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On the algebra of viscoelastic responses

Nicolas BOULEAU *

We study the class of functions which are responses to the unit impulse for linear viscoelas-
tic systems and the algebraic operations which preserve this class. This allows to yield and
to structure a large number of explicit analytical expressions which can be used in symbolic
computer systems for the construction of various rheological models.

*Ecole Nationale des Ponts et Chaussées 93167 Noisy-le-Grand cedex France



The restrictions imposed by the thermodynamics of irreversible phenomena on viscoelastic
systems were discovered and studied by several authors sometimes independently (cf Eckart
(1948), Meixmer (1953), Biot (1954), Coleman (1964), Fung (1965), Mandel (1966)). We con-
sider here the hypotheses of the theory of M. Biot (1954) and, as this theory, the following study
applies as well to other physical (electrical, chimical) phenomena provided that the assumptions
(Onsager principle, existence of normal variables, linearity) be valid. The conclusion of this
theory, whose reasoning is recalled in part I below for completeness, is that every viscoelas-
tic system can be approximated (cf Fung (1965), Mandel (1966), or more recently Tschoegl
(1989), Pipkin (1989)) by a grouping in parallel or in series of a finite number of dashpots and
of springs. Nevertheless it would be a shame to limit this theory to this single conclusion, on
one hand because the grouping in parallel of an infinite sequence of models of Maxwell and a
dashpot and a spring does not yield the general response (as does not the grouping in series of
Kelvin-Voigt models and a dashpot and a spring, cf 11.3 below) on the other hand because this
theory yields the explicit class of functions which are possible responses and because this class,
related to several important mathematical questions, possesses remarkable algebraic properties
which allow to construct and to link together a large variety of examples with explicit analytical
forms.

The increasing use by engineers of symbolic computer systems make the building up of such
a library of response functions a tool for modelisation which is complementary to the usual
numerical computations.

I. Thermodynamics and viscoelasticity
I.1 The classical argument about restrictions to the viscoelasticity due to thermodynamics is
the following :

Let a system be acted on by generalized forces ();, : = 1,...,n and described by associated
geometrical parameters ¢;, © = 1,...,n such that the work of external forces can be written
Yo, Qidg;. In the neighbourhood of a stable equilibrium state, where the ¢;’s are taken to be
zero, the thermodynamical potential of the system writes

1
W = 3 Z a;;G:q;
27]

where the matrix (a;;) is symmetric positive semi-definite (the word stable is taken here in
the wide sense). Computing the entropy variation during a short time interval, neglecting the
inertial forces, and assuming small velocities give for the dissipated power :

1 .
D=3 > bijdig
0]

where the matrix (b;;) is symmetric by Onsager’s principle and positive semi-definite by the
second principle of thermodynamics. The evolution equation is then

oD ow

aqz‘ + aQi

—
thus

(1) Zaij% + Z bi;q; = Q.
J J



In the case of linear viscoelasticity free from aging effects, coefficients (a,;) and (b;) are
constants, and the linear relation between the history of forces (Q;(t)) and that of parameters
(g:(t)) commutes with time translations, it expresses therefore by a convolution product and is
known by the response f;;(1) of the parameter ¢; to the unit jump of the force @);. Let us write
equation (1) under the form

(2) Ag+ Bi=@

where A and B are n X n symmetric positive semi-definite matrices and let us assume first that
B be positive definite.
Let us consider on IR” the Euclidean structure associated with B whose scalar product is

(u,v)p =< u, Bv >="uBv

(denoting by < .,. > the usual scalar product on IR"). For this new Euclidean structure the
operator B! A is self-adjoint :

(u, B7'Av)g =< u, Av >=< Au,v >=< v, Au >= (v, B~ ' Au)p

weey

) 0 if j #k
(0 BT ) = < by, Ay > = {MZO it j =k

Wibds = <y B> = {? e

in particular

Ay — \By =0 k.

Let G(0) [resp. Q(G)] be the Laplace transform of ¢(t) [resp. Q()] (G(0) = [5° e~%q(t)dt).
Equation (2) writes

A

(3) (A+0B)G = Q.
Then, if ¢(6) is expanded on the basis (),

(4) i6) = 3" &(0)y
k=1
it follows

(e + 0)6 =< ¥, Q > .

If, among the n parameters only m (m < n) are observable, i.e. if Q = (Ql, ey @m,0,...,0)
it comes

1 m A
Vi, Q;
=1

6= 32

and by (4)
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Therefore, denoting by fi;(t) the response of ¢; to the unit jump of @Q;, one has

T

fz‘ljzz)\ _I_H%/Jkl/)k
and hence

Z/ e ds (M

It is easily seen that if larger assumptions are taken on matrix B allowing zero and infinite
eigenvalues, one gets finally the following form

(5) Z e M) S () 4 tL;; + K

where the matrices (J®)k =1,...,n, L, K are symmetric positive semi-definite.
I.2 Starting from equation (5) and passing to the limit give that the responses of viscoelastic
systems to unit jump are,
in the case of a single observable parameter, of the form

(6) () = / (1 e Yu(dN) + bl + ¢

where v is a positive o-finite measure on IR =]0, oo such that [° = dl/( ) < 400, and b >0,
c>0;
and in the case of m observable parameters, of the form

(7) Fslt) = [ (0= e is(dn) + L + Koy,

where v = (14;) is a symmetric positive semi-definite matrix of o-finite measures on IR, which
satisfy

/R*l—l— d|lvij|(z) < 400 Vi,j=1,...,n

and where matrices I and K are symmetric positive semi-definite.

This passing to the limit can be performed either, using physical arguments, by taking the
set of pointwise limits of functions of the form (5), or by considering a viscoelastic continuum,
with matrices A and B replaced by non bounded self-adjoint operators in a Hilbert space.
Then the argument of part T above extends and by the spectral representation of self -adjoint
operators, gives directly the forms (6) and (7). A detailed mathematical proof of this derivation
would bring nothing more to the present article which uses henceforth only formulae (6) and

(7).

I1. Operations on Bernstein functions

The functions of the form (6) are called Bernstein functions. They occur essentially in
potential theory and especially in the theory of convolution semi-groups (cf Berg and Forst
(1975)), we recall first their fundamental properties.
I1.1 Fundamental properties of Bernstein functions



Property 1 A function f : IR} — IR is Bernstein if and only if, f is C, f > 0, and
(=1)PDPf <0 Vp>1.

In particular, it is seen that Bernstein functions are concave and constitute a convex cone.
Property 1 is often taken as definition.

Property 2 The Bernstein functions can be represented under the form (6) and the triplet
(v, b, ¢) is uniquely determined by f. They have an extension to a continuous function in the
half plane Rez > 0 which is holomorphic in the open half plane Rez > 0. The limit of every
pointwise convergent (on IR:_) sequence of Bernstein functions is a Bernstein function.

The most fundamental property is that they are in one to one correspondance with vaguely
continuous semi-group of sub-probability measures on IR, and are therefore related to the
probabilistic theory of processes with stationary independent increments (cf Bouleau (1991)) :

Property 3 Let f be a Bernstein function. Then there exists a family of positive measures
(tr)r>0 on IRy such that

) (R < 1

i) fr * flg = fhrto Vo, >0 (convolution semi-group)

iii) lim; 0 f1- = dg vaguely

) Jr, e p-(dr) = e~/ V>0

such a family is unique, and conversely for a family satisfying i), ii), iit) the function f
given by iv) is Bernstein.

The measures p, are probability measures (p,(IR;) = 1) if and only if f(0) = 0.
The Bernstein functions are also related to the family of completely monotone functions
(functions ¢ : R} — IRy such that (=1)"DF¢g >0 Vp>0):

Property 4 f is Bernstein if and only if, for every 7 > 0, g = €7/ is completely monotone.

I1.2 Subordination in Bochner sense
A remarkable property of the cone of Bernstein functions is that it is stable by composition
in the following sense :

Property 5 If ¢ and ¢ are Bernstein, 1(0) =0, then p o : @ — @(¢(z)) is Bernstein.

This property possesses a semi-group interpretation as shown by Bochner and also a prob-
abilistic one known as subordination (cf for instance Bouleau and Chateau (1989), Chateau
(1990)). It allows from known Bernstein functions to obtain new ones and it will be used in
part I1I below.

This property, when interpretating a viscoelastic material as a clock, has the following
physical meaning :

Let us consider :

a) a body A with rectilinear uniform movement, at zero at time 0.

b) two indices B and C' bound respectively to the responses to the unit jump of two vis-
coelastic materials and moving parallely to A.

If we note the successive positions ag = 0,a, ..., a,,...of Awhen B reaches regular distances
0,h,2h,... ,nh,..., then the successive positions ag = 0, aq,...,a,,... of A when C' reaches
the a,’s are also the ones reached by A when a third viscoelastic body D has its index on
0,h,2h, ... ,nh, ...,

I1.3 Parallel and serial grouping : conjugate materials



When two rheological models with the same numbers of observables parameters are put in
series, the response obtained is the sum of the responses :

fz(t) = fz‘(jl)(t) + fi(jQ)(t)

where as the putting in parallel corresponds to the sum of relaxation functions
1 2
ri(t) = () + ().

By the fact that the responses to the unit jump are related to the relaxation functions by the
relation

(8) (3" Fix #m2i)is = 601
k=1

where [ is the identity matrix, and where the derivative are taken in the sense of distributions, it
follows from the results of Hirsch (1972) on the Stieltjes transform that the relaxation functions
are the distributions of the form

(9) rij(t) = Aij + Bijdo(t) + /]R* ¢ diij(x)
+

where the matrices A, B ¢ = (¢;;) are symmetric positive semi-definite, and the measures ¢;;
are such that

/0 H%d|goij($)|>—l—oo i,7=1,...,m.
It follows that the primitive functions R;; vanishing on the negative real axis of the functions
r;;(t) are exactly the functions of the form (7). There exists therefore a material where responses
to unit jump are the R;;(¢)’s. This material can be called conjugate to the initial material. The
conjugation relation is involutive and the serial grouping of the initial materials corresponds to
the parallel grouping of the conjugate materials and conversely.
Remark
In particular, we see that a countable combination of dashpots and springs yields a rheo-
logical model which, in the case of a single observable parameter, is of the forme (6) with a
discrete measure v (countable sum of Dirac masses). This is far from being all possible models
as mentioned in the introduction.

III. Main analytical families

Henceforth we shall write only “response” for “response to the unit jump”.

Because of the probabilistic interpretation of the underlying convolution semi-groups (cf
Bouleau (1991)), the measure v of formula (6) will be called the Lévy measure.
IT1.1 Discrete Lévy measures

a) Let us quote first for completeness the finite sums of Dirac masses which correspond to
the usual springs-dashpots models :
Elastic material

A0 = o

damping (conjugate of the preceding one)

le (t) = atl{tzo}.



Maxwell material
fo(t) = (at + )1 (503

Kelvin-Voigt material (conjugate of the preceding one)

~ 1 a
fg(t) = g(l — e_zt)ltzo.
Finite combination of springs and dashopts

Fo(t) = Qa1 = ") 4 at + b1z

k3

and its conjugate material
Fo() = O_B:(1 — e + et + d)1yx0

with ac = 0 and
/\1<,M1<)\2</LQ<... 1fc7§0
and

pr <A < g <Ay <. if a # 0.

—tX]

b) Let X be an integer integrable random variable, then IE[1 — e is a response. Taking

X =aY, a >0, where Y has a geometrical law on IN*, gives
1 — e—ta

)= ———— 1
f4( ) 1_pe_ta p 6]07 [7 a > 0

and if Y follows a Poisson law with parameter § on N*, one gets
f5(t) =1 —exple™™ — 0 — ta], >0, a>0.

Finally with IP(Y =n) = (1 — p)a%p”_l, n > 1 one obtains
(1 _ p)ae—m
(1 _ pe—m)a’

c) It follows from the probabilistic interpretation of the Lévy measure that if f is of the
form f(t) = [(1 — e ™)dv(y) with v of the form v(dy) = >°%, a,dy,, a, > 0 (and satisfying
f 1i—yd1/(y) < +00), then g(f(t)) is still of this form with a Lévy measure >.°° , b,,, (the same
yn’s) whatever be the Bernstein function g vanishing at zero.

Therefore, composing on the left fi,..., f¢ with the other responses below yields responses
in the class of discrete Lévy measures again.

I11.2 Stable family of order o

Thus are called, because of the probabilistic interpretation, the responses of the form

fet) =1~ a>0,p€]0,1].

J2(t) = ha(t) = at™1gs0y, a €]0,1[,a > 0.

From the formula



0 dy (1 —
/(1—5@)y _ I a%% 0> 0,
0 y

a+1 o

it follows that the Lévy measure of f7 is

ac dy *
I/7(dy) = mﬁ on ].R,+.
The response of the conjugate material is
~ sin Ta
f2(t) = ! 0y

ac(l — a)m

(by use of the relation (8) and Euler formula I'(a)T'(1 — a) = ).

sin o

Moreover, it is possible to show that the only material which is its own conjugate material

has for response
2\/? 1
o 120}

The stable family is of course closed by composition.
I11.3 Homographic family
For a > 0 and b > 0, the function

at

Js(t) = T

Loy
is a response. This family is also closed by composition. The corresponding Lévy measure is
a _ *
vg(dy) = ¢ v/t dy on IR} .
IT1.4 Logarithmic family For a¢ > 0 and b > 0 the function

fo =alog(1 + bt)

is a response which corresponds to the Lévy measure

d
vo(dy) = ae vty on IR}.
Yy
I11.5 Some other responses
Easy computations yields also
1—e
fio(t) = a(b— ) a>0,b6>0

2
associated with vio(dy) = alyy(y)dy,

bn—l—l n[

—[1 — ™"

oo, (b
n+1 (ntl

Su(t) = af n! (n—1)!

+o+ D} a>0b>0

associated with



vii(dy) = Loy (y)y"dy, neN

IV. Comments
IV.1 By combination of the preceding responses several behaviour at infinity can be obtained.

For example, putting f < ¢ for lim;_, ;l(% = 0, gives

t

foofo = fo = frofo=<fr=<t.

Similarly, for the functions which possess a finite limit, the speed of the nearing to the asymptote
can be varied.

In the same manner, the behaviour at zero can be chosen with a non vertical tangent (elastic
behaviour) or with a vertical tangent (viscous behaviour) and with more or less curvature.
IV.2 There exists a relationship between the Logarithmic family and the homographic one :

If
fo) = PR = — e
one has
t
golt) =114,

IV.3 The set By of the responses vanishing at zero and with value 1 at £ = 1, is a monoid for
composition.
The relation

f[g </:>E|hEB071, g:th

defines an order on By ;. Let we call branch a totally ordered subset of By 1, each point of By,
is the starting point of an uncountable family of branches. Nevertheless, By, does not possess
the structure of a tree (cf Chateau (1990)).

IV.4 For building, with these families a multivariate viscoelastic response, it suffices to chose
the f;;’s among the differences of the preceding functions, and to check that the associated
Lévy measure v;; define a positive semi-definite matrix (which means that the matrix v;;(A) is
symmetric positive semi-definite for every Borel set A C IRY).

For example, it can be taken

1o,11(y)dy —1j0,11(y)ydy

1[071](y)ydy 1[071](y)dy

which corresponds to the matrix of responses

1 — 1—e—t 1—e~t(¢+1) 1
t 2 2
1—e~f(z+1) 1 ] 1=t
2 2 t
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