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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

Current debates on mitigation emphasize the role of the inertia of the econom-

ic system. Our aim in this paper is to study in more depth how sectorally dif -

ferentiated inertia impacts on optimal CO2-emission abatement policies. Using 

the STARTS model,  we show that  optimal  abatement levels and costs differ 

sensibly among sectors.  Differential  inertia is the critical determinant of this 

trade-off, especially in the case of a 20-year delay in the action, or in an un-

derestimation of the growth of the transportation sector. In particular, the bur-

den of any additional abatement efforts falls on the most flexible sector,  i.e. 

the industry.  Debates on mitigation emphasize the role of  inertia of  the eco-

nomic system. This paper aims at studying more in depth how sectorally dif-

ferentiated inertia should influence, optimal CO2 emission abatement policies. 

Using a two-sector version of STARTS, we show that under perfect expecta-

tions, optimal abatement profiles and associated costs differ sensibly between 

a flexible and a rigid sector (transportation).In a second step, we scrutinize the 

role of the uncertainty by testing the case of a 20-year delay of action and an 

underestimated growth of the transportation sector. We do this for three con-

centration ceilings and we point out the magnitude of the burden which falls 

on the flexible sector. We derive some policy implications for the ranking of 

public policies and for incentive instruments to be set up at international level. 

© 1998 Elsevier Science B.V. All rights reserved.
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Introduction

The policy debate about the optimal timing of the abatement of GHG has been 

deeply influenced by the paper of Wigley et al. (1996) in Nature which sug-

gests that an early departure from current GHG emission trends may not be the 

most  efficient  way  to  stay  below a 550 ppm GHG concentration  ceiling.  A 

postponed abatement would indeed avoid a premature replacement of capital 

stock,  take  advantage  of  cheaper  carbon  free  techniques  in  the  future  and, 

transferring  a  given  amount  of  expenditures  later  in  time,  would  result  in 

lower discounted costs. Despite the warnings of the authors, this paper has of-

ten  been interpreted  as a ‘no action’ policy  message,  even though it  should 

have led to emphasize a logical distinction between action and abatement: be-

cause of inertia, immediate action may be required in order to be able to abate 

more in the future.

Without  refuting  this  ‘when  flexibility’  argument,  Ha  Duong,  Grubb  and 

Hourcade (HGH) demonstrated in Nature that treating the 550 ppm target as 

stochastic instead of deterministic  would result  in sensibly higher  abatement 

over  the near  term because of  the  interplay  between uncertainty  and inertia 

(Ha Duong et al. 1997). In a stochastic framework indeed, inertia has a Janus’ 

role: it raises both the costs of premature abatement and the costs of further 

accelerated abatement due to a tightening up of initial targets. 

We will investigate in more depth this interplay by elucidating its sectoral di-

mension. If inertia matters, then the heterogeneity of capital stocks should be 

seriously  considered:  cars,  buildings,  industrial  plants,  transportation  infra-

structures have life cycles ranging from a few years to more than one century. 

This distribution cannot but have serious policy implications. 

To  provide  some  insights  on  these  issues,  we  will  use  a  version  of  the 

STARTS  model  (Sectoral  Trajectories  with  Adaptation and  Response 

Turnover  of  Stocks) which considers two sectors,  a flexible and a rigid one. 

The choice of a two-sector model derives from a compromise between analyt-

ical transparency, the need of numerical control over the results and empirical 

realism in order to point out some implications of the heterogeneity of capital 

stocks

We shall first propose a taxonomy of the forms of inertia involved. Then, after 

a  description  of  STARTS,  we will  present  some numerical  experiments  ad-
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dressing the three following issues:  (1) how the ‘when flexibility’ should be 

sectorally distributed under perfect foresight;  (2) on what sector will  fall the 

burden in case of accelerated abatement following a delay of abatement; and 

(3) what are the implications of an ‘underestimation’ of the growth of the rigid 

sector.

I Inertia and timing of abatement in a 
stochastic framework: lessons from recent 
debates

I.1 The interplay between uncertainty and inertia

It has been recognized for a long time that climate policies are built  “in a sea 

of  uncertainties” (Lave 1991).  First,  despite current  progress  in climate sci-

ences, we are not likely to know in the near future at what concentration level 

“dangerous interference with  the climate system” would occur,  which is  the 

objective set by the Framework Convention on Climate Change. Second, other 

uncertainties,  endogenous to human behaviours,  may influence the timing of 

action:

• sudden changes in public concern: past experience suggests that envir-

onmental issues follow political life cycles not only driven by scientific 

discoveries or symptomatic events,  but also by casual mismanagement 

of information (the ‘mad cow’ crisis) or by the combination of political 

parameters (the Waldsterben crisis, Hourcade et al. 1992),

• trends in energy demand and technology: most of the baselines retained 

in recent forecasting studies incorporate expectations of stable or stead-

ily  increasing energy prices over the following decades. But these are 

not fully supported by recent analysis of structural determinants of oil 

prices, which underlines in particular the drastic decrease of the cost of 

new discoveries (Fagan 1997).

But it is only because of the inertia of our economic system that uncertainty 

matters:  without inertia,  switching from one emission path to another  would 

be costless. The nature of this interplay has been explored in HGH in response 
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to WRE:1 selecting the same discount rate and autonomous technical progress 

coefficient as WRE, they confirm that the least cost abatement path towards a 

550 ppm concentration target should be only 2% below the baseline emissions 

in 2020 if  the target is certain; but this departure should jump up to 14% in 

case of an uncertainty on the optimal ceiling (equiprobably 450, 550 and 650 

ppm) resolved only in 2020. In this stochastic framework indeed the decision-

making problem is to balance between the costs of switching towards a tighter 

target in 2020 and those of too strict a pathway before 2020 if the ultimate tar-

get proves to be 650 ppm.

Observing the costs of a 20-year delay in action can easily highlight this prob-

lem.  These  prove  modest  if  the  optimal  target  appears  to  be  550  ppm,  but 

really  significant  for  450  ppm;  consequently,  the  costs  of  switching  to  450 

ppm too late dominate the costs of too early abatement if  the optimal  target 

happens to be 650 ppm. Unsurprisingly, this effect is all the more important as 

the resolution of uncertainties comes later: the optimal departure jumps up to 

20% if full information occurs in 2035. This effect is strongly correlated with 

the degree of inertia:  doubling the degree of inertia results in an increase of 

the cost of delay from 14% to 35%. Conversely costs of delay become negli-

gible for capital life duration below 10 years.

I.2 Determinants of inertia

Discussions between top-down and bottom-up analysis about the so-called ef-

ficiency gap at  the end-use energy level  matter for setting short-term abate-

ment targets but do not encompass the most critical mechanisms at work in the 

long run. Final energy demand is driven indeed not only by the efficiency of 

the end-use equipment but also by structural changes in the production sectors 

(just in time processes, share of energy intensive industries), in life styles and 

human settlements. In other words part of the dynamics is determined by para-

meters beyond the energy sector and whose inertia may be far higher.

Jaccard (1997) portrays the great diversity of the involved capital stock by a 

three-level hierarchy of the decisions governing its dynamics.  We will  reph-

rase his taxonomy in the following way.

1 Hourcade and Chapuis (1995) demonstrated with a simulation model why, in case of the need 
for accelerated action, inertia may constitute an important cost multiplier. In an optimal control 
model Grubb et al;(1996) demonstrated why early abatements should be all the more important 
as inertia is supposedly high in the system. 
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• The  end  use  equipment:  the  decision  is  made  by  private  decision-

makers (households, a division in a company). The turnover of capital 

stock ranges from a few years to two decades. At this stage the relative 

cost  of  delivering  a given energy  service  is  the  key selection  criteria 

(under the constraints of information gaps and other market imperfec-

tions).

• The  infrastructure  equipment  and  industrial  processes:  this  encom-

passes the buildings, the major transit modes, and industrial infrastruc-

ture whose turnover is measured in decades. This level is largely gov-

erned by centralized public  and/or  private decision-makers.  Every de-

cision  involves  an amount  of  capital  whose order  of magnitude is far 

higher than in the previous level. One major difficulty stems from the 

fact that,  except in the very energy systems, energy costs play only a 

minor role in the decision compared, for instance, to strategic criteria in 

the industry or cost/speed ratio in the transportation sector. 

• Land-use and urban planning: this level is driven both by infrastructure 

decisions and by specific  public  policies.  These policies can either be 

explicit, i.e. aimed at shaping urban forms or the distribution of the hu-

man settlements, or implicit i.e. influencing land use and urban patterns 

through subsidies to mobility, or rules governing tenants and landlords 

relationships. Curving trends at this hierarchical level is then not just a 

problem of capital stock turnover.

Inertia in the economic systems results mainly from the interactions between 

these three levels. For example, the very architecture of the buildings determ-

ines the air conditioning requirements. More importantly, urban forms determ-

ine not  only  the transportation  needs but  also the relative  share of  journeys 

made on foot, on bicycles, by rail or by private car. The attraction of activities 

around the proximity of infrastructures, the induced investment, the nature of 

skills and the amount of embedded interests generate dynamics which are hard 

to curve overnight.

Furthermore,  inertia sums up to the time of penetration of technical  innova-

tions,2 and  the  ‘lock-in’ processes  (Arthur  1989)  due  to  learning-by-doing, 

economies of scale, informational increasing returns and positive network ex-

ternalities to induce bifurcations. Beyond a critical point,  market forces tend 

2 Past experiences suggest indeed that new energy sources take about 50 years to penetrate from 
1% to only 50% of their ultimate potential because of the time needed to remove market and in -
stitutional barriers to the diffusion of innovations and the obstacles due to imperfect information 
and imperfect foresight.
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indeed to reinforce the first choice instead of correcting it, in a self-fulfilling 

process  (Hourcade 1993).  At  date  ‘t’, there  are  still  several  possible  market 

equilibria at ‘t + n’, and several possible ‘states of the world’ characterized by 

different  technical  contents.  The bifurcation towards one or another depends 

on the very decisions made at ‘t’ and on the expectations at that time.3 We can 

easily  imagine,  in  the  transportation  sector  for  example,  two  very  different 

equilibria with relatively similar total costs but very different carbon contents: 

they cannot be discriminated today, but the costs of shifting from the adopted 

one to the other in the future might be huge, all the more that the transition 

period is short.

II STARTS: a modeling framework to capture 
heterogeneity and inertia of capital stocks

II.1 A tentative modeling response 
to substantive issues

II.1.1 Forms and degrees of inertia

Available  models  in  the energy  field  incorporate  descriptions  of  the  energy 

production system at a desegregation level that varies in function of the data, 

computational capabilities and the very objective of the model. They incorpor-

ate data on costs  and inertia,  which,  however controversial  they are,  permit 

reasonable numerical experiments. But this is not the case for the determinants 

of the final energy demand, which are as critical to understand the inertia of 

the entire system.

The problem we are confronting is that both the lack of harmonized data on 

the capital stock turnover at each of Jaccard’s hierarchical levels and the pro-

fessional separation between specialists in each field make it very difficult to 

model in a reasonable way the dynamic interactions to be considered. For ex-

ample, available energy models represent the penetration of efficient cars but 

3 Since the development of the ‘sunspot theory’ (Azeriadis and Guesnerie 1986), the plurality of 
equilibria induced by different sets of expectations leading to self-fulfilling processes has been 
pointed out in other fields of economics than the economics of technology.
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not the links between the modal transportation structure and the transportation 

needs: current practice is to resort to exogenous hypothesis about these para-

meters. The risk is obviously to derive some misleading conclusions:  energy 

demand in the developing countries projected without considering the lack of 

transportation infrastructure, abatement policy scenarios where the abatement 

comes in part from lower trends in the demand for gasoline and where the cor-

responding costs are not accounted for because they occur in the transporta-

tion sector.

The key issue is then how to capture the driving forces behind inertia in tech-

nical change, which are very different in nature, and to describe not only the 

energy sector but  also the non-energetic  determinants  of the energy demand 

whose  dynamics  are  far  from  being  only  driven  by  the  energy  prices.  In 

STARTS, we capture only Jaccard’s two first hierarchical  levels because the 

data and scientific information required to build a fully comprehensive model 

is unavailable. We rely on an aggregated treatment of inertia in order to study 

its role in comparison to other key parameters (e.g. discount rate or the date of 

resolution of the uncertainties). The role of Jaccard’s third level is represented 

only  through  different  baselines.  Compared  with  the compact  stylization  of 

DIAM, STARTS is an attempt at  disentangle the many sources of inertia  at 

work. At the same time, its simple two-sector construction enables policy im-

plications to be drawn out of it without loss of generality.4

II.1.2 Cost function: leap-frogging vs. accelerated turnover

There  are  various  ways  of  treating  inertia  at  an  aggregated  level.  In  UR-

GENCE (Hourcade and Chapuis, 1995) inertia acts as a cost multiplier func-

tion  of  the  increase  of  the  capital  turnover.  In  Hammit  et  al.  (1992),  it  is 

treated endogenously through logistic penetration curves of technical change. 

Toth et al. (1997) explore tolerable windows of emission trajectories, but in-

troduce an arbitrary upper bound of the reduction rate |dE/dt| / E ≤ 10%. DIAM 

endogenizes  inertia  in  such a form that  permanent  and adjustment  costs  are 

separable; the cost function is additive and the inertia in the system is defined 

by the weight of adjustment costs on permanent costs.5 This allows for repres-

4 A  new version  of  STARTS,  currently  under  development,  will  include  four  sectors:  energy 
supply, which can be calibrated on results of existing energy models, transportation, habitat and 
industry. This representation will allow for clarifying the distinction between the various types 
of capital involved. It will also permit to represent the fact that elasticity to price of energy de -
mand evolves very differently in the three main final demand sectors.
5 Dimensional analysis shows that D can be interpreted as the characteristic duration of the glob-
al energy system. For example if the capital stock turnover is solely considered, and if we inter-
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enting  high transition costs  even if  the incremental  costs  of  the carbon free 

techniques in the new stabilized path are null  or even negative.  In STARTS 

such a possibility is described through an explicit representation of the capital 

turnover and of the penetration of new techniques. 

STARTS considers indeed that achieving a given emission reduction in a con-

text of inertia imposes a trade-off between two parameters:

• the  redirection  of  investment  towards  carbon  saving techniques:  at  a 

constant capital turnover rate, tighter emission reductions require to by-

pass the ‘natural’ decarbonization trend and to  ‘leap-frog’ towards ex-

pensive techniques;

• the acceleration of the turnover of capital stock through scrapping some 

capital vintages before the end of their economic life.

For  example,  an economy replacing 25% of its capital  every decade will  be 

obliged to adopt a zero emission technique (a solar plant for instance) if it is 

committed  to  cut  25%  of  its  emissions  over  the  following  10  years.  Now 

would the cost of such a technique be very high, it might be cost-effective to 

replace  one  additional  capital  vintage  to  install  two  gas  plants  saving  each 

12.5% of previous emissions. The optimal trade-off requires the marginal sav-

ing on the abatement  costs  to  be equal  to  the costs of  scrapping  equipment 

prematurely. 

In  STARTS, ls capital  vintages denoted  Kits coexist  in each sector  s at  each 

period t.6 Capital built at period t in sector s is characterized with an emission 

index per unit of capital  εts. Emissions  Ets are supposed to depend directly on 

the existing capital stock that operates at its full capacity.7 There is no possib-

ility of lumpiness of capital such as in Disgusts and Mäler (1996) and the eco-

nomy is assumed to follow a steady growth path.

Ets = Ki,ts εt−i,s (1)

The εts terms constitute the first set of control variables. They stand for decar-

bonization levels, while ….. stand for the baseline values

pret D as the exponential half life time of equipments, then D can be related to the annual depre-
ciation rate of capital δ, by D = (ln 2) / δ and, for δ = 4%/yr, we find D = 20 years.
6 Vintages are counted backward, i.e. vintage 1 is the youngest (built at period t−1) and vintage ls 

the oldest.
7 Emissions, consumption and costs are annual flows but the model is computed using 10-year 
intervals from 1990 to 2200 (with N being the interval duration).
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II.2 Overall Mathematical structure

STARTS8 is an optimal control model which minimizes the total utility loss of 

reaching a given concentration ceiling in a two sector economy,  each sector 

being characterized by different capital life duration and different perspectives 

for the penetration and ultimate performance of backstop technologies.

Difficulties  arise  in  fully  developed  growth  model  (Lecocq  and  Hourcade, 

1997) from the fact that these tend to abate by reducing investment rates: as 

emissions  depend  on  the  level  of  capital,  reducing  capital  stock  becomes  a 

mitigation  option.  Such  a  response  is  economically  justified  in  a  first  best 

world, but has little chance to be adopted in a real economy. In fact, the con-

centration ceiling will be seen as a new exogenous constraint. It might be de-

cided to face it either by keeping the consumption/total investment ratio con-

stant  with  lower  productive  investment  or  by  conserving  the productive  in-

vestment  constant  with  reduced consumption.  The latter  assumption  will  be 

made in the following numerical experiments.

Therefore, in STARTS, total capital is an exogenous parameter: it is assumed 

to grow at  a constant  rate.  Nevertheless,  the age distribution of  capital  vin-

tages remains variable, and constitutes the second set of control variables: the 

model is allowed to overinvest compared to the baseline, but always replacing 

prematurely  scrapped vintages in order  to  keep total  amount  of  capital  con-

stant.

II.2.1 Objective function

STARTS  uses  a  logarithmic  utility  function  of  consumption  given  at  each 

point  in  time by  the difference between C0t,  the annual  consumption  in  the 

baseline case and the abatement expenditures from both acceleration and leap 

frogging. The optimization program is thus given by Eq. (2)  below, where  ρ 
stands for the pure time preference:

MaxA,ε   e−ρt (2)

8 The following model  is  the third  version of  STARTS (Sectoral  Trajectories with  Adaptation 
and Response Turnover of Stocks) (Hourcade and Lecocq, 1996 and 1997) and the first to offer 
a representation of the age structure of the existing capital stock.
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The acceleration variables Ait in Eq. (3) below stand for the accelerated capital 

renewal. Eq. (4) forces total capital stock to remain equal to its baseline value 

K0ts.9

Ki+1,t+1,s = Kits − Aits    for 1 ≤ i ≤ ls−1 (3)

ki,t+1,s  = K0ts (4)

Parameter Ki+1,t+1,s stands for the investment at period t.10

II.2.2 Under a concentration constraint

Numerical experiments could be carried out within a cost-benefit analysis. But 

this  would  require  to  enter  into  discussion  about  both  the ultimate  damage 

level and the very shape of the damage function, which would blur the analys-

is of the role of differential  inertia among sectors. A cost-efficiency analysis 

circumvents this difficulty and is closer to the very framework of the Kyoto 

protocol.

The  objective  of  the  model  is  therefore  to  maximize utility  under  the  con-

straint of not overshooting the concentration ceiling Mceiling:

Mt ≤ Mceiling     (∀ t) (5)

where atmospheric CO2 concentration Mt is given by Eq. (6) below.

Mt+1 = Mt + N (6)

EDt is  an exogenously  given  parameter  which stands  for non-industrial  CO2 

emissions (principally deforestation). Parameters β, δ and Minf are calibrated to 

reproduce concentration scenarios in the baseline (IPCC 1994).

II.2.3 Abatement costs

Additional  costs  of  ‘leap frogging’ are  technical  costs  of  low-CO2 emitting 

techniques.  We  approximate  current  data  (IPCC  1996) through  a  quadratic 

function of the wedge between baseline and current carbon efficiency index:

Clf t,s =   Cmaxs Lts K1,t+1,s (7)

9 In a complete model, investment  I becomes a variable and equation (3) becomes (3')  K1t+1 = It 

where capital is now free to evolve out of the BAU track.
10 Note that, provided it is verified at period 1, Eq. (4) has a positive solution K1,t+1,s at each peri-
od t. Nevertheless, investment K1,t+1,s might be null.
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Parameter  Cmaxs gives the incremental  cost  (per  unit  of  capital)  of  a 100% 

emission reduction at initial period. Lts stands for the decrease of this cost due 

to autonomous technical change.11

Additional  costs of acceleration come from two main sources: first from the 

difference between planned investment (i.e.  K0t+1,s − K0t,s) and realized invest-

ment (K1,t+1,s). Second, the economy withstands a penalty due to the premature 

replacement  of  capital,  which  is  equal  to  the  residual  value of  this  capital. 

This value at year y ≤ 1 If r is the investment discount rate and l the capital life 

duration, this value at year y ≤ ls is given approximately by e-y. Hence:

Caccts =  (K1,t+1,s − (K0t+1,s − K0t,s)) +  Aits e-iN (8)

III Numerical experiments

III.1 Model calibration

We will consider a ‘rigid’ and a ‘flexible’ sector characterized by different life 

duration. Both encompass the capital stock driving the energy demand and the 

corresponding  energy  supply.  The ‘rigid’ sector  covers  transportation  infra-

structures (roads, airports or railways), and the part of urban planning which 

shapes urban forms and transportation needs within cities. The ‘flexible’ sector 

covers housing and industry. This means evidently that, in the following nu-

merical experiments the structure of the buildings will  not be considered and 

that abatement will  come solely from technical change in the end-use equip-

ment. The reason for this gross classification is that we chose to place the fo-

11 We run STARTS without induced technical change specification in order to facilitate compari-
son  with  existing  models  (DICE,  MERGE,  DIAM...).  This  point  is  of  importance  for  policy-
making, but stands beyond the scope of this paper.

Moreover, firms commitment to develop R&D program depends on their anticipations of the fu-
ture market conditions,  and especially of the future prices.  Public policies play a great role in 
the formation and the stabilization of those anticipations. If everyone agrees on the existence of 
such phenomena, its scale and influence is indeed widely debated. Both their mathematical rep-
resentation and the calibration of such relations prove highly difficult.

Therefore, the model we developed include an autonomous technical change representation. In-
duced technical change is ignored, which leads to biased results towards less abatement scenar-
ios.  Furthermore, our model does not try to represent agents anticipations.  In fact, as in DICE 
for instance, our model displays a centrally planned economy in which separate ‘agents’ do not 
appear. The question of the decentralization of the optimum must still be addressed, but is obvi-
ously beyond the scope of this paper.
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cus upon transportation and urban infrastructures which have a far longer life 

duration than any other kind of capital (buildings excepted) and, more import-

antly, give rise to typical self-reinforcing loops which upgrade the inertia of 

the economic system.

III.1.1 Choice of the baseline scenario

In our baseline scenario, production is supposed to grow at a constant 2% rate 

in the future. Emissions are based on the IS92a scenario (IPCC, 1996). They 

are extended up to the model horizon (2200) by assuming a constant decoup-

ling  between  emissions  and growth.  CO2 emissions  then start  decreasing  in 

2150 with a maximum at 22 GtC/year. Non-fossil fuel emissions EDt also de-

rive from IS92a.

The distribution of emissions between sectors is based on sectoral IIASA pro-

jections (1995) for a baseline scenario very similar to IS92a.12 In these projec-

tions the share of the transportation sector in emissions rises from 25% today 

to 31% in 2100.

The repartition of capital between sectors is more difficult to assess. It stems 

from the fact that a redesign in transportation patterns would affect not only 

specific  transportation  infrastructures  but  also  part  of  urban  infrastructures 

that shape the former ones. In the absence of reliable data, we adopt the con-

ventional  figure that one third of  private and public  building investment  are 

sensitive to transportation. Strict transportation investment in OECD countries 

being  5-7% while  total  private  and public  construction  amount  to  45%,  we 

come down to a gross 20% figure for rigid sector share in total capital.

We treat transportation share in the existing capital stock as constant though 

its share in emissions change. This is a reasonable structural trend assumption.

For each sector, capital stock in the baseline is supposed to grow at the same 

rate as the economy. Conforming with the above assumptions, parameters ε0ts 

are13 calibrated to  obtain  baseline  emissions  with  baseline  capital  stocks for 

each sector.

12 Baseline emissions in the IIASA study are generally more optimistic than IPCC IS scenarios. 
However,  we relied on their higher emission scenario (A2 scenario)  whose emission levels are 
similar to IS92a ones.
13 Therefore, we do not study here the impact of different initial capital age structure on abate-
ment policies.  As a matter of fact, a country which has invested very recently has a very new 
capital stock and therefore less possibilities to accelerate (at least acceleration penalty would be 
higher). This point is of high interest in a regional abatement policy study, which is beyond the 
scope of this paper.
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III.1.2 Cost function parameterization

The cost function in Eq. (7) is calibrated in order to obtain an overall 1% dis-

counted loss of consumption for a 550 ppm target. This equation depends on 

the cost of a hypothetical carbon-free technique (Cmax) to be used if a 100% 

abatement  is  requested  at  initial  time.  It  is  assumed  to  decrease  over  time 

(with parameter Lt). Such a calibration is less easy in a two-sector model than 

in  an  aggregated  one  because  it  requires  finding  the costs  of  two backstop 

technologies.

In the following numerical experiments, we assume that costs are higher in the 

rigid sector (transportation) than in the flexible one. As a matter of fact, de-

pending on experts’ judgments,  backstop technologies in the former will  de-

rive either from electricity or power cells, which require an additional trans-

formation step between primary energy and end-use service, or from biofuels, 

whose total costs should include the possible feedbacks on land-use and food 

production  and  the  costs  of  waste  disposal.  Finally,  as  each  scenario  runs 

within  given  assumptions  about  urban  forms,  the  modal  switch  to  water  or 

railways is assumed to be very capital intensive.14

For the same reasons we assume autonomous technical change to be faster in 

the flexible sector (1% every year) than in the rigid one (0.25%), as the latter 

depends on the former.

III.2 Optimal sectoral abatement trajectories and 
sectoral profiles

In this subsection, we study the optimal response to a deterministic constraint 

on atmospheric CO2 concentration. The considered ceilings are 450, 550 and 

650 ppm (denoted C450, C550 and C650).

Fig. 1 displays the abatement levels in percent in each sector in the C550 case. 

Both curves are rather close until  2050,  where abatement levels come to in-

crease more rapidly in the flexible than in the rigid sector: in 2050, abatement 

levels are 30% and 33% in the rigid and flexible sectors, respectively, against 

58% and 82% in 2080.15

14 In practice anyway, long standing policies may generate a set of urban forms and transporta-
tion patterns that,  overall,  do not  cost  more  than the projected patterns.  But  in STARTS,  this 
comes to design a new baseline scenario.
15 C450 and C650 cases display the same distribution of  abatement  levels,  the only  difference 
being the slope of the curves and the date at which rigid and flexible sectors abatement levels 

15



 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 

Rigid 

Flexible 

Figure 1 Abatement levels per sector (C550 case)

More important are the discrepancies between sectors in the abatement costs 

(Fig. 2) measured in consumption loss compared to baseline. These costs are 

comparable  in  the  first  periods  (0.16%  of  consumption  in  2020  in  flexible 

against 0.11% in rigid) but diverge rather rapidly after 2020. The maximum of 

the wedge appears when both cost curves reach their peak value where 77% of 

the utility losses comes from the flexible sector.

The ‘peak’ shape of the time distribution of abatement costs is a direct  con-

sequence of the ‘law of motion’ of the model. Two contradictory sets of forces 

drive the optimal abatement path: autonomous technical change and discount-

ing make it more interesting to abate later, while the irreversibility effect and 

the risk of an acceleration penalty push to early action. Most of the abatement 

expenditures are triggered when the abatement costs are dominated by the pos-

sible penalty of accelerated abatement.

come to differ significantly.
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Figure 2 Abatement costs (C550 case)

Interestingly,  within  the numerical  hypothesis  of  this  experiment,  the model 

never accelerates, even for a 450 ppm target. Intuitively, this result is due to 

the fact that an accelerated turnover comes to add a penalty to the cost of  a 

given technique and the model logically selects a trajectory in order to avoid 

it. And if the abatement action starts now, it always finds a way to do this.

III.3 Differential impact of uncertainty
in a world with heterogeneous capital stock

What matters from a policy view point is how uncertainty may affect the cost 

distribution across sectors. This is why we analyze first the consequences of a 

20-year delay in action and second the cost of an underestimation of the ex-

pected growth of transportation needs.

III.3.1 Costs of a 20-year delay

In  delayed  response  scenarios  (D),  mitigation  policies  are  assumed  to  start 

only  in  2020.  Fig.  3  shows that  the  abatement  levels  in  both  sectors  in  the 

C550 and D550 cases do not  to differ  dramatically  with  and without  delay. 

Confirming HGH results, abatement costs in the 550 C and D cases present no 

great  difference  (the  total  discounted  loss  in  consumption  rise  from  1% to 

1,03%). As to the abatement profile, the D curve stays below the C curve up to 

2040 (flexible sector) and 2070 (rigid one) before passing over (with a max-

imum of 12% in the flexible sector in 2060).
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Figure 3 Abatement levels with and without delays (C and D 550 cases)

This  is  only  in  the  450  ppm  case  (Fig.  4)  that  strong  differences  appear 

between C and D curves:  the flexible  sector  takes  the whole  burden (100% 

abatement rate in 2040).  The reason is that in this case, we reach a physical 

limit: achieving a 450 ppm target starting only in 2020 requires to increase the 

carbon annually saved by an additional 500 MtC each year between 2020 and 

2040, which is twice the steepness of the C450 abatement profile.
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Figure 4 Abatement levels per sector (C450 and D450 cases)
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This highlights the non-linearity of the response to the value of the concentra-

tion target. In the C450 and 550 cases, the model still  had a wide margin of 

action to avoid acceleration while in the D cases, the margin is narrowed and 

inertia becomes critical. Thus the fact that in both D450 and D550 cases, the 

flexible sector bears a major part of the additional burden.

Note that the time distribution of the investment also reveals a propagation of 

the extra investment: the displacement of investment from period t + 1 to peri-

od t generates a new extra investment shock wave at period t + ls (at the end of 

the life duration of the considered capital stock).

This  evolution  of  the  abatement  profiles  between  C and  D is  mechanically 

translated in terms of costs (Fig. 5). Total discounted consumption loss rises 

significantly from 2.6% (C450 case) to 4.3% (D450 case), but the move of the 

peak of abatement costs is more impressive. In the C450 case, the ‘peak’ con-

sumption loss in the flexible is 3% in 2030. In the D450 one, the ‘peak’ rises 

to 7.5% in 2020 and 2030, which obviously poses the question of the political 

realism of such a scenario. It is important to note that half that figure is gener-

ated only by the cost of the accelerated turnover,  while in the 550 ppm case 

there is still a feasible path which do not require acceleration even with a 20-

year delay.
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Figure 5 Abatement costs (total) (C and D450 cases)

A second lesson of this exercise is to highlight how misleading it might be to 

rely only on aggregated measures. Run with one aggregated sector giving the 

same aggregated abatement profiles, STARTS calculates a 5% penalty in case 
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of  delayed  action.  This  aggregated  figure  masks  more  important  sectoral 

shocks which may have important feedbacks on a real economy.

III.3.2 Costs of underestimating transportation growth

We assume in the T cases that the growth rate of the rigid sector is now 2.5% 

instead of  2% in the baseline  scenario.  This is  a non-null  probability  hypo-

thesis because of the uncertainties about growth of transportation sectors and 

urban forms in developing countries. According to IIASA (1995) projections, 

developing countries should indeed see their population rise by 60% and their 

per capita GDP more than triple by 2020. The induced needs for transportation 

services will  be huge, and the correlative emissions will  depend strongly on 

structural  trends on the transportation modes and urban forms.  Even though 

the increase of emissions is not very important (9% in 2100), this scenario is 

of interest as the global rigidity of the economy upgrades.

Fig.  6 compares the optimal  abatement levels in the C and T cases for both 

sectors. The T curves differ strongly from the preceding ones: first the abate-

ment profiles of both sectors become rather parallel, second the optimal abate-

ment levels appear more important in the T case over the short run. In 2020, 

abatement levels rise from 8% in the C550 curve to about 18% in the T ones.
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Figure 6 Abatement levels (C and T550 cases)

This can logically be explained by the fact that if trend in the rigid sector is 

proved to be higher, the margins of freedom in the flexible sector are not wide 
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enough to avoid the need of accelerated abatement in the rigid sector. Then an 

optimal  strategy  requires  to  act  sooner  in  the  rigid  sector.  Mathematically, 

when the share  of  the  rigid  sector  is  higher,  the  implicit  value of  marginal 

abatement  in  this  sector  increases as it  prevents  higher  (acceleration)  abate-

ment costs in the future. To put it in another way, so as to avoid acceleration 

costs,  the  optimal  trade-off  between  ‘rigid’ and  ‘flexible’ abatement  is  dis-

placed towards rigid ones in case of perfect foresight.

Unsurprisingly, the cost of a 20-year delay becomes more stringent. As in the 

D450 case, the delayed T450 case prove to be difficult to achieve: peak costs 

rise up to 21% of current consumption, and both flexible and rigid sectors now 

accelerate to withstand the shock. A 20-year delay in the T550 case does not 

result  in any acceleration.  But a significant  difference compared with the D 

case is that  the costs  of  delay,  which were previously  negligible  (about  3% 

from C to D550 cases) tends out to be 30%. 

The policy implication is that the expected magnitude of the rigid sector mat-

ters critically for short term action.

Conclusion

Numerical  exercises presented in this  paper do not  pretend to  provide more 

than specific insights on the implications of the differential  inertia in capital 

stocks. The qualitative results confirm intuition; optimally indeed the curving 

down of emission trends should start early in sectors characterised by a high 

inertia, and, in case of delayed action or of underassessment of the growth of 

these sectors, the burden falls on the flexible one. Less intuitive is the mag-

nitude and non linearity of the entailed costs for this sector; because of the ir-

reversibility  effects  on  both  cumulated  emissions  and  technical  trends,  the 

shock on the non flexible sector is very quickly of some orders of magnitude 

higher  than the costs of a response under assumption of perfect expectation. 

This has three major policy implications.

First, this emphasises the fact, already flowing logically from WRE and HGH 

papers  that  an  aggregate  abatement  figure  for  a  short-term period  is  by  no 

means a good measure of the relevance of action and that a clear distinction 

should be made between abatement and action. A country which would meet 

short-term  targets  thanks  to  abatements  in  the  industry  or  in  the  electrical 
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devices  without  curving  current  trends  in  the  transportation  would  be  em-

barked in a very sub-optimal strategy.

Second the differentiation rules for targets beyond the 2008–2012 budget peri-

od of the Kyoto protocol, or for negotiating the entry of developing countries 

into Annex 1 of the Climate Convention, should not be grounded solely on ag-

gregated figures without considering the relative share of transportation sector 

and building in the emissions.

Third  a trading system may not  suffice in generating a cost  effective abate-

ment pathway. Under the context of carbon taxes, it has been extensively ar-

gued that the price signals should be very high to curb significantly trends of 

transportation demand. The same mechanism will be at work in the setting of 

an emission trading.  In  the absence of  accompanying structural  measures in 

the urban planning or modal structures, it is then plausible that a low price of 

emission permits over a first period will not suffice in triggering a significant 

departure of current trends and that, in a second period, the price of permits 

increasing drastically, the industry will be forced to absorb the shock because 

of the inertia of capital stocks which will inhibit the capacity of the transport-

ation or building sectors to react promptly.

In terms of research agenda, the implication is that further investigations are 

required to understand how trading systems may work in a context of hetero-

geneous capital stocks and what are the necessary accompanying measures to 

account for the time lag between short term between price signals and technic-

al adaptation in sectors where the energy costs are not the major driving force 

behind behaviours and policy choices.
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