise at di�erent times areshown in �gure 16. The evolutions are very similar and the two e�ets ould easily beonfused. The superposition of the CGL and stohasti pro�les in �gure 17 is reallyamazing. We insist however that the two perturbations of NLS are mathematiallyompletely di�erent even if it seems diÆult to see the di�erene on the solutionbehavior.
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Figure 17: Setions of < u > at t = 0 and t = 6 for NLS with multipliative noise(� = 0:05) ompared with CGL (� = � = 0:055).Nevertheless, a slight di�erene an be seen on the evolution of the maximumamplitude (see �gure 18): in the ase of the multipliative noise, an inetion pointan be observed in the < ju(t; x)j > evolution, whereas the evolution for the CGLequation mimis a dissipative pro�le. This di�erene is related to the fat that thestohasti NLS equation is onservative - the L2 norm is onserved - whereas CGLequation is dissipative - the L2 norm dereases.
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Figure 18: Comparison of the evolution of the maximum of the solution for CGL(� = � = 0:055) and < ju(t; x)j > for NLS with multipliative noise (� = 0:05),(� = 12 ; � = 0=0:05 � = � = 0; 0:055; K = 0).4 Noise e�et on the blow-up4.1 The numerial study of singular solutionsAs already mentioned, the omputation of singular solution is deliate and requires aareful treatment. In [3℄ and [4℄ - see also [7℄, [8℄ for the Korteweg-de Vries equation -sharp riteria for re�nement are derived. Let us �rst reall that it is absolutelyneessary to re�ne the grid when omputing a singular solution for the deterministiNLS equation. Indeed, the H10 norm inreases strongly whereas the L2 norm remainsinvariant. This is in ontradition with the well known inverse inequalitykukH10 � Ch kukL2; (11)valid for a disrete funtion u. Thus, if the grid is uniform, it is impossible to simulateblow-up.Figure 20 shows the omputed solution with and without re�nement in the aseof an initial data orresponding to a singular solution. Due to the inverse inequality,the maximum norm annot reah high values and osillates on the �xed grid. Onthe ontrary, with re�nement, the omputed pro�le shows a singularity.In the artiles ited above, the re�nement strategy is the following. The timestep is divided by 2 when the energy onservation fails and the spatial re�nementours when the inverse inequality is lose to beome false. This gives the followingalgorithm: if krunk2 � 1 Ch kunk2; then add points in the grid;if jH(un+1)�H(un)jjH(un)j � 2 then divide Æt by 2;25



where 1 is a positive onstant smaller than 1, C is the onstant in (11), and 2is a positive onstant lose to 0. These have to be hosen in order to optimize there�nement algorithm. If 1 and 2 are small, the re�nements are too frequent andyields prohibitive omputational osts. In the worst ase, if the time step is re�nedtoo often, the simulation annot reah the blow-up time.Moreover, a global spae re�nement would also need very long omputationaltime. We observe that the solutions we are interested in remain loalized near theenter of the square and in order to improve our omputations, we hose to re�neloally in spae. Indeed, it is no use having a re�ned grid in spatial areas where thesolution is not singular. Sine the singularity will always our at the enter of thedomain, we hose a re�nement proedure whih adds points only around the enter.Our re�nement proedure onsists in adding K points from the enter to the leftand K points to the right in x and in y diretions. The re�ned grid has the shapeof a entered ross. Figure 19 shows on the left the grid after the �rst re�nementand on the right the grid after the seond one. All lines intersetions in this �gureare nodes of omputation. Another hoie would be to add points only on a smallentered square, this method has the advantage to re�ne only where the singularityappears and the re�ned grid has fewer points. However, the ode would be muhmore omplex to implement and the matrixM of our sheme (see Setion 2.3) wouldloose its symmetry.The re�nement strategy desribed above annot be applied with our sheme.Indeed ontrary to [3℄ and [4℄, the energy is exatly onserved in our ase and itannot be used to deide when to re�ne. If the energy hanges, this means thatour �xed point algorithm does not onverge and it is in general already too late tore�ne in time. Based on this observation, we have deided to re�ne in time wheniterations in the �xed point is larger then a presribed value. This riterium of timere�nement gives good results in the deterministi ase for NLS. Another advantageis that the �xed point and onjugated gradient are eÆient resulting in a quite fastomputation. Furthermore, this riterium is also available in the stohasti ase orfor the omplex Ginzburg-Landau. In these two ases, no invariant quantity suh asthe energy exists. Conerning spae re�nement, we keep the riterium based on theinverse inequality.It has to be emphasized that the matrix onditioning beomes worse and worsewith the number of spae re�nement and the preonditioning is less and less eÆient.Another point is that, when the spatial grid is re�ned, it is neessary to hoosevalues for the solution at the new nodes. A �rst try was to use linear interpolation.However, this produes a signi�ant break in the evolution of the mass and energy.We have used interpolation with seond order polynomials in order to ure thisproblem.
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Figure 19: The grid 10 � 10 after one re�nement with K = 2 (left) and after theseond one (right).The seond solution shown in �gure 20 has been omputed with this strategywith K = 20. We see that our ode is able to ompute singular solution in a veryeÆient way. It is also important to make sure that the ode is able to ompute highamplitude solutions whih �nally derease after a strong fousing phase. This mayhappen in the ritial ase for the omplex Ginzburg-Landau equation. Indeed, it isknown that the solutions are global (see [17℄) but, for � and � small, they are verylose to the NLS solutions. Consequently, for an initial data with negative energy,we expet to see numerially a solution very lose to the blowing up solution of NLS,but whih stays global in time.Tests have been made in the ritial ase � = 1 with a Gaussian initial onditionu0(x; y) = qe�((x�7)2+(y�7)2); (12)with q = 3 so that it has a negative energy. We have taken � = �. The programis supposed to stop when the amplitude of the solution is 5000 times higher thanthe initial amplitude. The initial number of point in eah diretion is 140 and wepresribed K = 20. The domain is the square [0; 14℄� [0; 14℄. When � = � = 10�2or � = � = 10�3, we indeed obtain a solution whih �rst fouses. Then the di�usiondominates and the amplitudes dereases. In the seond ase, we ould believe fromthe �gure on the left that the solution is singular but the zoom on the right showsthat it is not not the ase. For � = � = 10�4 the amplitude of the solution goes overthe limit of 5000 q, and no stopping e�et of the blow up was numerially established.More severe re�nement riteria would show that the solution is global. This showsthat one has to be very areful before onluding that a solution is singular ! In oursituation, we an only onlude that there is a threshold between � = � = 10�3 and10�4 and below this threshold no global solution ould be numerially seen althoughwe know it exists. 27



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

| u | 

T 

K=20. 

K=0. 

Figure 20: Comparison of the evolution of the maximum of a blowing-up solutionfor ritial NLS with re�nement (K = 20) and without re�nement (K = 0).
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time white noise on blow-up, it is neessary to have arbitrarily small spae and timestep.We enountered new diÆulties in the stohasti ase. First, we had to hoosea larger onstant 1. Indeed, the H1 norm inreases due to the presene of noise and,if 1 is too small, this yields unneessary spatial re�nements.Another problem appeared. As mentioned previously, the ondition number ofthe matrix is worse and worse with the number of re�nements. In the presene ofnoise the number of iterations in the onjugate gradient algorithm an reah veryhigh values, as opposed to the deterministi ase. The reason is that, for deterministievolution problems, the solution is rather smooth in time and the onjugate gradientis initialized with a vetor lose to the solution so that the onvergene is very fast.However, this is no more the ase in the stohasti ase where the solution is notvery smooth in time so that un+1 is often very di�erent from un and the onvergeneof the onjugate gradient may be very long. We have hosen to re�ne in time also inthis ase, when the number of iterations in the onjugate gradient is too large. Thismight be bad and lead to very long omputations. However, we found that it was agood solution and ould always perform our simulations in a reasonable time.4.2 Numerial simulationsAll the simulations are done aording to the algorithm desribed above on thesquare [0; 14℄� [0; 14℄ with a ritial nonlinearity. We will start our study of blow-upwith the Gaussian initial ondition (12), where q is suh that H(u0) is slightly nega-tive or slightly positive but we know that the deterministi solution is singular. Wewill also use the deterministi stationary wave as initial ondition, due to instabilitythe deterministi numerial solution is also singular.For q = 3, the Gaussian initial data has negative energy. Figure 22 on the leftdisplays a path of the solution for two noise levels, � = 0:1 and 0:05. The blow-upis prevented with the high noise level whereas it still ours for � = 0:05. However,we believe that this is a numerial artefat and that in fat the stohasti solutionis not singular. Realling the deterministi simulation on the omplex Ginzburg-Landau equation, we know that this is possible. An indiation of that is that if wedo more and more re�nement, i.e if we take 1 smaller and smaller, the blow-upis delayed, whih means that our simulations have not onverged. However, evenwith very severe re�nement riteria, we have not been able to establish that thestohasti solution is global. Note that we tried several random draws and eah timewe observed the same behavior.We tried to see for whih level level of noise we are able to establish that thestohasti solution does not develop singularities. In �gure 23, we see that up to� = 0:08 the blow-up is always prevented. With this noise level, the solution startsto fous very strongly but the re�nement algorithm works well, the noise is verylose to a spae time white noise around the maximum and the blow-up does notour. Below this level, we have not been able to obtain this behavior.
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Figure 23: Pro�le of the solution amplitude of NLS with multipliative noise withvarious noise level.We then hoose the initial data (12) with q = 2:8 that gives a blowing upsolution with a positive energy. In this ase, the noise inuene is easier to observesine the deterministi blow-up is weaker. Our experiments have shown that ollapseis stopped when � is larger than 2:10�2. Indeed for � = 3:10�2, whih is quite small,the blow-up is early stopped. In fat, there was not even one re�nement in this ase.For � = 2:5:10�2, the blow-up is stopped after a high peak of amplitude (see Figure30



24). In this latter ase, the re�nement method is neessary to observe the globalsolution. Even for � = 2:0:10�2, the solution amplitude beomes very large but theblow-up is still prevented. A fous on the solution near the singularity on�rms thatthe dereasing of the amplitude is not due to a numerial instability. We indeed seein Figure 25 (right) that the omputation is good and that there is a real dampinge�et that ours in a very short time sale. Under the ritial level � = 2:10�2, noglobal solution ould be seen numerially.
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Figure 24: Pro�le of solution amplitude of NLS with multipliative noise for di�erent� (� = 1, Gaussian initial data with positive energy (q = 2:8), K = 0).
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Figure 25: Pro�le of solution amplitude of NLS with multipliative noise (� = 0:02)ompared to the deterministi blow-up (left) and zoom around maximum intensityfor � = 0:02 (right). (� = 1, Gaussian initial data with positive energy (q = 2:8),K = 20).Finally, we onsider the stationary wave desribed in Setion 3 as initial ondi-tion. The solution is not stable and numerially blows up after some time, see �gure31



26 (left). In this ase, the blow-up is very weak and easily prevented by the multi-pliative noise, even if � is very small, see �gures 26 and 27. Besides for � � 6:10�4,no re�nement proedure is neessary sine the stationary wave is really early pre-vented. Nevertheless, for � = 5:10�4, a severe fousing happens and the loal spaere�nement proedure is neessary to see the damping e�ets of the noise on theblow-up. For smaller noise level, � < 5:10�4, no global solution ould be observed.As in the previous ases, we annot really onlude whether there is still a globalsolution or not beause our omputation reahes its limit. However, we �rmly be-lieve that even if we annot see it in the simulations for very small �, the solution isalways global with multipliative white noise for any value of the noise level �.
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Figure 26: Evolution of the solution amplitude of NLS with multipliative noise fordi�erent � (� = 1, stationnary state, K = 0).
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