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1 Introduction

Perceptual processes, in computer or biological vision, require the compu-
tation of “maps” of quantitative values. The image itself is a “retinotopic
map”: for each pixel of the image there is a value corresponding to the im-
age intensity at this location. This is a vectorial value for color images. A
step further, in early-vision, the retinal image contrast is computed at each
location, allowing to detect image edges related to boundaries between im-
age areas. Such maps encode not only the contrast magnitude, but several
other cues: contrast orientation related to edge orientation, shape curva-
ture, binocular disparity related to the visual depth, color cues, temporal
disparity between two consecutive images in relation with visual motion
detection, etc.. There are such detectors in both artificial and biological
visual systems (see e.g. [12] for a general introduction and e.g. [17] for an
overview about biological vision). Such maps are not only parametrized by
retinotopic locations, but also using 3D locations, or other parameters.

The Partial Differential Equation (PDE) approach

In computer vision, a relevant and efficient theory is available regarding
the definition and computation of such maps of quantitative values (see
e.g. [1] for a didactic introduction about the “axiomatization” of this part
of computer vision). This formalism not only provides a clear basic of
“what is to be done” (i.e. requirements in order to have coherent and
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consistent definitions) but also of “how to do it” since the theory is effective
in the sense that efficient implementations may be derived (see e.g. [2] for
a recent treatise on this subject). The “what is to be done” level is usually
formalized in terms of a criterion to minimize and the “how to do it” level is
related to the, so called, Euler-Lagrange equations which allow to improve
an initial guess of the solution and get closer to the optimal solution. At
the technical level, as revisited in this paper, these quantities are efficiently
computed using implementations of partial differential equations which
define regularization processes allowing to obtain well-defined estimations
of these quantities. This powerful methodology is also very general in the
sense that a large variety of computational problems are solvable within
this framework (see e.g. [9,8] for a review).

A step further, PDE calculations regularize their input, i.e. provide a well-
defined and stable estimation even in the case of noisy or partially defined
data. Thanks to this property, algorithms have performances closer to those
of biological systems than other methods. The biological plausibility of such
methods is out of the scope of this paper but is addressed elsewhere [30,4].

Implementing PDE on sampled data

This nice formalism has a real drawback: it is not obvious to implement
because very specific numerical scheme must be chosen and approximations
must be made, which biased the original method (see e.g. [2]). This is both
a theoretical limitation (it is not clear if theoretical results derived in the
continuous case still apply to the discrete approximation) and a practical
one (some hacks have to be introduced while the method was originally
supposed to get rid of such, not easy to learn, tricks).

As it will made explicit in the sequel, the difficult point is the anisotropic
diffusion operator implementation. Concretely, such mechanisms must in-
tegrate the information in a bounded neighborhood so that the cooperation
between these local iterative computations allow a global computation of
the quantitative map. In other words, we must provide a “particle imple-
mentation” of such numerical computations. Such a method, used in fluid
dynamics computation has been introduced by Leonard [19] followed by
Raviat and Mas-Gallic [23] and developed by Degond and Mas-Gallic [7].
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It is based on an integral approximation of the diffusion operator used in
the regularization mechanisms.

The goal of this paper is to describe how computer vision partial differential
equations can be implemented using such mechanisms.

What is the paper about

Following this track, in the next section, we are going to revisit the com-
puter vision partial differential equation methodology in the case of vecto-
rial maps.

We then are going to re-derive an improved version of the Degond and Mas-
Gallic method, using bounded neighborhoods and considering an optimal
implementation of such an integral operator.

We will further develop the fact that when used on sampled data such as
image pixels or 3D data voxels, it provides an unbiased discrete implemen-
tation of such an operator.

We finally will illustrate the present development with an experiment of
image denoising and another experiment of visual motion estimation.

Notations We write vectors and matrices in bold letters, matrices being
written with capital letters and scalars in italic. The dual of a quantity x
is represented as its transpose xT , the dot-product between vectors being
written xTy. We represent the components of a vector using superscripts,
e.g.: x = (x0, x1, x2)T .

For vector of integer indices α = (α1 · · ·αn) ∈ Nn we write:
|α| = α1 + · · ·+ αn and α! = α1! · · ·αn!

so that we can write concisely:
xα = xα1

1 · · ·xαn
n and ∂α

xf = ∂|α|f
∂x

α1
1 ···∂xαn

n

while the Taylor expansion of a function h : Rn → R becomes:
h(x) = h(x0) +

∑r
|α|=1

∂αh
α! (x− x0)

α +Rrh

where the remainder Rεh may be written using an integral form:
Rrh =

∑
|α|=r+1

r+1
α!

∫
[0,1] (x− x0)

α (1− u)r ∂αh(x0 + u (x− x0)) du
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We also use the Sobolev function space W s,∞(Rn) provided with the norm:
||f ||s,∞ = sup0≥k≥s

[
sup ess|α|=k,x∈Rn|∂αf(x)|

]
where sup essxu(x) is the smallest constant, if any, for which u(x) is bounded
except in a negligible set of measure zero. Generally speaking, the set of ad-
missible functions F used here is a dense linear subset of a Hilbert space H,
the scalar product of which is denoted by (·, ·)H . This has to be mentioned
here but in the sequel this aspect is only a formal point.

2 Revisiting anisotropic diffusion operators.

Let us briefly revisit the computer vision partial differential equation method-
ology in the case of Euclidean vector maps (how it can be generalized to
non-Euclidean computation maps and how a general class of nonlinear
diffusion operators are implemented within the present frameworks is dis-
cussed elsewhere [30]). The goal of this section is to introduce this approach
and point out to where the key problem.

Here, as required in some situations (e.g. [1,8,14]), we consider functions
whose values are not scalars but vectors.

2.0.0.1 Defining a computational map function from a criterion. Let us
consider a vector map:

h : Ω ⊂ Rn → Rm.

from a bounded open set Ω of Rn into Rm. h belongs to a set F of admis-
sible functions. Here, h̄(x) is a “reference” function related to an input or
measure m(x), as shown in Fig. 1.

   computation
m maph(m) h

map input map output

transformation
optional input

, L
map parameters

Fig. 1. Input/output scheme of a regularization process, see text for details.
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In order to define this map, we consider the following optimization problem
(following e.g. in [8]):

h∗ = arg minhL(h) with L(h) =
1

2

∫
||h− h̄||2Λ︸ ︷︷ ︸

input

+ ϕL(Dh)︸ ︷︷ ︸
regularization

(1)

where D(h) is the first order derivative of the function h, i.e. its m × n

Jacobian matrix, ϕL is a positive definite quadratic form which can be
written in terms of the gradients the components of h as

ϕL(Dh) = DhLDhT =
∑
i,j

(Dhi)TLijDh
j,

and

||h− h̄||2Λ = (h− h̄)TΛ(h− h̄).

Here Λ and L are not constants but depend on the map location x. They
also may “slowly” evolve with time (i.e. be adapted after the optimum has
been reached to attain a better optimum).

In words, the specification of this map of values corresponds to an “objec-
tive” or a “criterion” to attain. This criterion is built from two terms:

(i) the input term, related to the data input

(i.e. looking for a solution as compatible as possible with the input) and

(ii) the regularization term, related to the a priory information

(i.e. looking for a solution with plausible properties: here which variation is minimal).

Regarding the term related to the input :

• The function Λ : Rn → S+
m ∈ W s,∞(Rn), where S+

m is the set of square
symmetric positive semi-definite matrices of size m, defines a so called,
measurement information metric.

This metric allows to represent:
(i) the precision of the input function: the higher this precision in a
given direction, the higher the value of Λ in this direction (in a statisti-
cal framework, Λ corresponds to the inverse of a covariance matrix)
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(ii) partial observations: if the input function h̄(x) is only defined in some
directions, it corresponds to a matrix Λ definite only in these directions
(for instance, if h̄(x) is only defined in the direction u at a given location
we write Λ = k uuT for some k),
(iii) missing data: if the input function h̄(x) is not defined for some x, we
simply have to state Λ = 0 at this location; more generally it represents:
(iv) linear relations between some measures m and the parameter es-
timation h, say Mh = m, which is obviously equivalent to require
||h − h̄||2Λ = 0 with Λ = MT M and h̄ = MT m (see e.g. [33] for a
development).

On the other hand, regarding the term related to “regularization”:

• The functions Lij : Rn → Sn ∈ W s,∞(Rn), where Sn is the set of square
symmetric matrices define a so called, diffusion tensor L, which is :
- symmetric i.e. Lij = Lji and
- “positive” i.e. so that ∀M ∈ Rn×n,MT LM =

∑
ijkl M

k
i Lij

kl M
l
j ≥ 0

in order the previous definition to be coherent. It defines the profile of
this regularization.

Thanks to the regularization term ||Dh||2L, since the variation of h is
minimized, a “smoothed” but also well-defined version of h is obtained
[25].

(a) When the problem is ill-posed, i.e. if there are many (and usually
numerically unstable) solutions, the key idea is to choose the solution
which variations are minimized: this defines a unique solution but also
a well-defined solution.

(b) When the input function is partially or approximately defined at
some points, as discussed previously, the value at such a point is defined
using information “around” which diffuses (as discussed now) from well-
defined values to undefined or ill-defined values.
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Regularization as a diffusion mechanism. Here ? (see e.g. [30]), (1) is min-
imal only if:

∂L

∂h
= Λ(h− h̄)−∆Lh = 0 (2)

with a so-called diffusion term:

[∆Lh]i = div(
m∑

j=1
LijDh

j) (3)

This equation simply states that, at an extremum, the criterion is locally
“flat” i.e. its 1st order variation vanishes.

The term of diffusion ∆Lh allows to “propagate” some information about
h from one point x to another, because it depends on the variation of h at
x i.e. on what happens “around” x.

Clearly, without the term of diffusion, the solution is h = h̄.

Obviously, at the implementation level, the key problem is the calculation
of ∆Lh.

In order to solve (2) which corresponds to the gradient of the criterion (1) a
1st order gradient descent is usually proposed ?? . Given an initial estimate

? Our criterion L being regular, its first variation (also called its Gâteaux derivative) at h ∈ F
in the direction k ∈ H is defined by (see, e.g., [6])

δkL(h) = lim
ε→0

L(h + εk)− L(h)
ε

If the mapping k → δkL(h) is linear and continuous, the Riesz representation theorem [11]
guarantees the existence of a unique vector, denoted by ∇HL(h), and called the gradient of L,
which satisfies the equality

δkL(h) = (∇HL(h), k)H

for every k ∈ H. The gradient depends on the choice of the scalar product (·, ·)H though, a fact
which explains our notation. If a minimizer h∗ of L exists, then the set of equations δkL(h) = 0
must hold for every k ∈ H, which is equivalent to ∇HL(h) = 0. These equations are called the
Euler-Lagrange equations associated with the energy functional L.
??About 1st order scheme convergence. The partial differentiation rule is written ∂L

∂t =
∇HL ∂h

∂t . Considering ∂h
∂t = −∇HL yields ∂L

∂t = −||∇hL||2 < 0 so that the criterion is strictly
decreasing. Since L ≥ 0 it is also bounded and thus converges towards a minimal value. At this
local or global minimum ||∇hL|| = 0 so that L is stationary. In fact, the gradient magnitude
smoothly decreases with time. In practice, convergence is detected as soon as the gradient is
below a given numerical threshold, which always occurs in finite time.
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h0 ∈ F , a time-dependent differentiable function, also noted h, from the
interval [0,+∞[ into H is computed as the solution of the following initial
value problem: 

dh
dt = −∂L

∂h = Λ(h̄− h) + ∆Lh

h(0)(.) = h0(·)
(4)

It leads to a local minimum of the criterion, when iteratively computed

using, e.g. an Euler rule of the form: ht+1 = ht + ∆t dhdt . Here, since the
related quadratic criterion is convex, calculating the local partial differential
equation at each point leads to the global minimization of the criterion (1).

A step ahead, a recurrent equation, allowing the iterative numerical com-
putation of the function h values for a mesh of samples is derived and (see
e.g. [8]) is usually of the form:

ht+1 = ht + Υ
[
Λ(h̄− h) + ∆Lh

]
(5)

where the regular matrix Υ, with ||Υ|| > 0 allows to control ? ? ? the
iteration convergence. Obviously, with Υ = ∆tId if it is the Euler rule,
while improved forms could be used (as discussed in the sequel).

However, better than these technical properties, a key point is that we
automatically obtain a general non-linear filter from the previous specifi-
cations. Let us discuss this aspect now.

Relation with linear filtering. The present mechanism is easily related to
a linear filtering operator in the case where Λ and L are constant. In
this particular case, (2) is now a linear differential equation with constant
coefficients.

? ? ?As noticed e.g. in [18], if ||Υ|| > 0 fixed points of this iterative equation are solution of the
Euler equation, while if ||Υ|| → 0 the series is contracting so that the convergence is guaranteed.
In the worst case the convergence may be obtained towards a sub-optimal value.
Furthermore, the matrix Υ is related to the fact that, at each step, we compute the new value of
h form the previous value of h solving a “simple” linear system only. This includes Gauss-Seidel
or Jacobi iteration methods and seems to be a general scheme.
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If we consider the Fourier transform F [h(x)] = h(w) of the quantities
in (2), using the explicit form given in (3), it is straightforward to obtain
in the Fourier domain:

h(w) = GΛ,L(w) h̄(w) with GΛ,L(w) = [Λkl +
∑
ij

Lij
kl wiwj]

−1 Λ (6)

so that we finally obtain the convolution: h(x) = GΛ,L(x) ∗ h̄(x).

From (6), it is visible that the corresponding linear filter is defined by the
n2+m2 n (n+1)/2 coefficients of Λ and L (the former being a general n×n
matrix, the latter being a symmetric tensor). From obvious linear algebra
in the general case, GΛ,L(w) is a rational fraction with a denominator of
degree less than 2n and a numerator of degree less than 2 (n − 1). This
corresponds to rather general filters. Although not all linear filters can be
defined from such a formula, it appears that general filters can easily be
approximated.

A step ahead, as shown in [27], if L is constant and if Λ is negligible, GΛ,L

corresponds, at a given time t of the diffusion process defined in (5) to an
oriented Gaussian kernel:

GL,t(x) =
1√

(2π)n 4 t |L|
e−

xT L−1 x
4 t

However, in both cases, defining the problem from (1) is more informative
than defining a filter, since we formally define what is the “objective”. Fur-
thermore, implementing it using (5) is much more efficient than explicitly
computing a convolution at each point.

A step ahead, if Λ and L are not constant, the present framework allows
to define complex input/output relationships between h̄ and h which are
more general than what is obtained by a linear filter, introducing some
“coupling” between each local convolution. This is also called bilateral
filtering [2].

Introducing nonlinear diffusion operators. Let us now review how nonlin-
ear regularization profiles influence this diffusion of information. More pre-
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cisely, we consider for this section:

h∗ = arg minh

∫ 1

2
||h− h̄||2Λ +Φ (ϕL(Dh)) ⇒ Λ (h− h̄)−∆Φ,Lh = 0 (7)

This corresponds to a large number of regularization mechanisms (see e.g.
[26] for a recent review) and a natural (and in fact general) requirement
for such approaches [1,9] is to:
(α) obtain isotropic diffusion for small gradient magnitude because we want
to maximize the propagation of information in uniform (thus information
less) parts of the parametric space and
(β) cancel the propagation of information for high gradient magnitudes in
the direction of the gradient in order to preserve large (thus significant)
variations of the input function.

In other words, we want to eliminate small, thus likely noisy, variations of
the parametric map, but preserve large variations. This is the case, e.g. of
Φ(u) =

√
u and several other profiles, as reviewed in [2].

Now the main question is: do we need to add such a non-linear profile to
our specifications? Or could the anisotropic diffusion tensor L make the
job?

To answer this question let us consider L = Id. Using standard differential
calculus (given in appendix A) we obtain: ∆Φ,Id = ∆Id,L′ with

L′(Dh) = 2 Φ′ (||Dh||2
)
Id+ 4 Φ′′ (||Dh||2

)
Dhi (Dhj)T (8)

Here L′ corresponds too a non constant operator which depends on Dh
itself:
(i) the term related to Φ′ corresponds to an isotropic diffusion and
(ii) the term related to Φ′′ corresponds to an anisotropic diffusion process
in the direction η of the gradient,
exactly as required.

But the key point is that we do not need to complicate the present frame-
work, it is thus useless to consider nonlinear profiles Φ() at the implementa-
tion level: anisotropic linear diffusion (using variable diffusion) is sufficient,
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while, thanks to this derivation, we also obtain a suitable form of the tensor
L, defined from (8).

When implementing such non-constant diffusion, following, e.g. [20], we
consider the initial or previous estimation Dĥ of Dh: either the input
function h̄ or the estimation obtained by previous steps of the iterative
process. In other words, let us feedback the previous estimation ĥ into
L(Dĥ) to obtain an improved estimate.

As reviewed in [1,2], when considering a nonlinear profile, at the implemen-
tation level, a similar linear approximation is always used. The convergence
is guaranteed by the introduction of a smoothing in the feedback, yielding
a variation slow enough to be stable.

To conclude with non-linear diffusion operator, let us briefly note (see [31]
for details) that the same mechanism is generalizable to the computation
of harmonic maps on Riemannian manifold. We will not further develop
this point here, but simply want to point out such a perspective of the
present approach: generalization from Rn to nonlinear manifolds is also to
be considered because several computer vision parameters (e.g rotations,
non-linear features, etc..) are not simple linear sub-space of an Euclidean
space but are intrinsically manifolds.

3 Optimal implementation of a diffusion operator

3.1 Integral approximation of a differential operator

Considering the iterative equation (5) corresponding to the implementation
of the regularization mechanisms discussed here, the key problem is the
implementation of the diffusion operator ∆L (the other terms Λht −Λ h̄t

corresponds to a simple punctual linear operation).

In practice, it is not possible to implement a differential operator such
as this 1st and 2nd order diffusion operator without choosing an approx-
imation and a numerical scheme, etc.. with the risk of loosing what was
well-defined in the continuous case.
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Why is it not possible in practice to implement the “punctual” operator ?
Because what is given, in the real world, is a set of “samples”. More pre-
cisely, we have to consider a set of “measures”, defined as integral values of
the continuous function over the measurement sensor receptive field. Fur-
thermore, since numerical values contains uncertainties, it is a reasonable
choice to “average” several values in order to smooth these uncertainties.

At the implementation level, what is in fact done ? A differential operator
is implemented using a derivative filter, i.e. performing a convolution with
some suitable kernel. In other words a differential operator is implemented
as an integral operator. Let us make this basic fact explicit: this will guide
us towards a very general, simple and nice solution.
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Integral form of the diffusion operators. With the Dirac distribution δ(x)
(see [24] for an introduction) we may formally ? ? ?? write:

[∆Lh]i =
∑
j

σij ∗ hj =
∫
Rn

∑
j

σij(x− y)hj(y) dy

with:

σij =
∑
k

Mk
ij

∂δ

∂xk +
∑
k,l

Lkl
ij

∂2δ

∂xk ∂xl where Mk
ij = [div(Lij)]

k

where ∗ represents the convolution.

In words, there is a direct mathematical and canonical link between a
differential and an integral operator.

It verifies the conservation property:∫
Rn

∆Lh(x) dx = 0 (9)

? ? ??Let us expand the right-hand side of (3) (using the relation div(Ab) = (divA) ·b+Tr(ADb),
where A is a matrix and b a vector):

m∑
j=1

div(LijDhj) =
m∑

j=1

div(Lij) ·Dhj + Tr(LijHj)

with:

Dhj = Dδ ∗ hj Hj = Hδ ∗ hj ,

The divergence of a square matrix A of size n is the vector of size n whose ith component is the
divergence of the ith row vector of A. From this follows

div(Lij) ·Dhj = div(Lij) · (Dδ ∗ hj) = (div(Lij) ·Dδ) ∗ hj ,

and
Tr(LijHj) = Tr(LijHδ ∗ hj) = Tr(LijHδ) ∗ hj .

Note that div(Lij) ·Dδ and Tr(LijHδ) are first and second order differential operators:

div(Lij) ·Dδ =
∑

k

[div(Lij)]k
∂δ

∂xk
,

and

Tr(LijHδ) =
∑
k,l

Lkl
ij

∂2δ

∂xk ∂xl
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in coherence with the physical law of conservation property for diffusion
processes. In words, we want to balance the h values in the information
diffusion process, i.e. guaranty that if we reduce the value at one location
it will increase elsewhere accordingly, as in a fluid which particles are nei-
ther created nor deleted. This guarantees the stability of the numerical
computations.

Furthermore, this is a “punctual” integral operator in the sense its mag-
nitude is zero except at x. Considering a quadratic semi-norm (i.e. its
variance or inertia), it writes:∫

Rn−B(x,ε)
σij(x− y)2 dy = 0 (10)

where B(x, ε) is a ball around x of radius ε, which can be as small as
possible, but must be excluded, in order (10) to be well-defined because
the product of two distributions is not necessarily a distribution.

Optimal approximation of the diffusion operators. Based on this remark and
following [23,7,30], we approximate the differential operator by an integral
operator of the form:

[∆∗
Lh(x)]k =

∑
l

[∫
Rn
σε

kl(x,y)hl(y) dy
]
− σ̄ε

kl(x)hl(x) (11)

with σ̄ε
kl(x) =

∫
Rn σε

kl(x,y) dy

For such an approximation to be well-defined ? ? ? ? ? , the integral must
be convergent. Here, to obtain this property, we assume that σε(x,y) has
a bounded support S, included in a ball B(x, ε) of radius ε > ε, i.e. S ⊂
B(x, ε).

The 2nd term allows to verify the conservation property, as soon as the
kernel is symmetric, i.e.

σε
kl(x,y) = σε

kl(y,x) (12)

? ? ? ? ?In addition, this operator must belong to a well-defined functional space. Here following [7]
again, we consider a subset of the distributions: the Sobolev function space W s,∞(Rn). In fact,
we are going to obtain solutions which are ordinary differentiable functions, so that it is only a
formal point.
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.

It appears as an operator which computes a weighted mean value around x
minus the balanced value at x.

It is easy to verify that, if σε
kl(x,y) = σkl(x − y) then [∆∗

Lh]k = [∆Lh]k
and the “exact” operator ∆Lh is a particular case of the “approximate”
operator ∆∗

Lh.

Requiring, σε
kl to be around each point x as closed as possible to the “ex-

act” operator σkl, we formalize this proximity by the following quadratic
criterion:

minσε

∫
S
σε

kl(x,y)2dxdy (13)

In words, we use a maximal amount of information close to the point: the
“sharpest” the operator, the best.

It is easily shown [30] that minimizing (13) is equivalent to choose σε
kl(x,y)

as close as possible to “exact” operator σkl(x−y) for a quadratic distance,
related to the semi-norm specified in (10).

We now have a precise definition of the “discrete approximation” of a
differential operator.

Please note that, although out of the scope of this paper, the present
solution is directly usable for any 1st or 2nd order differential operator (any
M and L) and straightforward to generalize to any differential operator.

Relations between integral and differential operators. In order to relate the
differential operator ∆Lh with its integral approximation ∆∗

Lh. We identify
∆Lh with the Taylor expansion of ∆∗

Lh at some order r [31], yielding a
bound on the error for our approximation, as a function of εr−1 i.e.:

||∆Lh−∆∗
Lh||0,∞ = ||Rrh||0,∞ ≤ C εr−1||h||r+1,∞

for a fixed constant C, since S ⊂ B(x, ε). This, for a covering of the
parameter space by supports S ⊂ B(x, ε) organized in some mesh, allows
to conclude that limεw→0∆

∗
Lh = ∆Lh and limr→∞∆∗

Lh = ∆Lh for small
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ε: in words, this approximation is consistent, with respect to the sampling
and the Taylor expansion.

More precisely, we consider the Taylor expansion of g(y,x) = h(y)−h(x)
with respect to y − x.

In other words, we consider the following change of variables d = y − x
and, say, s = (y + x)/2 in order to write the expansion with respect to d:

g(y,x) =
∑r
|α|=1

∂αh
α! (x)

∣∣∣
y=x (y − x)α + o(||y − x||r)

and a few algebra yields from (11):

[
∆∗

M,Lh
]
k

=
m∑

l=1

r∑
|α|=1

∂αhl

α!

∫
Rn
σε

kl(x,y) (y − x)α dy + [Rrh]k

where the remainder Rε
klh of this expansion may be written using an inte-

gral form:

[Rrh]k =
m∑

l=1

∑
|α|=r+1

r + 1
α!

∫
Rn×[0,1]

σε
kl(x,y) (y − x)α (1− u)r ∂αhl(x + u (y − x)) dy du

From the assumptions we have raised, because the support is included in
a ball of radius ε, the remainder is bounded by the standard condition:

||Rrh||0,∞ < C εr−1||h||r+1,∞ (14)

where C is a fixed quantity [7], yielding the previous bound.

If we rewrite the diffusion operator with the same notations:

[∆M,Lh]k =
m∑

l=1

∑
ej

Mj
kl ∂

ejhl +
∑

ei+ej

Lij
kl ∂

ei+ejhl


we easily identify the two expressions and obtain:

r ≥ |α| > 2
∫
Rn σε

kl(x,y) (y − x)α dy = 0r [C0]

|α| = 2 2Lij
kl(x) − ∫

Rn σε
kl(x,y) (y − x)ei+ej dy = 0r [C2]

|α| = 1 Mj
kl(x) − ∫

Rn σε
kl(x,y) (y − x)ej dy = 0r [C1]

where 0r =
∫
S o(y − x)rdy is a negligible quantity for sufficiently small ε.
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Since (here
∫
B(0,1) = πn/2

Γ(n/2+1) is the volume of the unit ball) from a few
algebra:

|∫Rn σε
kl(x,y) (y − x)α dy| ≤ [||σε

kl||0,∞
∫
B(0,1) /(|α|+ 1)] ε|α|+1

thus exponentially decreases with |α|, for higher values of |α| the condition
[C0] is numerically automatically verified as corresponding to a negligible
quantity. It is thus reasonable choice to bound |α| with a fixed value r.

These conditions have the interesting property to be “decoupled” in the
sense that they allow, for a given (k, l) to relate each σε

kl to the correspond-
ing Mkl and Lkl independently.

These conditions [C0] [C2] and [C1] allow to identify up to the rth order
the two expressions. Among all solutions verifying these constraints, the
operator minimizing (13) is going to be chosen.

Reviewing existing solutions. In the literature not only our bounded sup-
port solution but at least two other solutions [23,7] have being derived
for this integral operator, in the case where M =

∑
i

∂L
∂xi and for scalar

functions only. Contrary to the present approach, these solutions do not
correspond to a bounded support S although, indeed, the related integral
is still convergent. On the contrary, they are related to cut-off functions
defined and integrable in Rn. In other words, the choice of the support is
implicitly realized when choosing this cut-off function.

As a comparison with our solution defined on a bounded support, let us
briefly review these solutions. Here we consider only a scalar function h

and omit the related indices.

The Raviat solution. This solution [23], at the origin of the work of [7],
is of the form:

σε(x,y) =
∑
ij

∫
Rn
Lij(z)

∂ξ(x− z)

∂xi

∂ξ(z− y)

∂xj
dz

where the cut-off function ξ verifies
∫
Rn xα ξ(x) dx =


0 1 ≤ |α| < r

1 α = 0
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This solution is the “more general” in the sense that it has been derived
from conditions [C0] [C2] and [C1] (here convergence is now due to the
cut-off function profile, not the fact that S is bounded) with a minimum
of additional constraints.

Although formally simple, as readable on the formula, this solution is
very heavy to implement because a numerical integration is required at
each step in order to obtain σε(x,y).

The Degond solutions. These are solutions [7] of the form:

σε(x,y) =
1

εn+2

∑
i,j

mij

(
x + y

2

)
ψij

(
y − x

ε

)

(here equivalently we can choose 1
2 (mij (x) +mij (y)) instead ofmij

(
x+y

2

)
)

with:

m = L− υ

n+ 2
trace(L) In×n with υ ∈ {0, 1}

If υ = 0, we re-obtain ψij = ∂2ξ
∂xi∂xj

with a cut-off function ξ which
corresponds to the previous case

If υ = 1, we obtain ψij = xi xi θ(||x||) where the cut-off function θ

verifies:

∫
R+
ρn+1+2α θ(ρ) dρ =


σn−1 (n−1)

n (n+2) α = 1

0 1 < 2α ≤ r

writing σn = n πn/2

Γ(n/2+1) (this constant defines the surface of the boundaries

∂B(x, ρ) of a ball B(x, ρ) = {y, ||x − y|| < ρ} of center x and radius ρ
in Rn, for ρ = 1).

Such cut-off functions are calculated for instance considering a profile
of the form:

θ(ρ) = e−β ρ2 ∑2 d=r
d=0 ad ρ

2 d

with β > 0 where the constants ad are easily obtain the linear equations.
This solution is efficient to implement but has some drawbacks: it does

not consider a bounded support and among existing solutions it is not
an optimal solution, while it does neither consider vectorial maps nor
general 1st or 2nd order differential operators.

The bounded support solution. It has been shown [30] that, in the
continuous case when the support is bounded, the optimal solution could
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be approximated by solutions of the form:

σε
kl(x,y) =

∑
j

Aj kl(x,y)Mj
kl

(
x + y

2

)
+
∑
ij

Bij kl(x,y)Lij
kl

(
x + y

2

)

where Aj kl(x,y) and Bij kl(x,y) are rational functions which only de-
pends on the support S. The poles of these functions approximate the
punctual values of the Dirac distribution derivatives. Such approxima-
tions are derived automatically using a piece of maple code [30]. As
illustrated in Fig. 2, it allows to verify that using a reasonable order
r = 5..8 for 1st or 2nd order operators allows to obtain a solution which
is qualitatively correct. A step further, it allows to verify that the present
mechanism generates coherent kernels for various differential operators
as illustrated in Fig. 3.

Fig. 2. A few examples of operator 1D-profiles, considering an isotropic second-order derivative,
represented in function of (x, y); top-left view r = 5, s = 10: we obtain a profile with two poles
qualitatively equivalent to the δ′′ distribution; top-right view r = 8, s = 20: increasing the order
of correspondence, a profile closer to δ′′ is obtained; bottom-left view r = 2, s = 3: when the
correspondence is insufficient (r is too small) we obtain a profile which is still qualitatively correct
but very “flat”; bottom-right view r = 6, s = 10: when considering without any redundancy, the
approximation may be slightly biased with spurious effects.

But the key point is that the bounded support solution allows to
automatically derive a unbiased solution in the discrete case, as detailed
now.
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Fig. 3. A few examples of operator 2D-profiles, with r = 3, s = 6, represented in the (x0, x1)
plane; left view approximation of 1st order derivative isotropic operator ∂(1,0) qualitatively equiv-
alent to the corresponding continuous operator δ(1,0); middle view approximation of 2nd or-
der non-isotropic operator Lij(x) = δij x0 and right view a 2nd-order non-isotropic operator
Lij = δij + i, both illustrating how solutions adapt to such profiles.

3.2 Derivation in the discrete case.

Let us consider the computer implementation on 2D or 3D dense data
“images”, i.e. a regular mesh of hyper-cubes.

The integral approximation must be sampled and becomes a summation:

∆∗
Lh

k(xu) =
∑
l

∑
yv=(v1,··· ,vn)

σε
kl(xu,yv)

[
hl(yv)− hl(xu)

]
with xu = (u1, · · · , un)

(15)
Here, we consider without loss of generality, that pixel/voxel hyper-cubes
volume is 1.

In this context, a reasonable model [32,18] for a “pixel” or “voxel” signal
is to assume that:

h(xu) =
∫
[u1− 1

2 ..u1+ 1
2 ,··· ,un− 1

2 ..un+ 1
2 ]

h(x) dx

i.e. that the pixel/voxel value is the average value of the signal distribution
over its domain.

Furthermore, if we consider that σε(x,y) is piece-wise constant, it appears
that rewriting the integral operator as a summation is NOT only an ap-
proximation but an unbiased implementation of these differential operators
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since:

∆∗
Lh(xu) =

∑
l
∫
Rn σε

kl(xu,y)
[
hl(y)− hl(xu)

]
dy =∑

l
∑

yv=(v1,··· ,vn) σ
ε(xu,yv)

∫
y∈[v1− 1

2 ..v1+ 1
2 ,··· ,vn− 1

2 ..vn+ 1
2 ]

[
hl(y)− hl(xu)

]
dy =

∑
l
∑

yv=(v1,··· ,vn) σ
ε(xu,yv)

[
hl(yv)− hl(xu)

]

As a consequence, with a few algebra, conditions [C0], [C1] and [C2] reduce
to:

∑
v
να
v (xu)σε

kl(xu,yv) = 0r +



0 2 < |α| ≤ r

2Lij
kl(xu) α = ei + ej

Mj
kl(xu) α = ej

(16)

using the notation: να
v (xu) =

∫
[v1− 1

2 ..v1+ 1
2 ,··· ,vn− 1

2 ..vn+ 1
2 ]

(y − xu)α dy. Here,

since xu takes constant values, να
v (xu) is a constant.

Similarly, the symmetry condition leads to:

σε
kl(xu, zw) = σε

kl(zw,yv)

while the optimal criterion proposed in (13) is now of the form:

min
∑
v
σε

kl(xu,yv)
2

yielding to a simple quadratic minimization problem with linear constraints (16)
with respect to the vector:

Σ =
[
σε

kl(xu,yv)v∈[−S..S,..,−S..S]
]T

containing the coefficients of this symmetric tensor.

It is immediate to count that in an hyper-cube [−S..S]n of size (2S + 1)n,
for a given xu, the symmetric bi-variate operator has q′n,S = (2S + 1)n

independent coefficients σε
kl(xu,yv).

Since there are (n+d)!
n! d! monomial of degree less or equal d with n variables,

we can immediately count the number of equations i.e. pn,r = (n+r)!
r!n! − 1 in
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the general case.

We thus can calculate, in the general case, the minimal size S of the hyper
cube, for a given order r and dimension n allowing to solve the linear
equations, this table gives this value S for an approximation up to the r-th
order, for a 1D, 2D or 3D problem (n = 1, 2, 3):

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n = 1 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

n = 2 1 1 1 2 2 3 3 3 4 4 4 5 5 5 6 6

n = 3 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5

The closed form solution is directly obtained from the symbolic calculation
least-square routine given in appendix B. This solution of the form:

σε
kl(xu,yv) =

∑
j

Aj kl(xu,yv)M
j
kl (xu) +

∑
ij

Bij kl(xu,yv)L
ij
kl (xu)

Here Aj kl(xu,yv) and Bij kl(xu,yv) are “masks” determined by the previ-
ous derivation and which only depends on the pixel/voxel characteristics.

As an illustration, for an isotropic 2D operator (Mi = 0 and Lij = δij) we
obtain the masks reported in Fig. 4. Although this does not bring much
with respect to usual operators, it allows to verify the coherence of the
obtained results.


.1048 .1271 .1048

.1271 .0725 .1271

.1048 .1271 .1048





.02233 .03182 .03693 .03182 .02233

.03182 .05337 .06462 .05337 .03182

.03693 .06462 .03695 .06462 .03693

.03182 .05337 .06462 .05337 .03182

.02233 .03182 .03693 .03182 .02233


Fig. 4. Isotropic 2D-masks obtained for r = 2 or 3 and s = 1 (left array) and s = 2 (right array).
In both cases, we obtain a contribution decreasing with the eccentricity, and isotropic in the
horizontal/vertical directions as expected. Since we have considered an integral over the domain
without excluding the domain center, there is also a (small) contribution of the central pixel.
These masks have been normalized in the sense that σ̄ = 1.

Similarly, an anisotropic 2D-operator is reported in Fig. 5 showing how we
directly obtain the convolution mask from the “feedback” vector. Here, for
simplicity, we assume that the gradient is defined along the edge normal,
i.e. in a unique direction n.
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In order to understand the behavior of this mask, let us consider a normal-

ized feedback vector, i.e. ||n̂||2 = 1, with e.g. n̂x = 0, yielding:


.1048 .5053 .1048

−.2511 .07255 −.2511

.1048 .5053 .1048

.
It is obvious that this 2nd order anisotropic derivation mask corresponds
to a second order derivative in the y direction and a smoothing in the x
direction as expected.

.1048 ||n̂||2 + .3782 n̂x n̂y .5053 n̂2
y − .2511n̂2

x .1048 ||n̂||2 − .3782 n̂x n̂y

.5053 n̂2
x − .2511n̂2

y .07255 ||n̂||2 .5053 n̂2
x − .2511n̂2

y

.1048 ||n̂||2 − .3782 n̂x n̂y .5053 n̂2
y − .2511n̂2

x .1048 ||n̂||2 + .3782 n̂x n̂y


Fig. 5. An example of anisotropic 2D-mask in the direction n̂ = (n̂x, n̂y) obtained for r = 2 or 3
and s = 1. See text for details.

These discrete implementations of the present diffusion operator is exper-
imented in the next section.

Implementing the iteration scheme. As revisited in (5), for a control vari-
able ν ∈]0..1], we immediately obtain an iterative scheme to solve the
regularization equation.

In the present context, simply solving the linear equation (5) with respect
to h(xu), from a few algebra left to the reader, the iterative scheme may
be written:

ho(xu) =
∑

kl Υ
o
k

[
hk(xu) + ν

[
Λk

l h̄l(xu)+[∑
v,yv∈S σ

ε
kl(xu,yv)h

l(yv)
]T ]] (17)

with


Υ = [1 + ν [Λ + σ̄]]−1

σ̄ =
∑

v,yv∈S σ(xu,yv)
while the reader will easily verify that if ν > 0

the fixed point of this iterative scheme is the Euler-Lagrange equation
solution, while if ν → 0 the scheme converges (not necessarily towards the
exact solution but, in the worst case, towards a sub-optimal solution) as
used in [18].

In practice, we start with ν = 1 and divide this value, say by 2, until from
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one step to another the criterion (13) decreases, as detailed and experi-
mented in [33].

4 Experimental illustrations

4.1 Experimenting with a image de-noising problem

Following [5] we propose a 1st experimentation related to image restora-
tion, more precisely image de-noising when high noise levels with fine scale
details are present. The goal is thus to “smooth” an image reducing the
noise and preserving the edges, in fact the shape of the main objects. Here
h is thus the image intensity (the red, green and blue channels of the color
image).

The goal of the present experiment is to show how the anisotropic diffusion
mechanism could be easily implemented, providing efficient results. In (1),
we thus simply consider the diffusion term and no input related term (i.e.
Λ = 0): the relation with the input is simply due to the fact the output
initial value is always the input (as made explicit in (4)) which then evolve
according to the diffusion mechanism.

As in (8), we choose a diffusion mechanism with (i) isotropic diffusion (thus
L ≡ Id) for small gradient magnitudes and (ii) anisotropic diffusion along
the edge’s tangent for higher magnitudes (thus L ≡ g⊥ (g⊥)T where g⊥

is the edge tangent, orthogonal to the edge normal g). Here, the balance
between isotropic and anisotropic diffusion is implemented via a simple
thresholded profile, as made explicit in Fig. 6.

ν(x) =


0 x ≤ 0

x 0 < x < 1

1 x ≥ 1

Fig. 6. A simple progressive thresholded profile, see text for details

More precisely, considering a threshold s on the gradient magnitude, we
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use the Cottet-Ayyadi formula:

L(t) = T ∗
3

2
ν

1− ||g||2

s2

 Id+ ν

||g||2
s2

 g⊥ (g⊥)T

||g||2

 with g = S ∗Dh

where g = S ∗Du is a spatial smoothing version (a local Gaussian filtering
in a 3x3 window) of the gradient and L(t) = T ∗ F a temporal smooth-
ing ? ? ? ? ?? (an 1st order recursive filter, thus with an exponential pro-
file) of the diffusion tensor. The role of this smoothing is to stabilize the
feedback between the estimation of the filtered intensity and the diffusion
tensor in which the intensity is re-injected via the local gradient computa-
tion. The very interesting result is that the final result very weakly (in fact
the difference is often not observable) depends on the temporal smooth-
ing window because at the convergence the diffusion tensor is constant
thus invariant with respect to temporal smoothing. A typical window of
2-5 samples seems suitable. A step further, the spatial smoothing S has a
weak influence on the final result since it only indirectly acts on the out-
put. However suppressing the temporal or the spatial smoothing kills the
mechanism stability and spurious results may occur.

Yet another step further, aside from using the Cottet-Ayyadi formula re-
ported here, we have also experimented a few variants (e.g.: forget the 3

2
ratio in the formula which seems to have no influence or uses not a pro-
gressive profile ν() but a Heaviside profile with almost negligible variation
for the experimented data set). Doing this, we experimentally verified two
facts:
- thanks to the fact we can automatically re-implement a diffusion scheme
given any L formula it is a very simple task to check several solutions,
- only the gradient magnitude threshold s has a real influence on the result
(it can be sued to tune the level of details which is preserved or filtered).

Results are shown in Fig. 7 and Fig. 8 while a demonstration applet is visi-
ble on the web: the http://www-sop.inria.fr/odyssee/imp/ima/doc-files/anisotropic-diffusion-applet.html
applet allows to play with the smoothing parameter experimenting its very

? ? ? ? ??In [5], the authors propose a dynamic regularization tensor L(t) solution of the differential
equation:

∂L(t)
∂t + L(t) = F(t) ⇔ L(t) =

∫ t
−∞F(τ) eτ−tdτ

which strictly corresponds to an exponential temporal smoother.
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weak influence and the gradient threshold parameter much more signifi-
cant. The results reported here are reproducible in this applet.

Raw Isotropic Anisotropic

Fig. 7. An example of result using anisotropic diffusion (right image), as implemented using
the proposed method. The original image is on the left. As a comparison, a Gaussian filtering
(isotropic diffusion) is shown in the middle.

Raw Isotropic Anisotropic

Fig. 8. Another example of result using anisotropic diffusion (right image), as implemented using
the proposed method. The original image is on the left. As a comparison, a Gaussian filtering
(isotropic diffusion) is shown in the middle.

We have also observed that it was almost always sufficient to implement
the diffusion kernel in a 5x5 window (thus a bit less that what was expected
from the theory predicting a bias with windows less than 7x7) although
with huge noise levels the use of a higher window has a positive influence,
as visible in Fig.9.

4.2 Experimenting with a motion estimation problem

Video RGB image sequences

As a second illustration of the previous derivations, we consider sequences
of color RGB images (the color being represented using the red, green
and blue channels) with the goal of computing the motion between two
consecutive frames. Here, we have a standard video camera with two inter-
laced frames with a 20 msec delay between them. We choose to compute
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Raw Anisotropic (5x5 kernel) Anisotropic (7x7 kernel)

Fig. 9. Showing what happens when using anisotropic filtering in the limit case where 90% of
noise has been introduced in the image. In this limit case, the use of large kernels is relevant:
in the 2nd case the noise is really eliminated in the black parts of the picture, whereas spurious
zones remained in the 1st case.

the inter-frame motion, as illustrated in Fig. 10. We do not compute the
motion between two consecutive images because, with standard low-cost
acquisition devices, the acquisition rate is not fixed (it depends on the com-
puter load) and is usually slow (typically 1-5Hz with more than 10 pixels
of disparity between two consecutive images for common mobile objects)
yields occlusions, variation in object aspects, etc.. Computing the retinal
motion between two frames of a single image, thus with a fixed 20 msec
delay, is preferable. However, it requires to work with small quantities thus
numerically not very stable, so that the present regularization framework is
very useful in this case. This is thus a relevant application of our formalism.

In order to compare our results with other motion estimation methods, we
also consider the “Otte” [21] image sequence as shown in Fig. 11, which is
of common use for benchmarking such algorithms.

Image gradient of RGB images

At a given image location m = (x, y)T with a RGB image intensity I =
(red, green, blue)T , the image contrast and gradient is decomposed using
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Fig. 10. A few examples of interlaced images with a hand displacement, as used in this experi-
mentation: the inter-frame displacement is visible at the hand boundary.

Fig. 11. Two images of the “Otte” image sequence, of common use to benchmark motion esti-
mation algorithms.

the following singular value decomposition:

G = ∂I
∂m = c in nT + c′ it t

T

with

n =

 cos(θ)

sin(θ)

 and t =

− sin(θ)

cos(θ)


(18)

where c ≥ c′ ≥ 0 are the singular values, while in ∈ R3, it ∈ R3 are the
orthonormal RGB singular vectors and n and t the retinal singular vectors.

The c magnitude corresponds to the highest gradient magnitude, for a

28



given direction.

More precisely, along an edge, we expect to have only one direction of
intensity variation. This means that c′ ' 0 thus G ' c in nT and (i) θ
corresponds to the edge orientation in the image, (ii) c corresponds to the
edge magnitude and (iii) the unary vector in the edge color orientation in
the RGB space.

This is a straightforward generalization of edge orientation and magnitude
definitions of monochromatic images.

This definition is interesting because it does not depend upon the color
space, providing it is in linear relation with the RGB intensity. More pre-
cisely, any linear transformation of the RGB channel, say I′ = MI, yields
G′ = MG and, thanks to the SVD properties, the same orientation θ is
calculated, while the edge magnitude and color orientation is now given in
the new color space.

Initial motion map estimation

The retinal motion estimation h : R2 → R2 associates to a retinal point x =
(u, v)T a displacement h(u, v) = (u̇, v̇)T . In our implementation, the input
h̄ is obtained considering a standard multi-scale correlation operator. The
sub-pixelic displacement and the displacement least-square precision (i.e.
covariance in a statistical framework) is computed using a 2nd order ap-
proximation of the inter-correlation profile (see, in http://www-sop.inria.fr/odyssee/imp

the imp.ima.util.Correl class for more details). This operator provides
a relevant initial estimate (see e.g. [16] for a review).

However, this method has several drawbacks. In uniform regions there is no
local motion information. Along edges this information is only available in a
direction normal to the edge. In spurious regions (e.g. with pseudo-periodic
patterns) this estimation may be wrong. The regularization mechanism
should help correcting these caveats.

Following the methodology proposed in [20], we refine this initial estimate
using the present discrete implementation and considering the linearized
diffusion operator proposed in (8). We thus simply choose Dĥ = cn as
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      gradient
Smoothed image

Multi−scale correlation

Interlaced images
acquisition

Diffusion operator

Regularization layer
I(x)

g(x)

h(x)

h(x)

L(x)

Fig. 12. Schematic description of our implementation (see text for details).

obtain from (18), since we want to diffuse the information in uniform areas
but not across edges.

More precisely we choose:

L(ĥ) = ν

1− c2

s2

 Id+ ν

c2
s2

 n⊥ (n⊥)T

while the input related weight Λ is obtained from the correlation module,
which allows to estimate not only the local displacement but also give an
indicator of its precision in relation of how “flat” is the correlation profile
around its minimum.

A typical experimental results is proposed in Fig. 13 for the “Otte” se-
quence, where results with isotropic and anisotropic diffusion has been
show. Although similar, anisotropic diffusion is qualitatively closer to the
ground truth: since the displacement is a pure translation the motion am-
plitude is higher for closer objects and the focus of expansion corresponds
to what was expected [21].

Raw Isotropic Anisotropic

Fig. 13. A result obtained on the “Otte” sequence. Raw is what is obtained by the correlation
module; Isotropic is, for comparison, what is obtained using an isotropic diffusion; Anisotropic
is what is obtained by the present implementation.
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Similarly, experimental results for interlaced images with a hand displace-
ments are proposed in Fig. 14

Fig. 14. A few examples of hand displacement estimation using the anisotropic regularized
displacement field.

Although qualitative, this small experiment allows to verify the coherence
of our derivations.

A step further we have been able to quantify the estimation as follows:
since in the Otte sequence it is relatively easy to estimate by hand the
displacements for, say, the plane corresponding to the floor (this planar
patch in translation generates a quadratic motion field, see e.g. [16]). We
thus have been able to compare a few values with what has been obtained
by the present estimations. In this case, we obtained a precision of 15%
which is the order of magnitude of .. the manual estimation precision.

4.3 Application to early-vision biological or hardwired networks.

As discussed in [4] following [5] another application of this method is the
fact we can represent the processing as a biological neural network which
implements such visual calculations. In this context, we simply assume that
a neuron code a value at a given point pu of the cortical map. Values at
other points are set to zero, yielding:

σε
kl(x,y) =

∑
uv σ

uv
kl δ(x− pu,y − pv)

where pu are the neuron localization in the map, while δ(x,y) is the vector
2n Dirac distribution. This sampling model, related to a so called “particle
process” [7], assumes that each unit computes a discrete set of map values.
It is often used in the absence of a priori geometric knowledge on the unit
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distribution, which is the case for neuronal units. Here, equation (5), is
now of the form:

∂hk
t

∂t
(pu) = −

∑
l

[
Λk

l

[
hl

t − h̄l
t

]
(pu)−

∑
v
σuv

kl h
l
t(pv)

]
(19)

and its implementation has the same architecture and is not more complex
than any other neuronal networks, including Hopfield networks. See e.g. [3]
for details about the biological plausibility of such linear and multiplicative
computational steps.

A step further (see [4] for details), given a cortical map computation
parametrized by Λ and L, the implementation of the computation σ is
straightforward in this context using a robust Hebbian rule of the form:

σt+1 = σt − γ

for a large class of approximate values of γ. Biological networks can thus
easily implement this rule. This kind of linear learning rule is a particular
case of Hebbian learning rule (see [10,22] for an experimental discussion
and [13] for a theoretical development). More precisely, this derivation is
in coherence with [34] where the biologically plausible implementation of
nonlinear operation such as minimum computation or comparisons between
inputs is detailed.

But there is another issue here: not only biological neural-network but
also hardwired implementations of such non-linear mechanism could easily
rely on this derivation mechanism to implement real-time versions of such
operator, since the hardware design can be as simple as what is proposed
in this paragraph.

Let us finally mention that when considering several computation maps,
with feed-forward but also feed-backs connections, it is possible to guar-
anty the stability of the whole set of computation maps [4] under weak
conditions, this result being inspired by the cortical maps architecture.
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5 Conclusion

An unbiased implementation of differential operators used in the imple-
mentation of diffusion processes required in regularization mechanisms has
been proposed, using a method similar to [32] for ordinary image derivative
operators.

It is designed to derive “vectorial” operators, i.e. to regularize vectorial
maps. An interesting extension of the present work would be to consider
not only vectorial but quantities with more complex properties such as
transformation groups or diffusion tensors [28], e.g. following the track
initiated by [15]: representing the parameter space by implicit equations
and minimizing the same criterion but with constraints.

Here, the proposed scheme has the following advantage with respect to
usual frameworks: it provides a way to “automatically” derived unbiased
discrete implementation of the continuous equations. Here “automatic”
means a small computer tools which save some time (and some bugs :)
when obtaining numerical schemes.

Our work relies on the fact that a pixel/voxel averages the “image” in-
tensity over its surface/volume. This somehow restrictive assumption can
be easily generalized if one is able to calibrate the image formation onto
the sensor. For instance, generalization to any linear convolution operator
should be straightforward.

A step further, we have considered bounded supports for the integral oper-
ator (contrary to previous approaches) and introduced the idea of deriving
an approximation as closed as possible to the original operator.
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A Derivation of the diffusion tensor in the nonlinear case

Considering the Euler-Langgarne equation of (7), since:

[∆Φ,Lh]i = div (Φ′(ϕ(Dh))Dϕ(Dh))) = 2 div

Φ′(ϕL(Dh))
∑
j

Lij Dh
j

 .
using the fact that div(αv) = Dα ·v+α divv., the right-hand side is equal
to twice

Φ
′′
(ϕL(Dh))DϕL(Dh) ·

∑
j

Lij Dh
j + Φ′(ϕL(Dh))div(

∑
j

Lij Dh
j).

The term DϕL(Dh) is given by

DϕL(Dh) =
∑
i,j

D
(
(Dhj)TLijDh

i
)
,

and using the fact that D(u · v) = (Du)v + (Dv)u:

D
(
(Dhj)TLijDh

i
)

= HjLijDh
i + LijHiDh

j +DLij(Dh
i, Dhj),

where Hi, Hj are the Hessians of hi and hj and DLij is the derivative of
the matrix Lij. Hence we have

DϕL(Dh) =
∑
i

(
(HiLii + LiiHi)Dh

i +DLii(Dh
i, Dhi)

)
+

1

2

∑
i, j, i6=j

(HjLij+LijHj)Dh
i+(HiLij+LijHi)Dh

j+DLij((Dh
i, Dhj)+(Dhj, Dhi))

In the case where L = Id so that ϕL(Dh) = ||Dh||2 and Lij = δijIdn×n,
we have

DϕL(Dh) = 2
∑
j

HjDh
j

and

1

2
[∆Φ,Idh]i = Φ′ (||Dh||2

)
∆hi + 2 Φ′′ (||Dh||2

)
Dhi ·

∑
j

HjDh
j

If we assume further that Φ(||Dh||2) =
∑

j Φj(||Dhj||2) things simplify even
further:

[∆Φ,Idh]i = div
(
Φ′

i(||Dhi||2)Dhi
)

36



and the resulting equations are decoupled:

[∆Φ,Idh]i = Φ′
i

(
||Dhi||2

)
∆hi + 2 Φ

′′

i

(
||Dhi||2

)
||Dhi||2 ηT

i Hi ηi
, (A.1)

where ηi = Dhi

||Dhi|| .

Furthermore, in this case all components hi of h are decoupled.

B Maple code used for symbolic derivations

This functions allows to automatically derive the kernel to implement given
a diffusion operator. Maple standard functions allows automatic code gen-
eration (e.g. in C) from this function output.

# Define the kernel of the discrete approximation of a diffusion operator,

# returning a gross equation

sigma := proc(

M, L, # .. defined by the 1st order coeffs M(u) and 2nd order coeffs L(u,v)

# as functions of x,

x :: vector, y :: vector, # .. returning an operator sigma(x, y),

r :: integer, # .. identify up to the r-th order,

s :: integer # .. for an hyper-cube [-s .. s]^n is of size s^n,

)

option remember: local sigma, n, v, i, j, c, z, S, B, X, Y, A, D, U, V:

n := vectdim(x):

lprint("# Define the sigma symmetric matrix"):

X := array([’sigma[v]’$v=1..(2*s+1)^n]):

lprint("# Calculate the [C1] [C2] and [C0] conditions"):

c := d ->

sum(’intCube(pow(y, d), y, array(indixes(v, s, n))) *

(-sigma[v]/(1+linalg[norm](array(indixes(v, s, n)), 2)^2))’, v=1..(2*s+1)^n):

B := array([op(evalf(

{’M(i) - c(map(dirac, [$1..n], i))’$i=1..n,

’’2*L(i,j) - c(map((a,b,c)->dirac(a,b)+dirac(a,c), [$1..n], i, j))’$j=i..n’$i=1..n

} union map(c, ‘union‘(op(map(indexes, {$3..r}, n))))))]):

Y:= array([op(map(proc(e) local t: coeffs(e, indets(e), t): t end,

{’M(i)’$i=1..n,’’L(i,j)’$j=i..n’$i=1..n}) minus {1} )]):

lprint("# Calculate the SVD and its pseudo-inverse"):

A := linalg[jacobian](B, X):

B := evalm(B - A &* X):

lprint("svd ..");

D := convert(evalf(Svd(A, U, V)), list):

lprint(" done");

D := matrix(coldim(A), rowdim(A),

(i,j) -> if (i = j) and (D[i] > D[1] / 10000) then 1 / D[i] else 0 fi):

B := convert(evalm(V &* D &* transpose(U) &* B), vector):

z := proc(u)

if type(u, algebraic) and not type(u, {constant,name}) then map(procname, u)

elif type(u, constant) and (abs(u) < 1e-6) then 0

else u fi

end:

B := map(z, array(evalf(

map((v,B,s,n) -> B[v]/(1+linalg[norm](array(indixes(v, s, n)), 2)^2),
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[$1..(2*s+1)^n], op(B), s,n)))):

S := factor(z(sum(B[i],i = 1 .. (2*s+1)^n))):

if type(S, constant) then z := S: S := 1 fi:

if type(S, ‘+‘) and

nops(map(u-> if type(u, ‘*‘) then op(1,u) else u fi, convert(S,set))) = 1 then

if type(op(1,S), ‘*‘) then z := op(1,op(1,S)) else z := op(1,S) fi: S := S / z

fi:

if type(z, constant) then

B := array(map((v,B,z,s,n)->B[v]/z, [$1..(2*s+1)^n], op(B), z,s,n)):

fi:

lprint("# Format the output"):

if vectdim(Y) = 0 then

[op(X), ‘=‘, op(B), ‘/‘, S]

else

c := (e, v) -> coeff(subs(v=DUMMY_VARIABLE,e),DUMMY_VARIABLE):

A := matrix(vectdim(X), vectdim(Y), (i, j) -> c(B[i], Y[j])):

if convert(evalm(B - A &* Y), set) <> {0} then ERROR(SpuriousForm) fi:

[op(X), ‘=‘, op(A), ‘&*‘, op(Y), ‘/‘, S]

fi

end:

The following macros have been used for the symbolic derivations proposed
in this paper.

# Return the extremum of a quadratic criterion c with linear constraints ctr

leastsquare := proc(c, ctr :: set, vars :: set)

local l, v, r:

l := {’cat(_Z_,i)’$i=1..nops(ctr)}: v := vars union l:

r := solve(

convert(linalg[grad](

c + sum(’cat(_Z_,i)’*ctr[i],i=1..nops(ctr)), convert(v, list)), set),v):

if r <> NULL then map((u, l) -> if not member(op(1,u), l) then u fi, r, l) fi

end:

# Calculate the power of vector x with respect to multi-indices

pow := (x :: vector, d :: list(integer)) ->

convert(map((i, x, d) -> x[i]^d[i], [$1..min(vectdim(x),nops(d))], x, d), ‘*‘):

# Integrate an expression e over a canonic hyper-cube

intBox := proc(e, x :: vector)

option remember: local r, i:

r := e: for i to vectdim(x) do r := int(r, x[i]=-1/2..1/2) od

end:

# Return the set of multi-indexes d = [d_1 .. d_n] with r = sum(d_i, i=1..n)

indexes := proc(r :: integer, n :: integer)

option remember:

if r = 0 then

{[0$i=1..n]}

else

map((d, n) -> op(

map((i, n, d) ->

map((j, i, d) ->

if i = j then d[j] + 1 else d[j] fi,

[$1..n], i, d),

{$1..n}, n, d)),

{op(procname(r-1, n))}, n)

fi

end:

# Define the kronecker symbol

dirac := (a, b) -> if a = b then 1 else 0 fi:
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